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2 Συναρτήσεις πολλών μεταβλητών:
Θεωρία και Εφαρμογές

2.1 Συναρτήσεις πολλών μεταβλητών
2.1.1 Εισαγωγή
Οι συναρτήσεις πολλών μεταβλητών αποτελούν έναν θεμελιώδη λίθο τόσο των Μαθηματικών
όσο και πολλών εφαρμοσμένων επιστημών, όπως η Φυσική, η Μηχανική, η Οικονομία και η
Επιστήμη των Υπολογιστών. Από τον απλό υπολογισμό εμβαδών γεωμετρικών σχημάτων, έως
τη μελέτη μεταβολών φυσικών μεγεθών όπως η θερμοκρασία ή η πυκνότητα, οι συναρτήσεις
δύο μεταβλητών παρέχουν την απαραίτητη γλώσσα για την περιγραφή και ανάλυση φαινομένων
που εξελίσσονται σε δύο διαστάσεις. Σκοπός του παρόντος κεφαλαίου είναι να παρουσιάσει
με σαφήνεια και πληρότητα τη θεωρία, τις μεθόδους και τις εφαρμογές των συναρτήσεων δύο
μεταβλητών με βασικά παραδείγματα - όπως το εμβαδόν παραλληλογράμμου ή η απόσταση ση-
μείου από την αρχή των αξόνων - και καταλήγοντας σε πιο σύνθετες περιπτώσεις όπως παραδεί-
γματα από την φυσική και την θεωρία υπολογιστών, το κεφάλαιο αυτό ξεδιπλώνει τη δύναμη
και την πολυδιάστατη ισχύ των συναρτήσεων με δύο μεταβλητές. Παράλληλα, η γεωμετρική
απεικόνιση μέσω ισοταθμικών καμπύλων και επιφανειών εμπλουτίζει τη θεωρητική προσέγγιση
με πολύτιμες διαισθητικές γνώσεις, προσφέροντας το απαραίτητο εργαλείο για την ανάλυση και
μοντελοποίηση πολύπλοκων συστημάτων. Είτε πρόκειται για την περιγραφή φαινομένων της
φύσης, είτε για την ανάλυση δεδομένων στην επιστήμη των υπολογιστών και την τεχνολογία, οι
συναρτήσεις δύο μεταβλητών βρίσκονται στον πυρήνα κάθε ουσιαστικής μελέτης και σύνθεσης,
επιτρέποντας μας να κατανοήσουμε, να προβλέψουμε και να μετασχηματίσουμε τον κόσμο γύρω
μας.

Η μετάβαση από τις συναρτήσεις μιας μεταβλητής στις συναρτήσεις δύο μεταβλητών ανοίγει
νέους ορίζοντες στη μαθηματική ανάλυση, καθώς απαιτεί την αναδιατύπωση και επέκταση θεμε-
λιωδών εννοιών σε δύο διαστάσεις. Στο προηγούμενο κεφάλαιο ασχοληθήκαμε εκτενώς με βασι-
κές έννοιες όπως το πεδίο ορισμού, η γραφική απεικόνιση, η έννοια της συνέχειας, η δυνατότητα
παραγωγής και η διαφορισιμότητα για συναρτήσεις πραγματικών αριθμών μιας μεταβλητής. Σε
αυτό το κεφάλαιο, η μελέτη εστιάζει στο πώς επιμηκύνονται οι έννοιες αυτές όταν η συνάρτηση
εξαρτάται από δύο ανεξάρτητες μεταβλητές και επομένως το πεδίο ορισμού αποκτά γεωμετρική
υπόσταση - δεν πρόκειται πλέον για διάστημα, αλλά για περιοχή στο επίπεδο των (x,y). Η
έννοια της περιοχής γίνεται κεντρική: το πλήθος των σημείων όπου ορίζεται μια συνάρτηση δύο
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μεταβλητών συχνά παρουσιάζει γεωμετρικούς περιορισμούς και επιτρέπει τη μελέτη φαινομένων
πολύ πιο σύνθετων σε σχέση με τη μονοδιάστατη ανάλυση. Η συνέχεια, η παραγωγισιμότητα και
η διαφορισιμότητα αναλύονται σε νέο πλαίσιο, ενώ η έννοια της μερικής παραγώγου εισάγει την
ικανότητα περαιτέρω ανάλυσης της μεταβολής συναρτήσεωνως προς κάθε ανεξάρτητη μεταβλητή
ξεχωριστά. Εμφανίζονται νέα εργαλεία όπως τα όρια κατεύθυνσης, οι μερικές παράγωγοι, η ολική
συνέχεια, οι γραφικές παραστάσεις επιφανειών και οι ισοταθμικές καμπύλες, οι οποίες είναι και το
κλειδί για τη διαισθητική κατανόηση της συμπεριφοράς των συναρτήσεων πολλών μεταβλητών.
Επιπλέον, στο διδιάστατο χώρο αποκτούν ιδιαίτερο ενδιαφέρον τα φαινόμενα τοπικής συμπερι-
φοράς: εντοπίζονται και μελετώνται μέγιστα, ελάχιστα και σημεία σαγματικής συμπεριφοράς με
εργαλεία όπως το διαφορικό και ο πίνακας Hess. Τέλος, ο συνδυασμός μαθηματικών εννοιών
και γεωμετρικής οπτικής προσφέρει ένα ισχυρό πλαίσιο για την ανάλυση και μοντελοποίηση
φαινομένων που συναντάμε στη φυσική, στην οικονομία, αλλά και στους υπολογιστές, με εφαρμο-
γές από την ανάλυση δεδομένων και την μαθηματική μοντελοποίηση έως τη βελτιστοποίηση
συστημάτων.

Γενικά, οι πραγματικές συναρτήσεις πολλών ανεξάρτητων πραγματικών μεταβλητών ορίζονται
ανάλογα με τις συναρτήσεις μίας μεταβλητής. Τα στοιχεία του πεδίου ορισμού είναι διατεταγμένα
ζεύγη (τριάδες, τετράδες, n-άδες) πραγματικών αριθμών, ενώ τα στοιχεία του πεδίου τιμών είναι
πραγματικοί αριθμοί.

Ορισμός 2.1.1 Έστω ότι το D είναι ένα σύνολο n-άδων πραγματικών αριθμών (x1,x2, . . . ,xn).
Μια πραγματική συνάρτηση f ορισμένη στοD είναι ένας κανόνας που αντιστοιχίζει έναν (μονα-
δικό) πραγματικό αριθμό

w = f (x1,x2, . . . ,xn)

σε κάθε στοιχείο τουD. Το σύνολοD είναι το πεδίο ορισμού της συνάρτησης f . Το σύνολο των
τιμών που παίρνει η f είναι το πεδίο τιμών της συνάρτησης. Τοw είναι η εξαρτημένη μεταβλητή
της f , και η f είναι συνάρτηση των n ανεξάρτητων μεταβλητών x1 έως xn. Ονομά- ζουμε επίσης
τα x j μεταβλητές εισόδου της συνάρτησης και το w μεταβλητή εξόδου της συνάρτη- σης.

Αν η f είναι συνάρτηση δύο ανεξάρτητων μεταβλητών, συνήθως συμβολίζουμε τις ανεξάρτη-
τες μεταβλητές με x και y και την εξαρτημένη μεταβλητή με z, ενώ φανταζόμαστε το πεδίο
ορισμού της f ως χωρίο στο επίπεδο xy. Αν η f είναι συνάρτηση τριών ανεξάρτητων μεταβλητών,
ονομάζουμε τις ανεξάρτητες μεταβλητές x, y και z και την εξαρτημένη μεταβλητήw, και φανταζό-
μαστε το πεδίο ορισμού ως χωρίο (περιοχή) του χώρου.

D x

y

0

(x, y)

(x0, y0)

z
0

f(a, b) f(x, y)

f

Σχήμα 2.1 Απεικόνιση του f : D⊆ R2→ R

Στις εφαρμογές, τείνουμε να χρησιμοποιούμε γράμματα που μας θυμίζουν τι σημαίνουν οι
μεταβλητές που αυτά συμβολίζουν. Για να δηλώσουμε ότι ο όγκος ενός ορθού κυλινδρικού
κυλίνδρου είναι συνάρτηση της ακτίνας του και του ύψους του, μπορούμε να γράψουμε V =
f (r,h). Για περισσότερη ακρίβεια, μπορούμε να αντικαταστήσουμε το f (r,h) με τον τύπο που
υπολογίζει την τιμή του V από τις τιμές των r και h, και να γράψουμε V = πr2h Σε κάθε
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περίπτωση, τα r και h θα είναι οι ανεξάρτητες μεταβλητές και το V η εξαρτημένη μεταβλητή
της συνάρτησης.

2.2 Πεδία ορισμού και Πεδία Τιμών
2.2.1 Συναρτήσεις δύο μεταβλητών

R
(x0, y0)

Σχήμα 2.2 Εσωτερικό Σημείο
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R

(x0, y0)

Σχήμα 2.3 Εξωτερικό Σημείο

Παράδειγμα 2.2.1
Να σχεδιάσετε το πεδίο ορισμού της συνάρτησης:

f (x,y) =
√

9− x2− y

Ποιο είναι το εύρος των τιμών αυτών των συναρτήσεων;

Σχήμα 2.4 Το πεδίο ορισμού της συνάρτησης f (x,y) =
√

9− x2− y είναι το σύνολο των σημείων που βρίσκονται πάνω στην
παραβολή y = 9− x2 ή κάτω από αυτήν.

Ασκήσεις 2.2.2

1. f (x,y) =
√

y− x−2

2. f (x,y) = ln(x2 + y2−4)

3. f (x,y) =
(x−1)(y+2)
(y− x)(y− x3)

4. f (x,y) =
sin(xy)

x2 + y2−25
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5. f (x,y) = cos−1(y− x2)

6. f (x,y) = ln(xy+ x− y−1)

7. f (x,y) =
√

(x2−4)(y2−9)

8. f (x,y) =
1

ln(4− x2− y2)

2.2.2 Γραφική αναπαράσταση συναρτήσεων με δύο μεταβλητές
Στην περίπτωση του Λογισμού των συναρτήσεων μίας μεταβλητής, μπορούμε να χρησιμοποιή-
σουμε τις γραφικές παραστάσεις για να οπτικοποιήσουμε τα πιο σημαντικά από τα χαρακτηριστικά
μιας συνάρτησης (βλ. Σχήμα 2.5a). Οι γραφικές παραστάσεις παίζουν έναν παρόμοιο ρόλο και
στην περίπτωση των συναρτήσεων με δύο μεταβλητές. Το γράφημα μιας συνάρτησης f δύο
μεταβλητών αποτελείται από το σύνολο των σημείων (a,b, f (a,b)) του χώρου R3 για όλα τα
ζεύγη τιμών (a,b) που ανήκουν στο πεδίο ορισμού D της f . Υποθέτοντας ότι η f είναι συνεχής
(η έννοια της συνέχειας στην πολυμεταβλητή ανάλυση θα οριστεί στην επόμενη ενότητα), το
γράφημα είναι μια επιφάνεια το ύψος της οποίας πάνω ή κάτω από το επίπεδο xy στο (a,b)
είναι η τιμή της συνάρτησης f (a,b) (βλ. Σχήμα 2.5b). Πολύ συχνά γράφουμε z = f (x,y)
προκειμένου να δώσουμε έμφαση στο γεγονός ότι η z συντεταγμένη ενός σημείου του γραφήματος
είναι συνάρτηση των x και y.
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(a) Γραφική παράσταση της y = f (x). (b) Γραφική παράσταση της z = f (x,y).

Σχήμα 2.5
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2.2.3 ’Ιχνη
Ένας τρόπος μέσω του οποίου μπορούμε να αναλύσουμε το γράφημα μιας συνάρτησης f (x,y)
είναι σταθεροποιώντας («παγώνοντας») τη συντεταγμένη x, θέτοντας για παράδειγμα x = a και
εξετάζοντας την προκύπτουσα καμπύλη που περιγράφεται από την z = f (a,y). Παρομοίως,
μπορούμε να θέσουμε y = b και να μελετήσουμε την καμπύλη z = f (x,b). Οι καμπύλες αυτού
του είδους είναι γνωστές ως κατακόρυφα ίχνη, καθώς προκύπτουν από την τομή της γραφικής
παράστασης με επίπεδα που είναι παράλληλα σε ένα από τα κατακόρυφα επίπεδα συντεταγμένων
(βλ. Σχήμα 2.6).

(a) Κατακόρυφα ίχνη παράλληλα στο επίπεδο yz. (b) Κατακόρυφα ίχνη παράλληλα στο επίπεδο xz.

Σχήμα 2.6

• Κατακόρυφο ίχνος στο επίπεδο x = a: Προκύπτει από την τομή της γραφικής παράστασης
της συνάρτησης με το κατακόρυφο επίπεδο x = a και αποτελείται από το σύνολο των
σημείων της μορφής (a,y, f (a,y)).

• Κατακόρυφο ίχνος στο επίπεδο y = b: Προκύπτει από την τομή της γραφικής παράστασης
της συνάρτησης με το κατακόρυφο επίπεδο y = b και αποτελείται από το σύνολο των
σημείων της μορφής (x,b, f (x,b)).
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Παράδειγμα 2.2.3
Να περιγράψετε τα κατακόρυφα ίχνη της συνάρτησης f (x,y) = xsiny (Σχήμα 2.7).

(a) Τα ίχνη στα επίπεδα x = a είναι οι καμπύλες z = asiny.
(b) Τα ίχνη στα επίπεδα y = b είναι οι καμπύλες
z = xsinb.

Σχήμα 2.7 Κατακόρυφα ίχνη της συνάρτησης f (x,y) = xsiny.
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2.3 Ισοσταθμικές καμπύλες και ισοσταθμικοί χάρτες

Πέραν των κατακόρυφων ιχνών, τα γραφήματα των συναρτήσεων f (x,y) έχουν και οριζόντια
ίχνη. Τα οριζόντια ίχνη, αλλά και οι συνδεόμενες με αυτά ισοσταθμικές καμπύλες, είναι εξαιρετικά
σημαντικά κατά την ανάλυση της συμπεριφοράς μιας συνάρτησης (βλ. Σχήμα 2.8):

• Το οριζόντιο ίχνος σε ύψος c προκύπτει από την τομή της γραφικής παράστασης με το οριζόντιο
επίπεδο z = c, αποτελείται δε από το σύνολο των σημείων της μορφής (x,y, f (x,y)) που είναι
τέτοια ώστε να ισχύει f (x,y) = c. Επομένως, η ισοσταθμική καμπύλη που αντιστοιχεί στην τιμή
c αποτελείται από όλα εκείνα τα σημεία (x,y) στο πεδίο ορισμού της συνάρτησης f στο επίπεδο
xy για τα οποία η συνάρτηση παίρνει την τιμή c. Κάθε ισοσταθμική καμπύλη είναι η προβολή
πάνω στο επίπεδο xy του οριζόντιου ίχνους του γραφήματός της που βρίσκεται ακριβώς από πάνω
της.

• Ένας ισοσταθμικός χάρτης είναι μια «κάτοψη» στο πεδίο ορισμού επί του επιπέδου xy, που
απεικονίζει τις ισοσταθμικές καμπύλες f (x,y) = c για τιμές της c που ισαπέχουν. Η απόσταση
m που μεσολαβεί μεταξύ των διαδοχικών τιμών της c αποκαλείται ισοσταθμικό διάστημα. Όταν
μετακινούμαστε από τη μια ισοσταθμική καμπύλη στην επόμενη, η τιμή της συνάρτησης f (x,y)
(και επομένως και το ύψος της γραφικής παράστασης) μεταβάλλεται κατά±m.

(a) Μια ισοσταθμική καμπύλη αποτελείται από το σύνολο των
σημείων (x,y) για τα οποία η συνάρτηση παίρνει την ίδια τιμή c.

(b) Ο ισοσταθμικός χάρτης της συνάρτησης
g(x,y) = x2−3y2 με διάστημα m = 10.

Σχήμα 2.8
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Πώς μπορούμε όμως να προσδιορίσουμε, με κάποιον ποσοτικό τρόπο, πόσο απότομο είναι το
γράφημα μιας συνάρτησης; Ας φανταστούμε την επιφάνεια που ορίζεται από τη z = f (x,y) ως
έναν λόφο, όπως φαίνεται στο Σχήμα 2.9. Αν τοποθετήσουμε το επίπεδο xy στο επίπεδο της
θάλασσας, τότε το f (a,b) θα είναι το ύψος του λόφου στο σημείο (a,b) του επιπέδου, μετρημένο
ως προς το επίπεδο της θάλασσας. Στο Σχήμα 2.9(a) απεικονίζονται δύο σημεία P και Q, που
ανήκουν στο επίπεδο xy, μαζί με τα σημεία του γραφήματος που βρίσκονται ακριβώς από πάνω
τους και τα οποία δηλώνονται ως P̃ και Q̃ αντίστοιχα.

Ορίζουμε τον μέσο ρυθμό μεταβολής της συνάρτησης ως εξής:

Μέσος ρυθμός μεταβολής από το P μέχρι το Q.

Μέσος ρυθμός μεταβολής από το P μέχρι το Q =
∆ ύψος

∆οριζόντιο

όπου ∆ ύψος = η μεταβολή του ύψους από το σημείο P̃ μέχρι το σημείο Q̃ και ∆ οριζόντιο = η
απόσταση μεταξύ των σημείων P και Q.

Σχήμα 2.9
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Παράδειγμα 2.3.1
Ο μέσος ρυθμός μεταβολής εξαρτάται από την κατεύθυνση Να υπολογίσετε τον μέσο ρυθμό

μεταβολής καθώς κινούμαστε από το σημείο A προς τα σημεία B,C και D του Σχήματος 2.9.

Λύση.Το ισοσταθμικό διάστημα στον χάρτη του Σχήματος 2.9(β) είναιm= 100m. Αυτό σημαίνει
ότι αφού τα τμήματαAB καιAC εκτείνονται καλύπτοντας δύο ισοσταθμικές καμπύλες, η μεταβολή
στο ύψος είναι ίση με 200 m και στις δύο αυτές περιπτώσεις. Χρησιμοποιώντας την οριζόντια
κλίμακα προκύπτει ότι το AB αντιστοιχεί σε οριζόντια μεταβολή ίση με 200 m, ενώ για το AC
η οριζόντια απόσταση είναι ίση με 400 m. Αντιθέτως, δεν υπάρχει μεταβολή του ύψους καθώς
κινούμαστε από το σημείο A προς το σημείο D. Επομένως, θα ισχύει:

Μέσος ρυθμός μεταβολής από το A στο B =
∆ ύψος

∆ οριζόντιο
=

200
200

= 1.0

Μέσος ρυθμός μεταβολής από το A στοC =
∆ ύψος

∆ οριζόντιο
=

200
400

= 0.5

Μέσος ρυθμός μεταβολής από το A στο D =
∆ ύψος

∆ οριζόντιο
= 0.

Πράγματι, διαπιστώνουμε ότι ο μέσος ρυθμός μεταβολής εξαρτάται από την κατεύθυνση.
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Σημείωση 2.3.2 • Μια ισοσταθμική καμπύλη είναι μια καμπύλη στο επίπεδο xy που ορίζε-
ται από την εξίσωση f (x,y) = c. Η ισοσταθμική καμπύλη f (x,y) = c είναι η προβολή
στο επίπεδο xy μιας οριζόντιας καμπύλης-ίχνους η οποία προκύπτει από την τομή του
γραφήματος της συνάρτησης με το οριζόντιο επίπεδο z = c.

• Ένας ισοσταθμικός χάρτης απεικονίζει τις ισοσταθμικές καμπύλες f (x,y) = c για διαφο-
ρετικές τιμές της σταθεράς c οι οποίες ισαπέχουν. Αυτή η σταθερή απόσταση m μεταξύ
των τιμών της c ονομάζεται ισοσταθμικό διάστημα.

• Όταν παρατηρούμε έναν ισοσταθμικό χάρτη, θα πρέπει να έχουμε πάντα κατά νου ότι:
– Το ύψος δεν μεταβάλλεται όταν κανείς κινείται κατά μήκος μιας ισοσταθμικής
καμπύλης.

– Το ύψος αυξάνεται ή μειώνεται κατά m (το ισοσταθμικό διάστημα) όταν κανείς
μεταβαίνει από τη μία ισοσταθμική καμπύλη στη γειτονική της.

• Η απόσταση των ισοσταθμικών καμπυλών υποδηλώνει το πόσο απότομο είναι το γράφημα:
Όσο πιο κοντά βρίσκονται οι ισοσταθμικές καμπύλες τόσο πιο απότομη είναι η γραφική
παράσταση.

• Ο μέσος ρυθμός μεταβολής από ένα σημείο P σε ένα άλλο σημείο Q είναι το πηλίκο

∆ύψος
∆οριζόντιο

.

• Η κατεύθυνση της πιο απότομης ανόδου σε ένα σημείοP είναι εκείνη η κατεύθυνση κατά
μήκος της οποίας η f (x,y) αυξάνεται πιο γρήγορα. Η πιο απότομη άνοδος προκύπτει
(κατά προσέγγιση τουλάχιστον) σχεδιάζοντας τα ευθύγραμμα τμήματα ξεκινώντας από
το σημείοP και κινούμενοι κάθε φορά προς το κοντινότερο σημείο της γειτονικής ισοστα-
θμικής καμπύλης.

• Οι ισοσταθμικές επιφάνειες μπορούν να χρησιμοποιηθούν για να γίνουν κατανοητές
οι συναρτήσεις των τριών μεταβλητών f (x,y,z). Στην περίπτωση που η συνάρτηση
αναπαριστά τη θερμοκρασία, αυτές οι ισοσταθμικές επιφάνειες αποκαλούνται ισόθερμες.
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Ασκήσεις 2.3.3
Να απαντήσετε στα παρακάτω ερωτήματα με βάση το σχήμα 2.10.

1. Η πυκνότητα του θαλασσινού νερού φαίνεται να είναι πιο ευαίσθητη στις μεταβολές της
θερμοκρασίας στο σημείο A ή στο σημείο B;

2. Βρείτε τη μεταβολή της πυκνότητας του θαλασσινού νερού από το A στο B.

3. Εκτιμήστε τον μέσο ρυθμό μεταβολής της πυκνότητας του θαλασσινού νερού από το A
στο B και από το A στοC.

4. Εκτιμήστε τον μέσο ρυθμό μεταβολής της πυκνότητας του θαλασσινού νερού από το A
στα σημεία i, ii και iii.

5. Σχεδιάστε τη διαδρομή της πιο απότομης ανόδου η οποία ξεκινά από το σημείο D.

Σχήμα 2.10
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2.4 Συναρτήσεις με περισσότερες από δύο μεταβλητές
Υπάρχουν αρκετές περιπτώσεις όπου για να περιγράψουμε μια κατάσταση είναι απαραίτητο να
χρησιμοποιήσουμε μια συνάρτηση με περισσότερες από δύο μεταβλητές. Έτσι, για παράδειγμα,
αν θελήσουμε να παρακολουθούμε τη θερμοκρασία στα διαφορετικά σημεία ενός δωματίου, θα
πρέπει να χρησιμοποιήσουμε μια συνάρτηση T (x,y,z) η οποία εξαρτάται από τρεις μεταβλητές
που αντιστοιχούν στις τρεις συντεταγμένες κάθε σημείου. Επίσης, κατά τη δημιουργία ποσοτικών
οικονομικών μοντέλων καταλήγουμε πολύ συχνά σε συναρτήσεις που εξαρτώνται από περισσό-
τερες από 100 μεταβλητές. Δυστυχώς, δεν είναι δυνατόν να σχεδιάσουμε τη γραφική παράσταση
μιας συνάρτησης με περισσότερες από δύο μεταβλητές. Το γράφημα μιας συνάρτησης f (x,y,z)
θα αποτελείται από το σύνολο των σημείων (x,y,z, f (x,y,z)) που ανήκουν στον τετραδιάστατο
χώρο R4. Παρ’ όλα αυτά, ακριβώς όπως μπορούμε να χρησιμοποιούμε ισοσταθμικούς χάρτες
για να οπτικοποιούμε ένα τρισδιάστατο βουνό χρησιμοποιώντας καμπύλες στο επίπεδο των δύο
διαστάσεων, είναι επίσης εφικτό να σχεδιάζουμε ισοσταθμικές επιφάνειες για μια συνάρτηση
τριών μεταβλητών f (x,y,z). Πρόκειται για επιφάνειες που περιγράφονται από εξισώσεις της
μορφής

f (x,y,z) = c,

για διαφορετικές τιμές του c.

Στην περίπτωση μιας συνάρτησης T (x,y,z) που αναπαριστά τη θερμοκρασία σε κάθε σημείο
του χώρου, συνηθίζουμε να αποκαλούμε τις ισοσταθμικές επιφάνειες που περιγράφονται από τις
T (x,y,z) = k ισόθερμες, καθώς πρόκειται για σύνολα σημείων που έχουν μια κοινή θερμοκρασία
k. Για τις συναρτήσεις με τέσσερις ή και ακόμα περισσότερες μεταβλητές, δεν μπορούμε πλέον
να οπτικοποιούμε ούτε το γράφημα ούτε τις ισοσταθμικές επιφάνειές τους, έτσι θα πρέπει να
αρκούμαστε στη διαίσθησή μας, η οποία θα έχει στο μεταξύ οξυνθεί μέσω της μελέτης των
συναρτήσεων με δύο και τρεις μεταβλητές.

Σχήμα 2.11 Οι ισοσταθμικές επιφάνειες της συνάρτησης f (x,y,z) = x2 + y2 + z2 είναι σφαίρες.
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Σημείωση 2.4.1 • Το πεδίο ορισμού D μιας συνάρτησης f (x1, . . . ,xn) με n μεταβλητές
είναι το σύνολο των n-άδων (a1, . . . ,an) του χώρουRn, για τις οποίες οι τιμές f (a1, . . . ,
an) ορίζονται. Το εύρος τιμών της f είναι το σύνολο των τιμών που παίρνει η συνάρτηση
f .

• Η γραφική παράσταση μιας συνεχούς συνάρτησης f (x,y), η οποία παίρνει πραγματικές
τιμές, είναι η επιφάνεια τουR3 που αποτελείται από το σύνολο των σημείων της μορφής
(a,b, f (a,b)), για όλα τα ζεύγη (a,b) που ανήκουν στο πεδίο ορισμού D της f .

• Ένα κατακόρυφο ίχνος είναι η καμπύλη που προκύπτει από την τομή του γραφήματος
της συνάρτησης με κάποιο από τα κατακόρυφα επίπεδα x = a ή y = b.
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Ασκήσεις 2.4.2

1. f (x,y) =
√

y− x−2

2. f (x,y) = ln(x2 + y2−4)

3. f (x,y) =
(x−1)(y+2)
(y− x)(y− x3)

4. f (x,y) =
sin(xy)

x2 + y2−25

5. f (x,y) = cos−1(y− x2)

6. f (x,y) = ln(xy+ x− y−1)

7. f (x,y) =
√

(x2−4)(y2−9)

8. f (x,y) =
1

ln(4− x2− y2)
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2.5 Όρια και συνέχεια στην περίπτωση των συναρτήσεων πολλών
μεταβλητών

Στην παρούσα ενότητα θα αναπτύξουμε τις έννοιες του ορίου και της συνέχειας στο πλαίσιο της
πολυμεταβλητής ανάλυσης. Παρόλο που θα επικεντρώσουμε την προσοχή μας στην περίπτωση
των συναρτήσεων με δύο μεταβλητές, οι ορισμοί και τα αποτελέσματα που θα παρουσιάσουμε
εξακολουθούν να ισχύουν για τις συναρτήσεις με τρεις ή και περισσότερες μεταβλητές.

2.5.1 Ιστορικό Σχόλιο

Η έννοια του ορίου αποτελεί έναν από τους θεμέλιους λίθους των μαθηματικών και
ειδικότερα της ανάλυσης. Η ανάγκη των μαθηματικών να περιγράψουν φαινόμενα
μεταβολής, όπως η κίνηση και η μεταβολή των μεγεθών, οδήγησε στη διαμόρφωση αυτής
της θεμελιώδους ιδέας. Ερωτήματα όπως «ποια είναι η ακριβής ταχύτητα σε μια χρονική
στιγμή;» ή «πώς υπολογίζεται το εμβαδόν κάτω από μια καμπύλη;» απαιτούν τη χρήση του
ορίου.
Οι απαρχές αυτής της έννοιας ανάγονται στην αρχαία Ελλάδα, με τη μέθοδο εξάντλησης
του Ευδόξου και τις εργασίες του Αρχιμήδη. Η μέθοδος αυτή σχεδίαζε ακολουθίες
σχημάτων, φτάνοντας όσο κοντά θέλουμε στο ζητούμενο μέγεθος, χωρίς να το υπερβαίνει.
Παρά την απουσία της σύγχρονης ανάλυσης του απείρου, η «προσέγγιση όσο κοντά
θέλουμε» αντανακλά τον πυρήνα της έννοιας του ορίου.
Στην σύγχρονη ανάλυση, το όριο αποτελεί το θεμέλιο για την μελέτη της συνέχειας,
των παραγώγων, των ολοκληρωμάτων και της διατύπωσης των πραγματικών αριθμών.
Μελετώντας τα όρια, αποκτούμε τα θεμελιακά εργαλεία για τη σύγχρονη μαθηματική
σκέψη και ανάλυση.
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Θυμηθείτε ότι στην ευθεία των πραγματικών αριθμών
λέγαμε ότι ένας αριθμός x είναι κοντά στο a αν η
απόσταση |x− a| είναι μικρή. Στο επίπεδο, θα λέμε
ότι ένα σημείο (x,y) είναι κοντά σε ένα άλλο σημείο
P = (a,b) αν η μεταξύ τους απόσταση

d
(
(x,y),(a,b)

)
=
√

(x−a)2 +(y−b)2

είναι μικρή.
Αξίζει να παρατηρήσουμε ότι αν θεωρήσουμε το
σύνολο των σημείων που βρίσκονται σε απόσταση
μικρότερη από r από το σημείο P = (a,b), τότε
θα σχηματιστεί ένας δίσκος D(P,r) με κέντρο το
σημείο P, όπως φαίνεται στο Σχήμα 2.13a, που
δεν θα περιλαμβάνει όμως τη συνοριακή γραμμή
του δίσκου. Αν επιπλέον «επιμείνουμε» ώστε να
ισχύει η συνθήκη d

(
(x,y),(a,b)

)
6= 0, τότε θα

καταλήξουμε σε έναν «τρύπιο» δίσκο καθώς σε αυτόν
δεν θα συμπεριλαμβάνεται το κέντρο P. Αυτόν τον
τελευταίο δίσκο θα τον συμβολίζουμε με D∗(P,r).

Σχήμα 2.12 Ο ανοικτός δίσκος D(P,r) αποτελείται
από το σύνολο των σημείων (x,y) που βρίσκονται σε
απόσταση μικρότερη του r από το σημείο P. Σε αυτόν δεν
συμπεριλαμβάνεται ο συνοριακός κύκλος..

Ας υποθέσουμε ότι η συνάρτηση f (x,y) ορίζεται κοντά στο σημείο P αλλά όχι απαραίτητα στο
ίδιο το P. Με άλλα λόγια, υποθέτουμε ότι η f (x,y) ορίζεται για όλα τα ζεύγη (x,y) που ανήκουν
σε έναν τρύπιο δίσκο D∗(P,r), στο κέντρο του, με r > 0. Θα λέμε ότι η συνάρτηση f (x,y)
προσεγγίζει το όριο L καθώς το (x,y) προσεγγίζει το P = (a,b), αν η ποσότητα | f (x,y)−L|
γίνεται όσο μικρή θέλουμε ενώ το (x,y) προσεγγίζει αρκούντως κοντά στο σημείο P = (a,b)
(βλ. Σχήμα ??). Σε αυτή την περίπτωση γράφουμε

lim
(x,y)→P

f (x,y) = lim
(x,y)→(a,b)

f (x,y) = L

Ο ακριβής ορισμός είναι ο ακόλουθος.

Ορισμός 2.5.1 Όριο Έστω ότι η συνάρτηση f (x,y) ορίζεται κοντά στο σημείο P = (a,b).
Τότε

lim
(x,y)→P

f (x,y) = L

αν για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε, αν το (x,y) ικανοποιεί τη συνθήκη

0 < d
(
(x,y),(a,b)

)
< δ ,

τότε να ισχύει

| f (x,y)−L|< ε.
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.
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Πρόκειται για έναν ορισμό που είναι παρόμοιος με τον ορισμό του ορίου στην περίπτωση
των συναρτήσεων μίας μεταβλητής, υπάρχει όμως μια σημαντική διαφορά. Στην περίπτωση του
ορίου στον Λογισμό των συναρτήσεων μίας μεταβλητής απαιτούμε η f (x) να τείνει στο όριο
L καθώς το x προσεγγίζει το a και από τις δύο κατευθύνσεις – δηλαδή από αριστερά αλλά και
δεξιά του a (βλ. Σχήμα 2.13b). Στην περίπτωση του ορίου στην πολυμεταβλητή ανάλυση, η
συνάρτηση f (x,y) θα πρέπει να τείνει στο όριο L καθώς το (x,y) προσεγγίζει το σημείο P από
άπειρες διαφορετικές κατευθύνσεις (βλ. Σχήμα 2.13c).

(a) | f (x,y)− L| < ε για κάθε (x,y)
εντός του τρύπιου δίσκου

(b) Στη μία μεταβλητή μπορούμε να
προσεγγίσουμε το a από δύο μόνο
δυνατές κατευθύνσεις

(c) Στις δύο μεταβλητές, το (x,y) μπορεί
να προσεγγίσει το P = (a,b) κατά μήκος
οποιασδήποτε κατεύθυνσης ή διαδρομής

Σχήμα 2.13
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Παράδειγμα 2.5.2
Έστω

f (x,y) = 5x2y2

x2+y2

Να αποδείξετε, χρησιμοποιώντας τον ε-δ ορισμό, ότι:

lim
(x,y)→(0,0)

f (x,y) = 0

Λύση. Είναι σχετικά εύκολο να δείξουμε ότι κατά μήκος κάθε ευθείας y=mx, το όριο είναι μηδέν.
Αυτό δεν αρκεί για να αποδείξουμε ότι το όριο υπάρχει, αλλά μας λέει ότι αν υπάρχει τότε πρέπει
να είναι μηδέν.

Για να αποδείξουμε ότι το όριο είναι μηδέν, εφαρμόζουμε τον ορισμό του ορίου. Έστω ε > 0
δοσμένο. Θέλουμε να βρούμε δ > 0 τέτοιο ώστε αν√

(x−0)2 +(y−0)2 < δ

τότε

| f (x,y)−0|< ε.

Παρατηρούμε ότι
5y2

x2 + y2 ≤ 5 για όλα τα (x,y) 6= (0,0), και ότι αν
√

x2 + y2 < δ , τότε

x2 < δ 2.

Έστω
√

(x−0)2 +(y−0)2 =
√

x2 + y2 < δ . Εξετάζουμε:

| f (x,y)−0|=
∣∣∣∣ 5x2y2

x2 + y2 −0
∣∣∣∣= ∣∣∣∣x2 ·5y2

x2 + y2

∣∣∣∣< 5δ 2.

Θέτουμε δ <

√
ε

5
. Συνεπώς, αν θέσουμε

√
(x−0)2 +(y−0)2 < δ τότε

| f (x,y)−0|< 5δ 2 <
ε
5
·5 = ε,

όπως θέλαμε να δείξουμε. Άρα:

lim
(x,y)→(0,0)

5x2y2

x2 + y2 = 0.
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Παράδειγμα 2.5.3
Έστω η συνάρτηση

f (x,y) =


x

x2 + y2 , (x,y) 6= (0,0)

0, (x,y) = (0,0)

Να αποδείξετε, με τον ορισμό ότι  δεν υπάρχει το όριο

lim
(x,y)→(0,0)

f (x,y) = 0.

Λύση.

Για να αποδείξουμε με τον ορισμό ότι

lim
(x,y)→(0,0)

f (x,y) = 0,

όπου

f (x,y) =


x

x2 + y2 (x,y) 6= (0,0)

0 (x,y) = (0,0)

χρησιμοποιούμε το ε-δ ορισμό για διδιάστατα όρια.

Βήματα απόδειξης με τον ορισμό

Για κάθε ε > 0, ζητούμε να βρούμε δ > 0 τέτοιο ώστε αν
√

x2 + y2 < δ και (x,y) 6= (0,0),
τότε

| f (x,y)−0|< ε.

Για (x,y) 6= (0,0), έχουμε:

| f (x,y)|=
∣∣∣∣ x
x2 + y2

∣∣∣∣≤ |x|
x2 + y2

Αλλά |x| ≤
√

x2 + y2 οπότε:

| f (x,y)| ≤
√

x2 + y2

x2 + y2 =
1√

x2 + y2

Αν διαλέξουμε
√

x2 + y2 < δ , τότε:

| f (x,y)|< 1
δ

Αλλά η παραπάνω ποσότητα δεν μπορεί να γίνει αυθαίρετα μικρή όταν (x,y) → (0,0):
αντίθετα, γίνεται αυθαίρετα μεγάλη όταν δ → 0.
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Άρα, το όριο αυτό δεν υπάρχει, δηλαδή το

lim
(x,y)→(0,0)

f (x,y)

δεν τείνει στο 0.

Παράδειγμα 2.5.4
Να διερευνηθεί αν υπάρχει το όριο της συνάρτησης

lim
(x,y)→(0,0)

x2

x2 + y2 .

Σε περίπτωση που δεν υπάρχει, να αιτιολογήσετε κατάλληλα την απάντησή σας.

Λύση. Πρώτη μέθοδος

Θα δείξουμε ότι η f (x,y) προσεγγίζει διαφορετικά
όρια καθώς πλησιάζουμε προς την αρχή των
αξόνων (0,0) κατά μήκος των αξόνων x και y (βλ.
Σχήμα 2.15).
Όριο κατά μήκος του άξονα x:

lim
x→0

f (x,0) = lim
x→0

x2

x2 +02 = lim
x→0

1 = 1

Όριο κατά μήκος του άξονα y:

lim
y→0

f (0,y) = lim
y→0

02

02 + y2 = lim
y→0

0 = 0

Αφού αυτά τα δύο όρια είναι διαφορετικά, αυτό
σημαίνει ότι το

lim
(x,y)→(0,0)

f (x,y)

δεν υπάρχει.

Σχήμα 2.14 Η γραφική παράσταση και ο ισοσταθμικός χάρτης

της συνάρτησης f (x,y) =
x2

x2 + y2 .

Δεύτερη μέθοδος Αν θέσουμε y = mx, τότε θα έχουμε περιορίσει την «κίνηση» μας πάνω σε
μια ευθεία που διέρχεται από την αρχή των αξόνων και έχει κλίση ίση με m. Στην περίπτωση
αυτή το ζητούμενο όριο παίρνει τη μορφή:

lim
x→0

f (x,mx) = lim
x→0

x2

x2 +(mx)2 =
1

1+m2 .

Το αποτέλεσμα στο οποίο καταλήξαμε είναι προφανές ότι εξαρτάται από την τιμή της κλίσης m,
γεγονός που σημαίνει ότι θα προκύπτουν διαφορετικά αποτελέσματα για το όριο καθώς η αρχή
των αξόνων προσεγγίζεται κατά μήκος ευθειών με διαφορετικές κλίσεις. Έτσι, αν για παράδειγμα
m = 0, γεγονός που σημαίνει ότι προσεγγίζουμε την αρχή κινούμενοι κατά μήκος του άξονα x,
το όριο προκύπτει ίσο με 1. Αν πάλι m = 1, γεγονός που σημαίνει ότι τώρα προσεγγίζουμε την

αρχή μέσω της ευθείας y = x, το όριο σε αυτή την περίπτωση προκύπτει ίσο με
1
2
. Αυτό όμως

σημαίνει ότι το ζητούμενο όριο δεν υπάρχει. Ο ισοσταθμικός χάρτης του Σχήματος 5 δείχνει
τα διαφορετικά όρια που υπολογίζονται καθώς προσεγγίζουμε την αρχή των αξόνων κατά μήκος
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διαφορετικών ευθειών.

Τρίτη μέθοδος Θαμετασχηματίσουμε τη συνάρτηση της οποίας αναζητούμε το όριο στις πολικές
συντεταγμένες, χρησιμοποιώντας τις σχέσεις x = r cosθ και y = r sinθ . Με τον τρόπο αυτό
όμως, για οποιαδήποτε διαδρομή προσεγγίζει την αρχή των αξόνων (0,0) θα πρέπει να ισχύει ότι
το r πλησιάζει το 0. Προσεγγίσεις κατά μήκος διαφορετικών ευθειών μπορούν να εξεταστούν
σταθεροποιώντας τη γωνία θ σε διαφορετικές τιμές και επιτρέποντας στο r να τείνει στην τιμή 0.

Επομένως, πρέπει να μελετήσουμε το όριο

lim
r→0

x2

x2 + y2 = lim
r→0

(r cosθ)2

(r cosθ)2 +(r sinθ)2 = lim
r→0

cos2 θ .

Η τιμή αυτού του ορίου εξαρτάται από τη γωνία θ . Έτσι, αν για παράδειγμα η θ πάρει την
τιμή 0, γεγονός που σημαίνει ότι προσεγγίζουμε το (0,0) κινούμενοι κατά μήκος του θετικού
ημιάξονα x, το όριο προκύπτει ίσο με 1. Αν πάλι δώσουμε στη γωνία θ την τιμή π/2, πράγμα
που σημαίνει ότι τώρα θα προσεγγίζουμε το (0,0) κινούμενοι πάνω στον θετικό ημιάξονα y, τότε
το όριο προκύπτει να είναι ίσο με 0.

Αφού για διαφορετικές τιμές της γωνίας θ προκύπτουν διαφορετικά αποτελέσματα, καταλήγουμε
και πάλι στο συμπέρασμα ότι το ζητούμενο όριο δεν υπάρχει.

Παραδείγματα 2.5.5

(a) Επιβεβαίωση ενός ορίου Υπολογίστε το όριο

lim
(x,y)→(0,0)

f (x,y),

όπου η f (x,y) ορίζεται για (x,y) 6= (0,0) από την

f (x,y) =
xy2

x2 + y2 ,

και απεικονίζεται στο Σχήμα 1.14.
Σχήμα 2.15 Η γραφική παράσταση της συνάρτησης

f (x,y) =
xy2

x2 + y2 .

(b) Να ελέγξετε αν υπάρχει το όριο

lim
(x,y)→(0,0)

x2y
x4 + y2 .

Λύση.Το όριο που ζητείται είναι:

lim
(x,y)→(0,0)

xy2

x2 + y2 .

Εξέταση κατά μήκος ευθείας
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Έστω x = ky όπου k είναι σταθερά:

f (x,y) =
xy2

x2 + y2 =
(ky)y2

(ky)2 + y2 =
ky3

k2y2 + y2 =
ky3

(k2 +1)y2 =
ky

k2 +1

Όταν (x,y)→ (0,0), δηλαδή y→ 0, τότε το παραπάνω τείνει στο 0, ανεξάρτητα από την τιμή
του k.

Εξέταση σε πολικές συντεταγμένες

Θέτουμε x = r cosθ , y = r sinθ :

f (x,y) =
(r cosθ)(r sinθ)2

(r cosθ)2 +(r sinθ)2 =
r cosθ · r2 sin2 θ

r2(cos2 θ + sin2 θ)
=

r3 cosθ sin2 θ
r2 = r cosθ sin2 θ .

Άρα

| f (x,y)|= |r cosθ sin2 θ | ≤ r.

Για r→ 0, το | f (x,y)| → 0 ανεξαρτήτως της γωνίας θ .

Συμπέρασμα

Το όριο υπάρχει και είναι 0:

lim(x,y)→(0,0)
xy2

x2 + y2 = 0.

Απόδειξη με ε-δ ορισμό
Θέλουμε για κάθε ε > 0 να βρούμε δ > 0 ώστε

0 < x2 + y2 < δ 2 =⇒
∣∣∣∣ xy2

x2 + y2

∣∣∣∣< ε.

Γνωρίζουμε πως |x| ≤
√

x2 + y2, |y| ≤
√

x2 + y2. Επομένως:

|xy2|= |x||y|2 ≤
√

x2 + y2 ·
(√

x2 + y2
)2

=
√

x2 + y2(x2 + y2).

Άρα: ∣∣∣∣ xy2

x2 + y2

∣∣∣∣≤√x2 + y2.

Αν διαλέξουμε δ = ε , τότε αν 0 < x2 + y2 < δ 2, θα ισχύει:∣∣∣∣ xy2

x2 + y2

∣∣∣∣< ε.
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Συνεπώς, το όριο είναι πράγματι 0.

(b)

lim
(x,y)→(0,0)

x2y
x4 + y2

Εξέταση κατά μήκος ευθειών

• Για x = 0:
f (0,y) =

0 · y
0+ y2 = 0

Άρα κατά μήκος του y-άξονα το όριο είναι 0.
• Για y = 0:

f (x,0) =
x2 ·0

x4 +0
= 0

Εξέταση κατά μήκος y = kx2:

Θέτουμε y = kx2:

f (x,y) =
x2y

x4 + y2 =
x2(kx2)

x4 +(kx2)2 =
kx4

x4 + k2x4 =
kx4

x4(1+ k2)
=

k
1+ k2

Εδώ βλέπουμε ότι το όριο κατά μήκος της ευθείας y = kx2 προκύπτει μια σταθερά που

εξαρτάται από το k, και όχι μηδέν (για παράδειγμα, για k = 1 παίρνουμε
1
2
, για k =

1
2
παίρνουμε

1
1/4+1

=
1

5/4
=

4
5
).

Η μετατροπή σε πολικές συντεταγμένες μας επέτρεψε να υπολογίσουμε το πρώτο απο τα δύο
προηγούμενα όρια. Στο δεύτερο παράδειγμα, η μετατροπή σε πολικές συντεταγμένες δεν βοηθά,
καθώς δεν οδηγεί σε κάποια χρήσιμη απλοποίηση.

Σημείωση 2.5.6 Για να αποδείξουμε ότι ένα όριο δεν υπάρχει, αρκεί να προσδιορίσουμε δύο
διαδρομές με βάση τις οποίες προκύπτουν διαφορετικές τιμές για το όριο. Για να αποδείξουμε
όμως ότι το όριο σε ένα σημείο πραγματικά υπάρχει, δεν είναι αρκετό να εξετάσουμε απλώς
και μόνο το όριο κατά μήκος ενός συνόλου διαδρομών μέσω των οποίων προσεγγίζουμε το
σημείο. Αντί αυτού είμαστε αναγκασμένοι να χρησιμοποιούμε τους νόμους και τα θεωρήματα
των ορίων για να αποδείξουμε ότι το υπό μελέτη όριο πραγματικά υπάρχει.

2.5.2 Επάλληλα όρια

Ορισμός 2.5.7 Λέμε επάλληλα ή διαδοχικά όρια μίας συνάρτησης f (x,y) στο (a,b) τα όρια

lim
y→b

(
lim
x→a

f (x,y)
)
, lim

x→a

(
lim
y→b

f (x,y)
)
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Σημείωση 2.5.8

1. Αν τα επάλληλα όρια υπάρχουν και δεν είναι ίσα, τότε το lim
(x,y)→(a,b)

f (x,y) δεν υπάρχει,

ενώ αν υπάρχει το όριο της f στο (a,b) και υπάρχουν τα επάλληλα όρια, τότε αυτά είναι
ίσα.

2. Αν τα επάλληλα όρια υπάρχουν και είναι ίσα με l, τότε το l είναι πιθανό όριο (πηγαίνουμε
στον ορισμό).

3. Μπορεί να μην υπάρχουν τα επάλληλα όρια και να υπάρχει το όριο.

Σημείωση 2.5.9

1. Αν | f (x,y)| ≤ g(x,y) για (x,y) ∈ B((0,0),a), a > 0 και ισχύει

lim
(x,y)→(0,0)

g(x,y) = 0,

τότε

lim
(x,y)→(0,0)

f (x,y) = 0,

δηλαδή όταν μία συνάρτηση φράσεται απολύτως από μία μηδενική, τότε είναι μηδενική.

2. Αν μπορούμε να γράψουμε f (x,y) = h(x,y) ·g(x,y) με |g(x,y)|< M (φραγμένη) για
(x,y) ∈ B((0,0),a) και

lim
(x,y)→(0,0)

h(x,y) = 0

(μηδενική), τότε

lim
(x,y)→(0,0)

f (x,y) = 0.
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Παράδειγμα 2.5.10

Παράδειγμα συνάρτησης f όπου τα επάλληλα όρια υπάρχουν, αλλά το lim(x,y)→(0,0) f (x,y)
δεν υπάρχει. Να εξετάσετε αν υπάρχει το όριο

lim
(x,y)→(0,0)

x2− y2

x2 + y2 , (x,y) 6= (0,0).

Λύση.

f (x,y) =
x2− y2

x2 + y2 , (x,y) 6= (0,0)

Υπολογίζουμε τα επάλληλα όρια:

lim
x→0

[
lim
y→0

f (x,y)
]
= lim

x→0

[
lim
y→0

x2− y2

x2 + y2

]
= lim

x→0

x2

x2 = 1

lim
y→0

[
lim
x→0

f (x,y)
]
= lim

y→0

[
lim
x→0

x2− y2

x2 + y2

]
= lim

y→0

−y2

y2 =−1

Άρα τα δύο επάλληλα όρια υπάρχουν, αλλά δεν είναι ίσα.
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Παράδειγμα 2.5.11
Έστω η συνάρτηση

f (x,y) =

(x+ y)sin
(

1
x

)
sin
(

1
y

)
, αν x 6= 0 και y 6= 0

0, αν x = 0 ή y = 0

Προσδιορίστε ποιά από τα όρια

lim
(x,y)→(0,0)

f (x,y), lim
x→0

(
lim
y→0

f (x,y)
)
, lim

y→0

(
lim
x→0

f (x,y)
)

υπάρχουν και υπολογίστε τα. Τι σχέση υπάρχει ως προς την ύπαρξη ή όχι των επάλληλων ορίων
και του ορίου μίας συνάρτησης f : R2→ R σε ένα σημείο;

Λύση. Παρατηρούμε ότι

| f (x,y)| ≤ |x+ y|

επειδή ∣∣∣∣sin
1
x

sin
1
y

∣∣∣∣≤ 1.

Επίσης, είναι προφανές ότι

lim
(x,y)→(0,0)

|x+ y|= 0.

Άρα από την σημείωση 2.5.9 έχουμε ότι

lim
(x,y)→(0,0)

f (x,y) = 0.

Για τα επάλληλα όρια έχουμε:

lim
y→0

(
lim
x→0

f (x,y)
)
= lim

y→0

(
lim
x→0

(
xsin

1
x

sin
1
y
+ ysin

1
x

sin
1
y

))

= lim
y→0

(0+ δεν υπάρχει) = δεν υπάρχει

(λόγω της βοηθητικής άσκησης και του ότι lim
x→0

xsin
1
x
= 0)

Όμοια, λόγω κυκλικότητας των x,y, δεν υπάρχει και το

lim
x→0

(
lim
y→0

f (x,y)
)

Επομένως είναι δυνατόν να μην υπάρχουν τα επάλληλα όρια και να υπάρχει το όριο της
συνάρτησης.
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Παράδειγμα 2.5.12
Έστω η συνάρτηση

f (x,y) =
x2y2

x2y2 +(x− y)2

με πεδίο ορισμού το R2 \ {(0,0)}. Αποδείξτε ότι δεν υπάρχει το όριο στο (0,0), ενώ τα
διαδοχικά (επάλληλα) όρια υπάρχουν και είναι ίσα.

Λύση. Για την f (x,x) =
x4

x4 +0
και f (x,0) = 0 έχουμε

lim
x→0

f (x,x) = 1, lim
x→0

f (x,0) = 0.

Δηλαδή τα όρια της f πλησιάζοντας το (0,0) πάνω στις ευθείες y= x και y= 0 είναι διαφορετικά,
επομένως το όριο της f στο (0,0) δεν υπάρχει.

Για τα επάλληλα όρια έχουμε:

lim
x→0

(
lim
y→0

f (x,y)
)
= 0

διότι για x 6= 0 ισχύει

lim
y→0

f (x,y) = lim
y→0

x2y2

x2y2 +(x− y)2 = 0

επειδή lim
y→0

x2y2 = 0 και lim
y→0

(x2y2 +(x− y)2) = x2 6= 0.

Με τον ίδιο τρόπο βρίσκουμε ότι

lim
y→0

(
lim
x→0

f (x,y)
)
= 0

2.6 Συνέχεια

Όπως και στην περίπτωση των συναρτήσεων μίας μεταβλητής, θα λέμε ότι η f είναι συνεχής στο
σημείο P = (a,b) αν

lim
(x,y)→(a,b)

f (x,y) = f (a,b).

Ορισμός 2.6.1 Συνέχεια Μια συνάρτηση f με δύο μεταβλητές είναι συνεχής στο σημείο P =
(a,b) αν ισχύει

lim
(x,y)→(a,b)

f (x,y) = f (a,b).

Θα λέμε ότι η f είναι συνεχής αν είναι συνεχής σε κάθε σημείο (a,b) του πεδίου ορισμού
της.
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Σύμφωνα με τους νόμους των ορίων, όλα τα αθροίσματα, τα πολλαπλάσια και τα γινόμενα συνεχών
συναρτήσεων είναι επίσης συνεχείς συναρτήσεις. Οι συναρτήσεις της μορφής f (x,y) = xmyn

είναι επίσης συνεχείς για όλους τους ακέραιους αριθμούς m και n, γεγονός που με τη σειρά
του σημαίνει ότι και όλα τα πολυώνυμα είναι επίσης συνεχή. Επιπλέον, κάθε ρητή συνάρτηση
h(x,y)/g(x,y), όπου τα h και g είναι κάποια πολυώνυμα, είναι επίσης συνεχής σε όλα τα σημεία
(a,b) για τα οποία ισχύει g(a,b) 6= 0. Όπως ακριβώς και στην περίπτωση των ορίων των
συναρτήσεων μίας μεταβλητής, έτσι και εδώ μπορούμε να υπολογίζουμε τα όρια των συνεχών
συναρτήσεων κάνοντας αντικατάσταση.

Παράδειγμα 2.6.2
Έστω η συνάρτηση

f (x,y) =

 xy2

x2 + y2 , (x,y) 6= (0,0)

0, (x,y) = (0,0)

και έστω ε > 0. Να δείξετε ότι υπάρχει δ > 0 τέτοιο ώστε για κάθε (x,y) που ικανοποιεί√
x2 + y2 < δ ,

έχουμε

| f (x,y)− f (0,0)|< ε.

Αν συμβαίνει αυτό, πώς το ερμηνεύετε;

Παράδειγμα 2.6.3
Υπολογισμός ορίων με αντικατάσταση Να αποδείξετε ότι η συνάρτηση

f (x,y) =
3x+ y

x2 + y2 +1

είναι συνεχής (βλ. Σχήμα 2.16). Στη συνέχεια, να υπολογίσετε το όριο

lim
(x,y)→(1,2)

f (x,y).

Θεώρημα 2.6.4 Συναρτήσεις γινόμενα Έστω f (x,y) = h(x) ·g(y), όπου h : R→R, g : R→
R, και υποθέτουμε ότι τα όρια lim

x→a
h(x) και lim

y→b
g(y) υπάρχουν και είναι πραγματικοί αριθμοί.

Τότε:

lim
(x,y)→(a,b)

f (x,y) =
(

lim
x→a

h(x)
)
·
(

lim
y→b

g(y)
)

Παράδειγμα 2.6.5
Υπολογίστε το όριο
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Σχήμα 2.16

lim
(x,y)→(3,0)

x3 siny
y

.

Λύση. Αρχικά, παρατηρούμε ότι καθώς (x,y)→ (3,0), το x→ 3 και το y→ 0. Το όριο
μπορεί να γραφεί ως το γινόμενο δύο ορίων:

lim
(x,y)→(3,0)

x3 siny
y

= lim
x→3

x3 · lim
y→0

siny
y

Επειδή x3 είναι συνεχής στο x = 3, υπολογίζουμε:

lim
x→3

x3 = 33 = 27

Επιπλέον, είναι γνωστό ότι:

lim
y→0

siny
y

= 1

Συνδυάζουμε λοιπόν τα παραπάνω:

lim
(x,y)→(3,0)

x3 siny
y

= 27 ·1 = 27
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Θεώρημα 2.6.6 Όριο σύνθεσης συναρτήσεων Έστω f : R2→ R και g : R→ R. Αν

lim
(x,y)→(a,b)

f (x,y) = L

και η g είναι συνεχής στο L, τότε

lim
(x,y)→(a,b)

g( f (x,y)) = g
(

lim
(x,y)→(a,b)

f (x,y)
)
= g(L)

Παράδειγμα 2.6.7
Σύνθεση συνεχών συναρτήσεων Να εκφράσετε τη συνάρτηση H(x,y) = e−x2+2y ως μια

σύνθεση συναρτήσεων και στη συνέχεια να υπολογίσετε το όριο

lim
(x,y)→(1,2)

H(x,y).
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Παράδειγμα 2.6.8
Αν γνωρίζουμε ότι

2|xy|− x2y2

6
< 4−4cos

√
|xy|< 2|xy|

τι μπορούμε να συμπεράνουμε για το όριο

lim
(x,y)→(0,0)

4−4cos
√
|xy|

|xy|
;

Αιτιολογήστε την απάντησή σας.

Ορισμός 2.6.9 Έστω f : D⊆ R2→ R και (a,b) ∈ D. Λέμε ότι

lim
(x,y)→(a,b)

f (x,y) = L

αν για κάθε ε > 0 υπάρχουν δ1 > 0 και δ2 > 0 τέτοια ώστε για κάθε (x,y) ∈ D με

0 < |x−a|< δ1 και 0 < |y−b|< δ2

να ισχύει

| f (x,y)−L|< ε.

Παράδειγμα 2.6.10
Είναι γνωστό ότι ο ορισμός της συνέχειας μιας συνάρτησης f :R2→R σε ένα σημείο (x0,y0)

του πεδίου ορισμού της δίνεται από τον κάτωθι ορισμό:

lim
(x,y)→(x0,y0)

f (x,y) = l ⇐⇒ (∀ε > 0)(∃δ1(ε)> 0)(∃δ2(ε)> 0) τ.ω.

(|x− x0|< δ1) και (|y− y0|< δ2) =⇒ (| f (x,y)− l|< ε).

Έστω η συνάρτηση

f (x,y) =


x3y

x2 + y2 , αν (x,y) 6= (0,0)

0, αν (x,y) = (0,0)

Χρησιμοποιώντας τον παραπάνω ορισμό, για να είναι η συνάρτηση f συνεχής στο σημείο
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O(0,0) θα πρέπει:

(i) δ1 ≤
√

ε
2

,

(ii) δ2 ≤
√

ε
2

,

(iii) δ1 ≤
√

ε και δ2 ≤
√

ε,
(iv) δ 2

1 +δ 2
2 ≤ ε.
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.
Παράδειγμα 2.6.11
Εξετάστε ως προς τη συνέχεια στο (0,0) τη συνάρτηση

f (x,y) =


xy

x2 + y2 tan(x+ y), αν (x,y) 6= (0,0)

0, αν (x,y) = (0,0)



49

Κεφάλαιο 3 Λογισμός πολλών μεταβλητών:
Θεωρία και Εφαρμογές

Ασκήσεις 2.6.12
Στις επόμενες ασκήσεις να χρησιμοποιήσετε κατάλληλη μέθοδο για να υπολογίσετε το ζητού-

μενο όριο ή να αποδείξετε ότι αυτό δεν υπάρχει.

1. (a)

lim
(x,y)→(0,0)

x2− y2

x2 + y2

(b)
lim

(x,y)→(0,0)

xy
3x2 +2y2

(c)

lim
(x,y)→(0,0)

x4− y4

x4 + x2y2 + y4

2. Ελέγξτε αν η ακόλουθη συνάρτηση είναι συνεχής:

f (x,y) =
{

x2 + y2, αν x2 + y2 < 1,
1, αν x2 + y2 ≥ 1.

3. Έστω a,b≥ 0. Να αποδείξετε ότι αν a+b > 2, τότε

lim
(x,y)→(0,0)

xayb

x2 + y2 = 0,

ενώ αν a+b≤ 2, τότε το προηγούμενο όριο δεν υπάρχει.

4. Να αποδείξετε ότι η συνάρτηση

f (x,y) =

{
(2x−1)(siny)

xy
, αν xy 6= 0,

ln2, αν xy = 0

είναι συνεχής στο (0,0).



50

Κεφάλαιο 3 Λογισμός πολλών μεταβλητών:
Θεωρία και Εφαρμογές

Λύση της άσκησης 2.

Η συνάρτηση δίνεται ως

f (x,y) =

x2 + y2, αν x2 + y2 < 1,

1, αν x2 + y2 ≥ 1.

Εξέταση συνέχειας
• Στο εσωτερικό του δίσκου x2 + y2 < 1 το f (x,y) = x2 + y2 είναι πολυωνυμική και άρα
συνεχής.

• Έξω από το δίσκο x2 + y2 > 1 η f (x,y) = 1 είναι σταθερή και άρα συνεχής.

• Πρόβλημα εντοπίζεται στη γραμμή x2 + y2 = 1 (σύνορο των δύο περιοχών).

Συνοριακός Έλεγχος

Έστω σημείο (x0,y0) με x2
0 + y2

0 = 1:
• lim

(x,y)→(x0,y0),x2+y2<1
f (x,y) = lim

(x,y)→(x0,y0)
(x2 + y2) = x2

0 + y2
0 = 1.

• Η τιμή της συνάρτησης επί του συνόρου είναι επίσης f (x0,y0) = 1.
Άρα,

lim
(x,y)→(x0,y0)

f (x,y) = f (x0,y0)

για κάθε (x0,y0) με x2
0 + y2

0 = 1. Συμπέρασμα
Η συνάρτηση f (x,y) είναι συνεχής σε όλο το R2.

Λύση της άσκησης 3.

Για να αποδείξουμε ότι αν a+b > 2, τότε

lim
(x,y)→(0,0)

xayb

x2 + y2 = 0,

αρκεί να περάσουμε σε πολικές συντεταγμένες.
Θέτουμε x = r cosθ , y = r sinθ , με r→ 0:

xayb = (r cosθ)a(r sinθ)b = ra+b(cosθ)a(sinθ)b,

x2 + y2 = r2,

οπότε

xayb

x2 + y2 = ra+b−2(cosθ)a(sinθ)b.

Το γινόμενο (cosθ)a(sinθ)b είναι πάντοτε φραγμένο (ανήκει στο [−1,1]), οπότε το όριο
εξαρτάται μόνο από τη δύναμη του r.
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• Αν a+b > 2, τότε ο εκθέτης a+b−2 > 0, άρα καθώς r→ 0, ra+b−2→ 0 και τελικά
το όριο είναι 0 για κάθε διεύθυνση.

• Αν a+ b ≤ 2, τότε το όριο δεν υπάρχει ή δεν είναι 0, διότι ο εκθέτης δεν είναι θετικός
και το πηλίκο είτε συγκλίνει σε μη μηδενικό όριο είτε δεν υπάρχει (π.χ. ελέγχοντας πάνω
στους άξονες ή σε καμπύλες).

Άρα, πράγματι, το ζητούμενο ισχύει.

Λύση της άσκησης 4.

Θέλουμε να δείξουμε ότι η συνάρτηση

f (x,y) =


(2x−1)siny

xy
, αν xy 6= 0,

ln2, αν xy = 0

είναι συνεχής στο σημείο (0,0).
Για να το αποδείξουμε, αρκεί να δείξουμε ότι:

lim(x,y)→(0,0) f (x,y) = f (0,0) = ln2

Υπολογίζουμε το όριο:

lim
(x,y)→(0,0)

(2x−1)siny
xy

= lim
x→0

2x−1)
x

lim
y→0

siny
y

= ln2 ·1 = ln2.

΄Αρα η f είναι συνεχής στο (0,0).

2.7 Μερικές παράγωγοι
Όπως έχουμε ήδη τονίσει, μια συνάρτηση f με δύο ή περισσότερες μεταβλητές δεν έχει έναν
μοναδικό ρυθμό μεταβολής αφού η κάθε μεταβλητή μπορεί να επηρεάζει με διαφορετικό τρόπο
την f . Έτσι, για παράδειγμα, η ένταση του ρεύματος I που κυκλοφορεί σε ένα κύκλωμα είναι
συνάρτηση τόσο της διαφοράς δυναμικού V όσο και της αντίστασης R, με την εξάρτηση να
περιγράφεται μέσω του νόμου του Ohm που έχει τη μορφή:

I(V,R) =
V
R
.

Η ένταση του ρεύματος I αυξάνεται ως συνάρτηση του V (όταν η R είναι σταθερή), αλλά
μειώνεται ως συνάρτηση του R (όταν τοV είναι σταθερό).

Οι μερικές παράγωγοι είναι οι ρυθμοί μεταβολήςως προς καθεμία από τις μεταβλητές ξεχωριστά.
Έτσι, μια συνάρτηση f (x,y) με δύο μεταβλητές θα έχει δύο μερικές παραγώγους, που συμβολίζονται
με fx και fy, οι οποίες μάλιστα θα ορίζονται από τα ακόλουθα όρια (εφόσον αυτά υπάρχουν):

Οι μερικές παράγωγοι ισούνται με τον ρυθμό μεταβολής ως προς κάθε μεταβλητή.

fx(a,b) = lim
h→0

f (a+h,b)− f (a,b)
h

, fy(a,b) = lim
k→0

f (a,b+ k)− f (a,b)
k

.

Αυτό σημαίνει ότι η fx είναι η παράγωγος της f (x,b), που είναι συνάρτηση μόνο του x, ενώ
η fy είναι η παράγωγος της f (a,y) που είναι συνάρτηση μόνο του y. Η fx ονομάζεται μερική
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παράγωγος της f ως προς τη μεταβλητή x ή ως η x παράγωγος της f , ενώ παρόμοια ορολογία
χρησιμοποιείται για την fy.

Ο συμβολισμός κατά Leibniz για τις μερικές παραγώγους είναι ο ακόλουθος:

∂ f
∂x

= fx,
∂ f
∂y

= fy,

και

∂ f
∂x

∣∣∣∣
(a,b)

= fx(a,b),
∂ f
∂y

∣∣∣∣
(a,b)

= fy(a,b).

Σημείωση 2.7.1 Το σύμβολο ∂ που χρησιμοποιείται για τη μερική παράγωγο είναι ένα «στρογ-
γυλεμένο d». Χρησιμοποιείται προκειμένου να διαχωρίσει τις παραγώγους μιας συνάρτησης
πολλών μεταβλητών από τις παραγώγους των συναρτήσεων μίας μεταβλητής όπου χρησιμο-
ποιούμε το σύμβολο «d».

Παράδειγμα 2.7.2
Υπολογίστε τις τιμές των μερικών παραγώγων

gx(1,3) και gy(1,3), όπου

g(x,y) =
y2

(1+ x2)3 . Σχήμα 2.17 Οι κλίσεις των
εφαπτόμενων ευθειών στις καμπύλες-
ίχνη στο σημείο P είναι οι gx(1,3)
και gy(1,3)

Προπαρασκευαστικές ερωτήσεις 2.7.3

1. Η Ηρώ κατέληξε στην ακόλουθη λανθασμένη σχέση, καθώς δεν εφάρμοσε σωστά τον
κανόνα του γινομένου:

∂
∂x(x

2y2) = x2(2y)+ y2(2x).

Ποιο ήταν το λάθος που έκανε και πώς θα πρέπει να γίνει σωστά ο υπολογισμός;

2. Εξηγήστε γιατί δεν είναι απαραίτητο να χρησιμοποιήσουμε τον κανόνα του πηλίκου
προκειμένου να υπολογίσουμε τη μερική παράγωγο

∂
∂x

(
x+ y
y+1

)
.

Εφαρμόζεται ο κανόνας παραγώγισης πηλίκου στον υπολογισμό της μερικής παραγώγου
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∂
∂y

(
x+ y
y+1

)
;

3. Ποια από τις ακόλουθες μερικές παραγώγους μπορεί να υπολογιστεί χωρίς προσφυγή
στον κανόνα του πηλίκου;

α)
∂
∂x

(
xy

y2 +1

)
β)

∂
∂y

(
xy

y2 +1

)
γ)

∂
∂x

(
y2

y2 +1

)

Εμβάθυνση στα σχήματα

Οι μερικές παράγωγοι στο σημείο P = (a,b) αντιπροσωπεύουν τις κλίσεις των
εφαπτόμενων ευθειών των καμπυλών-ιχνών του γραφήματος της f (x,y) στο σημείο
(a,b, f (a,b)) του Σχήματος 2.19(a). Για να υπολογίσουμε την fx(a,b) θέτουμε y = b
και παραγωγίζουμε στην κατεύθυνση x. Με τον τρόπο αυτόν προκύπτει η κλίση της
εφαπτόμενης ευθείας στην καμπύλη που είναι το ίχνος του γραφήματος της f στο επίπεδο
y = b (βλ. Σχήμα 2.19(b)). Παρομοίως, η fy(a,b) είναι η κλίση της καμπύλης που είναι
το ίχνος του γραφήματος της f στο επίπεδο x = a (βλ. Σχήμα 2.19(c)).

(a) (b) (c)

Σχήμα 2.18 Οι μερικές παράγωγοι και οι κλίσεις των καμπυλών-ιχνών

(a) (b) (c)

Σχήμα 2.19 Οι μερικές παράγωγοι και οι κλίσεις των καμπυλών-ιχνών
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2.7.1 Μερικές παράγωγοι υψηλότερης τάξης

Οι μερικές παράγωγοι υψηλότερης τάξης είναι οι παράγωγοι των παραγώγων. Έτσι, για παράδειγμα,
οι μερικές παράγωγοι δεύτερης τάξης μιας συνάρτησης f είναι οι μερικές παράγωγοι των fx και
fy. Θα γράφουμε λοιπόν fxx για την x παράγωγο της fx και fyy για την y παράγωγο της fy:

fxx =
∂
∂x

(
∂ f
∂x

)
, fyy =

∂
∂y

(
∂ f
∂y

)
.

Υπάρχουν επίσης και οι μεικτές μερικές παράγωγοι:

fxy =
∂
∂y

(
∂ f
∂x

)
, fyx =

∂
∂x

(
∂ f
∂y

)
.

Η διαδικασία «δημιουργίας» μερικών παραγώγων μπορεί να συνεχιστεί με παρόμοιο τρόπο.
Έτσι, για παράδειγμα, η fxyx είναι η x παράγωγος της fxy, ενώ η fxyy είναι η y παράγωγος της
fxy (εκτελούμε τις διαδοχικές παραγώγισεις με τη σειρά που υποδεικνύουν οι δείκτες ξεκινώντας
από αριστερά και κινούμενοι προς τα δεξιά).

Ο συμβολισμός κατά Leibniz για τις παραγώγους υψηλότερης τάξης είναι:

fxx =
∂ 2 f
∂x2 , fxy =

∂ 2 f
∂y∂x

, fyx =
∂ 2 f

∂x∂y
, fyy =

∂ 2 f
∂y2 .

Οι μερικές παράγωγοι υψηλότερης τάξης ορίζονται για συναρτήσεις με τρεις ή και περισσότερες
μεταβλητές με παρόμοιο τρόπο.

Παράδειγμα 2.7.4
Υπολογίστε τις μερικές παραγώγους πρώτης και δεύτερης τάξης της συνάρτησης

f (x,y) = x3 + y2ex.

Θεώρημα 2.7.5 Θεώρημα Clairaut: ισότητα των μεικτών παραγώγων Αν υπάρχουν οι μερικές
παράγωγοι fxy και fyx και είναι συνεχείς σε έναν δίσκο D, τότε ισχύει fxy(a,b) = fyx(a,b)
για όλα τα σημεία (a,b) ∈ D. Έτσι, στο D θα έχουμε ότι

∂ 2 f
∂x∂y

=
∂ 2 f

∂y∂x
.

Παράδειγμα 2.7.6

Αν ικανοποιούνται οι υποθέσεις του θεωρήματος Clairaut, ποια από τις ακόλουθες παραγώγους
είναι ίση με την fxxy;

(a) fxyx β) fyyx γ) fxyy δ) fyxx
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2.8 Κανόνας της Αλυσίδας

Το θεώρημα που είναι γνωστό ως κανόνας της αλυσίδας αποτελεί βασικό εργαλείο του Διαφορικού
Λογισμού. Η ιδέα του είναι ότι, όταν μια συνάρτηση εξαρτάται από πολλές μεταβλητές, οι οποίες
με τη σειρά τους εξαρτώνται από άλλες ανεξάρτητες μεταβλητές, τότε η παράγωγος της αρχικής
συνάρτησης ως προς καθεμία από τις νέες μεταβλητές μπορεί να υπολογιστεί «αλυσιδωτά» μέσω
των παραγώγων των ενδιάμεσων συναρτήσεων. Το θεώρημα που είναι γνωστό ως κανόνας της
αλυσίδας αποτελεί βασικό εργαλείο του Διαφορικού Λογισμού. Η ιδέα του είναι ότι, όταν μια
συνάρτηση εξαρτάται από πολλές μεταβλητές, οι οποίες με τη σειρά τους εξαρτώνται από άλλες
ανεξάρτητες μεταβλητές, τότε η παράγωγος της αρχικής συνάρτησης ως προς καθεμία από τις
νέες μεταβλητές μπορεί να υπολογιστεί «αλυσιδωτά» μέσω των παραγώγων των ενδιάμεσων
συναρτήσεων. Ο κανόνας της αλυσίδας για σύνθεση δύο συναρτήσεων μίας μεταβλητής f και g
είναι:

( f ◦g)′(x) = f ′(g(x)) ·g′(x)

ή με συμβολισμό διαφορών, όπως χρησιμοποιείται από τον Lipschitz,

d( f ◦g)
dx

=
d f
dg
· dg

dx
.

Με λίγα λόγια, αν έχουμε z = f (g) και g = g(x), τότε η σύνθεση δίνει z = f (g(x)). Ο κανόνας
της αλυσίδας για αυτή την περίπτωση δίνει:

dz
dx

= f ′(g(x)) ·g′(x)

ή με διαφορετική σημειογραφία,

dz
dx

=
d f
dg
· dg

dx

Στην περίπτωση μιας συνάρτησης πολλών μεταβλητών

z = f (x1,x2, . . . ,xn),

όπου καθεμία από τις μεταβλητές x1,x2, . . . ,xn είναι διαφορίσιμη συνάρτηση άλλων μεταβλητών,
δηλαδή

xi = xi(t1, t2, . . . , tm), i = 1,2, . . . ,n,

η μερική παράγωγος της f ως προς την tk δίνεται από τον τύπο:

∂ f
∂ tk

=
∂ f
∂x1

∂x1

∂ tk
+

∂ f
∂x2

∂x2

∂ tk
+ · · ·+ ∂ f

∂xn

∂xn

∂ tk
, k = 1,2, . . . ,m.
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Με αυτόν τον τρόπο, ο κανόνας της αλυσίδας
επεκτείνεται στις συναρτήσεις πολλών μεταβλητών
και μας επιτρέπει να μελετούμε περίπλοκες
εξαρτήσεις σε προβλήματα γεωμετρίας, φυσικής,
οικονομίας και άλλων επιστημών.
Μπορούμε να θεωρούμε τις εξαρτήσεις που υπάρχουν
μεταξύ των μεταβλητών με ένα σκαρίφημα όπως αυτό
του Σχήματος 2.20. Βοηθητικά, προκειμένου να
θυμόμαστε τον κανόνα της αλυσίδας, θα αναφέρουμε
τις παραγώγους

∂ f
∂x1

, . . . ,
∂ f
∂xn

.

ως πρωτεύουσες παραγώγους.
Σχήμα 2.20 Σκαρίφημα με το οποίο μπορούμε να
παρατηρούμε τις εξαρτήσεις μεταξύ των μεταβλητών.

Σύμφωνα με την εξίσωση του κανόνα της αλυσίδας, η παράγωγος της συνάρτησης f ως προς
την ανεξάρτητη μεταβλητή tk είναι ίση με το άθροισμα n όρων της μορφής:

j-οστός όρος:
∂ f
∂x j

∂x j

∂ tk
, για j = 1,2, . . . ,n

Παράδειγμα 2.8.1
Δίνεται η συνάρτηση:

z = f (x,y) = x2y+ sin(y)

όπου

x = et +u, y = t2u

Υπολογίστε το
∂ z
∂ t

χρησιμοποιώντας τον κανόνα της αλυσίδας.

Ασκήσεις 2.8.2

1. Χρησιμοποιήστε τον ορισμό μέσω του ορίου για να επιβεβαιώσετε τις ακόλουθες σχέσεις
για τις μερικές παραγώγους:

∂
∂x

(xy2) = y2,
∂
∂y

(xy2) = 2xy.

2. Χρησιμοποιήστε τον ορισμό μέσω του ορίου για να επιβεβαιώσετε τις ακόλουθες σχέσεις
για τις μερικές παραγώγους:

∂
∂x

(
x
y

)
=

1
y
,

∂
∂y

(
x
y

)
=− x

y2 .

3. Να υπολογίσετε τις μερικές παραγώγους πρώτης τάξης των συναρτήσεων.
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(a) f (x,y) = x2 + y2, (b) f (x,y) = x4y+ xy−2,

(d) f (x,y,z) =
x

(x2 + y2 + z2)3/2 , (e) f (x,y) =
√

9− x2− y2,

( f ) f (x,y) =
x√

x2 + y2
, (g) f (x,y) =

x
x− y

.

4. Να αποδείξετε ότι δεν υπάρχει συνάρτηση f (x,y) τέτοια ώστε να ισχύει

∂ f
∂x

= xy και
∂ f
∂y

= x2.

Υπόδειξη: Σκεφτείτε με βάση το θεώρημα του Clairaut.

5. Να αποδείξετε ότι η συνάρτηση

u(x, t) = sin(nx)e−n2t

ικανοποιεί την εξίσωση διάδοσης θερμότητας

∂u
∂ t

=
∂ 2u
∂x2 για κάθε σταθερό n.

6. Στις επόμενες ασκήσεις χρησιμοποιήστε τον κανόνα της αλυσίδας για να υπολογίσετε τις
ζητούμενες μερικές παραγώγους. Να εκφράσετε την απάντησή σας ως συνάρτηση μόνο
των ανεξάρτητων μεταβλητών.

(a)
∂ f
∂ s

,
∂ f
∂ r

, f (x,y,z) = xy+ z2, x = s2, y = 2rs, z = r2

(b)
∂ f
∂ r

,
∂ f
∂ t

, f (x,y,z) = xy+ z2, x = r+ s−2t, y = 3rt, z = s2

(c)
∂g
∂x

,
∂g
∂y

, g(θ ,ϕ) = tan(θ +ϕ), θ = xy, ϕ = x+ y

(d)
∂R
∂v

,
∂R
∂w

, R(x,y) = (x−2y)3, x = w2, y = vw

(e)
∂F
∂y

, F(u,v) = eu+v, u = x2, v = xy

(f)
∂ f
∂u

, f (x,y) = x2 + y2, x = eu+v, y = u+ v

(g)
∂h
∂ t2

, h(x,y) =
x
y
, x = t1t2, y = t2

1t2
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(h)
∂ f
∂θ

, f (x,y,z) = xy− z2, x = r cosθ , y = cos2 θ , z = r

7. O τελεστής Laplace ∆ για μία συνάρτηση f ορίζεται ως

∆ f = fxx + fyy.

Μια συνάρτηση f (x,y) που ικανοποιεί την εξίσωσηLaplace∆ f = 0 ονομάζεται αρμονική.
75. Να αποδείξετε ότι οι ακόλουθες συναρτήσεις είναι αρμονικές:

α) f (x,y) = x, β) f (x,y) = ex cosy,

γ) f (x,y) = tan−1
(y

x

)
, δ) f (x,y) = ln(x2 + y2).

Ασκήσεις 2.8.3
Η σημασία των υποθέσεων

Η παρούσα άσκηση είναι σχεδιασμένη για να τονίσει τη σημασία και την αναγκαιότητα των
υποθέσεων του θεωρήματος Clairaut. Έστω η συνάρτηση

f (x,y) =

xy
x2− y2

x2 + y2 if (x,y) 6= (0,0)

0, if (x,y) = (0,0).

a) Επιβεβαιώστε ότι για (x,y) 6= (0,0) ισχύει:

fx(x,y) =
y(x4 +4x2y2− y4)

(x2 + y2)2 , fy(x,y) =
x(x4−4x2y2− y4)

(x2 + y2)2 .

b) Χρησιμοποιήστε τον ορισμό της μερικής παραγώγου με το όριο για να αποδείξετε ότι

fx(0,0) = fy(0,0) = 0

και επιπλέον ότι οι μερικές παράγωγοι fyx(0,0) και fxy(0,0) υπάρχουν και οι δύο αλλά
δεν είναι ίσες.

c) Δείξτε ότι για (x,y) 6= (0,0) ισχύει:

fxy(x,y) = fyx(x,y) =
x6 +9x4y2−9x2y4− y6

(x2 + y2)3 .

Δείξτε ότι η fxy δεν είναι συνεχής στο (0,0). Υπόδειξη: Δείξτε ότι ισχύει

lim
h→0

fxy(h,0) 6= lim
k→0

fxy(0,k).

d) Εξηγήστε τον λόγο για τον οποίο το αποτέλεσμα του ερωτήματος (b) δεν αντιφάσκει με
το θεώρημα του Clairaut.
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→Μετάβαση στη Λύση της Άσκησης 2.11.9

Λύση.

(a) Για (x,y) 6= (0,0) γράφουμε f (x,y) = xy(x2− y2)(x2 + y2)−1. Παραγωγίζοντας και
εφαρμόζοντας τον κανόνα ilorίθμου/αλυσίδας,

fx(x,y) = y(x2−y2)(x2+y2)−1+xy(2x)(x2+y2)−1−xy(x2−y2)(2x)(x2+y2)−2

=
y(x4 +4x2y2− y4)

(x2 + y2)2 ,

fy(x,y) =
x(x2− y2)(x2 + y2)−1 + xy(−2y)(x2 + y2)−1− xy(x2− y2)(2y)(x2 + y2)−2

=
x(x4−4x2y2− y4)

(x2 + y2)2 .

(b) Με τον ορισμό:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0, fy(0,0) =

lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

0−0
k

= 0,

αφού f (h,0) = f (0,k) = 0 για h 6= 0, k 6= 0.
Για τις μικτές στο (0,0) χρησιμοποιούμε τα fx, fy του (α):

fx(0,y) =
y(0+0− y4)

(y2)2 =−y (y 6= 0), fx(0,0) = 0,

άρα

fxy(0,0) = lim
y→0

fx(0,k)− fx(0,0)
k

= lim
k→0

−k−0
k

=−1.

Ομοίως,

fy(x,0) =
x(x4−0−0)

(x2)2 = x (x 6= 0), fy(0,0) = 0,

οπότε

fyx(0,0) = lim
h→0

fy(h,0)− fy(0,0)
h

= lim
h→0

h−0
h

= 1.

Άρα fyx(0,0) = 1 6=−1 = fxy(0,0), ενώ και οι δύο υπάρχουν.
(c) Για (x,y) 6= (0,0) παραγωγίζουμε ξανά (ή ισοδύναμα παραγωγίζουμε τις εκφράσεις του

(α)) και βρίσκουμε
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fxy(x,y) = fyx(x,y) =
x6 +9x4y2−9x2y4− y6

(x2 + y2)3 .

Για τη συνέχεια στο (0,0), εξετάζουμε όρια κατά μήκος των αξόνων:

lim
h→0

fxy(h,0) = lim
h→0

h6

(h2)3 = 1, lim
k→0

fxy(0,k) = lim
k→0

−k6

(k2)3 =−1.

Τα όρια διαφέρουν⇒ το fxy (και αντίστοιχα το fyx) δεν είναι συνεχές στο (0,0).
(d) Το θεώρημα τουClairaut (ήYoung) απαιτεί, εκτός από την ύπαρξη των fxy, fyx, και συνέχεια

κάποιας μικτής παραγώγου σε γειτονιά του σημείου ώστε να συμπέσουν στο σημείο. Στην
παρούσα άσκηση, από το (γ) είδαμε ότι το fxy δεν είναι συνεχές στο (0,0), άρα οι υποθέσεις
του θεωρήματος δεν ισχύουν· επομένως δεν υπάρχει αντίφαση με το (β) όπου fxy(0,0) 6=
fyx(0,0).

← Επιστροφή στην Άσκηση 2.11.9

2.9 Διαφορισιμότητα, εφαπτόμενα επίπεδα και γραμμική προσέγγιση

Στην παρούσα ενότητα θα διερευνήσουμε τη σημαντική έννοια της διαφορισιμότητας για συνα-
ρτήσεις με περισσότερες από μία μεταβλητές, σε συνδυασμό με τις σχετιζόμενες ιδέες του εφαπτό-
μενου επιπέδου και της γραμμικής προσέγγισης. Στον Λογισμό των συναρτήσεων μίας μεταβλη-
τής, μια συνάρτηση f είναι παραγωγίσιμη αν υπάρχει η παράγωγός της. Δηλαδή, αν υπάρχει η

κλίση της εφαπτομένης της καμπύλης σε ένα σημείο a και συμβολίζεται ως f ′(a) ή
dy
dx

∣∣∣∣
x=a
. Ενώ

μία συνάρτηση είναι διαφορίσιμη αν μπορεί να περιγραφεί τοπικά από μια γραμμική συνάρτηση,
δηλαδή η συνάρτηση συμπεριφέρεται “σαν ευθεία” όταν τη μελετούμε σε μικροσκοπική κλίμακα
γύρω από ένα σημείο. Αυτό σημαίνει ότι η τιμή της y για τιμές του x κοντά στο a μπορεί
να προσεγγιστεί χρησιμοποιώντας την εξίσωση της εφαπτομένης της συνάρτησης στο σημείο
(a, f (a)). Με μαθηματικούς όρους η παραπάνω ιδέα εκφράζεται ως:

∆y = f ′(a)∆x+ ε∆x,όπου ε → 0 καθώς ∆x→ 0.

Αυτός ο τύπος οδηγεί στη έννοια του διαφορικού που εκφράζεται ως εξής:

Ορισμός 2.9.1Ἔστω y= f (x) μια διαφορίσιμη συνάρτηση στο x και∆x= h 6= 0 μια οποιαδήποτε
μεταβολή του x. Τότε σαν διαφορικό της f στο x ορίζεται το γινόμενο

f ′(x) ·h = f ′(x) ·∆x,

το οποίο συμβολίζεται με d f (x) ή dy, δηλαδή

dy = d f (x) = f ′(x) ·h = f ′(x) ·∆x
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Σχήμα 2.21 Η γραμμική προσέγγιση του ∆x δίνεται από το διαφορικό dx.

Από τον ορισμό της παραγώγου στη μία μεταβλητή προκύπτει ότι αν η συνάρτηση y = f (x) είναι
διαφορίσιμη στο a, τότε

lim
∆x→0

∆y
∆x

= lim
∆x→0

f ′(a)∆x+ ε∆x
∆x

= f ′(a)+ lim
∆x→0

ε = f ′(a),

και συνεπώς η f είναι παραγωγίσιμη.

Αντίστροφα, αν η f είναι παραγωγίσιμη στο a, τότε θα έχουμε

lim
∆x→0

∆y
∆x

= f ′(a).

Συνεπώς,

∆y
∆x

= f ′(a)+ ε, όπου ε → 0 καθώς ∆x→ 0.

Ισοδύναμα έχουμε

∆y = f ′(a)∆x+ ε∆x,όπου ε → 0 καθώς ∆x→ 0

που συνεπάγεται ότι η f είναι διαφορίσιμη.
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Επεκτείνοντας την ιδέα αυτή, θα περίμενε κανείς
ότι μια συνάρτηση f (x,y) θα είναι διαφορίσιμη αν
υπάρχουν οι μερικές παράγωγοί της fx(x,y) και
fy(x,y). Δυστυχώς όμως, όπως θα διαπιστώσουμε,
η ύπαρξη των μερικών παραγώγων δεν είναι
αρκετά ισχυρή συνθήκη ώστε να εξασφαλίζει
τη διαφορισιμότητα μιας συνάρτησης. Αρχικά,
θα αποδείξουμε ότι η ύπαρξη των μερικών
παραγώγων δεν είναι ικανή συνθήκη που
εξασφαλίζει τη διαφορισιμότητα μιας συνάρτησης. Η
διαφορισιμότητα μιας συνάρτησης f (x,y) στο (a,b)
θα πρέπει να εξασφαλίζει το γεγονός ότι υπάρχει ένα
εφαπτόμενο επίπεδο στο γράφημα της f (x,y) και
στο σημείο P = (a,b, f (a,b)), όπως φαίνεται στο
Σχήμα 2.22.

Σχήμα 2.22 Το εφαπτόμενο επίπεδο
Αν υπάρχουν οι μερικές παράγωγοι της f (x,y), fx(a,b) και fy(a,b) στο (a,b), τότε αυτές
προσδιορίζουν ευθείες που είναι εφαπτόμενες στο γράφημα της f (x,y) στο σημείο P. Στο Σχήμα
2.23(α) φαίνεται ότι η μία από αυτές τις εφαπτόμενες ευθείες κείται στο επίπεδο y= b, ενώ η άλλη
βρίσκεται στο επίπεδο x = a. Θα ονομάζουμε, αντιστοίχως, τις ευθείες αυτές ως την εφαπτόμενη
ευθεία για την fx και την εφαπτόμενη ευθεία για την fy. Αυτές οι δύο εφαπτόμενες ευθείες
προσδιορίζουν ένα επίπεδο που εύλογα μπορεί να είναι το εφαπτόμενο επίπεδο στο γράφημα της
συνάρτησης (βλ. Σχήμα 2.23(β). Θα αναφερόμαστε σε αυτό το επίπεδο ως το επίπεδο που ορίζεται
από τις fx και fy. Δυστυχώς, όμως, αυτό το επίπεδο μπορεί να μην είναι πλήρως εφαπτόμενο
στο γράφημα της συνάρτησης στο σημείο P καθώς υπάρχει η πιθανότητα άλλες ευθείες, που
διέρχονται από το σημείο P και ανήκουν στο επίπεδο, να μην εφάπτονται στο γράφημα, όπως
φαίνεται στο Σχήμα 2.23(γ).

Σχήμα 2.23 Είναι το επίπεδο που προσδιορίζεται από τις fx και fy εφαπτόμενο στο γράφημα της συνάρτησης;

2.10 Αυξήσεις και Διαφορικά

Ορισμός 2.10.1 Ο όρος o(
√

h2 + k2).

Ο όρος o(
√

h2 + k2) είναι βασικό εργαλείο στη μαθηματική ανάλυση, καθώς διακρίνει τις
γραμμικές από τις μη γραμμικές συνιστώσες της τοπικής συμπεριφοράς μιας συνάρτησης. Πιο
συγκεκριμένα, λέμε ότι μια συνάρτηση f (h,k) ανήκει στο o(

√
h2 + k2) αν,

(∀ε > 0)(∃δ > 0) ώστε για κάθε σημείο (h,k) με
√

h2 + k2 < δ να ισχύει:
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| f (h,k)|< ε
√

h2 + k2.

Με άλλα λόγια: f (h,k) = o
(√

h2 + k2
)
⇐⇒ f (h,k)√

h2 + k2
→ 0.

Θεώρημα 2.10.2 (Κριτήριο διαφορισιμότητας) Έστω f : S⊆R2→R, S ανοικτό, και (a,b)∈
S. Αν οι μερικές παράγωγοι fx, fy υπάρχουν σε μία περιοχή του (a,b) και είναι συνεχείς στο
(a,b), τότε η f είναι διαφορίσιμη στο (a,b), δηλαδή

f (a+h,b+k) = f (a,b)+ fx(a,b)h+ fy(a,b)k+o
(√

h2 + k2
)

καθώς (h,k)→ (0,0).

Υπενθυμίζουμε ότι η αύξηση ∆y της f (x) στο x = a είναι

∆y = f (a+∆x)− f (a),

και για “μικρό” ∆x έχουμε την προσέγγιση

∆y≈ dy = f ′(a)∆x.

Έστω z = f (x,y). Ορίζουμε την αύξηση της f στο (a,b) ως

∆z = f (a+∆x, b+∆y)− f (a,b).

Τότε έχουμε

∆z =
[

f (a+∆x,b+∆y)− f (a,b+∆y)
]
+
[

f (a,b+∆y)− f (a,b)
]
.

Με βάση το Θεώρημα Μέσης Τιμής (MVT):

f (a+∆x,b+∆y)− f (a,b+∆y) = fx(u,b+∆y)∆x,

f (a,b+∆y)− f (a,b) = fy(a,v)∆y,

όπου u ∈ (a,a+∆x) και v ∈ (b,b+∆y).
Άρα

∆z = fx(u,b+∆y)∆x+ fy(a,v)∆y.

Γράφουμε

∆z =
(

fx(a,b)+ [ fx(u,b+∆y)− fx(a,b)]︸ ︷︷ ︸
ε1

)
∆x+

(
fy(a,b)+ [ fy(a,v)− fy(a,b)]︸ ︷︷ ︸

ε2

)
∆y.

Έτσι,

∆z = fx(a,b)∆x+ fy(a,b)∆y︸ ︷︷ ︸
dz

+ε1∆x+ ε2∆y︸ ︷︷ ︸
σφάλμα

.

Αν fx, fy είναι συνεχείς στο (a,b), τότε

ε1→ 0, ε2→ 0 όταν (∆x,∆y)→ (0,0).
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Συνεπώς

∆z = dz+ ε1∆x+ ε2∆y = dz+o(
√

(∆x)2 +(∆y)2).

Απο την ισότητα

∆z = dz+o(
√

(∆x)2 +(∆y)2).

έχουμε

lim
(∆x,∆y)

∆z−dz√
(∆x)2 +(∆y)2

= 0

που σημαίνει ότι η f είναι διαφορίσιμη στο (a,b).

Σημείωση 2.10.3 Πως προκύπτει dz+ ε1∆x+ ε2∆y = dz+o(
√
(∆x)2 +(∆y)2). ’Εχουμε

ε1∆x+ ε2∆y =

(
ε1∆x+ ε2∆y√
(∆x)2 +(∆y)2

)
·
√

(∆x)2 +(∆y)2.

Θέτουμε

η =
ε1∆x+ ε2∆y√
(∆x)2 +(∆y)2

.

Τότε το σφάλμα γράφεται:

ε1∆x+ ε2∆y = η ·
√

(∆x)2 +(∆y)2.

Όριο καθώς (∆x,∆y)→ (0,0):

Αν ε1 → 0 και ε2 → 0, τότε και ο συνδυασμός τους η «πακετάρεται» σε μια μορφή που
εξαρτάται μόνο από την ευκλείδεια απόσταση√

(∆x)2 +(∆y)2.

Πράγματι,

|ε1∆x+ ε2∆y| ≤
√

ε 2
1 + ε 2

2

√
(∆x)2 +(∆y)2.

Αρκεί να υψώσουμε στο τετράγωνο και να δείξουμε ότι

(ε1∆x+ ε2∆y)2 ≤ (ε 2
1 + ε 2

2 )
(
(∆x)2 +(∆y)2

)
.

Πράγματι,

(ε1∆x+ ε2∆y)2 = ε 2
1 (∆x)2 +2ε1ε2 ∆x∆y+ ε 2

2 (∆y)2.

Ενώ

(ε 2
1 + ε 2

2 )
(
(∆x)2 +(∆y)2

)
= ε 2

1 (∆x)2 + ε 2
1 (∆y)2 + ε 2

2 (∆x)2 + ε 2
2 (∆y)2.

Άρα η διαφορά είναι



65

Κεφάλαιο 3 Λογισμός πολλών μεταβλητών:
Θεωρία και Εφαρμογές[

(ε 2
1 + ε 2

2 )((∆x)2 +(∆y)2)
]
− (ε1∆x+ ε2∆y)2 = (ε1∆y− ε2∆x)2 ≥ 0.

Συνεπώς η αρχική ανισότητα ισχύει.

Ορισμός 2.10.4 Έστω f : R2 → R και z = f (x,y). Λέμε ότι η f είναι διαφορίσιμη στο
σημείο (a,b) αν υπάρχουν οι μερικές παράγωγοι fx(a,b), fy(a,b) και ισχύει ότι για κάθε
(∆x,∆y)→ (0,0) έχουμε

∆z = f (a+∆x,b+∆y)− f (a,b) = fx(a,b)∆x+ fy(a,b)∆y+ ε1∆x+ ε2∆y,

όπου ε1,ε2→ 0 καθώς (∆x,∆y)→ (0,0) ή ισοδύναμα:

lim
(∆x,∆y)→(0,0)

f (a+∆x,b+∆y)− f (a,b)− fx(a,b)∆x− fy(a,b)∆y√
(∆x)2 +(∆y)2

= 0.

Δηλαδή, η μεταβολή ∆z γράφεται ως άθροισμα μιας γραμμικής συνάρτησης των (∆x,∆y)
και ενός σφάλματος που τείνει στο μηδέν όταν (∆x,∆y)→ (0,0).

Σχήμα 2.24 Είναι το επίπεδο που προσδιορίζεται από τις fx και fy εφαπτόμενο στο γράφημα της συνάρτησης;

Υπενθύμιση 2.10.5
Ικανή και Αναγκαία Συνθήκη Έστω δύο προτάσεις A και B.

1. Αν ισχύει η συνεπαγωγή

A⇒ B,

τότε λέμε ότι η πρότασηA είναι ικανή συνθήκη για τηνB, δηλαδή η ισχύς τηςA εξασφαλίζει
την ισχύ της B.

2. Αν ισχύει η συνεπαγωγή

B⇒ A,
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τότε λέμε ότι η πρόταση A είναι αναγκαία συνθήκη για την B, δηλαδή για να ισχύει η B,
πρέπει οπωσδήποτε να ισχύει και η A.

3. Αν ισχύουν και οι δύο συνεπαγωγές

A⇒ B και B⇒ A,

τότε γράφουμε

A⇔ B

και λέμε ότι η πρόταση A ικανή και αναγκαία συνθήκη για την B.

Λογική μορφή Φραστική διατύπωση Ερμηνεία

A⇒ B «Αν ισχύει το A, τότε ισχύει το
B»

Το A είναι ικανή συνθήκη για
το B

B⇒ A «Αν ισχύει το B, τότε ισχύει το
A»

Το A είναι αναγκαία συνθήκη
για το B

A⇔ B «Αν και μόνο αν» Το A είναι και ικανή και
αναγκαία συνθήκη για το B

Πίνακας 2.1 Ικανή, αναγκαία και ικανή-αναγκαία συνθήκη

Παράδειγμα 2.10.6
Ένας αριθμός είναι άρτιος αν και μόνο αν διαιρείται με το 2.

• Αν ένας αριθμός είναι άρτιος, τότε διαιρείται με το 2 σημαίνει ότι η ιδιότητα «άρτιος»
είναι ικανή συνθήκη.

• Αν ένας αριθμός διαιρείται με το 2, τότε είναι άρτιος σημαίνει ότι η ιδιότητα «άρτιος»
είναι αναγκαία συνθήκη.

Σημείωση 2.10.7 Το θεώρημα 2.10.2 δίνει ικανή συνθήκη, όχι όμως αναγκαία. Υπάρχουν
συναρτή- σεις που είναι διαφορίσιμες αλλά οι μερικές τους παράγωγοι δεν είναι συνεχείς.

Παράδειγμα 2.10.8
Εξετάστε αν η συνάρτηση f

f (x,y) =

(x2 + y2)sin
(

1
x2 + y2

)
, (x,y) 6= (0,0),

0, (x,y) = (0,0)

είναι διαφορίσιμη στο σημείο (0,0) και αν οι
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∂ f
∂x

,
∂ f
∂y

είναι συνεχείς στο (0,0). Τι συμπεραίνετε;

→Μετάβαση στη Λύση του Παραδείγματος 2.10.8

Λύση.Υπολογισμοί των ∆ f , d f :

∂ f
∂x

(0,0) = lim
x→0

f (x,0)− f (0,0)
x−0

= lim
x→0

xsin
1
x2 = 0.

Όμοια, λόγω κυκλικότητας των x,y, θα ισχύει

∂ f
∂y

(0,0) = 0.

Άρα d f = 0.

Επίσης

∆ f = f (h,k)− f (0,0) = (h2 + k2)sin
1

h2 + k2 .

Και από (Μ.σ.2.5) έχουμε

∆ f −d f√
h2 + k2

=
(h2 + k2)sin

1
h2 + k2

√
h2 + k2

=
√

h2 + k2 sin
1

h2 + k2 .

Η έκφραση αυτή τείνει στο μηδέν για h→ 0, k→ 0, διότι
√

h2 + k2→ 0 και sin
1

h2 + k2 είναι

φραγμένη. (Μηδενική επί φραγμένη = μηδενική). Άρα η f (x,y) είναι διαφορίσιμη στο (0,0). Για

τη συνέχεια των fx, fy στο (0,0) έχουμε:

fx =
∂
∂x

(
(x2 + y2)sin

1
x2 + y2

)
= 2xsin

1
x2 + y2 −

2x
x2 + y2 cos

1
x2 + y2 ,

fy =
∂
∂y

(
(x2 + y2)sin

1
x2 + y2

)
= 2ysin

1
x2 + y2 −

2y
x2 + y2 cos

1
x2 + y2 .

Οι fx, fy είναι συνεχείς για κάθε (x,y) ∈R2−{(0,0)}. Θα εξετάσουμε τη συνέχεια της fx
στο σημείο (0,0). Έχουμε

fx(x,x) = 2xsin
1

2x2 −
x
x2 cos

1
x2 = 2xsin

1
2x2 −

1
x

cos
1
x2 .

Επειδή

lim
x→0

2xsin
1

2x2 = 0 και lim
x→0

1
x

cos
1
x2
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δεν υπάρχει, το

lim
x→0

fx(x,x)

δεν υπάρχει. Συνεπώς και το

lim
(x,y)→(0,0)

fx(x,y)

δεν υπάρχει. Όμοια, δεν υπάρχει και το

lim
(x,y)→(0,0)

fy(x,y).

Συμπέρασμα: Συμπεραίνουμε ότι κάθε διαφορίσιμη συνάρτηση δεν έχει κατ’ ανάγκην μερικές
παραγώγους πρώτης τάξης συνεχείς.
← Επιστροφή στο Παράδειγμα 2.10.8

Παράδειγμα 2.10.9
Ησυνάρτηση δύο μεταβλητών που είναι διαφορίσιμη και δεν έχει μερικές παράγωγους συνεχείς

στο σημείο αυτό Έστω η συνάρτηση

f (x,y) =


x2y

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).

Να εξετάσετε αν η συνάρτηση f είναι διαφορίσιμη στο σημείο (0,0) και αν οι μερικές παρά-
γωγοι πρώτης τάξης της είναι συνεχείς στο ίδιο σημείο. Τι παρατηρείτε σχετικά με τη σχέση
μεταξύ διαφορισιμότητας και συνέχειας των μερικών παραγώγων;

Λύση.

f (x,y) =


x2y

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).

Ερώτημα: Εξετάζουμε αν η f είναι διαφορίσιμη στο σημείο (0,0) και αν οι μερικές παράγωγοι
πρώτης τάξης είναι συνεχείς στο ίδιο σημείο.

1. Υπολογισμός μερικών παραγώγων στο σημείο (0,0):

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0.

fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

0−0
k

= 0.

Άρα fx(0,0) = 0 και fy(0,0) = 0.

2. Τύποι μερικών παραγώγων για (x,y) 6= (0,0):
Με χρήση του κανόνα του πηλίκου:
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fx(x,y) =
(2xy)(x2 + y2)− x2y(2x)

(x2 + y2)2 =
2xy3

(x2 + y2)2 .

fy(x,y) =
x2(x2 + y2)− x2y(2y)

(x2 + y2)2 =
x2(x2− y2)

(x2 + y2)2 .

3. Συνέχεια των μερικών παραγώγων στο σημείο (0,0):
Θα δείξουμε ότι

lim
(x,y)→(0,0)

fx(x,y) = 0 και lim
(x,y)→(0,0)

fy(x,y) = 0.

Για τη fx:

| fx(x,y)|=
∣∣∣∣ 2xy3

(x2 + y2)2

∣∣∣∣≤ 2
|x| |y|3

(x2 + y2)2 .

Θέτουμε r =
√

x2 + y2. Τότε |x| ≤ r, |y| ≤ r, άρα

| fx(x,y)| ≤ 2
r r3

r4 = 2r→ 0 όταν (x,y)→ (0,0).

Άρα lim
(x,y)→(0,0)

fx(x,y) = 0 = fx(0,0). Η fx είναι συνεχής στο (0,0).

Για τη fy:

| fy(x,y)|=
∣∣∣∣x2(x2− y2)

(x2 + y2)2

∣∣∣∣≤ x2(|x|2 + |y|2)
(x2 + y2)2 =

x2

x2 + y2 ≤ 1.

Για να βρούμε το όριο, εκφράζουμε ξανά σε πολικές συντεταγμένες: x = r cosθ , y = r sinθ :

fy =
r4 cos2 θ(cos2 θ − sin2 θ)

r4 = cos2 θ(cos2 θ − sin2 θ).

Το αποτέλεσμα δεν εξαρτάται από το r, άρα το όριο ως (x,y)→ (0,0) είναι cos2 θ(cos2 θ−
sin2 θ), που εξαρτάται από τη διεύθυνση. Όμως αυτό είναι λάθος για τη συνέχεια: το όριο δεν
τείνει στο μηδέν για όλες τις διευθύνσεις, οπότε πρέπει να επανελέγξουμε προσεκτικά.

Εξετάζουμε συγκεκριμένες πορείες:

- Αν y = 0: fy(x,0) =
x2 · x2

x4 = 1. - Αν x = 0: fy(0,y) = 0.

Άρα το όριο της fy(x,y) δεν υπάρχει στο (0,0).

Συμπέρασμα:
- Οι μερικές παράγωγοι fx(0,0) και fy(0,0) υπάρχουν. - Η fx είναι συνεχής στο (0,0). - Η

fy δεν είναι συνεχής στο (0,0).
Επομένως, η f δεν είναι διαφορίσιμη στο (0,0), παρόλο που οι μερικές παράγωγοι της υπάρχουν.

Παράδειγμα 2.10.10
Παράδειγμα συνάρτησης που οι μερικές παράγωγοι fx(0,0), fy(0,0) υπάρχουν αλλά δεν είναι

συνεχείς εκεί. Θεωρούμε τη συνάρτηση
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f (x,y) =


xy

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).
, .

Λύση.

Βήμα 1: Υπολογισμός μερικών παραγώγων στο (0,0):

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= 0, fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= 0.

Βήμα 2: Για (x,y) 6= (0,0) έχουμε

fx(x,y) =
y(y2− x2)

(x2 + y2)2 , fy(x,y) =
x(x2− y2)

(x2 + y2)2 .

Πράγματι, για να είναι η f διαφορίσιμη στο (0,0) απαιτείται, μεταξύ άλλων, οι μερικές παρά-
γωγοι να είναι συνεχείς εκεί. Δηλαδή πρέπει

lim
(x,y)→(0,0)

fx(x,y) = fx(0,0), lim
(x,y)→(0,0)

fy(x,y) = fy(0,0).

Εξετάζουμε το fx(x,y):
• Αν y = x, τότε fx(x,x) = 0.

• Αν y = 0, τότε fx(x,0) = 0.

• Αν x = 0, τότε fx(0,y) =
y3

y4 =
1
y
→ ∞.

Επομένως, το όριο lim
(x,y)→(0,0)

fx(x,y) δεν υπάρχει. Άρα η fx δεν είναι συνεχής στο (0,0).

Ανάλογα δείχνουμε ότι και η fy δεν είναι συνεχής στο (0,0).
Συμπερασματικά, αν και οι μερικές παράγωγοι fx(0,0), fy(0,0) υπάρχουν, δεν είναι συνε-

χείς εκεί. Άρα η f δεν είναι διαφορίσιμη στο (0,0).

Ορισμός 2.10.11 Έστω f : R2→R και z = f (x,y). Καλούμε γραμμικοποίηση της f (x,y) με
κέντρο το σημείο (a,b) την παράσταση

L(x,y) = f (a,b)+ fx(a,b)(x−a)+ fy(a,b)(y−b)

Θα αναφέρουμε την L(x,y) ως γραμμικοποίηση της f (x,y) με κέντρο το σημείο (a,b).
Αυτή μπορεί να χρησιμοποιηθεί για να προσεγγιστεί η συνάρτηση f (x,y) κοντά στο (a,b).

Θεώρημα 2.10.12 Διαφορισιμότητα και εφαπτόμενο επίπεδο Έστω ότι η συνάρτηση f (x,y)
ορίζεται σε έναν δίσκοD που περιέχει το (a,b) και ότι επιπλέον οι μερικές παράγωγοι fx(a,b)
και fy(a,b) υπάρχουν. Τότε:

• Η συνάρτηση f (x,y) είναι διαφορίσιμη στο (a,b) αν
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lim
(x,y)→(a,b)

f (x,y)−L(x,y)√
(x−a)2 +(y−b)2

= 0.

• Αν η f (x,y) είναι διαφορίσιμη στο (a,b), τότε το εφαπτόμενο επίπεδο στο γράφημα της
συνάρτησης και στο σημείο (a,b, f (a,b)) είναι το επίπεδο με εξίσωση z= L(x,y). Η αναλυτι-
κή εξίσωση του εφαπτόμενου επιπέδου είναι η

z = f (a,b)+ fx(a,b)(x−a)+ fy(a,b)(y−b)

Σχήμα 2.25 Το γράφημα της συνάρτησης μοιάζει ολοένα και περισσότερο με το εφαπτόμενο επίπεδο
στο σημείο P καθώς προχωράμε στην ολοένα και μεγαλύτερη μεγέθυνσή του.

Υπενθύμιση 2.10.13
Μια συνάρτηση f λέγεται ότι έχει συνεχείς μερικές παραγώγους στο σημείο (x0,y0) αν

υπάρχουν οι μερικές παράγωγοι σε μία περιοχή του (x0,y0) και είναι συνεχείς στο σημείο αυτό.
Αν ισχύει αυτό σε κάθε σημείο του πεδίου ορισμού της, τότε λέμε ότι η f ανήκει στην κλάση
C1 (C1(R2)). Δηλαδή:

f ∈C1(R2) ⇐⇒ f είναι παραγωγίσιμη και οι fx, fy είναι συνεχείς στο R2

Έτσι και γενικότερα: Μια συνάρτηση ανήκει στην κλάση Ck αν όλες οι μερικές παράγωγοι
μέχρι και τάξης k υπάρχουν και είναι συνεχείς.
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2.11 Διαφορικά και γραμμική προσέγγιση

Έστω ότι η συνάρτηση f είναι διαφορίσιμη στο (a,b)
και ότι επιπλέον dx = ∆x, dy = ∆y. Τότε το
διαφορικό d f ορίζεται ως:

d f = fx(x,y)dx+ fy(x,y)dy

Στο Σχήμα 2.26 φαίνεται ότι το διαφορικό d f
αντιπροσωπεύει τη μεταβολή στο ύψος του
εφαπτόμενου επιπέδου για δεδομένες μεταβολές
dx και dy των μεταβλητών x και y.
Αν με ∆ f συμβολίσουμε την πραγματική αλλαγή
της συνάρτησης f (x,y), τότε προκύπτει ότι ∆ f ≈
d f και έτσι καταλήγουμε στη διαφορική μορφή της
γραμμικής προσέγγισης:

∆ f ≈ d f = fx(x,y)dx+ fy(x,y)dy

Σχήμα 2.26 Η γραφική παράσταση της συνάρτησης

f (x,y) =
xy2

x2 + y2 .

Σχόλιο 2.11.1 Η ύπαρξη των μερικών παραγώγων δεν εγγυάται τη διαφορσιμότητα μιας συνά-
ρτησης. Η συνάρτηση

f (x,y) =


2xy(x+ y)

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0),

δείχνει μια τέτοια περίπτωση. Πράγματι, έχουμε fx(0,0) = 0 και fy(0,0) = 0. Αυτό σημαίνει
ότι το επίπεδο που ορίζεται από τις μερικές παραγώγους είναι το επίπεδο xy. Όμως, το γράφημα
της f κοντά στην αρχή των αξόνων αποτελείται από ευθείες που διέρχονται από την αρχή, οι
οποίες δεν ανήκουν όλες στο επίπεδο xy. Καθώς μεγεθύνουμε την περιοχή γύρω από (0,0),
οι ευθείες αυτές συνεχίζουν να σχηματίζουν γωνίες με το επίπεδο xy και έτσι το γράφημα δεν
τείνει να γίνει επίπεδο. Επομένως, η f (x,y) δεν είναι διαφορίσιμη στο (0,0) και δεν υπάρχει
εφαπτόμενο επίπεδο εκεί.
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(a) Το οριζόντιο ίχνος στο z = 0
περιλαμβάνει τους άξονες x και y

(b) Το οριζόντιο ίχνος στο z = 0 περιλαμβάνει τους άξονες x και y. Αλλά η
γραφική παράσταση περιέχει επίσης μη οριζόντιες ευθείες που διέρχονται

από την αρχή των αξόνων. Επομένως, η γραφική παράσταση δεν
εμφανίζεται πιο επίπεδη καθώς μεγεθύνουμε στην αρχή των αξόνων.

Σχήμα 2.27 Η συνάρτηση f (x,y) δεν είναι διαφορίσιμη στο σημείο (0,0).

f (x,y) =


2xy(x+ y)

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).

1) Μερικές παράγωγοι στο (0,0)

f (x,0) = 0⇒ fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= 0, f (0,y) = 0⇒ fy(0,0) = 0.

2) Συνέχεια στο (0,0)

Θέτουμε r =
√

x2 + y2. Ισχύει |xy| ≤ x2 + y2

2
, άρα

|2xy(x+ y)| ≤ (x2 + y2)(|x|+ |y|)≤
√

2(x2 + y2)3/2 =
√

2r3.

Οπότε

| f (x,y)|=
∣∣∣∣2xy(x+ y)

x2 + y2

∣∣∣∣≤√2r→ 0

καθώς (x,y)→ (0,0). Επομένως η f είναι συνεχής στο (0,0).

3) Μη διαφορισιμότητα στο (0,0)
Αν η f ήταν διαφορίσιμη στο (0,0), θα είχαμε

d f (0,0) = fx(0,0)dx+ fy(0,0)dy = 0,

και επομένως

lim
(x,y)→(0,0)

f (x,y)− f (0,0)√
x2 + y2

= 0.

Ελέγχουμε κατά μήκος της ευθείας y = x:
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f (x,x) =
2x · x(x+ x)

x2 + x2 =
4x3

2x2 = 2x,
√

x2 + y2 =
√

2 |x|.

Άρα

| f (x,x)|√
x2 + y2

=
|2x|√
2 |x|

=
√

2 6→ 0.

Η αναγκαία συνθήκη αποτυγχάνει, συνεπώς η f δεν είναι διαφορίσιμη στο (0,0).
Συμπέρασμα: Η f είναι συνεχής και έχει μερικές παραγώγους στο (0,0), όμως δεν είναι

διαφορίσιμη. Η ύπαρξη των μερικών παραγώγων δεν εγγυάται τη διαφορισιμότητα.

Ασκήσεις 2.11.2
Εξετάστε αν η συνάρτηση f με

f (x,y) =


xy√

x2 + y2
, (x,y) 6= (0,0)

0, (x,y) = (0,0)

είναι διαφορίσιμη στο (0,0).

Λύση.Από (Μ.σ.2.5) πρέπει να βρούμε τα d f ,∆ f στο (0,0).

∂ f
∂x

(0,0) = lim
x→0

f (x,0)− f (0,0)
x−0

= 0

∂ f
∂y

(0,0) = lim
y→0

f (0,y)− f (0,0)
y−0

= 0

Άρα

d f = 0h+0k = 0

Επίσης,

∆ f = f (0+h,0+ k)− f (0,0) =
hk√

h2 + k2

Συνεπώς,

∆ f −d f√
h2 + k2

=
hk

h2 + k2

Πλησιάζουμε το (0,0) με πολικές συντεταγμένες h = r cosθ , k = r sinθ με r→ 0 και θ ∈
[0,2π), οπότε έχουμε

lim
r→0

∆ f −d f√
h2 + k2

= lim
r→0

r2 cosθ sinθ
r2 = cosθ sinθ

Το όριο για r→ 0 δεν υπάρχει διότι είναι εξαρτώμενο του θ . Συνεπώς δεν είναι διαφορίσιμη στο
(0,0), αν και είναι συνεχής.
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Λυμένες ασκήσεις 2.11.3
Έστω η συνάρτηση

f (x,y) =


x3 +2y3

x2 + y2 , (x,y) 6= (0,0)

0, (x,y) = (0,0)

Να βρεθούν οι μερικές παράγωγοι fx(0,0), fy(0,0) και να εξεταστεί αν είναι συνεχείς στο
(0,0).

Υπολογισμός μερικών παραγώγων στο (0,0):

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

h3

h2 −0

h
= lim

h→0

h
h
= 1

fy(0,0) = lim
h→0

f (0,h)− f (0,0)
h

= lim
h→0

2h3

h2 −0

h
= lim

h→0

2h
h

= 2

Αναλυτικός έλεγχος συνέχειας για fx:
Υπολογίζουμε τη μερική παράγωγο:

fx(x,y) = ∂
∂x

(
x3 +2y3

x2 + y2

)
=

3x2(x2 + y2)−2x(x3 +2y3)

(x2 + y2)2

Περνάμε σε πολικές συντεταγμένες:

x = r cosθ , y = r sinθ

fx(r cosθ ,r sinθ) =
3(r cosθ)2 · r2−2r cosθ · [r3 cos3 θ +2r3 sin3 θ ]

r4

Υπολογίζοντας τους όρους:

3(r cosθ)2 · r2 = 3r4 cos2 θ

2r cosθ · [r3 cos3 θ +2r3 sin3 θ ] = 2r4 cos4 θ +4r4 cosθ sin3 θ

Άρα:

fx(r cosθ ,r sinθ) =
3r4 cos2 θ +3r4 cos2 θ sin2 θ −2r4 cos4 θ −4r4 cosθ sin3 θ

r4

Απλοποιείται ως:

= cos4 θ +3cos2 θ sin2 θ −4cosθ sin3 θ

Παίρνουμε το όριο:
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lim
(r,θ)→(0,0)

fx(r cosθ ,r sinθ) = lim
(r,θ)→(0,0)

cos4 θ +3cos2 θ sin2 θ −4cosθ sin3 θ = 1

και επειδή fx(0,0) = 1 έχουμε ότι η fx είναι συνεχής στο (0,0).

Ομοίως ισχύει για την fy

fy(x,y) =
6y2(x2 + y2)−2y(x3 +2y3)

(x2 + y2)2

Περνάμε πάλι σε πολικές συντεταγμένες, εκτελούμε αναλυτικούς υπολογισμούς και βρίσκουμε
ότι το όριο είναι παντού ίσο με 2 όπως η τιμή στο σημείο (0,0).

Συμπέρασμα:

fx(0,0) = 1, fy(0,0) = 2

και οι μερικές παράγωγοι είναι συνεχείς στο (0,0).

Θεώρημα 2.11.4 Αν η συνάρτηση f : R2→ R είναι διαφορίσιμη σε ένα σημείο (a,b), τότε
στο ίδιο σημείο υπάρχουν οι μερικές παράγωγοι fx(a,b) και fy(a,b).

Λύση. Εφόσον η f είναι διαφορίσιμη στο (a,b), υπάρχει γραμμικός μετασχηματισμός L : R2→
R τέτοιος ώστε

lim
(h,k)→(0,0)

| f (a+h,b+ k)− f (a,b)−L(h,k)|√
h2 + k2

= 0.

Ο γραμμικός αυτός μετασχηματισμός γράφεται ως

L(h,k) = Ah+Bk,

όπου A,B ∈ R.
Θα δείξουμε ότι A = fx(a,b) και B = fy(a,b).
Πράγματι, για h 6= 0 και k = 0 έχουμε:

f (a+h,b)− f (a,b) = Ah+R(h,0), όπου
|R(h,0)|
|h|

−−→
h→0

0.

Διαίρεση με h δίνει:

f (a+h,b)− f (a,b)
h

= A+
R(h,0)

h
,

και λαμβάνοντας όριο όταν h→ 0 προκύπτει

fx(a,b) = lim
h→0

f (a+h,b)− f (a,b)
h

= A.

Ανάλογα, θέτοντας h = 0 και k 6= 0:

f (a,b+ k)− f (a,b) = Bk+R(0,k), με
|R(0,k)|
|k|

−−→
k→0

0,
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οπότε

fy(a,b) = lim
k→0

f (a,b+ k)− f (a,b)
k

= B.

Άρα οι μερικές παράγωγοι fx(a,b) και fy(a,b) υπάρχουν και ισούνται με τους συντελεστές
του γραμμικού μέρους L(h,k) της διαφορικής.

Σχόλιο 2.11.5 Η διαφορισιμότητα συνεπάγεται ύπαρξη των μερικών παραγώγων στο σημείο,
αλλά όχι τη συνέχειά τους.

Παράδειγμα 2.11.6
Η διαφορισιμότητα δεν συνεπάγεται τη συνέχειά των μερικών παραγώγων Εξετάστε αν η

συνάρτηση

f (x,y) =

(x2 + y2)sin
( 1

x2 + y2

)
, (x,y) 6= (0,0),

0, (x,y) = (0,0)

είναι διαφορίσιμη στο (0,0) και αν οι μερικές παράγωγοι
∂ f
∂x

,
∂ f
∂y

είναι συνεχείς στο (0,0).

Τι συμπεραίνετε;

Λύση.
Βήμα 1: Συνέχεια στο (0,0). Για (x,y) 6= (0,0) θέτουμε r2 = x2 + y2, άρα

f (x,y) = r2 sin
( 1

r2

)
.

Εφόσον |sin(
1
r2 )| ≤ 1, προκύπτει

| f (x,y)| ≤ r2 −−→
r→0

0,

οπότε lim
(x,y)→(0,0)

f (x,y) = 0 = f (0,0) και η f είναι συνεχής στο (0,0).

Βήμα 2: Μερικές παράγωγοι στο (0,0). Υπολογίζουμε με τον ορισμό:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

h2 sin(
1
h2 )

h
= lim

h→0
hsin(

1
h2 ) = 0.

Ομοίως

fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

k sin(
1
k2 ) = 0.

Άρα fx(0,0) = fy(0,0) = 0.

Η συνάρτηση f είναι διαφορίσιμη. Πράγματι
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lim
(h,k)→(0,0)

f (0+h,0+ k)− f (0,0)− fx(0,0)h− fy(0,0)k√
h2 + k2

= lim
(h,k)→(0,0)

f (h,k)√
h2 + k2

= lim
(h,k)→(0,0)

(h2 + k2)sin
(

1
h2 + k2

)
√

h2 + k2

= lim
(h,k)→(0,0)

√
h2 + k2 · sin

(
1

h2 + k2

)
= 0

Βήμα 3: Μερικές παράγωγοι για (x,y) 6= (0,0). Χρησιμοποιούμε τον κανόνα γινομένου και
αλυσίδας:

fx(x,y) = 2xsin
( 1

x2 + y2

)
− (x2 + y2)cos

( 1
x2 + y2

) 2x
(x2 + y2)2 .

Απλοποιώντας:

fx(x,y) = 2x

sin
( 1

x2 + y2

)
−

cos
( 1

x2 + y2

)
x2 + y2

 .
Ανάλογα,

fy(x,y) = 2y

sin
( 1

x2 + y2

)
−

cos
( 1

x2 + y2

)
x2 + y2

 .
Βήμα 4: Συνέχεια των fx, fy στο (0,0). Εξετάζουμε το όριο του fx(x,y) στο (0,0).

Χρησιμοποιούμε ξανά r2 = x2 + y2, οπότε

| fx(x,y)|= 2|x|

∣∣∣∣∣∣∣sin
( 1

r2

)
−

cos
( 1

r2

)
r2

∣∣∣∣∣∣∣ .
Το δεύτερο σκέλος περιέχει

cos(1/r2)

r2 που δεν τείνει στο 0 καθώς r→ 0 (ταλαντώνεται απεριόριστα).
Ειδικά, αν πάρουμε κατά μήκος του άξονα y = 0:

fx(x,0) = 2x

sin(
1
x2 )−

cos(
1
x2 )

x2

 ,
και ο όρος −2xcos(1/x2)

x2 = −2cos(1/x2)

x
δεν έχει όριο. Άρα το fx δεν είναι συνεχές στο

(0,0) (αντίστοιχα και το fy).
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Συμπέρασμα: Η διαφορισιμότητα δεν συνεπάγεται τη συνέχεια των μερικών παραγώγων.

Θεώρημα 2.11.7 Έστω U ⊂ R2 ανοιχτό και f : U → R με τις μερικές παραγώγους fx, fy
ορισμένες σε μια γειτονιά του a ∈U και συνεχείς στο a. Τότε η f είναι διαφορίσιμη στο a.

Λύση.Γράφουμε, για (x,y) κοντά στο a = (a1,a2),

f (x,y)− f (a1,a2) =
[

f (x,y)− f (a1,y)
]
+
[

f (a1,y)− f (a1,a2)
]
.

Εφαρμόζοντας το θεώρημα μέσης τιμής μίας μεταβλητής στις συναρτήσεις u 7→ f (u,y) και v 7→
f (a1,v), υπάρχουν ξ μεταξύ a1 και x, και η μεταξύ a2 και y με

f (x,y)− f (a1,y) = fx(ξ ,y)(x−a1), f (a1,y)− f (a1,a2) = fy(a1,η)(y−a2).

Άρα

f (x,y)− f (a1,a2) = fx(a)(x−a1)+ fy(a)(y−a2)+R(x,y),

όπου

R(x,y) =
[

fx(ξ ,y)− fx(a)
]
(x−a1)+

[
fy(a1,η)− fy(a)

]
(y−a2).

Θέτουμε h = x− a1, k = y− a2. Από τη συνέχεια των fx, fy στο a, καθώς (h,k)→ (0,0)
έχουμε fx(ξ ,y)→ fx(a) και fy(a1,η)→ fy(a), οπότε

|R(a1 +h,a2 + k)|√
h2 + k2

≤

| fx(ξ ,a2 + k)− fx(a)|
|h|√

h2 + k2
+ | fy(a1,η)− fy(a)|

|k|√
h2 + k2

−−−−−−→
(h,k)→(0,0)

0.

Άρα

f (a1 +h,a2 + k) = f (a)+ fx(a)h+ fy(a)k+o
(√

h2 + k2
)
,

δηλαδή η f είναι διαφορίσιμη στο a με διαφορική D f (a)(h,k) = fx(a)h+ fy(a)k.

Σχόλιο 2.11.8Από το Θεώρημα 2.11.7 προκύπτει ότι αν οι fx, fy είναι συνεχείς σε έναU ⊆D f ,
τότε η f είναι διαφορίσιμη στοU . Το αντίστροφο δεν ισχύει, όπως έδειξε το αντιπαράδειγμα.

Ασκήσεις 2.11.9

1. Να δείξετε ότι η συνάρτηση

f (x,y) = x3y

είναι διαφορίσιμη σε κάθε σημείο (a,b).
Να βρείτε την γραμμική προσέγγιση της f (x,y) στο σημείο (1,2) και να την χρησιμο-
ποιήσετε για να προσεγγίσετε την τιμή f (1.01, 1.99).
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2. Να δείξετε ότι η συνάρτηση

f (x,y) =
√

x2 + y2

δεν είναι διαφορίσιμη στο σημείο (0,0).

3. Εξετάστε αν η συνάρτηση f με

f (x,y) =


xy√

x2 + y2
, (x,y) 6= (0,0),

0, (x,y) = (0,0)

είναι διαφορίσιμη στο (0,0).

4. Να δείξετε ότι η συνάρτηση

f (x,y) =


x2y2

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0)

είναι διαφορίσιμη στο (0,0).

5. Να δείξετε ότι η συνάρτηση

f (x,y) =


2x2y

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0)

δεν είναι διαφορίσιμη στο (0,0).

6. Αν η f είναι διαφορίσιμη συνάρτηση με τοπική γραμμικοποίηση

L(x,y) = f (a,b)+m(x−a)+n(y−b),

τότε m = fx(a,b) και n = fy(a,b).

7. Θεωρήστε τη συνάρτηση

f (x,y) = 3
√

xy.

Δείξτε ότι οι μερικές παράγωγοι της f υπάρχουν, αλλά η f δεν είναι διαφορίσιμη στο
(0,0).

8. Χρησιμοποιήστε τον ορισμό της διαφορισιμότητας για να αποδείξετε ότι αν μια συνάρτηση
f είναι διαφορίσιμη στο (a,b), τότε η f θα είναι και συνεχής στο (a,b).

9. Έστω η συνάρτηση

f (x,y) =


2xy(x+ y)

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).
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Στην άσκηση αυτή μπορείτε να αποδείξετε ότι αν και η g(x,y) είναι συνεχής στο (0,0)
και οι μερικές παράγωγοιgx(0,0) καιgy(0,0) υπάρχουν, η g(x,y) δεν είναι διαφορίσιμη
στο (0,0).
a) Να αποδείξετε, χρησιμοποιώντας πολικές συντεταγμένες, ότι η f (x,y) είναι συνεχής

στο (0,0).
b) Να χρησιμοποιήσετε τους ορισμούς με βάση το όριο για να δείξετε ότι οι fx(0,0)

και fy(0,0) υπάρχουν και είναι ίσες με το μηδέν.
c) Δείξτε ότι η γραμμικοποίηση της f (x,y) στο (0,0) είναι η L(x,y) = 0.
d) Δείξτε ότι αν η f (x,y) ήταν διαφορίσιμη στο (0,0), τότε θα έπρεπε να ισχύει ότι

lim
h→0

g(h,h)
h

= 0.

Στη συνέχεια, παρατηρήστε ότι κάτι τέτοιο δεν ισχύει καθώς f (h,h) = 2h. Αυτό
μας οδηγεί στο συμπέρασμα ότι η f (x,y) δεν είναι διαφορίσιμη στο (0,0).

10. Χρησιμοποιήστε τον ορισμό της διαφορσιμότητας για να αποδείξετε ότι αν μια συνάρτηση
f (x,y) είναι διαφορίσιμη στο (0,0) και ισχύει

f (0,0) = fx(0,0) = fy(0,0) = 0,

τότε

lim
(x,y)→(0,0)

f (x,y)√
x2 + y2

= 0.

→Μετάβαση στη Λύση της Άσκησης 2.11.9

1. Λύση.

Η f είναι πολυωνυμική ως προς x,y, άρα είναιC∞ στο R2 και ιδίως διαφορίσιμη σε κάθε
(a,b).
Οι μερικές παράγωγοι:

fx(x,y) = 3x2y, fy(x,y) = x3.

Στο (1,2):

f (1,2) = 2, fx(1,2) = 6, fy(1,2) = 1.

Η γραμμική προσέγγιση (εφαπτόμενο επίπεδο) είναι

L(1,2)(x,y) = f (1,2)+ fx(1,2)(x−1)+ fy(1,2)(y−2) = 2+6(x−1)+(y−2) =
6x+ y−6.

Άρα

f (1.01,1.99)≈ L(1,2)(1.01,1.99) = 6(1.01)+1.99−6 = 2.05.

Έλεγχος: Ηακριβής τιμή είναι f (1.01,1.99)= (1.01)3 ·1.99≈ 2.0503, οπότε το σφάλμα
της προσέγγισης είναι περίπου 3×10−4.

2. Λύση.
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Η συνάρτηση είναι προφανώς συνεχής παντού, και στο (0,0) συγκεκριμένα,

lim
(x,y)→(0,0)

f (x,y) = 0 = f (0,0).

Οι μερικές παράγωγοι στο (0,0) είναι:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

|h|
h
.

Το όριο αυτό είναι 1 αν h > 0 και−1 αν h < 0, άρα δεν υπάρχει. Ομοίως, η fy(0,0) δεν
υπάρχει για τον ίδιο λόγο (αν υπολογιστεί με k αντί h).
Άρα η f δεν έχει μερικές παραγώγους στο (0,0) και επομένως δεν μπορεί να είναι διαφορίσιμη
εκεί. Συμπέρασμα: Η συνάρτηση f (x,y) =

√
x2 + y2 είναι συνεχής αλλά όχι διαφορίσιμη

στο σημείο (0,0).

3. (a) Συνέχεια στο (0,0). Για (x,y) 6= (0,0) θέτουμε r2 = x2 + y2. Τότε

| f (x,y)|=
∣∣∣∣2xy(x+ y)

x2 + y2

∣∣∣∣≤ 2|x+ y| |xy|
x2 + y2 ≤ 2|x+ y|.

Επειδή |x+ y| ≤
√

2(x2 + y2) =
√

2r, έχουμε

| f (x,y)| ≤ 2
√

2r −−→
r→0

0.

Άρα lim
(x,y)→(0,0)

f (x,y) = 0 = f (0,0), επομένως η f είναι συνεχής στο (0,0).

(b) Μερικές παράγωγοι στο (0,0). Με τον ορισμό:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0.

Ομοίως,

fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

0−0
k

= 0.

Άρα fx(0,0) = fy(0,0) = 0.
(c) Γραμμικοποίηση. Η γραμμικοποίηση της f στο (0,0) είναι

L(x,y) = f (0,0)+ fx(0,0)x+ fy(0,0)y = 0.

(d) Έλεγχος διαφορισιμότητας. Αν η f ήταν διαφορίσιμη στο (0,0), τότε θα ίσχυε

lim
(x,y)→(0,0)

f (x,y)−L(x,y)√
x2 + y2

= 0.

Θεωρούμε την ευθεία y = x. Τότε

f (x,x) =
2x · x(2x)
x2 + x2 =

4x3

2x2 = 2x.
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Άρα

f (x,x)√
x2 + x2

=
2x√
2|x|

=
√

2 sgn(x),

που δεν τείνει στο 0 όταν x→ 0.
Επομένως, η f δεν είναι διαφορίσιμη στο (0,0), παρότι είναι συνεχής και έχει μηδενικές
μερικές παραγώγους στο σημείο αυτό.

Συμπέρασμα: Η f είναι συνεχής στο (0,0), οι μερικές παράγωγοι υπάρχουν και είναι 0,
όμως η συνάρτηση δεν είναι διαφορίσιμη στο (0,0).

4. Έστω ότι η συνάρτηση f (x,y) είναι διαφορίσιμη στο (0,0) και ισχύει

f (0,0) = fx(0,0) = fy(0,0) = 0.

Από τον ορισμό της διαφορισιμότητας έχουμε ότι η συνάρτηση f (x,y) είναι διαφορίσιμη
στο (0,0) αν

lim
(x,y)→(0,0)

f (x,y)−L(0,0)√
(x−0)2 +(y−0)2

= 0.

Επειδή L(0,0) = fx(0,0)x+ fy(0,0)y = 0, θα έχουμε

lim
(x,y)→(0,0)

f (x,y)√
x2 + y2

= 0.

2.12 Βελτιστοποίηση στον Λογισμό πολλών μεταβλητών

Θυμηθείτε, καταρχάς, ότι η βελτιστοποίηση είναι
η διαδικασία της εύρεσης των ακρότατων τιμών
μιας συνάρτησης. Αυτό ισοδυναμεί με την εύρεση
των μεγίστων και ελαχίστων τιμών στο γράφημα
της συνάρτησης και στο δεδομένο κάθε φορά
πεδίο ορισμού. Όπως διαπιστώσαμε από την περί-
πτωση των συναρτήσεων μίας μεταβλητής, είναι
σημαντικό να διαχωρίσουμε μεταξύ τοπικών και
ολικών ακρότατων τιμών.
Μια τοπικά ακρότατη τιμή είναι μια τιμή f (a,b) που
είναι μέγιστη ή ελάχιστη σε κάποιον μικρό ανοικτό
δίσκο γύρω από το (a,b) (βλ. Σχήμα 2.28). Σχήμα 2.28 Η συνάρτηση f (x,y) έχει ένα τοπικό

μέγιστο στο P.

Ορισμός 2.12.1 Τοπικά ακρότατες τιμές Μια συνάρτηση f (x,y) έχει τοπικό ακρότατο στο
P = (a,b) αν υπάρχει ένας ανοικτός δίσκος D(P,r) τέτοιος ώστε

•• Τοπικό μέγιστο: f (x,y)≤ f (a,b) για όλα τα (x,y) ∈ D(P,r).
• Τοπικό ελάχιστο: f (x,y)≥ f (a,b) για όλα τα (x,y) ∈ D(P,r).

Σύμφωνα με το θεώρημα του Fermat για τις συναρτήσεις μίας μεταβλητής, αν η τιμή f (a) είναι
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ένα τοπικό ακρότατο, τότε το a είναι ένα κρίσιμο σημείο, γεγονός που σημαίνει ότι η εφαπτόμενη
ευθεία (αν υπάρχει) είναι οριζόντια στο x = a. Ένα παρόμοιο αποτέλεσμα ισχύει για τις συναρτή-
σεις με δύο μεταβλητές, αλλά σε αυτή την περίπτωση είναι το εφαπτόμενο επίπεδο αυτό που πρέπει
να είναι οριζόντιο, όπως φαίνεται στο Σχήμα 2.29.
Το εφαπτόμενο επίπεδο της επιφάνειας z = f (x,y) στο P = (a,b) έχει εξίσωση

z = f (a,b)+ fx(a,b)(x−a)+ fy(a,b)(y−b).

Συνεπώς, το εφαπτόμενο επίπεδο είναι οριζόντιο αν fx(a,b)= fy(a,b)= 0, δηλαδή αν η εξίσωση
ανάγεται στην z = f (a,b). Η συνθήκη αυτή μας οδηγεί στον ακόλουθο ορισμό για ένα κρίσιμο
σημείο, όπου λάβαμε υπόψη μας την πιθανότητα να μην υπάρχουν είτε η μία είτε και οι δύο
μερικές παράγωγοι.

Σχήμα 2.29 Το γράφημα της συνάρτησης μοιάζει ολοένα και περισσότερο με το εφαπτόμενο επίπεδο στο σημείο P καθώς
προχωράμε στην ολοένα και μεγαλύτερη μεγέθυνσή του.

Ορισμός 2.12.2 Κρίσιμο σημείο Ένα σημείο P = (a,b) στο πεδίο ορισμού της συνάρτησης
f (x,y) ονομάζεται κρίσιμο αν:

fx(a,b) = 0 ή fx(a,b) δεν υπάρχει και

•• fy(a,b) = 0 ή fy(a,b) δεν υπάρχει.

Θεώρημα 2.12.3 Θεώρημα Fermat Αν η συνάρτηση f (x,y) έχει τοπικό μέγιστο ή ελάχιστο
στο P = (a,b), τότε το (a,b) είναι κρίσιμο σημείο της συνάρτησης f (x,y).

Γνωρίζουμε ότι μια συνάρτηση f με μία μεταβλητή μπορεί να έχει ένα σημείο καμπής αντί για ένα
τοπικό ακρότατο σε ένα κρίσιμο σημείο. Ένα παρόμοιο φαινόμενο εμφανίζεται και στον Λογισμό
πολλών μεταβλητών. Για καθεμία από τις συναρτήσεις του Σχήματος 2.30, το (0,0) είναι κρίσιμο
σημείο. Όμως, η συνάρτηση του Σχήματος 2.30c έχει ένα σαγματικό σημείο, δηλαδή ένα κρίσιμο
σημείο, το οποίο δεν είναι ούτε τοπικό ελάχιστο ούτε τοπικό μέγιστο. Αν σταθείτε σε ένα τέτοιο
σημείο και ξεκινήσετε να περπατάτε, τότε αν κινηθείτε προς ορισμένες κατευθύνσεις όπως οι+ j
και − j θα «οδηγηθείτε» προς τα επάνω, ενώ αν ακολουθήσετε άλλες, όπως οι κατευθύνσεις +i
και−i, θα «οδηγηθείτε» προς τα κάτω.
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(a) Τοπικό μέγιστο (b) Τοπικό ελάχιστο (c) Σαγματικό σημείο

Σχήμα 2.30

Σημείωση 2.12.4Τετραγωνικές μορφές
Η μελέτη των τετραγωνικών μορφών, δηλαδή του αν ένας ακέραιος μπορεί να εκφραστεί ως
τιμή μιας τέτοιας μορφής, ξεκινά από πολύ παλιά. Ένα κλασικό παράδειγμα είναι το θεώρημα
του Fermat για το άθροισμα δύο τετραγώνων, που εξετάζει πότε ένας ακέραιος μπορεί να
γραφεί ως x2 + y2, με x,y ακεραίους. Το πρόβλημα αυτό σχετίζεται στενά με την εύρεση
των Πυθαγόρειων τριάδων. Ήδη από το 628, ο Ινδός μαθηματικός Brahmagupta μελέτησε
εξισώσεις της μορφής x2−ny2 = c, γνωστές σήμερα ως εξίσωση του Pell, και έδωσε μεθόδους
επίλυσής τους. Στην Ευρώπη, το πρόβλημα αυτό ασχολήθηκαν να μελετήσουν οι Brouncker,
Euler και Lagrange. Αργότερα, το 1801, ο Gauss δημοσίευσε το έργο Disquisitiones Arithmeti-
cae, όπου ανέπτυξε πλήρη θεωρία για τις δυαδικές τετραγωνικές μορφές πάνω στους ακεραίους.
Η θεωρία των τετραγωνικών μορφών εξαρτάται σε μεγάλο βαθμό από τη φύση των συντε-
λεστών: μπορεί να είναι πραγματικοί, μιγαδικοί, ρητοί ή ακέραιοι αριθμοί. Στη γραμμική
άλγεβρα και τη αναλυτική γεωμετρία, οι συντελεστές θεωρούνται συνήθως πραγματικοί ή μιγα-
δικοί, ενώ στη θεωρία αριθμών είναι στοιχεία ενός δακτυλίου ή ενός πεδίου.

Ας θεωρήσουμε δύο σημεία

A(x1,y1,z1) και B(x2,y2,z2)

του χώρου R3. Η Ευκλείδεια απόστασή τους είναι:

d =
√

(x1− x2)2 +(y1− y2)2 +(z1− z2)2

=
√

x2
1 + x2

2−2x1x2 + y2
1 + y2

2−2y1y2 + z2
1 + z2

2−2z1z2.

Η παράσταση

Q(A,B) = x2
1 + x2

2−2x1x2 + y2
1 + y2

2−2y1y2 + z2
1 + z2

2−2z1z2

είναι ουσιαστικά ένα πολυώνυμο, κάθε όρος του οποίου είναι δευτέρου βαθμού ως προς τις
μεταβλητές x1,y1,z1,x2,y2,z2. Κάθε παράσταση που μπορεί να γραφεί σε αυτή τη μορφή
ονομάζεται τετραγωνική μορφή.

Ορισμός Με τον όρο τετραγωνική μορφή (quadratic form) Q(x) n μεταβλητών x1,x2, . . . ,xn
εννοούμε κάθε έκφραση που μπορεί να γραφεί ως:

Q(x) = a11x2
1 +a22x2

2 + ...+annx2
n +2a12x1x2 +2a13x1x3 + · · ·+2a(n−1)nxn−1xn.
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Τετραγωνικές μορφές με Μήτρες

Q(x) =
n

∑
i=1

aiix2
i +∑

i< j
∑

j
ai jxix j,

ή

Q(x) =
n

∑
i=1

n

∑
j=1

ai jxix j,

όπου

x =


x1
x2
...

xn

 και ai j = a ji, i, j = 1,2, . . . ,n.

Μια τετραγωνική μορφή μπορεί να γραφεί συνοπτικά με τη βοήθεια μητρών. Για την τετραγωνική
μορφή (16) θεωρούμε τη συμμετρική μήτρα:

A =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann


Για τη μήτρα αυτή ισχύει ai j = a ji για i, j = 1,2, . . . ,n. Με τη βοήθεια της μήτρας A, η
τετραγωνική μορφή μπορεί να γραφεί ως:

Q(x) = ∑n
i=1 ∑n

j=1 ai jxix j = xT Ax.

Επειδή η τετραγωνική μορφή συνδέεται άμεσα με τη μήτρα A, συμβολίζεται συχνά και ως
QA(x).

Παράδειγμα 1 Για n = 2 και A =

(
4 2
2 −3

)
έχουμε την τετραγωνική μορφή

QA(x) = (x1,x2)

(
4 2
2 −3

)(
x1
x2

)
= 4x2

1−3x2
2 +4x1x2.
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Παράδειγμα 2 Η τετραγωνική μορφή

QA(x) = x2
1 +5x2

2 +6x1x2

γράφεται ως

QA(x) = (x1,x2)

(
1 3
3 5

)(
x1
x2

)
.

Θετικότητα και Αρνητικότητα Τετραγωνικής Μορφής

Ορισμός Έστω τετραγωνική μορφή QA(x) με x ∈ S, S⊆ Rn.

Η τετραγωνική αυτή μορφή λέγεται ότι είναι:
• Θετικά ορισμένη (positive definite) αν και μόνο αν QA(x)> 0 για κάθε x 6= 0.

• Θετικά ημιορισμένη (positive semidefinite) αν και μόνο αν QA(x)≥ 0 για κάθε x 6= 0.

• Αρνητικά ορισμένη (negative definite) αν και μόνο αν QA(x)< 0 για κάθε x 6= 0.

• Αρνητικά ημιορισμένη (negative semidefinite) αν και μόνο αν QA(x)≤ 0 για κάθε x 6= 0.

Ορισμός Η k-τάξης κύρια ελάσσων ορίζουσα, είναι η ορίζουσα της υπομήτρας Dk τάξης k, της
οποίας τα διαγώνια στοιχεία βρίσκονται επάνω στη διαγώνιο της A.

Για παράδειγμα, έστω μια τετραγωνική μήτρα τάξης 3×3:

A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)

Οι διαδοχικές κύριες ελάσσονες προκύπτουν καθώς κινούμαστε κατά μήκος της διαγωνίου
a11,a22,a33:

A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
⇒



D1 = a11,

D2 =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ,
D3 =

∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣ .
Κριτήριο Θετικότητας και Αρνητικότητας
(α) Η τετραγωνική μορφήQA(x) είναι θετικά ορισμένη αν και μόνο αν οι διαδοχικές κύριες

ελάσσονες ικανοποιούν

D1 > 0, D2 > 0, . . . , Dn > 0.

Δηλαδή, όλες οι διαδοχικές κύριες ελάσσονες είναι θετικές.
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(β) Η τετραγωνική μορφή QA(x) είναι αρνητικά ορισμένη αν και μόνο αν οι διαδοχικές
κύριες ελάσσονες εναλλάσσονται στο πρόσημο, αρχίζοντας από αρνητική:

D1 < 0, D2 > 0, . . . , (−1)nDn > 0.

Για μια συμμετρική μήτρα A, αν είναι θετικά ορισμένη, τότε

|A|= Dn > 0.

(γ) Η τετραγωνική μορφή QA(x) είναι θετικά ημιορισμένη αν και μόνο αν

D̄1 ≥ 0, D̄2 ≥ 0, . . . , D̄k ≥ 0,

δηλαδή αν και μόνο αν όλες οι κύριες ελάσσονες είναι μη αρνητικές.

(δ) Η τετραγωνική μορφή QA(x) είναι αρνητικά ημιορισμένη αν και μόνο αν

D̄1 ≤ 0, D̄2 ≥ 0, . . . , (−1)nD̄n ≥ 0.

Παράδειγμα 3

1. Η τετραγωνική μορφή

QA(x) = (x1,x2)

(
3 1
1 5

)(
x1
x2

)
= 3x2

1 + x2
2 +2x1x2

είναι θετικά ορισμένη γιατί

|A1|= 3 > 0, |A2|=
∣∣∣∣3 1
1 5

∣∣∣∣= 14 > 0.

2. Η τετραγωνική μορφή

QA(x) = (x1,x2)

(
−6 2
2 −3

)(
x1
x2

)
=−6x2

1−3x2
2 +4x1x2

είναι αρνητικά ορισμένη γιατί

|A1|=−6 < 0, |A2|=
∣∣∣∣−6 2

2 −3

∣∣∣∣= 14 > 0.

3. Η τετραγωνική μορφή

QA(x) = (x1,x2)

(
1 3
3 5

)(
x1

x2

)
= x2

1 +5x2
2 +6x1x2

δεν είναι ούτε θετικά ούτε αρνητικά ορισμένη γιατί

|A1|= 1 > 0, |A2|=
∣∣∣∣1 3
3 5

∣∣∣∣=−4 < 0.
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Διαφορικό δευτέρας τάξεως και τετραγωνική μορφή.

Υπόθεση: f ∈C2, fxy = fyx - Θεώρημα Clairaut. ’Εχουμε ότι dz = fx dx+ fy dy.

Παίρνουμε δεύτερο διαφορικό (χρησιμοποιούμε ότι d(dx) = d(dy) = 0 και τη γραμμικότητα
του d):

d2z = d(dz) = d( fx)dx+d( fy)dy.

Υπολογίζουμε τα d( fx) και d( fy):

d( fx) = fxx dx+ fxy dy, d( fy) = fyx dx+ fyy dy.

Άρα

d2z =
(

fxx dx+ fxy dy
)

dx+
(

fyx dx+ fyy dy
)

dy =

= fxx dx2 +( fxy + fyx)dxdy+ fyy dy2.

Επειδή f ∈C2, τότε fxy = fyx και επομένως

d2z = fxx dx2 +2 fxy dxdy+ fyy dy2 = (dx, dy)
(

fxx fxy

fyx fyy

)(
dx
dy

)
.

2.12.1 Από τον Λογισμό της Μίας στη Θεωρία των Πολλών Μεταβλητών

Ακριβώς όπως στον Λογισμό της μίας μεταβλητής, όπου η μελέτη των κρίσιμων σημείων μιας
συνάρτησης βασίζεται στα λεγόμενα κριτήρια της πρώτης και δεύτερης παραγώγου, έτσι και
στονΛογισμό πολλών μεταβλητών υπάρχουν ανάλογες συνθήκες που μας επιτρέπουν να καθορίσουμε
τη φύση ενός κρίσιμου σημείου - αν δηλαδή αντιστοιχεί σε τοπικό μέγιστο, τοπικό ελάχιστο ή
σημείο σαγματικού τύπου.

Στην περίπτωση μίας μεταβλητής, γνωρίζουμε ότι η εξίσωση

f ′(x) = 0

χαρακτηρίζει τα κρίσιμα σημεία, ενώ το πρόσημο της δεύτερης παραγώγου f ′′(x) καθορίζει το
είδος του ακροτάτου. Αν f ′′(x)> 0, τότε το σημείο είναι ελάχιστο, αν f ′′(x)< 0, μέγιστο, και
αν f ′′(x) = 0, το κριτήριο είναι αβέβαιο.

Στις συναρτήσεις δύο μεταβλητών f (x,y), η ίδια λογική επεκτείνεται, αλλά οι παράγωγοι δεν
αρκούν μόνες τους για να περιγράψουν τη γεωμετρική συμπεριφορά της επιφάνειας. Εδώ, τα
ολικά διαφορικά αποτελούν το κατάλληλο εργαλείο για να εκφράσουμε και να γενικεύσουμε τις
έννοιες του πρώτου και του δεύτερου κριτηρίου.

Η συνθήκη

dz = fx dx+ fy dy = 0

αντιστοιχεί στο γνωστό κριτήριο f ′(x) = 0 της μίας μεταβλητής: εκφράζει το γεγονός ότι, στο
κρίσιμο σημείο, το ολικό διαφορικό μηδενίζεται, δηλαδή η εφαπτομένη επιφάνεια είναι οριζόντια.
Επομένως για να υπάρξει κρίσιμο σημείο, απαιτείται το ολικό διαφορικό να μηδενίζεται ανεξάρτητα
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από τις κατευθύνσεις dx,dy. Αυτό σημαίνει ότι για να είναι ένα σημείο (a,b) κρίσιμο σημείο
πρέπει:

Κριτήριο Πρώτης Τάξεως για συναρτήσεις δύο μεταβλητών
fx(a,b) = fy(a,b) = 0.

Αντίστοιχα, το διαφορικό δευτέρας τάξεως

d2z = (dx, dy)

 fxx fxy

fyx fyy


x1

x2


γενικεύει τη δεύτερη παράγωγο f ′′(x). Η παραπάνω σχέση δείχνει ότι το δεύτερο διαφορικό είναι
τετραγωνική μορφή, της οποίας το πρόσημο καθορίζει τον τύπο του κρίσιμου σημείου, ακριβώς
όπως το πρόσημο της f ′′(x) στον μονοδιάστατο λογισμό. Έτσι, ενώ στον χώρο μίας μεταβλητής
η κυρτότητα ή κοίλανση της γραφικής παράστασης καθορίζεται από ένα απλό πρόσημο, στον
χώρο δύο μεταβλητών ο ρόλος αυτός αναλαμβάνεται από το σύμβολο του Hessian, δηλαδή τη
μήτρα των δευτέρων παραγώγων. Με αυτόν τον τρόπο, η μετάβαση από τον Λογισμό της μίας
μεταβλητής στον Λογισμό πολλών μεταβλητών δεν αποτελεί απλώς τεχνική γενίκευση, αλλά μια
θεμελιακή ενοποίηση. Οι έννοιες της παραγωγισιμότητας και της διαφορισιμότητας ταυτίζονται,
ενώ τα γνωστά κριτήρια του μονοδιάστατου λογισμού εκφράζονται πλέον μέσα από τα ολικά
διαφορικά. Η θεωρία αποκτά έτσι μια ενιαία γεωμετρική ερμηνεία, που ισχύει σε κάθε διάσταση
και επιτρέπει τον καθορισμό του είδους των κρίσιμων σημείων μέσω της συμπεριφοράς του
διαφορικού δευτέρας τάξεως. Με βάση τα παραπάνω, το κριτήριο δευτέρας τάξεως για συναρτή-
σεις δύο μεταβλητών σε ένα κρίσιμο σημείο (a,b) με την βοήθεια της Εισσιανής

H =

 fxx(a,b) fyx(a,b)

fyx(a,b) fyy(a,b)


διαμορφώνεται ως εξής:

Κριτήριο Δευτέρας Τάξεως για συναρτήσεις δύο μεταβλητών

Aν D(a,b) = detH =

∣∣∣∣∣∣∣
fxx(a,b) fxy(a,b)

fyx(a,b) fyy(a,b)

∣∣∣∣∣∣∣= fxx(a,b) fyy(a,b)− [ fxy(a,b)]2.

Τότε ισχύουν:

1. Αν D(a,b)> 0 και fxx(a,b)> 0⇒ το σημείο (a,b) είναι τοπικό ελάχιστο.

2. Αν D(a,b)> 0 και fxx(a,b)< 0⇒ το σημείο (a,b) είναι τοπικό μέγιστο.

3. Αν D(a,b)< 0⇒ το σημείο (a,b) είναι σαγματικό σημείο.

4. Αν D(a,b) = 0⇒ το κριτήριο είναι απροσδιόριστο.



91

Κεφάλαιο 3 Λογισμός πολλών μεταβλητών:
Θεωρία και Εφαρμογές

Σχόλιο 2.12.5 Σύμφωνα με το Θεώρημα Weierstrass, κάθε συνεχής συνάρτηση ορισμένη σε
κλειστό και φραγμένο σύνολο παίρνει τουλάχιστον μία μέγιστη και μία ελάχιστη τιμή. Επομέ-
νως, αν στο εσωτερικό του συνόλου δεν υπάρχουν κρίσιμα σημεία που να ικανοποιούν τις
συνθήκες πρώτης τάξης, τα ολικά ακρότατα της συνάρτησης θα εντοπίζονται αναγκαστικά σε
σημεία του συνόρου του πεδίου ορισμού.

Περίληψη 2.12.6

• Θα λέμε ότι το P = (a,b) είναι ένα κρίσιμο σημείο της συνάρτησης f (x,y) αν:

fx(a,b) = 0 ή fx(a,b) δεν υπάρχει, και fy(a,b) = 0 ή fy(a,b) δεν υπάρχει.

• Τα τοπικά μέγιστα και ελάχιστα μιας συνάρτησης f εμφανίζονται στα κρίσιμα σημεία.

• Η διακρίνουσα της f (x,y) στο P = (a,b) είναι η ποσότητα:

D(a,b) = fxx(a,b) fyy(a,b)−
(

fxy(a,b)
)2

• Κριτήριο δεύτερης μερικής παραγώγου: Αν τοP=(a,b) είναι κρίσιμο σημείο της f (x,y):
D(a,b)> 0, fxx(a,b)> 0 ⇒ f (a,b) τοπικό ελάχιστο,

D(a,b)> 0, fxx(a,b)< 0 ⇒ f (a,b) τοπικό μέγιστο,

D(a,b)< 0 ⇒ σαγματικό σημείο,

D(a,b) = 0 ⇒ το κριτήριο δεν αποφασίζει.

• Ένα σημείο P είναι εσωτερικό σημείο του χωρίου D αν το D περιέχει κάποιον ανοικτό
δίσκο D(P,r). Ένα σημείο P είναι συνοριακό αν κάθε D(P,r) περιέχει σημεία εντός
και εκτός του D. Το εσωτερικό του D είναι το σύνολο όλων των εσωτερικών σημείων,
ενώ το σύνορο το σύνολο όλων των συνοριακών σημείων. Ένα χωρίο είναι κλειστό αν
περιέχει και τα συνοριακά του σημεία και ανοικτό αν περιέχει μόνο τα εσωτερικά του.

• Ακρότατα τιμών σε κλειστά και φραγμένα σύνολα: Αν f είναι συνεχής και D κλειστό και
φραγμένο, τότε:

– Η f παίρνει ελάχιστη και μέγιστη τιμή στο D.

– Οι ακραίες τιμές εμφανίζονται είτε στα κρίσιμα σημεία του εσωτερικού του D, είτε
σε σημεία του συνόρου του D.

Για τον προσδιορισμό των ακρότατων τιμών: πρώτα εξετάζουμε τα κρίσιμα σημεία στο εσωτερικό
του D, έπειτα συγκρίνουμε με τις τιμές της f στα συνοριακά σημεία.

Ασκήσεις 2.12.7

1. Έστω το σημείοP=(a,b) ένα κρίσιμο σημείο της συνάρτησης f (x,y)= x2+y4−4xy.
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(α) Χρησιμοποιήστε τη συνθήκη fx(x,y) = 0 για να αποδείξετε ότι πρέπει να ισχύει η

σχέση a = 2b. Στη συνέχεια, βασιστείτε στη συνθήκη fy(x,y) = 0 για να αποδείξετε
ότι μπορεί να ισχύει

P = (0,0), (2
√

2,
√

2) ή (−2
√

2,−
√

2).
(β) Συμβουλευτείτε το Σχήμα 2.31 για να προσδιορίσετε τα τοπικά ελάχιστα καθώς και
τα σαγματικά σημεία για τη συνάρτηση f (x,y) και να προσδιορίσετε το ολικό ελάχιστό
της.

Σχήμα 2.31

2. Έστω η συνάρτηση

f (x,y) = y2x− yx2 + xy.

(a) Δείξτε ότι τα κρίσιμα σημεία (x,y) της συνάρτησης ικανοποιούν τις εξισώσεις

y
(
y−2x+1

)
= 0, x

(
2y− x+1

)
= 0.

(b) Δείξτε ότι η συνάρτηση f έχει τρία κρίσιμα σημεία στα οποία είτε x = 0 είτε y = 0
(είτε και x = 0 και y = 0) και ένα κρίσιμο σημείο στο οποίο και το x και το y είναι
διαφορετικά του μηδενός.

(c) Χρησιμοποιήστε το κριτήριο της δεύτερης μερικής παραγώγου για να αποφασίσετε
για το είδος του κρίσιμου σημείου (τοπικό μέγιστο, τοπικό ελάχιστο ή σαγματικό
σημείο).

3. Να προσδιορίσετε τα ολικά ακρότατα των παρακάτω συναρτήσεων στο χωρίο που δίνεται
σε κάθε περίπτωση.

(a) f (x,y) = x3−2y, 0≤ x≤ 1, 0≤ y≤ 1.

(b) f (x,y) = 5x−3y, y≥ x−2, y≥−x−2, y≤ 3.

(c) f (x,y) = x2 +2y2, 0≤ x≤ 1, 0≤ y≤ 1.

(d) f (x,y) = x3 + x2y+2y2, x,y≥ 0, x+ y≤ 1.

(e) f (x,y) = x2 + xy2 + y2, x,y≥ 0, x+ y≤ 1.

(f) f (x,y) = x3 + y3−3xy, 0≤ x≤ 1, 0≤ y≤ 1.

(g) f (x,y) = x2 + y2−2x−4y, x≥ 0, 0≤ y≤ 3, y≥ x.
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(h) f (x,y) = (4y2− x2)e−x2−y2
, x2 + y2 ≤ 2.

(i) f (x,y) = x2 +2xy2, x2 + y2 ≤ 1.

4. Βρείτε το σημείο του επιπέδου

z = x+ y+1

που βρίσκεται εγγύτερα στο P = (1,0,0).

5. Προσδιορίστε τα κρίσιμα σημεία των συναρτήσεων

f (x,y) = x2 +2y2−4y+6x, g(x,y) = x2−12xy+ y.

Στη συνέχεια, χρησιμοποιήστε το κριτήριο της δεύτερης μερικής παραγώγου για να απο-
φασίσετε αν έχετε τοπικό ελάχιστο, τοπικό μέγιστο ή σαγματικό σημείο σε καθένα από
τα κρίσιμα σημεία.
Τέλος, αντιστοιχίστε τις συναρτήσεις f (x,y) και g(x,y) με τα γραφήματα (α) και (β) του
Σχήματος 2.32.

Σχήμα 2.32

6. Προσδιορίστε τη μέγιστη τιμή της συνάρτησης

f (x,y) = x+ y− x2− y2− xy

στο τετράγωνο του Σχήματος 2.32 που ορίζεται από τις ανισώσεις 0≤ x≤ 2, 0≤ y≤ 2,
ακολουθώντας τα εξής βήματα:

a) Αρχικά προσδιορίστε το κρίσιμο σημείο της συνάρτησης f (x,y) μέσα στο τετρά-
γωνο και στη συνέχεια εκτιμήστε την τιμή της συνάρτησης f στο σημείο αυτό.

b) Στην κάτω πλευρά του τετραγώνου ισχύει ότι y = 0 και f (x,y) = x− x2. Υπολο-
γίστε τις ακρότατες τιμές της συνάρτησης f σε αυτή την πλευρά.

c) Προσδιορίστε τις ακρότατες τιμές της συνάρτησης f στις υπόλοιπες πλευρές του
τετραγώνου.

d) Βρείτε τώρα τη μέγιστη των τιμών που υπολογίσατε στα ερωτήματα α), β) και γ).
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Σχήμα 2.33 Οι τύποι της συνάρτησης f (x,y) = x+ y− x2− y2− xy στο σύνορο του τετραγώνου 0 ≤ x ≤
2, 0≤ y≤ 2

7. Έστω n σημεία (x1,y1), . . . ,(xn,yn). Η βέλτιστη ευθεία ελαχίστων τετραγώνων είναι
η γραμμική συνάρτηση

f (x) = mx+b

η οποία ελαχιστοποιεί το άθροισμα των τετραγώνων (βλ. Σχήμα 2.34):

E(m,b) = ∑n
j=1 (y j− f (x j))

2

Δείξτε ότι η ελάχιστη τιμή της ποσότητας E επιτυγχάνεται για τις τιμές των m και b που
ικανοποιούν τις εξισώσεις:

m
(

∑n
j=1 x j

)
+bn = ∑n

j=1 y j

m∑n
j=1 x2

j +b∑n
j=1 x j = ∑n

j=1 x jy j

Σχήμα 2.34 Η βέλτιστη ευθεία ελαχίστων τετραγώνων ελαχιστοποιεί το άθροισμα των τετραγώνων των κατακόρυφων
αποστάσεων μεταξύ των δεδομένων σημείων και της ευθείας.

f (x,y) = x3 + x2y+2y2, x,y≥ 0, x+ y≤ 1.
Βήμα 1. Υπολογίζουμε τις μερικές παραγώγους:

fx = 3x2 +2xy, fy = x2 +4y.
Βήμα 2. Εσωτερικά κρίσιμα σημεία:

fx = 0, fy = 0.
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Από το fy = x2 + 4y = 0 προκύπτει y = −x2

4
, που δεν ικανοποιεί y ≥ 0, άρα δεν υπάρχουν

εσωτερικά κρίσιμα σημεία.
Βήμα 3. Εξετάζουμε τα όρια της περιοχής.

(a) Στην πλευρά x = 0: f (0,y) = 2y2, με 0≤ y≤ 1.
f ′(y) = 4y = 0⇒ y = 0.

Άρα, f (0,0) = 0, f (0,1) = 2. Μέγιστο 2 στο (0,1).
(b) Στην πλευρά y = 0: f (x,0) = x3, με 0≤ x≤ 1.

f ′(x) = 3x2⇒ x = 0.
f (0,0) = 0, f (1,0) = 1. Μέγιστο 1 στο (1,0).

(c) Στην πλευρά x+ y = 1: θέτουμε y = 1− x, 0≤ x≤ 1.
f (x,1−x) = x3+x2(1−x)+2(1−x)2 = x2+2(1−2x+x2) = 3x2−4x+2.

f ′(x) = 6x−4 = 0⇒ x =
2
3
, y = 1− 2

3
=

1
3
.

f
(

2
3
,
1
3

)
= 3

(
4
9

)
−4
(

2
3

)
+2 =

4
3
− 8

3
+2 =

2
3
.

f (0,1) = 2, f (1,0) = 1.
Συμπέρασμα:

fmin = 0 στο (0,0), fmax = 2 στο (0,1).
Λύση.
2. Έστω

f (x,y) = y2x− yx2 + xy.

(a) Υπολογίζουμε τις πρώτες μερικές:

fx = y2−2yx+ y = y(y−2x+1), fy = 2xy− x2 + x = x(2y− x+1).

Τα κρίσιμα σημεία ικανοποιούν το σύστημα

y(y−2x+1) = 0, x(2y− x+1) = 0,

όπως ζητήθηκε.

(b) Επίλυση του συστήματος κατά περιπτώσεις.

(i) x = 0. Τότε y(y+1) = 0⇒ y = 0 ή y =−1.

(0,0), (0,−1).

(ii) y = 0. Τότε x(1− x) = 0⇒ x = 0 ή x = 1.

(0,0), (1,0).

(iii) x 6= 0, y 6= 0. Τότε

y−2x+1 = 0, 2y− x+1 = 0 =⇒
{

y = 2x−1,
2(2x−1)− x+1 = 0 =⇒ x =

1
3
, y =−1

3
.
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Άρα συνολικά τέσσερα κρίσιμα σημεία:

(0,0), (0,−1), (1,0),
(1

3
,−1

3

)
.

Τα τρία πρώτα έχουν είτε x = 0 είτε y = 0, ενώ το τέταρτο έχει και x και y διάφορα του
μηδενός.
(γ) Κριτήριο δεύτερης παραγώγου. Οι δεύτερες μερικές είναι

fxx =−2y, fyy = 2x, fxy = 2y−2x+1.

Η Εσσιανή είναι

H =

 fxx fxy

fyx fyy

 , και D = fxx fyy− f 2
xy =−4xy− (2y−2x+1)2.

Έλεγχος στα κρίσιμα σημεία:
1) Στο (0,0):

fxx = 0, fyy = 0, fxy = 1⇒ D =−1 < 0

⇒ σαγματικό.
2) Στο (0,−1):

fxx = 2, fyy = 0, fxy =−1⇒ D =−1 < 0

⇒ σαγματικό.
3) Στο (1,0):

fxx = 0, fyy = 2, fxy =−1⇒ D =−1 < 0

⇒ σαγματικό.

4) Στο
(1

3
,−1

3
)
:

fxx =
2
3
, fyy =

2
3
, fxy =−

1
3
⇒ D =

(2
3

)(2
3

)
−
(
− 1

3

)2
=

1
3
> 0,

και fxx =
2
3
> 0⇒ τοπικό ελάχιστο. Η τιμή του ελαχίστου:

f
(1

3
,−1

3

)
=
(1

9

)(1
3

)
−
(
− 1

3

)(1
9

)
+
(1

3

)(
− 1

3

)
=

2
27
− 3

27
=− 1

27
.

Συμπέρασμα: Τα (0,0), (0,−1), (1,0) είναι σαγματικά σημεία, ενώ στο
(1

3
,−1

3
)
η f

έχει τοπικό ελάχιστο με τιμή− 1
27

.

5. (i) Για f (x,y) = x2 +2y2−4y+6x.

fx = 2x+6, fy = 4y−4.

Κρίσιμα σημεία: fx = fy = 0⇒ x =−3, y = 1.
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Δεύτερες μερικές:

fxx = 2 > 0, fyy = 4 > 0, fxy = 0⇒ D = fxx fyy− f 2
xy = 8 > 0.

Άρα, επειδή fxx > 0, στο (−3,1) έχουμε τοπικό (και καθολικό) ελάχιστο με

f (−3,1) = (−3)2 +2 ·12−4 ·1+6(−3) =−11.

Εναλλακτικά, f = (x+3)2+2(y−1)2−11, σαφώς κυρτή (ελλειπτικό παραβολοειδές).

(ii) Για g(x,y) = x2−12xy+ y.

gx = 2x−12y, gy =−12x+1.

Κρίσιμο σημείο από gx = gy = 0:

−12x+1 = 0⇒ x =
1

12
, 2x−12y = 0⇒ y =

x
6
=

1
72

.

Δεύτερες μερικές:

gxx = 2, gyy = 0, gxy =−12⇒D = gxxgyy−g2
xy = 2 ·0− (−12)2 =−144 < 0.

Άρα στο
( 1

12
,

1
72
)
έχουμε σαγματικό σημείο (υπερβολικό παραβολοειδές).

Αντιστοίχιση με γραφήματα Σχ. 2.32:

• f (x,y): ελλειπτικό παραβολοειδές με ελάχιστο στο (−3,1)⇒ αντιστοιχεί στο (α).

• g(x,y): υπερβολικό παραβολοειδές (σαγματικό)⇒ αντιστοιχεί στο (β).

6. Η συνάρτηση είναι

f (x,y) = x+ y− x2− y2− xy,

και ορίζεται στο τετράγωνο 0≤ x≤ 2, 0≤ y≤ 2.
(a) Κρίσιμα σημεία στο εσωτερικό.
Υπολογίζουμε τις πρώτες μερικές:

fx = 1−2x− y, fy = 1−2y− x.

Θέτουμε fx = fy = 0:{
1−2x− y = 0
1−2y− x = 0 ⇒

{
y = 1−2x
1−2(1−2x)− x = 0 ⇒ −1+3x= 0⇒ x=

1
3
, y=

1
3
.

Το σημείο (
1
3
,
1
3
) ανήκει στο εσωτερικό του τετραγώνου.

Υπολογίζουμε

f
(1

3
,
1
3

)
=

1
3
+

1
3
−
(1

3

)2
−
(1

3

)2
−
(1

3

)2
=

2
3
− 1

3
=

1
3
.

(b) Στην πλευρά y = 0:
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f (x,0) = x− x2.

Η παράγωγος f ′(x) = 1− 2x = 0⇒ x =
1
2
. Άρα f (

1
2
,0) =

1
2
− 1

4
=

1
4
. Στα άκρα

x = 0,2: f (0,0) = 0, f (2,0) =−2.

(c) Πλευρές:

• x = 0: f (0,y) = y− y2,

f ′(y) = 1−2y = 0⇒ y =
1
2
, f (0,

1
2
) =

1
4
.

• x = 2: f (2,y) = 2+ y−4− y2−2y =−2− y2− y,

f ′(y) =−2y−1 = 0⇒ y =−1
2
(εκτός περιοχής).

Άρα στις άκρες y = 0,2:

f (2,0) =−2, f (2,2) =−8.

• y = 2: f (x,2) = x+2− x2−4−2x =−2− x2− x,

f ′(x) =−2x−1 = 0⇒ x =−1
2
(εκτός περιοχής),

οπότε f (0,2) =−2, f (2,2) =−8.

(d) Συνοψίζουμε τις τιμές:

• Εσωτερικό: f (
1
3
,
1
3
) =

1
3

• Πλευρές: μέγιστο=
1
4
στα (0,

1
2
) και (

1
2
,0)

• Άκρα: μικρότερες τιμές (−2,−8).

Συμπέρασμα: Η μέγιστη τιμή της f στο τετράγωνο είναι

fmax =
1
3

και προσεγγιστικά εμφανίζεται στο εσωτερικό σημείο (
1
3
,
1
3
).

7. Έστω n σημεία (x1,y1), . . . ,(xn,yn) και η γραμμική συνάρτηση

f (x) = mx+b.

Θέλουμε να προσδιορίσουμε τις τιμές τωνm,b που ελαχιστοποιούν το άθροισμα τετραγώνων
των σφαλμάτων:
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E(m,b) =
n

∑
j=1

(
y j− f (x j)

)2
=

n

∑
j=1

(
y j− (mx j +b)

)2
.

Για ελάχιστο, απαιτούμε οι μερικές παράγωγοι να μηδενίζονται:

∂E
∂m

= 0,
∂E
∂b

= 0.

Υπολογίζουμε:

∂E
∂m

=−2
n

∑
j=1

x j
(
y j− (mx j +b)

)
= 0,

∂E
∂b

=−2
n

∑
j=1

(
y j− (mx j +b)

)
= 0.

Διαιρούμε και τις δύο εξισώσεις με−2:
n

∑
j=1

x j(y j−mx j−b) = 0,

n

∑
j=1

(y j−mx j−b) = 0.

Αναπτύσσοντας:
n

∑
j=1

x jy j−m
n

∑
j=1

x2
j −b

n

∑
j=1

x j = 0,

n

∑
j=1

y j−m
n

∑
j=1

x j−bn = 0.

Επαναγράφοντας το σύστημα με τα m,b ως αγνώστους:
m

n

∑
j=1

x j +bn =
n

∑
j=1

y j,

m
n

∑
j=1

x2
j +b

n

∑
j=1

x j =
n

∑
j=1

x jy j.

Αυτό είναι το σύστημα ελαχίστων τετραγώνων, το οποίο δίνει τις βέλτιστες τιμές των m και
b.
Λύνοντας για m,b:

m =
n∑x jy j−∑x j ∑y j

n∑x2
j − (∑x j)

2 , b =
∑y j−m∑x j

n
.

Έτσι η ευθεία ελαχίστων τετραγώνων είναι
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f (x) = mx+b,

όπου m,b δίνονται από τους παραπάνω τύπους.

2.13 Πολλαπλασιαστές Lagrange: Βελτιστοποίηση υπό συνθήκη
Σε ορισμένα από τα προβλήματα βελτιστοποίησης
ζητείται ο προσδιορισμός των ακρότατων τιμών μιας
συνάρτησης f (x,y) η οποία υπόκειται σε κάποια
συνθήκη που μπορεί να εκφραστεί ως g(x,y) = 0.
αποθέστε ότι επιδιώκουμε να προσδιορίσουμε εκείνο
το σημείο της ευθείας 2x+3y= 6 το οποίο βρίσκεται
πλησιέστερα στην αρχή των αξόνων (βλ. Σχήμα 1). Η
απόσταση από το σημείο (x,y) μέχρι την αρχή των
αξόνων είναι

f (x,y) =
√

x2 + y2,

επομένως το πρόβλημα που έχουμε να επιλύσουμε
στη συγκεκριμένη περίπτωση μπορεί να διατυπωθεί
ως εξής:
Ελαχιστοποίηση της συνάρτησης

f (x,y) =
√

x2 + y2

Σχήμα 2.35 Εύρεση του ελαχίστου της συνάρτησης
f (x,y) =

√
x2 + y2 πάνω στην ευθεία 2x+3y = 6.

που υπόκειται στη συνθήκη g(x,y) = 2x+3y= 6. Δεν αναζητούμε, λοιπόν, γενικά την ελάχιστη
τιμή της f (x,y) (η οποία πολύ εύκολα άλλωστε προκύπτει ότι είναι η τιμή 0), αλλά την ελάχιστη
τιμή μεταξύ όλων των σημείων (x,y) που βρίσκονται στην ευθεία. Γενικά, στη βελτιστοποίηση
υπό συνθήκη δεν αναζητούμε τα ακρότατα (μέγιστα ή ελάχιστα) μιας συνάρτησης δύο μεταβλητών
f (x,y), σε όλο το επίπεδο, αλλά μόνο σε σημεία που ικανοποιούν μία επιπλέον συνθήκη, η οποία
μπορεί να γραφεί με τη μορφή εξίσωσης

g(x,y) = c.

2.14 Μέθοδος των πολλαπλασιαστών Lagrange
2.14.1 Κριτήριο Πρώτης Τάξεως
Ξεκινάμε με ένα θεώρημα που αποτελεί τη βάση της μεθόδου των πολλαπλασιαστών Lagrange.
Το θεώρημα αυτό μας δίνει τις αναγκαίες συνθήκες ώστε μια συνάρτηση f (x,y) να παρουσιάζει
τοπικό μέγιστο ή τοπικό ελάχιστο υπό έναν περιορισμό της μορφής g(x,y) = c.

Θεώρημα 2.14.1 Πολλαπλασιαστές Lagrange Έστω ότι οι f (x,y) και g(x,y) είναι διαφορίσι-
μες συναρτήσεις. Αν η f (x,y) έχει ένα τοπικό ελάχιστο ή τοπικό μέγιστο υπό τον περιορισμό

g(x,y) = c

στο σημείο P = (a,b) και εφόσον

(gx(a,b),gy(a,b)) 6= (0,0),

τότε υπάρχει κάποια βαθμωτή ποσότητα λ τέτοια ώστε να ισχύει το σύστημα:
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fx(a,b)−λgx(a,b) = 0,
fy(a,b)−λgy(a,b) = 0,
g(a,b) = c.

Με άλλα λόγια, το θεώρημα μάς λέει ότι η διαδικασία αναζήτησης ακροτάτων υπό περιορισμούς
μπορεί να περιγραφεί με τη μέθοδο των πολλαπλασιαστών Lagrange. Πιο αναλυτικά, έστω η
συνάρτηση z = f (x,y) και έστω ότι έχουμε το πρόβλημα

max f (x,y) υπό τον περιορισμό g(x,y) = c,

τότε εισάγουμε τον πολλαπλασιαστή Lagrange λ και ορίζουμε τη συνάρτηση

L(x,y,λ ) = f (x,y)+λ (c−g(x,y)).

Τα πιθανά ακρότατα της συνάρτησης f (x,y), υπό τον περιορισμό g(x,y) = c, προσδιορίζονται
από την επίλυση του συστήματος εξισώσεων που εκφράζει τις συνθήκες πρώτης τάξης βελτιστο-
ποίησης, γνωστές ως συνθήκες των πολλαπλασιαστών του Lagrange, και διατυπώνονται ως εξής:

Κριτήριο Πρώτης Τάξης

∂L
∂x

= 0,
∂L
∂y

= 0, g(x,y) = c..

2.14.2 Κριτήριο Δευτέρας Τάξεως

Για να διαπιστωθεί αν τα σημεία που προκύπτουν από το σύστημα είναι τοπικά μέγιστα, ελάχιστα
ή σαγματικά σημεία, εξετάζουμε την Εσσιανή της L(x,y,λ ) ως προς τις μεταβλητές x,y, δηλαδή
τον πίνακα

Κριτήριο Πρώτης Τάξης

det(H) =

∣∣∣∣∣∣∣
0 gx(x,y) gy(x,y)

gx(x,y) Lxx(x,y) Lxy(x,y)

gy(x,y) Lyx(x,y) Lyy(x,y)

∣∣∣∣∣∣∣
Η φύση του σημείου καθορίζεται από την οριστικότητα του πίνακα H:

• Αν ο πίνακας H είναι θετικά ορισμένος, τότε το σημείο είναι τοπικό ελάχιστο.

• Αν ο πίνακας H είναι αρνητικά ορισμένος, τότε το σημείο είναι τοπικό μέγιστο.

• Αν ο πίνακας H αλλάζει πρόσημο, τότε το σημείο είναι σαγματικό.

• Αν κάποια κύρια ορίζουσα μηδενίζεται, τότε το κριτήριο παραμένει απροσδιόριστο και
απαιτείται περαιτέρω μελέτη της συνάρτησης.

Με τον τρόπο αυτό, το Κριτήριο Δευτέρας Τάξεως δίνει ένα αποτελεσματικό εργαλείο για την
ταξινόμηση των κρίσιμων σημείων σε τοπικά μέγιστα, τοπικά ελάχιστα ή σαγματικά σημεία,
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στηριζόμενο στην ανάλυση του προσήμου των ιδιοτιμών ή ισοδύναμα στις συνθήκες των κυρίων
οριζουσών.

Σημείωση 2.14.2 Συνθήκες αριστοποίησης υπό περιορισμούς Εδώ θα εξετάσουμε πώς προ-
κύπτουν τα κριτήρια πρώτης και δεύτερης τάξεως για την αριστοποίηση συναρτήσεων όταν
υπάρχουν περιορισμοί. Ας ξεκινήσουμε με τα κριτήρια πρώτης τάξης. Έστω η συνάρτηση z =
f (x,y), την οποία επιθυμούμε να αριστοποιήσουμε υπό τον περιορισμό g(x,y) = c. Γνωρίζου-
με ότι, ανεξάρτητα αν οι μεταβλητές x και y είναι εξαρτημένες ή ανεξάρτητες μεταξύ τους,
ισχύει:

dz = fx dx+ fy dy

Ενώ αν πάρουμε το ολικό διαφορικό του περιορισμού έχουμε:

dg = gx dx+gy dy = 0

Λύνοντας το γραμμικό σύστημα πρώτου βαθμού με αγνώστους τα dx και dy έχουμε:

dz = fx dx−gx
fy

gy
dx =

(
fx−gx

fy

gy

)
dx = 0.

Για να είναι dz = 0, επειδή dx 6= 0, συνεπάγεται ότι:

fx−gx
fy

gy
= 0,

ή ισοδύναμα,

fx

gx
=

fy

gy
.

Η εξίσωση αυτή δείχνει ότι οι παραγώγοι της f ως προς κάθε μεταβλητή είναι ανάλογοι με τις
παραγώγους της g. Δηλαδή, υπάρχει κάποιος αριθμός λ ώστε:

fx =−λgx, fy =−λgy

Λύνοντας τις εξισώσεις ως προς x, y και λ , βρίσκουμε τα ακρότατα της συνάρτησης. Το
ερώτημα που τίθεται είναι αν υπάρχει κάποιος τρόπος που να μας οδηγεί στο παραπάνω σύστημα
εξισώσεων. Η απάντηση είναι καταφατική· η εξίσωση που μας δίνει την παραπάνω λύση είναι
η εξίσωση του Lagrange, που γράφεται:

L = f (x,y)+λ (c−g(x,y)).

Τα ακρότατα της f υπό τον περιορισμό g(x,y)= c προκύπτουν από την επίλυση του συστήματος
Κριτήριο Πρώτης Τάξης

∂L
∂x

= 0,
∂L
∂y

= 0, g(x,y) = c.

Όμοια, για να εξετάσουμε το κριτήριο δεύτερης τάξης στα δεσμευμένα ακρότατα, παρατηρούμε
ότι - όπως ακριβώς συμβαίνει και με τα ελεύθερα ακρότατα - το διαφορικό δεύτερης τάξης
πρέπει να ικανοποιεί τις ίδιες συνθήκες προσήμου: να είναι θετικά ορισμένο, δηλαδή d2z > 0,



103

Κεφάλαιο 3 Λογισμός πολλών μεταβλητών:
Θεωρία και Εφαρμογές

στην περίπτωση τοπικού ελαχίστου, και αρνητικά ορισμένο, δηλαδή d2z < 0, στην περίπτωση
τοπικού μεγίστου. Έτσι λοιπόν από

dz = fx dx+ fy dy

έχουμε:

d2z = fx d2x+ fxx dx2 +2 fxy dxdy+ fyy dy2

και

d2g = gx d2x+gxx dx2 +2gxy dxdy+gyy dy2 = 0

Συνεχίζοντας έχουμε

gxd2z− fxd2g =
gx( fxd2x+ fxxdx2 +2 fxydxdy+ fyydy2)− fx(gxd2x+gxxdx2 +2gxydxdy+gyydy2)

= (gx fxx− fxgxx)dx2 +(gx fyy− fxgyy)dy2 +2(gx fxy− fxgxy)dxdy

Διαιρούμε με gx, έχοντας υπόψη ότι d2g = 0, και καταλήγουμε:

d2z =
(

fxx−
fx

gx
gxx

)
dx2 +

(
fyy−

fx

gx
gyy

)
dy2 +2

(
fxy−

fx

gx
gxy

)
dxdy

Το δεξί μέλος της παραπάνω σχέσης αποτελεί μια τετραγωνική μορφή, και ανάλογα με το αν
είναι θετικά ή αρνητικά ορισμένη, έχουμε ελάχιστο ή μέγιστο αντίστοιχα.

d2z =
[
0 gx gy

] 0 gx gy

gx fxx−λgxx fxy−λgxy

gy fxy−λgxy fyy−λgyy

 0
dx
dy


ή

d2z =
[
0 dx dy

] 0 gx gy

gx Lxx Lxy

gy Lxy Lyy

 0
dx
dy


όπου L = f (x,y)+λ (c−g(x,y).

Αποδεικνύεται ότι η ορίζουσα
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Κριτήριο Δεύτερης Τάξης

H =

∣∣∣∣∣∣∣
0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣
είναι θετικά ορισμένη αν η H είναι μεγαλύτερη του μηδενός, και αρνητικά ορισμένη αν
η H είναι μικρότερη του μηδενός.

Ασκήσεις 2.14.3

1. Να εφαρμόσετε τη μέθοδο των πολλαπλασιαστών Lagrange για τη συνάρτηση

f (x,y) = (x2 +1)y

υπό τον περιορισμό

x2 + y2 = 5.

2. Στις επόμενες ασκήσεις να υπολογίσετε τις ελάχιστες και μέγιστες τιμές της συνάρτησης
που δίνεται σε κάθε περίπτωση, υπό τον δεδομένο περιορισμό.
a) f (x,y) = 2x+3y, x2 + y2 = 4

b) f (x,y) = x2 + y2, 2x+3y = 6

c) f (x,y) = 4x2 +9y2, xy = 4

d) f (x,y) = xy, 4x2 +9y2 = 32

e) f (x,y) = x2y+ x+ y, xy = 4

3. Προσδιορίστε το σημείο (a,b) του γραφήματος της συνάρτησης

y = ex

για το οποίο το γινόμενο ab γίνεται ελάχιστο.

4. Βρείτε το ορθογώνιο παραλληλεπίπεδο με τον μέγιστο όγκο αν το άθροισμα των ακμών
του είναι ίσο με 300cm.

5. Να αποδείξετε ότι η μέγιστη τιμή που παίρνει η συνάρτηση

f (x,y) = x2y3
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πάνω στον μοναδιαίο κύκλο είναι

6
25

√
3
5
.

6. Δείξτε ότι οι εξισώσεις Lagrange για τη συνάρτηση

f (x,y) = 2x+ y

που υπόκειται στον περιορισμό

g(x,y) = x2− y2−1 = 0

έχουν λύση, αλλά παρ’ όλα αυτά η συνάρτηση f δεν έχει μέγιστη ή ελάχιστη τιμή πάνω
στην καμπύλη της συνθήκης. Αντιφάσκει το συμπέρασμα αυτό με το Θεώρημα 1;

7. Το εμβαδόν της επιφάνειας ενός ορθού κυκλικού κώνου ακτίνας r και ύψους h δίνεται
από τη σχέση

S = πr
√

r2 +h2,

ενώ ο όγκος του είναι

V = 1
3πr2h.

(a) Προσδιορίστε τον λόγο h/r για εκείνον τον κώνο που έχει δεδομένη επιφάνεια S
και μέγιστο όγκοV .

(b) Ποια είναι η τιμή του λόγου h/r για τον κώνο με δεδομένο όγκο V και ελάχιστη
επιφάνεια S;

(c) Υπάρχει κώνος με δεδομένο όγκοV και μέγιστη επιφάνεια S;

8. Ο Αντώνης έχει $5.00 που μπορεί να διαθέσει για ένα γεύμα αποτελούμενο από χάμπουρ-
γκερ (με κόστος $1.50 το ένα) και τηγανητές πατάτες (με κόστος $1.00 η μερίδα). Η
ικανοποίηση που παίρνει ο Αντώνης από το φαγητό του όταν καταναλώσει x χάμπουρ-
γκερ και y μερίδες πατάτες μετριέται από τη συνάρτηση

U(x,y) =
√

xy.

Ποιες ποσότητες φαγητού από κάθε είδος θα πρέπει να καταναλώσει ώστε να μεγιστοποι-
ηθεί το αίσθημα της απόλαυσης που θα αισθανθεί; (Υποθέστε ότι μπορεί να αγοράσει και
κλασματικές ποσότητες από το κάθε είδος φαγητού.)

Λύση.
1. Έστω

f (x,y) = (x2 +1)y, g(x,y) = x2 + y2−5 = 0.

Εισάγουμε τον πολλαπλασιαστή Lagrange και ορίζουμε τη συνάρτηση

L(x,y,λ ) = f (x,y)+(c−g(x,y)) = (x2 +1)y+λ (5− x2− y2).

Υπολογίζουμε τις μερικές παραγώγους:
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Lx = 2xy−2λx, Ly = x2 +1−2λy, gx = 2x, gy = 2y.

Οι συνθήκες πρώτης τάξης είναι:
Lx(x,y) = 2xy−2λx = 0,

Ly(x,y) = x2 +1−2λy = 0,

x2 + y2 = 5.

Άρα το σύστημα γίνεται 
2xy = 2λx,

x2 +1 = 2λy,

x2 + y2 = 5.

Περίπτωση 1: x 6= 0.
Από την πρώτη εξίσωση έχουμε

2xy = 2xλ ⇒ y = λ .

Αντικαθιστούμε στη δεύτερη:

x2 +1 = 2y2⇒ x2 +1 = 2y2.

Από τον περιορισμό x2 + y2 = 5 προκύπτει

5− y2 +1 = 2y2⇒ 3y2 = 6⇒ y2 = 2⇒ y =±
√

2.

Τότε x2 = 5− y2 = 3⇒ x =±
√

3.
Άρα τα σημεία είναι:

(
√

3,
√

2), (−
√

3,
√

2), (
√

3,−
√

2), (−
√

3,−
√

2).

Δεύτερες συνθήκες (Lagrange).

’Εχουμε

Lxx = 2y−2λ , Lxy = Lyx = 2x, Lyy =−2λ .

Συνεπώς, από y = ;ambda έχουμε

H =

∣∣∣∣∣∣∣∣∣∣∣∣

0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 2x 2y

2x 2y−2λ 2x

2y 2x −2λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 24x2y.,

Εύκολα τώρα βρίσκουμε τα μέγιστα και τα ελάχιστα, για παράδειγμα για το σημείο (
√

3,
√

2)
έχουμε H = 144 > 0, άρα μέγιστο.

2. (α) ’Εχουμε f (x,y)= 2x+3y με περιορισμό x2+y2 = 4. Εισάγουμε τον πολλαπλασιαστή
Lagrange και ορίζουμε τη συνάρτηση
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L(x,y,) = f (x,y)+(c−g(x,y)) = 2x+3y+λ (4− x2− y2).

Συνεπώς,

Lx = 2−2λx, Ly = 3−2λy, Lxx =−2λ , Lxy = Lyx = 0, Lyy =−2λ .

Από τις συνθήκες πρώτης τάξης έχουμε

2−2λx = 0,

3−2λy = 0,

x2 + y2 = 4.

⇒



2 = 2λx ⇒ x =
1
λ
,

3 = 2λy ⇒ y =
3

2λ
,

x2 + y2 = 4.

Επομένως,

1
λ 2 +

9
4λ 2 = 4 ⇒ 13

4λ 2 = 4 ⇒ λ 2 =
13
16

.

Άρα

(x,y) =
(
± 4√

13
, ± 6√

13

)
.

Από τις συνθήκες δευτέρας τάξεως έχουμε

H =

∣∣∣∣∣∣∣∣∣∣∣∣

0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 2x 2y

2x 0 −2λ

2y −2λ 0

∣∣∣∣∣∣∣∣∣∣∣∣
=−16λxy.

Αφου βάλουμε τις αντίστοχες τιμές στην παραπάνω ορίζουσα με απλές πράξεις έχουμε:

fmax στο
( 4√

13
,

6√
13

)
, fmin στο

(
− 4√

13
,− 6√

13

)
.

(β) Έχουμε f (x,y)= x2+y2 με περιορισμό 2x+3y= 6. Εισάγουμε τον πολλαπλασιαστή
Lagrange και ορίζουμε τη συνάρτηση

L(x,y,) = f (x,y)+(c−g(x,y)) = x2 + y2 +λ (6−2x−3y).
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Συνεπώς,

Lx = 2x−2λ , Ly = 2y−3λ , Lxx = 2, Lxy = Lyx = 0, Lyy = 2.

Από τις συνθήκες πρώτης τάξης έχουμε

2x−2λ = 0,

2y−3λ = 0,

2x+3y = 6.

⇒



x = λ ,

y =
3
2

λ ,

x2 + y2 = 4.

Άρα

2λ +3 · 3
2

λ = 6 ⇒ 13
2

λ = 6 ⇒ λ =
12
13

.

Οπότε

(x,y) =
(12

13
,

18
13

)
.

Από τις συνθήκες δευτέρας τάξεως έχουμε

H =

∣∣∣∣∣∣∣∣∣∣∣∣

0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
0 2 3
2 2 0
3 0 2

∣∣∣∣∣∣∣=−26 < 0.

Επομένως η συνάρτηση παρουσιάζει ελάχιστο στο σημείο (x,y) =
(12

13
,

18
13

)
το οποίο

ειναι

fmin =
468√
169

.

5. Έχουμε

f (x,y) = x2y3, g(x,y) = x2 + y2−1 = 0.

Με τη μέθοδο των πολλαπλασιαστών Lagrange έχουμε την συνάρτηση

L(x,y,) = f (x,y)+(c−g(x,y)) = x2y3 +λ (1− x2− y2).
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Συνεπώς,

Lx = 2xy3−2λx, Ly = 3x2y2−2λy, Lxx = 2y3−2λ ,

Lxy = Lyx = 6xy2, Lyy = 6x2y−2λ .

Το σύστημα γίνεται 
2xy3 = 2λx,

3x2y2 = 2λy,

x2 + y2 = 1.

Περίπτωση 1: x 6= 0, y 6= 0.
Από την πρώτη εξίσωση:

2xy3 = 2xλ ⇒ λ = y3.

Από τη δεύτερη:

3x2y2 = 2yλ = 2y4⇒ 3x2y2 = 2y4⇒ 3x2 = 2y2⇒ x2 =
2
3

y2.

Από τον περιορισμό x2 + y2 = 1 έχουμε

2
3

y2 + y2 = 1⇒ 5
3

y2 = 1⇒ y2 =
3
5
.

Άρα

x2 =
2
5
, y =±

√
3
5
, x =±

√
2
5
.

Από τις συνθήκες δευτέρας τάξεως έχουμε

H =

∣∣∣∣∣∣∣∣∣∣∣∣

0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣∣
Οι συνδυασμοί σημείων είναι

(±
√

2
5
, ±
√

3
5
).
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Εύκολα επίσης αποδεικνύεται ότι στο σημείο (

√
2
5
,

√
3
5
) έχουμε H > 0 και άρα μέγιστο.

Συνεπώς

f (x,y) = x2y3 = (
2
5
)

(√
3
5

)3

=
2
5
· 3
√

3
5
√

5
=

6
√

3
25
√

5
=

6
25

√
3
5
.

Άρα η συνάρτηση f (x,y) = x2y3 πάνω στον μοναδιαίο κύκλο x2+y2 = 1 παίρνει μέγιστη
τιμή

fmax =
6

25

√
3
5
.

7. Δίνονται

S = πr
√

r2 +h2, V =
1
3

πr2h.

Θέλουμε τον λόγο
h
r
για εκείνον τον κώνο που έχει δεδομένη επιφάνεια S και μέγιστο

όγκο V . ’Αρα πρέπει πρώτα να λύσουμε το πρόβλημα εύρεσης του μέγιστου όγκου με
περιορισμό την συγκεκριμένη επιφάνεια S. Συνεπώς, εφαρμόζουμε τη μέθοδο των πολλαπλασιαστών
Lagrange για τη μεγιστοποίηση τουV (r,h) με περιορισμό g(r,h) = πr

√
r2 +h2−S = 0.

Άρα

L(r,h,λ ) = f (r,h)+(c−g(r,h)) =
1
3

πr2h+λ (S−πr
√

r2 +h2).

Συνεπώςαπό τις συνθήκες πρώτης τάξεως έχουμε

Lr =
2
3

πrh−λπ
2r2 +h2
√

r2 +h2
= 0, Lh =

1
3

πr2−λπ
rh√

r2 +h2
= 0.

Από τη δεύτερη συνιστώσα:

1
3

πr2 = λ π
rh√

r2 +h2
⇒ λ =

1
3

r
√

r2 +h2

h
.

Αντικαθιστούμε στην πρώτη συνιστώσα:

2
3

πrh = λ π
2r2 +h2
√

r2 +h2
=

1
3

πr
2r2 +h2

h
.

Άρα

2h2 = 2r2 +h2⇒ h2 = 2r2⇒ h
r
=
√

2 .

Οι λεπτομερείς επαληθεύσεις των συνθηκών δεύτερης τάξεως (θετικής/αρνητικής οριστικότητας)
αφήνονται ως άσκηση στον αναγνώστη.
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8. Λύση. Έχουμε τον περιορισμό προϋπολογισμού:

1.5x+1.0y = 5.

Θέτουμε το πρόβλημα Lagrange:

L(x,y,λ ) =√xy+λ (5−1.5x− y).

Παράγωγοι: 

∂L
∂x

=
1
2

y1/2

x1/2 −1.5λ = 0,

∂L
∂y

=
1
2

x1/2

y1/2 −λ = 0,

5−1.5x− y = 0.

Διαιρούμε την πρώτη με τη δεύτερη:

y1/2

x1/2

x1/2

y1/2

= 1.5 ⇒ y
x
= 1.5 ⇒ y = 1.5x.

Αντικαθιστούμε στον περιορισμό:

1.5x+1(1.5x) = 5 ⇒ 3x = 5 ⇒ x =
5
3
.

y = 1.5x = 2.5.

Άρα:

x =
5
3
≈ 1.67, y = 2.5.

Έλεγχος με κριτήριο δευτέρας τάξεωςΘέτουμε g(x,y)= 1.5x+y−5= 0 καιL (x,y,λ )=√
xy+λ (5−1.5x− y). Τα δεύτερα παράγωγα (επειδή g είναι γραμμικό) είναι:

Lxx =
∂ 2L
∂x2 =−1

4

√
y

x3/2 , Lyy =
∂ 2L
∂y2 =−1

4

√
x

y3/2 , Lxy =
1
4

1
√

xy
.

Επίσης gx = 1.5, gy = 1.

Στο σημείο 1ης τάξης x =
5
3
, y = 2.5 ο Hessian είναι
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H =

∣∣∣∣∣∣∣∣∣∣∣
0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
0 1.5 1

1.5 −0.183712 0.122474

1 0.122474 −0.081650

∣∣∣∣∣∣∣∣∣∣∣
,

του οποίου η ορίζουσα υπολογίζεται

H ≈ 0.734847 > 0.

Για ένα πρόβλημα με έναν ισοπεριορισμό, η συνθήκη δευτέρας τάξεως για μέγιστο είναι

H > 0. Επομένως το σημείο x1 =
5
3
, y = 2.5 ικανοποιεί τις συνθήκες δευτέρας τάξεως

και δίνει μέγιστο. Η μέγιστη χρησιμότητα είναι:

U =
√

(1.67)(2.5) =
√

4.175≈ 2.04.

Επομένως, 0 Αντώνης πρέπει να αγοράσει περίπου 1.67 χάμπουργκερ και 2.5 μερίδες
πατάτες για να μεγιστοποιήσει την απόλαυσή του.

Παρατήρηση. ΗU(x,y) =
√

xy είναι κοίλη στοR2
++ και το σύνολο προϋπολογισμού είναι

κυρτό, άρα οι συνθήκες πρώτης τάξης είναι ήδη επαρκείς. Ο έλεγχος με την εισ/νη δευτέρας
τάξεως το επιβεβαιώνει.

Σημείωση 2.14.4 Δομικά σχήματα βελτιστοποίησης χωρίς και με συνθήκες

Παράδειγμα: Προσδιορίστε τα ακρότατα της f (x,y) = 2x+5y πάνω στην έλλειψη(x
4

)2
+
(y

3

)2
= 1.

Λύση.Θέτουμε

g(x,y) =
x2

16
+

y2

9
−1 = 0

και

L(x,y,λ ) = 2x+5y+λ
(

1− x2

16
− y2

9

)
.

Lx = 2−λ
x
8
= 0 ⇒ x =

16
λ
, Ly = 5−λ

2y
9

= 0 ⇒ y =
45
2λ

.

(x
4

)2
+
(y

3

)2
= 1⇒

(
4
λ

)2

+

(
15
2λ

)2

= 1⇒ 289
4λ 2 = 1⇒ λ =±17

2
.

λ =
17
2
⇒ (x,y) =

(
32
17

,
45
17

)
.
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λ =−17
2
⇒ (x,y) =

(
−32

17
,−45

17

)
.

Έλεγχος Συνθηκών Δευτέρας Τάξεως
Έστω ο περιορισμός

g(x,y) =
x2

16
+

y2

9
−1 = 0 ⇒ gx(x,y) =

x
8
, gy(x,y) =

2y
9
.

Η Εισσιανή δευτέρας τάξεως είναι:

H =

∣∣∣∣∣∣
0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣ , Lxx =−
λ
8
, Lyy =−

2λ
9
, Lxy = 0.

Για λ =
17
2
:

Lxx =−
17
16

, Lyy =−
17
9
, gx(x,y) =

4
17

, gy(x,y) =
10
17

.

=−g2
xLyy−Lxxg2

y =
17
36

> 0.

Επομένως, σύμφωνα με τις συνθήκες Lagrange ότι το σημείο
(

32
17

,
45
17

)
είναι τοπικό μέγιστο.

Ομοίως για λ =−17
2
:

Lxx =
17
16

, Lyy =
17
9

και H =−17
36

< 0.

Άρα το σημείο είναι ελάχιστο.
Συνοψίζοντας:

fmax = 17 στο
(32

17
,

45
17

)
, fmin =−17 στο

(
− 32

17
,−45

17

)
.

Σε ένα συνηθισμένο πρόβλημα βελτιστοποίησης, χωρίς κάποια συνθήκη, το ολικό μέγιστο είναι
το ύψος του υψηλότερου σημείου της επιφάνειας

z = f (x,y)

(δηλαδή το σημείοQ του Σχήματος 2.36(α)). Όταν όμως δίνεται ένας περιορισμός, τότε εστιάζουμε
την προσοχή μας στην καμπύλη που βρίσκεται πάνω στην υπό μελέτη επιφάνεια και πάνω από
την περιοριστική καμπύλη

g(x,y) = c

. Η ζητούμενη μέγιστη τιμή που υπόκειται στη συνθήκη είναι το ύψος του υψηλότερου σημείου
αυτής της καμπύλης. Το Σχήμα 2.36(β) απεικονίζει το πρόβλημα βελτιστοποίησης που επιλύσαμε
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στο προηγούμενο παράδειγμα.

Σχήμα 2.36 Η γραμμική προσέγγιση του ∆x δίνεται από το διαφορικό dx.
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2.15 Πολλαπλή Ολοκλήρωση
Τα ολοκληρώματα των συναρτήσεων με πολλές μεταβλητές είναι γνωστά ως πολλαπλά ολοκληρώ-
ματα και αποτελούν τη φυσική επέκταση των ολοκληρωμάτων των συναρτήσεων μίας μεταβλητής,
τα οποία μελετήσαμε στο πρώτο μέρος του παρόντος βιβλίου. Τα ολοκληρώματα αυτού του τύπου
χρησιμοποιούνται για τον υπολογισμό πολλών διαφορετικών ποσοτήτων που εμφανίζονται σε
διάφορες εφαρμογές, όπως ο όγκος, η μάζα, η ροή θερμότητας, το συνολικό φορτίο αλλά και η
συνισταμένη δύναμη.

Οι στήλες από ηφαιστειογενή βράχο που
σχηματίζουν τον Πύργο του Διαβόλου στην
Πολιτεία του Wyoming μοιάζουν με τις στήλες
όγκου ενός αθροίσματος Riemann μέσω του οποίου
αναπαρίσταται ο όγκος που περιορίζεται κάτω από
το γράφημα μιας συνάρτησης δύο μεταβλητών.
Όπως και στην περίπτωση των συναρτήσεων με μία
μεταβλητή, έτσι και στις περιπτώσεις των δύο και
τριών μεταβλητών τα ολοκληρώματα ορίζονται ως
όρια αθροισμάτων Riemann.

Σχήμα 2.37

2.15.1 Ολοκλήρωση συναρτήσεων με δύο μεταβλητές
Τα ολοκληρώματα των συναρτήσεων με πολλές μεταβλητές είναι γνωστά ως πολλαπλά ολοκληρώ-
ματα και αποτελούν τη φυσική επέκταση των ολοκληρωμάτων των συναρτήσεων μίας μεταβλητής,
τα οποία μελετήσαμε στο πρώτο μέρος του παρόντος βιβλίου. Τα ολοκληρώματα αυτού του τύπου
χρησιμοποιούνται για τον υπολογισμό πολλών διαφορετικών ποσοτήτων που εμφανίζονται σε
διάφορες εφαρμογές, όπως ο όγκος, η μάζα, η ροή θερμότητας, το συνολικό φορτίο αλλά και η
συνισταμένη δύναμη.

Το ολοκλήρωμα μιας συνάρτησης δύο μεταβλητών
f (x,y), που αποκαλείται διπλό ολοκλήρωμα,
συμβολίζεται ως ∫

D
f (x,y)dA

Όταν για την ολοκληρωτέα συνάρτηση ισχύει
f (x,y) ≥ 0 σε ένα χωρίο D του επιπέδου xy, τότε
το ολοκλήρωμα παριστάνει τον όγκο του στερεού
που βρίσκεται μεταξύ της γραφικής παράστασης
της f (x,y) και του επιπέδου xy, όπως φαίνεται
στο Σχήμα 1. Γενικότερα, ένα διπλό ολοκλήρωμα
αναπαριστά έναν προσημασμένο όγκο, όπου οι
θετικές συνεισφορές προέρχονται από τις περιοχές
που βρίσκονται πάνω από το επίπεδο xy, ενώ οι
αρνητικές συνεισφορές οφείλονται στις περιοχές που
βρίσκονται κάτω από αυτό το επίπεδο. Υπάρχουν
αρκετές ομοιότητες μεταξύ των διπλών και των
απλών ολοκληρωμάτων:

Σχήμα 2.38

• Τα διπλά ολοκληρώματα ορίζονται ως όρια αθροισμάτων Riemann.
• Τα διπλά ολοκληρώματα μπορούν να υπολογιστούν με τη βοήθεια του θεμελιώδους θεωρήματος
του Λογισμού
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Ωστόσο, μια σημαντική διαφορά που υπάρχει είναι ότι τα χωρία στα οποία λαμβάνει χώρα μια
διπλή ολοκλήρωση μπορεί να είναι αρκετά πολύπλοκα. Στην περίπτωση του Λογισμού μίας
μεταβλητής, η ολοκλήρωση γίνεται σε ένα απλό διάστημα της μορφής [a,b]. Στην ολοκλήρωση
συναρτήσεων με δύο μεταβλητές, το χωρίο D είναι μια επίπεδη περιοχή, τα σύνορα της οποίας
μπορεί να αποτελούνται από ένα πλήθος διαφορετικών καμπυλών αλλά και ευθύγραμμων τμημά-
των (όπως για παράδειγμα το χωρίο D στο Σχήμα 2.38 αλλά και το R του Σχήματος 2.39).

Στην τρέχουσα ενότητα θα εστιάσουμε την προσοχή
μας στην απλούστερη περίπτωση, σε αυτή δηλαδή
όπου το χωρίο στο οποίο γίνεται η ολοκλήρωση είναι
ένα ορθογώνιο.
Ας υποθέσουμε λοιπόν ότι έχουμε το ορθογώνιο
χωρίο του επιπέδου

R = [a,b]× [c,d]

που απεικονίζεται στο Σχήμα 2 το οποίο αποτελείται
από το σύνολο των σημείων (x,y) ώστε:

R : a≤ x≤ b, c≤ y≤ d
Σχήμα 2.39

’Oπως και τα ολοκληρώματα των συναρτήσεων της μίας μεταβλητής, έτσι και τα διπλά ολοκληρώ-
ματα ορίζονται μέσω μιας διαδικασίας τριών βημάτων που συνίσταται σε διαμέριση του χωρίου,
άθροιση, κατάστρωση και υπολογισμό του ορίου. Στο Σχήμα 2.40 απεικονίζεται το πρώτο βήμα,
αυτό της διαμέρισης του χωρίου, το οποίο με τη σειρά του υλοποιείται σε τρία διακριτά στάδια:

1. Διαίρεση των διαστημάτων [a,b] και [c,d] με επιλογή αντίστοιχων διαμερίσεων:

a = x0 < x1 < · · ·< xN = b, c = y0 < y1 < · · ·< yM = d

όπου N και M θετικοί ακέραιοι αριθμοί.
2. Δημιουργία ενός πλέγματος αποτελούμενου από N×M μικρότερα ορθογώνια υποχωρία

Ri j.
3. Επιλογή ενός τυχαίου σημείου Pi j σε κάθε μικρότερο ορθογώνιο υποχωρίο Ri j.

Σχήμα 2.40

Παρατηρήστε ότι αφού για κάθε ορθογώνιο υποχωρίο ισχύει

Ri j = [xi−1,xi]× [y j−1,y j],

το Ri j έχει εμβαδόν

∆Ai j = ∆xi ∆y j

όπου
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∆xi = xi− xi−1 και ∆y j = y j− y j−1.

Το επόμενο βήμα στον ορισμό του διπλού ολοκληρώματος είναι η διαδικασία της άθροισης, κατά
την οποία σχηματίζουμε το άθροισμα Riemann με τη βοήθεια των τιμών της συνάρτησης f (Pi j):

SN,M =
N

∑
i=1

M

∑
j=1

f (Pi j)∆Ai j =
N

∑
i=1

M

∑
j=1

f (Pi j)∆xi ∆y j.

Σημείωση 2.15.1 Θα πρέπει να θυμάστε ότι το άθροισμα Riemann εξαρτάται από την επιλογή
της διαμέρισης και από την επιλογή των σημείων Pi j σε κάθε υποχωρίο. Θα ήταν λοιπόν πιο
σωστό να γράψουμε

SN,M({Pi j},{xi},{y j})

αλλά παρ’ όλα αυτά επιλέγουμε να γράφουμε απλώς SN,M προκειμένου να έχουμε απλούστερο
συμβολισμό.

Το προηγούμενο διπλό άθροισμα διατρέχει όλα τα ζεύγη i και j στις περιοχές τιμών 1 ≤ i ≤ N
και 1≤ j ≤M και αποτελείται συνολικά από NM όρους.
Η γεωμετρική ερμηνεία του αθροίσματος SN,M φαίνεται στο Σχήμα 2.74. Έστω ότι f (x,y)≥ 0
στο χωρίο R. Κάθε επιμέρους όρος του αθροίσματος, f (Pi j)∆Ai j, είναι ίσος με τον όγκο ενός
στενού κουτιού ύψους f (Pi j) που ορθώνεται πάνω από το μικρό υποχωρίο Ri j, δηλαδή:

f (Pi j)∆Ai j = f (Pi j)∆xi∆y j = ύψος× εμβαδόν︸ ︷︷ ︸
όγκος του κουτιού

.

(a) Στον Λογισμό των συναρτήσεων
μίας μεταβλητής, ένα άθροισμα
Riemann προσεγγίζει το εμβαδόν που
βρίσκεται κάτω από την καμπύλη
μέσω του αθροίσματος των εμβαδών
των ορθογωνίων περιοχών που
σχηματίζονται στη διαμέριση του
διαστήματος.

(b) Ο όγκος του ορθογώνιου
κουτιού είναι f (Pi j)∆Ai j , με
∆Ai j = ∆xi ∆y j.

(c) Το άθροισμα Riemann SN,M είναι
το άθροισμα των όγκων των στενών
ορθογωνίων κουτιών.

Σχήμα 2.41

Το άθροισμα SN,M των επιμέρους όγκων αυτών των στενών ορθογώνιων κουτιών προσεγγίζει
τον όγκο με τον ίδιο τρόπο που τα αθροίσματα Riemann, στην περίπτωση του Λογισμού των
συναρτήσεων μίας μεταβλητής, προσεγγίζουν το εμβαδόν μέσω των ορθογωνίων, όπως φαίνεται
στο Σχήμα 2.74a.
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Στην περίπτωση που f (Pi j) < 0, ο όρος f (Pi j)∆Ai j παριστάνει τον προσημασμένο όγκο ενός
στενού κουτιού που εκτείνεται κάτω από το επίπεδο xy. Γενικά, μπορούμε να σκεφτούμε το
άθροισμα Riemann SN,M ως ένα άθροισμα προσημασμένων όγκων στενών ορθογώνιων κουτιών,
κάποια εκ των οποίων υψώνονται πάνω από το επίπεδο xy και κάποια εκτείνονται κάτω από αυτό.
Το τελευταίο βήμα στον ορισμό ενός διπλού ολοκληρώματος είναι η διαδικασία του ορίου. Θα
χρησιμοποιήσουμε τον συμβολισμόP = {{xi},{y j}} για τη διαμέριση που έχουμε επιλέξει ενώ
με ‖P‖ δηλώνονται το μέγιστο από τα πλάτη ∆xi,∆y j. Ο ακόλουθος ορισμός κάνει πιο σαφή
την έννοια των αθροισμάτων Riemann τα οποία συγκλίνουν σε ένα όριο, καθώς τα ορθογώνια
υποχωρία της διαμέρισης γίνονται ολοένα και μικρότερα:

Ορισμός 2.15.2 Όριο των αθροισμάτων Riemann Το άθροισμα Riemann SN,M προσεγγίζει ένα
όριο L καθώς ‖P‖→ 0, αν για κάθε ε > 0 υπάρχει κάποιο δ > 0 τέτοιο ώστε∣∣L−SN,M

∣∣< ε

για όλες τις διαμερίσεις που ικανοποιούν τη συνθήκη ‖P‖ < δ και για όλες τις επιλογές
σημείων. Πιο συγκεκριμένα, γράφουμε

lim
‖P‖→0

SN,M = lim
‖P‖→0

N

∑
i=1

M

∑
j=1

f (Pi j)∆Ai j = L.

Για παράδειγμα, το Σχήμα 2.42 απεικονίζει πώς τα διαδοχικά αθροίσματα Riemann συγκλίνουν
σταδιακά στον όγκο που περικλείεται κάτω από το γράφημα της συνάρτησης

z = 24−3x2− y2

και πάνω από το χωρίο

R = [0,2]× [0,3],

επειδή όσο πιο στενά γίνονται τα ορθογώνια κουτιά τόσο καλύτερα καλύπτει το στερεό η διαμέρισή
τους.

Σχήμα 2.42

Ορισμός 2.15.3 Διπλό ολοκλήρωμα σε ορθογώνιο χωρίο Το διπλό ολοκλήρωμα μιας συνάρτη-
σης f (x,y) σε ένα ορθογώνιο χωρίο ορίζεται από το όριο∫∫

R
f (x,y)dA = lim

‖P‖→0

N

∑
i=1

M

∑
j=1

f (Pi j)∆Ai j.

Στην περίπτωση που το όριο αυτό υπάρχει, θα λέμε ότι η συνάρτηση f (x,y) είναι ολοκληρώ-



119

Κεφάλαιο 3 Λογισμός πολλών μεταβλητών:
Θεωρία και Εφαρμογές

σιμη στο χωρίο R.

Θεώρημα 2.15.4Οι συνεχείς συναρτήσεις είναι ολοκληρώσιμες Αν μια συνάρτηση f δύο μετα-
βλητών είναι συνεχής σε ένα ορθογώνιο χωρίο R, τότε η f (x,y) είναι ολοκληρώσιμη στο R.

Σημείωση 2.15.5Το αντίστροφο τουΘεωρήματος 2.15.4 δεν ισχύει απαραίτητα. Έτσι, υπάρχουν
ολοκληρώσιμες συναρτήσεις που δεν είναι συνεχείς.

Θεώρημα 2.15.6 Γραμμικές ιδιότητες του διπλού ολοκληρώματος Έστω ότι οι συναρτήσεις
f (x,y) και g(x,y) είναι ολοκληρώσιμες σε ένα ορθογώνιο χωρίο R. Τότε:

1. ∫
R

(
f (x,y)+g(x,y)

)
dA =

∫
R

f (x,y)dA+
∫

R
g(x,y)dA

2. ∫
R

C f (x,y)dA =C
∫

R
f (x,y)dA, για οποιαδήποτε σταθεράC.

2.15.2 Διαδοχικά ολοκληρώματα
Το βασικό εργαλείο για τον υπολογισμό των διπλών ολοκληρωμάτων είναι η πρώτη πρόταση
από το θεμελιώδες θεώρημα του Λογισμού, όπως και στην περίπτωση των συναρτήσεων μίας
μεταβλητής. Για να χρησιμοποιήσουμε την πρόταση αυτή θα εκφράσουμε το διπλό ολοκλήρωμα
ως ένα διαδοχικό (επαναληπτικό) ολοκλήρωμα στη μορφή:∫ b

a

(∫ d

c
f (x,y)dy

)
dx

Τέτοια διαδοχικά ολοκληρώματα υπολογίζονται με μια διαδικασία δύο βημάτων.
Βήμα 1 Κρατάμε σταθερή τη μεταβλητή x και υπολογίζουμε το εσωτερικό ολοκλήρωμα ως

προς τη μεταβλητή y. Με τον τρόπο αυτόν προκύπτει μια συνάρτηση που εξαρτάται μόνο από τη
μεταβλητή x, δηλαδή:

S(x) =
∫ d

c
f (x,y)dy

Βήμα 2 Ολοκληρώνουμε την προκύπτουσα συνάρτηση S(x) ως προς τη μεταβλητή x.

Θεώρημα 2.15.7 Θεώρημα Fubini Έστω ότι η συνάρτηση f (x,y) είναι ολοκληρώσιμη (π.χ.
συνεχής) πάνω σε ένα ορθογώνιο χωρίο

R = [a,b]× [c,d]⊂ R2.

Τότε το διπλό ολοκλήρωμα της f πάνωστοR μπορεί να υπολογιστεί ως διαδοχικό ολοκλήρωμα
με οποιαδήποτε σειρά ολοκλήρωσης:
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∫∫
R

f (x,y)dA =
∫ b

x=a

(∫ d

y=c
f (x,y)dy

)
dx =

∫ d

y=c

(∫ b

x=a
f (x,y)dx

)
dy.

Σχήμα 2.43

Σημείωση 2.15.8 Εμβάθυνση στα σχήματα Έστω ότι f (x,y)≥ 0 σε ένα ορθογώνιο χωρίο R,
επομένως το διπλό ολοκλήρωμα της συνάρτησης f πάνω στο R είναι ο όγκος του στερεού S
που περιορίζεται μεταξύ του χωρίου R και του γραφήματος της συνάρτησης f (Σχήμα 2.43).
Όταν γράφουμε το διπλό ολοκλήρωμαως ένα διαδοχικό ολοκλήρωμα με τη σειρά ολοκλήρωσης
να είναι αυτή που ορίζεται από το dydx, τότε για κάθε σταθερή τιμή x = x0 το εσωτερικό
ολοκλήρωμα είναι το εμβαδόν της εγκάρσιας τομής του στερεού S στο κατακόρυφο επίπεδο
x = x0 κάθετα στον άξονα x, όπως φαίνεται στο Σχήμα 2.43(α). Επομένως,

S(x0) =
∫ d

c
f (x0,y)dy = εμβαδόν της εγκάρσιας τομής στο κατακόρυφο επίπεδο x =

x0 κάθετα στον άξονα x

Το θεώρημα Fubini λέει ότι ο όγκοςV του στερεού S μπορεί να υπολογιστεί ως το ολοκλήρωμα
της συνάρτησης των εμβαδών των εγκάρσιων τομών S(x), δηλαδή:

V =
∫ b

a

∫ d

c
f (x,y)dydx =

∫ b

a
S(x)dx = ολοκλήρωμα του εμβαδού των εγκάρσιων τομών.

Παρομοίως, το διαδοχικό ολοκλήρωμα που υπολογίζεται με τη σειρά που ορίζεται από το dxdy
υπολογίζει τον όγκο V ως το ολοκλήρωμα της συνάρτησης των εγκάρσιων τομών που είναι
κάθετες στον άξονα y, όπως φαίνεται στο Σχήμα 2.43(β).

Παράδειγμα 2.15.9
Υπολογίστε το διπλό ολοκλήρωμα

∫ 4

y=0

∫ 3

x=0

dxdy√
3x+4y

.

Παράδειγμα 2.15.10
Αλλαγή της σειράς ολοκλήρωσης Επιβεβαιώστε ότι
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y=0

∫ 3

x=0

dxdy√
3x+4y

=
∫ 3

x=0

∫ 4

y=0

dydx√
3x+4y

.

Λύση.Θα υπολογίσουμε αρχικά το εσωτερικό ολοκλήρωμα αντιμετωπίζοντας το y ως μια
σταθερά. Αφού ολοκληρώσουμε ως προς τη μεταβλητή x, θα πρέπει να προσδιορίσουμε την

αντιπαράγωγο της
1√

3x+4y
ως συνάρτηση του x. Χρησιμοποιώντας την αντικατάσταση u =

3x+4y, από την οποία προκύπτει ότι du = 3dx, βρίσκουμε:∫ dx√
3x+4y

=
2
3

√
3x+4y+C

Επομένως, θα ισχύει∫ 3

x=0

dx√
3x+4y

=
2
3

√
3x+4y

∣∣∣3
x=0

=
2
3
(√

4y+9−
√

4y
)

Τελικά∫ 4

y=0

∫ 3

x=0

dxdy√
3x+4y

=
2
3

∫ 4

y=0

(√
4y+9−2

√
y
)

dy =
2
3

(
1
6
(4y+9)3/2− 4

3
y3/2

)∣∣∣4
y=0

=
1
9
(
253/2)− 8

9
(
43/2)− 1

9
(
93/2)= 34

9

Αλλαγή της σειράς ολοκλήρωσης

Έχοντας ήδη υπολογίσει το αριστερό διαδοχικό ολοκλήρωμα στο προηγούμενο παράδειγμα, όπου

καταλήξαμε στην τιμή
34
9
, αρκεί να υπολογίσουμε το δεξιό ολοκλήρωμα και να επιβεβαιώσουμε

ότι και αυτό δίνει την ίδια τιμή.∫ 4

y=0

dy√
3x+4y

=
1
2

√
3x+4y

∣∣∣4
y=0

=
1
2
(√

3x+16−
√

3x
)

∫ 3

x=0

∫ 4

y=0

dydx√
3x+4y

=
1
2

∫ 3

0

(√
3x+16−

√
3x
)

dx

=
1
2

(
2
9
(3x+16)3/2− 2

9
(3x)3/2

)∣∣∣3
x=0

=
1
9
(
253/2−93/2−163/2)= 34

9
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Ασκήσεις 2.15.11

1. Με ποια από τις απαντήσεις α) ή β) είναι ίση το διπλό ολοκλήρωμα∫ 2

1

∫ 5

4
f (x,y)dydx ;

a)
∫ 2

1

∫ 5

4
f (x,y)dxdy

b)
∫ 5

4

∫ 2

1
f (x,y)dxdy

2. Υπολογίστε το άθροισμα Riemann γιαN = M = 2 ώστε να εκτιμήσετε το διπλό ολοκλή-
ρωμα της συνάρτησης

√
x+ y πάνωστο ορθογώνιοR = [0,1]× [0,1]. Χρησιμοποιήστε

μια κανονική διαμέριση και επιλέξτε τα μέσα των ορθογώνιων υποχωρίων για το άθροισμα
Riemann.

3. Στις συναρτήσεις (a) - (d) να υπολογίσετε τα αθροίσματα Riemann για το διπλό ολοκλή-

ρωμα
∫∫

R
f (x,y)dA, όπου R = [1,4]× [1,3], για το πλέγμα και τις δύο επιλογές

σημείων που φαίνονται στο Σχήμα 2.44.
(a) f (x,y) = 2x+ y
(b) f (x,y) = 7
(c) f (x,y) = 4x
(d) f (x,y) = x−2y

Σχήμα 2.44

Λύση.

Δίνεται: f (x,y) =
√

x+ y, R = [0,1]× [0,1], N = M = 2.

Κανονική διαμέριση: ∆x = ∆y =
1
2
, ∆A = ∆x∆y =

1
4
.

Σημεία μέσων: (0.25,0.25), (0.75,0.25), (0.25,0.75), (0.75,0.75).
Υπολογισμοί:
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f (0.25,0.25) =
√

0.5 =
1√
2
,

f (0.75,0.25) =
√

1 = 1,

f (0.25,0.75) =
√

1 = 1,

f (0.75,0.75) =
√

1.5 =

√
3√
2
.

Άρα, το άθροισμα Riemann (με σημεία μέσων) είναι:

S = ∆A∑ f (x∗i ,y
∗
j) =

1
4

(
1√
2
+1+1+

√
3√
2

)
=

1
2
+

1+
√

3
4
√

2
≈ 0.983.

2.16 Διπλά ολοκληρώματα σε γενικότερα χωρία
Στην προηγούμενη ενότητα περιορίσαμε την προσοχή μας σε ολοκληρώματα πάνω σε ορθογώνια
χωρία. Στη γενικότερη περίπτωση τα χωρία ολοκλήρωσης D έχουν ως σύνορα απλές, κλειστές
καμπύλες (μια καμπύλη είναι απλή εφόσον δεν τέμνει τον εαυτό της και ορίζεται ως κλειστή
αν η αρχή και το πέρας της συμπίπτουν). Υποθέτουμε, επιπλέον, ότι το σύνορο του χωρίου D
είναι λείο, όπως φαίνεται στο Σχήμα 2.45(α), ή αποτελείται από ένα πεπερασμένο πλήθος λείων
καμπυλών οι οποίες ενώνονται με γωνίες, όπως φαίνεται στο Σχήμα 2.45(β). Μια συνοριακή
καμπύλη αυτού του τύπου είναι γνωστή ως κατά τμήματα λεία καμπύλη. Θα υποθέσουμε, τέλος,
ότι το χωρίο D είναι κλειστό, γεγονός που σημαίνει ότι περιλαμβάνει και το σύνορό του.

Σχήμα 2.45

Με βάση το θεμελιώδες θεώρημα του Λογισμού σε συναρτήσεις με μία μεταβλητή, έχουμε ότι αν

dF
dx

= f (x)

τότε ∫ b

a
f (x)dx = F(b)−F(a),

όπου a,b ∈ R, a ≤ x ≤ b. Ομοίως, με βάση την επέκταση του θεμελιώδους θεωρήματος του
Λογισμού στην περίπτωση των συναρτήσεων με δύο μεταβλητές, έχουμε το παρακάτω θεώτημα:
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Θεώρημα 2.16.2 Έστω R = [a,b]× [c,d] και F ∈C2(R) με

∂ 2F
∂x∂y

(x,y) = f (x,y).

Τότε∫
R

f (x,y)dA =
∫ b

a

∫ d

c
f (x,y)dydx = F(b,d)−F(a,d)−F(b,c)+F(a,c).

Λύση.Έχουμε∫ b

b

∫ d

c
f (x,y)dydx =

∫ b

a

(∫ d

c
f (x,y)dy

)
dx =

∫ b

a

∂
∂y

(∂F
∂x

(x,y)
)

dx.

Αφού F ∈C2(R), επιτρέπεται η αντιμετάθεση παραγώγισης και ολοκλήρωσης (Leibniz):∫ b

a

∂
∂y

(∂F
∂x

(x,y)
)

dx =
d
dy

∫ b

a

∂F
∂x

(x,y)dx.

Με το Θ. Θεμελιώδες του Λογισμού (ως προς x):∫ b

a

∂F
∂x

(x,y)dx = F(b,y)−F(a,y).

Τώρα ολοκληρώνουμε ως προς y στο [c,d] και εφαρμόζουμε ξανά το Θ. Θεμελιώδες:∫ b

a

∫ d

c
f (x,y)dydx =

∫ d

c

d
dy

(
F(b,y)−F(a,y)

)
dy =

[
F(b,y)−F(a,y)

]y=d
y=c .

Δηλαδή ∫ a

b

∫ c

d
f (x,y)dydx = F(b,d)−F(a,d)−F(b,c)+F(a,c),

όπως θέλαμε.

Παράδειγμα 2.16.3
Προσδιορίστε μία συνάρτηση F(x,y) που να ικανοποιεί

∂ 2F
∂x∂y

= 6x2y,

και στη συνέχεια χρησιμοποιήστε το αποτέλεσμα της επέκτασης του θεμελιώδους θεωρήματος
του Λογισμού, στην περίπτωση των συναρτήσεων με δύο μεταβλητές, για να υπολογίσετε το
διπλό ολοκλήρωμα ∫∫

R
6x2ydA, R = [0,1]× [0,4].
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(i) Εξηγήστε ποια αντιπαραγώγιση της συνάρτησης y
√

1+ xy είναι ευκολότερη: ως προς
x ή ως προς y;

(ii) Υπολογίστε το διπλό ολοκλήρωμα∫∫
R

y
√

1+ xy dA, με R = [0,1]× [0,1].

Λύση.
Μέρος Α. Ζητείται F(x,y) με

∂ 2F
∂x∂y

= 6x2y.

Ολοκληρώνουμε ως προς x:

Fy =
∫

6x2ydx = 2x3y+g(y).

Ολοκληρώνουμε ως προς y:

F(x,y) = x3y2 +G(y)+h(x).

Μία απλή επιλογή είναι

F(x,y) = x3y2,

η οποία δίνει Fxy = 6x2y.
Για R = [0,1]× [0,4] ισχύει το θεώρημα:∫∫

R
6x2ydA = F(1,4)−F(0,4)−F(1,0)+F(0,0) = 16.

Μέρος Β. Συνάρτηση y
√

1+ xy.
(i) Ποια αντιπαραγώγιση είναι ευκολότερη; Ως προς x: με u = 1+ xy, du = ydx,∫

y
√

1+ xydx =
∫ √

udu =
2
3
(1+ xy)3/2 +C.

Ως προς y προκύπτει αλλαγή μεταβλητής u = 1+xy με παράγοντα
1
x2 και αλγεβρικά πιο βαριές

δυνάμεις. Άρα ευκολότερη είναι η αντιπαραγώγιση ως προς x.

(ii) Υπολογισμός
∫∫

[0,1]×[0,1]
y
√

1+ xydA.

Πρώτα ως προς x:∫ 1

0
y
√

1+ xydx =
[2

3
(1+ xy)3/2

]1

x=0
=

2
3
(
(1+ y)3/2−1

)
.

Έπειτα ως προς y:∫ 1

0

2
3
(
(1+ y)3/2−1

)
dy =

2
3

[2
5
(1+ y)5/2

]1

0
−
[
y
]1

0
=

4
15
(
25/2−1

)
−1 =

16
15

√
2− 19

15
.

Άρα
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[0,1]×[0,1]
y
√

1+ xydA =
16
15

√
2− 19

15
.

2.16.1 Ολοκλήρωση σε χωρία που περιορίζονται μεταξύ δύο γραφημάτων
Όταν το χωρίοD είναι η περιοχή που βρίσκεται μεταξύ δύο γραφημάτων στο επίπεδο xy, μπορούμε
να υπολογίσουμε ένα διπλό ολοκλήρωμα πάνω στοD με την τεχνική της διαδοχικής ολοκλήρωσης.
Θυμηθείτε, από την προηγούμενυ ενότητα, ότι το χωρίο D είναι κατακόρυφα απλό αν καλύπτει
την περιοχή που βρίσκεται μεταξύ των γραφημάτων δύο συνεχών συναρτήσεων y = g1(x) και
y = g2(x) για ένα δεδομένο διάστημα τιμών της μεταβλητής x, όπως φαίνεται στο Σχήμα 2.46a,
δηλαδή:

D = {(x,y) : a≤ x≤ b, g1(x)≤ y≤ g2(x)}.

Παρομοίως, θα λέμε ότι το χωρίο είναι οριζόντια απλό (βλ. Σχήμα 2.46b) αν

D = {(x,y) : c≤ y≤ d, h1(y)≤ x≤ h2(y)}.

Σχήμα 2.46

Θεώρημα 2.16.4 Αν το χωρίο D είναι κατακόρυφα απλό και περιγράφεται ως

a≤ x≤ b, g1(x)≤ y≤ g2(x),

τότε ∫∫
D

f (x,y)dA =
∫ b

a

(∫ g2(x)

g1(x)
f (x,y)dy

)
dx.

Αν το D είναι οριζόντια απλό χωρίο και περιγράφεται ως

c≤ y≤ d, h1(y)≤ x≤ h2(y),

τότε ∫∫
D

f (x,y)dA =
∫ d

c

(∫ h2(y)

h1(y)
f (x,y)dx

)
dy.

Παράδειγμα 2.16.5
Υπολογισμός όγκου με ολοκλήρωμα Υπολογίστε τον όγκοV του στερεού που βρίσκεται κάτω
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από το επίπεδο z = 2x+ 3y και πάνω από το τρίγωνο D του επιπέδου xy που φαίνεται στο
Σχήμα 2.47a.

(a) (b)

Σχήμα 2.47

Από το Σχήμα 2.47b διαπιστώνουμε ότι το χωρίο D είναι μία οριζόντια απλή περιοχή που
περιγράφεται ως

D : 0≤ y≤ 2, y≤ x≤ 2y.

Ο ζητούμενος όγκος είναι ίσος με το διπλό ολοκλήρωμα της συνάρτησης f (x,y) = 2x+3y
πάνω στο χωρίο D, δηλαδή:

V =
∫∫

D f (x,y)dA =
∫ 2

0

∫ 2y

x=y
(2x+3y)dxdy.

Υπολογίζουμε:

V =
∫ 2

0

[
x2 +3yx

]2y

x=y
dy =

∫ 2

0

(
(4y2 +6y2)− (y2 +3y2)

)
dy.

V =
∫ 2

0
(6y2)dy = 6 · y

3

3

∣∣∣2
0
= 2 ·8 = 16.

Παράδειγμα 2.16.6
Αλλαγή της σειράς ολοκλήρωσης Σχεδιάστε το χωρίο D στο οποίο γίνεται η ολοκλήρωση∫ 9

1

∫ 3

√
y
xey dxdy

και στη συνέχεια αλλάξτε τη σειρά της ολοκλήρωσηςώστε να υπολογίσετε το ζητούμενο ολοκλή-
ρωμα.

Η περιοχή αυτή φαίνεται στο Σχήμα 2.48, από το οποίο διαπιστώνουμε ότι τοD μπορεί επίσης
να περιγραφεί και ως ένα κατακόρυφα απλό χωρίο, δηλαδή:

1≤ x≤ 3, 1≤ y≤ x2.

Επομένως, μπορούμε να εκφράσουμε το ολοκλήρωμα που θέλουμε να υπολογίσουμε ως εξής:
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Σχήμα 2.48

∫ 9

1

∫ 3

√
y
xey dxdy =

∫ 3

1

∫ x2

1
xey dydx =

∫ 3

1

(∫ x2

y=1
xey dy

)
dx.

Υπολογίζουμε το εσωτερικό ολοκλήρωμα:

∫ x2

1
xey dy = x [ey]y=x2

y=1 = x
(
ex2− e

)
.

Άρα

∫ 3

1

(
xex2− ex

)
dx =

[
1
2ex2− 1

2ex2
]3

1
.

Τελικό αποτέλεσμα:

1
2
(
e9−9e− (e− e)

)
=

1
2
(e9−9e).

Παράδειγμα 2.16.7
Όγκος που περικλείεται μεταξύ δύο επιφανειών Υπολογίστε τον όγκο V του στερεού που

βρίσκεται πάνω από το παραβολοειδές που περιγράφεται από την εξίσωση z = 8− x2− y2

και κάτω από το παραβολοειδές με εξίσωση z = x2 + y2 στο χωρίο D = {(x,y) : −1 ≤ x ≤
1, −1≤ y≤ 1}.
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Το στερεό του οποίου ζητείται ο όγκος φαίνεται στο
Σχήμα 2.49 και προκύπτει από την περιοχή που
βρίσκεται μεταξύ του παραβολοειδούς z = 8− x2−
y2 και του χωρίου D αν αφαιρέσουμε τον όγκο που
βρίσκεται μεταξύ του παραβολοειδούς z = x2 + y2

και του χωρίου D. Επομένως, ο ζητούμενος όγκος
υπολογίζεται από τη διαφορά των αντίστοιχων όγκων
ως εξής:

Σχήμα 2.49 Προσδιορισμός του όγκου ενός στε-
ρεού που βρίσκεται μεταξύ δύο παραβολοειδών πά-
νω από ένα τετράγωνο χωρίο

Γενικεύοντας την ιδέα του προηγούμενου
παραδείγματος, μπορούμε να υπολογίσουμε τον
όγκο ενός στερεού Q που περικλείεται μεταξύ
δύο επιφανειών και ορίζεται πάνω σε ένα χωρίο
D του επιπέδου xy, όπως φαίνεται στο Σχήμα 14.
Οι επιφάνειες είναι ουσιαστικά τα γραφήματα
των συναρτήσεων z1(x,y) και z2(x,y), με
z1(x,y) ≤ z2(x,y) στο D και ο όγκος υπολογίζεται
ως

V =
∫∫
D

z2(x,y)dA−
∫∫
D

z1(x,y)dA =∫∫
D

(z2(x,y)− z1(x,y))dA

Η δεύτερη ισότητα δικαιολογείται από την ιδιότητα
της γραμμικότητας του ολοκληρώματος.

Σχήμα 2.50 Προσδιορισμός του όγκου ενός στερεού
Q το οποίο περικλείεται μεταξύ δύο επιφανειών πάνω
από ένα χωρίο D

Ασκήσεις 2.16.8

1. Ποιες από τις ακόλουθες εκφράσεις δεν έχουν νόημα;

a)
∫ 1

0

∫ x

1
f (x,y)dydx

b)
∫ 1

0

∫ y

1
f (x,y)dydx

c)
∫ 1

0

∫ y

x
f (x,y)dydx

d)
∫ 1

0

∫ 1

x
f (x,y)dydx
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2.

Βρείτε ποια από τις τέσσερις περιοχές του
Σχήματος 2.51 είναι το χωρίο στο οποίο λαμβάνει
χώρα η διπλή ολοκλήρωση∫ 0

−
√

2/2

∫ √1−x2

−x
f (x,y)dydx.

Σχήμα 2.51

3.

Εκφράστε το χωρίο D του Σχήματος 2.52 ως
μια κατακόρυφα και οριζόντια απλή περιοχή
και εκτιμήστε το ολοκλήρωμα της συνάρτησης
f (x,y) = xy πάνω στο D ως διαδοχικό
ολοκλήρωμα με δύο τρόπους.

Σχήμα 2.52

4. Να σχεδιάσετε το χωρίο

D : 0≤ x≤ 1, x2 ≤ y≤ 4− x2

και υπολογίστε το ολοκλήρωμα ∫∫
D

ydA

εκφράζοντάς το στη μορφή ενός διαδοχικού ολοκληρώματος.

5. (α) Εξηγήστε ποια αντιπαραγώγιση της συνάρτησης xexy είναι ευκολότερη: ως προς x ή
ως προς y;
(β) Υπολογίστε το διπλό ολοκλήρωμα∫∫

R
xexy dA

με R = [0,1]× [0,1].

6. Στις επόμενες συναρτήσεις να υπολογίσετε το διπλό ολοκλήρωμα πάνω στο χωρία που
δίνονται.
(a) f (x,y) = x3y, 0≤ x≤ 5, x≤ y≤ 2x+3.

(b) f (x,y) =−2, 0≤ x≤ 3, 1≤ y≤ ex.

(c) f (x,y) = x, 0≤ x≤ 1, 1≤ y≤ ex2
.

(d) f (x,y) = cos(2x+ y), 1
2 ≤ x≤ π

2 , 1≤ y≤ 2x.

(e) f (x,y) = 6xy− x2, στο χωρίο που φράσσεται από κάτω από την y = x2 και από
πάνω από την y =

√
x.

(f) f (x,y) = sinx, στο χωρίο που περικλείεται από τα γραφήματα των x = 0, x =
1, y = 0, y = cosx.
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(g) f (x,y) = ex+y, στο χωρίο που περικλείεται από τα γραφήματα των y = x−1 και
y = 12− x για 2≤ y≤ 4.

(h) f (x,y) = (x + y)−1, στο χωρίο που περικλείεται από τα γραφήματα των y =
x, y = 1, y = e και x = 0.

7. Υπολογίστε τον όγκο της περιοχής που περικλείεται από τις επιφάνειες

z = 16− y, z = y, y = x2 και y = 8− x2.

8. Υπολογίστε τον όγκο της περιοχής που περικλείεται από τις επιφάνειες

y = 1− x2, z = 1, y = 0 και z+ y = 2.

9. Να γράψετε, χωρίς να υπολογίσετε, το διπλό ολοκλήρωμα με το οποίο υπολογίζεται ο
όγκος της περιοχής που περικλείεται από τα παραβολοειδή

z = x2 + y2 και z = 8− x2− y2.

10. Υπολογίστε τον όγκο της περιοχής που περικλείεται από τις επιφάνειες

z = 2− y2, z = y, x = 0, y = 0 και x+ y = 1.

11.
Υπολογίστε το διπλό ολοκλήρωμα της
συνάρτησης f (x,y) = y2 πάνω στον
ρόμβο R του Σχήματος 2.53.

Σχήμα 2.53 |x|+ 1
2 |y| ≤ 1

12. Ολοκληρώστε τη συνάρτηση f (x,y) = x πάνω στην περιοχή που περικλείεται από τις
y = x, y = 4x− x2 και y = 0 με δύο τρόπους: εκφράζοντας το χωρίο ως κατακόρυφα
απλή περιοχή και ως οριζόντια απλή περιοχή.

13. Να υπολογίσετε το διπλό ολοκλήρωμα των παρακάτω συναρτήσεων πάνω στο χωρίο D
που δημιουργείται από τους περιορισμούς των x και y.

a. f (x,y) = x3y, 0≤ x≤ 5, x≤ y≤ 2x+3.

a. f (x,y) =−2, 0≤ x≤ 3, 1≤ y≤ ex.

c. f (x,y) = x, 0≤ x≤ 1, 1≤ y≤ ex2
.

d. f (x,y) = cos(2x+ y), 1
2 ≤ x≤ π

2 , 1≤ y≤ 2x.
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e. f (x,y) = 6xy− x2, στο χωρίο που φράσσεται από κάτω από την y = x2 και από
πάνω από την y =

√
x.

14.

Υπολογίστε το διπλό ολοκλήρωμα της συνάρτησης

f (x,y) =
siny

y
στο χωρίο D που απεικονίζεται στο

Σχήμα 2.54.

Σχήμα 2.54

15. Να υπολογίσετε το διπλό ολοκλήρωμα των παρακάτω συναρτήσεων πάνω στο χωρίο D
που δημιουργείται από τους περιορισμούς των x και y.

a. f (x,y) = x3y, 0≤ x≤ 5, x≤ y≤ 2x+3.

a. f (x,y) =−2, 0≤ x≤ 3, 1≤ y≤ ex.

c. f (x,y) = x, 0≤ x≤ 1, 1≤ y≤ ex2
.

d. f (x,y) = cos(2x+ y), 1
2 ≤ x≤ π

2 , 1≤ y≤ 2x.

e. f (x,y) = 6xy− x2, στο χωρίο που φράσσεται από κάτω από την y = x2 και από
πάνω από την y =

√
x.

16.

Υπολογίστε το διπλό ολοκλήρωμα∫
D

xdA πάνω στο χωρίο D του
Σχήματος 2.55.

Σχήμα 2.55

Λύση.
3. Κατακόρυφη απλή περιοχή (ως y-προς-x):

D = {(x,y) : 0≤ x≤ 1, 0≤ y≤ 1− x2}.

Οριζόντια απλή περιοχή (ως x-προς-y):

D = {(x,y) : 0≤ y≤ 1, 0≤ x≤
√

1− y}.

Ολοκλήρωση δύο τρόπων για f (x,y) = xy:
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(α) Κατακόρυφη διάταξη∫∫
D

xydxdy =
∫ 1

0

∫ 1−x2

0
xydydx =

∫ 1

0
x
(1− x2)2

2
dx =

1
2

∫ 1

0

(
x−2x3 + x5)dx =

1
12

.

(β) Οριζόντια διάταξη∫∫
D

xydxdy =
∫ 1

0

∫ √1−y

0
xydxdy =

∫ 1

0
y

1− y
2

dy =
1
2

∫ 1

0
(y− y2)dy =

1
12

.

4. Δίνεται το χωρίο

D = {(x,y) : 0≤ x≤ 1, x2 ≤ y≤ 4− x2}.

Ως διαδοχικό ολοκλήρωμα (κατακόρυφη απλή περιοχή):∫∫
D

ydA =
∫ 1

0

∫ 4−x2

x2
ydydx =

∫ 1

0

[
1
2y2
]4−x2

y=x2
dx =

∫ 1

0

(
8−4x2

)
dx

=
[
8x− 4

3x3
]1

0
=

20
3
.

Εναλλακτικά (οριζόντια απλή περιοχή): το D γράφεται ως ένωση τριών ζωνών

0≤ y≤ 1 : 0≤ x≤√y,
1≤ y≤ 3 : 0≤ x≤ 1,

3≤ y≤ 4 : 0≤ x≤
√

4− y ,

οπότε ∫∫
D

ydA =
∫ 1

0

∫ √y

0
ydxdy+

∫ 3

1

∫ 1

0
ydxdy+

∫ 4

3

∫ √4−y

0
ydxdy =

20
3
.

5. (α) Η αντιπαραγώγιση ως προς y είναι ευκολότερη, γιατί

∂
∂y

exy = xexy

οπότε
∫

xexy dy = exy +C. Αντίθετα, ως προς x απαιτεί ολοκλήρωση κατά μέρη:

∫
xexy dx =

1
y2 (xy−1)exy +C.

(β)Με R = [0,1]× [0,1],∫∫
R

xexy dA =
∫ 1

0

∫ 1

0
xexy dydx =

∫ 1

0

[
exy]1

y=0 dx =
∫ 1

0

(
ex−1

)
dx =

[
ex− x

]1
0 =

e−2.
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6.(c)
Περιοχή: 0≤ x≤ 1, 1≤ y≤ ex2

, f (x,y) = x.

∫∫
D

xdA =
∫ 1

0

∫ ex2

1
xdydx =

∫ 1

0
x(ex2−1)dx =

[
1
2

ex2− 1
2

x2
]1

0
=

e−2
2

.

(Έλεγχος με αλλαγή σειράς): Για 1≤ y≤ e έχουμε
√

lny≤ x≤ 1, άρα∫∫
D

xdA =
∫ e

1

∫ 1

√
lny

xdxdy =
∫ e

1

1
2 (1− lny)dy =

e−2
2

.

16.
Το χωρίο D είναι ο δεξιός ημιδακτύλιος της στεφάνης 1≤ r ≤ 2, −π

2 ≤ θ ≤ π
2 .

∫∫
D

xdA =
∫ π/2

−π/2

∫ 2

1
(r cosθ)r dr dθ =

∫ π/2

−π/2
cosθ dθ

∫ 2

1
r2 dr =[

sinθ
]π/2

−π/2

[r3

3

]2

1
.

= (2)
(

8−1
3

)
=

14
3
.

2.17 Τριπλά ολοκληρώματα

Τα τριπλά ολοκληρώματα των συναρτήσεων
τριών μεταβλητών f (x,y,z) αποτελούν επέκταση
των διπλών ολοκληρωμάτων. Αρχικά, θα
αντιμετωπίσουμε την πιο απλή από τις περιπτώσεις,
όπου αντί για ένα ορθογώνιο που ανήκει στο επίπεδο,
το χωρίο μας θα είναι ένα κουτί, όπως φαίνεται στο
Σχήμα 2.56, που θα περιγράφεται ως

B = [a,b]× [c,d]× [p,q]

και θα αποτελείται από το σύνολο των σημείων
(x,y,z) του R3 ώστε

a≤ x≤ b, c≤ y≤ d, p≤ z≤ q

Σχήμα 2.56
Για να ολοκληρώσουμε μια συνάρτηση πάνω σε ένα τέτοιο κουτί, θα πρέπει να διαιρέσουμε

το κουτί σε μικρότερα κουτιά της μορφής
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Bi jk = [xi−1,xi]× [y j−1,y j]× [zk−1,zk]

επιλέγοντας τις διαμερίσεις των τριών διαστημάτων

a = x0 < x1 < · · ·< xN = b

c = y0 < y1 < · · ·< yM = d

p = z0 < z1 < · · ·< zL = q

με τα N, M και L να είναι θετικοί ακέραιοι αριθμοί. Ο όγκος κάθε μικρότερου κουτιού Bi jk είναι

∆Vi jk = ∆xi ∆y j ∆zk,

όπου

∆xi = xi− xi−1, ∆y j = y j− y j−1, ∆zk = zk− zk−1

Επιλέγουμε στη συνέχεια ένα τυχαίο σημείοPi jk από κάθε μικρότερο κουτίBi jk και σχηματίζουμε
το άθροισμα Riemann:

SN,M,L =
N

∑
i=1

M

∑
j=1

L

∑
k=1

f (Pi jk)∆Vi jk

Συμβολίζουμε με P = {{xi},{y j},{zk}} τη διαμέριση και έστω ‖P‖ το μέγιστο από τα
πλάτη ∆xi,∆y j,∆zk. Αν τα αθροίσματα Riemann SN,M,L προσεγγίζουν ένα όριο καθώς ‖P‖→
0 για μια τυχαία επιλογή των σημείων Pi jk, τότε θα λέμε ότι η συνάρτηση f είναι ολοκληρώσιμη
στο B. Αυτή η οριακή τιμή συμβολίζεται ως∫∫∫

B
f (x,y,z)dV = lim

‖P‖→0
SN,M,L

Σημείωση 2.17.1Ο όρος dA που χρησιμοποιείται στα διπλά ολοκληρώματα και αναφέρεται σε
ένα στοιχείο εμβαδού υποδηλώνει ότι οι επιφάνειες αυτές που εμπλέκονται στα ολοκληρώματα
πάνω σε χωρία του επιπέδου είναι μικρές. Παρομοίως, ο όρος dV που χρησιμοποιείται στα
τριπλά ολοκληρώματα καλείται στοιχείο όγκου και δηλώνει ότι οι όγκοι που εμπλέκονται στην
ολοκλήρωση σε ένα χωρίο R3 είναι μικροί.

Θεώρημα 2.17.2 Θεώρημα Fubini για τριπλά ολοκληρώματα Το τριπλό ολοκλήρωμα μιας
συνεχούς συνάρτησης f (x,y,z) σε ένα κουτί B = [a,b]× [c,d]× [p,q] είναι ίσο με ένα
διαδοχικό ολοκλήρωμα της μορφής:

∫∫∫
B

f (x,y,z)dV =

b∫
x=a

d∫
y=c

q∫
z=p

f (x,y,z)dzdydx

Επιπλέον, αυτό το διαδοχικό ολοκλήρωμα μπορεί να υπολογιστεί επιλέγοντας οποιαδήποτε
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σειρά ολοκλήρωσης ως προς τις τρεις μεταβλητές.

Παράδειγμα 2.17.3

Ολοκλήρωση σε ένα κουτί Υπολογίστε

το τριπλό ολοκλήρωμα
∫∫∫

B
x2ey+3z dV ,

όπου

B = [1,4]× [0,3]× [2,6].

Σχήμα 2.57 Το σημείο P = (x,y,z) ανήκει στη z-απλή
περιοχή W αν (x,y) ∈D και z1(x,y)≤ z≤ z2(x,y)

Λύση. Αρχικά, θα εκφράσουμε το τριπλό ολοκλήρωμα ως διαδοχικό ολοκλήρωμα με τον εξής
τρόπο: ∫∫∫

B
x2ey+3z dV =

∫ 4

1

∫ 3

0

∫ 6

2
x2ey+3z dzdydx

Βήμα 1: Υπολογίστε το εσωτερικό ολοκλήρωμα ως προς τη μεταβλητή z, κρατώντας τις μεταβλητές
x και y σταθερές.

∫ 6

z=2
x2ey+3zdz =

1
3

x2ey+3z

∣∣∣∣∣
6

z=2

=
1
3

x2ey+18− 1
3

x2ey+6 =
1
3

(
e18− e6

)
x2ey

Βήμα 2: Υπολογίστε το μεσαίο ολοκλήρωμα ως προς τη μεταβλητή y, διατηρώντας τη x σταθερή.∫ 3

y=0

1
3
(e18− e6)x2eydy =

1
3
(e18− e6)x2

∫ 3

y=0
eydy =

1
3
(e18− e6)x2(e3−1)

Βήμα 3: Υπολογίστε το εξωτερικό ολοκλήρωμα ως προς τη μεταβλητή x.∫∫∫
B
(x2ey+3z)dV =

1
3
(e18− e6)(e3−1)

∫ 4

x=1
x2dx = 7(e18− e6)(e3−1)

Στη συνέχεια, θα μελετήσουμε την περίπτωση όπου η ολοκλήρωση δεν γίνεται πάνω σε ένα κουτί,
αλλά λαμβάνει χώρα σε ένα στερεόW που περικλείεται μεταξύ δύο επιφανειών z = z1(x,y) και
z = z2(x,y) που βρίσκονται πάνω από ένα χωρίο D του επιπέδου xy (βλ. Σχήμα 2). Δηλαδή:

W = {(x,y,z) : (x,y) ∈ D και z1(x,y)≤ z≤ z2(x,y)}.

Θεώρημα 2.17.4 Το τριπλό ολοκλήρωμα μιας συνεχούς συνάρτησης f (x,y,z) σε μια περιοχή

W : (x,y) ∈ D, z1(x,y)≤ z≤ z2(x,y)

θα είναι ίσο με το διαδοχικό ολοκλήρωμα
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W
f (x,y,z)dV =

∫∫
D

(∫ z2(x,y)

z=z1(x,y)
f (x,y,z)dz

)
dA

Παρατηρήστε ότι το εσωτερικό ολοκλήρωμα στο δεξιό μέρος της ισότητας του θεωρήματος είναι
ένα απλό ολοκλήρωμα ως προς τη μεταβλητή z, ενώ το εξωτερικό ολοκλήρωμα είναι ένα διπλό
ολοκλήρωμα πάνω στις μεταβλητές x και y. Κατά κανόνα, μπορούμε να υπολογίσουμε αυτό
το διπλό ολοκλήρωμα ως ένα διπλό διαδοχικό ολοκλήρωμα. Ένα σημείο που δεν έχουμε θίξει
μέχρι στιγμής κατά τη θεώρησή μας είναι η γεωμετρική ερμηνεία των τριπλών ολοκληρωμάτων.
Είναι γνωστό ότι ένα διπλό ολοκλήρωμα αναπαριστά τον προσημασμένο όγκο μιας τρισδιάστατης
περιοχής που περικλείεται μεταξύ του γραφήματος z = f (x,y) και του επιπέδου xy. Το γράφημα
όμως μιας συνάρτησης τριών μεταβλητών f (x,y,z) βρίσκεται σε έναν τετραδιάστατο χώρο, επο-
μένως ένα τριπλό ολοκλήρωμα αναπαριστά έναν προσημασμένο «όγκο» μιας τετραδιάστατης
περιοχής. Μια τέτοια περιοχή είναι δύσκολο ή και αδύνατο να τη φανταστούμε. Από την άλλη
πλευρά, τα τριπλά ολοκληρώματα μπορούν να χρησιμοποιηθούν για τον υπολογισμό πολλών
διαφορετικών ποσοτήτων που εμφανίζονται σε ένα τρισδιάστατο πλαίσιο. Ορισμένα σχετικά
παραδείγματα είναι η μάζα, οι συντεταγμένες του κέντρου μάζας, οι ροπές αδράνειας, το θερμικό
περιεχόμενο ενός σώματος καθώς και το συνολικό φορτίο.

Επιπλέον, ο όγκοςV μιας περιοχήςW ορίζεται ως το τριπλό ολοκλήρωμα της σταθερής συνάρτησης
f (x,y,z) = 1, δηλαδή:

V =
∫∫∫

W 1dV

Πιο συγκεκριμένα, αν η W είναι μια z-απλή περιοχή που βρίσκεται μεταξύ των επιφανειών z =
z1(x,y) και z = z2(x,y), τότε:∫∫∫

W
1dV =

∫∫
D

(∫ z2(x,y)

z=z1(x,y)
1dz
)

dA =
∫∫

D
(z2(x,y)− z1(x,y))dA

Επομένως, το τριπλό ολοκλήρωμα από το οποίο υπολογίζεται ένας όγκος V είναι ίσο με
το διπλό ολοκλήρωμα που υπολογίζει τον όγκο της περιοχής που βρίσκεται μεταξύ των δύο
επιφανειών, όπως διαπιστώσαμε στην προηγούμενη ενότητα.

Παράδειγμα 2.17.5

Περιοχή που εκτείνεται πάνω από
ορθογώνιο χωρίο Υπολογίστε το τριπλό
ολοκλήρωμα ∫∫∫

W
z dV

όπου W είναι η περιοχή που βρίσκεται
μεταξύ των επιπέδων z = x + y και
z = 3x + 5y και εκτείνεται πάνω από
το ορθογώνιο D = [0,3]× [0,2] (Σχήμα
2.58).

Σχήμα 2.58 Η περιοχήW περικλείεται μεταξύ των επιπέδων
z = x+ y και z = 3x+5y και εκτείνεται πάνω
από το χωρίο D = [0,3]× [0,2]

Λύση.Θα εφαρμόσουμε το Θεώρημα 2 με z1(x,y) = x+ y και z2(x,y) = 3x+5y:
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W
zdV =

∫∫
D

(∫ 3x+5y

z=x+y
zdz
)

dA

=
∫ 3

x=0

∫ 2

y=0

∫ 3x+5y

z=x+y
zdzdydx

Βήμα 1: Υπολογίστε το εσωτερικό ολοκλήρωμα ως προς τη μεταβλητή z.∫ 3x+5y

z=x+y
zdz =

1
2

z2
∣∣∣3x+5y

z=x+y
=

1
2
(3x+5y)2− 1

2
(x+ y)2 = 4x2 +14xy+12y2

Βήμα 2: Υπολογίστε το ολοκλήρωμα ως προς τη μεταβλητή y.∫ 2

y=0

(
4x2 +14xy+12y2)dy =

(
4x2y+7xy2 +4y3)∣∣∣2

y=0
= 8x2 +28x+32

Βήμα 3: Υπολογίστε το ολοκλήρωμα ως προς τη μεταβλητή x.∫∫∫
W

zdV =
∫ 3

x=0
(8x2+28x+32)dx =

(
8
3

x3 +14x2 +32x
)∣∣∣3

0
= 72+126+96 = 294

Παράδειγμα 2.17.6

Περιοχή που εκτείνεται πάνω από
τριγωνικό χωρίο Υπολογίστε το τριπλό
ολοκλήρωμα

∫∫∫
W zdV , όπου W είναι η

περιοχή που φαίνεται στο Σχήμα 2.59.

Σχήμα 2.59 ΗπεριοχήW περικλείεται μεταξύ των επιπέδων
z = x + y και z = 3x + 5y και εκτείνεται πάνω από το
τριγωνικό χωρίο D

Λύση.Πρόκειται για μια περίπτωση τριπλού ολοκληρώματος που μοιάζει με αυτήν του προηγούμενου
παραδείγματος, με τη διαφορά ότι τώρα η περιοχή W εκτείνεται πάνω από το τριγωνικό χωρίο
που βρίσκεται στο επίπεδο xy και ορίζεται από τις ανισότητες:

0≤ x≤ 1, 0≤ y≤ 1− x

Επομένως, το ζητούμενο τριπλό ολοκλήρωμα θα είναι ίσο με το διαδοχικό ολοκλήρωμα:∫∫∫
W

zdV =
∫∫

D

(∫ 3x+5y

z=x+y
zdz
)

dA
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=
∫ 1

x=0

∫ 1−x

y=0︸ ︷︷ ︸
ολοκλήρωμα

στο τριγωνικό χωρίο

∫ 3x+5y

z=x+y
zdzdydx

Το εσωτερικό ολοκλήρωμα υπολογίστηκε στο προηγούμενο παράδειγμα:∫ 3x+5y

z=x+y
zdz =

1
2

z2
∣∣∣3x+5y

z=x+y
= 4x2 +14xy+12y2

Στη συνέχεια, θα ολοκληρώσουμεως προς τη μεταβλητή y (παραλείποντας ορισμένα ενδιάμεσα
βήματα):∫ 1−x

y=0
(4x2 +14xy+12y2)dy = 4x2y+7xy2 +4y3

∣∣∣1−x

y=0
= 4−5x+2x2− x3

Τέλος, έχουμε: ∫∫∫
W

zdV =
∫ 1

x=0

(
4−5x+2x2− x3) dx =

23
12

.

Παράδειγμα 2.17.7
Περιοχή που βρίσκεται μεταξύ τεμνόμενων επιφανειών Να ολοκληρώσετε τη συνάρτηση

f (x,y,z) = x στην περιοχή W που βρίσκεται κάτω από την επιφάνεια z = 4− x2− y2 και
πάνω από την z = x2 +3y2 στο ογδοημόριο x≥ 0, y≥ 0, z≥ 0 (βλέπε Σχήμα 2.60).

Λύση. Η περιοχή της ολοκλήρωσης W είναι z-απλή, επομένως θα έχουμε:∫∫∫
W

xdV =
∫∫

D

∫ 4−x2−y2

z=x2+3y2
xdzdA

όπου D είναι η προβολή της περιοχής W στο επίπεδο xy. Για να υπολογίσουμε το ζητούμενο
ολοκλήρωμα στο χωρίο W πρέπει να προσδιορίσουμε την εξίσωση της καμπύλης που αποτελεί
το σύνορο του D .

Σχήμα 2.60 Το στερεό που περιορίζεται μεταξύ των παραβολοειδών z = 4− x2− y2 και z = x2 +3y2 φαίνεται στο (α).
Η περιοχή στην οποία λαμβάνει χώρα η ολοκλήρωση φαίνεται στο (β).
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Βήμα 3: Προσδιορίστε το σύνορο του D . Οι επιφάνειες τέμνονται στα σημεία (x,y,z) που
ικανοποιούν ταυτόχρονα τις δύο εξισώσεις που περιγράφουν τις επιφάνειες, δηλαδή:

z = x2 +3y2 και z = 4− x2− y2

Άρα:

4− x2− y2 = x2 +3y2 ή αλλιώς x2 +2y2 = 2

Επομένως, όπως διαπιστώνουμε παρατηρώντας το Σχήμα 5β, η προβολή του στερεού W πάνω
στο χωρίοD είναι το ένα τέταρτο του εσωτερικού της έλλειψης x2+2y2 = 2 που βρίσκεται στο
πρώτο τεταρτημόριο. Η έλλειψη αυτή τέμνει τους άξονες στα σημεία (

√
2,0) και (0,1).

Βήμα 1: Εκφράστε το D ως ένα απλό χωρίο. Αφού το D είναι ταυτόχρονα κατακόρυφα
και οριζόντια απλό μπορούμε να προχωρήσουμε στην ολοκλήρωση είτε επιλέγοντας τη σειρά
ολοκλήρωσης dydx είτε την dxdy. Αν επιλέξουμε τη σειρά dxdy, τότε η y μεταβάλλεται από 0
μέχρι 1 και το χωρίο περιγράφεται από τις ανισώσεις:

D : 0≤ y≤ 1, 0≤ x≤
√

2−2y2

Βήμα 2: Γράψτε το τριπλό ολοκλήρωμα ως ένα διαδοχικό ολοκλήρωμα.

∫∫∫
W

xdV =
∫ 1

y=0

∫ √2−2y2

x=0

∫ 4−x2−y2

z=x2+3y2
xdzdxdy

Βήμα 3: Προχωρήστε στους υπολογισμούς. Τα αποτελέσματα από τις διαδοχικές ολοκληρώσεις
είναι τα εξής:

Εσωτερικό ολοκλήρωμα:

∫ 4−x2−y2

z=x2+3y2
xdz = x(z)

∣∣∣4−x2−y2

z=x2+3y2
= 4x−2x3−4y2x

Μεσαίο ολοκλήρωμα:

∫ √2−2y2

x=0
(4x−2x3−4y2x)dx =

(
2x2− 1

2
x4−2x2y2

)∣∣∣∣∣
√

2−2y2

x=0

= 2−4y2 +2y4

Τριπλό ολοκλήρωμα:

∫∫∫
W

xdV =
∫ 1

y=0
(2−4y2 +2y4)dy = 2− 4

3
+

2
5
=

16
15
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Έως τώρα έχουμε υπολογίσει τριπλά ολοκληρώματα σε
περιοχές W που ήταν z-απλές και η προβολή τους ήταν ένα
χωρίο στο επίπεδο xy. Με ανάλογο απλό τρόπο μπορούμε να
προχωρήσουμε σε ολοκληρώσεις σε περιοχές που είναι είτε x
είτε y απλές. Έτσι, για παράδειγμα, αν η περιοχή W είναι
η x-απλή περιοχή που περιορίζεται μεταξύ των γραφημάτων
των συναρτήσεων x = x1(y,z) και x = x2(y,z) και βρίσκονται
πάνω από ένα χωρίο D στο επίπεδο yz, όπως φαίνεται στο
Σχήμα 2.61, τότε θα ισχύει:∫∫∫

W
f (x,y,z)dV =

∫∫
D

(∫ x2(y,z)

x=x1(y,z)
f (x,y,z)dx

)
dA

Σχήμα 2.61 Το χωρίο D είναι η
προβολή του στερεού W πάνω στο
επίπεδο yz

Ασκήσεις 2.17.8
Να υπολογίσετε το τριπλό ολοκλήρωμα

∫∫∫
B

f (x,y,z)dV

για τη συνάρτηση f και το κουτί B που δίνεται σε κάθε περίπτωση.

1. (a) f (x,y,z) = xy+ z2, [−2,2]× [0,1]× [0,2]

(b) f (x,y,z) = xey−2z, 0≤ x≤ 2, 0≤ y≤ 1, 0≤ z≤ 1

(c) f (x,y,z) = x
(y+z)2 , [0,2]× [2,4]× [−1,1]

(d) f (x,y,z) = (x+ y− z)2, [0,a]× [0,b]× [0,c]

2. Να υπολογίσετε το τριπλό ολοκλήρωμα∫∫∫
W

f (x,y,z)dV

για τη συνάρτηση f και την περιοχή W που δίνεται σε κάθε περίπτωση.

(a) f (x,y,z) = x+ y, W : y≤ z≤ x, 0≤ y≤ x, 0≤ x≤ 1

(b) f (x,y,z) = ex+y+z, W : 0≤ z≤ 1, 0≤ y≤ x, 0≤ x≤ 1

(c) f (x,y,z) = xyz, W : 0≤ z≤ 1, 0≤ y≤
√

1− x2, 0≤ x≤ 1

(d) f (x,y,z) = x, W : x2 + y2 ≤ z≤ 4

(e) f (x,y,z) = ez, W : x+ y+ z≤ 1, x≥ 0, y≥ 0, z≥ 0

(f) f (x,y,z) = z, W : 0≤ x≤ 1, x2 ≤ y≤ 2, x− y≤ z≤ x+ y
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3.

Υπολογίστε το τριπλό ολοκλήρωμα της
συνάρτησης

f (x,y,z) = z

πάνω στην περιοχήW του Σχήματος 11, η
οποία βρίσκεται κάτω από το ημισφαίριο
ακτίνας 3 και εκτείνεται πάνω από το
τριγωνικό χωρίο D του επιπέδου xy, με το
τελευταίο να φράσσεται από τις ευθείες

x = 1, y = 0, x = y. Σχήμα 2.62 Το χωρίο D είναι η
προβολή του στερεού W πάνω στο
επίπεδο yz

4.

Έστω η περιοχή του Σχήματος 2.64 η οποία
φράσσεται από τις

y+ z = 2, 2x = y, x =
0 και z = 0

Να εκφράσετε και να υπολογίσετε το
τριπλό ολοκλήρωμα της συνάρτησης

f (x,y,z) = 2x−4y+6z

θεωρώντας την περιοχή W ως: Σχήμα 2.63 Το χωρίο D είναι η
προβολή του στερεού W πάνω στο
επίπεδο yz

(i) z-απλή περιοχή, οπότε θα πρέπει αρχικά να ολοκληρώσετε ως προς τη μεταβλητή
z, με z1(x,y)≤ z≤ z2(x,y) για τις κατάλληλες συναρτήσεις z1 και z2.

(ii) x-απλή περιοχή, οπότε θα πρέπει αρχικά να ολοκληρώσετε ως προς τη μεταβλητή
x, με x1(y,z)≤ x≤ x2(y,z) για τις κατάλληλες συναρτήσεις x1 και x2.

(iii) y-απλή περιοχή, οπότε θα πρέπει αρχικά να ολοκληρώσετε ως προς τη μεταβλητή
y, με y1(x,z)≤ y≤ y2(x,z) για τις κατάλληλες συναρτήσεις y1 και y2.

Έστω

W = {(x,y,z) :
√

x2 + y2 ≤ z≤ 1}

(βλ. Σχήμα 2.64). Να εκφράσετε το τριπλό
ολοκλήρωμα∫∫∫

W f (x,y,z)dV

ως ένα διαδοχικό ολοκλήρωμα με σειρά
ολοκλήρωσης την dzdydx (για μια τυχαία
συνάρτηση f ).

5.

Σχήμα 2.64
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2.18 Ολοκλήρωση σε πολικές, κυλινδρικές και σφαιρικές συντετα-
γμένες

Στον Λογισμό μίας μεταβλητής, μια καλά επιλεγμένη
αντικατάσταση (που αποκαλείται επίσης και αλλαγή
μεταβλητών) μετασχηματίζει πολύ συχνά ένα πολύπλοκο
ολοκλήρωμα σε ένα πολύ απλούστερο. Η αλλαγή μεταβλητών
αποδεικνύεται ότι είναι επίσης εξαιρετικά χρήσιμη στον
Λογισμό πολλών μεταβλητών, αλλά η έμφαση βρίσκεται τώρα
σε ένα διαφορετικό σημείο. Έτσι, στον Λογισμό πολλών
μεταβλητών, ενδιαφερόμαστε συνήθως για την απλοποίηση
όχι μόνο της ολοκληρωτέας παράστασης, αλλά και για την
απλοποίηση της αναπαράστασης του χωρίου στο οποίο
λαμβάνει χώρα η ολοκλήρωση.
Στην παρούσα ενότητα θα μελετήσουμε τρεις από τις πλέον
χρήσιμες αλλαγές μεταβλητών, με τη βοήθεια των οποίων
εκφράζουμε ένα ολοκλήρωμα σε πολικές, κυλινδρικές ή
σφαιρικές συντεταγμένες. Όπως φαίνεται στο Σχήμα 2.65,
συγκεκριμένα φυσικά συστήματα μπορούν να περιγραφούν
πολύ πιο εύκολα με το κατάλληλο σύστημα συντεταγμένων. .

Σχήμα 2.65 Οι
σφαιρικές συντεταγμένες
χρησιμοποιούνται στη μελέτη
μαθηματικών μοντέλων του
γήινου μαγνητικού πεδίου. Στην
εικόνα, που έχει δημιουργηθεί
με τη βοήθεια προσομοίωσης
σε ηλεκτρονικό υπολογιστή με
βάση το μοντέλο Glatzmaier-
Roberts, απεικονίζονται οι
μαγνητικές δυναμικές γραμμές
που εισέρχονται (με μπλε
χρώμα) και εξέρχονται (με
κίτρινο χρώμα) από τη Γη.

2.18.1 Διπλό ολοκλήρωμα σε πολικές συντεταγμένες
Οι πολικές συντεταγμένες είναι βολικές όταν το χωρίο
ολοκλήρωσης είναι ένας γωνιακός τομέας ή ένα πολικό
ορθογώνιο, όπως αυτό του Σχήματος 2.66, που ορίζεται ως:

R : θ1 ≤ θ ≤ θ2, r1 ≤ r ≤ r2

Στην ανάλυση που θα ακολουθήσει θα υποθέσουμε ότι r1 ≥
0 και επίσης ότι όλες οι ακτινικές συντεταγμένες δεν είναι
αρνητικές. Θυμηθείτε τώρα ότι οι ορθογώνιες και οι πολικές
συντεταγμένες συνδέονται μέσω των σχέσεων

x = r cosθ , y = r sinθ

Αυτό σημαίνει ότι μπορούμε να εκφράσουμε μια συνάρτηση
f (x,y) σε πολικές συντεταγμένες ως f (r cosθ ,r sinθ). Ο
τύπος αλλαγής μεταβλητών για ένα πολικό ορθογώνιο R έχει
τη μορφή:

Σχήμα 2.66 Πολικές συντεταγμένες

Ύπαρξη του επιπλέον παράγοντα rστην ολοκληρωτέα μορφή

∫
R

f (x,y)dA =
∫ θ2

θ1

∫ r2

r1

f (r cosθ ,r sinθ)r dr dθ

Παρατηρήστε την ύπαρξη του επιπλέον παράγοντα r στην ολοκληρωτέα μορφή που εμφανίζεται
στο δεξιό μέλος της ισότητας. Η ύπαρξη του παράγοντα αυτού θα αιτιολογηθεί όταν αποδείξουμε
τον γενικό τύπο αλλαγής μεταβλητών.
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Παράδειγμα 2.18.1

Υπολογίστε το διπλό ολοκλήρωμα∫
D
(x+ y)dA,

όπου D είναι το ένα τέταρτο του δακτυλίου που φαίνεται στο
Σχήμα 2.67.

Σχήμα 2.67 Το ένα τέταρτο
ενός δακτυλίου που ορίζεται από τις
ανισώσεις 0≤ θ ≤ π

2
, 2≤ r≤ 4.

Λύση.Το ένα τέταρτο ενός δακτυλίου αποτελεί παράδειγμα χωρίου που είναι ακτινικά απλό.
Βήμα 1 Περιγράψτε το χωρίο D και τη συνάρτηση f σε πολικές συντεταγμένες.
Το ένα τέταρτο του δακτυλίου D ορίζεται από τις ανισότητες (βλ. Σχήμα 2.67):

D : 0≤ θ ≤ π
2
, 2≤ r ≤ 4.

Σε πολικές συντεταγμένες η συνάρτηση παίρνει τη μορφή

f (x,y) = x+ y = r cosθ + r sinθ = r(cosθ + sinθ).

Βήμα 2 Αλλαγή μεταβλητών και υπολογισμός.
Για να εκφράσουμε το ζητούμενο ολοκλήρωμα σε πολικές συντεταγμένες θα αντικαταστήσουμε

το dA με r dr dθ , οπότε θα έχουμε:∫∫
D
(x+ y)dA =

∫ π
2

0

∫ 4

2
r(cosθ + sinθ)r dr dθ .

Το εσωτερικό ολοκλήρωμα είναι:∫ 4

r=2
(cosθ + sinθ)r2 dr = (cosθ + sinθ)

(
43

3
− 23

3

)
=

56
3
(cosθ + sinθ).

και τελικά:∫∫
D
(x+ y)dA =

56
3

∫ π
2

0
(cosθ + sinθ)dθ =

56
3
(
sinθ − cosθ

)∣∣∣π
2

0
=

112
3

.

Παράδειγμα 2.18.2
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Υπολογίστε το διπλό ολοκλήρωμα∫∫
D(x

2 + y2)−2 dA

για το σκιασμένο χωρίο D του Σχήματος 2.68.

Σχήμα 2.68

Λύση. Βήμα 1 Περιγράψτε το χωρίο D και τη συνάρτηση f σε πολικές συντεταγμένες.

Το τεταρτοκύκλιο βρίσκεται στον γωνιακό τομέα

0≤ θ ≤ π
4
,

καθώς η ευθεία που διέρχεται από το σημείο

P = (1,1)

σχηματίζει γωνία
π
4
με τον άξονα x, όπως φαίνεται στο Σχήμα 2.68.

• Η κατακόρυφη ευθεία γραμμή x = 1 περιγράφεται από την πολική εξίσωση

r cosθ = 1 =⇒ r = secθ .

• Ο κύκλος με ακτίνα 1 και κέντρο το σημείο (1,0) έχει πολική εξίσωση

r = 2cosθ .

Επομένως, μια ημιευθεία που σχηματίζει γωνία θ με τον θετικό ημιάξονα x θα τέμνει το χωρίο
D σε τμήμα όπου η ακτινική μεταβλητή παίρνει τιμές μεταξύ secθ και 2cosθ . Με άλλα λόγια,
το χωρίο ολοκλήρωσης είναι ακτινικά απλό και περιγράφεται σε πολικές συντεταγμένες από τις
ανισώσεις:

D : 0≤ θ ≤ π
4 , secθ ≤ r ≤ 2cosθ .

Η ολοκληρωτέα συνάρτηση εκφράζεται σε πολικές συντεταγμένες ως:

f (x,y) = (x2 + y2)−2 = (r2)−2 = r−4.

Βήμα 2 Αλλαγή μεταβλητών και υπολογισμός.

Για να εκφράσουμε το ζητούμενο ολοκλήρωμα σε πολικές συντεταγμένες θα αντικαταστήσουμε
το dA με r dr dθ , οπότε θα έχουμε:

∫∫
D
(x2 + y2)−2 dA =

∫ π
4

0

∫ 2cosθ

r=secθ
r−4 r dr dθ =

∫ π
4

0

∫ 2cosθ

secθ
r−3 dr dθ .

Βήμα 3 Εσωτερικό ολοκλήρωμα και τελικό αποτέλεσμα.

Το εσωτερικό ολοκλήρωμα είναι:
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r=secθ
r−3 dr =

[
−1

2r−2]2cosθ
r=secθ =−1

8
sec2 θ +

1
2

cos2 θ .

Επομένως:

∫∫
D
(x2 + y2)−2 dA =

∫ π
4

0

(1
2

cos2 θ − 1
8

sec2 θ
)

dθ =
[1

4
(
θ +

1
2

sin2θ
)
− 1

8
tanθ

]π
4

0
=

π
16

.

2.18.2 Τριπλό ολοκλήρωμα σε κυλινδρικές συντεταγμένες

Οι κυλινδρικές συντεταγμένες είναι χρήσιμες όταν το χωρίο στο οποίο γίνεται η ολοκλήρωση
έχει αξονική συμμετρία - διαθέτει, δηλαδή, συμμετρία ως προς κάποιον άξονα. Στις κυλινδρικές
συντεταγμένες (r,θ ,z) ο άξονας συμμετρίας είναι ο άξονας z. Θυμηθείτε επίσης τις σχέσεις
μετατροπής των κυλινδρικών συντεταγμένων σε ορθογώνιες (βλ. Σχήμα 2.69a):

x = r cosθ , y = r sinθ , z = z.

Για να γράψουμε ένα τριπλό ολοκλήρωμα σε κυλινδρικές συντεταγμένες θα υποθέσουμε ότι
η περιοχή ολοκλήρωσης W μπορεί να περιγραφεί ως μια περιοχή που περικλείεται μεταξύ δύο
επιφανειών, όπως φαίνεται στο Σχήμα 2.69b, δηλαδή ως:

z1(r,θ) ≤ z≤ z2(r,θ)

η οποία αναπτύσσεται πάνω από το ακτινικά απλό χωρίο D του επιπέδου xy που περιγράφεται,
σε πολικές συντεταγμένες, από τις ανισώσεις:

D : θ1 ≤ θ ≤ θ2, r1(θ)≤ r ≤ r2(θ).

Τότε το τριπλό ολοκλήρωμα

∫∫∫
W

f (x,y,z)dV

μετατρέπεται σε

∫ θ2

θ1

∫ r2(θ)

r1(θ)

∫ z2(r,θ)

z1(r,θ)
f
(
r cosθ ,r sinθ ,z

)
r dzdr dθ .
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(a) Γραφική παράσταση της y = f (x). (b) Γραφική παράσταση της z = f (x,y).

Σχήμα 2.69 Κυλινδρικές συντεταγμένες και περιγραφή χωρίου

Θεώρημα 2.18.3Τριπλό ολοκλήρωμα σε κυλινδρικές συντεταγμένες Για μια συνεχή συνάρτηση
f στην περιοχή

θ1 ≤ θ ≤ θ2, r1(θ)≤ r ≤ r2(θ), z1(r,θ)≤ z≤ z2(r,θ),

το τριπλό ολοκλήρωμα ∫∫∫
W

f (x,y,z)dV

είναι ίσο με ∫ θ2

θ1

∫ r2(θ)

r1(θ)

∫ z2(r,θ)

z1(r,θ)
f (r cosθ ,r sinθ ,z) r dzdr dθ

Παράδειγμα 2.18.4

Να ολοκληρώσετε τη συνάρτηση f (x,y,z) =

z
√

x2 + y2 στην κυλινδρική περιοχή W η οποία
ορίζεται από τις ανισώσεις x2+y2 ≤ 4 για 1≤ z≤
5 (βλ. Σχήμα 2.70).

Σχήμα 2.70

Λύση. Η περιοχή W στην οποία γίνεται η ολοκλήρωση εκτείνεται πάνω από τον δίσκο ακτίνας 2
με κέντρο την αρχή των αξόνων, επομένως σε κυλινδρικές συντεταγμένες περιγράφεται ως εξής

W : 0≤ θ ≤ 2π, 0≤ r ≤ 2, 1≤ z≤ 5

Θα εκφράσουμε την ολοκληρωτέα συνάρτηση σε κυλινδρικές συντεταγμένες, οπότε θα έχουμε:
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f (x,y,z) = z
√

x2 + y2 = zr

και θα ολοκληρώσουμε χρησιμοποιώντας το στοιχείο όγκου dV = r dzdr dθ .∫∫∫
W

z
√

x2 + y2 dV =
∫ 2π

0

∫ 2

0

∫ 5

z=1
(zr)r dzdr dθ =

∫ 2π

0

∫ 2

0
12r2 dr dθ =

∫ 2π

0
32dθ = 64π

2.18.3 Τριπλό ολοκλήρωμα σε σφαιρικές συντεταγμένες

Στον τύπο αλλαγής μεταβλητών που
χρησιμοποιήσαμε στην περίπτωση των κυλινδρικών
συντεταγμένων, ο στοιχειώδης όγκος εκφράστηκε ως
dV = r dr dθ dz. Στις σφαιρικές συντεταγμένες, η
ανάλογη σχέση για τον στοιχειώδη όγκο είναι

dV = ρ2 sinϕ dρ dϕ dθ

Σχήμα 2.71 Σφαιρικές
συντεταγμένες

Για να ξεκινήσουμε τη διαδικασία που θα μας οδηγήσει στην απόδειξη αυτής της σχέσης θα πρέπει
να θυμηθούμε τις σχέσεις:

x = ρ sinϕ cosθ , y = ρ sinϕ sinθ , z = ρ cosϕ , r = ρ sinϕ

οι οποίες φαίνονται στο το Σχήμα 2.71.

Θεώρημα 2.18.5 Τριπλό ολοκλήρωμα σε σφαιρικές συντεταγμένες Για μια περιοχή W που
ορίζεται ως

θ1 ≤ θ ≤ θ2, ϕ1 ≤ ϕ ≤ ϕ2, ρ1(θ ,ϕ)≤ ρ ≤ ρ2(θ ,ϕ)

το τριπλό ολοκλήρωμα ∫∫∫
W

f (x,y,z)dV

είναι ίσο με∫ θ2

θ1

∫ ϕ2

ϕ1

∫ ρ2(θ ,ϕ)

ρ1(θ ,ϕ)
f (ρ sinϕ cosθ , ρ sinϕ sinθ , ρ cosϕ)ρ2 sinϕ dρ dϕ dθ

Παράδειγμα 2.18.6
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Υπολογίστε το τριπλό ολοκλήρωμα της συνάρτησης
f (x,y,z) = z πάνω στην κωνική περιοχή W του
Σχήματος 2.72 , που θυμίζει το χωνάκι ενός παγωτού,
η οποία βρίσκεται πάνω από τον κώνο και κάτω από
τη σφαίρα.

Σχήμα 2.72 Το χωνάκι ενός
παγωτού ορίζεται από τις ανισώσεις

0≤ ρ ≤ R, 0≤ ϕ ≤ π
4

Λύση. Ο κώνος έχει εξίσωση x2 + y2 = z2 και σε σφαιρικές συντεταγμένες εκφράζεται ως:

(ρ sinϕ cosθ)2 +(ρ sinϕ sinθ)2 = (ρ cosϕ)2

ρ2 sin2 ϕ(cos2 θ + sin2 θ) = ρ2 cos2 ϕ

sin2 ϕ = cos2 ϕ

sinϕ =±cosϕ ⇒ ϕ =
π
4
,
3π
4

Ο μισός κώνος που βρίσκεται πάνω από το επίπεδο xy έχει εξίσωση ϕ =
π
4
. Η σφαίρα έχει

εξίσωση ρ =R, επομένως το χωνάκι του παγωτού στο οποίο γίνεται η ολοκλήρωση περιγράφεται
ως:

W : 0≤ θ ≤ 2π, 0≤ ϕ ≤ π
4
, 0≤ ρ ≤ R

Προκύπτει, επομένως, το ακόλουθο ολοκλήρωμα για το οποίο, όπως και στο προηγούμενο
παράδειγμα, θα ολοκληρώσουμε πρώτα ως προς τη συντεταγμένη θ , καθώς το αποτέλεσμα των
δύο εσωτερικών ολοκληρωμάτων είναι ανεξάρτητα από αυτήν. Δηλαδή:∫∫∫

W
zdV =

∫ 2π

0

∫ π/4

0

∫ R

0
(ρ cosϕ)ρ2 sinϕ dρ dϕ dθ

= 2π
∫ π/4

0
∫ R

0 ρ3 cosϕ sinϕ dρ dϕ =
πR4

2

∫ π/4

0
sinϕ cosϕ dϕ =

πR4

8

Ασκήσεις 2.18.7
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1. Στις Ασκήσεις (a) - (f) να σχεδιάσετε το χωρίοD που αναφέρεται σε κάθε περίπτωση και
να υπολογίσετε το ολοκλήρωμα της αντίστοιχης συνάρτησης f (x,y) πάνω στο χωρίοD
χρησιμοποιώντας πολικές συντεταγμένες.

(a) f (x,y) =
√

x2 + y2, x2 + y2 ≤ 2

(b) f (x,y) = x2 + y2, 1≤ x2 + y2 ≤ 4

(c) f (x,y) = xy, x≥ 0, y≥ 0, x2 + y2 ≤ 4

(d) f (x,y) = y(x2 + y2)3, y≥ 0, x2 + y2 ≤ 1

(e) f (x,y) = y(x2 + y2)−1, y≥ 1
2 , x2 + y2 ≤ 1

(f) f (x,y) = ex2+y2
, x2 + y2 ≤ R

2. Για κάθε ένα από τα παρακάτω ολοκληρώματα:

(i) να σχεδιαστεί το χωρίο ολοκλήρωσης, και

(ii) να υπολογιστεί το ολοκλήρωμα έπειτα από μεταβολή μεταβλητών σε πολικές συν-
τεταγμένες.

(a)
∫ 2

−2

∫ √4−x2

0
(x2 + y2)dydx

(b)
∫ 3

0

∫ √9−y2

0

√
x2 + y2 dxdy

(c)
∫ 1/2

0

∫ √1−x2

√
3x

xdydx

(d)
∫ 4

0

∫ √16−x2

0
tan−1

(y
x

)
dydx

(e)
∫ 5

0

∫ y

0
xdxdy

(f)
∫ 2

0

∫ √3x

x
ydydx

(g)
∫ 2

−1

∫ √4−x2

0
(x2 + y2)dydx

(h)
∫ 2

1

∫ √2x−x2

0

1√
x2 + y2

dydx

3. Χρησιμοποιήστε κυλινδρικές συντεταγμένες για να υπολογίσετε το τριπλό ολοκλήρωμα
της συνάρτησης f (x,y,z)= z στην περιοχή που βρίσκεται πάνω από τον δίσκο x2+y2≤
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1 του επιπέδου xy και κάτω από την επιφάνεια

z = 4+ x2 + y2.

2.19 Αλλαγή μεταβλητών
Στην παρούσα ενότητα θα μελετήσουμε απεικονίσεις της μορφής

G : D ⊆ R2 −→ R2,

όπου D είναι ένα χωρίο του επιπέδου R2. Για να μη δημιουργείται σύγχυση ανάμεσα στις
μεταβλητές του πεδίου ορισμού και σε εκείνες του πεδίου τιμών, θα χρησιμοποιούμε συνήθως τα
γράμματα u,v για τις μεταβλητές στο πεδίο ορισμού, ενώ τα x,y θα αναφέρονται στις αντίστοιχες
μεταβλητές του πεδίου τιμών. Με βάση αυτή τη σύμβαση, η απεικόνιση G γράφεται

G(u,v) = (x(u,v), y(u,v)),

όπου οι συναρτήσεις x(u,v) και y(u,v) παριστούν τις καρτεσιανές συντεταγμένες ενός σημείου
του πεδίου τιμών ως συναρτήσεις των μεταβλητών u,v του πεδίου ορισμού. Δηλαδή,

x = x(u,v), y = y(u,v).

Αντιστρόφως, αν η απεικόνιση είναι αντιστρέψιμη, μπορούμε να εκφράσουμε και τις u,v ως
συναρτήσεις των x,y:

u = u(x,y), v = v(x,y).

Σχήμα 2.73 Η απεικόνιση G απεικονίζει το χωρίο R του επιπέδου (u,v) στο αντίστοιχο χωρίο D του επιπέδου (x,y).

Ορισμός 2.19.1 Ιακωβιανός Πίνακας Έστω ένας μετασχηματισμός

G : (u,v) 7−→ (x,y),

όπου οι συναρτήσεις x = x(u,v) και y = y(u,v) είναι συνεχώς παραγωγίσιμες. Ο Ιακωβιανός
πίνακας του G ορίζεται ως ο πίνακας όλων των πρώτων μερικών παραγώγων:
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JG(u,v) =


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 .

Η Ιακωβιανή ορίζουσα του μετασχηματισμού G είναι

det(JG) = |J(u,v)|=
∂ (x,y)
∂ (u,v)

=
∂x
∂u

∂y
∂v
− ∂x

∂v
∂y
∂u

.

Σχόλιο 2.19.2 Γεωμετρική Ερμηνεία της Αλλαγής Μεταβλητών Το πρόβλημα της αλλαγής
μεταβλητών μπορεί να διατυπωθεί γεωμετρικά ως εξής:
Δοθέντος ενός χωρίου προς ολοκλήρωση πάνω σε μια επιφάνεια του επιπέδου xy, αναζητούμε
ένα νέο σύστημα συντεταγμένων (u,v), έτσι ώστε μέσω ενός κατάλληλου μετασχηματισμού

G : (u,v) 7→ (x,y)

να εκφράσουμε το στοιχειώδες μέτρο dxdy ως παραμορφωμένη εικόνα του στοιχειώδους μέ-
τρου dudv. Με αυτόν τον τρόπο μπορούμε να υπολογίσουμε το ίδιο ολοκλήρωμα στην περιοχή
του επιπέδου xy με πιο συμβατό και απλούστερο τρόπο. Η σχέση μεταξύ των δύο στοιχείων
μέτρου δίνεται από

dxdy = |J(u,v)|dudv,

όπου ο παράγοντας |J(u,v)| εκφράζει την τοπική παραμόρφωση εμβαδού που προκαλεί ο μετα-
σχηματισμός G.

Παράδειγμα 2.19.3
Υπολογισμός Ιακωβιανής ορίζουσας Υπολογίστε την Ιακωβιανή ορίζουσα της απεικόνισης

G(u,v) = (u3 + v, uv)

για (u,v) = (2,1).

Λύση. Έχουμε ότι x = u3 + v και y = uv, επομένως:

JG(u,v) =
∂ (x,y)
∂ (u,v)

=

∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
3u2 1

v u

∣∣∣∣∣∣∣∣= 3u3− v

Η τιμή της Ιακωβιανής ορίζουσας στο (2,1) είναι:

JG(x,y)(2,1) = 3(2)3−1 = 23.

Αν λοιπόν το χωρίο R στο επίπεδο uv είναι απλό (π.χ. ορθογώνιο), και το D = G(R) είναι το
αντίστοιχο χωρίο στο xy–επίπεδο, τότε η παραπάνω αντιστοίχιση γράφεται

G(R) = D ,
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και το ολοκλήρωμα ∫∫
D

f (x,y)dxdy

ισοδυναμεί με ∫∫
R

f (G(u,v)) |JG(u,v)|dudv.

Επομένως, ζητούμε έναν μετασχηματισμό G που να προσαρμόζει το μονάδιαιο «πλακάκι» του
uv–επιπέδου στο μονάδιαιο μέτρο επιφάνειας του xy–επιπέδου, με συντελεστή παραμόρφωσης
k = |JG(u,v)|, ώστε η ολοκλήρωση πάνω στο δύσκολο χωρίοD να μετατραπεί σε ολοκλήρωση
πάνω σε ένα απλούστερο χωρίο R.

Θεώρημα 2.19.4 Τύπος αλλαγής μεταβλητών, Έστω ότι ηG : R→D είναι μιαC1 απεικόνιση
που είναι ένα προς ένα στο εσωτερικό του R. Αν η συνάρτηση f (x,y) είναι συνεχής, τότε:∫∫

D
f (x,y)dxdy =

∫∫
R

f (x(u,v), y(u,v))
∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv.

Σχήμα 2.74 Η G απεικονίζει ένα ορθογώνιο πλέγμα R σε ένα καμπυλωμένο πλέγμα D .

Παράδειγμα 2.19.5
Αναθεώρηση των πολικών συντεταγμένων Χρησιμοποιήστε τον τύπο αλλαγής μεταβλητών για

να αποδείξετε τη σχέση που ισχύει για την ολοκλήρωση σε πολικές συντεταγμένες.

Λύση. Η Ιακωβιανή ορίζουσα της απεικόνισης των πολικών συντεταγμένων

G(r,θ) = (r cosθ ,r sinθ)

είναι:

JG(r,θ) =

∣∣∣∣∣∣∣∣
∂x
∂ r

∂x
∂θ

∂y
∂ r

∂y
∂θ

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
cosθ −r sinθ

sinθ r cosθ

∣∣∣∣∣∣∣∣= r(cos2 θ + sin2 θ) = r
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Ας υποθέσουμε ότιD =G(R) είναι η εικόνα υπό την απεικόνιση των πολικών συντεταγμένων
G του ορθογωνίουR που ορίζεται από τις ανισώσεις r1 ≤ r≤ r2, θ1 ≤ θ ≤ θ2, όπως φαίνεται
στο Σχήμα 2.75. Τότε, προκύπτει η γνωστή σχέση για την ολοκλήρωση σε πολικές συντεταγμένες,
δηλαδή: ∫∫

D
f (x,y)dxdy =

∫ θ2

θ1

∫ r2

r1

f (r cosθ ,r sinθ)r dr dθ

Σχήμα 2.75 Η απεικόνιση πολικών συντεταγμένων G(r,θ) = (r cosθ , r sinθ).

Παράδειγμα 2.19.6
Απεικόνιση πολικών συντεταγμένων. Περιγράψτε την εικόνα ενός πολικού ορθογωνίου

R = [r1,r2]× [θ1,θ2]

μέσω της απεικόνισης πολικών συντεταγμένων.

Λύση.Μια γνωστή απεικόνιση αυτού του τύπου είναι η απεικόνιση των πολικών συντεταγμένων:

G(r,θ) = (r cosθ , r sinθ),

η οποία αντιστοιχίζει κάθε σημείο (r,θ) (απόσταση και γωνία) στο σημείο (x,y) του καρτεσια-
νού επιπέδου. Η αντίστροφη απεικόνιση δίνεται από

r =
√

x2 + y2, θ = tan−1
(y

x

)
.

Από το Σχήμα 2.75 παρατηρούμε ότι:
• Μια κατακόρυφη ευθεία γραμμή

r = r1

(σημειώνεται με κόκκινο χρώμα στο σχήμα) απεικονίζεται σε ένα σύνολο σημείων με ακτινική
συντεταγμένη ίση με r1 και οποιαδήποτε τιμή γωνίας. Πρόκειται λοιπόν για έναν κύκλο
ακτίνας r1.

• Μια οριζόντια ευθεία

θ = θ1

(σημειώνεται με στικτή γραμμή στο σχήμα) απεικονίζεται σε ένα σύνολο σημείων με ίδια
γωνία θ1 και αυθαίρετη τιμή της r-συντεταγμένης. Πρόκειται για μια ευθεία γραμμή που
διέρχεται από την αρχή των αξόνων και σχηματίζει γωνία θ1 με τον θετικό ημιάξονα x.
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Η εικόνα του

R = [r1,r2]× [θ1,θ2]

υπό την απεικόνιση πολικών συντεταγμένων

G(r,θ)

είναι το πολικό ορθογώνιο στο επίπεδο xy, που ορίζεται από τις ανισώσεις

r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2.

Σχόλιο 2.19.7Η αλλαγή συντεταγμένων καθιστά πολλές περιοχές συμμετρίας (όπως κύκλους ή
τομείς) ευκολότερα περιγράψιμες, καθώς σε πολικές συντεταγμένες γράφονται με απλούστερες
εξισώσεις.

2.19.1 Γραμμικές απεικονήσεις
Οι πιο γενικές απεικονίσεις μπορεί να είναι εξαιρετικά πολύπλοκες, επομένως είναι χρήσιμο να
ξεκινήσουμε μελετώντας λεπτομερώς τις απλούστερες των περιπτώσεων— δηλαδή τις γραμμικές
απεικονίσεις.

Μια απεικόνιση

G(u,v)

λέγεται γραμμική αν έχει τη μορφή

G(u,v) = (Au+Cv, Bu+Dv),

όπου A,B,C,D είναι σταθερές.
Μπορούμε να αποκτήσουμε καλύτερη εικόνα μιας τέτοιας γραμμικής απεικόνισης θεωρώντας

την G ως μια αντιστοίχιση μεταξύ των διανυσμάτων του επιπέδου uv και των διανυσμάτων του
επιπέδου xy.

Η απεικόνιση G διαθέτει τις ακόλουθες ιδιότητες γραμμικότητας.

G(u1 +u2, v1 + v2) = G(u1,v1)+G(u2,v2)

G(cu, cv) = cG(u,v) (c οποιαδήποτε σταθερά)
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Σχήμα 2.76 Η απεικόνιση πολικών συντεταγμένων G(r,θ) = (r cosθ , r sinθ).

Μια άμεση συνέπεια αυτών των δύο ιδιοτήτων είναι ότι ηG απεικονίζει το παραλληλόγραμμο που
σχηματίζεται από δύο οποιαδήποτε διανύσματα a και b στο επίπεδο uv στο παραλληλόγραμμο
που σχηματίζεται από τις εικόνες G(a) και G(b), όπως φαίνεται στο Σχήμα 2.76. Γενικότερα,
η απεικόνιση G απεικονίζει το ευθύγραμμο τμήμα που ενώνει δύο οποιαδήποτε σημεία P και
Q στο ευθύγραμμο τμήμα που ενώνει τις εικόνες τους G(P) και G(Q). Έτσι, το πλέγμα που
σχηματίζεται από τα διανύσματα βάσης i = 〈1,0〉 και j = 〈0,1〉 απεικονίζεται σε ένα πλέγμα
που σχηματίζεται από τις εικόνες αυτών των διανυσμάτων, όπως φαίνεται στο Σχήμα 2.76, δηλαδή
τα διανύσματα:

r = G(1,0) = 〈A,B〉, s = G(0,1) = 〈C,D〉.

Παράδειγμα 2.19.8
Εικόνα ενός τριγώνου Προσδιορίστε την εικόνα ενός τριγώνουT με κορυφές τα σημεία (1,2),

(2,1) και (3,4) υπό τη γραμμική απεικόνιση

G(u,v) = (2u− v, u+ v).

Λύση.
Αφού η απεικόνιση G είναι γραμμική, θα αντιστοιχεί σε κάθε ευθύγραμμο τμήμα που ενώνει

δύο κορυφές του τριγώνου T το ευθύγραμμο τμήμα που ενώνει τις εικόνες των αντίστοιχων
κορυφών. Επομένως, η εικόνα του τριγώνου T θα είναι το τρίγωνο με κορυφές τις εικόνες των
σημείων (βλ. Σχήμα 2.77):

G(1,2) = (0,3), G(2,1) = (3,3), G(3,4) = (2,7).

Σχήμα 2.77 Η απεικόνιση G(u,v) = (2u− v, u+ v).

Παράδειγμα 2.19.9
Έστω η απεικόνιση G(u,v) = (uv−1, uv) για u > 0 και v > 0. Προσδιορίστε τις εικόνες:

(α) Των ευθειών u = c και v = c.
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(β) Του ορθογωνίου [1,2]× [1,2].
Προσδιορίστε επίσης την αντίστροφη απεικόνιση G−1.

Λύση. (a) Στη συγκεκριμένη απεικόνιση ισχύει

x = uv−1, y = uv.

Επομένως,

xy = u2,
y
x
= v2.

Η G απεικονίζει την κατακόρυφη ευθεία u = c στην υπερβολή xy = c2. και η οριζόντια ευθεία
v = c απεικονίζεται στο σύνολο των σημείων για τα οποία ισχύει

y
x
= c2, δηλαδή y = c2x, που

είναι ευθεία που διέρχεται από την αρχή των αξόνων και έχει κλίση c2 (βλ. Σχήμα 2.78).

Σχήμα 2.78 Η απεικόνιση G(u,v) = (uv−1, uv).

(b) Η εικόνα του ορθογωνίου [1,2]× [1,2] είναι το καμπυλωμένο ορθογώνιο που περιορίζεται
από τέσσερις καμπύλες, οι οποίες είναι οι εικόνες των ευθειών u = 1, u = 2 και v = 1, v = 2.
Με βάση τα προηγούμενα, η ζητούμενη περιοχή ορίζεται από τις ανισότητες

1≤ xy≤ 4, 1≤ y
x
≤ 4.

Για να προσδιορίσουμε την αντίστροφη απεικόνισηG−1 θα χρησιμοποιήσουμε τις προηγούμενες
εξισώσεις, προκειμένου να καταλήξουμε στις σχέσεις

u =
√

xy και v =
√

y
x
.

Επομένως, η αντίστροφη απεικόνιση θα είναι

G−1(x,y) =
(
√

xy,
√

y
x

)
,

όπου κρατήσαμε τις θετικές τετραγωνικές ρίζες, καθώς ισχύει u > 0 και v > 0 στο συγκεκριμένο
χωρίο.
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Σχόλιο 2.19.10 Θα πρέπει να θυμάστε ότι ο τύπος αλλαγής μεταβλητών μετατρέπει ένα ολοκλή-
ρωμα με μεταβλητές τις x,y σε ολοκλήρωμα με μεταβλητές τις u,v, αλλά η απεικόνιση G
έχει ως πεδίο ορισμού ένα χωρίο uv και ως πεδίο τιμών ένα χωρίο xy. Ορισμένες φορές είναι
πιο εύκολο να προσδιορίσουμε μια απεικόνιση F που έχει τη αντίθετη κατεύθυνση, δηλαδή
«ξεκινά» από ένα χωρίο xy και «καταλήγει» σε ένα χωρίοuv. Στην περίπτωση αυτή, η επιθυμητή
απεικόνιση G είναι η αντίστροφη της F , δηλαδή

G = F−1.

Το παράδειγμα που ακολουθεί δείχνει ότι ορισμένες φορές είναι εφικτό να υπολογίσουμε ένα
ολοκλήρωμα χωρίς καν να χρειαστεί να επιλύσουμε ως προς G. Το σημείο-κλειδί που εκμεταλ-
λευόμαστε για να επιτύχουμε κάτι τέτοιο είναι το γεγονός ότι η Ιακωβιανή ορίζουσα τηςG είναι
η αντίστροφη της Ιακωβιανής της απεικόνισης F , δηλαδή:

Αν G = F−1 και JF(x,y) 6= 0, τότε

JG(u,v) = JF−1(x,y).

Η σχέση μεταξύ των Ιακωβιανών οριζουσών των F και G μπορεί να γραφεί και στην ακόλουθη
μορφή:

∂ (x,y)
∂ (u,v)

=

(
∂ (u,v)
∂ (x,y)

)−1

.

Παράδειγμα 2.19.11
Χρήση της αντίστροφης απεικόνισης, Ολοκληρώστε τη συνάρτηση

f (x,y) = xy(x2 + y2)

στο χωρίο

D :−3≤ x2− y2 ≤ 3, 1≤ xy≤ 4.

Λύση. Υπάρχει μια απλή απεικόνιση F η οποία έχει τη «λάθος» κατεύθυνση. Θέτουμε

u = x2− y2, v = xy.

Με τον τρόπο αυτόν, το χωρίο μας ορίζεται από τις ανισότητες

−3≤ u≤ 3, 1≤ v≤ 4,

επομένως μπορούμε να ορίσουμε μια απεικόνιση από το χωρίοD στο ορθογώνιοR = [−3,3]×
[1,4] στο επίπεδο uv, όπως φαίνεται στο Σχήμα 2.79, δηλαδή:

F : D →R, (x,y) 7→ (x2− y2, xy).
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Σχήμα 2.79 Η απεικόνιση F έχει την αντίστροφη κατεύθυνση.

Ο Ιακωβιανός πίνακας του F είναι

JF(x,y) =

∣∣∣∣∣∣∣∣
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
2x −2y

y x

∣∣∣∣∣∣∣∣= 2x · x− (−2y) · y = 2
(
x2 + y2

)
.

Συνεπώς, αφού JF(x,y) 6= 0 στην R, ισχύει ο τύπος

JG(u,v) = JF−1(x,y) =
1

JF(x,y)
=

1
2
(
x2 + y2

) .
Κανονικά το επόμενο βήμα θα ήταν να εκφράσουμε τη συνάρτηση f (x,y) με τη βοήθεια των
μεταβλητών u και v. Μπορούμε όμως, στην περίπτωσή μας, να αποφύγουμε αυτό το βήμα αν
παρατηρήσουμε ότι η Ιακωβιανή απλοποιείται με έναν από τους παράγοντες της συνάρτησης
f (x,y), δηλαδή:

∫∫
D

f (x,y)dxdy =
∫∫

D
xy(x2 + y2)dxdy =

∫∫
R

f (x(u,v),y(u,v)) |J(G)|dudv

=
∫∫

R
xy(x2 + y2)

1
2(x2 + y2)

dudv =
1
2

∫∫
R

xydudv.

Επειδή v = xy, προκύπτει:

1
2

∫∫
R

xydudv =
1
2

∫∫
R

vdudv =
1
2

∫ 3

−3

∫ 4

1
vdvdu =

1
2
.6
(

1
2

42− 1
2

12
)
=

45
2
.

Σχόλιο 2.19.12 Μπορούμε να ορίσουμε απευθείας τον μετασχηματισμό G από το ορθογώνιο
R = [−3,3]× [1,4] στο uv–επίπεδο στο χωρίο D στο xy–επίπεδο, χωρίς να χρειαστεί να
υπολογίσουμε τον αντίστροφο του F . Να δούμε αν αντιμετωπίσουμε προβλήματα και ποιά;
Ξεκινάμε από το σύστημα
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u = x2− y2,
v = xy.

Λύνουμε ως προς x,y. Θέτουμε R =
√

u2 +4v2, οπότε:

x2 + y2 =
√

u2 +4v2 = R, x2 =
R+u

2
, y2 =

R−u
2

.

Επειδή στο συγκεκριμένο χωρίο έχουμε v > 0 (άρα x,y > 0), παίρνουμε τον θετικό κλάδο των
ριζών. Επομένως:

G(u,v) =

(√
R+u

2
,

√
R−u

2

)
, R =

√
u2 +4v2.

Πράγματι, ελέγχουμε ότι:

xy =

√
R+u

2

√
R−u

2
=

√
R2−u2

2
=

√
4v2

2
= v,

και

x2− y2 =
(R+u)− (R−u)

2
= u.

Επομένως έχουμε

x(u,v) =

√
R+u

2
, y(u,v) =

√
R−u

2
, R =

√
u2 +4v2.

Ru =
u
R
, Rv =

4v
R
.

∂ux =
1

2
√

(R+u)/2
· Ru +1

2
=

Ru +1
4x

, ∂vx =
1

2
√

(R+u)/2
· Rv

2
=

Rv

4x
,

∂uy =
1

2
√

(R−u)/2
· Ru−1

2
=

Ru−1
4y

, ∂vy =
1

2
√

(R−u)/2
· Rv

2
=

Rv

4y
.

JG =

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= (∂ux)(∂vy)− (∂vx)(∂uy) =
1

16xy

[
(Ru +1)Rv− (Ru−1)Rv

]
=

Rv

8xy
.

Με Rv =
4v
R

παίρνουμε

JG =
1

8xy
· 4v

R
=

v
2Rxy

.

Από τους ορισμούς x,y:
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xy =

√
R+u

2

√
R−u

2
=

√
R2−u2

4
=

√
u2 +4v2−u2

4
=

√
4v2

4
= |v|.

Στο εξεταζόμενο χωρίο v > 0, άρα xy = v και επομένως

JG =
1

2R
=

1
2
√

u2 +4v2
.

Τελική μορφή του ολοκληρώματος χωρίς χρήση αντιστρόφου:∫∫
D

f (x,y)dxdy =
∫∫

D ′
f
(
x(u,v),y(u,v)

) ∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv =∫∫
D ′

f
(√R+u

2
,

√
R−u

2

) 1
2
√

u2 +4v2
dudv, R =

√
u2 +4v2.

f (x,y) = xy(x2 + y2), D : −3≤ x2− y2 ≤ 3, 1≤ xy≤ 4.

Θέτουμε:

u = x2− y2, v = xy.

Τότε το χωρίο D αντιστοιχίζεται στο

D ′ : −3≤ u≤ 3, 1≤ v≤ 4.

Εκφράζουμε τη f (x,y) συναρτήσει των (u,v):

f (x(u,v),y(u,v)) = xy(x2 + y2) = v(x2 + y2) = vR = v
√

u2 +4v2.

Από τα προηγούμενα έχουμε:

JG =

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= 1
2
√

u2 +4v2
.

Άρα το ολοκλήρωμα γράφεται:∫∫
D

f (x,y)dxdy =
∫∫

D ′
f
(
x(u,v),y(u,v)

) ∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv =∫∫
D ′

f
(√R+u

2
,

√
R−u

2

) 1
2
√

u2 +4v2
dudv =∫∫

D ′
v
√

u2 +4v2 1
2
√

u2 +4v2
dudv =

1
2

∫∫
D ′

vdudv.

Υπολογίζουμε:∫∫
D ′

vdudv =
∫ 3

u=−3

∫ 4

v=1
vdvdu =

∫ 3

u=−3
du ·

∫ 4

v=1
vdv

= 6
∫ 4

1
vdv = 6

[
v2

2

]4

1
= 3(16−1) = 45.
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Τελικά: ∫∫
D

f (x,y)dxdy =
1
2
×45 = 22.5.

2.20 Αλλαγή μεταβλητών στην περίπτωση τριών μεταβλητών
Ο τύπος αλλαγής μεταβλητών έχει την ίδια μορφή στην περίπτωση που έχουμε τρεις (ή και ακόμα
περισσότερες) μεταβλητές, με τη σχέση που αναλύσαμε για την περίπτωση των δύο μεταβλητών.
Έστω η

G : W0→W

η οποία απεικονίζει μια περιοχή W0 του τρισδιάστατου χώρου (u,v,w) σε μια περιοχή W του
τρισδιάστατου χώρου (x,y,z), μέσω των σχέσεων

x = x(u,v,w), y = y(u,v,w), z = z(u,v,w).

Η Ιακωβιανή ορίζουσα JG(x,y,z) είναι η ορίζουσα 3×3:

JG(x,y,z) =
∂ (x,y,z)
∂ (u,v,w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂ z
∂u

∂ z
∂v

∂ z
∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

οπότε ο τύπος αλλαγής μεταβλητών παίρνει τη μορφή:

dxdydz =
∣∣∣∣ ∂ (x,y,z)
∂ (u,v,w)

∣∣∣∣dudvdw.

Αν θέλουμε να είμαστε πιο αυστηροί, θα πρέπει να αναφέρουμε ότι αν η απεικόνιση G είναι C1

και ένα προς ένα στο εσωτερικό της περιοχής W0 και η f είναι συνεχής, τότε:∫∫∫
W

f (x,y,z)dxdydz =
∫∫∫

W0

f (x(u,v,w), y(u,v,w), z(u,v,w))
∣∣∣∣ ∂ (x,y,z)
∂ (u,v,w)

∣∣∣∣dudvdw.

Στις Ασκήσεις 42 και 43 θα έχετε την ευκαιρία να χρησιμοποιήσετε τον γενικό τύπο αλλαγής
μεταβλητών, για να αποδείξετε τις σχέσεις για την ολοκλήρωση σε κυλινδρικές και σφαιρικές
συντεταγμένες που αναφέρθηκαν στην Ενότητα 15.4.

Παράδειγμα 2.20.1

1. Στις Ασκήσεις (a)–(c) θεωρήστε ότι η

G(u,v) = (2u+ v, 5u+3v)
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είναι μια απεικόνιση από το επίπεδο uv στο xy.

(a) Να αποδείξετε ότι η εικόνα της οριζόντιας ευθείας v = c, υπό την απεικόνιση G,
είναι η ευθεία με εξίσωση

y =
5
2

x+
1
2

c.

Ποια είναι η εικόνα (σε μορφή κλίσης–τεταγμένης) της κατακόρυφης ευθείας u= c;

(b) Περιγράψτε την εικόνα της ευθείας που διέρχεται από τα σημεία

(u,v) = (1,1) και (u,v) = (1,−1),

υπό την απεικόνιση G, στη μορφή κλίσης–τεταγμένης.

(c) Περιγράψτε την εικόνα της ευθείας

v = 4u,

υπό την απεικόνιση G, στη μορφή κλίσης–τεταγμένης.

2. Στις Ασκήσεις (a)–(f) υπολογίστε την Ιακωβιανή ορίζουσα (στο σημείο, εφόσον αυτό αναφέ-
ρεται).

(a) G(u,v) = (3u+4v, u−2v)

(b) G(r,s) = (rs, r+ s)

(c) G(r, t) = (r sin t, r− cos t), (r, t) = (1,π)

(d) G(u,v) = (v lnu, u2v−1), (u,v) = (1,2)

(e) G(r,θ) = (r cosθ , r sinθ), (r,θ) =
(
4,

π
6
)

(f) G(u,v) = (uev, eu)

3. ΈστωD το παραλληλόγραμμο του Σχήματος 2.80. Εφαρμόστε τον τύπο αλλαγής μεταβλη-
τών στην απεικόνιση

G(u,v) = (5u+3v, u+4v)

προκειμένου να υπολογίσετε το ολοκλήρωμα∫∫
D

xydxdy

ως ένα ολοκλήρωμα πάνω στο χωρίο

R = [0,1]× [0,1].
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Σχήμα 2.80

4. Έστω η απεικόνιση

G(u,v) = (u−uv, uv).

(a) Δείξτε ότι η εικόνα της οριζόντιας ευθείας v = c είναι η

y =
c

1− c
x αν c 6= 1,

ενώ είναι ο άξονας y αν c = 1.

(b) Προσδιορίστε τις εικόνες των κατακόρυφων ευθειών του επιπέδου uv.

(c) Υπολογίστε την Ιακωβιανή ορίζουσα της απεικόνισης G. Υπολογίστε το διπλό
ολοκλήρωμα ∫∫

D xydxdy.

Σχήμα 2.81

(d) Παρατηρήστε ότι, σύμφωνα με τον τύπο του εμβαδού ενός τριγώνου, το χωρίο D
του Σχήματος 2.81 έχει εμβαδόν

1
2
(b2−a2).

Υπολογίστε το εμβαδόν αυτό εκ νέου, χρησιμοποιώντας τον τύπο αλλαγής μετα-
βλητών για την απεικόνιση G.

5. Υπολογίστε το διπλό ολοκλήρωμα∫∫
D
(x+3y)dxdy

όπου D είναι η σκιασμένη περιοχή του Σχήματος 2.82.
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Υπόδειξη: Χρησιμοποιήστε την απεικόνιση

G(u,v) = (u−2v, v).

Σχήμα 2.82

6. Χρησιμοποιήστε την απεικόνιση

G(u,v) =
(

u
v+1

,
uv

v+1

)
για να υπολογίσετε το διπλό ολοκλήρωμα∫∫

D(x+ y)dxdy,

όπου D είναι η σκιασμένη περιοχή του Σχήματος 2.83.

Σχήμα 2.83

7. Σχεδιάστε το χωρίο

D = {(x,y) : 1≤ x+ y≤ 4,−4≤ y−2x≤ 1}.

(a) Έστω F η απεικόνιση

u = x+ y, v = y−2x

από το επίπεδο xy στο επίπεδο uv, ενώ G είναι η αντίστροφή της. Χρησιμοποιήστε
την Εξίσωση (14) για να υπολογίσετε την JG(x,y).

(b) Υπολογίστε το διπλό ολοκλήρωμα∫∫
D

ex+y dxdy

με τον τύπο αλλαγής μεταβλητών για την απεικόνιση G.
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8. Να σχεδιάσετε το χωρίο D που φράσσεται από τις καμπύλες

y =
2
x
, y =

1
2x

, y = 2x, y =
x
2

και βρίσκεται στο πρώτο τεταρτημόριο. Έστω F η απεικόνιση

u = xy, v =
y
x

από το επίπεδο xy στο επίπεδο uv.
(a) Βρείτε την εικόνα του χωρίου D υπό την απεικόνιση F .

(b) Έστω ότι G = F−1. Να αποδείξετε ότι

|JG|=
1

2|v|
.

(c) Χρησιμοποιήστε τον τύπο αλλαγής μεταβλητών για να αποδείξετε τη σχέση∫∫
D

f
(y

x

)
dxdy =

3
4

∫ 2

1/2

f (v)
v

dv.

(d) Εφαρμόστε το αποτέλεσμα που αποδείξατε στο ερώτημα (γ) για να υπολογίσετε το
διπλό ολοκλήρωμα ∫∫

D

yey/x

x
dxdy.

9. Χρησιμοποιήστε την απεικόνιση

G(u,v) =
(u+ v

2
,

u− v
2

)
για να υπολογίσετε το διπλό ολοκλήρωμα∫∫

R

(
(x− y)sin(x+ y)

)2 dxdy

όπου R είναι το τετράγωνο με κορυφές τα σημεία (π,0), (2π,π), (π,2π) και (0,π).

Λύση.

1. Δίνεται η απεικόνιση

G(u,v) = (x,y) = (2u+ v, 5u+3v)

(a) Έστω η οριζόντια ευθεία v = c στο επίπεδο uv.
Τότε:

x = 2u+ c, y = 5u+3c

Απομονώνουμε u από την πρώτη:
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u =
x− c

2
και αντικαθιστούμε στη δεύτερη:

y = 5
x− c

2
+3c =

5
2

x− 5
2

c+3c =
5
2

x+
1
2

c

Άρα η εικόνα της ευθείας v = c είναι η ευθεία

y =
5
2

x+
1
2

c.

Για την κατακόρυφη ευθεία u = c ισχύει:

x = 2c+ v, y = 5c+3v.

Από την πρώτη v = x−2c και στη δεύτερη:

y = 5c+3(x−2c) = 3x− c.

Άρα η εικόνα της κατακόρυφης ευθείας u = c είναι:

y = 3x− c.

(b) Η ευθεία που διέρχεται από τα σημεία (u,v) = (1,1) και (u,v) = (1,−1) έχει
εξίσωση u = 1.
Από το (a) γνωρίζουμε ότι η εικόνα της u = c είναι y = 3x− c. Άρα, για c = 1
έχουμε:

y = 3x−1.

(c) Για την ευθεία v = 4u ισχύει:

x = 2u+4u = 6u, y = 5u+3(4u) = 17u.

Απομονώνουμε u από την πρώτη: u =
x
6
, και αντικαθιστούμε:

y = 17
x
6
⇒ y =

17
6

x.

Άρα η εικόνα της ευθείας v = 4u είναι η ευθεία:

y =
17
6

x.

3.
G(u,v) = (x,y) = (5u+3v, u+4v), R = [0,1]× [0,1].

Υπολογίζουμε τον Ιακωβιανό:
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JG(u,v) =

∣∣∣∣∣∣∣
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
5 3

1 4

∣∣∣∣∣∣∣= 5 ·4−3 ·1 = 17.

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= 17.

Αντικαθιστούμε: x = 5u+3v, y = u+4v.

xy = (5u+3v)(u+4v) = 5u2 +23uv+12v2.

∫∫
D

xydxdy =
∫∫

R
(5u2 +23uv+12v2)

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv =

17
∫ 1

0

∫ 1

0
(5u2 +23uv+12v2)dvdu.

∫ 1

0
(5u2 +23uv+12v2)dv = 5u2v+

23
2

uv2 +4v3
∣∣∣1
0
= 5u2 +

23
2

u+4.

∫ 1

0
(5u2 +

23
2

u+4)du =
5
3
+

23
4
+4 =

20+69+48
12

=
137
12

.

I = 17 · 137
12

=
2329

12
.

4.
G(u,v) = (u−uv, uv).

(a)

Για την οριζόντια ευθεία v = c, έχουμε: x = u(1− c), y = uc.

Άρα y =
c

1− c
x, αν c 6= 1, και y είναι ο άξονας y αν c = 1.

(b)

Για κάθετα σημεία u = k, προκύπτει: x = k(1− v), y = kv ⇒ x+ y = k.

(c)

Υπολογίζουμε τον Ιακωβιανό:
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J =

∣∣∣∣∣∣∣
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
1− v −u

v u

∣∣∣∣∣∣∣= u.

(d)

Αν το χωρίο D αντιστοιχεί στο R : [a,b]× [0,1], τότε το ολοκλήρωμα γίνεται:

∫∫
D

xydxdy =
∫∫

R
x(u,v)y(u,v)

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv =
∫∫

R
(u−uv)(uv) |u|dudv.

Εφόσον u > 0, έχουμε:
∫∫

R
(u−uv)(uv)ududv =

∫∫
R
(u3v−u3v2)dudv.

∫∫
R
(u3v−u3v2)dudv =

∫ b

a
u3 du

∫ 1

0
(v− v2)dv =

[
u4

4

]b

a

[
v2

2
− v3

3

]1

0
.

=
1
4
(b4−a4)

(
1
2
− 1

3

)
=

1
4
(b4−a4)

1
6
=

1
24

(b4−a4) .

Το εμβαδόν του χωρίου (όπως στο Σχήμα 1.9) είναι:

A =
1
2
(b2−a2),και επαληθεύεται μέσω του μετασχηματισμού G.

5.
G(u,v) = (x,y) = (u−2v, v). ⇒ R = [6,10]× [1,3].

JG(x,y) =

∣∣∣∣∣∣∣
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
1 −2

0 1

∣∣∣∣∣∣∣= 1, x+3y = (u−2v)+3v = u+v.

∫∫
D
(x+3y)dxdy =

∫∫
R
(u+ v)dudv =

∫ 3

1

∫ 10

6
(u+ v)dudv.

∫ 10

6
(u+ v)du =

u2

2
+ vu

∣∣∣10

6
= 32+4v, ⇒

∫ 3

1
(32+4v)dv =

32 ·2+2(32−12) = 80.

Επομένως, ∫∫
D
(x+3y)dxdy = 80.
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6.
G(u,v) = (x,y) =

( u
v+1

,
uv

v+1

)
, ⇒ u = x+ y, v =

y
x
.

Όρια: y= x⇒ v= 1, y= 2x⇒ v= 2, x+y= 6⇒ u= 6. ⇒ R = [0,6]× [1,2].

Ιακωβιανός:
∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣=
∣∣∣∣∣∣∣∣

1
v+1

− u
(v+1)2

v
v+1

u
(v+1)2

∣∣∣∣∣∣∣∣=
u

(v+1)2 .

∫∫
D
(x+ y)dxdy =

∫∫
R

u
u

(v+1)2 dudv =
∫ 2

1

∫ 6

0

u2

(v+1)2 dudv.

∫ 6

0
u2 du =

[
u3

3

]6

0
= 72,

∫ 2

1

1
(v+1)2 dv =

[
− 1

v+1

]2

1
=

1
6
.

Επομένως, ∫∫
D
(x+ y)dxdy = 72 · 1

6
= 12.

7.
D = {(x,y) : 1≤ x+ y≤ 4, −4≤ y−2x≤ 1}.

(a) Ο μετασχηματισμός:

F(x,y) = (u,v) = (x+ y, y−2x).

JF =

∣∣∣∣∣∣∣
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

1 1

−2 1

∣∣∣∣∣∣∣= 3 ⇒ JG(x,y) =
∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= 1
3
.

(β) Αλλαγή μεταβλητών για
∫∫

D
ex+y dxdy. Από τους ορισμούς:

u = x+ y, v = y−2x⇒R = [1,4]× [−4,1]. Επίσης ex+y = eu.

∫∫
D

ex+y dxdy =
∫∫

R
eu JG dudv =

∫∫
R

eu 1
3

dudv

=
1
3

∫ 1

−4

∫ 4

1
eu dudv =

1
3
(1− (−4))(e4− e) =

5
3
(e4− e) .
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8. Δίνεται: D ⊂ R2 στο τεταρτημόριο με σύνορα

y =
2
x
, y =

1
2x

, y = 2x, y =
x
2
. F(x,y) = (u,v) = (xy,

y
x
).

(a) Εικόνα του D με τον F .

y =
2
x
⇒ u = 2, y =

1
2x
⇒ u =

1
2
, y = 2x⇒ v = 2, y =

x
2
⇒ v =

1
2
.

⇒ R = {(u,v) :
1
2
≤ u≤ 2,

1
2
≤ v≤ 2}.

(b) Ιακωβιανός του G = F−1.

JF(u,v) =

∣∣∣∣∣∣∣
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

y x

− y
x2

1
x

∣∣∣∣∣∣∣= 2
y
x
= 2v.

⇒ |JG|=
∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= 1
|JF |

=
1

2|v|
. (στο D : v > 0⇒ |v|= v)

(c) Τύπος αλλαγής μεταβλητών για ∫∫
D

f
(y

x

)
dxdy.

∫∫
D

f
(y

x

)
dxdy =

∫∫
R

f (v) |JG|dudv =
∫∫

R
f (v)

1
2v

dudv =(∫ 2

1
2

du
)

1
2

∫ 2

1
2

f (v)
v

dv =
3
4

∫ 2

1/2

f (v)
v

dv .

(d) Υπολογισμός ∫∫
D

yey/x

x
dxdy.

y
x
= v⇒ ολοκλ. συνάρτηση vev.

∫∫
D

yey/x

x
dxdy =

∫∫
R

(
vev) |JG|dudv =

∫∫
R

(
vev) 1

2v
dudv

=
1
2

(∫ 2

1
2

du
)∫ 2

1
2

ev dv =
3
4
(
e2− e1/2) .

9. Θέτουμε την αλλαγή

(x,y) = G(u,v) =
(u+ v

2
,

u− v
2

)
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οπότε

u = x+ y, v = x− y.

Ο Ιακωβιανός είναι

JG(x,y) =

∣∣∣∣∣∣∣∣∣∣
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1
2

1
2

1
2
−1

2

∣∣∣∣∣∣∣∣∣∣
=−1

2
,

|JG(x,y)|=
1
2
, dxdy =

1
2

dudv.

Το ολοκλήρωμα γράφεται

((x− y)sin(x+ y))2 = (vsinu)2 = v2 sin2 u.

Η περιοχή R έχει κορυφές (π,0),(2π,π),(π,2π),(0,π). Με u = x+ y, v = x− y
παίρνουμε ορθογώνιο:

π ≤ u≤ 3π, −π ≤ v≤ π.

Πράγματι, Για τον μετασχηματισμό

u = x+ y, v = x− y,

παίρνουμε τα 4 κορυφαία σημεία της περιοχής R:

(π,0), (2π,π), (π,2π), (0,π).

Υπολογίζουμε u και v σε καθένα:

• Στο (π,0): u = π +0 = π , v = π−0 = π .

• Στο (2π,π): u = 2π +π = 3π , v = 2π−π = π .

• Στο (π,2π): u = π +2π = 3π , v = π−2π =−π .

• Στο (0,π): u = 0+π = π , v = 0−π =−π .

Άρα οι τιμές του u κυμαίνονται από π έως 3π , ενώ οι τιμές του v από−π έως π :

π ≤ u≤ 3π, −π ≤ v≤ π.

Άρα ∫∫
R

(
(x− y)sin(x+ y)

)2 dxdy =
∫ 3π

π

∫ π

−π
v2 sin2 u

1
2

dvdu =

1
2

(∫ π

−π
v2 dv

)(∫ 3π

π
sin2 udu

)
.

Υπολογίζουμε



173

Κεφάλαιο 3 Λογισμός πολλών μεταβλητών:
Θεωρία και Εφαρμογές∫ π

−π
v2 dv =

2π3

3
,

∫ 3π

π
sin2 udu = π.

Συνεπώς ∫∫
R

(
(x− y)sin(x+ y)

)2 dxdy =
1
2
· 2π3

3
·π =

π4

3
.
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2.21 Πεπλεγμένες Συναρτήσεις

Στον λογισμό των συναρτήσεων μίας μεταβλητής χρησιμοποιήσαμε την πεπλεγμένη παράγωγη

για να προσδιορίσουμε την
dy
dx

στην περίπτωση που η y ορίζεται πεπλεγμένα ως συνάρτηση του

x μέσω μιας εξίσωσης της μορφής f (x,y) = 0. Η μέθοδος αυτή μπορεί να χρησιμοποιηθεί και
για συναρτήσεις με περισσότερες μεταβλητές. Ας υποθέσουμε ότι η z ορίζεται πεπλεγμένα από
μια εξίσωση της μορφής

F(x,y,z) = 0.

Τότε γενικεύοντας την πεπλεγμένη παράγωγη στις εξισώσεις της μορφής f (x,y) = 0 έχουμε τα
εξής:

Ορισμός 2.21.1 Λέμε ότι η εξίσωση F(x,y,z) = 0 ορίζει με πεπλεγμένη μορφή μια συνάρτηση
z = f (x,y) στον χωρίο D ⊆ R2, αν για κάθε (x,y) ∈D ισχύει η σχέση

F(x,y, f (x,y)) = 0.

Θεώρημα 2.21.2 Έστω η εξίσωση F(x,y,z) = 0 και το σημείο (x0,y0,z0) εσωτερικό σημείο
ενός χωρίου D ⊆ R3. Αν ισχύουν οι παρακάτω προϋποθέσεις:


(i) F(x0,y0,z0) = 0,

(ii) Fx, Fy, Fz είναι συνεχείς στο D ,

(iii) Fz(x0,y0,z0) 6= 0,

τότε υπάρχει μια περιοχή I0 γύρω από το σημείο (x0,y0) στην οποία ορίζεται μία και μόνον
μία διαφορίσιμη συνάρτηση z = f (x,y) τέτοια ώστε:

(a) z0 = f (x0,y0),

(b) F(x,y, f (x,y)) = 0,

(c)
∂ z
∂x

=−Fx

Fz
,

∂ z
∂y

=−
Fy

Fz
.

Λύση. Από

F(x,y,z) = 0 ⇒ dF(x,y,z) = 0

έχουμε
∂F
∂x

dx+
∂F
∂y

dy+
∂F
∂ z

dz = 0 (i)

Επίσης, από

z = f (x,y)
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παίρνουμε

dz =
∂ f
∂x

dx+
∂ f
∂y

dy (ii)

Αντικαθιστούμε τη (ii) στη (i):

∂F
∂x

dx+
∂F
∂y

dy+
∂F
∂ z

(
∂ f
∂x

dx+
∂ f
∂y

dy
)
= 0

Συγκεντρώνοντας όρους ως προς dx και dy:(
∂F
∂x

+
∂F
∂ z

∂ f
∂x

)
dx+

(
∂F
∂y

+
∂F
∂ z

∂ f
∂y

)
dy = 0

Επειδή η σχέση ισχύει για κάθε dx,dy, οι συντελεστές πρέπει να μηδενίζονται:

∂F
∂x

+
∂F
∂ z

∂ f
∂x

= 0,
∂F
∂y

+
∂F
∂ z

∂ f
∂y

= 0

Άρα προκύπτει:

∂ f
∂x

=−Fx

Fz
,

∂ f
∂y

=−
Fy

Fz

Σημείωση 2.21.3
1. Αν μας ζητείται να αποδείξουμε ότι η F(x,y,z) = 0 ορίζει συνάρτηση z = f (x,y) γύρω

από το σημείο (x0,y0,z0), τότε αρκεί να δείξουμε ότι ικανοποιούνται οι σχέσεις (i),
(ii), (iii) του προηγούμενου θεωρήματος. (Η συνέχεια των Fx,Fy,Fz συνήθως θα είναι
προφανής από άθροισμα – γινόμενο – πηλίκο συνεχών συναρτήσεων.)

2. Αν μας ζητείται να αποδείξουμε ότι ηF(x,y,z)= 0 ορίζει συνάρτηση z= f (x,y) γενικό-
τερα στο χωρίο D , τότε δείχνουμε ότι η F(x,y,z) = 0 έχει ως προς z μοναδική λύση
στον και ότι ικανοποιούνται στον οι σχέσεις (ii), (iii) του θεωρήματος.

Σχόλιο 2.21.4 Πολλές φορές, προς χάριν ομοιομορφίας και απλότητας των αποδείξεων στις
ασκήσεις, θα χρησιμοποιούμε τον συμβολισμό zx αντί για fx και zy αντί για fy, όταν η συνάρτηση
z = f (x,y) ορίζεται πεπλεγμένα ή ρητά. Η ίδια σύμβαση θα ακολουθείται και για παραγώγους
ανώτερης τάξης, όπως zxx, zxy, zyy, ώστε να διατηρείται ενιαίος και σαφής τρόπος γραφής σε
όλες τις μορφές και βαθμίδες των παραγώγων.

Παράδειγμα 2.21.5
Να δειχθεί ότι υπάρχει συνάρτηση z = f (x,y) που επαληθεύει την εξίσωση

sin(xyz) = 2x+3y+ z

στην περιοχή του (0,0,0). Να υπολογιστεί προσεγγιστικά η τιμή του z όταν x= 0.1, y=−0.2
(προσέγγιση πρώτης τάξης).
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Λύση.

F(x,y,z) = sin(xyz)−2x−3y− z.

Ελέγχουμε στο (0,0,0):

F(0,0,0) = 0, Fz(x,y,z) = cos(xyz)xy−1 ⇒ Fz(0,0,0) =−1 6= 0.

Άρα, από τοΘεώρημαΈμμεσης Συνάρτησης, υπάρχει (και είναι μοναδική) συνάρτηση z= f (x,y)
κοντά στο (0,0) με F(x,y, f (x,y)) = 0 και f (0,0) = 0.

Οι μερικές παράγωγοι δίνονται από

fx =−
Fx

Fz
, fy =−

Fy

Fz
,

όπου

Fx(x,y,z) = cos(xyz)yz−2, Fy(x,y,z) = cos(xyz)xz−3.

Στο (0,0,0):

Fx(0,0,0) =−2, Fy(0,0,0) =−3, Fz(0,0,0) =−1 ⇒

fx(0,0) =−2, fy(0,0) =−3.

Επομένως η γραμμική προσέγγιση πρώτης τάξης του f γύρω από το (0,0) είναι

L(x,y) = f (0,0)+ fx(0,0)x+ fy(0,0)y =−2x−3y.

z = f (0.1,−0.2)≈−2(0.1)−3(−0.2) = 0.4.

Παράδειγμα 2.21.6
Δίνεται η εξίσωση

z3− xz− y = 0.

Να βρεθούν τα σημεία (x,y,z)∈R3 για τα οποία η εξίσωση αυτή μπορεί να ορίσει μία συνάρτη-
ση z = f (x,y) και να υπολογιστούν οι παράγωγοι fx(0,1) και fyy(0,1).

Λύση.
Έχουμε ότι

F(x,y,z) = z3− xz− y = 0.

Για κάθε (x,y) ∈R2 η εξίσωση z3−xz−y = 0 είναι κυβική ως προς z και έχει τουλάχιστον
μία πραγματική ρίζα. Επιπλέον:

Fx =−z, Fy =−1, Fz = 3z2− x

οι οποίες είναι συνεχείς στο R3.
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Για να ορίζεται τοπικά η z = z(x,y), πρέπει να ισχύει

Fz = 3z2− x 6= 0 ⇒ 3z2 6= x.

Άρα, από το Θεώρημα Έμμεσης Συνάρτησης, η εξίσωση F(x,y,z) = 0 ορίζει συνάρτηση z =
f (x,y) όταν 3z2 6= x.

Έχουμε:

fx =−
Fx

Fz
=− −z

3z2− x
⇒ fx =

z
3z2− x

.

Βρίσκουμε το z για το σημείο (x,y) = (0,1) από F(x,y,z) = 0:

z3−0 · z−1 = 0 ⇒ z = 1.

Άρα

fx(0,1) =
1

3 ·12−0
=

1
3
.

Επίσης:

fy =−
Fy

Fz
=− −1

3z2− x
⇒ fy =

1
3z2− x

.

Παραγωγίζουμε την fy ως προς y, θεωρώντας το x σταθερό και z = f (x,y):

fyy =
∂
∂y

(
1

3z2− x

)
=−

(6zzy)

(3z2− x)2 .

Αντικαθιστούμε το fy από την (ii):

fyy =−
6z

(3z2− x)3 .

Στο σημείο (x,y) = (0,1), όπου z = 1:

fyy(0,1) =−
6 ·1

(3 ·12−0)3 =−2
9
.

Παράδειγμα 2.21.7
Δείξτε ότι η σχέση

x+ y+ z− exyz = 0

ορίζει στην περιοχή του σημείου (0, 1
2 ,

1
2) πεπλεγμένη συνάρτηση z = f (x,y). Στη συνέχεια,

βρείτε την εξίσωση του εφαπτόμενου επιπέδου της επιφάνειας z= f (x,y) στο σημείο (0, 1
2 ,

1
2).

Λύση.Θέτουμε F(x,y,z) = x+ y+ z− exyz. Έχουμε F(0, 1
2 ,

1
2) = 0 και
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Fz = 1− exyzxy ⇒ Fz(0, 1
2 ,

1
2) = 1 6= 0,

άρα (Θ. έμμεσης συνάρτησης) υπάρχει τοπικά z = f (x,y). Επιπλέον

Fx = 1− exyzyz, Fy = 1− exyzxz, Fz = 1− exyzxy,

οπότε στο (0, 1
2 ,

1
2):

Fx =
3
4
, Fy = 1, Fz = 1⇒ fx =−

Fx

Fz
=−3

4
, fy =−

Fy

Fz
=−1.

Το εφαπτόμενο επίπεδο:

z =−3
4

x−
(

y− 1
2

)
(ισοδύναμα:

3
4

x+ y+ z =
1
2
).

Παράδειγμα 2.21.8
Αν y3− xy− z = 0 και 3y2− x 6= 0, δείξτε ότι

∂ 2y
∂ z∂x

=− 3y2 + x
(3y2− x)3 .

Λύση.Έστω F(x,y,z) = y3− xy− z. Προφανώς οι Fx,Fy,Fz είναι συνεχείς, και επειδή Fy =
3y2− x 6= 0, από την υπόθεση ορίζεται συνάρτηση y = f (x,z).

Από y3− xy− z = 0, παραγώγιση ως προς z (με x σταθερό, y = y(x,z)):

3y2 ∂y
∂ z
− x

∂y
∂ z
−1 = 0.

Άρα

(3y2− x)
∂y
∂ z

= 1 ⇒ ∂y
∂ z

=
1

3y2− x
.

Παραγώγιση ως προς x:

∂
∂x

(
∂y
∂ z

) =
∂ 2y

∂ z∂x
=

∂
∂x

(
1

3y2− x

)
=− ∂ (3y2− x)/∂x

(3y2− x)2 .

Επειδή

∂ (3y2− x)
∂x

= 6y
∂y
∂x
−1,

έχουμε

∂ 2y
∂x∂ z

=− 6yyx−1
(3y2− x)2 .

Από παραγώγιση της y3− xy− z = 0 ως προς x:
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3y2 ∂y
∂x
− y− x

∂y
∂x

= 0⇒ ∂y
∂x

=
y

3y2− x
.

Άρα

∂ 2y
∂x∂ z

=−
6y · y

3y2− x
−1

(3y2− x)2 =− 3y2 + x
(3y2− x)3 .

Παράδειγμα 2.21.9
Να δειχθεί ότι η εξίσωση z+ xez2

= y επιλύεται μονοσήμαντα ως προς z στην περιοχή της

αρχής (0,0,0) και να προσεγγιστεί η επιλύουσα συνάρτηση z(x,y) με ένα πολυώνυμο δεύτερου
βαθμού ως προς x,y.

Λύση.Έχουμε F(x,y,z) = z+ xez2− y, οπότε

Fz = 1+ xez2 ·2z = 1+2xzez2
.

Στο σημείο (0,0,0):

Fz(0,0,0) = 1 6= 0, F(0,0,0) = 0.

Επομένως, από το Θεώρημα Έμμεσης Συνάρτησης, η εξίσωση F(x,y,z) = 0 ορίζει τοπικά
μοναδικά συνάρτηση z = z(x,y) στην περιοχή του (0,0,0).

Για να προσεγγίσουμε τη συνάρτηση με πολυώνυμο δεύτερου βαθμού, χρησιμοποιούμε τον
τύπο του Taylor:

z(x,y)≈ z(0,0)+ zx(0,0)x+ zy(0,0)y+
1
2

[
zxx(0,0)x2 +2zxy(0,0)xy+ zyy(0,0)y2

]
.

Προφανώς z(0,0) = 0.
Για τις μερικές παραγώγους ως προς x:

zx + ez2
+ xez2

2zzx = 0⇒ zx =−
ez2

1+2xzez2 .

Στο (0,0,0):

zx(0,0) =−1.

Για τη δεύτερη παράγωγο zxx, παραγωγίζουμε ως προς x:

zxx =
ez2

zx(1+2xzez2
)− ez2

(2zxez2
+2xzez2

2zzx)

(1+2xzez2
)2

.

Στο (0,0,0):

zxx(0,0) = 2.

Για τις μερικές παραγώγους ως προς y:
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zy + xez2
2zzy−1 = 0⇒ zy =

1
1+2xzez2 .

Στο (0,0,0):

zy(0,0) = 1.

Για τη δεύτερη παράγωγο zyy:

zyy =−
xez2

2zzy

(1+2xzez2
)2
.

Στο (0,0,0):

zyy(0,0) = 0.

Τέλος, για zxy:

zxy =
ez2

zy(1+2xzez2
)− ez2

(2zxez2
+2xzez2

2zzy)

(1+2xzez2
)2

.

Στο (0,0,0):

zxy(0,0) =−1.

Άρα το πολυώνυμο δεύτερου βαθμού είναι:

z(x,y) =−x+ y+
1
2
(
2x2−2xy

)
=−x+ y+ x2− xy.
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3 Λογισμός των Διανυσματικών
Συναρτήσεων

3.1 Διανυσματικά Πεδία και Διανυσματικές Συναρτήσεις
Στο προηγούμενο κεφάλαιο γενικεύσαμε την έννοια της ολοκλήρωσης περνώντας από την πε-
ρίπτωση της μίας σε αυτήν των πολλών μεταβλητών. Στο παρόν κεφάλαιο θα γενικεύσουμε
ακόμα περισσότερο την έννοια της ολοκλήρωσης ώστε να μάθουμε να ολοκληρώνουμε πάνω σε
καμπύλες και επιφάνειες, ενώ επιπλέον οι ολοκληρωτέες ποσότητες δεν θα είναι μόνο βαθμωτές
συναρτήσεις αλλά και διανυσματικά πεδία. Τα ολοκληρώματα των διανυσματικών πεδίων χρη-
σιμοποιούνται ευρέως στη μελέτη των φαινομένων του ηλεκτρομαγνητισμού, της δυναμικής των
ρευστών αλλά και της μεταφοράς θερμότητας. Προκειμένου να θέσουμε το πλαίσιο για τον
ορισμό και την ανάλυση των ολοκληρωμάτων αυτού του είδους, θα ξεκινήσουμε το κεφάλαιο
με τη μελέτη των διανυσματικών πεδίων.

Υπενθύμιση 3.1.1
Διανύσματα
Θυμηθείτε ότι το επίπεδο είναι το σύνολο των σημείων {(x,y) : x,y∈R}. Συχνά συμβολίζουμε
το επίπεδο με R2. Ο συμβολισμός αυτός αντικατοπτρίζει την ιδέα ότι το επίπεδο είναι ένα
«γινόμενο» δύο αντιγράφων της γραμμής των πραγματικών αριθμών R, όπου το ένα από αυτά
αναπαριστά τα σημεία της x-συντεταγμένης, ενώ το άλλο τα σημεία της y-συντεταγμένης. Ένα
διάνυσμαv, στις δύο διαστάσεις, προσδιορίζεται από μέτρο, διεύθυνση καιφορά. Αντιπροσωπεύ-
ει μεγέθη που δεν περιγράφονται μόνο από έναν αριθμό, αλλά απαιτούν και πληροφορία για το
«προς τα πού» εφαρμόζονται, όπως η δύναμη, η ταχύτητα ή η μετατόπιση. Δηλαδή έχουμε:

• Διεύθυνση: Η ευθεία πάνω στην οποία βρίσκεται το διάνυσμα. Όλα τα παράλληλα ή
συνευθειακά διανύσματα έχουν την ίδια διεύθυνση.

• Φορά: Δείχνει προς ποιο άκρο της ευθείας κατευθύνεται το διάνυσμα. Δύο διανύσματα
με ίδια διεύθυνση αλλά αντίθετη φορά είναι αντίθετα διανύσματα.

• Κατεύθυνση: Ο όρος χρησιμοποιείται για να εκφράσει συνολικά τη διεύθυνση και τη
φορά ενός διανύσματος. Δύο διανύσματα έχουν ίδια κατεύθυνση όταν είναι παράλληλα
και ομόρροπα.
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Έτσι, ένα διάνυσμα μπορεί να θεωρηθεί ως ένα προσανατολισμένο ευθύγραμμο τμήμα, του
οποίου το αρχικό σημείο (ουρά) δείχνει το σημείο εφαρμογής και το τελικό σημείο (αιχμή)
δηλώνει τη φορά του. Με βάση αυτά τα δύο σημεία γράφουμε

v =
−→
PQ

και σχεδιάζουμε το v ως ένα βέλος με κατεύθυνση από το P προς το Q. Το διάνυσμα αυτό θα
λέμε ότι έχει ως βάση του το σημείοP. Στο Σχήμα 3.1(α) απεικονίζεται το διάνυσμα με αφετηρία
το σημείο P = (2,2) και πέρας σημείο το Q = (7,5). Το μήκος ή μέτρο του διανύσματος v,
που σημειώνεται με ‖v‖, είναι η απόσταση από το σημείο P μέχρι το σημείο Q. Το διάνυσμα
v =
−→
OR με κατεύθυνση από την αρχή των αξόνων O προς ένα σημείο R αποκαλείται διάνυσμα

θέσης του R.

Στο Σχήμα 3.1(β) φαίνεται το διάνυσμα θέσης του σημείου R = (3,5).

Σχήμα 3.1

Ορισμός 3.1.2 Συνιστώσες ενός διανύσματος Οι συνιστώσες του διανύσματος v =
−→
PQ,

όπου P = (a1,b1) και Q = (a2,b2), είναι οι ποσότητες

a = a2−a1 (x-συνιστώσα), b = b2−b1 (y-συνιστώσα)

Το ζεύγος των συνιστωσών συμβολίζεται με 〈a,b〉.

Ορισμός 3.1.3 Το μήκος του διανύσματος v = 〈a,b〉, σε συνάρτηση με τις συνιστώσες του
(σύμφωνα με τον τύπο που δίνει την απόσταση), θα είναι:

‖v‖= ‖−→PQ‖=
√

a2 +b2

• Το μηδενικό διάνυσμα (στο οποίο η αρχή και το πέρας συμπίπτουν) είναι το διάνυσμα
0 = 〈0,0〉 με μήκος ίσο με μηδέν. Πρόκειται για το μοναδικό διάνυσμα που δεν έχει
κατεύθυνση.

• Για ένα διάνυσμα v, το−v είναι το διάνυσμα με το ίδιο μήκος με το v, αλλά σε αντίθετη
κατεύθυνση από αυτό. Έτσι, αν v = 〈a,b〉, τότε−v = 〈−a,−b〉.

Ξεκινάμε με την γενίκευση της έννοιας του μεμονωμένου διανύσματος, περιγράφοντας πώς
αυτό μεταβάλλεται από σημείο σε σημείο μέσα σε μια περιοχή και δημιουργείται ένα πεδίο από
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διανύσματα που καλύπτουν μια περιοχή, έτσι ώστε κάθε σημείο να έχει το δικό του διάνυσμα
που δείχνει τη φορά και το μέγεθος κάποιας φυσικής ποσότητας. Τέτοια πεδία εμφανίζονται σε
πολλές εφαρμογές της Φυσικής και των Μαθηματικών, όπως:

• στο βαρυτικό πεδίο, όπου κάθε σημείο του χώρου έχει ένα διάνυσμα δύναμης,

• στο ηλεκτρικό ή μαγνητικό πεδίο, όπου τα διανύσματα δείχνουν την κατεύθυνση και την
ένταση της δύναμης,

• στο πεδίο ταχυτήτων ενός ρευστού, όπου τα διανύσματα δείχνουν την κατεύθυνση και το
μέγεθος της ταχύτητας σε κάθε σημείο.

3.1.1 Διανυσματικά πεδία

Με ποιον τρόπο μπορούμε να περιγράψουμε ένα
φυσικό μέγεθος, όπως ο άνεμος, που απαρτίζεται
από ένα τεράστιο πλήθος μορίων τα οποία
κινούνται σε μια περιοχή του χώρου; Αυτό που
χρειαζόμαστε είναι ένα νέο είδος συνάρτησης,
που είναι γνωστή ως διανυσματικό πεδίο. Στην
περίπτωση του ανέμου, ένα διανυσματικό πεδίο
F αντιστοιχίζει σε κάθε σημείο του χώρου

P = (x,y,z)

ένα διάνυσμα

F(x,y,z), Σχήμα 3.2 Το διανυσματικό πεδίο της ταχύτητας του
ανέμου στην περιοχή της παραλίας του Λος Άντζελες

το οποίο αναπαριστά το διάνυσμα της ταχύτητας (μέτρο και κατεύθυνση) του ανέμου στο συγκε-
κριμένο σημείο, όπως φαίνεται στο Σχήμα 3.2. Τα διανυσματικά πεδία μπορούν να περιγράψουν
διάφορα φυσικά μεγέθη στα οποία αποδίδουμε μέτρο και κατεύθυνση, όπως πεδία δυνάμεων,
ηλεκτρικά και μαγνητικά πεδία. Από μαθηματικής σκοπιάς, ένα διανυσματικό πεδίο στον χώρο
R3 παριστάνεται με τη βοήθεια ενός διανύσματος οι συνιστώσες του οποίου είναι συναρτήσεις,
δηλαδή:

F(x,y,z) = 〈F1(x,y,z), F2(x,y,z), F3(x,y,z)〉.

Κάθε σημείο

P = (a,b,c)

συνδέεται με το διάνυσμα F(a,b,c), το οποίο συμβολίζεται επίσης και ως F(P). Εναλλακτικά,
μπορούμε να χρησιμοποιήσουμε τον συμβολισμό:

F = F1 i+F2 j+F3 k.

Όταν σχεδιάζουμε ένα διανυσματικό πεδίο, θα σχεδιάζουμε το

F(P)

ως ένα διάνυσμα με αρχή το σημείο P. Το πεδίο ορισμού του διανυσματικού πεδίου F είναι
το σύνολο των σημείων P για τα οποία ορίζεται το F(P). Τα διανυσματικά πεδία στο επίπεδο
συμβολίζονται με παρόμοιο τρόπο ως:
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F(x,y) = 〈F1(x,y), F2(x,y)〉= F1 i+F2 j.

Στο παρόν κεφάλαιο θα υποθέσουμε ότι οι συνιστώσες συναρτήσεις Fj είναι λείες, διαθέτουν
δηλαδή μερικές παραγώγους όλων των τάξεων στο πεδίο ορισμού τους.

Παράδειγμα 3.1.4
Ποιο είναι το διάνυσμα που αντιστοιχεί στο
σημείο P = (2,4,2) του διανυσματικού
πεδίου

F(x,y,z) = 〈y− z, x, z−√y〉;

Σχήμα 3.3

Λύση. Το ζητούμενο διάνυσμα που συνδέεται με το σημείο P είναι:

F(2,4,2) = 〈4−2, 2, 2−
√

4〉= 〈2, 2, 0〉.

Ορισμένα από τα διανύσματα του διανυσματικού πεδίου F απεικονίζονται στο Σχήμα 3.3, με το
διάνυσμα F(2,4,2) να σημειώνεται με κόκκινο χρώμα.

Διαισθητικά: Το πεδίο «σπρώχνει» ή «κατευθύνει» ένα σημείο του χώρου με φορά διαγώνια στο
επίπεδο xy, χωρίς καθόλου ανύψωση ή βύθιση στον άξονα z.

Αν και δεν είναι καθόλου πρακτικό να σχεδιάζουμε με το χέρι πολύπλοκα διανυσματικά πεδία στις
τρεις διαστάσεις, τα λογισμικά εργαλεία γραφικών που χρησιμοποιούν οι σύγχρονοι υπολογιστές
μπορούν να παράγουν πολύ χρήσιμες οπτικές αναπαραστάσεις των διανυσματικών πεδίων, όπως
αυτές που φαίνονται στο Σχήμα 3.4. Το διανυσματικό πεδίο του Σχήματος 3.4(β) αποτελεί παράδει-
γμα ενός σταθερού διανυσματικού πεδίου, ενός πεδίου δηλαδή το οποίο αντιστοιχεί το ίδιο διάνυσμα,
στην περίπτωσή μας το 〈1,−1,3〉, σε κάθε σημείο του χώρου R3.

Σχήμα 3.4
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Παράδειγμα 3.1.5
Να περιγράψετε τα ακόλουθα δύο διανυσματικά πεδία του χώρου R2:

(a) G = i+ x j (b) F = 〈−y, x〉

Λύση.
(α) Το διανυσματικό πεδίο G = i+ x j αντιστοιχίζει το διάνυσμα 〈1,a〉 στο σημείο (a,b). Πιο
συγκεκριμένα, αντιστοιχίζει το ίδιο διάνυσμα σε όλα τα σημεία με την ίδια x-συντεταγμένη,
όπως φαίνεται στο Σχήμα 3.5(α). Παρατηρήστε ότι το διάνυσμα 〈1,a〉 έχει κλίση a και μέτρο√

1+a2. Μπορούμε επομένως να περιγράψουμε το διανυσματικό πεδίο G ως εκείνο το πεδίο
που αντιστοιχίζει ένα διάνυσμα με κλίση a και μέτρο 〈1,a〉 σε όλα τα σημεία με x = a.

(β) Προκειμένου να αποκτήσουμε μια εικόνα για το διανυσματικό πεδίοF, αρκεί να παρατηρήσουμε
ότιF(a,b) = 〈−b,a〉 έχει μέτρο r =

√
a2 +b2. Είναι κάθετο στο ακτινικό διάνυσμα 〈a,b〉, ενώ

κατευθύνεται αντι-ωρολογιακά. Επομένως, μπορούμε να περιγράψουμε το διανυσματικό πεδίο F
ως εξής: Τα διανύσματα του πεδίου αυτού κατά μήκος ενός κύκλου ακτίνας r έχουν όλα μήκος r,
εφάπτονται στον κύκλο και έχουν κατεύθυνση αντίθετη από τη φορά περιστροφής των δεικτών
του ρολογιού, όπως φαίνεται στο Σχήμα 3.5(β).

Σχήμα 3.5

Ένα μοναδιαίο διανυσματικό πεδίο είναι ένα διανυσματικό πεδίο F τέτοιο ώστε ‖F(P)‖= 1 για
όλα τα σημεία P. Ένα διανυσματικό πεδίο F αποκαλείται ακτινικό διανυσματικό πεδίο αν το
διάνυσμα F(P) είναι παράλληλο προς το διάνυσμα

−→
OP και το μέτρο του διανύσματος ‖F(P)‖

εξαρτάται μόνο από την απόσταση r του σημείου P από την αρχή των αξόνων (όπου r = (x2 +
y2)1/2 για τον χώρο R2 και r = (x2 + y2 + z2)1/2 για τον χώρο R3).

Δύο σημαντικά διανυσματικά πεδία είναι τα μοναδιαία ακτινικά διανυσματικά πεδία στις δύο
και τρεις διαστάσεις, τα οποία απεικονίζονται στα Σχήματα 3.6(α) και 3.6(β), αντίστοιχα, και τα
οποία έχουν τη μορφή:

er =
〈x

r
,

y
r

〉
=

〈
x√

x2+y2
, y√

x2+y2

〉

er =
〈x

r
,

y
r
,

z
r

〉
=

〈
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

〉



188 Λογισμός των Διανυσματικών Συναρτήσεων

Σχήμα 3.6

Υπενθύμιση 3.1.6
Ξεκινάμε με δύο μη μηδενικά διανύσματα u και v στον χώρο. Αν τα δύο διανύσματα είναι
παράλληλα, τότε το ένα είναι μη μηδενικό πολλαπλάσιο του άλλου. Αν δεν είναι παράλληλα,
τότε καθορίζουν ένα επίπεδο - κάθε διάνυσμα του οποίου μπορεί να γραφεί ως γραμμικός
συνδυα- σμός των u και v, δηλαδή στη μορφή au+bv.

Ορισμός 3.1.7 Ονομάζουμε εσωτερικό (ή βαθμωτό) γινόμενο u · v των διανυσμάτων u =
〈u1,u2,u3〉 και v = 〈v1,v2,v3〉 το βαθμωτό μέγεθος:

u · v = u1v1 +u2v2 +u3v3.

Παράδειγμα 3.1.8
Εφαρμόζουμε τον ορισμό.

(α) 〈1,−2,−1〉 · 〈−6,2,−3〉 = (1)(−6)+ (−2)(2)+ (−1)(−3) = −6− 4+ 3 =
−7.

(β)
(

1
2

i+3j+k
)
· (4i− j+2k) =

(
1
2

)
(4)+(3)(−1)+(1)(2) = 1.

Το εσωτερικό γινόμενο δύο διδιάστατων διανυσμάτων ορίζεται με όμοιο τρόπο:

〈u1,u2〉 · 〈v1,v2〉= u1v1 +u2v2.

Θεωρούμε τώρα ένα μοναδιαίο διάνυσμα n κάθετο σε αυτό το επίπεδο, του οποίου η φορά
καθορίζεται από τον κανόνα του δεξιού χεριού: ο αντίχειρας δείχνει τη φορά του n όταν τα
υπόλοιπα δάχτυλα κάμπτονται από τη u προς τη v.

Ορισμός 3.1.9 Το εξωτερικό γινόμενο δύο διανυσμάτων u και v ορίζεται ως το διάνυσμα

u× v = |u||v|sinθ n,

όπου θ είναι η γωνία μεταξύ των u και v και n το μοναδιαίο διάνυσμα κάθετο και στα δύο.
Αντίθετα με το εσωτερικό γινόμενο, το εξωτερικό γινόμενο είναι διάνυσμα. Για τον λόγο αυτό
ονομάζεται και διανυσματικό γινόμενο. Το μήκος του u×v ισούται με το εμβαδόν του παραλλη-
λογράμμου που ορίζουν τα u και v, ενώ η κατεύθυνσή του είναι κάθετη και στα δύο. Αν ένα
από τα δύο διανύσματα είναι μηδενικό ή αν τα u και v είναι παράλληλα, τότε το εξωτερικό τους
γινόμενο είναι το μηδενικό διάνυσμα:

u× v = 0.
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Υπολογισμός εξωτερικού γινομένου ως ορίζουσα Αν

u = u1i+u2 j+u3k και v = v1i+ v2 j+ v3k,

τότε

u× v =

∣∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣ .

Παράδειγμα 3.1.10
Βρείτε τα u× v και v×u αν u = 2i+ j+ k και v =−4i+3 j+ k.

Λύση. Αναπτύσσουμε την ορίζουσα:

u× v =

∣∣∣∣∣∣∣∣∣
i j k

2 1 1

−4 3 1

∣∣∣∣∣∣∣∣∣= i

∣∣∣∣∣∣1 1

3 1

∣∣∣∣∣∣− j

∣∣∣∣∣∣ 2 1

−4 1

∣∣∣∣∣∣+ k

∣∣∣∣∣∣ 2 1

−4 3

∣∣∣∣∣∣ .
Υπολογίζουμε:

u× v = (−2)i−6 j+10k, v×u =−(u× v) = 2i+6 j−10k.

(a) (b)

Σχήμα 3.7

Τελεστές
Τελεστής ονομάζεται κάθε κανόνας ή πράξη που εφαρμόζεται σε μια συνάρτηση (ή σε ένα
σύνολο συναρτήσεων) και παράγει ένα νέο μαθηματικό αντικείμενο - το οποίο μπορεί να είναι

αριθμός, συνάρτηση ή διάνυσμα. Για παράδειγμα, ο τελεστής της παραγώγισης
d
dx

εφαρμόζεται

σε μια συνάρτηση f (x) και δίνει τη νέα συνάρτηση f ′(x).
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3.2 Τελεστές που δρουν σε διανυσματικά πεδία

Στον Λογισμό πολλών μεταβλητών ορίζονται τρεις εξαιρετικά σημαντικές πράξεις παραγώγισης:
η κλίση, η απόκλιση και ο στροβιλισμός. Στην παρούσα ενότητα, θα εισαγάγουμε τις πράξεις της
κλίσης της απόκλισης και του στροβιλισμού. Καθεμία από αυτές τις τρεις πράξεις παραγώγισης
ορίζεται με τη χρήση του τελεστή ανάδελτα∇, που είναι ένα διάνυσμα αποτελούμενο από τελεστές
παραγώγισης, ως εξής:

∇ =

〈
∂
∂x

,
∂
∂y

,
∂
∂ z

〉

Όταν ο τελεστής ∇ δρα σε μια βαθμωτή συνάρτηση f , τότε προκύπτει η κλίση της f . Αξίζει να
παρατηρήσει κανείς ότι μπορούμε να χειριζόμαστε την προηγούμενη πράξη ως έναν «πολλαπλα-
σιασμό» ενός διανύσματος με ένα βαθμωτό, με τις συνιστώσες του διανύσματος που προκύπτει
να είναι πράξεις παραγώγισης πάνω σε συναρτήσεις αντί για γινόμενα. Δηλαδή:

∇ f =
〈

∂
∂x

,
∂
∂y

,
∂
∂ z

〉
f =

〈
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉

Οι δράσεις του τελεστή∇ πάνωσε ένα διανυσματικό πεδίοF εκφράζονται είτε μέσω του εσωτερικού
γινομένου (οδηγώντας στον ορισμό της απόκλισης) είτε μέσω του εξωτερικού γινομένου (οδηγώντας
στον ορισμό του στροβιλισμού).

3.2.1 Διανυσματικές συναρτήσεις

Ειναι γνωστό ότι για να εκφράσουμε την κίνηση
με μαθηματικούς όρους ενός σωματιδίου το
οποίο κινείται κατά μήκος μιας καμπύληςC που
βρίσκεται στο επίπεδο, μελετούμε τον τρόπο
με τον οποίο μεταβάλλονται με τον χρόνο οι
συντεταγμένες x και y της θέσης του σωματιδίου,
πώς εξαρτώνται δηλαδή από τη μεταβλητή του
χρόνου t (βλ. Σχήμα 3.8). Καθώς και οι δύο
συντεταγμένες x και y είναι συναρτήσεις του
χρόνου t , η θέση του σωματιδίου τη χρονική
στιγμή t θα δίνεται από την

c(t) = (x(t), y(t))

Αυτή η αναπαράσταση της καμπύλης
αποκαλείται παραμέτρηση με παράμετρο t
και η καμπύλη αποκαλείται παραμετρική
καμπύλη.

Σχήμα 3.8

Σε μια παραμέτρηση χρησιμοποιούμε συχνά το σύμβολο t για να δηλώσουμε την παράμετρο,
θεωρώντας ότι οι εξαρτημένες μεταβλητές μεταβάλλονται με τον χρόνο. Ωστόσο, είμαστε ελεύθε-
ροι να χρησιμοποιήσουμε οποιαδήποτε άλλη μεταβλητή (όπως, για παράδειγμα, την s ή τη θ ).
Στις αναπαραστάσεις των παραμετρικών καμπυλών, με τη βοήθεια των γραφικών τους παραστά-
σεων, η κατεύθυνση της κίνησης συχνά υποδηλώνεται από ένα βέλος, όπως στο Σχήμα 3.8.
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Φανταστείτε τώρα ένα σωματίδιο το οποίο
κινείται στον χώροR3, με τις συντεταγμένες του
τη χρονική στιγμή t να είναι οι x(t), y(t) και z(t).
Είναι βολικό να αναπαραστήσουμε την τροχιά
του σωματιδίου με τη βοήθεια της διανυσματικής
συνάρτησης:

r(t) = 〈x(t), y(t), z(t)〉

= x(t) i+ y(t) j+ z(t)k

Μπορείτε να σκεφτείτε την r(t) ως ένα
κινούμενο διάνυσμα που έχει κατεύθυνση από
την αρχή των αξόνων προς το σημείο όπου
βρίσκεται το σωματίδιο τη χρονική στιγμή t (βλ.
Σχήμα 3.9).

Σχήμα 3.9

Γενικά, μια διανυσματική συνάρτηση είναι μια οποιαδήποτε συνάρτηση r(t) με την παραπάνω
μορφή, το πεδίο ορισμού D της οποίας είναι ένα σύνολο από πραγματικούς αριθμούς, ενώ οι
τιμές της είναι ένα σύνολο από διανύσματα θέσης. Η μεταβλητή t αποκαλείται παράμετρος, ενώ οι
συναρτήσεις x(t), y(t), z(t) είναι γνωστές ως συνιστώσες ή συντεταγμένες συναρτήσεις. Συνήθως
θεωρούμε ως πεδίο ορισμού μιας διανυσματικής συνάρτησης το σύνολο όλων των τιμών της
παραμέτρου t για τις οποίες ορίζεται η r(t), δηλαδή το σύνολο των τιμών της t που ανήκουν
στα πεδία ορισμών και των τριών συντεταγμένων συναρτήσεων x(t), y(t), z(t).

3.2.2 Σύγκριση και γεωμετρική ερμηνεία Διανυσματικού πεδίου και
Διανυσματικής συνάρτησης

Η βασική διαφορά ανάμεσα στις δύο έννοιες έγκειται στο εξής:
• Μια διανυσματική συνάρτηση εξαρτάται από μία μεταβλητή (π.χ. τον χρόνο t) και παράγει
μια καμπύλη ή τροχιά στο χώρο.

• Ένα διανυσματικό πεδίο εξαρτάται από δύο ή τρεις μεταβλητές (π.χ. x,y,z) και παράγει ένα
διάνυσμα σε κάθε σημείο του επιπέδου ή του χώρου.

Συνοπτικά, μπορούμε να διακρίνουμε τις δύο έννοιες ως εξής:

Χαρακτηριστικό Διανυσματικό πεδίο Διανυσματική συνάρτηση
Μεταβλητές Δύο ή τρεις (x,y,z) Μία (π.χ. t)
Απεικόνιση (x,y,z) 7→ F(x,y,z) t 7→ r(t)
Αντιπροσωπεύει Πεδίο δυνάμεων ή ροής Καμπύλη ή τροχιά
Γεωμετρική έννοια Διάνυσμα σε κάθε σημείο του χώρου Θέση στο χρόνο
Παράδειγμα F(x,y,z) = 〈y+ z,x,z−√y〉 r(t) = 〈cos t,sin t, t〉

Επομένως, μπορούμε να πούμε πως οι διανυσματικές συναρτήσεις περιγράφουν μονοδιάστατες
κινήσεις μέσα στον χώρο, ενώ τα διανυσματικά πεδία αποδίδουν την κατανομή μιας διάνυσματικής
ποσότητας σε όλο τον χώρο. Και οι δύο έννοιες αποτελούν το θεμέλιο για τη μελέτη πιο σύνθετων
εννοιών όπως η κλίση, η απόκλιση και ο στροβιλισμός.
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3.2.3 Η κλίση και οι παράγωγοι κατά κατεύθυνση
Για μια συνάρτηση f (x,y), ο ρυθμός μεταβολής στην κατεύθυνση x δίνεται από τη μερική παρά-
γωγο fx, ενώ ο αντίστοιχος ρυθμός στην κατεύθυνση y υπολογίζεται με τη βοήθεια της fy. Αυτές
οι μερικές παράγωγοι μας δίνουν τους ρυθμούς μεταβολής στις κατευθύνσεις των μοναδιαίων
διανυσμάτων i και j, αντίστοιχα. Τι θα κάνουμε όμως αν θελήσουμε να προσδιορίσουμε τον ρυθμό
με τον οποίο μεταβάλλεται η f σε κάποια άλλη κατεύθυνση, για παράδειγμα στην κατεύθυνση του
διανύσματος 〈2,−1〉; Προκειμένου να εκφράσουμε τυπικά έναν ρυθμό μεταβολής σε οποιαδή-
ποτε κατεύθυνση, θα ορίσουμε την παράγωγο κατά κατεύθυνση. Πριν προχωρήσουμε όμως στον
ορισμό αυτό, θα εισαγάγουμε το διάνυσμα της κλίσης (ή διάνυσμα βαθμίδας), που είναι ένα σημα-
ντικό διάνυσμα το οποίο χρησιμοποιείται σε πολλές περιπτώσεις, συμπεριλαμβανομένης και της
περίπτωσης του υπολογισμού των παραγώγων κατά κατεύθυνση. Οι συνιστώσες του διανύσματος
της κλίσης μιας συνάρτησης f είναι οι μερικές παράγωγοι της f .

Ορισμός 3.2.1 Η κλίση (βαθμίδα) Η κλίση μιας συνάρτησης f (x,y) σε ένα σημείο P = (a,b)
είναι το διάνυσμα

∇ fP = 〈 fx(a,b), fy(a,b)〉

Στην περίπτωση των συναρτήσεων με τρεις μεταβλητές, για την f (x,y,z) σε ένα σημείο P =
(a,b,c), ισχύει:

∇ fP = 〈 fx(a,b,c), fy(a,b,c), fz(a,b,c)〉

Συμβολίζουμε, επίσης, την κλίση της
συνάρτησης f στο σημείο P = (a,b)
ως ∇ f(a,b) ή ∇ f (a,b). Ορισμένες
φορές θα παραλείπουμε την αναφορά
στο σημείο P, γράφοντας απλώς

∇ f =
〈

∂ f
∂x

,
∂ f
∂y

〉
ή

∇ f =
〈

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉
Η κλίση ∇ f αντιστοιχεί ένα διάνυσμα
∇ fP σε κάθε σημείο του πεδίου
ορισμού της f , όπως φαίνεται στο
Σχήμα 3.10.

Σχήμα 3.10 Τα διανύσματα της κλίσης για τη συνάρτηση
f (x,y) = x2 + y2 σε διάφορα σημεία (τα διανύσματα δεν
είναι σχεδιασμένα έτσι ώστε να διατηρούν την κλίμακα).

Σχόλιο 3.2.2 Το σύμβολο ∇, που είναι το κεφαλαίο δέλτα του αλφαβήτου γυρισμένο ανάποδα,
αποκαλείται «ανάδελτα». Ξεκίνησε να χρησιμοποιείται ευρέως χάρη στον Σκωτσέζο φυσικό
P. G. Tait (1831–1901), ο οποίος αποκαλούσε το συγκεκριμένο σύμβολο με την ονομασία
«νάμπλα» εξαιτίας της ομοιότητάς του με την αρχαία άρπα των Ασσυρίων. Ο μεγάλος φυσικός
James Clerk Maxwell ήταν απρόθυμος να υιοθετήσει αυτόν τον όρο και προτιμούσε για τη
βαθμίδα τον όρο «κλίση». Αστειευόμενος, έγραψε το 1871 στον φίλο του Tait: «Still harping
on that nabla?» (λογοπαιγνιο που σημαίνει «Ακόμα ασχολείσαι με αυτό το νάμπλα;»).
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Παράδειγμα 3.2.3
Κλίση στις τρεις διαστάσεις Υπολογίστε το διάνυσμα ∇ f (3,−2,4) για την

f (x,y,z) = ze2x+3y.

Λύση.Οι μερικές παράγωγοι και η κλίση θα είναι:

∂ f
∂x

= 2ze2x+3y,
∂ f
∂y

= 3ze2x+3y,
∂ f
∂ z

= e2x+3y.

Άρα,

∇ f = 〈2ze2x+3y, 3ze2x+3y, e2x+3y〉.

Επομένως, τελικά θα προκύψει:

∇ f (3,−2,4) = 〈2 ·4e0, 3 ·4e0, e0〉= 〈8,12,1〉.

Θεώρημα 3.2.4 Ιδιότητες της κλίσης Αν οι συναρτήσεις f (x,y,z) και g(x,y,z) είναι διαφορίσι-
μες και c είναι μια σταθερά, τότε:

1. ∇( f +g) = ∇ f +∇g

2. ∇(c f ) = c∇ f

3. Κανόνας γινομένου για τις κλίσεις: ∇( f g) = f ∇g+g∇ f

4. Κανόνας της αλυσίδας για τις κλίσεις: Αν η F(t) είναι μια παραγωγίσιμη συνάρτηση μιας
μεταβλητής, τότε

∇(F( f (x,y,z))) = F ′( f (x,y,z))∇ f

Παράδειγμα 3.2.5
Χρήση του κανόνα της αλυσίδας για τις κλίσεις Υπολογίστε την κλίση της συνάρτησης

g(x,y,z) = (x2 + y2 + z2)8.

Λύση.Η συνάρτηση g αποτελεί σύνθεση συναρτήσεων αφού

g(x,y,z) = F( f (x,y,z)) με F(t) = t8 και f (x,y,z) = x2 + y2 + z2.

Εφαρμόζοντας λοιπόν τον κανόνα αλυσίδας, έχουμε:

∇g = ∇((x2 + y2 + z2)8) = 8(x2 + y2 + z2)7∇(x2 + y2 + z2)

= 8(x2 + y2 + z2)7〈2x,2y,2z〉= 16(x2 + y2 + z2)7〈x,y,z〉.
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3.3 Εισαγωγή στον κανόνα της αλυσίδας για τροχιές

Υπάρχει ένας αριθμός από διαφορετικούς κανόνες αλυσίδας, καθώς υπάρχει ένα διαφορετικό
πλήθος τρόπων με τους οποίους μπορούμε να συνθέσουμε συναρτήσεις πολλών μεταβλητών. Θα
μελετήσουμε στο σημείο αυτό έναν συγκεκριμένο τρόπο σύνθεσης, καθώς με αφορμή αυτόν θα
εισαγάγουμε μια σημαντική εφαρμογή του διανύσματος της κλίσης, την οποία θα χρειαστούμε
αργότερα στην παρούσα ενότητα όταν θα εργαζόμαστε με τις παραγώγους κατά κατεύθυνση.

Θα χρησιμοποιούμε τον κανόνα της αλυσίδας για τροχιές όταν μας δίνεται μια συνάρτηση f
κατά μήκος μιας παραμετρικής τροχιάς που ορίζεται από τις x(t) και y(t) στο επίπεδο ή από
τις x(t), y(t) και z(t) στον τρισδιάστατο χώρο. Για λόγους απλότητας του συμβολισμού, θα
υποθέσουμε ότι η r(t) παριστάνει τόσο το διάνυσμα 〈x(t),y(t)〉 όσο και το σημείο (x(t),y(t)),
οπότε στην πρώτη από τις περιπτώσεις θεωρούμε ότι η τροχιά διαγράφεται από τα άκρα των
διανυσμάτων ενώ στη δεύτερη από τα σημεία. Ακολουθούμε παρόμοια σύμβαση στον συμβολισμό
με τις συναρτήσεις x(t), y(t) και z(t) στον τρισδιάστατο χώρο. Μια συνάρτηση f η οποία
ορίζεται κατά μήκος μιας τροχιάς r(t) είναι το αποτέλεσμα της σύνθεσης f (r(t)). Ο κανόνας
της αλυσίδας για τις τροχιές χρησιμοποιείται για να προσδιορίσουμε την παράγωγο αυτών των
σύνθετων συναρτήσεων.
Ως παράδειγμα, υποθέστε ότι η T (x,y) είναι
η θερμοκρασία στη θέση (x,y). Φανταστείτε
τώρα ότι η Αλεξία κινείται με ένα ποδήλατο
κατά μήκος της τροχιάς r(t), όπως φαίνεται στο
Σχήμα 3.11. Υποθέτουμε επιπλέον ότι η Αλεξία
μεταφέρει μαζί της ένα θερμόμετρο, το οποίο ελέγχει
καθώς ποδηλατεί. Η θέση της τη χρονική στιγμή
t είναι η r(t), επομένως η θερμοκρασία που θα
καταγράψει το θερμόμετρο τη χρονική στιγμή t θα
είναι η σύνθετη συνάρτηση

T (r(t)) = Θερμοκρασία που καταγράφει το
θερμόμετρο της Αλεξίας τη χρονική στιγμή t .

Σχήμα 3.11 Η θερμοκρασία στο θερμόμετρο που με-
ταφέρει μαζί της η Αλεξία αλλάζει με ρυθμό ∇Tr(t) · r′(t)

Οι ενδείξεις του θερμομέτρου μεταβάλλονται καθώς η θέση της Αλεξίας αλλάζει και ο ρυθμός με
τον οποίο μεταβάλλονται είναι η παράγωγος

d
dt

T (r(t))

Ο κανόνας της αλυσίδας για τις τροχιές αναφέρει ότι η παράγωγος αυτή είναι το εσωτερικό
γινόμενο της κλίσης της θερμοκρασίας ∇T , υπολογισμένης στη θέση r(t) και του διανύσματος
της ταχύτητας r′(t) της Αλεξίας.

Θεώρημα 3.3.1 Κανόνας της αλυσίδας για τις τροχιές
Αν οι συναρτήσεις f και r(t) είναι διαφορίσιμες, τότε

d
dt

f (r(t)) = ∇ fr(t) · r′(t)

Στις περιπτώσεις των συναρτήσεων με δύο και τρεις μεταβλητές, με τις οποίες θα ασχοληθούμε,
αυτή η μορφή του κανόνα της αλυσίδας «υλοποιείται» ως εξής:

d
dt

f
(
r(t)
)
=

〈
∂ f
∂x

,
∂ f
∂y

〉
·
〈
x′(t), y′(t)

〉
=

∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt
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d
dt

f
(
r(t)
)
=

〈
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉
·
〈
x′(t), y′(t), z′(t)

〉
=

∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

+
∂ f
∂ z

dz
dt

Παράδειγμα 3.3.2
Υπολογίστε την

d
dt

f (r(t))
∣∣
t=π/2

όπου

f (x,y,z) = xy+ z2 και r(t) = 〈cos t,sin t, t〉

Λύση. Έχουμε

r
(π

2

)
= 〈cos

π
2
,sin

π
2
,
π
2
〉= 〈0,1, π

2
〉.

Η κλίση της συνάρτησης υπολογίζεται ως εξής:

∇ f =
〈

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉
= 〈y, x, 2z〉, ∇ fr(π/2) = ∇ f

(
0,1,

π
2

)
= 〈1,0,π〉.

Στη συνέχεια, υπολογίζουμε το εφαπτόμενο διάνυσμα:

r′(t) = 〈−sin t,cos t,1〉, r′
(π

2

)
= 〈−sin

π
2
,cos

π
2
,1〉= 〈−1,0,1〉.

Από τον κανόνα της αλυσίδας προκύπτει:

d
dt

f (r(t))
∣∣∣
t=π/2

= ∇ fr(π/2) · r′
(π

2

)
= 〈1,0,π〉 · 〈−1,0,1〉= π−1.

Σημείωση 3.3.3 Δεν θα πρέπει να συγχέετε τον κανόνα της αλυσίδας για τις τροχιές με τον
κανόνα της αλυσίδας για τις κλίσεις, όπως διατυπώθηκε στο Θεώρημα 3.2.4 που προηγήθηκε.
Πρόκειται για διαφορετικούς κανόνες που αναφέρονται σε διαφορετικά είδη συνθέσεων.

Παράδειγμα 3.3.4
Η θερμοκρασία στη θέση (x,y) δίνεται από τη συνάρτηση

T (x,y) = 20+10e−0.3(x2+y2)

σε C◦. Ένα έντομο ακολουθεί τη διαδρομή

r(t) = 〈cos(t−2),sin(2t)〉

(το t σε s), η οποία απεικονίζεται στο Σχήμα 3.12. Ποιος είναι ο ρυθμός με τον οποίο μεταβάλλεται
η θερμοκρασία, ως προς τον χρόνο, την οποία βιώνει το έντομο τη χρονική στιγμή t = 0.6 s;

Λύση. Τη χρονική στιγμή t = 0.6 s το έντομο βρίσκεται στη θέση

r(0.6) = 〈cos(−1.4),sin(1.2)〉 ≈ 〈0.170,0.932〉
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Σύμφωνα με τον κανόνα της αλυσίδας για τις τροχιές, ο ρυθμός μεταβολής της θερμοκρασίας
είναι το εσωτερικό γινόμενο

dT
dt

∣∣∣∣
t=0.6

= ∇Tr(0.6) · r′(0.6)

∇T = 〈−6xe−0.3(x2+y2),−6ye−0.3(x2+y2)〉

r′(t) = 〈−sin(t−2), 2cos(2t)〉

και να τα εκτιμήσουμε στη θέση r(0.6) =
〈0.170,0.932〉:

∇Tr(0.6) ≈ 〈−0.779,−4.272〉

r′(0.6)≈ 〈0.985, 0.725〉 Σχήμα 3.12 Το διάνυσμα curlF(P) σχετίζεται με την
περιστροφή ενός ρευστού.

Έτσι, τελικά, ο ζητούμενος ρυθμός μεταβολής προκύπτει να είναι:

dT
dt

∣∣∣∣
t=0.6

= ∇Tr(0.6) · r′(t)≈ 〈−0.779,−4.272〉 · 〈0.985, 0.725〉 ≈ −3.87 ◦C/s

3.4 Παράγωγοι κατά κατεύθυνση

Είμαστε τώρα σε θέση να παρουσιάσουμε τις
μεθόδους που θα μας βοηθήσουν να υπολογίσουμε
τους ρυθμούς μεταβολής μιας συνάρτησης f (x,y)
σε κατευθύνσεις διαφορετικές από τις θετικές
κατευθύνσεις των αξόνων x και y.
Θεωρήστε, για παράδειγμα, την ευθεία γραμμή
που διέρχεται από το σημείο P = (a,b) στην
κατεύθυνση του μοναδιαίου διανύσματος u = 〈h,k〉
(βλ. Σχήμα 3.13), η οποία περιγράφεται από την:

r(t) = 〈a+ th, b+ tk〉 Σχήμα 3.13 Ηπαράγωγος κατά κατεύθυνση Du f (a,b)
δείχνει τον ρυθμό μεταβολής της συνάρτησης f κατά
μήκος της ευθείας που διέρχεται από το σημείο P έχοντας
διάνυσμα κατεύθυνσης u.

Η παράγωγος ως προς t της f (r(t)), για t = 0, είναι γνωστή με την ονομασία παράγωγος κατά
κατεύθυνση της f ως προς την κατεύθυνσηu στο σημείοP και συμβολίζεται ωςDu f (P) ήDu f (a,b):

Du f (a,b) =
d
dt

f (r(t))
∣∣∣∣
t=0

= lim
t→0

f (a+ th, b+ tk)− f (a,b)
t

Οι παράγωγοι κατά κατεύθυνση των συναρτήσεων με τρεις ή περισσότερες μεταβλητές ορίζονται
με παρόμοιο τρόπο.
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Θεώρημα 3.4.1 παράγωγος κατά κατεύθυνσηΗπαράγωγος κατά κατεύθυνση της συνάρτησης f
στο σημείο P = (a,b) και στην κατεύθυνση του μοναδιαίου διανύσματος u = 〈h,k〉 είναι το
όριο (υποθέτοντας ότι υπάρχει):

Du f (P) = Du f (a,b) = lim
t→0

f (a+ th, b+ tk)− f (a,b)
t

Σημείωση 3.4.2 Εναλλακτική Η παράγωγος
κατά κατεύθυνση Du f (P) είναι ο ρυθμός
μεταβολής της συνάρτησης f ανά μονάδα
μεταβολής που συντελείται στην οριζόντια
κατεύθυνση u στο σημείο P = (a,b), όπως
φαίνεται στο Σχήμα 3.14. Πρόκειται για την
κλίση της εφαπτόμενης ευθείας γραμμής στο
σημείο Q = (a,b, f (a,b)) και στην καμπύλη-
ίχνος που προκύπτει όταν τμήσουμε το γράφημα
με το κατακόρυφο επίπεδο που διέρχεται από
το P στην κατεύθυνση u. Αν u = 〈h,k〉, το
διάνυσμα v = 〈h,k,Du f (P)〉 κατευθύνεται κατά
μήκος αυτής της ευθείας έχοντας ως αφετηρία το
σημείο Q.

Σχήμα 3.14 Ηπαράγωγος κατά κατεύθυνση Du f (a,b)
είναι η κλίση της εφαπτόμενης ευθείας στην καμπύλη-ίχνος
στο σημείο Q στο κατακόρυφο επίπεδο που διέρχεται από
το σημείο P στην κατεύθυνση του διανύσματος u. Το
διάνυσμα v = 〈h,k,Du f (P)〉 είναι παράλληλο σε αυτή
την εφαπτόμενη ευθεία.

Σχόλιο 3.4.3 Παρατηρούμε ότι οι μερικές παράγωγοι είναι οι παράγωγοι κατά κατεύθυνση ως
προς τα θεμελιώδη μοναδιαία διανύσματα i = 〈1,0〉 και j = 〈0,1〉. Για παράδειγμα,

Di f (a,b) = lim
t→0

f (a+ t 1, b+ t 0)− f (a,b)
t

= lim
t→0

f (a+ t, b)− f (a,b)
t

= fx(a,b)

Επομένως, θα ισχύει:

fx(a,b) = Di f (a,b), fy(a,b) = Dj f (a,b)

Σχόλιο 3.4.4 Γιατί το διάνυσμα v = 〈h,k,Du f (P)〉 έχει τρίτη συντεταγμένη Du f (P)

Έστω ότι δίνεται μια επιφάνεια

z = f (x,y),

και ένα σημείο

P = (a,b, f (a,b)).

Θεωρούμε μια οριζόντια διεύθυνση

u = 〈h,k〉.
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Παραμετροποίηση της καμπύλης τομής.
Παίρνουμε το κατακόρυφο επίπεδο που περνά από το σημείο P και είναι παράλληλο προς τη
διεύθυνση u. Το ίχνος της επιφάνειας στο επίπεδο αυτό είναι μια χωρική καμπύλη, την οποία
μπορούμε να παραμετροποιήσουμε ως εξής:

r(t) =
(
a+ht, b+ kt, f (a+ht, b+ kt)

)
.

Το εφαπτόμενο διάνυσμα της καμπύλης.
Το εφαπτόμενο διάνυσμα δίνεται από την παράγωγο:

r′(t) =
〈

h, k,
d
dt

f (a+ht, b+ kt)
〉
.

Με τον κανόνα αλυσίδας:

d
dt

f (a+ht,b+ kt) = fx(a+ht,b+ kt)h+ fy(a+ht,b+ kt)k.

Στο σημείο t = 0 (δηλαδή στο σημείο P) έχουμε:

r′(0) = 〈h, k, fx(a,b)h+ fy(a,b)k〉 .

Ορισμός της παραγώγου κατά διεύθυνση

Η παράγωγος κατά διεύθυνση της f στο σημείο P προς τη διεύθυνση u είναι:

Du f (P) = fx(a,b)h+ fy(a,b)k = Du f (P) = ∇ fP ·u.

Άρα η τρίτη συνιστώσα του εφαπτόμενου διανύσματος είναι

d
dt

f (a+ht,b+ kt)
∣∣∣
t=0

= Du f (P).

Συνεπώς, το εφαπτόμενο διάνυσμα στο σημείο P της καμπύλης τομής είναι

v = r′(0) = 〈h, k, Du f (P)〉.

Η τρίτη συντεταγμένη είναι το Du f (P) επειδή εκφράζει τον ρυθμό μεταβολής του ύψους z
της επιφάνειας όταν το σημείο κινείται, πάνω στο επίπεδο z = f (x,y), προς τη διεύθυνση u.

Ο τυπικός τρόπος υπολογισμού των παραγώγων κατά κατεύθυνση δεν είναι βέβαια ο ορισμός.
Για διαφορίσιμες συναρτήσεις, το ακόλουθο θεώρημα παρέχει μια πολύ πιο βολική προσέγγιση
με τη χρήση του διανύσματος της κλίσης. Το θεώρημα αποδεικνύεται με τη βοήθεια του κανόνα
της αλυσίδας για τις τροχιές.

Θεώρημα 3.4.5Αν η συνάρτηση f είναι διαφορίσιμη στο σημείοP και τοu είναι ένα μοναδιαίο
διάνυσμα, τότε η παράγωγος κατά κατεύθυνση στην κατεύθυνση του u υπολογίζεται ως:

Du f (P) = ∇ fP ·u

Για μια συνάρτηση f (x,y) και για το μοναδιαίο διάνυσμα u = 〈h,k〉, ο υπολογισμός του εσωτε-
ρικού γινομένου που σημειώνεται στην εξίσωση του θεωρήματος μπορεί να αναπτυχθεί, οπότε
προκύπτει ότι:
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Du f (a,b) = ∇ f(a,b) ·u = fx(a,b)h+ fy(a,b)k

ΤοΘεώρημα 3.4.5 ισχύει για συναρτήσεις με οποιοδήποτε πλήθος μεταβλητών. Πιο συγκεκρι-
μένα, για τη συνάρτηση f (x,y,z) και για το μοναδιαίο διάνυσμα u = 〈h,k,m〉 θα ισχύει:

Du f (a,b,c) = ∇ f(a,b,c) ·u = fx(a,b,c)h+ fy(a,b,c)k+ fz(a,b,c)m

Du f (a,b,c) = ∇ f(a,b,c) ·u = fx(a,b,c)h+ fy(a,b,c)k+ fz(a,b,c)m

Παράδειγμα 3.4.6
Έστω η συνάρτηση f (x,y) = xey, το σημείοP= (2,−1) και το διάνυσμα v= 〈2,3〉. Υπολο-
γίστε την παράγωγο κατά κατεύθυνση της συνάρτησης f στο σημείο P και στην κατεύθυνση
του διανύσματος v.

Λύση. Αρχικά θα πρέπει να παρατηρήσετε ότι το διάνυσμα v δεν είναι μοναδιαίο. Έτσι, λοιπόν,
θα το αντικαταστήσουμε με το διάνυσμα

u =
v
‖v‖

=
〈2,3〉√

13
=

〈
2√
13

,
3√
13

〉
Στη συνέχεια, θα υπολογίσουμε την κλίση της συνάρτησης στο σημείο P = (2,−1):

∇ f =
〈

∂ f
∂x

,
∂ f
∂y

〉
= 〈ey, xey〉 ⇒ ∇ fP = ∇ f(2,−1) = 〈e−1, 2e−1〉

Τέλος, από το Θεώρημα 3.4.5 προκύπτει:

Du f (P) = ∇ fP ·u = 〈e−1, 2e−1〉 ·
〈

2√
13

,
3√
13

〉
=

8e−1
√

13
≈ 0.82

Το αποτέλεσμα αυτό ερμηνεύεται ως εξής: Αν φανταστούμε ότι η συγκεκριμένη συνάρτηση
παριστάνει το περίγραμμα ενός βουνού, τότε στη θέση που ορίζεται από τις συντεταγμένες (x,y)=
(2,−1) περιμένουμε ότι για μετατόπιση μιας μονάδας στην κατεύθυνση του διανύσματος v, θα
πρέπει να ανέβουμε στην κατακόρυφη κατεύθυνση περίπου κατά 0.82 μονάδες.

Παράδειγμα 3.4.7
Προσδιορίστε τον ρυθμό μεταβολής της πίεσης σε ένα σημείο Q = (1,2,1) και στην κατεύθυ-
νση του διανύσματος v = 〈0,1,1〉, υποθέτοντας ότι η πίεση (σε millibars) δίνεται από τη
συνάρτηση

f (x,y,z) = 1000+0.01(yz2 + x2z− xy2), (x,y,z σε km).

Λύση. Θα υπολογίσουμε αρχικά την κλίση στο σημείο Q = (1,2,1):

∇ f = 0.01〈2xz−y2, z2−2xy, 2yz+x2〉 ⇒ ∇ fQ = ∇ f(1,2,1) = 〈−0.02,−0.03, 0.05〉

Στη συνέχεια, θα υπολογίσουμε το μοναδιαίο διάνυσμα u στην κατεύθυνση του v:

u =
v
‖v‖

=
〈0,1,1〉√

2
=

〈
0,

1√
2
,

1√
2

〉
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Τέλος, θα έχουμε:

Du f (Q) = ∇ fQ ·u = 〈−0.02,−0.03, 0.05〉 ·
〈

0,
1√
2
,

1√
2

〉
≈ 0.014 millibars/km

Αυτό σημαίνει ότι καθώς θα κινούμαστε στην κατεύθυνση του διανύσματος v, ξεκινώντας από
το σημείο Q, η πίεση θα αυξάνεται περίπου κατά 0.014 millibars/km.

Σημείωση 3.4.8 Εμβάθυνση στα σχήματα
Με δεδομένη μια συνάρτηση f (x,y) που είναι διαφορίσιμη στο P = (a,b), το Θεώρημα 3.4.5
μας εγγυάται ότι το εφαπτόμενο επίπεδο στο γράφημα της f στο σημείοQ = (a,b, f (a,b)) θα
είναι εφαπτόμενο στο γράφημα σε όλες τις κατευθύνσεις και όχι μόνο στις κατευθύνσεις εκείνες
που ορίζονται από τις μερικές παραγώγους. Θυμηθείτε ότι το επίπεδο που προσδιορίζεται από
τις fx και fy ορίζεται ως εκείνο το επίπεδο που διέρχεται από το σημείο Q και προσδιορίζεται
από τα διανύσματα v1 = 〈1,0, fx(a,b)〉 και v2 = 〈0,1, fy(a,b)〉. Με δεδομένο ένα μοναδιαίο
διάνυσμαu= 〈h,k〉, το διάνυσμα v= 〈h,k,Du f (P)〉, με αρχή το σημείοQ, είναι εφαπτόμενο
στο γράφημα όπως φαίνεται στο Σχήμα 3.14 και εξηγήσαμε στο αντίστοιχο ένθετο της Εναλ-
λακτικής. Γενικά, δεν μπορούμε να είμαστε σίγουροι ότι το v βρίσκεται στο επίπεδο που
προσδιορίζουν οι fx και fy. Αν όμως η f είναι διαφορίσιμη στο (a,b), τότε μπορούμε να
δείξουμε ότι αυτό πράγματι συμβαίνει. Αρχικά, χρησιμοποιώντας τοΘεώρημα 3.4.5 και υποθέτο-
ντας ότι η f είναι διαφορίσιμη στο (a,b), μπορούμε να δείξουμε ότι:

v = hv1 + kv2 : v = 〈h,k,Du f (a,b)〉=
〈h,k,h fx(a,b)+ k fy(a,b)〉 (από το Θεώρημα 3)

v = h〈1,0, fx(a,b)〉+ k〈0,1, fy(a,b)〉= hv1 + kv2

Αφού v= hv1+kv2, το v αποτελεί γραμμικό συνδυασμό των v1 και v2, γεγονός που συνεπάγε-
ται ότι όλα αυτά τα διανύσματα, με αρχή το σημείο Q, κείτονται στο ίδιο επίπεδο. Όταν
λοιπόν η f είναι διαφορίσιμη στο (a,b), το εφαπτόμενο επίπεδο εφάπτεται στο γράφη- μα
της συνάρτησης σε όλες τις κατευθύνσεις, γεγονός που δικαιολογεί την ονομασία του.

3.5 Ιδιότητες της κλίσης
Στο σημείο αυτό θα μελετήσουμε ορισμένες από τις ιδιότητες του διανύσματος της κλίσης. Πιο
συγκεκριμένα, θα δείξουμε τον τρόπο με τον οποίο το συγκεκριμένο διάνυσμα μας παρέχει σημα-
ντικές πληροφορίες σχετικά με τη συμπεριφορά των συναρτήσεων, αλλά και το πώς αναδύεται,
με φυσιολογικό τρόπο, κατά τη μελέτη διαφορετικών μαθηματικών μοντέλων. Θα υποθέσουμε
αρχικά ότι ∇ fP 6= 0 και ότι το u είναι ένα μοναδιαίο διάνυσμα (βλ. Σχήμα 3.15). Σύμφωνα με
τις ιδιότητες του εσωτερικού γινομένου, αλλά και με βάση το γεγονός ότι το u είναι μοναδιαίο
διάνυσμα, θα ισχύει:

Du f (P) = ∇ fP ·u = ‖∇ fP‖‖u‖cosθ = ‖∇ fP‖cosθ

όπου θ η γωνία μεταξύ των διανυσμάτων ∇ fP και u. Με άλλα λόγια, ο ρυθμός μεταβολής σε μια
ορισμένη κατεύθυνση μεταβάλλεται με το συνημίτονο της γωνίας θ που σχηματίζεται μεταξύ των
διανυσμάτων της κλίσης και της εν λόγω κατεύθυνσης.

−‖∇ fP‖ ≤ Du f (P)≤ ‖∇ fP‖
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Επειδή cos0 = 1, η μέγιστη τιμή του
διανύσματος Du f (P) παρατηρείται για θ = 0 –
όταν δηλαδή το διάνυσμα u έχει την ίδια κατεύθυνση
με το ∇ fP. Με άλλα λόγια, το διάνυσμα της κλίσης
έχει την κατεύθυνση του μέγιστου ρυθμού αύξησης, το
μέτρο του οποίου είναι ίσο με ‖∇ fP‖. Παρομοίως,
η συνάρτηση f μειώνεται ταχύτερα στην αντίθετη
κατεύθυνση, δηλαδή στην κατεύ- θυνση −∇ fP,
επειδή cosθ =−1 για θ = π .

Σχήμα 3.15 Du f (P) = ‖∇ fP‖cosθ

Ορυθμός της ταχύτερης μείωσης, λοιπόν, είναι ίσος με−‖∇ fP‖. Η παράγωγος κατά κατεύθυνση

είναι ίση με το μηδέν στις κατευθύνσεις που είναι ορθογώνιες στην κλίση, καθώς cos
π
2
= 0.
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Μια ακόμα βασική ιδιότητα είναι
ότι τα διανύσματα της κλίσης είναι
κάθετα στις ισοσταθμικές καμπύλες
(βλ. Σχήμα 3.16). Για να αποδείξουμε
την ιδιότητα αυτή, θα υποθέσουμε ότι
ένα σημείο P βρίσκεται πάνω στην
ισοσταθμική καμπύλη f (x,y) = k. Θα
παραμετρήσουμε αυτή την ισοσταθμική
καμπύλη με τη βοήθεια μιας τροχιάς r(t)
τέτοιας ώστε r(0) = P και r′(0) 6= 0
(παραμετρική αναπαράσταση που είναι
εφικτή κάθε φορά που ∇ fP 6= 0). Τότε θα
ισχύει f (r(t)) = k για όλες τις τιμές της
παραμέτρου t , οπότε από τον κανόνα της
αλυσίδας θα έχουμε:

∇ fP · r′(0) =
d
dt

f (r(t))
∣∣∣
t=0

=
d
dt

k = 0

Σχήμα 3.16 Ισοσταθμικός χάρτης μιας
συνάρτησης f (x,y). Η κλίση της συνάρτησης στο
σημείο P είναι ορθογώνια στην ισοσταθμική καμπύλη που
διέρχεται από το P και «δείχνει» προς την κατεύθυνση
της μέγιστης αύξησης της f (x,y).

Το αποτέλεσμα αυτό αποδεικνύει ότι το διάνυσμα ∇ fP είναι ορθογώνιο με το r′(0), και αφού
το r′(0) είναι εφαπτόμενο στην ισοσταθμική καμπύλη, συμπεραίνουμε ότι το ∇ fP είναι κάθετο
στην ισοσταθμική καμπύλη, όπως φαίνεται στο Σχήμα 3.16. Όλες αυτές οι παρατηρήσεις συνοψίζο-
νται στο ακόλουθο θεώρημα.

Θεώρημα 3.5.1 Ερμηνεία της κλίσης Υποθέστε ότι ∇ fP 6= 0, ενώ u είναι ένα μοναδιαίο
διάνυσμα που σχηματίζει γωνία θ με το ∇ fP. Τότε

Du f (P) = ‖∇ fP‖cosθ

• Το διάνυσμα ∇ fP έχει την κατεύθυνση προς την οποία ο ρυθμός αύξησης της συνάρτη-
σης f στο σημείο P είναι μέγιστος και ίσος με ‖∇ fP‖.

• Το διάνυσμα−∇ fP έχει την κατεύθυνση προς την οποία ο ρυθμός μείωσης της συνάρτη-
σης f στο σημείο P

Παράδειγμα 3.5.2
Έστω η συνάρτηση f (x,y) = x4y−2 και το σημείο P = (2,1). Προσδιορίστε το μοναδιαίο
διάνυσμα που ορίζει την κατεύθυνση του μέγιστου ρυθμού αύξησης της συνάρτησης στο ση-
μείο P και προσδιορίστε το μέτρο αυτού του μέγιστου ρυθμού.

Λύση. Η κλίση ορίζει την κατεύθυνση προς την οποία η συνάρτηση εμφανίζει τον μέγιστο ρυθμό
αύξησης, επομένως θα υπολογίσουμε την κλίση στο σημείο P:

∇ f = 〈4x3y−2,−2x4y−3〉, ∇ f(2,1) = 〈32,−32〉

Το μοναδιαίο διάνυσμα σε αυτή την κατεύθυνση είναι το:

u =
〈32,−32〉
‖〈32,−32〉‖

=
〈32,−32〉

32
√

2
=

〈√
2

2
,−
√

2
2

〉

Ο μέγιστος ρυθμός αύξησης, που είναι ο ρυθμός σε αυτή την κατεύθυνση, είναι ίσος με:



203 Λογισμός των Διανυσματικών Συναρτήσεων

‖∇ f(2,1)‖=
√

322 +(−32)2 = 32
√

2

Παράδειγμα 3.5.3
Το ύψος ενός βουνού στο (x,y) δίνεται από τη
συνάρτηση:

f (x,y) = 2500+100(x+ y2)e−0.3y2

όπου τα x και y εκφράζονται σε μονάδες των 100
m.

1. Υπολογίστε την παράγωγο κατά κατεύθυνση
της f στο σημείο P = (−1,−1) και στην
κατεύθυνση του μοναδιαίου διανύσματος u
που σχηματίζει γωνία θ =

π
4
με την κλίση

(βλ. Σχήμα 3.17).

2. Πώς ερμηνεύεται η παράγωγος που
υπολογίσατε στο προηγούμενο ερώτημα;

Σχήμα 3.17 Ισοσταθμικός χάρτης της συνάρτησης
f (x,y) του Παραδείγματος 3.5.3.

Λύση.
Θα υπολογίσουμε αρχικά το μέτρο ‖∇ fP‖:

fx(x,y) = 100e−0.3y2
, fy(x,y) = 100y(2−0.6x−0.6y2)e−0.3y2

fx(−1,−1) = 100e−0.3 ≈ 74, fy(−1,−1) =−200e−0.3 ≈−148

Επομένως, ∇ fP ≈ 〈74,−148〉, οπότε

‖∇ fP‖ ≈
√

742 +(−148)2 ≈ 165.5

Επομένως για θ =
π
4
έχουμε:

Du f (P) = ‖∇ fP‖cosθ ≈ 165.5

(√
2

2

)
≈ 116.7

Θυμηθείτε ότι τα x και y εκφράζονται σε μονάδες των 100 m. Αυτό σημαίνει ότι μπορούμε
να ερμηνεύσουμε το αποτέλεσμα ως εξής: Αν είστε σε ένα βουνό, σε σημείο που βρίσκεται
πάνω στο (−1,−1) και ξεκινήσετε να σκαρφαλώνετε με τρόπο ώστε η οριζόντια μετατόπισή
σας να είναι κατά μήκος του διανύσματος u, τότε το ύψος σας πάνω στο βουνό θα αυξάνεται με
ρυθμό 116.7 m ανά 100 m οριζόντιας απόστασης, ή διαφορετικά 1.167 m ανά 1 m οριζόντιας
μετατόπισης.

3.5.1 Εξίσωση επιπέδου με γνωστή κάθετη διεύθυνση

Έστω ότι η επιφάνεια ορίζεται εμμέσως από την εξίσωση

F(x,y,z) = 0.

Τότε η κλίση της συνάρτησης F στο σημείο (a,b,c) είναι:

∇F(a,b,c) = 〈Fx(a,b,c), Fy(a,b,c), Fz(a,b,c)〉.
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Το διάνυσμα αυτό είναι κάθετο στην επιφάνεια F(x,y,z) = 0 στο σημείο (a,b,c). Πράγματι,
καθώς κινούμαστε πάνω στην επιφάνεια, η τιμή της F παραμένει σταθερή, δηλαδή

F(x(t),y(t),z(t)) = 0.

Παραγωγίζουμε ως προς t χρησιμοποιώντας τον κανόνα της αλυσίδας:

d
dt

F(x(t),y(t),z(t))

= Fx(x(t),y(t),z(t))x′(t)+Fy(x(t),y(t),z(t))y′(t)+Fz(x(t),y(t),z(t))z′(t).

Επειδή F(x(t),y(t),z(t)) = 0 για όλα τα t , το παραπάνω είναι ίσο με 0:

Fx x′(t)+Fy y′(t)+Fz z′(t) = 0.

Αυτό γράφεται ως εσωτερικό γινόμενο:

∇F · 〈x′(t),y′(t),z′(t)〉= 0.

Το διάνυσμα 〈x′(t),y′(t),z′(t)〉 είναι εφαπτόμενο διάνυσμα μιας καμπύλης που βρίσκεται πάνω
στην επιφάνεια.
Αφού το εσωτερικό γινόμενο είναι μηδέν, τότε:

∇F(a,b,c)⊥ 〈x′(t),y′(t),z′(t)〉.

Επειδή κάθε τέτοιο εφαπτόμενο διάνυσμα ανήκει στο εφαπτόμενο επίπεδο της επιφάνειας στο
σημείο (a,b,c), συμπεραίνουμε ότι το διάνυσμα∇F(a,b,c) είναι κάθετο σε όλο το εφαπτόμενο
επίπεδο. Άρα το διάνυσμα ∇F(a,b,c) είναι κάθετο στην επιφάνεια F(x,y,z) = 0.

Θεώρημα 3.5.4 Η κλίση ως κάθετο διάνυσμα
Έστω ένα σημείο P = (a,b,c) πάνω στην
επιφάνεια που περιγράφεται από την F(x,y,z) =
k. Υποθέτουμε ακόμη ότι ∇FP 6= 0. Τότε
το ∇FP είναι ένα διάνυσμα κάθετο στο επίπεδο
που είναι εφαπτόμενο στην επιφάνεια στο σημείοP.
Επιπλέον, το εφαπτόμενο επίπεδο στην επιφάνεια
στο σημείο P έχει εξίσωση

Fx(a,b,c)(x−a)+Fy(a,b,c)(y−b)+
Fz(a,b,c)(z− c) = 0. Σχήμα 3.18 Το διάνυσμα ∇FP είναι κάθετο στην

επιφάνεια F(x,y,z) = k στο σημείο P.

Ασκήσεις 3.5.5

1. Να περιγράψετε τις δύο βασικές γεωμετρικές ιδιότητες του διανύσματος της κλίσης ∇ f .

2. Ποιος είναι ο ρυθμός μεταβολής της συνάρτησης f (x,y) στο (0,0) σε μια κατεύθυνση
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που σχηματίζει γωνία 45◦ με τον άξονα των x, αν ∇ f (0,0) = 〈2,4〉;

3. Δίνεται η συνάρτηση και η τροχιά

f (x,y) = exy, r(t) = 〈t3, 1+ t〉.

(a) Υπολογίστε την κλίση ∇ f της συνάρτησης και την παράγωγο r′(t).

(b) Χρησιμοποιήστε τον κανόνα της αλυσίδας για τροχιές για να υπολογίσετε την παρά-

γωγο
d
dt

f (r(t)).

4. Έστω η συνάρτηση f (x,y) = xy2 και r(t) = 〈12t2, t3〉.
(a) Υπολογίστε την κλίση ∇ f της συνάρτησης και την παράγωγο r′(t).

(b) Χρησιμοποιήστε τον κανόνα της αλυσίδας για τις τροχιές για να υπολογίσετε την

παράγωγο
d
dt

f (r(t)) για t = 1 και t =−1.

5. Έστω η συνάρτηση f (x,y) = x2 + y2 και r(t) = 〈cos t, sin t〉.
(a) Υπολογίστε την παράγωγο

d
dt

f (r(t)) χωρίς να κάνετε κάποιον υπολογισμό.
Εξηγήστε την απάντησή σας.

(b) Επιβεβαιώστε το αποτέλεσμα στο οποίο καταλήξατε στο ερώτημα (a) χρησιμοποιώ-
ντας τον κανόνα της αλυσίδας.

Στις Ασκήσεις 6-11 να χρησιμοποιήσετε τον κανόνα της αλυσίδας για να υπολογίσετε την

παράγωγο
d
dt

f (r(t)) για την τιμή του t που σημειώνεται σε κάθε περίπτωση.

6. f (x,y) = x2−3xy, r(t) = 〈cos t,sin t〉, t = 0

7. f (x,y) = x2−3xy, r(t) = 〈cos t,sin t〉, t =
π
2

8. f (x,y) = sin(xy), r(t) = 〈e2t ,e3t〉, t = 0

9. f (x,y) = cos(y− x), r(t) = 〈et ,e2t〉, t = ln3

10. f (x,y) = x− xy, r(t) = 〈t2, t2−4t〉, t = 4

11. f (x,y) = 3xe−y, r(t) = 〈2t2, t2−2t〉, t = 0

Στις Ασκήσεις 12-17 να υπολογίσετε την παράγωγο κατά κατεύθυνση στην κατεύθυνση του
διανύσματος v στο σημείο που υποδεικνύεται κάθε φορά. Θυμηθείτε να χρησιμοποιήσετε
ένα μοναδιαίο διάνυσμα κατά τον υπολογισμό της παραγώγου κατά κατεύθυνση.

12. f (x,y) = x2y3, v = i+ j, P =

(
1
6
,3
)

13. f (x,y) = sin(x− y), v = 〈1,1〉, P =
(π

2
,
π
6

)
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14. f (x,y) = tan−1(xy), v = 〈1,1〉, P = (3,4)

15. f (x,y) = exy−y2
, v = 〈12,−5〉, P = (2,2)

16. f (x,y) = ln(x2 + y2), v = 3i−2j, P = (1,0)

17. g(x,y,z) = z2− xy+2y2, v = 〈1,−2,2〉, P = (2,1,−3)

18. Δίνεται η συνάρτηση

g(x,y,z) = z2− xy+2y2

και το διάνυσμα v = 〈1,−2,2〉 στο σημείο P = (2,1,−3). Να υπολογιστεί η κατευθυ-
νόμενη παράγωγος του g στο σημείο P προς την κατεύθυνση του v.

Στις Ασκήσεις 19 - 22 να προσδιορίσετε μια εξίσωση για το εφαπτόμενο επίπεδο στην
επιφάνεια και στο σημείο που υποδεικνύεται σε κάθε περίπτωση.

19. x2 +3y2 +4z2 = 20, P = (2,2,1)

20. xz+2x2y+ y2z3 = 11, P = (2,1,1)

21. x2 + z2ey−x = 13, P =

(
2,3,

3√
e

)
22. ln(1+4x2 +9y4)−0.1z2 = 0, P = (3,1,6.1876)

23 Έστω η συνάρτηση f (x,y) = (xy)1/3.
(a) Χρησιμοποιήστε τον ορισμό με το όριο για να δείξετε ότι fx(0,0) = fy(0,0) = 0.

(b) Χρησιμοποιήστε τον ορισμό με το όριο για να δείξετε ότι η παράγωγος κατά κατεύ-
θυνση Du f (0,0) δεν υπάρχει για οποιοδήποτε άλλο μοναδιαίο διάνυσμα u εκτός
από i και j.

(c) Είναι διαφορίσιμη η συνάρτηση f (x,y) στο (0,0);
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Λύση.

1. Οι δύο θεμελιώδεις γεωμετρικές ιδιότητες του διανύσματος της κλίσης ∇ f είναι οι εξής:
(a) Κατεύθυνση μέγιστης αύξησης: Το διάνυσμα ∇ fP δείχνει προς την κατεύθυνση κατά

την οποία η συνάρτηση f αυξάνεται με τον μέγιστο ρυθμό. Ο ρυθμός αυτός είναι
ίσος με το μέτρο ‖∇ fP‖.

(b) Κάθετο στις ισοσταθμικές καμπύλες (ή επιφάνειες): Το διάνυσμα ∇ fP είναι κάθετο σε
κάθε ισοσταθμική καμπύλη (ή επιφάνεια) f (x,y) = k που διέρχεται από το σημείο P.
Δηλαδή, αν r(t) είναι παραμετρική εξίσωση αυτής της καμπύλης, τότε

∇ fP · r′(0) = 0.

2. Ο ρυθμός μεταβολής της f στην κατεύθυνση του μοναδιαίου διανύσματος u δίνεται από
την παράγωγο κατά κατεύθυνση:

Du f (0,0) = ∇ f (0,0) ·u.

Η κατεύθυνση σχηματίζει γωνία 45◦ με τον άξονα x, επομένως το μοναδιαίο διάνυσμα
είναι

u = 〈cos45◦,sin45◦〉=
〈√

2
2 ,
√

2
2

〉
.

Άρα:

Du f (0,0) = 〈2,4〉 ·
〈√

2
2 ,
√

2
2

〉
= 2 ·

√
2

2 +4 ·
√

2
2 = 3

√
2.

Συμπέρασμα: Ο ρυθμός μεταβολής της f στο σημείο (0,0) προς τη δοθείσα κατεύθυνση
είναι 3

√
2.

3. Έστω f (x,y) = xy2 και r(t) = 〈12t2, t3〉.

(a)

∇ f (x,y) =
〈∂ f

∂x
,

∂ f
∂y

〉
= 〈y2, 2xy〉, r′(t) =

〈 d
dt

(1
2t2), d

dt
(t3)
〉
= 〈t, 3t2〉.

(b) Κατά τον κανόνα της αλυσίδας για τροχιές,

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t).

Επειδή r(t) = (x(t),y(t)) = 〈1
2

t2, t3〉, έχουμε

∇ f (r(t)) = 〈y(t)2, 2x(t)y(t)〉= 〈t6, t5〉, οπότε
d
dt

f (r(t)) =

〈t6, t5〉 · 〈t, 3t2〉= t7 +3t7 = 4t7.

Άρα

d
dt

f (r(t))
∣∣∣
t=1

= 4,
d
dt

f (r(t))
∣∣∣
t=−1

=−4.
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4. Δίνεται f (x,y) = exy και r(t) = 〈t3, 1+ t〉.

(a)

∇ f (x,y) =
〈∂ f

∂x
,

∂ f
∂y

〉
= 〈yexy, xexy〉, r′(t) =

〈 d
dt
(t3),

d
dt
(1+ t)

〉
=

〈3t2, 1〉.

(b) Κατά τον κανόνα της αλυσίδας για τροχιές,

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t).

Επειδή r(t) = (x(t),y(t)) = 〈t3, 1+ t〉, έχουμε

∇ f (r(t)) = 〈(1+ t)et3+t4
, t3 et3+t4〉,

οπότε

d
dt

f (r(t)) = 〈(1+ t)et3+t4
, t3et3+t4〉 · 〈3t2, 1〉= et3+t4(

3t2(1+ t)+ t3)=
et3+t4

t2(3+4t).

5. Έστω

f (x,y) = x2 + y2, r(t) = 〈cos t, sin t〉.

(a) Η συνάρτηση f (x,y) = x2 + y2 δίνει το τετράγωνο της απόστασης από το (0,0). Η
τροχιά r(t) κινείται στον μοναδιαίο κύκλο cos2 t + sin2 t = 1, άρα

f (r(t)) = cos2 t + sin2 t = 1

είναι σταθερή. Επομένως

d
dt

f (r(t)) = 0.

(b) Επιβεβαίωση με τον κανόνα της αλυσίδας.

∇ f (x,y) = 〈2x, 2y〉, r′(t) = 〈−sin t, cos t〉.

Άρα

∇ fr(t) = 〈2cos t, 2sin t〉, d
dt

f (r(t)) = ∇ fr(t) · r′(t) =
2cos t(−sin t)+2sin t(cos t) = 0.

6. Έχουμε f (x,y) = x2−3xy και r(t) = 〈cos t,sin t〉. Υπολογίζουμε πρώτα την κλίση:

∇ f = 〈 fx, fy〉= 〈2x−3y,−3x〉

οπότε
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∇ f (r(t)) = 〈2cos t−3sin t,−3cos t〉.

Επίσης,

r′(t) = 〈−sin t,cos t〉.

Με βάση τον κανόνα της αλυσίδας:

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t) = (2cos t−3sin t)(−sin t)+(−3cos t)(cos t).

Απλοποιούμε:

d
dt

f (r(t)) =−2cos t sin t +3sin2 t−3cos2 t.

Για t =
π
2
έχουμε cos t = 0, sin t = 1, άρα:

d
dt

f (r(t))
∣∣∣
t=

π
2

=−2(0)(1)+3(1)2−3(0)2 = 3.

d
dt

f (r(t)) = 3

9. Έχουμε f (x,y) = cos(y− x) και r(t) = 〈et ,e2t〉.
Υπολογίζουμε την κλίση:

∇ f = 〈 fx, fy〉= 〈sin(y− x),−sin(y− x)〉.

Άρα

∇ f (r(t)) = 〈sin(e2t− et),−sin(e2t− et)〉.

Επίσης,

r′(t) = 〈et , 2e2t〉.

Εφαρμόζοντας τον κανόνα της αλυσίδας:

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t) = sin(e2t− et)(et−2e2t).

Για t = ln3 έχουμε et = 3 και e2t = 9, άρα:

d
dt

f (r(t))
∣∣∣
t=ln3

= sin(9−3)(3−18) =−15 sin(6).

d
dt

f (r(t)) =−15 sin(6).
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13. Έχουμε f (x,y) = sin(x− y), v = 〈1,1〉 και P =
(π

2
,
π
6

)
.

∇ f (x,y) = 〈cos(x− y),−cos(x− y)〉.

Στο σημείο P:

∇ f (P) = 〈cos(
π
2
− π

6
),−cos(

π
2
− π

6
)〉= 〈cos(

π
3
),−cos(

π
3
)〉=

〈1
2
,−1

2

〉
.

Το διάνυσμα v = 〈1,1〉 δεν είναι μοναδιαίο· επομένως το κανονικοποιούμε:

u =
v
‖v‖

=
〈1,1〉√
12 +12

=
〈 1√

2
,

1√
2

〉
.

Η παράγωγος κατά κατεύθυνση είναι:

Du f (P) = ∇ f (P) ·u =
〈1

2
,−1

2

〉
·
〈 1√

2
,

1√
2

〉
=

1
2
√

2
− 1

2
√

2
= 0.

Du f (P) = 0.

15. Έχουμε f (x,y) = exy−y2
.

fx = yexy−y2
, fy = (x−2y)exy−y2

.

Στο σημείο P(2,2):

∇ f (2,2) = 〈2e0, (2−4)e0〉= 〈2,−2〉.

Το διάνυσμα v = 〈12,−5〉 έχει μέτρο:

‖v‖=
√

122 +(−5)2 =
√

144+25 =
√

169 = 13.

Το μοναδιαίο διάνυσμα είναι:

u = v
‖v‖ =

1
13
〈12,−5〉.

Άρα η παράγωγος κατά κατεύθυνση είναι:

Du f (2,2) = ∇ f (2,2) ·u = 〈2,−2〉 · 1
13
〈12,−5〉= 1

13
(24+10) =

34
13

.

Du f (2,2) =
34
13

.

17. Έχουμε g(x,y,z) = z2− xy+2y2.

gx =−y, gy =−x+4y, gz = 2z.

Στο σημείο P(2,1,−3):
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∇g(2,1,−3) = 〈−1,−2+4,−6〉= 〈−1, 2,−6〉.

Το διάνυσμα v = 〈1,−2,2〉 έχει μέτρο:

‖v‖=
√

12 +(−2)2 +22 =
√

9 = 3, u = v
‖v‖ =

1
3
〈1,−2,2〉.

Η παράγωγος κατά κατεύθυνση είναι:

Dug(2,1,−3) = ∇g(2,1,−3) ·u = 〈−1,2,−6〉 · 1
3
〈1,−2,2〉=

1
3
(−1 ·1+2 · (−2)+(−6) ·2) = −17

3
.

Dug(2,1,−3) =−17
3
.

18.
gx =−y, gy =−x+4y, gz = 2z.

Στο σημείο P(2,1,−3) έχουμε:

∇g(2,1,−3) = 〈−1,−2+4,−6〉= 〈−1, 2,−6〉.

Το διάνυσμα v = 〈1,−2,2〉 έχει μέτρο:

‖v‖=
√

12 +(−2)2 +22 =
√

9 = 3, u =
1
3
〈1,−2,2〉.

Η παράγωγος κατά κατεύθυνση είναι:

Dug(2,1,−3) = ∇g(2,1,−3) ·u = 〈−1,2,−6〉 · 1
3
〈1,−2,2〉=

1
3
(−1 ·1+2 · (−2)+(−6) ·2) = −17

3
.

Dug(2,1,−3) =−17
3
.

21.
F(x,y,z) = x2 + z2ey−x−13 = 0,

Fx = 2x− z2ey−x, Fy = z2ey−x, Fz = 2zey−x.

P =

(
2, 3,

3√
e

)
, ey−x∣∣

P = e1 = e,

z2ey−x∣∣
P =

(
3√
e

)2

e = 9.
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Fx(P) =−5, Fy(P) = 9, Fz(P) = 6
√

e.

−5(x−2)+9(y−3)+6
√

e
(

z− 3√
e

)
= 0.

ισοδύναμα: −5x+9y+6
√

ez−35 = 0 (ή 5x−9y−6
√

ez+35 = 0).

23 Θέτουμε f (x,y) = (xy)1/3 και f (0,0) = 0.
(a) Με τον ορισμό:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

(h ·0)1/3−0
h

= 0.

Ανάλογα,

fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

(0 · k)1/3−0
k

= 0.

(b) Έστω μοναδιαίο u = (h,k) με h2 + k2 = 1. Με τον ορισμό της παραγώγου κατά
κατεύθυνση:

Du f (0,0) = lim
t→0

f (th, tk)− f (0,0)
t

= lim
t→0

(
t2hk

)1/3

t
= lim

t→0
t−1/3 (hk)1/3.

Αν hk 6= 0 (δηλ. u δεν είναι παράλληλο σε i ή j), τότε t−1/3→+∞ όταν t→ 0 και
το γινόμενο τείνει σε ±∞ (ή δεν υπάρχει ως πεπερασμένο όριο). Άρα το Du f (0,0)
δεν υπάρχει για καμία διεύθυνση πλην των αξόνων. Αντιθέτως, για u = i ή j έχουμε
hk = 0 και από τα (α)–(β) προκύπτει Di f (0,0) = fx(0,0) = 0 και Dj f (0,0) =
fy(0,0) = 0.

(c) Αν ήταν διαφορίσιμη στο (0,0), θα ίσχυε

f (h,k) = f (0,0)+∇ f (0,0) · (h,k)+o
(√

h2 + k2
)
= o
(√

h2 + k2
)
,

επειδή fx(0,0) = fy(0,0) = 0. Παίρνοντας την πορεία h = k = t έχουμε

f (t, t) = (t2)1/3 = |t|2/3,
| f (t, t)|√

t2 + t2
=
|t|2/3
√

2 |t|
=

1√
2
|t|−1/3 −−→

t→0
+∞,

που δεν είναι o
(√

h2 + k2
)
. Άτοπο. Επομένως, η f δεν είναι διαφορίσιμη στο (0,0).

3.6 Απόκλιση

Οι δράσεις του τελεστή∇ πάνω σε ένα διανυσματικό πεδίοF εκφράζονται είτε μέσω του εσωτερι-
κού γινόμενου (οδηγώντας στον ορισμό της απόκλισης) είτε μέσω του εξωτερικού γινομένου
(οδηγώντας στον ορισμό του στροβιλισμού). Σε αυτό το σημείο θα εισαγάγουμε την απόκλιση.
Για ένα διανυσματικό πεδίο F = 〈F1, F2, F3〉 ορίζουμε την απόκλιση της F, την οποία συμβολί-
ζουμε div(F), ως εξής:
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Ορισμός 3.6.1Η απόκλιση ενός διανυσματικού πεδίου F = 〈F1,F2,F3〉 είναι η βαθμωτή συνά-
ρτηση που δίνεται ως

div(F) = ∇·F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂ z
.

Παράδειγμα 3.6.2
Να υπολογίσετε την απόκλιση του διανυσματικού πεδίου F = 〈exy, xy, z4〉 στο σημείο P =

(1,0,2).

Λύση.

div(F) =
∂
∂x

exy +
∂
∂y

(xy)+
∂
∂ z

z4 = yexy + x+4z3.

div(F)(P) = div(F)(1,0,2) = 0 · e0 +1+4 ·23 = 33.

Σημείωση 3.6.3 Σε πρώτο χρόνο, θα επιχειρήσουμε να διερευνήσουμε σε συντομία το νόημα
της απόκλισης στο πλαίσιο μιας εφαρμογής της στη φυσική. Φανταστείτε ένα αέριο με το
διανυσματικό πεδίο των ταχυτήτων να περιγράφεται από την F.

Όταν ισχύει div(F) > 0 σε κάποιο σημείο P του αερίου, έχουμε μια κίνηση προς τα έξω
κοντά σε αυτό το σημείο. Με άλλα λόγια, το αέριο διαστέλλεται γύρω από αυτό το σημείο, όπως
ακριβώς θα συνέβαινε αν το αέριο θερμαινόταν. Όταν ισχύει div(F)< 0 σε κάποιο σημείο P
του αερίου, τότε το αέριο συμπιέζεται προς το σημείο P, όπως ακριβώς θα συνέβαινε στην
περίπτωση που το αέριο ψυχόταν. Όταν ισχύει div(F) = 0, τότε το αέριο ούτε συμπιέζεται
ούτε διαστέλλεται κοντά στο σημείο P.

Για παράδειγμα, η απόκλιση του διανυσματικού πεδίουF= 〈x,y,z〉, το οποίο απεικονίζεται
στο Σχήμα 3.19(α), έχει παντού την τιμήdiv(F)= 3. Θεωρώντας ότι το προηγούμενο διανυσμα-
τικό πεδίο είναι το πεδίο των ταχυτήτων ενός αερίου, το προηγούμενο αποτέλεσμα σημαίνει
ότι το αέριο διαστέλλεται σε κάθε σημείο του. Το γεγονός αυτό είναι πολύ εμφανές στην αρχή
των αξόνων, αλλά και σε όλα τα υπόλοιπα σημεία το αέριο διαστέλλεται, υπό την έννοια ότι
περισσότερα άτομα αερίου κινούνται απομακρυνόμενα από το υπό εξέταση σημείο σε σχέση
με αυτά που το προσεγγίζουν. Σε μια τέτοια περίπτωση θα λέμε ότι καθένα από αυτά τα σημεία
είναι μια πηγή.

Αντιθέτως, στην περίπτωση του διανυσματικού πεδίουF= 〈−x,−y,−z〉, το οποίο απεικο-
νίζεται στο Σχήμα 3.19(β), έχουμε div(F) = −3 για όλα τα σημεία P, γεγονός που σημαίνει
ότι το αέριο συμπιέζεται σε κάθε σημείο του. Στην περίπτωση αυτή θα λέμε ότι κάθε σημείο
είναι καταβόθρα.

Στην περίπτωση του διανυσματικού πεδίουF= 〈0,1,0〉, το οποίο απεικονίζεται στο Σχήμα-
3.19(γ), ισχύει div(F) = 0. Αυτό σημαίνει ότι σε κάθε σημείο το αέριο ούτε διαστέλλεται ούτε
συστέλλεται, αλλά απλώς μετατοπίζεται κατά μήκος της θετικής κατεύθυνσης του άξονα y. Σε
μια τέτοια περίπτωση δεν υπάρχουν σημεία που να είναι πηγές ή καταβόθρες, οπότε λέμε ότι
το διανυσματικό πεδίο είναι ασυμπίεστο. Υπάρχουν επίσης περιπτώσεις διανυσματικών πεδίων
στα οποία ορισμένα σημεία μπορεί να είναι πηγές, άλλα καταβόθρες, και κάποια σημεία που
να μην είναι τίποτε από τα δύο.
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Σχήμα 3.19

3.7 Στροβιλισμός

Οι δράσεις του τελεστή∇ μέσω του εξωτερικού γινομένου οδηγεί στον ορισμό του στροβιλισμού.
Συγκεκριμένα:

Ορισμός 3.7.1 Στροβιλισμός διανυσματικού πεδίου Έστω F = 〈F1,F2,F3〉 ένα διανυσματικό
πεδίο Ο στροβιλισμός του F, που συμβολίζεται ως curl(F) ορίζεται μέσω του εξωτερικού
γινομένου ως εξής:

curl(F) = ∇×F =

∣∣∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂ z

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣
ή αναλυτικά,

curl(F) =
(

∂F3

∂y
− ∂F2

∂ z

)
i−
(

∂F3

∂x
− ∂F1

∂ z

)
j+
(

∂F2

∂x
− ∂F1

∂y

)
k.

Ισοδύναμα, μπορούμε να γράψουμε:

curl(F) =
〈

∂F3

∂y
− ∂F2

∂ z
,

∂F1

∂ z
− ∂F3

∂x
,

∂F2

∂x
− ∂F1

∂y

〉
.

Παράδειγμα 3.7.2
Υπολογισμός του στροβιλισμού Υπολογίστε τον στροβιλισμό του διανυσματικού πεδίου F =

〈xy,ex,y+ z〉.

Λύση. Θα υπολογίσουμε τον στροβιλισμό με τη βοήθεια της ορίζουσας:
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curl(F) =

∣∣∣∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂ z

xy ex y+ z

∣∣∣∣∣∣∣∣∣∣∣
curl(F) =

(
∂
∂y

(y+ z)− ∂
∂ z

ex
)

i−
(

∂
∂x

(y+ z)− ∂
∂ z

(xy)
)

j+
(

∂
∂x

ex− ∂
∂y

(xy)
)

k.

Υπολογίζοντας τις παραγώγους:

∂
∂y

(y+ z) = 1,
∂
∂ z

ex = 0,
∂
∂x

(y+ z) = 0,
∂
∂ z

(xy) = 0,
∂
∂x

ex = ex,
∂
∂y

(xy) = x.

Άρα

curl(F) = (1−0)i− (0−0)j+(ex− x)k = i+(ex− x)k.

Το μέτρο του διανύσματος curl(F)(P) αποτελεί
μέτρο του κατά πόσο γρήγορα το διανυσματικό
πεδίο F, εφόσον θεωρηθεί ότι αντιπροσωπεύει
το πεδίο ταχυτήτων μιας ροής κάποιου ρευστού,
θα στρέψει μια φτερωτή η οποία θα τοποθετηθεί
στο σημείο P του ρευστού, όπως φαίνεται στο
Σχήμα 3.20. Η κατεύθυνση του διανύσματος
curl(F)(P) είναι η κατεύθυνση του άξονα της
φτερωτής που τοποθετείται στο σημείο P, ώστε
να έχουμε τον μέγιστο ρυθμό περιστροφής. Το
μέτρο του διανύσματος curl(F)(P) είναι αυτός ο
μέγιστος ρυθμός περιστροφής. Στην περίπτωση που
curl(F)(P) = 0, τότε το διανυσματικό πεδίο F θα
λέγεται αστρόβιλο.

Σχήμα 3.20 Το διάνυσμα curlF(P) σχετίζεται με την
περιστροφή ενός ρευστού.

3.8 Συνάρτηση δυναμικού και συντηρητικά πεδία

Τα διανυσματικά πεδία αποτελούν θεμελιώδη εργαλεία στηΜαθηματικήΑνάλυση και στηΦυσική,
καθώς περιγράφουν κατανομές δυνάμεων, ταχυτήτων ή ροών στο χώρο. Μια ιδιαίτερα σημαντική
κατηγορία είναι τα συντηρητικά διανυσματικά πεδία, δηλαδή εκείνα που μπορούν να εκφραστούν
ως το βαθμωτό πεδίο μιας συνάρτησης δυναμικού. Η συνάρτηση δυναμικού (ή βαθμωτό δυναμικό)
ενός διανυσματικού πεδίου F(x,y,z) είναι μια διαφορίσιμη συνάρτηση f (x,y,z) τέτοια ώστε:

F = ∇ f =
〈

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉
Δηλαδή, το διανυσματικό πεδίο F μπορεί να εκφραστεί ως η κλίση μιας βαθμωτής συνάρτησης.

Ορισμός 3.8.1 Ένα διανυσματικό πεδίο F ονομάζεται συντηρητικό αν υπάρχει μια διαφορίσιμη
συνάρτηση f (x,y,z) τέτοια ώστε F = ∇ f
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Σε συντηρητικά πεδία, το έργο μιας δύναμης δεν εξαρτάται από τη διαδρομή αλλά μόνο από
τα άκρα της, γεγονός που τα συνδέει άμεσα με τη φυσική έννοια της διατήρησης ενέργειας. Η
ύπαρξη μιας συνάρτησης δυναμικού επιτρέπει την απλούστευση πολλών υπολογισμών και την
εννοιολογική ενοποίηση μεταξύ ανάλυσης, γεωμετρίας και φυσικής.

Η ίδια ορολογία που χρησιμοποιείται στην περίπτωση
των δύο μεταβλητών χρησιμοποιείται και στη
γενικότερη περίπτωση των n μεταβλητών. Θυμηθείτε
ότι τα διανύσματα της κλίσης είναι ορθογώνια
στις ισοσταθμικές καμπύλες· επομένως, σε ένα
συντηρητικό διανυσματικό πεδίο το διάνυσμα της
κλίσης σε κάθε σημείο P είναι ορθογώνιο προς την
ισοσταθμική καμπύλη του δυναμικού που διέρχεται
από το σημείο P, όπως φαίνεται στο Σχήμα 3.21.
Τα συντηρητικά διανυσματικά πεδία έχουν κάποιες
σημαντικές ιδιότητες. Για παράδειγμα, το έργο που
παράγεται από ένα συντηρητικό διανυσματικό πεδίο
καθώς ένα σωματίδιο κινείται από ένα σημείο σε
κάποιο άλλο είναι ανεξάρτητο από τη διαδρομή
που ακολουθεί. Στη φυσική, τα συντηρητικά
διανυσματικά πεδία εμφανίζονται με φυσικό τρόπο
ως πεδία δυνάμεων που αντιστοιχούν σε φυσικά
συστήματα στα οποία διατηρείται η ενέργεια.

Σχήμα 3.21 Ένα συντηρητικό διανυσματικό πεδίο
προκύπτει από την κλίση μιας βαθμωτής συνάρτησης
δυναμικού και επομένως θα είναι ορθογώνιο προς τις

ισοσταθμικές καμπύλες αυτής της συνάρτησης.

Παράδειγμα 3.8.2
Επιβεβαιώστε ότι η συνάρτηση f (x,y,z) = xy+ yz2 είναι μια συνάρτηση δυναμικού για το
διανυσματικό πεδίο F = 〈y, x+ z2, 2yz〉.

Λύση.Θα υπολογίσουμε την κλίση της συνάρτησης f :

∂ f
∂x

= y,
∂ f
∂y

= x+ z2,
∂ f
∂ z

= 2yz

Παρατηρούμε ότι

∇ f = 〈y, x+ z2, 2yz〉= F,

όπως απαιτούνταν να αποδείξουμε.

Θεώρημα 3.8.3 Στροβιλισμός ενός συντηρητικού διανυσματικού πεδίου
1. Στον χώρο R2, αν το διανυσματικό πεδίο F = 〈F1,F2〉 είναι συντηρητικό, τότε:

∂F1

∂y
=

∂F2

∂x

2. Στον χώρο R3, αν το διανυσματικό πεδίο F = 〈F1,F2,F3〉 είναι συντηρητικό, τότε:

curl(F) = 0 ή ισοδύναμα,
∂F1

∂y
=

∂F2

∂x
,

∂F2

∂ z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂ z
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Παράδειγμα 3.8.4

Δείξτε ότι το διανυσματικό πεδίο F = 〈xy,
x2

2
,zy〉 δεν είναι συντηρητικό.

Λύση. Αφού το F είναι διανυσματικό πεδίο του χώρουR3, θα πρέπει να αποδείξουμε ότι τουλάχι-
στον μία από τις τρεις συνθήκες ισότητας των μικτών μερικών παραγώγων της δεύτερης πρότασης
του Θεωρήματος 3.8.3 δεν ικανοποιείται.
Η πρώτη από αυτές τις ισότητες ικανοποιείται καθώς

∂F1

∂y
=

∂F2

∂x
= x.

Ελέγχοντας τη δεύτερη, διαπιστώνουμε ότι:

∂F2

∂ z
=

∂
∂ z

(
x2

2

)
= 0,

∂F3

∂y
=

∂
∂y

(zy) = z.

Επομένως,

∂F2

∂ z
6= ∂F3

∂y
,

που σημαίνει ότι, σύμφωνα με το Θεώρημα 3.8.3, το F δεν είναι συντηρητικό.

Στο προηγούμενο παράδειγμα αυτό που απαιτούνταν προκειμένου να αποδειχθεί ότι το διανυσμα-
τικό πεδίο F δεν είναι συντηρητικό ήταν να δείξουμε ότι τουλάχιστον μία από τις ισότητες με τις
μικτές παραγώγους δεν ικανοποιείται. Έτσι, παρόλο που οι δύο από τις εξισώσεις με τις μικτές
παραγώγους πράγματι ικανοποιούνταν για το προηγούμενο πεδίο F, δείχνοντας ότι

∂F2

∂ z
6= ∂F3

∂y

ήταν αρκετό για να τεκμηριώσουμε το γεγονός ότι το πεδίο F δεν είναι συντηρητικό.

Περίληψη 3.8.5

• Ένα διανυσματικό πεδίο αντιστοιχίζει ένα διάνυσμα σε κάθε σημείο ενός χωρίου. Ένα
διανυσματικό πεδίο στον χώρο R3 αναπαρίσταται από μια τριάδα συναρτήσεων F =
〈F1,F2,F3〉. Ένα διανυσματικό πεδίο στον χώρο R2 αναπαρίσταται από ένα ζεύγος
συναρτήσεων F = 〈F1,F2〉. Σε όλες τις περιπτώσεις υποθέτουμε ότι οι συνιστώσες Fj
είναι λείες συναρτήσεις στα πεδία ορισμού τους.

• Ο τελεστής ανάδελτα ορίζεται

∇ =

〈
∂
∂x

,
∂
∂y

,
∂
∂ z

〉
και χρησιμοποιείται για τον ορισμό της κλίσης (∇ f ), της απόκλισης (∇ · F) και του
στροβιλισμού (∇×F).
Λέμε ότι το διανυσματικό πεδίο
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F = F1i+F2 j+F3k

απορρέει από βαθμωτό δυναμικό, όταν είναι δυνατόν να βρεθεί μία βαθμωτή συνάρτηση

f (x,y,z)

τέτοια ώστε

F = ∇ f ή
∂ f
∂x

= F1,
∂ f
∂y

= F2,
∂ f
∂ z

= F3.

Αν F = ∇ f , τότε το διανυσματικό πεδίο F αποκαλείται συντηρητικό και η f ονομάζεται
συνάρτηση δυναμικού για το πεδίο F.

• Ικανή και αναγκαία συνθήκη προκειμένου το πεδίο F να απορρέει από δυναμικό είναι

curlF = 0

όπου F : Ω→ R3 και Ω = R3 ή Ω κυρτό, και το δυναμικό δίνεται από τη σχέση

f (x,y,z) =
∫ x

a
P(t,y,z)dt +

∫ y

b
Q(a, t,z)dt +

∫ z

c
R(a,b, t)dt.

όπου (a,b,c) σημείο του πεδίου ορισμού της F.

• Η απόκλιση ενός διανυσματικού πεδίου F = 〈F1,F2,F3〉 είναι η βαθμωτή συνάρτηση
που δίνεται ως

div(F) = ∇ ·F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂ z
.

Το διανυσματικό πεδίο F ονομάζεται σωληνοειδές, όταν σε κάθε σημείο του ισχύει

div(F) = 0.

• Ο στροβιλισμός ενός διανυσματικού πεδίουF= 〈F1,F2,F3〉 είναι το διανυσματικό πεδίο
που δίνεται ως

curl(F) = ∇×F =

(
∂F3

∂y
− ∂F2

∂ z

)
i−
(

∂F3

∂x
− ∂F1

∂ z

)
j+
(

∂F2

∂x
− ∂F1

∂y

)
k.

• Αν η συνάρτηση f (x,y,z) είναι συνάρτηση δυναμικού του πεδίου F, τότε το έργο της
κατά τη μετατόπιση ενός υλικού σημείου από τη θέση A στη θέση B είναι

WA→B = f (B)− f (A).

Στην Κλασική Μηχανική η σχέση που συνδέει την δύναμη F με την δυναμική ενέργεια
f (x,y,z) είναι

F =−∇ f

και συνεπώς το έργο από τη θέση A στη θέση B είναι
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WA→B = f (A)− f (B).

• Δύο οποιεσδήποτε συναρτήσεις δυναμικού ενός συντηρητικού διανυσματικού πεδίου
μπορούν να διαφέρουν κατά μια σταθερά (σε ένα ανοικτό, συνεκτικό χωρίο).

• Ένα συντηρητικό διανυσματικό πεδίο F = 〈F1,F2,F3〉 ικανοποιεί τη συνθήκη

curl(F) = 0, ή ισοδύναμα,
∂F1

∂y
=

∂F2

∂x
,

∂F2

∂ z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂ z
.

• Κάθε διανυσματική συνάρτηση f που ικανοποιεί τη σχέση

F = curl f

ονομάζεται διανυσματικό δυναμικό.

• Μια σχέση εύρεσης του διανυσματικού δυναμικού είναι

f (x,y,z) =
(∫ z

c
F1(x,y, t)dt,

∫ x

a
F2(t,y,c)dt−

∫ z

c
F3(x,y, t)dt, 0

)
.

όπου (a,b,c) σημείο του πεδίου ορισμού της F.

• Το ακτινικό μοναδιαίο διανυσματικό πεδίο και το διανυσματικό πεδίο αντιστρόφου τετρα-
γώνου είναι συντηρητικά:

er =
〈x

r
,

y
r
,

z
r

〉
= ∇r,

er

r2 =
〈 x

r3 ,
y
r3 ,

z
r3

〉
= ∇(−r−1),

όπου

r =
√

x2 + y2 + z2.

Ασκήσεις 3.8.6

1. Ποιο από τα ακόλουθα είναι ένα μοναδιαίο διανυσματικό πεδίο στο επίπεδο;

(a) F = 〈y, x〉

(b) F =

〈
y√

x2 + y2
,

x√
x2 + y2

〉

(c) F =

〈
y

x2 + y2 ,
x

x2 + y2

〉
2. Να σχεδιάσετε ένα παράδειγμα ενός μη σταθερού διανυσματικού πεδίου του επιπέδου,

στο οποίο κάθε διάνυσμα να είναι παράλληλο με το διάνυσμα 〈1, 1〉.

3. Να υπολογίσετε και στη συνέχεια να σχεδιάσετε τα διανύσματα που αντιστοιχίζονται στα
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σημεία P = (1,2) και Q = (−1,−1) από το διανυσματικό πεδίο F = 〈x2, x〉.

4. Να υπολογίσετε και στη συνέχεια να σχεδιάσετε τα διανύσματα που αντιστοιχίζονται στα
σημεία P = (1,2) και Q = (−1,−1) από το διανυσματικό πεδίο F = 〈−y, x〉.

Στις Ασκήσεις 5 –7 να υπολογίσετε για κάθε διανυσματικό πεδίο F την απόκλιση div(F)
και τον στροβιλισμό curl(F).

5. F =

〈
y
x
,

y
z
,

z
x

〉
6. F = 〈ey, sinx, cosx〉

7. F =

〈
x

x2 + y2 ,
y

x2 + y2 , 0
〉

ΣτιςΑσκήσεις 8–10 να αποδείξετε τις ζητούμενες ταυτότητες υποθέτοντας ότι οι εμπλεκό-
μενες μερικές παράγωγοι υπάρχουν και είναι συνεχείς.

8. Αν η f είναι μια βαθμωτή συνάρτηση, τότε

div( f F) = f div(F)+F ·∇ f

9.
curl( f F) = f curl(F)+(∇ f )×F

10.
div(∇ f ×∇g) = 0

Στις Ασκήσεις 11–14 να αντιστοιχίσετε κάθε
διανυσματικό πεδίο του επιπέδου με τις
αναπαραστάσεις του Σχήματος 3.22.

11. F = 〈2, x〉

12. F = 〈2x+2, y〉

13. F = 〈y, cosx〉

14. F = 〈x+ y, x− y〉
Σχήμα 3.22
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Στις Ασκήσεις 15–18 να αντιστοιχίσετε κάθε
διανυσματικό πεδίο του επιπέδου με τις
αναπαραστάσεις του Σχήματος 3.23.

15. F = 〈1, 1, 1〉

16. F = 〈x, 0, z〉

17. F = 〈x, y, z〉

18. F = er
Σχήμα 3.23

Στις Ασκήσεις 19– 22 να βρείτε μια συνάρτηση δυναμικού για το διανυσματικό πεδίο F
που δίνεται ή να αποδείξετε ότι μια τέτοια συνάρτηση δεν υπάρχει.

19. F = 〈2xyz, x2z, x2yz〉

20. F = 〈yz2, xz2, 2xyz〉

21. F = 〈2xzex2
, 0, ex2〉

22. F = 〈yzcos(xyz), xzcos(xyz), xycos(xyz)〉

23. Έστω φ = lnr, όπου r =
√

x2 + y2. Να εκφράσετε την κλίση ∇φ με τη βοήθεια του
μοναδιαίου ακτινικού διανύσματος er στον χώρο R2.

24. Για το σημείο P = (a,b) ορίζουμε το μοναδιαίο ακτινικό διάνυσμα με αρχή το σημείο
P:

eP =
〈x−a, y−b〉√

(x−a)2 +(y−b)2

(a) Επιβεβαιώστε ότι το eP είναι ένα μοναδιαίο διανυσματικό πεδίο.

(b) Υπολογίστε το eP(1,1) για P = (3,2).

(c) Βρείτε μια συνάρτηση δυναμικού για το πεδίο eP.
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25. Στην άσκηση αυτή μπορείτε να αποδείξετε ότι
το διανυσματικό πεδίο του Σχήματος 3.24 δεν
είναι συντηρητικό, αιτιολογώντας την ισχύ των
ακόλουθων προτάσεων.
(a) Αν υπάρχει μια συνάρτηση δυναμικού f για

το πεδίο F, τότε οι ισοσταθμικές καμπύλες
της f θα πρέπει να είναι κατακόρυφες ευθείες
γραμμές.

(b) Αν υπάρχει μια συνάρτηση δυναμικού f για
το πεδίοF, τότε οι ισοσταθμικές καμπύλες της
f θα πρέπει να απομακρύνονται μεταξύ τους
καθώς το y αυξάνεται.

(c) Εξηγήστε γιατί τα (α) και (β) είναι
ασυμβίβαστα μεταξύ τους και επομένως
δεν μπορεί να υπάρχει μια συνάρτηση
δυναμικού f .

Σχήμα 3.24

3.9 Βαθμωτό και Διανυσματικό Δυναμικό
Λέμε ότι το διανυσματικό πεδίο

F = F1i+F2 j+F3k

απορρέει από βαθμωτό δυναμικό, όταν είναι δυνατόν να βρεθεί μία βαθμωτή συνάρτηση

f (x,y,z)

τέτοια ώστε

F = ∇ f ή
∂ f
∂x

= F1,
∂ f
∂y

= F2, ;
∂ f
∂ z

= F3.

Η συνάρτηση f(x,y,z) ονομάζεται δυναμική συνάρτηση (δυναμικό) του πεδίου F και το έργο
της κατά τη μετατόπιση ενός υλικού σημείου από τη θέση A στη θέση B είναι

WA→B = f (B)− f (A).

Στην Κλασική Μηχανική η σχέση που συνδέει την δύναμη F με την δυναμική ενέργεια f (x,y,z)
είναι

F =−∇ f

και συνεπώς το έργο από τη θέση A στη θέση B είναι

WA→B = f (A)− f (B).

Ορισμός 3.9.1 Το διανυσματικό πεδίο F ονομάζεται σωληνοειδές, όταν σε κάθε σημείο του
ισχύει

divF = 0.

Κάθε διανυσματική συνάρτηση f που ικανοποιεί τη σχέση



223 Λογισμός των Διανυσματικών Συναρτήσεων

F = curl f

ονομάζεται διανυσματικό δυναμικό.

Σχόλιο 3.9.2

Παράγωγος κατα κατεύθυνση

Όταν το u είναι συγγραμμικό της κλίσης ∇ f |P, τότε η παράγωγος κατα κατεύθυνση γίνεται
μέγιστη, δηλαδή

u =
∇ f |P
‖∇ f |P‖

,

και η τιμή της είναι

Du(P) = ‖∇ f |P‖.

Βαθμωτό δυναμικό

Έστω διανυσματικό πεδίο F(x,y,z) = (F1,F2,F3). Λέμε ότι το πεδίο F είναι συντηρητικό αν
υπάρχει βαθμωτή συνάρτηση f τέτοια ώστε

F = ∇ f

δηλαδή

fx = F1, fy = F2, fz = F3.

Η συνάρτηση f ονομάζεται βαθμωτό δυναμικό του F.
Ικανή και αναγκαία συνθήκη ύπαρξης βαθμωτού δυναμικού σε απλό συνεκτικό ή κυρτό χωρίο
είναι

curlF = 0.
Σε αυτή την περίπτωση το δυναμικό f δίνεται από οποιοδήποτε ολοκλήρωμα γραμμής

f (x,y,z) =
∫

γ
F ·dr,

το οποίο δεν εξαρτάται από τη διαδρομή.
Εφαρμογές του βαθμωτού δυναμικού:
• ηλεκτροστατικά πεδία (E =−∇ϕ),

• βαρυτικό δυναμικό,

• potential flows στη ρευστομηχανική,

• υπολογισμός έργου μέσω ολοκληρωμάτων γραμμής,

• μοντέλα θερμοκρασίας και πίεσης.
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Διανυσματικό δυναμικό
Ένα διανυσματικό πεδίο F λέγεται ότι έχει διανυσματικό δυναμικό A αν

F = curlA.
Η συνθήκη ύπαρξης διανυσματικού δυναμικού είναι

divF = 0
σε απλό συνεκτικό χωρίο.
Το διανυσματικό δυναμικό δεν είναι μοναδικό: αν A είναι ένα τέτοιο δυναμικό, τότε και το

A+∇ψ

παράγει το ίδιο F (gauge freedom).
Εφαρμογές του διανυσματικού δυναμικού:
• μαγνητικό πεδίο (B = curlA),

• εξισώσεις Maxwell στην ηλεκτροδυναμική,

• ροές ρευστών σε 2D μέσω stream functions,

• numerical FEM/CFD για ηλεκτρομαγνητικά προβλήματα,

• κβαντομηχανική (Aharonov–Bohm effect),

• διαφορική γεωμετρία και gauge theory.

Πρόταση 3.9.3 Έστω το διανυσματικό πεδίο F = (P,Q,R) με τις P,Q,R να έχουν μερικές
παραγώγους δευτέρας τάξης συνεχείς στο Ω⊆ R3. Τότε

curl(∇ f ) = 0.

Λύση.Η κλίση της f είναι

∇ f = ( fx, fy, fz).

Αν F = (P,Q,R), τότε ο στροβιλισμός δίνεται από

curlF = (Ry−Qz, Pz−Rx, Qx−Py).

Εφαρμόζουμε τον τύπο στο F = ∇ f :

curl(∇ f ) = ( fzy− fyz, fxz− fzx, fyx− fxy).

Επειδή η f έχει συνεχείς δεύτερες μερικές παραγώγους, από το θεώρημα συμμετρίας των
μικτών παραγώγων ισχύει

fzy = fyz, fxz = fzx, fyx = fxy.

Άρα κάθε συνιστώσα του curl(∇ f ) μηδενίζεται και επομένως

curl(∇ f ) = 0.

Η πρόταση αποδείχθηκε.
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Πρόταση 3.9.4 Έστω το διανυσματικό πεδίο F = (P,Q,R) με τις P,Q,R να έχουν μερικές
παραγώγους δευτέρας τάξης συνεχείς στο Ω⊆ R3. Τότε

div(curlF) = 0.

Λύση.Ο στροβιλισμός του F είναι

curlF = (Ry−Qz, Pz−Rx, Qx−Py).

Υπολογίζουμε τώρα τη διασπορά του:

div(curlF) = (Ry−Qz)x +(Pz−Rx)y +(Qx−Py)z.

Αναπτύσσοντας, παίρνουμε

Ryx−Qzx +Pzy−Rxy +Qxz−Pyz.

Επειδή όλες οι δεύτερες μερικές παράγωγοι είναι συνεχείς, ισχύουν οι ισότητες

Ryx = Rxy, Qzx = Qxz, Pzy = Pyz,

οπότε κάθε όρος ακυρώνει τον αντίστοιχό του. Έτσι

div(curlF) = 0.

Η πρόταση αποδείχθηκε.

Πρόταση 3.9.5 Αν η συνάρτηση f (x,y,z) έχει μερικές παραγώγους μέχρι και δευτέρας τάξης
συνεχείς στο Ω⊆ R3, τότε

curl(∇ f ) = 0.

Λύση.Έχουμε

∇ f = ( fx, fy, fz).

Ο στροβιλισμός της κλίσης είναι

curl(∇ f ) = ( fzy− fyz, fxz− fzx, fyx− fxy).

Μεδεδομένο ότι όλες οι δεύτερες μερικές παράγωγοι είναι συνεχείς, από το θεώρημα συμμετρίας
των μικτών παραγώγων προκύπτει

fzy = fyz, fxz = fzx, fyx = fxy.

Άρα κάθε συνιστώσα του στροβιλισμού μηδενίζεται, επομένως

curl(∇ f ) = 0.

Η πρόταση αποδείχθηκε.

Ορισμός 3.9.6 Αν η f (x,y,z) έχει μερικές παραγώγους δευτέρας τάξης συνεχείς, τότε:

∇(∇ f ) = div(∇ f ) =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 .
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Ορίζουμε τον τελεστή ∆:

∆≡ ∇∇ =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 .

Η διαφορική εξίσωση του Laplace για την f (x,y,z) είναι

∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 = 0.
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Επαναληπτικές ασκήσεις κεφαλαίου 3.9.7

1. Έστω η συνάρτηση f (x,y,z) = ex + e−2y + e−3z. Να βρεθεί η παράγωγος της f στο
σημείο (0,0,0) κατά την κατεύθυνση του διανύσματος (1,1,1), καθώς και η κατεύθυνση
κατά την οποία η παράγωγος λαμβάνει τη μέγιστη τιμή στο σημείο αυτό.

2. Αν η f έχει μερικές παραγώγους δεύτερης τάξης συνεχείς, να αποδειχθεί ότι curl(∇ f ) =
0.

3. Βρείτε τη μέγιστη τιμή της κατά κατεύθυνση παραγώγου της συνάρτησης f (x,y) =√
x2 + y2 στο σημείο (3,4), καθώς επίσης και την κατεύθυνση για την οποία επιτυγχάνε-

ται αυτή η μέγιστη τιμή.

4. Για το σημείο P = (a,b) ορίζουμε το μοναδιαίο ακτινικό διάνυσμα με αρχή το σημείο
P:

eP =
〈x−a,y−b〉√

(x−a)2 +(y−b)2

(a) Επιβεβαιώστε ότι το eP είναι ένα μοναδιαίο διανυσματικό πεδίο.

(b) Υπολογίστε το eP(1,1) για P = (3,2).

(c) Βρείτε μια συνάρτηση δυναμικού για το πεδίο eP.

5. Δίνεται το διανυσματικό πεδίο

F(x,y,z) =
〈

2x f
z−2

,− y f
2(z−2)

,
y2−4x2

2(z−2)
f
〉
.

Να προσδιοριστεί η συνάρτηση f = f (z) ώστε το πιο πάνω διανυσματικό πεδίο να είναι
αστρόβιλο, δηλαδή curlF = 0.

6. (a) Να βρεθεί η παράγωγος της f (x,y,z) = xy2 + yz στο σημείο (1,1,2) κατά την

κατεύθυνση του διανύσματος d
(

2
3
,−1

3
,
2
3

)
.

(b) Αν f (x,y) =
xy

x2 + y2 , f (0,0) = 0, να εξεταστεί αν η f (x,y) έχει παραγώγους

κατά κατεύθυνση στην αρχή των αξόνων.

7. (a) Δίνεται η f (x,y,z) = x2yz3 και το σημείο M(1,−2,3). Να βρεθεί η κατεύθυνση
του διανύσματος u(u1,u2,u3) έτσι ώστε η Du(1,−2,3) να γίνεται μέγιστη.

(b) Δίνεται η συνάρτηση

f (x,y) =

{
x2 + y2, xy = 0,

1, xy 6= 0.

Βρείτε, αν υπάρχουν, τις μερικές παραγώγους
∂ f
∂x

(0,0),
∂ f
∂y

(0,0) και στη συνέχεια
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την Du(0,0), όπου u(u1,u2) είναι τέτοιο ώστε u1u2 6= 0 και u2
1 +u2

2 = 1. Από
τις μερικές παραγώγους και την κατευθυνόμενη παράγωγο να εξαχθεί συμπέρασμα
για την ύπαρξή τους.

8. (a) Ανφ,F είναι αντίστοιχα βαθμωτή και διανυσματική συνάρτηση στοR3, αποδείξτε
τη σχέση div(φF) = φ divF+F ·∇φ .

(b) Έστω F(x,y,z) = xy i+y j+zk. Υπάρχει συνάρτηση f τέτοια ώστε F = ∇ f και
γιατί;

9. Δίνεται το διανυσματικό πεδίο F = (siny2 + z3, 2xycosy2−2, 3xz2 +4).
(a) Δείξτε ότι το F είναι συντηρητικό πεδίο.

(b) Βρείτε την δυναμική ενέργεια.

(c) Υπολογίστε το έργο κατά την κίνηση ενός υλικού σημείου από το A(2,0,−1) στο
B(1,

√
π/2,1).

Λύση.

1. Η συνάρτηση f είναι συνεχής, καθώς και οι fx, fy, fz. Άρα

Du f (x,y,z) = ∇ f(x,y,z) ·u = fx(x,y,z)h+ fy(x,y,z)k+ fz(x,y,z)l.

Αλλά ∇ f (x,y,z) =
(
ex,−2e−2y,−3e−3z

)
και ∇ f (0,0,0) = (1,−2,−3), οπότε

Du f (0,0,0) = (1,−2,−3)
1√
3
(1,1,1) =− 4√

3

Η κατεύθυνση για την οποία η κατά κατεύθυνση παράγωγος είναι μέγιστη είναι η ίδια με

την κατεύθυνση του ∇ f (0,0,0), δηλαδή u =
1√
14

(1,−2,−3).

2.

rot(∇ f ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂
∂x

∂
∂y

∂
∂ z

∂ f
∂x

∂ f
∂y

∂ f
∂ z

∣∣∣∣∣∣∣∣∣∣∣∣∣
⇒

rot(∇ f ) = k
(

∂ 2 f
∂x∂y

− ∂ 2 f
∂y∂x

)
− j
(

∂ 2 f
∂x∂ z

− ∂ 2 f
∂ z∂x

)
+ i
(

∂ 2 f
∂y∂ z

− ∂ 2 f
∂ z∂y

)
= 0

διότι αν οι δεύτερες παράγωγοι είναι συνεχείς έχουμε
∂ 2 f

∂x∂y
=

∂ 2 f
∂y∂x

κλπ.

3. Έχουμε
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∇ f =

(
x√

x2 + y2
,

y√
x2 + y2

)
η οποία στο σημείο (3,4) είναι

∇ f (3,4) =
(

3
5
,
4
5

)
Επειδή οι fx, fy είναι συνεχείς στο (3,4), η κατεύθυνση για την οποία μεγιστοποιείται η
κατά κατεύθυνση παράγωγος είναι

u =

(
3
5
,
4
5

)
√

32

52 +
42

52

=

(
3
5
,
4
5

)

και η τιμή της είναι

|∇ f |=
(

3
5

)2

+

(
4
5

)2

= 1

4. (a) Επιβεβαίωση ότι το eP είναι μοναδιαίο διανυσματικό πεδίο

Το μέτρο του διανύσματος |eP| πρέπει να είναι 1.

|eP|=

∣∣∣∣∣ 〈x−a,y−b〉√
(x−a)2 +(y−b)2

∣∣∣∣∣= |〈x−a,y−b〉|√
(x−a)2 +(y−b)2

=

√
(x−a)2 +(y−b)2√
(x−a)2 +(y−b)2

= 1

Εφόσον |eP|= 1, το πεδίο είναι μοναδιαίο.

(b) Υπολογισμός του eP(1,1) για P = (3,2)

Αντικαθιστούμε a = 3,b = 2 και x = 1,y = 1.

eP(1,1) =
〈1−3,1−2〉√

(1−3)2 +(1−2)2
=

〈−2,−1〉√
(−2)2 +(−1)2

=
〈−2,−1〉√

5

=

〈
− 2√

5
,− 1√

5

〉

(c) Εύρεση συνάρτησης δυναμικού f (x,y)

Ολοκληρώνοντας την συνιστώσα F1 =
∂ϕ
∂x

ως προς x:
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f (x,y) =
∫ x−a√

(x−a)2 +(y−b)2
dx =

√
(x−a)2 +(y−b)2 +g(y)

Συγκρίνοντας την
∂ f
∂y

με την συνιστώσα F2 =
∂ f
∂y

του πεδίου, προκύπτει g′(y) = 0.

Μια συνάρτηση δυναμικού είναι:

f (x,y) =
√
(x−a)2 +(y−b)2 +K

όπου K σταθερά.

5.

rotF = 0 ⇐⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂
∂x

∂
∂y

∂
∂ z

2x
z−2

f − y
2(z−2)

f
y2−4x2

2(z−2)
f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

⇐⇒ i

[
∂
∂y

(y2−4x2

2(z−2)
f
)
− ∂

∂ z

(
− y

2(z−2)
f
)]

− j

[
∂
∂x

(y2−4x2

2(z−2)
f
)
− ∂

∂ z

( 2x
z−2

f
)]

+k

[
∂
∂x

(
− y

2(z−2)
f
)
− ∂

∂y

( 2x
z−2

f
)]

= 0

⇐⇒



y f
z−2

+
y f ′(z−2)− y f

2(z−2)2 = 0,

− 4x f
z−2

−2x
f ′(z−2)− f
(z−2)2 = 0,

0 = 0,

⇐⇒


y(z−2) f ′(z)+ y(2z−5) f (z) = 0,

x(z−2) f ′(z)+ x(2z−5) f (z) = 0,
(y 6= 0, x 6= 0)
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(z−2) f ′(z)+(2z−5) f (z) = 0 ⇐⇒ f ′(z)
f (z)

=− 2z−5
z−2

⇐⇒

∫ f ′(z)
f (z)

dz =−
∫ 2z−5

z−2
dz+ c1 ⇐⇒

ln f (z) =−
∫ (

2− 1
z−2

)
dz+ c1 =−2z+ ln |z−2|+ c1 ⇐⇒

f (z) = ce−2z (z−2)

6. (a) Η κλίση της f , ∇ f = (y2, 2xy+ z, y), για P0(1,1,2) είναι

∇ f
∣∣
P0
= (1,4,1).

Το διάνυσμα d είναι όντως μοναδιαίο, διότι

‖d‖=
√

4
9
+

1
9
+

4
9
= 1

και επειδή οι fx, fy, fz είναι συνεχείς παντού έχουμε

Dd(P0) = (1,4,1)·
(

2
3
,−1

3
,
2
3

)
= 0

Επομένως το διάνυσμα της κλίσης στο σημείο P0 είναι κάθετο στο d.

(b) Δίνεται η f (x,y) δίπλα στο (0,0) και ζητείται να εξετάσουμε την ύπαρξη παραγώγων
κατά κατεύθυνση στο (0,0). Αν u = (h,k) με h2 + k2 = 1, τότε έχουμε:

Du(0,0) = lim
t→0

f (th, tk)− f (0,0)
t

= lim
t→0

t2hk
t2(h2 + k2)

·0 = lim
λ→0

hk
t
.

Από τη σχέση αυτή συμπεραίνουμε ότι όταν h = 0 ή k = 0⇒ Du(0,0) = 0 ενώ
όταν hk 6= 0 η Du(0,0) δεν υπάρχει.

7. (a) Από το πρόβλημα έχουμε ότι

u =
∇ fM

‖∇ fM‖
,

όπου

∇ fM = (2xyz3,x2z3,3x2yz2)M = (−108,27,−54).

‖∇ fM‖=
√

1082 +272 +542 = 27
√

21.

Άρα
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u⃗ =
1√
21

(−4,1,−2).

(b)
∂ f
∂x

(0,0) = lim
x→0

f (x,0)− f (0,0)
x−0

= lim
x→0

x2−0
x

= 0.

∂ f
∂y

(0,0) = lim
y→0

f (0,y)− f (0,0)
y−0

= lim
y→0

y2−0
y

= 0.

Από τον ορισμό της κατευθυνόμενης παραγώγου έχουμε

Du(0,0) = lim
t→0

f (th, tk)− f (0,0)
t

= lim
t→0

1−0
t

που δεν υπάρχει. Συμπεραίνουμε ότι μπορεί να μην υπάρχει η παράγωγος κατά κατεύθυνση
στο (0,0), ενώ υπάρχουν οι μερικές παράγωγοι.

8. (a) Αν F(P,Q,R) είναι μία διανυσματική συνάρτηση στο R3, τότε θα έχουμε

div(φF) =
∂
∂x

(φP)+
∂
∂y

(φQ)+
∂
∂ z

(φR)

=
∂φ
∂x

P+φ
∂P
∂x

+
∂φ
∂y

Q+φ
∂Q
∂y

+
∂φ
∂ z

R+φ
∂R
∂ z

= φ
(

∂P
∂x

+
∂Q
∂y

+
∂R
∂ z

)
+

(
∂φ
∂x

P+
∂φ
∂y

Q+
∂φ
∂ z

R
)

= φ divF +F ·∇φ

(b) Αν υπάρχει συνάρτηση f τέτοια ώστε F = ∇ f , τότε θα πρέπει

fx = xy, fy = y, fz = z.

Όμως

fxy = x και fyx = 0.

Και επειδή οι

fx, fy, fxy, fyx

είναι συνεχείς συναρτήσεις, θα πρέπει fxy = fyx, δηλαδή x = 0.
Συνεπώς δεν υπάρχει τέτοια f .

9. (a) Για να είναι το πεδίο F συντηρητικό θα πρέπει rotF = 0.

Όμως
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rotF =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i j k

∂
∂x

∂
∂y

∂
∂ z

siny2 + z3 2xycosy2−2 3xz2 +4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= k(2ycosy2−2ycosy2)− j(3z2−3z2)+ i(0) = 0

Άρα το πεδίο είναι συντηρητικό.

(b) Αν f (x,y,z) είναι η συνάρτηση δυναμικής ενέργειας, τότε αυτή υπολογίζεται από τον
τύπο

f (x,y,z) =
∫ x

a
F1(t,y,z)dt +

∫ y

b
F2(a, t,z)dt +

∫ z

c
R(a,b, t)dt

όπου F = (F1,F2,F3) και (a,b,c) σημείο του πεδίου ορισμού της F. Παίρνουμε
(a,b,c) = (0,0,0) και έχουμε

f (x,y,z) =
∫ x

0
(siny2 + z3)dt +

∫ y

0
(−2)dt +

∫ z

0
4dt⇒

f (x,y,z) = xsiny2 + xz3−2y+4z

(c) Ως γνωστόν, το έργο είναι

WA→B = f (B)− f (A) = f (1,
√

π/2,1)− f (2,0,−1)

= sin
π
2
+1−2

√
π

2
+4 = 12−2

√
π

2

3.10 Επικαμπύλια ολοκληρώματα
Στην ενότητα αυτή θα εισαγάγουμε δύο είδη ολοκληρωμάτων τα οποία υπολογίζονται πάνω σε
καμπύλες: ολοκληρώματα συναρτήσεων και ολοκληρώματα διανυσματικών πεδίων. Τα ολοκληρώ-
ματα αυτού του τύπου παραδοσιακά ονομάζονται επικαμπύλια ολοκληρώματα, ενώ μερικές φορές
απαντώνται και με τον όρο ολοκληρώματα τροχιάς. Ξεκινώντας, θα θυμηθούμε μερικές έννοιες
που θα χρησιμοποιήσουμε σε αυτή την ενότητα.

3.10.1 Μήκος τόξου μέσω συνάρτησης μίας μεταβλητής
Σε αυτή την ενότητα θα υπενθυμίσουμε πώς προκύπτει ο κλασικός τύπος για το μήκος τόξου
καμπύλης όταν αυτή δίνεται ως γραφική παράσταση συνάρτησης μίας μεταβλητής. Η διαδικασία
αυτή θα αποτελέσει το θεμέλιο για τη γενίκευση που θα ακολουθήσει, όπου το μήκος τόξου θα
προκύψει από παραμετροποιήσεις τροχιών στο επίπεδο και στον χώρο, στο πλαίσιο συναρτήσεων
δύο μεταβλητών.
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Ξεκινάμε από τη βασική ιδέα: προσεγγίζουμε την καμπύλη με μια διαδρομή που αποτελείται
από ευθύγραμμα τμήματα τα οποία ενώνουν διαδοχικά σημεία της. Το συνολικό μήκος αυτής της
τεθλασμένης είναι εύκολο να υπολογιστεί, και βελτιώνουμε την προσέγγιση χρησιμοποιώντας
περισσότερα και μικρότερα τμήματα. Καθώς ο αριθμός των τμημάτων αυξάνεται χωρίς όριο και
το μήκος κάθε τμήματος μικραίνει, το άθροισμα των μηκών συγκλίνει στο πραγματικό μήκος της
καμπύλης. Αυτό το πέρασμα στο όριο οδηγεί τελικά στον γνωστό τύπο του μήκους τόξου για
συναρτήσεις μίας μεταβλητής.

Για να είμαστε ακριβείς, θεωρήστε τη γραφική παράσταση της y = f (x) στο διάστημα [a,b].
Επιλέξτε μια διαμέριση P της [a,b] σε N υποδιαστήματα με άκρα

P : a = x0 < x1 < · · ·< xN = b.

Θυμηθείτε ότι η νόρμα ‖P‖ της διαμέρισης είναι το μήκος του μεγαλύτερου υποδιαστήματος της
διαμέρισης. Δηλαδή είναι η μεγαλύτερη από τις αποστάσεις xi−xi−1. Έστω Pi = (xi, f (xi)) το
σημείο στη γραφική παράσταση που αντιστοιχεί στο xi και ενώστε τα σημεία Pi−1 και Pi με ένα
ευθύγραμμο τμήμα Li.

Η καμπύλη L που αποτελείται από τα
τμήματα Li ονομάζεται πολυγωνική
προσέγγιση (Σχήμα 1). Το μήκος της L,
το οποίο συμβολίζουμε με |L|, είναι το
άθροισμα των μηκών |Li| των τμημάτων:

|L|= |L1|+ |L2|+ · · ·+ |LN|=
N

∑
i=1
|Li|

Σχήμα 3.25 Μια πολυγωνική προσέγγιση L της
y = f (x).

Σχήμα 3.26 Οι πολυγωνικές προσεγγίσεις βελτιώνονται καθώς μειώνεται η νόρμα της διαμέρισης.

Όπως ίσως είναι αναμενόμενο, οι πολυγωνικές προσεγγίσειςL προσεγγίζουν την καμπύλη όλο και
πιο κοντά καθώς η νόρμα της διαμέρισηςP μειώνεται, όπως φαίνεται στο Σχήμα 3.27. Βασιζόμενοι
σε αυτή την ιδέα ορίζουμε το μήκος τόξου s της γραφικής παράστασης να είναι το όριο των μηκών
των πολυγωνικών προσεγγίσεων |L| καθώς ‖P‖→ 0:

μήκος τόξου s = lim
‖P‖→0

N

∑
i=1
|Li|
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Για να υπολογίσουμε το μήκος τόξου s εκφράζουμε
το όριο των πολυγωνικών προσεγγίσεων ως ένα
ολοκλήρωμα. Το Σχήμα 3.27 δείχνει ότι το τμήμα
Li είναι η υποτείνουσα ενός ορθογωνίου τριγώνου
βάσης ∆xi = xi− xi−1 και ύψους | f (xi)− f (xi−1)|.
Από το πυθαγόρειο θεώρημα

|Li|=
√

(∆xi)2 +
(

f (xi)− f (xi−1)
)2
.

Σχήμα 3.27
Θα υποθέσουμε ότι υπάρχει η f ′ και είναι συνεχής. Τότε από το θεώρημα μέσης τιμής υπάρχει

μια τιμή ci στο [xi−1,xi] τέτοια ώστε

f (xi)− f (xi−1) = f ′(ci)(xi− xi−1) = f ′(ci)∆xi

και επομένως

|Li|=
√

(∆xi)2 +
(

f ′(ci)∆xi
)2

=
√

(∆xi)2
(
1+ f ′(ci)2

)
=
√

1+ f ′(ci)2 ∆xi.

Διαπιστώνουμε ότι το μήκος |L| είναι ένα άθροισμα Riemann για την
√

1+ f ′(x)2:

|L|= |L1|+ |L2|+ · · ·+ |LN|= ∑N
i=1

√
1+ f ′(ci)2 ∆xi

Αυτή η συνάρτηση είναι συνεχής και επομένως ολοκληρώσιμη, οπότε τα αθροίσματα Rie-
mann τείνουν στο ∫ b

a

√
1+ f ′(x)2 dx

καθώς το N τείνει στο άπειρο.

Θεώρημα 3.10.1 Τύπος για το μήκος τόξου Υποθέστε ότι υπάρχει η f ′ και είναι συνεχής στο
διάστημα [a,b]. Τότε το μήκος τόξου s της y = f (x) στο [a,b] είναι ίσο με

s =
∫ b

a

√
1+ f ′(x)2 dx

3.10.2 Επικαμπύλια ολοκληρώματα βαθμωτών συναρτήσεων
Θα ξεκινήσουμε τη μελέτη των ολοκληρωμάτων αυτού του είδους ορίζοντας το επικαμπύλιο
ολοκλήρωμα μιας βαθμωτής συνάρτησης f (x,y,z) πάνω σε μια καμπύλη C, που σημειώνεται
συνήθως με ∫

C
f (x,y,z)ds.

Στη συνέχεια, θα μελετήσουμε τον τρόπο με τον οποίο τα ολοκληρώματα αυτού του τύπου μπορούν
να αναπαραστήσουν φυσικά μεγέθη όπως η συνολική μάζα ή το συνολικό φορτίο, καθώς και το
πώς μπορούν να χρησιμοποιηθούν για τον προσδιορισμό του ηλεκτρικού δυναμικού. Όπως όλα
τα ολοκληρώματα, έτσι και το επικαμπύλιο ολοκλήρωμα αυτού του τύπου ορίζεται μέσω μιας
διαδικασίας που περιλαμβάνει τη διαίρεση, την άθροιση και τον υπολογισμό ενός ορίου. Πιο
συγκεκριμένα, αρχικά χωρίζουμε την καμπύλη C σε N διαδοχικά τόξα C1,C2, . . . ,CN (όπως
φαίνεται στο Σχήμα 3.28). Στη συνέχεια, επιλέγουμε ένα τυχαίο σημείο Pi από κάθε τόξο i και
σχηματίζουμε το ακόλουθο άθροισμα Riemann:
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N

∑
i=1

f (Pi)μήκος(Ci) =
N

∑
i=1

f (Pi)∆si,

όπου ∆si είναι το μήκος του τόξου της διαμέρισηςCi.

Σχήμα 3.28

Το επικαμπύλιο ολοκλήρωμα της συνάρτησης f πάνω στην καμπύλη C είναι το όριο (εφόσον
υπάρχει) αυτών των αθροισμάτων Riemann, καθώς το μέγιστο των μηκών ∆si των τόξων της
διαμέρισης προσεγγίζει το μηδέν, δηλαδή:

∫
C

f (x,y,z)ds = lim
{∆si}→0

N

∑
i=1

f (Pi)∆si

Αξίζει να σημειωθεί ότι ο προηγούμενος ορισμός μπορεί να εφαρμοστεί και στην περίπτωση
συναρτήσεων δύο μεταβλητών f (x,y), οι οποίες ολοκληρώνονται πάνω σε καμπύλες του χώρου
R2.
Παρατηρήστε ότι το επικαμπύλιο ολοκλήρωμα της βαθμωτής συνάρτησης f (x,y,z) = 1 είναι
απλώς το μήκος της καμπύληςC, καθώς στην περίπτωση αυτή όλα τα αθροίσματα Riemann έχουν
την ίδια τιμή:

N

∑
i=1

1∆si =
N

∑
i=1

μήκος(Ci) = μήκος(C)

και επομένως ∫
C

1ds = μήκος(C)

Πρακτικά, τα επικαμπύλια ολοκληρώματα αυτού του τύπου υπολογίζονται με τη χρήση παραμε-
τρήσεων. Υποθέστε ότι η r(t), για a ≤ t ≤ b, αποτελεί μια παραμετρηση που διαγράφει μία
φορά την καμπύληC και έχει συνεχή παράγωγο r′(t). Τότε έχουμε

r(t) = 〈x(t), y(t), z(t)〉, t ∈ [a,b].

Η παράγωγος είναι το εφαπτόμενο διάνυσμα

r′(t) = 〈x′(t), y′(t), z′(t)〉

Το μήκος του απειροστά μικρού τόξου της καμπύλης είναι

ds = ‖r′(t)‖dt,
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όπου

‖r′(t)‖=
√(

x′(t)
)2

+
(
y′(t)

)2
+
(
z′(t)

)2
.

Σχόλιο 3.10.2 Η παραμετρική καμπύλη δίνεται από το διάνυσμα θέσης

r(t) = (x(t),y(t),z(t)),

το οποίο περιγράφει πού βρίσκεται το σημείο της καμπύλης για κάθε τιμή του t . Το r(t)
εκφράζει θέση και δεν μπορεί να δώσει πληροφορία για το πώς αλλάζει το μήκος της καμπύλης.

Αν όμως το t μεταβληθεί κατά ένα πολύ μικρό ποσό dt , τότε το διάνυσμα θέσης αλλάζει
κατά

dr = r(t +dt)− r(t).

Για πολύ μικρά dt έχουμε

dr ≈ r′(t)dt,

όπου το r′(t) είναι η παράγωγος του διανύσματος θέσης και εκφράζει τον ρυθμό αλλαγής του,
δηλαδή την κατεύθυνση και το μέτρο της ταχύτητας κατά μήκος της καμπύλης.

Το στοιχειώδες μήκος της καμπύλης προκύπτει από το μέτρο του dr:

ds = ‖dr‖= ‖r′(t)dt‖= ‖r′(t)‖dt.
Συνεπώς, το r(t) δίνει τη θέση του σημείου, ενώ το r′(t) δίνει τη μεταβολή της θέσης και
επομένως καθορίζει το στοιχειώδες μήκος τόξου:

ds = ‖r′(t)‖dt.

Χωρίζουμε αρχικά την καμπύλη C σε N διαδοχικά τόξα C1, . . . ,CN που αντιστοιχούν σε μια
διαμέριση

a = t0 < t1 < · · ·< tN−1 < tN = b.

του διαστήματος [a,b], όπου κάθε
μικρότερο τόξο Ci παραμετρείται από
την r(t) για ti−1 ≤ t ≤ ti, όπως φαίνεται
στο Σχήμα 3.29. Στη συνέχεια, επιλέγουμε
τυχαία σημεία Pi = r(t∗i ), όπου το t∗i
ανήκει στο διάστημα [ti−1, ti]. Σύμφωνα
με τον τύπο που δίνει το μήκος ενός τόξου,
θα ισχύει:

μήκος(Ci) = ∆si =
∫ ti

ti−1

‖r′(t)‖dt.
Σχήμα 3.29 Διαμέριση της παραμετρικής καμπύλης

r(t).
Επειδή η r′(t) είναι συνεχής, η συνάρτηση ‖r′(t)‖ είναι σχεδόν σταθερή στο διάστημα [ti−1, ti]
εφόσον το μήκος ∆ti = ti− ti−1 είναι αρκετά μικρό, επομένως θα έχουμε∫ ti

ti−1

‖r′(t)‖dt ≈ ‖r′(t∗i )‖∆ti,
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όπου το t∗i είναι ένα οποιοδήποτε σημείο μέσα στο διάστημα

t∗i ∈ [ ti−1, ti ].

Έτσι, καταλήγουμε στην προσέγγιση:

N

∑
i=1

f (Pi)∆si ≈
N

∑
i=1

f (r(t∗i ))‖r′(t∗i )‖∆ti

Το άθροισμα που εμφανίζεται στο δεξιό μέλος της προηγούμενης σχέσης είναι ένα άθροισμα
Riemann το οποίο συγκλίνει στο ολοκλήρωμα∫ b

a
f (r(t))‖r′(t)‖dt

καθώς η μέγιστη τιμή των μηκών ∆ti τείνει στο μηδέν. Με τον τρόπο αυτόν καταλήγουμε στο
ακόλουθο θεώρημα που αφορά το επικαμπύλιο ολοκλήρωμα μιας βαθμωτής συνάρτησης.

Θεώρημα 3.10.3Υπολογισμός του επικαμπύλιου ολοκληρώματος μιας βαθμωτής συνάρτησης
Έστω r(t) μια παραμετρηση που διατρέχει μία μόνο φορά την καμπύλη C για a ≤ t ≤ b. Αν
οι συναρτήσεις f (x,y,z) και r′(t) είναι συνεχείς, τότε:∫

C
f (x,y,z)ds =

∫ b

a
f (r(t))‖r′(t)‖dt

Το σύμβολο ds χρησιμοποιείται για να δηλώσει το μήκος τόξου
s και συχνά αναφέρεται ως γραμμικό στοιχείο ή διαφορικό
μήκους τόξου. Το διαφορικό του μήκους τόξου συνδέεται με
το διαφορικό dt της παραμέτρου μέσω της σχέσης:

ds = ‖r′(t)‖ dt με

‖r′(t)‖=
√

x′(t)2 + y′(t)2 + z′(t)2

Παρατηρήστε ότι το ολοκλήρωμα που εμφανίζεται στο δεξιό
μέλος της εξίσωσης του προηγούμενου θεωρήματος είναι ένα
ολοκλήρωμα μιας συνάρτησης με μία μεταβλητή, επομένως
μπορεί κανείς να επιχειρήσει να το υπολογίσει με τα εργαλεία
και τις τεχνικές που αναπτύχθηκαν στα προηγούμενα κεφάλαια
του παρόντος βιβλίου.

Αφού το μήκος τόξου μιας
καμπύλης δίνεται από το
ολοκλήρωμα

s(t) =
∫ t

a
‖r′(t)‖dt

σύμφωνα με το θεμελιώδες
θεώρημα του Λογισμού θα
πρέπει

ds
dt

= ‖r′(t)‖.

Επομένως, έχει νόημα να
αποκαλούμε το

ds =
ds
dt

dt = ‖r′(t)‖dt

ως διαφορικό του μήκους τόξου.

Παράδειγμα 3.10.4
Ολοκλήρωση κατά μήκος μιας έλικας Υπολογίστε το επικαμπύλιο ολοκλήρωμα

∫
C
(x+ y+ z)ds
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όπουC είναι η έλικα r(t) = 〈cos t, sin t, t〉 για 0≤ t ≤ 3π (βλ. Σχήμα 3.30).

Λύση.
Βήμα 1 Υπολογίστε το ds.

r′(t) = 〈−sin t, cos t, 1〉

‖r′(t)‖=
√

(−sin t)2 + cos2 t +1 =√
2

ds = ‖r′(t)‖dt =
√

2dt

Βήμα 2 Γράψτε αναλυτικά την
ολοκληρωτέα ποσότητα και ολοκληρώστε.

Καθώς f (x,y,z) = x+ y+ z, θα έχουμε
Σχήμα 3.30 Διαμέριση της παραμετρικής καμπύλης

r(t).

f (r(t)) = f (cos t, sin t, t) = cos t + sin t + t

f (x,y,z)ds = f (r(t))‖r′(t)‖dt = (cos t + sin t + t)
√

2dt

Επομένως, θα έχουμε∫
C

f (x,y,z)ds =
∫ 3π

0
f (r(t))‖r′(t)‖dt =

∫ 3π

0
(cos t + sin t + t)

√
2dt

=
√

2
(

sin t− cos t +
1
2

t2
)∣∣∣3π

0

=
√

2
(

0+1+
1
2
(3π)2

)
−
√

2(0−1+0) = 2
√

2+
9
√

2
2

π2

Παράδειγμα 3.10.5

Υπολογίστε το επικαμπύλιο ολοκλήρωμα
∫

C
1ds για την έλικα r(t) = 〈cos t, sin t, t〉 του

προηγούμενου παραδείγματος που ορίζεται για 0≤ t ≤ 3π . Τι αντιπροσωπεύει το ολοκλήρωμα
αυτό;

Λύση. Στο προηγούμενο παράδειγμα δείξαμε ότι ds =
√

2dt , επομένως∫
C

1ds =
∫ 3π

0

√
2dt = 3π

√
2

που είναι το μήκος της έλικας για 0≤ t ≤ 3π .
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3.11 Εφαρμογές του επικαμπύλιου ολοκληρώματος των βαθμωτών
συναρτήσεων

Στις εφαρμογές του επικαμπύλιου ολοκληρώματος βασική θέση κατέχει η έννοια της πυκνότητας
ενός μεγέθους που κατανέμεται κατά μήκος μιας καμπύλης. Όπως στον Λογισμό μίας μεταβλητής
η συνολική ποσότητα ενός μεγέθους προκύπτει από το ολοκλήρωμα της πυκνότητάς του πάνω σε
ένα διάστημα, έτσι και στην περίπτωση κατανομών κατά μήκος μιας καμπύλης C, η συνολική
ποσότητα εκφράζεται μέσω του επικαμπύλιου ολοκληρώματος (Σχήμα 3.31).
Πιο συγκεκριμένα, ας θεωρήσου- με,
για παράδειγμα, ότι η καμπύλη C
αντιπροσωπεύει ένα καλώδιο με συνεχή
πυκνότητα μάζας ρ(x,y,z) εκφρασμένη
σε μονάδες μάζας ανά μονάδα μήκους.
Στην περίπτωση αυτή, η συνολική μάζα
υπολογίζεται από το ολοκλήρωμα της
πυκνότητας της μάζας ως εξής:

ολική μάζα τηςC =
∫

C
ρ(x,y,z)ds.

Σχήμα 3.31

Παράδειγμα 3.11.1
Υπολογισμός συνολικής μάζας με ένα επικαμπύλιο ολοκλήρωμα Προσδιορίστε τη συνολική
μάζα ενός σύρματος που έχει τη μορφή της παραβολής y = x2 για 1 ≤ x ≤ 4 (σε cm), με
πυκνότητα μάζας που δίνεται από τη σχέση ρ(x,y) =

y
x
g/cm.

Λύση.Το τόξο της παραβολής που αντιστοιχεί στο σύρμα παραμετράται ως 〈r(t)〉 = 〈t, t2〉 για
1≤ t ≤ 4.

Βήμα 1. Υπολογίζουμε το ds.

r′(t) = 〈1, 2t〉

ds = ‖r′(t)‖dt =
√

1+4t2 dt

Βήμα 2 Γράψτε αναλυτικά την ολοκληρωτέα ποσότητα και ολοκληρώστε.
Έχουμε ότι

ρ(r(t)) = ρ(t, t2) =
t2

t
= t,

επομένως

ρ(x,y)ds = ρ(r(t))
√

1+4t2 dt = t
√

1+4t2 dt.

Μπορούμε να υπολογίσουμε το επικαμπύλιο ολοκλήρωμα της πυκνότητας μάζας χρησιμοποιώ-
ντας την αντικατάστασηu= 1+4t2, οπότε du= 8t dt , με τα όρια της ολοκλήρωσης να αλλάζουν
από τις τιμές 1 και 4 στις u(1) = 5 και u(4) = 65 αντίστοιχα. Δηλαδή:
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∫
C

ρ(x,y)ds =
∫ 4

1
ρ(r(t))‖r′(t)‖dt =

∫ 4

1
t
√

1+4t2 dt

=
1
8

∫ 65

5

√
udu =

1
12

u3/2
∣∣∣65

5

=
1

12
(653/2−53/2)≈ 42.74.

Επομένως, η συνολική μάζα του σύρματος είναι κατά προσέγγιση 42.74g.

Τα επικαμπύλια ολοκληρώματα των βαθμωτών συναρτήσεων χρησιμοποιούνται επίσης για τον
προσδιορισμό των συναρτήσεων του ηλεκτρικού δυναμικού. Όταν μια ποσότητα ηλεκτρικού
φορτίου είναι κατανεμημένη με συνεχή τρόπο πάνωσε μια καμπύληC του χώρουR3, με πυκνότητα
φορτίου ρ(x,y,z), τότε αυτή η κατανομή δημιουργεί ένα ηλεκτροστατικό πεδίο E που είναι ένα
συντηρητικό διανυσματικό πεδίο. Σύμφωνα με τον νόμο του Coulomb θα πρέπει να ισχύει

V (P) = k
∫

C

ρ(x,y,z)
DP(x,y,z)

ds

Στο προηγούμενο ολοκλήρωμα, η ποσότητα DP(x,y,z) αντιπροσωπεύει την απόσταση από το
σημείο (x,y,z) μέχρι το σημείο P, ενώ η σταθερά k έχει την τιμή k = 8.99× 109N·m2/C2.
Σε μια κατάσταση όπως αυτή που περιγράψαμε προηγουμένως, χρησιμοποιούμε το V για να
συμβολίσουμε τη συνάρτηση που είναι γνωστή ως ηλεκτρικό δυναμικό. Πρόκειται για μια συνά-
ρτηση που ορίζεται για όλα τα σημεία P που δεν βρίσκονται πάνω στην καμπύλη C και έχει
μονάδα το volt (1 volt ισούται με 1 N·m/C).

Σχόλιο 3.11.2 Εξ ορισμού, η ένταση του ηλεκτρικού πεδίου E είναι το διανυσματικό πεδίο που
έχει την ιδιότητα να δίνει την ηλεκτροστατική δύναμη που ασκείται σε ένα σημειακό φορτίο q
το οποίο βρίσκεται τοποθετημένο στο σημείο P = (x,y,z) ως το διάνυσμα qE(x,y,z). Η
σταθερά k γράφεται συνήθως ως

k =
1

4πε0

όπου ε0 είναι η ηλεκτρική διαπερατότητα του κενού.

Παράδειγμα 3.11.3
Ηλεκτρικό δυναμικό Ένα φορτισμένο ημικύκλιο ακτίνας R με κέντρο την αρχή των αξόνων
εκτείνεται στο επίπεδο xy, όπως φαίνεται στο Σχήμα 3.32, και φέρει φορτίο που είναι κατανεμη-
μένο σε όλο του το μήκος με πυκνότητα

ρ(x,y,0) = 10−8
(
2− x

R

)
C/m

Υπολογίστε το ηλεκτρικό δυναμικό στο σημείο P = (0,0,a) αν R = 0.1m.
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Λύση. Προκειμένου να υπολογίσουμε το
επικαμπύλιο ολοκλήρωμα από το οποίο
δίνεται η συνάρτηση του ηλεκτρικού
δυναμικού, θα χρησιμοποιήσουμε την
〈r(t)〉 = 〈Rcos t, Rsin t, 0〉 για να
παραμετρήσουμε το φορτισμένο ημικύκλιο,
με την παράμετρο t να παίρνει τιμές στο
διάστημα−π/2≤ t ≤ π/2:

‖r′(t)‖= ‖〈−Rsin t, Rcos t, 0〉‖=√
R2 sin2 t +R2 cos2 t +0 = R

ds = ‖r′(t)‖dt = Rdt Σχήμα 3.32

ρ(r(t)) = ρ(Rcos t, Rsin t, 0) = 10−8
(

2− Rcos t
R

)
= 10−8(2− cos t)

Στην περίπτωσή μας, η απόσταση DP μεταξύ του σημείου P και ενός σημείου (x,y,0) πάνω στο
ημικύκλιο έχει σταθερή τιμή

DP =
√

R2 +a2,

όπως φαίνεται στο Σχήμα 3.32. Επομένως:

V (P) = k
∫

C

ρ(x,y,z)
DP

ds = k
∫

C

10−8(2− cos t)R√
R2 +a2

dt =
10−8kR√
R2 +a2

∫ π/2

−π/2
(2− cos t)dt =

10−8kR√
R2 +a2

(2π−2).

Για R = 0.1m και k = 8.99×109 N ·m2/C2, προκύπτει 10−8kR(2π−2)≈ 38.5, οπότε

V (P)≈ 38.5√
0.01+a2

V.

3.12 Επικαμπύλια ολοκληρώματα διανυσματικών πεδίων

Καθώς ανεβαίνετε την πλαγιά ενός βουνού έχοντας ένα σακίδιο στην πλάτη σας, εκτελείτε έργο
ενάντια στο γήινο βαρυτικό πεδίο. Αυτό το έργο, ή η δαπανώμενη ενέργεια, αποτελεί παράδειγμα
μιας ποσότητας που μπορεί να αναπαρασταθεί με τη βοήθεια του επικαμπύλιου ολοκληρώματος
ενός διανυσματικού πεδίου. Μια σημαντική διαφορά μεταξύ των επικαμπυλίων ολοκληρωμάτων
των διανυσματικών πεδίων και των αντίστοιχων ολοκληρωμάτων των βαθμωτών συναρτήσεων
είναι το γεγονός ότι τα πρώτα εξαρτώνται από την κατεύθυνση ως προς την οποία διανύεται
η καμπύλη πάνω στην οποία λαμβάνει χώρα η ολοκλήρωση. Αυτό είναι απολύτως λογικό αν
θεωρήσουμε το επικαμπύλιο ολοκλήρωμα ως έργο, αφού το έργο που παράγουμε καθώς κατεβαί-
νουμε το βουνό είναι αντίθετο του έργου που παράγουμε όταν ανεβαίνουμε το βουνό.
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Σχήμα 3.33

Μια προκαθορισμένη κατεύθυνση κατά μήκος μιας καμπύλης C αποκαλείται προσανατολισμός
(βλ. Σχήμα 3.33), οπότε μαζί με αυτόν τον προσανατολισμό η καμπύληC είναι γνωστήως προσανα-
τολισμένη καμπύλη. Θα αναφέρουμε αυτήν την προκαθορισμένη κατεύθυνση ως τη θετική κατεύ-
θυνση κατά μήκος της καμπύληςC, ενώ η αντίθετη κατεύθυνση θα είναι η αρνητική κατεύθυνση.
Αν στο Σχήμα 3.33 αντιστρέφουμε τον προσανατολισμό της καμπύλης, τότε η θετική κατεύθυνση
θα γίνει αυτή από το σημείο Q στο P.

Το επικαμπύλιο ολοκλήρωμα ενός διανυσματικού πεδίου F
πάνω σε μια προσανατολισμένη καμπύλη C ορίζεται ως το
επικαμπύλιο ολοκλήρωμα της εφαπτομενικής στην καμπύλη
συνιστώσας του πεδίου F. Ακριβέστερα, ας υποθέσουμε
ότι με T = T(P) συμβολίζουμε το μοναδιαίο εφαπτόμενο
διάνυσμα στο σημείοP της καμπύληςC, το οποίο έχει τη θετική
κατεύθυνση. Η εφαπτομενική συνιστώσα του διανυσματικού
πεδίουF στο σημείοP (προβολή του διανύσματοςF πάνω στην
εφαπτομένη της καμπύλης στο σημείο P) είναι το εσωτερικό
γινόμενο (βλ. Σχήμα 3.34).

Το μοναδιαίο εφαπτόμενο
διάνυσμα T μεταβάλλεται
από σημείο σε σημείο καθώς
κινούμαστε κατά μήκος
της καμπύλης. Όταν είναι
απαραίτητο να τονίσουμε αυτή
την εξάρτηση, θα γράφουμε
T(P).

F(P) ·T(P) = ‖F(P)‖‖T(P)‖cosθ =
‖F(P)‖cosθ

όπου θ είναι η γωνία μεταξύ των
διανυσμάτων F(P) και T(P). Το
επικαμπύλιο ολοκλήρωμα του πεδίου
F είναι το επικαμπύλιο ολοκλήρωμα
της βαθμωτής συνάρτησης F(P) · T(P).
Υποθέτουμε ότι η καμπύλη C είναι κατά
τμήματα λεία (αποτελείται δηλαδή από
πεπερασμένο πλήθος λείων καμπυλών
που πιθανόν να ενώνονται μεταξύ τους με
γωνίες).

Σχήμα 3.34 Το επικαμπύλιο ολοκλήρωμα του πεδίου F
κατά μήκος της καμπύληςC είναι ίσο με το επικαμπύλιο
ολοκλήρωμα της εφαπτομενικής συνιστώσας του πεδίου

F πάνω στην καμπύλη. .

Θεώρημα 3.12.1Επικαμπύλιο ολοκλήρωμα διανυσματικού πεδίου Το επικαμπύλιο ολοκλήρωμα
ενός διανυσματικού πεδίουF κατά μήκος μιας προσανατολισμένης καμπύληςC είναι το ολοκλή-
ρωμα της εφαπτομενικής συνιστώσας του πεδίου F:∫

C
(F ·T)ds

Ένας εναλλακτικός συμβολισμός για ένα τέτοιο επικαμπύλιο ολοκλήρωμα προκύπτει εκφράζοντας
το γινόμενο του μοναδιαίου εφαπτόμενου διανύσματος T και του διαφορικού του μήκους του
τόξου ds, ως το διανυσματικό διαφορικό dr = T, οπότε προκύπτει η έκφραση:
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∫
C
(F ·T)ds =

∫
C

F ·dr

Για τον υπολογισμό των επικαμπυλίων ολοκληρωμάτων των διανυσματικών πεδίων χρησιμοποι-
ούμε παραμετρήσεις, αλλά υπάρχει μια σημαντική διαφορά σε σχέση με την περίπτωση των
βαθμωτών συναρτήσεων. Αυτή έγκειται στο γεγονός ότι η παραμέτρηση r(t) πρέπει να είναι
θετικά προσανατολισμένη, δηλαδή η r(t) πρέπει να διανύει την καμπύληC στη θετική κατεύθυνση.
Υποθέτουμε, επιπλέον, ότι η παραμέτρηση r(t) είναι κανονική, ισχύει δηλαδή r′(t) 6= 0 για
a ≤ t ≤ b. Αυτό σημαίνει ότι το διάνυσμα r′(t) είναι ένα μη μηδενικό εφαπτόμενο διάνυσμα
που έχει τη θετική κατεύθυνση και ισχύει:

T = r′(t)
‖r′(t)‖

Χρησιμοποιώντας το διαφορικό του μήκους τόξου ds = ‖r′(t)‖dt έχουμε:

(F ·T)ds =
(

F(r(t)) · r′(t)
‖r′(t)‖

)
‖r′(t)‖dt = F(r(t)) · r′(t)dt

Με τον τρόπο αυτόν καταλήγουμε στο ακόλουθο θεώρημα.

Θεώρημα 3.12.2 Υπολογισμός του επικαμπύλιου ολοκληρώματος ενός διανυσματικού πεδίου
Αν η r(t) είναι μια θετικά προσανατολισμένη κανονική παραμέτρηση της προσανατολισμένης
καμπύληςC για a≤ t ≤ b, τότε∫

C
F ·dr =

∫
C

F ·Tds =
∫ b

a
F(r(t)) · r′(t)dt

Το διανυσματικό διαφορικό dr συνδέεται με το διαφορικό της παραμέτρησης dt μέσω της σχέσης:

dr = r′(t)dt = 〈x′(t), y′(t), z′(t)〉dt

Η εξίσωση του θεωρήματος 3.12.2 μας λέει ότι για
να υπολογίσουμε το επικαμπύλιο ολοκλήρωμα ενός
διανυσματικού πεδίου μπορούμε να αντικαταστήσουμε την
ολοκληρωτέα ποσότητα F · dr με την F(r(t)) · r′(t)dt
και στη συνέχεια να ολοκληρώσουμε ως προς την
παράμετρο στο διάστημα a ≤ t ≤ b. Με τον τρόπο αυτόν
μπορούμε να μετατρέψουμε το επικαμπύλιο ολοκλήρωμα
ενός διανυσματικού πεδίου σε ένα απλό ολοκλήρωμα
μιας συνάρτησης με μία μεταβλητή, ακριβώς όπως στην
περίπτωση των επικαμπυλίων ολοκληρωμάτων των βαθμωτών
συναρτήσεων.

Τα επικαμπύλια ολοκληρώματα
των διανυσματικών πεδίων
υπολογίζονται συνήθως
πιο εύκολα σε σχέση με τα
αντίστοιχα ολοκληρώματα των
βαθμωτών συναρτήσεων, επειδή
το ‖r′(t)‖, το οποίο εμπλέκει
μια τετραγωνική ρίζα, δεν
εμφανίζεται στην ολοκληρωτέα
έκφραση.

Παράδειγμα 3.12.3

Υπολογίστε το επικαμπύλιο ολοκλήρωμα
∫

C
F ·dr, όπου F = 〈z, y2, x〉, με την καμπύληC να

παραμετρείται (στη θετική κατεύθυνση) από την r(t) = 〈t +1, et , t2〉 για 0≤ t ≤ 2.

Λύση. Το ζητούμενο επικαμπύλιο ολοκλήρωμα μπορεί να υπολογιστεί σε δύο βήματα.

Βήμα 1 Υπολογίζουμε την ολοκληρωτέα ποσότητα.
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r(t) = 〈t +1, et , t2〉

F(r(t)) = 〈t2, e2t , t +1〉

r′(t) = 〈1, et , 2t〉

Επομένως, η ολοκληρωτέα ποσότητα (με τη μορφή διαφορικού) είναι το εσωτερικό γινόμενο:

F(r(t)) · r′(t)dt = 〈t2, e2t , t +1〉 · 〈1, et , 2t〉dt = (e3t +3t2 +2t)dt

Βήμα 2 Υπολογίζουμε το επικαμπύλιο ολοκλήρωμα.

∫
C

F ·dr =
∫ 2

0
F(r(t)) · r′(t)dt

=
∫ 2

0
(e3t +3t2 +2t)dt

=

(
1
3

e3t + t3 + t2
)∣∣∣2

0

=

(
1
3

e6 +8+4
)
− 1

3
=

1
3
(e6 +35)

Ένας άλλος συνήθης συμβολισμός για το διανυσματικό επικαμπύλιο ολοκλήρωμα
∫

C
F ·dr είναι

∫
C
(F1 dx+F2 dy+F3 dz)

Με αυτόν τον συμβολισμό εκφράζουμε το διανυσματικό διαφορικό ως

dr = 〈dx, dy, dz〉.

Επομένως, θα ισχύει

F ·dr = 〈F1, F2, F3〉 · 〈dx, dy, dz〉= F1 dx+F2 dy+F3 dz.

Με τη βοήθεια της παραμέτρησης r(t) = 〈x(t), y(t), z(t)〉 έχουμε:

dr =
〈

dx
dt

,
dy
dt

,
dz
dt

〉
dt.
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F ·dr =
(

F1(r(t))
dx
dt

+F2(r(t))
dy
dt

+F3(r(t))
dz
dt

)
dt.

Καταλήγουμε, έτσι, στην ακόλουθη σχέση:

∫
C
(F1 dx+F2 dy+F3 dz) =

∫ b

a

(
F1(r(t))

dx
dt

+F2(r(t))
dy
dt

+F3(r(t))
dz
dt

)
dt

Εμβάθυνση στα σχήματα Το αποτέλεσμα από τον υπολογισμό του επικαμπυλίου
ολοκληρώματος ενός διανυσματικού πεδίου (ή ακόμα το πρόσημο του ολοκληρώματος)
εξαρτάται από τις γωνίες που σχηματίζουν τα διανύσματα F και T καθώς κινούμαστε κατά
μήκος της καμπύλης. Ας θεωρήσουμε, για παράδειγμα, το επικαμπύλιο ολοκλήρωμα του
διανυσματικού πεδίου F κατά μήκος των καμπυλών C1 και C2 οι οποίες φαίνονται στο
Σχήμα 3.35(a).

• Κατά μήκος της καμπύλης C1 οι γωνίες θ μεταξύ των διανυσμάτων F και T είναι
κατά κύριο λόγο αμβλείες. Αυτό σημαίνει ότι γενικά θα ισχύει F ·T ≤ 0, συνεπώς
το επικαμπύλιο ολοκλήρωμα θα έχει αρνητική τιμή αφού κινούμαστε κυρίως αντίθετα
από το διανυσματικό πεδίο καθώς ιχνηλατούμε την καμπύλη.

• Αντιθέτως, κατά μήκος της καμπύλης C2, οι γωνίες θ είναι κυρίως οξείες. Αυτό
σημαίνει ότι θα ισχύει F ·T≥ 0, συνεπώς το επικαμπύλιο ολοκλήρωμα θα έχει θετική
τιμή αφού κινούμαστε κυρίως στην ίδια κατεύθυνση με το διανυσματικό πεδίο καθώς
ιχνηλατούμε την καμπύλη.

(a) (b) Το πεδίο δίνης (ή πεδίο καταβόθρα)

Σχήμα 3.35

Ένα διανυσματικό πεδίο με ενδιαφέρουσες ιδιότητες είναι αυτό που απεικονίζεται στο Σχήμα 3.35(b),
το οποίο είναι γνωστό ως πεδίο δίνης (ή πεδίο καταβόθρα), και περιγράφεται ως:

F =

〈
−y

x2 + y2 ,
x

x2 + y2

〉
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Θα μελετήσουμε ορισμένες από τις ιδιότητες αυτού του πεδίου στο παρόν κεφάλαιο και στο
επόμενο. Θα ξεκινήσουμε αποδεικνύοντας ότι το ολοκλήρωμα αυτού του διανυσματικού πεδίου
κατά μήκος ενός οποιουδήποτε κύκλου με κέντρο την αρχή των αξόνων και ο οποίος διανύεται
με φορά αντίθετη από αυτήν της περιστροφής των δεικτών του ρολογιού είναι 2π .

Παράδειγμα 3.12.4
Αποδείξτε ότι αν C είναι ο κύκλος με ακτίνα R που έχει ως κέντρο την αρχή των αξόνων και
είναι προσανατολισμένος στην αντι-ωρολογιακή κατεύθυνση τότε:∫

C
F ·dr =

∫
C

−y
x2 + y2 dx+

x
x2 + y2 dy = 2π

Λύση. Ο κύκλος παραμετράται με r(t) = 〈Rcos t, Rsin t〉 για 0≤ t ≤ 2π , οπότε θα έχουμε:

dx
dt

=−Rsin t,
dy
dt

= Rcos t.

Η ολοκληρωτέα ποσότητα του επικαμπύλιου ολοκληρώματος είναι:(
−y

x2 + y2

)
dx+

(
x

x2 + y2

)
dy

=

(
−Rsin t

R2

)
(−Rsin t)dt +

(
Rcos t

R2

)
(Rcos t)dt

= (sin2 t + cos2 t)dt

∫
C

F ·dr =
∫ 2π

0
1dt = 2π.

Θα δούμε τώρα ορισμένες βασικές ιδιότητες των
επικαμπύλιων ολοκληρωμάτων των διανυσματικών
πεδίων. Καταρχάς, αν C είναι μια δεδομένη
προσανατολισμένη καμπύλη, με −C θα συμβολί-
ζουμε την καμπύλη C που έχει τον αντίθετο
προσανατολισμό (βλ. Σχήμα 3.36). Το μοναδιαίο
εφαπτόμενο διάνυσμα αλλάζει πρόσημο από T σε
−T όταν αλλάζει ο προσανατολισμός της καμπύλης,
έτσι τόσο η εφαπτομενική συνιστώσα του πεδίου
F όσο και το επικαμπύλιο ολοκλήρωμα αλλάζουν
επίσης πρόσημο, δηλαδή:∫

−C
F ·dr =−

∫
C

F ·dr
Σχήμα 3.36 Η καμπύλη μεταξύ των σημείων P και Q

μπορεί να προσανατολιστεί με δύο διαφορετικούς
τρόπους

Κατόπιν, αν δίνονται n προσανατολισμένες καμπύλεςC1, . . . ,Cn γράφουμε

C =C1 + · · ·+Cn
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προκειμένου να συμβολίσουμε την ένωσή τους, ενώ ορίζουμε το επικαμπύλιο ολοκλήρωμα πάνω
στην καμπύληC ως το άθροισμα των ολοκληρωμάτων στις επιμέρους καμπύλες, δηλαδή:∫

C
F ·dr =

∫
C1

F ·dr+ · · ·+
∫

Cn

F ·dr

Μπορούμε να χρησιμοποιήσουμε αυτή τη
σχέση προκειμένου να ορίσουμε το επικαμπύλιο
ολοκλήρωμα όταν η καμπύλη C είναι κατά τμήματα
λεία, γεγονός που σημαίνει ότι ηC είναι η ένωση των
λείων καμπυλών C1, . . . ,Cn. Έτσι, για παράδειγμα,
το τρίγωνο του Σχήματος 3.37 είναι κατά τμήματα
λείο αλλά όχι λείο. Το θεώρημα που ακολουθεί
συνοψίζει τις βασικές ιδιότητες των επικαμπύλιων
ολοκληρωμάτων των διανυσματικών πεδίων.

Σχήμα 3.37 Το τρίγωνο είναι κατά τμήματα
λείο: Είναι η ένωση των τριών πλευρών του, κά-
θε μία από τις οποίες είναι λεία

Θεώρημα 3.12.5 Ιδιότητες των επικαμπύλιων ολοκληρωμάτων των διανυσματικών πεδίων
Έστω C μια λεία προσανατολισμένη καμπύλη, ενώ F και G είναι δύο διανυσματικά πεδία.
Τότε ’εχουμε τις κάτωθι ιδιότητες:
(i) Γραμμικότητα: ∫

C
(F+G) ·dr =

∫
C

F ·dr+
∫

C
G ·dr

∫
C

kF ·dr = k
∫

C
F ·dr (όπου k σταθερά)

(ii) Αντιστροφή προσανατολισμού:∫
−C

F ·dr =−
∫

C
F ·dr

(iii) Προσθετικότητα: ΑνC είναι η ένωση n λείων καμπυλώνC1, . . . ,Cn, τότε∫
C

F ·dr =
∫

C1

F ·dr+ · · ·+
∫

Cn

F ·dr

Υπενθύμιση 3.12.6
(1) Κάθε σημείο ενός ευθύγραμμου τμήματος AB μπορεί να γραφεί ως γραμμικός συνδυασμός
των A και B με μη αρνητικά βάρη που αθροίζονται στο 1, δηλαδή
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r(t) = (1− t)A+ tB, 0≤ t ≤ 1.

(2) Η ευθεία που διέρχεται από το σημείο P = (a,b) και έχει κλίση m περιγράφεται από την
καρτεσιανή εξίσωση

y−b = m(x−a).

(1) Από την εξίσωση της ευθείας στην παραμετροποίηση. Θέτουμε ως παράμετρο

t = x−a ⇐⇒ x = a+ t.

Αντικαθιστούμε στην εξίσωση της ευθείας:

y = b+m(x−a) = b+mt.

Άρα κάθε σημείο της ευθείας γράφεται ως

x = a+ t, y = b+mt, −∞ < t < ∞.

(2) Αντιστροφή: η παραμετροποίηση δίνει πράγματι την ευθεία. Έστω τώρα t ∈R και το αντίστοιχο
σημείο

(x,y) = (a+ t, b+mt).

Τότε

y−b = (b+mt)−b = mt = m(a+ t−a) = m(x−a).

Άρα το (x,y) ικανοποιεί την εξίσωση της ευθείας

y−b = m(x−a),

οπότε ανήκει στην ευθεία που περνά από το (a,b) με κλίση m.
Συνεπώς, οι εξισώσεις

x = a+ t, y = b+mt

παραμετροποιούν ακριβώς την ευθεία αυτή.

Παράδειγμα 3.12.7

Υπολογίστε το επικαμπύλιο ολοκλήρωμα
∫

C
F · dr, όπου F = 〈ez, ey, x + y〉 και C είναι

το τρίγωνο με κορυφές τα σημεία (1,0,0), (0,1,0) και (0,0,1) προσανατολισμένο αντι-
ωρολογιακά όταν το βλέπουμε από επάνω, όπως φαίνεται στο Σχήμα 3.37.

Λύση.Το ζητούμενο επικαμπύλιο ολοκλήρωμα είναι ίσο με το άθροισμα των επικαμπύλιων ολοκληρωμάτων
πάνω στις πλευρές του τριγώνου, δηλαδή:∫

C
F ·dr =

∫
AB

F ·dr+
∫

BC
F ·dr+

∫
CA

F ·dr.

Κάθε σημείο ενός ευθύγραμμου τμήματος AB μπορεί να γραφεί ως γραμμικός συνδυασμός των
A και B με μη αρνητικά βάρη που αθροίζονται στο 1, δηλαδή

r(t) = (1− t)A+ tB, 0≤ t ≤ 1.

Υπολογίζουμε τον συνδυασμό:
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r(t) = (1− t)(1,0,0)+ t(0,1,0) = (1− t, t, 0).

Για t = 0 έχουμε r(0) = A, για t = 1 έχουμε r(1) = B, και για 0 < t < 1 το r(t) βρίσκεται
μεταξύ των A και B. Άρα η παραμετροποίηση

r(t) = 〈1− t, t, 0〉, 0≤ t ≤ 1

περιγράφει ακριβώς το ευθύγραμμο τμήμα AB.

Τότε:

F(r(t)) · r′(t) = 〈e0, et , 1〉 · 〈−1, 1, 0〉=−1+ et

∫
AB

F ·dr =
∫ 1

0
(et−1)dt =

(
et− t

)∣∣∣1
0
= (e−1)−1 = e−2

Παρομοίως, για το ευθύγραμμο τμήμα BC, με παραμετροποίηση r(t) = 〈0, 1− t, t〉, 0 ≤
t ≤ 1:

F(r(t)) · r′(t) = 〈et , e1−t , 1− t〉 · 〈0,−1, 1〉=−e1−t +1− t

∫
BC

F ·dr =
∫ 1

0
(−e1−t +1− t)dt =

(
e1−t + t− 1

2t2)∣∣∣1
0
=

3
2
− e

Τέλος, το ευθύγραμμο τμήμαCA παραμετρείται από r(t) = 〈t, 0, 1− t〉 για 0≤ t ≤ 1. Τότε:

F(r(t)) · r′(t) = 〈e1−t , 1, t〉 · 〈1, 0,−1〉= e1−t− t

∫
CA

F ·dr =
∫ 1

0

(
e1−t− t

)
dt =

(
−e1−t− 1

2
t2
)∣∣∣1

0
=−3

2
+ e

Επομένως, το τελικό επικαμπύλιο ολοκλήρωμα είναι:∫
C

F ·dr = (e−2)+
(

3
2
− e
)
+

(
−3

2
+ e
)
= e−2

3.13 Εφαρμογές των επικαμπύλιων ολοκληρωμάτων των διανυσματι-
κών πεδίων

Θυμηθείτε ότι στη φυσική το «ἔργο» αναφέρεται στην ἐνέργεια που δαπανάται όταν μια δύναμη
εφαρμόζεται σε ένα αντικείμενο καθώς αυτό κινείται κατά μήκος μιας τροχιάς. Ἐξ ορισμού, το
ἔργο W που παράγεται κατά μήκος ενός ευθύγραμμου τμήματος μεταξύ των σημείων P και Q
από μια σταθερή δύναμηF που σχηματίζει γωνία θ με την τροχιά, όπως φαίνεται στο Σχήμα 3.38,
είναι:

W = (εφαπτομενική συνιστώσα της F)×απόσταση= (‖F‖cosθ)×‖−→PQ‖
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Σχήμα 3.38

Πολύ συχνά ενδιαφερόμαστε να υπολογίσουμε το έργο που απαιτείται προκειμένου να μετακινή-
σουμε ένα αντικείμενο κατά μήκος μιας τροχιάς παρουσία ενός πεδίου δυνάμεων F (που μπορεί,
για παράδειγμα, να είναι ένα ηλεκτρικό ή ένα βαρυτό πεδίο). Στην περίπτωση αυτή, καθώς το
πεδίοF δρα στο σώμα, θα πρέπει να παράγουμε έργο ενάντια στη δύναμη του πεδίου προκειμένου
να κινήσουμε το αντικείμενο. Το έργο που απαιτείται είναι το αντίθετο του επικαμπύλιου ολοκλη-
ρώματος που εμφανίζεται στην επόμενη εξίσωση, δηλαδή:

έργο παραγόμενο ενάντια στην F =−
∫

C
F ·dr

Παράδειγμα 3.13.1
Υπολογισμός έργου Υπολογίστε το έργο που εκτελείται ενάντια στη δύναμηF κατά την κίνηση
ενός σωματιδίου από το σημείοP = (1,1,1) στοQ = (4,8,2) κατά μήκος της τροχιάς r(t) =
〈t2, t3, t〉 σε m για 1≤ t ≤ 2, παρουσία ενός πεδίου δυνάμεων

F = 〈x2,−z,−yz−1〉 (σε newtons).

Λύση. Ισχύει ότι

F(r(t)) = F(t2, t3, t) = 〈t4,−t,−t2〉 και r′(t) = 〈2t, 3t2, 1〉

F ·dr = F(r(t)) · r′(t)dt = 〈t4,−t,−t2〉 · 〈2t,3t2,1〉dt = (2t5−3t3− t2)dt

Το έργο που παράγεται ενάντια στο εφαρμοζόμενο πεδίο δυνάμεων σε joules είναι:

W =−
∫

C
F ·dr =−

∫ 2

1

(
2t5−3t3− t2

)
dt =

89
12
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Τα επικαμπύλια ολοκληρώματα χρησιμοποιούνται
επίσης για να ορίσουν αυτό που είναι γνωστό ως η ροή
ενός διανυσματικού πεδίου που διασχίζει εγκάρσια
μια επίπεδη καμπύλη. Αντί να ολοκληρώνουμε την
εφαπτομενική συνιστώσα του διανυσματικού πεδίου,
η εγκάρσια ροή μιας επίπεδης καμπύλης ορίζεται
ως το ολοκλήρωμα της κάθετης συνιστώσας του
διανυσματικού πεδίου στην καμπύλη. Με δεδομένη
μια προσανατολισμένη καμπύλη C του επιπέδου,
ορίζουμε τη θετική κατεύθυνση εγκάρσια στη C να
είναι η κατεύθυνση από τα αριστερά προς τα δεξιά σε
σχέση με τη θετική κατεύθυνση κατά μήκος τηςC, με
την τελευταία να ορίζεται από τον προσανατολισμό
της. Αξίζει να σημειωθεί ότι η προηγούμενη επιλογή
έχει έννοια για μία καμπύλη που ανήκει στο επίπεδο,
αλλά στον χώρο R3 δεν υπάρχει μία «αβίαστη»,
φυσική επιλογή που να ορίζει τη θετική κατεύθυνση
εγκάρσια στην καμπύλη (στον χώρο R3 η ροή
υπολογίζεται δια μέσου επιφανειών).

Σχήμα 3.39 Η καμπύλη μεταξύ των σημείων P και Q
μπορεί να προσανατολιστεί με δύο διαφορετικούς

τρόπους

Ας υποθέσουμε ότι συμβολίζουμε με n ένα μοναδιαίο κάθετο διάνυσμα στη θετική κατεύθυνση
εγκάρσια στην καμπύληC (βλ. Σχήμα 3.39). Τότε, ορίζουμε τη ροή του πεδίου F εγκάρσια στην
καμπύληC ως το ολοκλήρωμα

∫
C
(F ·n)ds.

Για να υπολογίσουμε μια ροή τέτοιου είδους θα υποθέσουμε ότι η r(t), με a ≤ t ≤ b, είναι μια
θετικά προσανατολισμένη παραμέτρηση μιας προσανατολισμένης καμπύληςC. Το διάνυσμα της
παραγώγου

r′(t) = 〈x′(t), y′(t)〉

είναι εφαπτόμενο στην καμπύλη, δείχνοντας προς τη θετική κατεύθυνση κατά μήκος τηςC.

Το διάνυσμα

N(t) = 〈y′(t),−x′(t)〉

είναι ορθογώνιο στο r′(t), με κατεύθυνση προς τα δεξιά.
Ας υποθέσουμε ότι το n(t) είναι ένα μοναδιαίο διάνυσμα στην
κατεύθυνση του N(t). Αυτά τα κάθετα διανύσματα δείχνουν
προς τη θετική κατεύθυνση, εγκάρσια στην καμπύληC.

Με δεδομένο ένα μη μηδενικό
διάνυσμα v = 〈p, q〉, τα
διανύσματα 〈q,−p〉 και
〈−q, p〉 είναι και τα δύο
ορθογώνια στο διάνυσμα v,
με το πρώτο από αυτά να
κατευθύνεται προς τα δεξιά
του v και το δεύτερο προς τα
αριστερά του.
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Παρατηρήστε τώρα ότι αφού τα διανύσματα N(t) και r′(t)
έχουν το ίδιο μέτρο, θα πρέπει να ισχύει

n(t) =
N(t)
‖N(t)‖

=
N(t)
‖r′(t)‖

Η ροή εγκάρσια της καμπύληςC μπορεί να υπολογιστεί ως∫
C
(F ·n)ds =

∫ b

a
F(r(t)) · N(t)

‖r′(t)‖
‖r′(t)‖dt

=
∫ b

a
F(r(t)) ·N(t)dt

Στις προηγούμενες ενότητες
το N ήταν το πρωτεύον
μοναδιαίο κάθετο διάνυσμα
μιας καμπύλης στον χώρο. Εδώ,
το N αναπαριστά ένα κάθετο
διάνυσμα, όχι απαραίτητως
μοναδιαίο, σε μια καμπύλη του
επιπέδου, ενώ το n αναπαριστά
το αντίστοιχο μοναδιαίο κάθετο
διάνυσμα. Αυτή η επιλογή
ακολουθείται στα περισσότερα
εγχειρίδια.

Παράδειγμα 3.13.2
Ροή που διασχίζει μια καμπύλη Υπολογίστε τη ροή του διανυσματικού πεδίου των ταχυτήτων
v = 〈3+2y− y2/3, 0〉 (σε cm/s) που διασχίζει το ένα τέταρτο της έλλειψης r(t) = 〈3cos t,
6sin t〉 για 0≤ t ≤ π/2 (βλ. Σχήμα 3.40).

Λύση. Παρατηρήστε ότι το διανυσματικό πεδίο
διασχίζει την καμπύλη από αριστερά προς τα δεξιά
σε σχέση με τον προσανατολισμό της καμπύλης.
Επομένως, περιμένουμε ότι η προκύπτουσα ροή θα
είναι θετική. Το διανυσματικό πεδίο κατά μήκος της
τροχιάς είναι

v(r(t)) =
〈

3+2(6sin t)− (6sin t)2

3
, 0
〉
=〈

3+12sin t−12sin2 t, 0
〉
.

Το εφαπτόμενο διάνυσμα είναι

r′(t) = 〈−3sin t, 6cos t〉

και συνεπώς το κάθετο διάνυσμα είναι

N(t) = 〈6cos t, 3sin t〉.
Σχήμα 3.40

Ολοκληρώνουμε το εσωτερικό γινόμενο:

v(r(t)) ·N(t) =
〈
3+12sin t−12sin2 t, 0

〉
· 〈6cos t, 3sin t〉

= (3+12sin t−12sin2 t)(6cos t)

= 18cos t +72sin t cos t−72sin2 t cos t.

προκειμένου να υπολογίσουμε τη ροή, δηλαδή:∫ b

a
v(r(t)) ·N(t)dt =

∫ π/2

0

(
18cos t +72sin t cos t−72sin2 t cos t

)
dt
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= 18+36−24 = 30 cm2/s

Όπως ήδη έχουμε αναφέρει, στον χώρο R3 η ροή ενός διανυσματικού πεδίου υπολογίζεται
εγκάρσια σε μία επιφάνεια, αντί για μία καμπύλη. Θα ορίσουμε τα ολοκληρώματα αυτού του
τύπου στην επόμενη ενότητα.

Περίληψη 3.13.3

1. Μια προσανατολισμένη καμπύληC είναι μια καμπύλη στην οποία έχει επιλεγεί μία από τις
δύο πιθανές κατευθύνσεις κατά μήκος τηςC (η οποία αποκαλείται θετική κατεύθυνση).

2. Επικαμπύλιο ολοκλήρωμα πάνω σε μια καμπύλη που παραμετράται από την r(t) για
a≤ t ≤ b:

• Διαφορικό μήκους τόξου:

ds = ‖r′(t)‖dt.

Επικαμπύλιο ολοκλήρωμα βαθμωτής συνάρτησης:∫
C

f (x,y,z)ds =
∫ b

a
f (r(t))‖r′(t)‖dt

• Διανυσματικό διαφορικό:

dr = T ds = r′(t)dt.

Επικαμπύλιο ολοκλήρωμα διανυσματικής συνάρτησης:∫
C

F ·dr =
∫

C
(F ·T )ds =

∫ b

a
F(r(t)) · r′(t)dt

Στις τρεις διαστάσεις: ∫
C

F1 dx + F2 dy + F3 dz

3. Το επικαμπύλιο ολοκλήρωμα μιας βαθμωτής συνάρτησης αλλά και ενός διανυσματικού
πεδίου εξαρτάται από τον προσανατολισμό της καμπύληςC. Η παραμέτρηση r(t) πρέπει
να είναι κανονική (να ισχύει r′(t) 6= 0), ενώ θα πρέπει επίσης να ιχνηλατεί την καμπύλη
C στη θετική κατεύθυνση.

4. Γράφουμε−C προκειμένου να δηλώσουμε την καμπύλη με τον αντίθετο προσανατολισμό.
Επομένως: ∫

−C
F ·dr =−

∫
C

F ·dr

5. Αν ρ(x,y,z) είναι η πυκνότητα μάζας ή φορτίου κατά μήκος μιας καμπύλης C, τότε η
συνολική μάζα, ή αντιστοίχως το συνολικό φορτίο, είναι ίση με το επικαμπύλιο ολοκλήρωμα∫

C
ρ(x,y,z)ds.
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6. Το επικαμπύλιο ολοκλήρωμα των διανυσματικών πεδίων χρησιμοποιείται, εκτός των
άλλων, για τον υπολογισμό του έργου W που παράγεται από μια δύναμη που δρα πάνω
σε ένα αντικείμενο το οποίο κινείται κατά μήκος μιας καμπύληςC:

W =
∫

C
F ·dr

Το έργο που παράγεται ενάντια στο πεδίο των δυνάμεων F είναι η ποσότητα−
∫

C
F ·dr.

7. Για μια καμπύλη C στον χώρο R2 η ροή που διασχίζει εγκάρσια την C δίνεται από το
επικαμπύλιο ολοκλήρωμα∫

C
(F ·n)ds =

∫ b

a
F(r(t)) ·N(t)dt,

όπου N(t) = 〈y′(t),−x′(t)〉.

Ασκήσεις 3.13.4

1. Ποιες από τις επόμενες βαθμωτές συναρτήσεις και διανυσματικά πεδία έχουν μηδενικό
επικαμπύλιο ολοκλήρωμα πάνω στο κατακόρυφο ευθύγραμμο τμήμα που ξεκινά από το
σημείο (0,0) και καταλήγει στο (0,1);

α) f (x,y) = x β) f (x,y) = y γ) F = 〈x,0〉 δ) F = 〈y,0〉 ε) F = 〈0,x〉

2. Να χαρακτηρίσετε καθεμία από τις ακόλουθες προτάσεις ως σωστή ή λάθος. Στην περίπτω-
ση που η πρόταση είναι λανθασμένη, να δώσετε τη σωστή διατύπωση.
(a) Το επικαμπύλιο ολοκλήρωμα μιας βαθμωτής συνάρτησης δεν εξαρτάται από τον

τρόπο παραμέτρησης της καμπύλης.

(b) Αν αντιστρέψουμε τον προσανατολισμό μιας καμπύλης, δεν αλλάζει τιμή ούτε το
επικαμπύλιο ολοκλήρωμα ενός διανυσματικού πεδίου, ούτε και το επικαμπύλιο
ολοκλήρωμα μιας βαθμωτής συνάρτησης.

3. Έστω το διανυσματικό πεδίο F = 〈y2, x2〉 καιC η καμπύλη y = x−1 για 1≤ x≤ 2, που
είναι προσανατολισμένη από τα αριστερά προς τα δεξιά.
(a) Υπολογίστε την F(r(t)) και το διαφορικό dr = r′(t)dt για την παραμετροποίηση

τηςC

r(t) = 〈t, t−1〉.

(b) Προσδιορίστε το F(r(t)) · r′(t)dt και υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C F ·dr

.

4. Έστω F(x,y,z) = 〈z2, x, y〉 καιC η καμπύλη που δίνεται από την

r(t) = 〈3+5t2, 3− t2, t〉, 0≤ t ≤ 2.

(a) Υπολογίστε την F(r(t)) και το διαφο-ρικό dr = r′(t)dt .
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(b) Προσδιορίστε το εσωτερικό γινόμενοF(r(t)) ·r′(t)dt και υπολογίστε το επικαμπύ-
λιο ολοκλήρωμα ∫

C F ·dr
.

Στις Ασκήσεις 5-7 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα της βαθμωτής συνάρτησης
ή του διανυσματικού πεδίου που δίνεται σε κάθε περίπτωση πάνω στην καμπύλη

r(t) = 〈cos t,sin t, t〉, 0≤ t ≤ π.

5. f (x,y,z) = x2 + y2 + z2

6. f (x,y,z) = xy+ z

7. F(x,y,z) = 〈x,y,z2〉

Στις Ασκήσεις 8–10 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα∫
C

f ds

για τη βαθμωτή συνάρτηση f και την καμπύληC που δίνεται σε κάθε περίπτωση.

8. f (x,y) =
√

1+9xy, y = x3 για 0≤ x≤ 2

9. f (x,y,z) = z2, r(t) = 〈2t, 3t, 4t〉 για 0≤ t ≤ 2

10. f (x,y,z) = 3x−2y+ z, r(t) = 〈2+ t, 2− t, 2t〉 για−2≤ t ≤ 1

11. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C

1ds,

όπου η καμπύλη C παραμετράται από την r(t) = 〈4t,−3t, 12t〉 για 2 ≤ t ≤ 5. Τι
αντιπροσωπεύει αυτό το ολοκλήρωμα;

12. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C

1ds,

όπου η καμπύληC παραμετράται από την r(t) = 〈et ,
√

2 t, e−t〉 για 0≤ t ≤ 2.

Στις Ασκήσεις 13–18 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα∫
C

F ·dr

για το διανυσματικό πεδίο F⃗ και την προσανατολισμένη καμπύλη C που δίνονται σε κάθε
περίπτωση.

13. F(x,y) = 〈1+ x2, xy2〉, πάνω στο ευθύγραμμο τμήμα που ξεκινά από το σημείο (0,0)
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και καταλήγει στο (1,3).

14. F(x,y) = 〈−2, y〉, πάνω στο ημικύκλιο

x2 + y2 = 1

, με y≥ 0, που είναι προσανατολισμένο αντιωρολογιακά.

15. F(x,y) = 〈x2, xy〉, πάνω στο τμήμα του κύκλου

x2 + y2 = 9

, με x≤ 0, y≥ 0.

16. F(x,y,z) = 〈3zy−1, 4x,−y〉, πάνω στην r(t) = 〈et , et , t〉, με−1≤ t ≤ 1.

17. F(x,y) =
〈

−y
(x2 + y2)2 ,

x
(x2 + y2)2

〉
, πάνω σε κύκλο ακτίναςR με το κέντρο του στην

αρχή των αξόνων και αντιωρολογιακό προσανατολισμό.

18. F(x,y,z) =
〈

1
y3 +1

,
1

z+1
, 1
〉
, πάνω στην r(t) = 〈t3, 2, t2〉, με 0≤ t ≤ 1.

Στις Ασκήσεις 19–23 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα που σημειώνεται σε κάθε
περίπτωση.

19. ∫
C

xdx,

πάνω στην y = x3 για 0≤ x≤ 3.

20. ∫
C
(x− y)dx+(y− z)dy+ zdz,

πάνω στο ευθύγραμμο τμήμα που ξεκινά από το σημείο (0,0,0) και καταλήγει στο
σημείο (1,4,4).

21. ∫
C

zdx+ x2 dy+ ydz,

πάνω στην r(t) = 〈cos t, tan t, t〉 για 0≤ t ≤ π
4
.

22. Έστω η συνάρτηση f (x,y,z) = x−1yz και C η καμπύλη που παραμετράται από την
r(t)= 〈ln t, t, t2〉 για2≤ t ≤ 4. Χρησιμοποιήστε έναΥπολογιστικό ΣύστημαΆλγεβρας
για να υπολογίσετε το επικαμπύλιο ολοκλήρωμα∫

C
f (x,y,z)ds
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με ακρίβεια τεσσάρων δεκαδικών ψηφίων.

23. Χρησιμοποιήστε έναΥπολογιστικό ΣύστημαΆλγεβρας για να υπολογίσετε το επικαμπύλιο
ολοκλήρωμα ∫

C
〈ex−y, ex+y〉 ·dr

με ακρίβεια τεσσάρων δεκαδικών ψηφίων, ανC είναι η καμπύλη y= sinx, με 0≤ x≤ π ,
η οποία είναι προσανατολισμένη από αριστερά προς τα δεξιά.

Στις Ασκήσεις 24 και 25 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα του πεδίου.

F(x,y,z) = 〈ez, ex−y, ey〉

πάνω στη διαδρομή που δίνεται σε κάθε περίπτωση.

24. Στη διαδρομή που σημειώνεται με μπλε
χρώμα, από το σημείο P στο σημείο Q του
Σχήματος 3.42.

Σχήμα 3.42

25. Στην κλειστή διαδρομή ABCA του
Σχήματος 3.43.

Σχήμα 3.43

Στις Ασκήσεις 26 και 27C είναι η διαδρομή
από το σημείοP στο σημείοQ του Σχήματος
3.44 που απαρτίζεται από τιςC1,C2 καιC3
με τον προσανατολισμό που φαίνεται, ενώ
F⃗ είναι ένα διανυσματικό πεδίο τέτοιο ώστε∫

C
F⃗ · d⃗r = 5,

∫
C1

F⃗ · d⃗r = 8,

∫
C3

F⃗ · d⃗r = 8.
Σχήμα 3.44

26. Προσδιορίστε τα ακόλουθα επικαμπύλια ολοκληρώματα:

(a)
∫
−C3

F ·dr (b)
∫

C2

F ·dr (c)
∫
−C1−C3

F ·dr.

27. Υπολογίστε την τιμή του επικαμπύλιου ολοκληρώματος∫
C′

F ·dr,

όπου C′ είναι η διαδρομή που ιχνηλατεί τον βρόχο 2 τέσσερις φορές σε ωρολογιακή
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κατεύθυνση.

Στις Ασκήσεις 28–29 να χρησιμοποιήσετε την Εξίσωση

V (P) = k
∫

C

ρ(x,y,z)
DP(x,y,z)

ds

για να υπολογίσετε το ηλεκτρικό δυναμικόV (P) σε ένα σημείο P, εξαιτίας της πυκνότητας
φορτίου που δίνεται σε κάθε περίπτωση (εκφρασμένη σε μονάδες 10−6 C/cm).

28. Υπολογίστε το δυναμικόV (P) στην αρχή των αξόνωνP=(0,0), αν το αρνητικό ηλεκτρικό
φορτίο είναι κατανεμημένο κατά μήκος της καμπύλης y= x2, για 1≤ x≤ 2, με πυκνότητα

ρ(x,y) =−y
√

x2 +1.

29. Υπολογίστε το δυναμικό V (P) στην αρχή των αξόνων P = (0,0), αν το ηλεκτρικό

φορτίο είναι κατανεμημένο κατά μήκος της καμπύλης y = x−1, για
1
2
≤ x ≤ 2, με

πυκνότητα ρ(x,y) = x3y.

Στις Ασκήσεις 30–31 να υπολογίσετε το έργο που παράγεται από το πεδίοF όταν το αντικεί-
μενο κινείται κατά μήκος της διαδρομής που περιγράφεται σε κάθε περίπτωση από το
αρχικό στο τελικό σημείο.

30. F(x,y,z) = 〈x,y,z〉, r(t) = 〈cos t,sin t, t〉 για 0≤ t ≤ 3π

31. F(x,y,z) = 〈ex,ey,xyz〉, r(t) = 〈t2, t, t/2〉 για 0≤ t ≤ 1.

Στις Ασκήσεις 32–35 να χρησιμοποιήσετε την Εξίσωση∫
C
(F⃗ ·n)ds =

∫ b

a
F(r(t)) · N(t)

‖r′(t)‖
‖r′(t)‖dt =

∫ b

a
F(r(t)) ·N(t)dt.

για να υπολογίσετε τη ροή του διανυσματικού πεδίου που δίνεται σε κάθε περίπτωση και
διασχίζει εγκάρσια την καμπύλη που περιγράφεται.

32. F(x,y) = 〈−y, x〉, από το πάνω ήμισυ του μοναδιαίου κύκλου, που είναι προσανατολι-
σμένος ωρολογιακά.

33. F(x,y) = 〈x2, y2〉, από το ευθύγραμμο τμήμα που ξεκινά από το σημείο (3,0) και
καταλήγει στο (0,3), με προσανατολισμό προς τα επάνω.

34. F(x,y) =
〈

x+1
(x+1)2 + y2 ,

y
(x+1)2 + y2

〉
, από το ευθύγραμμο τμήμα κατά μήκος του

άξονα y, για 1≤ y≤ 4, με προσανατολισμό προς τα επάνω.

35. F(x,y) = 〈ey, 2x−1〉, από την παραβολή y = x2 με 0≤ x≤ 1, που είναι προσανατολι-
σμένη από αριστερά προς τα δεξιά.
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Στις Ασκήσεις 36-39 να υπολογίσετε το έργο που παράγεται από το πεδίοF όταν το αντικείμενο
κινείται κατά μήκος της διαδρομής που περιγράφεται σε κάθε περίπτωση από το αρχικό στο
τελικό σημείο.

36. F(x,y,z) = 〈x,y,z〉, r = 〈cos t,sin t, t〉για 0≤ t ≤ 3π.

37. F(x,y,z) = 〈xy,yz,xz〉, r = 〈t, t2, t3〉για 0≤ t ≤ 1.

38. F(x,y,z) = 〈ex,ey,xyz〉, r = 〈t2, t, t/2〉για 0≤ t ≤ 1.

39. Στο Σχήμα 3.45 απεικονίζεται ένα
διανυσματικό πεδίο δυνάμεων F.
(a) Πάνω σε ποια από τις δύο διαδρομές,

ADC ήABC, παράγει λιγότερο έργο
το πεδίο F;

(b) Αν πρέπει να παραχθεί έργο ενάντια
στο πεδίο F προκειμένου το
αντικείμενο να μετακινηθεί από το
σημείο C στο σημείο A, ποια από
τις διαδρομές CBA ή CDA απαιτεί
τη δαπάνη της λιγότερης ενέργειας;

Σχήμα 3.45

Στις Ασκήσεις 40-43 να χρησιμοποιήσετε την Εξίσωση∫
C
(F⃗ ·n)ds =

∫ b

a
F(r(t)) · N(t)

‖r′(t)‖
‖r′(t)‖dt =

∫ b

a
F(r(t)) ·N(t)dt.

για να υπολογίσετε τη ροή του διανυσματικού πεδίου που δίνεται σε κάθε περίπτωση και
διασχίζει εγκάρσια την καμπύλη που περιγράφεται.

40. F(x,y)= 〈−y,x〉, από το πάνω ήμισυ του μοναδιαίου κύκλου που είναι προσανατολισμέ-
νος ωρολογιακά.

41. F(x,y) = 〈x2,y2〉, από το ευθύγραμμο τμήμα που ξεκινά από το σημείο (3,0) και
καταλήγει στο (0,3), με προσανατολισμό προς τα επάνω.

42. F(x,y) =
〈

x+1
(x+1)2 + y2 ,

y
(x+1)2 + y2

〉
, από το ευθύγραμμο τμήμα κατά μήκος του

άξονα y για 1≤ y≤ 4, με προσανατολισμό προς τα επάνω.

43. F(x,y) = 〈ey,2x−1〉, από την παραβολή y = x2 με 0≤ x≤ 1, που είναι προσανατολι-
σμένη από αριστερά προς τα δεξιά.

3.14 Συντηρητικά διανυσματικά πεδία

Στην παρούσα ενότητα θα μελετήσουμε σε περισσότερο βάθος
τα συντηρητικά διανυσματικά πεδία. Μια σημαντική ιδιότητα
αυτών των πεδίων είναι ότι το επικαμπύλιο ολοκλήρωμα ενός
συντηρητικού διανυσματικού πεδίου κατά μήκος μιας κλειστής
διαδρομής είναι μηδέν.

• Ένα διανυσματικό πεδίο F
είναι συντηρητικό αν F = ∇ f
για κάποια συνάρτηση f (x,y,z).

• Η συνάρτηση f είναι γνωστή
ως συνάρτηση δυναμικού.

Όταν μια καμπύληC είναι κλειστή, τότε πολύ συχνά αναφερόμαστε στο επικαμπύλιο ολοκλήρωμα
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ενός οποιουδήποτε διανυσματικού πεδίου F πάνω στην καμπύλη C ως την κυκλοφορία του F
πάνω στη C (βλ. Σχήμα 3.46(a)), ενώ χρησιμοποιούμε το σύμβολο

∮
για να δηλώσουμε ένα

τέτοιο ολοκλήρωμα, γράφουμε δηλαδή: ∮
C

F ·dr

Στην πραγματικότητα, δεν έχει σημασία ποιο σημείο θα θεωρήσουμε ως αρχή, αφού η καμπύλη
είναι κλειστή.

Υποθέστε τώρα ότι ταA καιB είναι δύο σημεία πάνω σε μια κλειστή καμπύλη. Αν ξεκινήσουμε
από το σημείο A, τότε η κυκλοφορία καθώς κινούμαστε κατά μήκος της καμπύλης επιστρέφοντας
προς το A θα είναι το άθροισμα του επικαμπύλιου ολοκληρώματος από το A στο B και του
επικαμπύλιου ολοκληρώματος από το B μέχρι να επιστρέψουμε στο A. Αλλάζοντας τη σειρά
άθροισης αυτών των δύο επικαμπύλιων ολοκληρωμάτων θα προκύψει η κυκλοφορία με αφετηρία
το σημείο B και επιστροφή σε αυτό, δίνοντας έτσι το ίδιο αποτέλεσμα.

Το πρώτο μας αποτέλεσμα αναφέρεται στη θεμελιώδη ιδιότητα της ανεξαρτησίας από τη
διαδρομή του επικαμπύλιου ολοκληρώματος των συντηρητικών διανυσματικών πεδίων. Πιο συγ-
κεκριμένα, σύμφωνα με το θεώρημα που ακολουθεί, το επικαμπύλιο ολοκλήρωμα του διανυσμα-
τικού πεδίου F κατά μήκος μιας διαδρομής με αφετηρία το σημείο P και τερματικό σημείο το Q
εξαρτάται μόνο από τα άκρα της διαδρομής, δηλαδή τα σημεία P και Q, και όχι από τη διαδρομή
που ακολουθήσαμε για να μεταβούμε από το P στο Q, όπως φαίνεται στο Σχήμα 3.46(b).

(a) Η κυκλοφορία κατά μήκος μιας κλειστής διαδρομής

συμβολίζεται ως
∮

C
F ·dr

(b) Ανεξαρτησία από τη διαδρομή: Αν το πεδίο F είναι
συντηρητικό, τότε τα επικαμπύλια ολοκληρώματα του
πεδίου αυτού πάνω στις διαδρομές r1 και r2 είναι ίσα.

Σχήμα 3.46

Θεώρημα 3.14.1 Θεμελιώδες θεώρημα για τα συντηρητικά διανυσματικά πεδία Υποθέστε ότι
ισχύει F = ∇ f σε ένα χωρίο D.

1. Αν r είναι μια διαδρομή κατά μήκος της καμπύλης C που ξεκινά από το σημείο P και
καταλήγει στο Q εντός του χωρίου D, τότε:∫

C
F ·dr = f (Q)− f (P)

Αυτό σημαίνει ότι το επικαμπύλιο ολοκλήρωμα του διανυσματικού πεδίουF είναι ανεξά-
ρτητο της διαδρομής.

2. Η κυκλοφορία πάνω σε μια κλειστή καμπύλη C (σε μια καμπύλη δηλαδή για την οποία
ισχύει ότι P = Q) είναι μηδέν, δηλαδή:∮

C
F ·dr = 0
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Λύση. Απόδειξη. Ας υποθέσουμε ότι η r(t) είναι μια διαδρομή κατά μήκος της καμπύληςC στο
χωρίο D για a≤ t ≤ b με r(a) = P και r(b) = Q. Τότε:∫

C
F ·dr =

∫
C

∇ f ·dr =
∫ b

a
∇ f (r(t)) · r′(t)dt

Σύμφωνα όμως με τον κανόνα της αλυσίδας για τις τροχιές, θα ισχύει:

d
dt

f (r(t)) = ∇ f (r(t)) · r′(t).

Από το θεμελιώδες θεώρημα του Λογισμού έχουμε:∫
C

F ·dr =
∫ b

a

d
dt

f (r(t))dt = f (r(t))
∣∣∣b
a
= f (r(b))− f (r(a)) = f (Q)− f (P).

Με τον τρόπο αυτόν αποδεικνύεται η Εξίσωση (1). Ταυτόχρονα όμως αποδείξαμε και την
ανεξαρτησία από τη διαδρομή καθώς η ποσότητα f (Q)− f (P) εξαρτάται μόνο από τα ακραία
σημεία αλλά όχι από την ίδια τη διαδρομή r. Στην περίπτωση που η διαδρομή r είναι κλειστή,
τότε θα ισχύει P = Q και f (Q)− f (P) = 0.

Παράδειγμα 3.14.2
Έστω το διανυσματικό πεδίο F(x,y,z) = 〈2xy+ z, x2, x〉.
1. Να επιβεβαιώσετε ότι η f (x,y,z) = x2y+xz αποτελεί μια συνάρτηση δυναμικού για το

F.
2. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫

C
F ·dr

όπουC είναι μια καμπύλη που ξεκινά από το σημείο P = (1,−1,2) και καταλήγει στο
Q = (2,2,3).

Λύση. (a) Οι μερικές παράγωγοι της συνάρτησης
f (x,y,z) = x2y+ xz πρέπει να είναι οι συνιστώσες
του F. Πράγματι:

∂ f
∂x

= 2xy+ z,
∂ f
∂y

= x2,
∂ f
∂ z

= x.

Επομένως,

∇ f = 〈2xy+ z, x2, x〉= F,

γεγονός που σημαίνει ότι πράγματι η f είναι μια
συνάρτηση δυναμικού του F.

Σχήμα 3.47 Μια τυχαία διαδρομή από το σημείο
(1,−1,2) στο (2,2,3)

(b) Σύμφωνα με τοΘεώρημα 3.14.1, το ζητούμενο επικαμπύλιο ολοκλήρωμα πάνωσε οποιαδήποτε
διαδρομή r(t) που συνδέει τα σημεία P = (1,−1,2) και Q = (2,2,3) (βλ. Σχήμα 3.47) θα έχει
την τιμή:
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∫
C

F ·dr = f (Q)− f (P) = f (2,2,3)− f (1,−1,2) =(
22(2)+2(3)

)
−
(
12(−1)+1(2)

)
= 13

Παράδειγμα 3.14.3
Βρείτε μια συνάρτηση δυναμικού για το διανυσματικό πεδίο F = 〈2x+ y, x〉 την οποία στη
συνέχεια να χρησιμοποιήσετε προκειμένου να υπολογίσετε το επικαμπύλιο ολοκλήρωμα∫

C
F ·dr

όπου r είναι οποιαδήποτε διαδρομή (βλ. Σχήμα 3.48) που ξεκινά από το σημείο (1,2) και
καταλήγει στο σημείο (5,7).

Λύση. Στη συνέχεια της παρούσας ενότητας
θα αναπτύξουμε μια γενική μέθοδο για τον
προσδιορισμό των συναρτήσεων δυναμικού
ενός συντηρητικού διανυσματικού πεδίου. Στο
σημείο όμως που βρισκόμαστε, μπορούμε να
παρατηρήσουμε ότι η συνάρτηση f (x,y) = x2 + xy
ικανοποιεί τη συνθήκη ∇ f = F καθώς ισχύει:
∂ f
∂x

=
∂
∂x

(x2 + xy) = 2x+ y,
∂ f
∂y

=
∂
∂y

(x2 +

xy) = x.
Επομένως, για κάθε διαδρομή r με αρχή το σημείο
(1,2) και πέρας το (5,7) θα ισχύει:∫

C
F ·dr = f (5,7)− f (1,2)

=
(
52 +5(7)

)
−
(
12 +1(2)

)
= 57

Σχήμα 3.48 Διαφορετικές διαδρομές από το (1,2) στο
(5,7)

Παράδειγμα 3.14.4
Επικαμπύλιο ολοκλήρωμα σε μια κλειστή

διαδρομή Έστω η συνάρτηση f (x,y,z) =
xysin(yz). Υπολογίστε το επικαμπύλιο

ολοκλήρωμα
∮

C
∇ f · dr, όπου C είναι η κλειστή

καμπύλη του Σχήματος 3.49.

Λύση. Σύμφωνα με το Θεώρημα 3.14.1, το
ολοκλήρωμα ενός διανυσματικού πεδίου που
προέρχεται από την κλίση μιας βαθμωτής
συνάρτησης πάνω σε οποιαδήποτε κλειστή διαδρομή
είναι μηδέν. Δηλαδή∮

C
∇ f ·dr = 0

Σχήμα 3.49 Το επικαμπύλιο ολοκλήρωμα ενός
συντηρητικού διανυσματικού πεδίου σε μια κλειστή
διαδρομή είναι μηδέν
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Θεώρημα 3.14.5Ένα διανυσματικό πεδίοF σε ένα ανοικτό και συνεκτικό χωρίοD έχει επικαμπύ-
λιο ολοκλήρωμα που είναι ανεξάρτητο της διαδρομής αν και μόνο αν είναι συντηρητικό.

3.15 Προσδιορισμός των συναρτήσεων δυναμικού

Μέχρι στιγμής δεν διαθέτουμε μια γρήγορη και αποτελεσματική μέθοδο για να ελέγξουμε αν
ένα δεδομένο διανυσματικό πεδίο είναι συντηρητικό ή όχι. Σύμφωνα με το Θεώρημα 3.14.1 της
Ενότητας 3.14, κάθε συντηρητικό πεδίο στον χώρο R3 ικανοποιεί τη συνθήκη:

curl(F) = 0, ή ισοδύναμα,
∂F1

∂y
=

∂F2

∂x
,

∂F2

∂ z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂ z

Εγγυάται όμως η συνθήκη αυτή ότι το πεδίο F είναι συντηρητικό; Η απάντηση είναι ναι, υπό
συνθήκες. Πιο συγκεκριμένα, η συνθήκη της ισότητας των μικτών μερικών παραγώγων εγγυάται
τη συντηρητικότητα του πεδίουF μόνο σε χωρίαD που διαθέτουν την ιδιότητα της απλής συνεκτι-
κότητας.

Γενικά, ένα χωρίο D του επιπέδου είναι απλά συνεκτικό αν είναι συνεκτικό χωρίς να φέρει
οποιαδήποτε «οππή», όπως φαίνεται στο Σχήμα 3.50.

Σχήμα 3.50 Οι απλά συνεκτικές περιοχές δεν έχουν οπές

Αν θέλουμε να είμαστε ακριβέστεροι, το χωρίο D είναι απλά συνεκτικό αν κάθε βρόχος του D
μπορεί να συρρικνωθεί φτάνοντας να γίνει ένα σημείο, μένοντας συνεχώς εντός του χωρίου D,
όπως φαίνεται στο Σχήμα 3.51(α). Παραδείγματα απλά συνεκτικών χωρίων στο επίπεδοR2 είναι
οι δίσκοι, τα ορθογώνια, καθώς και ολόκληρο το επίπεδο R2. Αντιθέτως, ο δίσκος του Σχήματος
3.50(β) από τον οποίο έχει αφαιρεθεί ένα σημείο δεν είναι απλά συνεκτικό χωρίο, καθώς ο βρόχος
που φαίνεται στο σχήμα δεν μπορεί να συρρικνωθεί φτάνοντας να γίνει σημείο χωρίς να περάσει
από το σημείο που έχει αφαιρεθεί. Στον χώρο R3 οι εσωτερικές περιοχές μιας σφαίρας αλλά και
ενός κουτιού είναι απλά συνεκτικές, όπως επίσης και ολόκληρος ο χώρος R3.
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Σχήμα 3.51

Θεώρημα 3.15.1Ύπαρξη συνάρτησης δυναμικούἜστωF ένα διανυσματικό πεδίο σε ένα απλά
συνεκτικό χωρίο D. Αν το πεδίο F ικανοποιεί τη συνθήκη της ισότητας των μικτών μερικών
παραγώγων, τότε το F είναι συντηρητικό.

Παράδειγμα 3.15.2
Προσδιορισμός συνάρτησης δυναμικού Να αποδείξετε ότι το διανυσματικό πεδίο

F = 〈2xy+ y3, x2 +3xy2 +2y〉

είναι συντηρητικό και να προσδιορίσετε μια συνάρτηση δυναμικού για το πεδίο αυτό.

Λύση. Αρχικά, παρατηρούμε ότι οι χιαστί μερικές παράγωγοι είναι ίσες, καθώς ισχύει:

∂F1

∂y
=

∂
∂y

(2xy+ y3) = 2x+3y2

∂F2

∂x
=

∂
∂x

(x2 +3xy2 +2y) = 2x+3y2

Επιπλέον, το πεδίοF είναι ορισμένο σε ολόκληρο τον χώροR2, που είναι ένα απλά συνεκτικό
χωρίο. Επομένως, σύμφωνα με το Θεώρημα 3.15.1 θα υπάρχει μια συνάρτηση δυναμικού.

Αυτή η συνάρτηση δυναμικού f θα πρέπει να ικανοποιεί τη συνθήκη

∂ f
∂x

= F1(x,y) = 2xy+ y3.

Ολοκληρώνουμε ως προς x:

f (x,y) =
∫
(2xy+ y3)dx = x2y+ xy3 +g(y),

όπου το g(y) είναι άγνωστη συνάρτηση του y.
Τώρα χρησιμοποιούμε τη δεύτερη συνθήκη:

∂ f
∂y

= x2 +3xy2 +g′(y) !
= F2(x,y) = x2 +3xy2 +2y.

Άρα:
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g′(y) = 2y ⇒ g(y) = y2.

Τελική συνάρτηση δυναμικού:

f (x,y) = x2y+ xy3 + y2.

Η σχέση αυτή μας δείχνει ότι η συνάρτηση f είναι μια αντιπαράγωγος της F1(x,y), εφόσον
αυτή θεωρηθεί ως συνάρτηση της μεταβλητής x, δηλαδή

f (x,y) =
∫

F1(x,y)dx =
∫
(2xy+ y3)dx = x2y+ xy3 +g(y)

όπου g(y) είναι μια σταθερά (ως προς τη μεταβλητή x) της ολοκλήρωσης. Παρομοίως, τώρα
θα έχουμε:

f (x,y) =
∫

F2(x,y)dy =
∫
(x2 +3xy2 +2y)dy = x2y+ xy3 + y2 +h(x)

Οι δύο προηγούμενες εκφράσεις για την f (x,y) θα πρέπει να συμπίπτουν, δηλαδή

x2y+ xy3 +g(y) = x2y+ xy3 + y2 +h(x)

από την οποία προκύπτει ότι g(y) = y2 και h(x) = 0, πέραν της ύπαρξης μιας αυθαίρετης
σταθεράςC. Έτσι, καταλήγουμε στη γενική συνάρτηση δυναμικού για το συγκεκριμένο διανυσματικό
πεδίο:

f (x,y) = x2y+ xy3 + y2 +C

Σχόλιο 3.15.3 Ως συνήθως, όταν βρίσκουμε την αντιπαράγωγο, θα πρέπει να εισάγουμε μια
σταθερά ολοκλήρωσης, έναν όρο του οποίου η παράγωγος ως προς τη μεταβλητή ολοκλήρωσης
είναι μηδέν. Όταν προσδιορίζουμε την αντιπαράγωγο ως προς τη μεταβλητή x, η σταθερά
ολοκλήρωσης μπορεί να εξαρτάται από τις υπόλοιπες μεταβλητές της συνάρτησης. Στην περί-
πτωση του Παραδείγματος 3.15.2, η σταθερά της ολοκλήρωσης εξαρτάται από τη μεταβλητή
y.

Στο παράδειγμα που ακολουθεί θα αποδείξουμε ότι η προσέγγιση που χρησιμοποιήσαμε στο
Παράδειγμα 3.15.2 μπορεί να γενικευθεί ώστε να χρησιμοποιηθεί για τον προσδιορισμό μιας συνά-
ρτησης δυναμικού και για την περίπτωση των διανυσματικών πεδίων του χώρου R3.

Παράδειγμα 3.15.4
Προσδιορίστε μια συνάρτηση δυναμικού για το διανυσματικό πεδίο

F = 〈2xyz−1, z+ x2z−1, y− x2yz−2〉

Λύση.Αν υπάρχει η συνάρτηση δυναμικού f , τότε αυτή θα πρέπει να ικανοποιεί τις σχέσεις:

f (x,y,z) =
∫

2xyz−1 dx = x2yz−1 +ϕ(y,z)

f (x,y,z) =
∫ (

z+ x2z−1) dy = zy+ x2z−1y+g(x,z)
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f (x,y,z) =
∫ (

y− x2yz−2) dz = yz+ x2yz−1 +h(x,y)

Αυτές οι τρεις εκφράσεις της συνάρτησης f (x,y,z) θα πρέπει να είναι ίσες μεταξύ τους, δηλαδή:

x2yz−1 +ϕ(y,z) = zy+ x2z−1y+g(x,z) = yz+ x2yz−1 +h(x,y)

Οι προηγούμενες ισότητες ισχύουν αν ϕ(y,z) = yz, g(x,z) = 0 και h(x,y) = 0. Επομένως,
το διανυσματικό πεδίοF είναι συντηρητικό και για οποιαδήποτε αριθμητική σταθεράC η συνάρτηση
δυναμικού του θα είναι η

f (x,y,z) = x2yz−1 + yz+C

Σχόλιο 3.15.5ΣτοΠαράδειγμα 3.15.4 το διανυσματικό πεδίοF ορίζεται μόνο αν z 6= 0, επομένως
το πεδίο ορισμού αποτελείται από δύο «μισά» για z > 0 και z < 0. Μπορούμε να επιλέξουμε
διαφορετικές σταθερέςC στα δύο αυτά «μισά» του πεδίου ορισμού, εφόσον το επιθυμούμε.

3.15.1 Η σημασία των υποθέσεων

Δεν θα πρέπει να περιμένουμε ότι η προηγούμενη μέθοδος προσδιορισμού της συνάρτησης δυνα-
μικού θα μπορεί να εφαρμοστεί αν το διανυσματικό πεδίο F δεν ικανοποιεί τη συνθήκη ισότητας
των μικτών μερικών παραγώγων (καθώς σε αυτή την περίπτωση δεν θα υπάρχει συνάρτηση
δυναμικού). Πού θα εμφανιστεί τότε το πρόβλημα; Ας θεωρήσουμε το διανυσματικό πεδίο F =
〈y, 0〉. Αν επιχειρήσουμε να προσδιορίσουμε τη συνάρτηση δυναμικού αυτού του πεδίου θα
διαπιστώσουμε ότι θα πρέπει να ισχύει:

f (x,y) =
∫

ydx = xy+g(y) και f (x,y) =
∫

0dy = 0+h(x)

Όμως δεν υπάρχει καμία επιλογή για τις συναρτήσεις g(y) και h(x) ώστε xy+g(y) = h(x).
Αν υπήρχε αυτή η δυνατότητα και παραγώγιζαμε δύο φορές την ισότητα, μία ως προς τη μεταβλητή
x και μία ως προς τη μεταβλητή y, θα καταλήγαμε στην αντίφαση 1= 0. Η προηγούμενη μέθοδος,
λοιπόν, αποτυγχάνει σε αυτή την περίπτωση καθώς το διανυσματικό πεδίο F δεν ικανοποιεί τη
συνθήκη ισότητας των μικτών μερικών παραγώγων, επομένως δεν πρόκειται για συντηρητικό
πεδίο.

3.15.2 Το πεδίο δίνη (καταβόθρα)

Ποιος είναι ο λόγος για τον οποίο το Θεώρημα 3.15.1 απαιτεί να είναι το πεδίο ορισμού του
διανυσματικού πεδίου απλά συνεκτικό; Πρόκειται για μια ενδιαφέρουσα ερώτηση η οποία μπορεί
να απαντηθεί μελετώντας το πεδίο δίνη που εισαγάγαμε στην προηγούμενη ενότητα:

F =

〈
−y

x2 + y2 ,
x

x2 + y2

〉

Παράδειγμα 3.15.6
Δείξτε ότι το πεδίο δίνη ικανοποιεί τη συνθήκη ισότητας των μικτών μερικών παραγώγων αλλά
δεν είναι συντηρητικό. Αντιτάσσει το συμπέρασμα αυτό με το Θεώρημα 3.15.1;

Λύση. Αρχικά, θα ελέγξουμε τη συνθήκη ισότητας των μικτών μερικών παραγώγων:



268 Λογισμός των Διανυσματικών Συναρτήσεων

∂
∂x

(
x

x2 + y2

)
=

(x2 + y2)− x(∂/∂x)(x2 + y2)

(x2 + y2)2 =
y2− x2

(x2 + y2)2

∂
∂y

(
−y

(x2 + y2)

)
=
−(x2 + y2)+ y(∂/∂y)(x2 + y2)

(x2 + y2)2 =
y2− x2

(x2 + y2)2

Στο Παράδειγμα 3.15.2 αποδείξαμε ότι
∮

C
F · dr = 2π 6= 0 για κάθε κύκλο C με κέντρο την

αρχή των αξόνων. Αν το πεδίο F ήταν συντηρητικό, η κυκλοφορία του κατά μήκος οποιασδήποτε
καμπύλης θα ήταν μηδέν σύμφωνα με το Θεώρημα 3.14.1. Επομένως, το συγκεκριμένο πεδίο F
δεν μπορεί να είναι συντηρητικό, παρά το γεγονός ότι η συνθήκη ισότητας των μικτών μερικών
παραγώγων ικανοποιείται. Το αποτέλεσμα αυτό δεν αντιτάσσεται με το συμπέρασμα του Θεωρή-
ματος 3.15.1 καθώς το πεδίο ορισμού τουF δεν ικανοποιεί τη συνθήκη της απλής συνεκτικότητας.
Επειδή το διανυσματικό πεδίο F δεν ορίζεται στην αρχή των αξόνων (x,y) = (0,0), το πεδίο
ορισμού είναι το D = {(x,y) 6= (0,0)} και το χωρίο αυτό δεν είναι απλά συνεκτικό, όπως
φαίνεται στο Σχήμα 3.52(a).

(a) Το πεδίο ορισμούD του πεδίου δίνηF είναι το επίπεδο
από το οποίο έχει αφαιρεθεί η αρχή των αξόνων. Το χωρίο
αυτό δεν είναι απλά συνεκτικό.

(b) Για το διανυσματικό πεδίο F υπάρχει μια συνάρτηση
δυναμικού στο χωρίο D∗.

Σχήμα 3.52

Σχόλιο 3.15.7 Ακόμα και στην περίπτωση που ένα απλά συνεκτικό χωρίο D∗ έχει ακανόνιστο
σχήμα, όπως το χωρίο του Σχήματος 3.52(b), μπορούμε να προσδιορίσουμε μια συνάρτηση
δυναμικού για το πεδίο F, αν και η συνάρτηση αυτή μπορεί να μην εκφράζεται με έναν τόσο
απλό τρόπο όσο οι προηγούμενες συναρτήσεις f και g σταθερό σημείο (x0,y0) ∈ D∗ και για
κάθε άλλο σημείο (x,y) ∈ D∗ επιλέγουμε μια τροχιάC(x,y) στο D∗ που ξεκινά από το σημείο
(x0,y0) και καταλήγει στο (x,y). Μπορεί να αποδειχθεί ότι η συνάρτηση

h(x,y) =
∫

C(x,y)
F ·dr

ορίζεται ανεξάρτητα από την τροχιά που επιλέχτηκε και είναι μια συνάρτηση δυναμικού για το
διανυσματικό πεδίο F στο D∗.

Περίληψη 3.15.8

• Ένα διανυσματικό πεδίο F με πεδίο ορισμού το D είναι συντηρητικό αν υπάρχει μια
συνάρτηση f τέτοια ώστε ∇ f = F στο D. Η συνάρτηση f ονομάζεται συνάρτηση
δυναμικού του πεδίου F.
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• Ένα διανυσματικό πεδίοF με πεδίο ορισμού τοD λέμε ότι είναι ανεξάρτητο της διαδρομής
αν για δύο οποιαδήποτε σημεία P,Q ∈ D ισχύει ότι∫

C1

F ·dr =
∫

C2

F ·dr

για οποιεσδήποτε δύο καμπύλες C1 και C2 στο χωρίο D που συνδέουν τα σημεία P και
Q.

• Θεμελιώδες θεώρημα για τα συντηρητικά διανυσματικά πεδία: Αν F = ∇ f , τότε∫
C

F ·dr = f (Q)− f (P)

για οποιαδήποτε διαδρομή C από το P στο Q εντός του πεδίου ορισμού του F. Το
θεώρημα αυτό δείχνει ότι τα συντηρητικά διανυσματικά πεδία είναι ανεξάρτητα της δια-
δρομής. Ειδικότερα, αν ηC είναι μια κλειστή διαδρομή (δηλαδή P = Q), τότε∮

C
F ·dr = 0

• Το αντίστροφο επίσης αληθεύει: Σε ένα ανοικτό, συνεκτικό χωρίο, κάθε διανυσματικό
πεδίο που είναι ανεξάρτητο της διαδρομής είναι συντηρητικό.

• Τα συντηρητικά διανυσματικά πεδία ικανοποιούν τη συνθήκη ισότητας των μικτών μερι-
κών παραγώγων, δηλαδή:

∂F1

∂y
=

∂F2

∂x
,

∂F2

∂ z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂ z
.

• Η συνθήκη της ισότητας των μικτών μερικών παραγώγων εγγυάται ότι το διανυσματικό
πεδίο F είναι συντηρητικό αν το χωρίοD είναι απλά συνεκτικό, δηλαδή κάθε βρόχος στο
D μπορεί να συρρικνωθεί σε ένα σημείο εντός του D.

Ασκήσεις 3.15.9

1. Ποιες από τις ακόλουθες προτάσεις είναι αληθείς για όλα τα διανυσματικά πεδία και
ποιες είναι αληθείς μόνο για τα συντηρητικά;

(a) Το επικαμπύλιο ολοκλήρωμα κατά μήκος μιας διαδρομής από το σημείο P στο
σημείο Q δεν εξαρτάται από τη διαδρομή που επιλέγουμε για να υπολογίσουμε
το ολοκλήρωμα.

(b) Το επικαμπύλιο ολοκλήρωμα πάνω σε μια προσανατολισμένη καμπύληC δεν εξαρ-
τάται από τον τρόπο παραμετρησής της.

(c) Το επικαμπύλιο ολοκλήρωμα πάνω σε μια κλειστή καμπύλη είναι μηδέν.

(d) Το επικαμπύλιο ολοκλήρωμα αλλάζει πρόσημο αν αντιστρέψουμε τον προσανατολι-
σμό της καμπύλης.

(e) Το επικαμπύλιο ολοκλήρωμα είναι ίσο με τη διαφορά των τιμών της συνάρτησης
δυναμικού στα άκρα της διαδρομής.
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(f) Το επικαμπύλιο ολοκλήρωμα είναι ίσο με το ολοκλήρωμα της εφαπτομενικής συνι-
στώσας του πεδίου κατά μήκος της καμπύλης.

(g) Οι μικτές μερικές παράγωγοι των συνιστωσών του πεδίου είναι ίσες.

2. Ἔστω F ἕνα διανυσματικό πεδίο ποὺ εἶναι ὁρισμένο σὲ ἕνα ἀνοικτὸ συνεκτικὸ χωρίο
D μὲ συνεχείς δεύτερες μερικὲς παραγώγους. Ποιες ἀπὸ τὶς ἀκόλουθες προτάσεις εἶναι
πάντα ἀληθεῖς καὶ ποιες εἶναι ἀληθεῖς κάτω ἀπὸ ἐπιπλέον προϋποθέσεις γιὰ τὸ χωρίο D;

(a) Ἀν τὸ πεδίο F διαθέτει μία συνάρτηση δυναμικοῦ, τότε τὸ F εἶναι συντηρητικό.

(b) Ἀν τὸ πεδίο F εἶναι συντηρητικό, τότε οἱ μικτὲς μερικὲς παράγωγοι τοῦ F εἶναι
ἴσες.

(c) Ἀν οἱ μικτὲς μερικὲς παράγωγοι τοῦ πεδίουF εἶναι ἴσες, τότε τὸF εἶναι συντηρητικό.

3. Ας υποθέσουμε ότι C, D και E είναι οι προσανατολισμένες καμπύλες του Σχήματος
3.53, ενώ F = ∇ f είναι ένα διανυσματικό πεδίο που προκύπτει από την κλίση μιας

συνάρτησης και είναι τέτοιο ώστε
∫

C
F · dr = 4. Ποιες είναι οι τιμές των ακόλουθων

ολοκληρωμάτων;

(a)
∫

D
F ·dr, (b)

∫
E

F ·dr.

Σχήμα 3.53

4. Έστω η συνάρτηση f (x,y,z) = xysin(yz) και F = ∇ f . Υπολογίστε το επικαμπύλιο
ολοκλήρωμα

∫
C F ·dr, όπου C είναι μια οποιαδήποτε διαδρομή με αφετηρία το σημείο

(0,0,0) και πέρας το σημείο (1,1,π).

5. Έστω το διανυσματικό πεδίο

F(x,y,z) = 〈x−1z, y−1z, ln(xy)〉

(a) Επιβεβαιώστε ότι F = ∇ f , όπου

f (x,y,z) = z ln(xy)
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(b) Να υπολογίσετε το επικαμπύλιο ολοκλήρωμα
∫

C F ·dr, όπου

r(t) = 〈et , e2t , t2〉, 1≤ t ≤ 3.

(c) Υπολογίστε το επικαμπύλιο ολοκλήρωμα
∫

C
F ·dr πάνω σε οποιαδήποτε καμπύλη

C από το σημείο P =
(1

2 ,4,2
)
στο Q = (2,2,3) που βρίσκεται στο χωρίο x >

0, y > 0.

(d) Στο ερώτημα (γ) γιατί ήταν απαραίτητο να διευκρινιστεί ότι η διαδρομή της ολοκλή-
ρωσης κείται εξ ολοκλήρου στο χωρίο για το οποίο οι συντεταγμένες x και y είναι
θετικές;

Στις Ασκήσεις 6-7 να επιβεβαιώσετε ότιF=∇ f και να υπολογίσετε το επικαμπύλιο ολοκλή-
ρωμα του πεδίου F στη διαδρομή που δίνεται σε κάθε περίπτωση.

6. F(x,y) = 〈3, 6y〉, f (x,y) = 3x+ 3y2, r(t) = 〈t, 2t−1〉 στο διάστημα 1 ≤
t ≤ 4.

7.
F(x,y,z) = yez i+ xez j+ xyez k, f (x,y,z) = xyez, r(t) =

〈t2, t3, t−1〉 για 1≤ t ≤ 2.

Στις Ασκήσεις 8-11 να προσδιορίσετε μια συνάρτηση δυναμικού για το διανυσματικό πεδίο
F ή να καταλήξετε στο συμπέρασμα ότι δεν είναι συντηρητικό.

8. F = y2i+(2xy+ ez)j+ yezk

9. F = 〈y, x, z3〉

10. F = 〈cos(xz), sin(yz), xysinz〉

11. F = 〈cosz, 2y, −xsinz〉

12. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C

2xyzdx+ x2zdy+ x2ydz

πάνω στη διαδρομή

r(t) =
(
t2, sin(πt/4), e t2−2t

)
.

13. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∮
C

sinxdx+ zcosydy+ sinydz

όπουC είναι η έλλειψη 4x2 +9y2 = 36 με ωρολογιακό προσανατολισμό.

14. Να ελέγξετε αν το διανυσματικό πεδίο
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F(x,y) =
〈

x2

x2+y2 ,
y2

x2+y2

〉
διαθέτει συνάρτηση δυναμικού.

15. Το διανυσματικό πεδίο

F(x,y) =
〈

x
x2+y2 ,

y
x2+y2

〉
ορίζεται στο χωρίο D = {(x,y) 6= (0,0)}.

(a) Είναι το χωρίο D απλά συνεκτικό;

(b) Να αποδείξετε ότι το διανυσματικό πεδίο F ικανοποιεί τη συνθήκη ισότητας των
μικτών μερικών παραγώγων. Εγγυάται το γεγονός αυτό τη συντηρητικότητα του
πεδίου F;

(c) Δείξτε ότι το πεδίο F είναι πράγματι συντηρητικό στο χωρίο D προσδιορίζοντας
μια συνάρτηση δυναμικού.

(d) Αντιφάσκει το αποτέλεσμα αυτό με το συμπέρασμα του Θεωρήματος 3.15.1;

3.16 Επιφανειακά ολοκληρώματα των βαθμωτών συναρτήσεων

Η βασική ιδέα ενός ολοκληρώματος έχει εμφανιστεί μέχρι τώρα πίσω από μια σειρά από πολλούς
διαφορετικούς «μανδύες». Έτσι, έχουμε ορίσει απλά, διπλά και τριπλά ολοκληρώματα, ενώ στην
αμέσως προηγούμενη ενότητα ορίσαμε τα επικαμπύλια ολοκληρώματα. Θα αναλύσουμε τώρα
ένα τελευταίο είδος ολοκληρώματος, το ολοκλήρωμα πάνω σε μια επιφάνεια. Πιο συγκεκριμένα,
στην παρούσα ενότητα θα μελετήσουμε τα επιφανειακά ολοκληρώματα των βαθμωτών συναρτή-
σεων, ενώ στην ενότητα που ακολουθεί, που είναι και η τελευταία του παρόντος κεφαλαίου, θα
καταπιαστούμε με τα επιφανειακά ολοκληρώματα των διανυσματικών πεδίων.
Ακριβώς όπως οι παραμετρημένες καμπύλες είναι το
σημείο-κλειδί για τον ορισμό και την ανάλυση των
επικαμπύλιων ολοκληρωμάτων, έτσι και ο ορισμός
των επιφανειακών ολοκληρωμάτων απαιτεί την ιδέα
μιας παραμετρημένης επιφάνειας — δηλαδή μιας
επιφάνειας S του χώρου R3 τα σημεία της οποίας
περιγράφονται με τη βοήθεια της

G(u,v) =
(
x(u,v), y(u,v), z(u,v)

)
.

Οι μεταβλητές u και v (που αποκαλούνται
παράμετροι) παίρνουν τιμές σε μια περιοχή D
του επιπέδου uv που είναι γνωστή ως πεδίο ορισμού
των παραμέτρων.

Στη G(u,v) στον χώρο R3 μπορούμε να
αποδώσουμε δύο ερμηνείες, η πρώτη ως ένα
σημείο και η δεύτερη ως ένα διάνυσμα. Το
ποια από τις δύο αυτές ερμηνείες εμφανίζεται
σε κάθε περίπτωση θα είναι ξεκάθαρο
από τα συμφραζόμενα αλλά και από τον
συμβολισμό που χρησιμοποιείται. Συνήθως,
για μια παραμέτρηση θεωρούμε ότι η G(u,v)
αντιπροσωπεύει σημεία της επιφάνειας και
τα

∂G
∂u

(u,v),
∂G
∂v

(u,v)

αντιστοιχούν σε διανύσματα εφαπτόμενα στην
επιφάνεια.

Για την παραμέτρηση μιας επιφάνειας είναι απαραίτητες δύο παράμετροι u και v, καθώς κάθε
επιφάνεια έχει δύο διαστάσεις.

Στο Σχήμα 3.54 απεικονίζεται μια επιφάνεια S του χώρου R3 που παραμετράται από τη
G(u,v) η οποία ορίζεται για τα ζεύγη (u,v) στο χωρίο D του επιπέδου uv.
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Σχήμα 3.54

Υπενθύμιση 3.16.1
Κυλινδρικές συντεταγμένες Στις κυλινδρικές συντεταγμένες, αντικαθιστούμε τις συντεταγμένες
x και y ενός σημείουP= (x,y,z) με τις γνωστές μας πολικές συντεταγμένες. Αυτό σημαίνει ότι
οι κυλινδρικές συντεταγμένες του σημείου P θα είναι οι (r,θ ,z), όπου (r,θ) είναι οι πολικές
συντεταγμένες του σημείου Q = (x,y,0) που είναι η προβολή του P πάνω στο επίπεδο xy
(βλ. Σχήμα 3.55). Παρατηρήστε ότι τα σημεία που βρίσκονται σε σταθερή απόσταση r από τον
άξονα z σχηματίζουν έναν κύλινδρο, ιδιότητα από την οποία προκύπτει και το όνομα κυλινδρικές
συντεταγμένες.
Μπορούμε να μετασχηματίσουμε τις ορθογώνιες συντεταγμένες σε κυλινδρικές χρησιμοποιώ-
ντας τις σχέσεις μεταξύ ορθογώνιων και πολικών συντεταγμένων. Στις κυλινδρικές συντεταγμέ-
νες συνήθως υποθέτουμε ότι r ≥ 0.

Κυλινδρικές σε
ορθογώνιες

Ορθογώνιες σε
κυλινδρικές

x = r cosθ r =
√

x2 + y2

y = r sinθ tanθ =
y
x

z = z z = z Σχήμα 3.55 Το σημείο P έχει κυλινδρικές
συντεταγμένες (r, θ , z)

Παράδειγμα 3.16.2
Βρείτε μια παραμέτρηση για τον κύλινδρο x2 + y2 = 1.

Λύση.Ο κύλινδρος με ακτίνα 1 και εξίσωση x2 + y2 = 1 μπορεί να παραμετρηθεί πιο εύκολα
στις κυλινδρικές συντεταγμένες (βλ. Σχήμα 3.56). Τα σημεία του κυλίνδρου έχουν κυλινδρικές
συντεταγμένες της μορφής (1,θ ,z), επομένως μπορούμε να χρησιμοποιήσουμε ως παραμέτρους
τις συντεταγμένες θ και z. Έτσι, θα έχουμε:

G(θ ,z) = (cosθ , sinθ , z), 0≤ θ < 2π, −∞ < z < ∞.
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Σχήμα 3.56 Η παραμέτρηση ενός κυλίνδρου με τη βοήθεια των κυλινδρικών συντεταγμένων συνίσταται στο «τύλιγμα» ενός
ορθογωνίου γύρω από έναν κύλινδρο.

Υπενθύμιση 3.16.3
Σφαιρικές συντεταγμένες Οι σφαιρικές συντεταγμένες βασίζονται στο γεγονός ότι ένα σημείοP,
που βρίσκεται πάνω σε μια σφαίρα ακτίνας ρ , προσδιορίζεται από δύο γωνιακές συντεταγμένες
θ και ϕ , όπως φαίνεται στο Σχήμα 3.57:

• Η θ είναι η πολική γωνία του σημείου Q, που είναι η προβολή του σημείου P στο xy
επίπεδο.

• Η ϕ είναι η γωνία απόκλισης, η οποία μετρά το κατά πόσο αποκλίνει από την κατακόρυφο
η ημιευθεία που διέρχεται από το σημείο P.

Το σημείοP, λοιπόν, προσδιορίζεται από την τριάδα των αριθμών (ρ, θ , ϕ) που αποκαλούνται
σφαιρικές συντεταγμένες. Συνήθως, επιλέγουμε να περιορίσουμε τις σφαιρικές συντεταγμένες
έτσι ώστε να ισχύει ρ ≥ 0 και 0≤ ϕ ≤ π .

Έστω ότι το σημείο P έχει ορθογώνιες συντεταγμένες (x,y,z). Αφού ρ είναι η απόσταση από
το σημείο P μέχρι την αρχή των αξόνων O, θα ισχύει:

ρ =
√

x2 + y2 + z2

Σύμφωνα με το Σχήμα 3.57, θα έχουμε

Σφαιρικές σε
ορθογώνιες

Ορθογώνιες σε
σφαιρικές

x = ρ sinϕ cosθ ρ =
√

x2 + y2 + z2

y = ρ sinϕ sinθ tanθ = y
x

z = ρ cosϕ cosϕ = z
ρ
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Σχήμα 3.57 Οι σφαιρικές συντεταγμένες (ρ, θ , ϕ)

tanθ =
y
x
, cosϕ =

z
ρ
.

Η ακτινική συνιστώσα όμως r του σημείου Q = (x,y,0) δίνεται από τη σχέση r = ρ sinϕ ,
οπότε

x = r cosθ = ρ sinϕ cosθ , y = r sinθ = ρ sinϕ sinθ , z = ρ cosϕ

Παράδειγμα 3.16.4
Βρείτε μια παραμέτρηση για μια σφαίρα ακτίνας 2
με κέντρο την αρχή των αξόνων.

Λύση. Η σφαίρα με ακτίνα 2 και κέντρο στην αρχή
των αξόνων μπορεί να παραμετρηθεί πιο εύκολα με
τη βοήθεια των σφαιρικών συντεταγμένων (ρ,θ ,ϕ)
με ρ = 2 και καθεμία από τις συντεταγμένες x,y,z να
εκφράζεται (βλ. Σχήμα 3.58) ως:

G(θ ,ϕ) =
(
2cosθ sinϕ , 2sinθ sinϕ , 2cosϕ

)
,

0≤ θ < 2π, 0≤ ϕ ≤ π.
Σχήμα 3.58 Σφαιρικές συντεταγμένες για τα σημεία

μιας σφαίρας ακτίνας R

Όπως φαίνεται στο Σχήμα 3.59, η G αντιστοιχίζει κάθε οριζόντιο ευθύγραμμο τμήμα ϕ = c (0 <
c< π) σε έναν παράλληλο κύκλο (έναν κύκλο δηλαδή που είναι παράλληλος προς τον Ισημερινό)
και κάθε κατακόρυφο ευθύγραμμο τμήμα θ = c σε ένα μεσημβρινό τόξο που εκτείνεται μεταξύ
βορείου και νοτίου πόλου.
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Σχήμα 3.59 Η παραμέτρηση με τη βοήθεια των σφαιρικών συντεταγμένων συνίσταται στο «τύλιγμα» του ορθογωνίου πάνω
στη σφαίρα. Η πάνω και η κάτω πλευρά του ορθογωνίου «καταρρέουν» σε ένα σημείο καθώς αντιστοιχούνται στον βόρειο και

νότιο πόλο της σφαίρας αντιστοίχως.

Μια απλή επιλογή για την παραμέτρηση μιας
επιφάνειας, εφόσον η επιφάνεια είναι το γράφημα
της συνάρτησης z = f (x,y), είναι η ακόλουθη (βλ.
Σχήμα 3.60):

Παραμέτρηση ενός γραφήματος

G(x,y) = (x,y, f (x,y))

Σχήμα 3.60 Ο τρόπος παραμέτρησης του γραφήματος
μιας συνάρτησης.

Στην περίπτωση αυτή οι παράμετροι είναι οι μεταβλητές x και y.

Παράδειγμα 3.16.5
Προσδιορίστε μια παραμέτρηση για την παραβολoειδή επιφάνεια που περιγράφεται από το
γράφημα της συνάρτησης f (x,y) = x2 + y2.

Λύση.Μπορούμε αμέσως να ορίσουμε τηG(x,y) = (x,y,x2+y2) η οποία απεικονίζει το επίπεδο
xy στο παραβολοειδές. Οι περισσότερες από τις επιφάνειες οι οποίες θα μας απασχολήσουν δεν
εκφράζονται ως γραφήματα συναρτήσεων. Στην περίπτωση μιας τέτοιας επιφάνειας θα πρέπει να
βρούμε έναν άλλον τρόπο για να επιτύχουμε την παραμέτρησή της.

3.17 Πλεγµατικές καµπύλες, κάθετα διανύσματα και το εφαπτόµενο
επίπεδο

Έστω ότι µια επιφάνεια S παραµετρείται από την

G(u,v) =
(
x(u,v), y(u,v), z(u,v)

)
που είναι ένα προς ένα σε ένα χωρίοD. Θα υποθέτουµε πάντα ότι ηG είναι συνεχώς διαφορίσιμη,
εννοώντας ότι οι συναρτήσεις x(u,v), y(u,v) και z(u,v) έχουν συνεχείς µερικές παραγώγους.
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Στο επίπεδο uv μπορούμε να σχηματίσουμε ένα
πλέγμα από γραμμές που είναι παράλληλες στους
άξονες των συντεταγμένων. Αυτές οι πλεγµατικές
γραμμές αντιστοιχούν υπό την απεικόνιση G σε
ένα σύστηµα από πλεγµατικές καµπύλες πάνω
στην επιφάνεια, όπως φαίνεται στο Σχήµα 3.61.
Ακριβέστερα, η οριζόντια και η κατακόρυφη
γραµµή που διέρχεται από το σηµείο (u0,v0)
στο πεδίο ορισµού των παραµέτρων αντιστοιχούν
στις πλεγµατικές καµπύλες G(u,v0) και G(u0,v)
της επιφάνειας οι οποίες τέµνονται στο σηµείο
P = G(u0,v0).

Μια παραμέτρηση αντιστοιχίζει σε κάθε
σημείο P της επιφάνειας S ένα μοναδικό
ζεύγος τιμών (u0,v0) στο πεδίο ορισμού των
παραμέτρων. Μπορούμε να αντιμετωπίσουμε
το ζεύγος τιμών (u0,v0)ως τις συντεταγμένες
του σημείου P οι οποίες προσδιορίζονται
από την παραμέτρηση. Πολλές φορές
αναφέρονται δε και ως καμπυλόγραμμες
συντεταγμένες.

Σχήμα 3.61 Πλεγματικές καμπύλες.

Με τη G(u,v0) να αναπαριστά μια καμπύλη που διέρχεται από το σημείο P, είναι βολικό να

σκεφτόμαστε την
∂G
∂u

(u0,v0) ως ένα διάνυσμα εφαπτόμενο σε αυτή την καμπύλη (επομένως και

στην επιφάνεια S) στο σημείο P. Με παρόμοιο τρόπο θα αντιμετωπίσουμε την
∂G
∂v

(u0,v0) ως
ένα εφαπτόμενο διάνυσμα στο σημείο P. Αυτό σημαίνει ότι έχουμε τα ακόλουθα εφαπτόμενα
διανύσματα (βλ. Σχήμα 3.62):

Για την καμπύλη G(u,v0):

Tu(P) =
∂G
∂u

(u0,v0) =
〈∂x

∂u
(u0,v0),

∂y
∂u

(u0,v0),
∂ z
∂u

(u0,v0)
〉

Για την καμπύλη G(u0,v):

Tv(P) =
∂G
∂v

(u0,v0) =
〈∂x

∂v
(u0,v0),

∂y
∂v

(u0,v0),
∂ z
∂v

(u0,v0)
〉

Η παραμέτρηση G θα αποκαλείται κανονική στο σημείο P εφόσον το ακόλουθο εξωτερικό
γινόμενο δεν είναι ίσο με μηδέν:

N(P) = N(u0,v0) = Tu(P)×Tv(P)
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Σε αυτή την περίπτωση τα διανύσματα Tu και Tv σχηματίζουν το εφαπτόμενο επίπεδο της
επιφάνειας S στο σημείοP, ενώ τοN(P) είναι το κάθετο διάνυσμα σε αυτό το εφαπτόμενο επίπεδο.
Θα αποκαλούμε το N(P) κάθετο στην επιφάνεια S.

Σχήμα 3.62 Τα διανύσματα Tu και Tv είναι εφαπτόμενα στις πλεγµατικές καµπύλες που διέρχονται από το P = G(u0,v0).

Πολύ συχνά θα γράφουμε N αντί για N(P) ή
N(u,v), αλλά αυτό που θα πρέπει να έχετε πάντα
κατά νου είναι ότι το διάνυσμα N αλλάζει από
σημείο σε σημείο καθώς κινούμαστε πάνω στην
επιφάνεια. Παρομοίως, πολύ συχνά θα σημειώνουμε
τα εφαπτόμενα διανύσματα με Tu και Tv. Αξίζει να
σημειωθεί ότι τα διανύσματα Tu, Tv και N δεν είναι

Σε κάθε σημείο μιας επιφάνειας το κάθετο
διάνυσμα κατευθύνεται σε μία από τις
δύο αντίθετες πιθανές κατευθύνσεις. Αν
αλλάξουμε την παραμέτρηση, το μήκος του
διανύσματος N μπορεί να αλλάξει, ενώ και η
κατεύθυνσή του μπορεί να αντιστραφεί.

απαραίτητο να είναι μοναδιαία (όπως χρησιμοποιήσαμε σε προηγούμενη ενότητα, όπου το N
ήταν ένα μοναδιαίο διάνυσμα).

Παράδειγμα 3.17.1
Θεωρήστε την παραμέτρηση G(θ ,z) = (2cosθ ,2sinθ ,z) του κυλίνδρου x2 + y2 = 4.

1. Περιγράψτε τις πλεγµατικές καµπύλες.

2. Υπολογίστε τα διανύσµατα Tθ , Tz και N(θ ,z).

3. Βρείτε µια εξίσωση για το εφαπτόµενο επίπεδο στο σηµείο P = G(
π
4
,5).

Λύση.
(a) Οι πλεγµατικές καµπύλες του κυλίνδρου που διέρχονται από το σημείο P = (θ0,z0), όπως

φαίνεται στο Σχήμα 3.63, είναι οι ακόλουθες:

θ -πλεγµατική καµπύλη: G(θ ,z0) = (2cosθ ,2sinθ ,z0)
(κύκλος ακτίνας 2 σε ύψος z = z0)

z-πλεγµατική καµπύλη: G(θ0,z) = (2cosθ0,2sinθ0,z)
(κατακόρυφη ευθεία που διέρχεται από το P με θ = θ0)

(b) Οι μερικές παράγωγοι της παραμέτρησης G(θ ,z) = (2cosθ ,2sinθ ,z) μας δίνουν τα
εφαπτόμενα διανύσματα στο P:
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θ -πλεγµατική καµπύλη:

Tθ =
∂G
∂θ

=
∂

∂θ
(2cosθ ,2sinθ ,z) = 〈−2sinθ ,2cosθ ,0〉

z-πλεγµατική καµπύλη:

Tz =
∂G
∂ z

=
∂
∂ z

(2cosθ ,2sinθ ,z) = 〈0,0,1〉

Αξίζει να παρατηρήσετε ότι στο Σχήμα 3.63 το διάνυσμα Tθ είναι εφαπτόμενο στη θ -
πλεγµατική καμπύλη, ενώ το διάνυσμα Tz είναι εφαπτόμενο στη z-πλεγµατική καμπύλη.
Το κάθετο διάνυσμα προκύπτει ως:

N(θ ,z) = Tθ ×Tz =

∣∣∣∣∣∣∣∣∣∣
i j k

−2sin 2cos 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
= 2cosθ i+2sinθ j.

Αφού ο συντελεστής κατά μήκος του μοναδιαίου διανύσματος k είναι μηδέν, το διάνυσμα
N θα έχει οριζόντια κατεύθυνση και θα εξέρχεται από τον κύλινδρο.

Σχήμα 3.63 Πλεγματικές καμπύλες του κυλίνδρου.

(c) Για θ =
π
4
, z = 5 ισχύει:

P = G
(π

4
, 5
)
= (
√

2,
√

2, 5), N = N
(π

4
, 5
)
= 〈
√

2,
√

2, 0〉.

Το εφαπτόμενο επίπεδο που διέρχεται από το
σημείο P έχει ως κάθετο διάνυσμα το N και
επομένως περιγράφεται από την εξίσωση:

〈x−
√

2, y−
√

2, z−5〉 · 〈
√

2,
√

2, 0〉= 0

Η τελευταία εξίσωση μπορεί να πάρει τη μορφή

Υπενθύμιση 3.17.2
Μια εξίσωση που παριστάνει ένα
επίπεδο που διέρχεται από το σημείο
P = (x0,y0,z0) έχοντας ως κάθετο
διάνυσμα το N είναι η

〈x− x0, y− y0, z− z0〉 ·N = 0

√
2(x−

√
2)+
√

2(y−
√

2) = 0 ή x+ y = 2
√

2.

Το εφαπτόμενο επίπεδο είναι κατακόρυφο, αφού η συντεταγμένη z δεν εμφανίζεται στην
τελική εξίσωση.
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3.18 Εμβαδόν επιφάνειας

Το μέτρο ‖N‖ του κάθετου διανύσματος μιας παραμέτρησης έχει μια πολύ σημαντική ερμηνεία σε
σχέση με το εμβαδόν της επιφάνειας. Ας υποθέσουμε, για απλότητα, ότι τοD είναι ένα ορθογώνιο
(αν και το επιχείρημα που θα αναπτύξουμε ισχύει και για πιο γενικά χωρία). Διαιρούμε το D με
τη βοήθεια ενός πλέγματος σε μικρότερα ορθογώνια Ri j επιφάνειας ∆u×∆v, όπως φαίνεται στο
Σχήμα 3.64, και συγκρίνουμε το εμβαδόν της επιφάνειας του Ri j με το εμβαδόν της εικόνας του
υπό την απεικόνιση G. Αυτή η εικόνα είναι ένα καμπυλωμένο παραλληλόγραμμο Si j = G(Ri j).
Υποθέτουμε, επιπλέον, ότι τα σημεία P0,Q0 και S0 είναι οι κορυφές του ορθογωνίου Ri j, που
φαίνεται στο Σχήμα 3.64, ενώ P,R και S είναι τα αντίστοιχα σημεία του Si j.

Σχήμα 3.64

Καταρχάς, μπορούμε να παρατηρήσουμε ότι αν τα∆u και∆v του Σχήματος 3.64 είναι μικρά, τότε
το καμπυλωμένο παραλληλόγραμμο Si j έχει, κατά προσέγγιση, το ίδιο εμβαδόν με το παραλληλό-
γραμμο που έχει ως πλευρές τα διανύσματα

−→
PQ και

−→
PS. Θυμηθείτε τώρα, από την Ενότητα 12.4,

ότι το εμβαδόν του παραλληλογράμμου που σχηματίζεται από δύο διανύσματα είναι ίσο με το
μέτρο του εξωτερικού τους γινομένου, δηλαδή:

εμβαδόν(Si j)≈
∥∥−→PQ×−→PS

∥∥
Θα χρησιμοποιήσουμε στη συνέχεια τη γραμμική προσέγγιση προκειμένου να εκτιμήσουμε τα
διανύσματα

−→
PQ και

−→
PS:

−→
PQ = G(ui j +∆u, vi j)−G(ui j, vi j)≈

∂G
∂u

(ui j,vi j)∆u = Tu ∆u

−→
PS = G(ui j, vi j +∆v)−G(ui j, vi j)≈

∂G
∂v

(ui j,vi j)∆v = Tv ∆v

Επομένως, θα έχουμε:

εμβαδόν(Si j)≈
∥∥Tu∆u×Tv∆v

∥∥= ∥∥Tu×Tv
∥∥∆u∆v

Αφού N(ui j,vi j) = Tu×Tv και εμβαδόν(Ri j) = ∆u∆v, καταλήγουμε στη σχέση:
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εμβαδόν(Si j)≈
∥∥N(ui j,vi j)

∥∥ εμβαδόν(Ri j)

Η προσεγγιστική σχέση (3) ισχύει για οποιαδήποτε μικρή περιοχή στο επίπεδο uv, δηλαδή:

εμβαδόν(S)≈
∥∥N(u0,v0)

∥∥ εμβαδόν(R)

όπου S = G(R) και (u0,v0) είναι ένα τυχαίο σημείο στο R. Στη συγκεκριμένη περίπτωση
«μικρό» σημαίνει να περιέχεται σε έναν μικρό δίσκο. Δεν επιτρέπουμε στο R να είναι πολύ
λεπτό και πλατύ.

Το συμπέρασμα στο οποίο καταλήγουμε, λοιπόν, μπορεί να διατυπωθεί ως εξής: Το ‖N‖ είναι
ένας παράγοντας κλίμακας που μετρά πόσο αλλάζει το εμβαδόν ενός μικρού ορθογωνίου Ri j υπό
την απεικόνιση G.

Προκειμένου να υπολογίσουμε το εμβαδόν της
επιφάνειας S, θα υποθέσουμε ότι η απεικόνιση G
είναι ένα προς ένα και κανονική, εκτός πιθανόν από
το σύνορο του χωρίου D. Θυμηθείτε ότι ο όρος
«κανονική» σημαίνει ότι το διάνυσμα N(u,v) είναι
διάφορο του μηδενός.

Η μόνη απαίτηση που υπάρχει
είναι η απεικόνιση G να είναι
ένα προς ένα στο εσωτερικό του
χωρίου D. Πολλές από τις ευρέως
χρησιμοποιούμενες παραμετρήσεις
(όπως οι παραμετρήσεις με
κυλινδρικές και σφαιρικές
συντεταγμένες) δεν είναι ένα
προς ένα στο σύνολο των χωρίων.

Η επιφάνεια S είναι η ένωση μικρότερων επιμέρους επιφανειών Si j, για καθεμία από τις οποίες
μπορούμε να εφαρμόσουμε την προσέγγιση έτσι ώστε το συνολικό εμβαδόν να είναι:

εμβαδόν(S) = ∑i, j εμβαδόν(Si j)≈ ∑i, j
∥∥N(ui j,vi j)

∥∥∆u∆v

Το άθροισμα που εμφανίζεται στο δεξιό μέλος της παραπάνω σχέσης είναι ένα άθροισμα Riemann
για το διπλό ολοκλήρωμα του ‖N(u,v)‖ στο πεδίο ορισμού των παραμέτρων D. Καθώς τα ∆u
και ∆v τείνουν στο μηδέν, αυτά τα αθροίσματα Riemann συγκλίνουν σε ένα διπλό ολοκλήρωμα
το οποίο μπορούμε να θεωρήσουμε ότι αποτελεί τον ορισμό του εμβαδού της επιφάνειας, δηλαδή:

εμβαδόν(S) =
∫∫

D
‖N(u,v)‖dudv

εμβαδόν(S) =
∫∫

D
‖N(u,v)‖dudv

3.19 Επιφανειακό ολοκλήρωμα

Μπορούμε τώρα να προχωρήσουμε στον ορισμό του επιφανειακού ολοκληρώματος μιας συνάρτησης
f (x,y,z) πάνω σε μια επιφάνεια S, το οποίο συμβολίζουμε ως:∫∫

S
f (x,y,z)dS
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Πρόκειται για έναν ορισμό που είναι παρόμοιος με τον ορισμό του επικαμπύλιου ολοκληρώματος
μιας συνάρτησης κατά μήκος μιας διαδρομής. Επιλέγουμε ένα τυχαίο σημείο Pi j = G(ui j,vi j)
από κάθε μικρότερη επιφάνεια Si j και σχηματίζουμε το άθροισμα:

∑i, j f (Pi j)εμβαδόν(Si j)

Το όριο αυτών των αθροισμάτων (εφόσον υπάρχει) καθώς τα ∆u και ∆v τείνουν στο μηδέν
είναι το επιφανειακό ολοκλήρωμα της συνάρτησης, δηλαδή:∫∫

S
f (x,y,z)dS = lim

∆u,∆v→0
∑
i, j

f (Pi j)εμβαδόν(Si j)

Για να υπολογίσουμε ένα τέτοιο επιφανειακό ολοκλήρωμα μπορούμε να χρησιμοποιήσουμε
την Εξίσωση

εμβαδόν(Si j)≈ ‖N(ui j,vi j)‖εμβαδόν(Ri j)

για να γράψουμε:

∑
i, j

f (Pi j)εμβαδόν(Si j)≈∑
i, j

f (G(ui j,vi j))‖N(ui j,vi j)‖∆u∆v (∗)

Στο δεξί μέλος της τελευταίας σχέσης εμφανίζεται ένα άθροισμαRiemann για το διπλό ολοκλήρωμα
του

f (G(u,v))‖N(u,v)‖

πάνωστο πεδίο ορισμού των παραμέτρωνD. Υπό την προϋπόθεση ότι ηG είναι συνεχώς διαφορίσιμη,
μπορούμε να αποδείξουμε ότι τα αθροίσματα που εμφανίζονται στην Εξίσωση (∗) τείνουν στο
ίδιο όριο. Με τον τρόπο αυτόν καταλήγουμε στο ακόλουθο θεώρημα.

Θεώρημα 3.19.1 Επιφανειακό ολοκλήρωμα και εμβαδόν επιφάνειας Ας υποθέσουμε ότι η
G(u,v) είναι μια παραμέτρηση της επιφάνειας S με πεδίο ορισμού των παραμέτρων το χωρίο
D. Υποθέ- τουμε ακόμη ότι η G είναι συνεχώς διαφορίσιμη, ένα-προς-ένα και κανονική (εκτός
ίσως από το σύνορο του χωρίου D). Τότε:∫∫

S
f (x,y,z)dS =

∫∫
D

f (G(u,v))‖N(u,v)‖dudv.

Για τη σταθερή συνάρτηση f (x,y,z) = 1 προκύπτει το εμβαδόν της επιφάνειας S:

Εμβαδόν(S) =
∫∫

D
‖N(u,v)‖dudv.

Από την εξίσωση του ολοκληρώματος στοΘεώρημα 3.19.1 προκύπτει η ακόλουθη πολύ σημαντική
σχέση μεταξύ του διαφορικού της επιφάνειας dS και των διαφορικών των παραμέτρων du και dv,
η οποία μας επιτρέπει να υπολογίζουμε τα επιφανειακά ολοκληρώματαως διαδοχικά ολοκληρώμα-
τα:

dS = ‖N(u,v)‖dudv.
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Αξίζει να τονιστεί ότι η εξίσωση του ολοκληρώματος στο Θεώρημα 3.19.1 περιλαμβάνει τον
τύπο αλλαγής μεταβλητών για τα διπλά ολοκληρώματα ως ειδική περίπτωση. Αν η επιφάνεια
S είναι ένα χωρίο του επιπέδου xy, [με άλλα λόγια z(u,v) = 0], τότε το ολοκλήρωμα
στην επιφάνεια S ανάγεται στο διπλό ολοκλήρωμα της συνάρτησης f (x,y,0). Μπορούμε να
αντιμετωπίσουμε τη G(u,v) ως μια απεικόνιση από το επίπεδο uv στο επίπεδο xy, οπότε το
‖N(u,v)‖ είναι η Ιακωβιανή ορίζουσα αυτής της απεικόνισης.

Σχόλιο 3.19.2 Η τυπική εξίσωση ενός ορθού κυκλικού κώνου (του κλασικού κώνου στη Διανυ-
σματική Ανάλυση) δίνεται από τη σχέση:

x2 + y2 = z2, z≥ 0

Αυτός είναι ο “45◦ κώνος”, όπου η γεννήτρια σχηματίζει γωνία 45◦ με τον άξονα.

Με x = t cosθ , y = t sinθ :

t2 = z2 =⇒ t = z (t ≥ 0)

Αυτή είναι η πιο χρήσιμη μορφή για επιφανειακά ολοκληρώματα.

Παράδειγμα 3.19.3
Υπολογίστε το εμβαδόν του τμήματος της
επιφάνειας S του κώνου x2 + y2 = z2 που
βρίσκεται στο τμήμα x2+y2≤ 4 (βλ. Σχήμα 3.65).
Στη συνέχεια, υπολογίστε το ολοκλήρωμα∫∫

S
x2zdS

.

Λύση. Θα χρησιμοποιήσουμε τις μεταβλητές θ και t
για να παραμετρήσουμε την επιφάνεια S ως: Σχήμα 3.65 Το τμήμα S του κώνου x2 + y2 = z2

που βρίσκεται πάνω από τον δίσκο x2 + y2 ≤ 4.

G(θ , t) = (t cosθ , t sinθ , t), 0≤ t ≤ 2, 0≤ θ < 2π.

Βήμα 1 Υπολογίζουμε τα εφαπτόμενα διανύσματα και το κάθετο διάνυσμα.

Tθ =
∂G
∂θ

= 〈−t sinθ , t cosθ , 0〉, Tt =
∂G
∂ t

= 〈cosθ , sinθ , 1〉

N = Tθ ×Tt =

∣∣∣∣∣∣∣∣∣∣
i j k

−t sinθ t cosθ 0

cosθ sinθ 1

∣∣∣∣∣∣∣∣∣∣
= t cosθ i+ t sinθ j− t k.

Το κάθετο διάνυσμα έχει μήκος:
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‖N‖=
√

t2 cos2 θ + t2 sin2 θ +(−t)2 =
√

2t2 =
√

2 |t|.

Επομένως,

dS =
√

2 |t|dθ dt.

Αφού t ≥ 0 για το χωρίο μας, μπορούμε να παραλείψουμε την απόλυτη τιμή.

Βήμα 1 Υπολογίζουμε το εμβαδόν της επιφάνειας.

εμβαδόν(S) =
∫∫

D
‖N‖dθ dt =

∫ 2

0

∫ 2π

0

√
2 t dθ dt =

√
2πt2

∣∣∣2
0
= 4
√

2π.

Βήμα 3 Υπολογίζουμε το επιφανειακό ολοκλήρωμα. Θα εκφράσουμε τη συνάρτηση f (x,y,z) =
x2z με τη βοήθεια των παραμέτρων t και θ και θα υπολογίσουμε το επιφανειακό ολοκλήρωμα:

f (G(θ , t)) = f (t cosθ , t sinθ , t) = (t cosθ)2 t = t3 cos2 θ .

∫∫
S

f (x,y,z)dS =
∫ 2

t=0

∫ 2π

θ=0
f (G(θ , t))‖N(θ , t)‖dθ dt

=
∫ 2

t=0

∫ 2π

θ=0
(t3 cos2 θ)(

√
2t)dθ dt

=
√

2
∫ 2

0

∫ 2π

0
t4 cos2 θ dθ dt

=
√

2
∫ 2

0
πt4 dt =

√
2π
(

32
5

)
=

32
√

2π
5

Σχόλιο 3.19.4 Όταν ένα γράφημα z = g(x,y) παραμετράται από τη

G(x,y) = (x,y,g(x,y)),

τότε το εφαπτόμενο και το κάθετο διάνυσμα είναι τα

Tx = (1,0,gx) καί Ty = (0,1,gy).

N = Tx×Ty =

∣∣∣∣∣∣∣
i j k
1 0 gx

0 1 gy

∣∣∣∣∣∣∣=−gxi−gyj+k, ‖N‖=
√

1+g2
x +g2

y.

Το επιφανειακό ολοκλήρωμα της συνάρτησης f (x,y,z) πάνω στο τμήμα του γραφήματος που
βρίσκεται πάνω από ένα χωρίο D στο επίπεδο xy είναι:
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Επιφανειακό ολοκλήρωμα πάνω σε ένα γράφημα

=
∫∫

D
f (x,y,g(x,y))

√
1+g2

x +g2
y dx dy

Παράδειγμα 3.19.5
Υπολογίστε το επιφανειακό ολοκλήρωμα

∫∫
S
(z− x)dS,

όπουS είναι το τμήμα του γραφήματος της z= x+y2 για0≤ x≤ y, 0≤ y≤ 1 (βλ. Σχήμα 3.66).

Λύση. Έστω z = g(x,y) = x+ y2. Τότε gx = 1 και
gy = 2y, επομένως

dS =
√

1+g2
x +g2

y dxdy =
√

1+1+4y2 dxdy

=
√

2+4y2 dxdy

Για την επιφάνεια S ισχύει z = x+ y2, επομένως:

f (x,y,z) = z− x = (x+ y2)− x = y2

επομένως:

f (x,y,z) = z− x = (x+ y2)− x = y2

Σύμφωνα με την εξίσωση του επιφανειακού
ολοκληρώματος πάνω σε ένα γράφημα έχουμε:

Σχήμα 3.66 Η επιφάνεια z = x + y2 που βρίσκεται
πάνω από το χωρίο που ορίζεται από τις ανισώσεις 0 ≤
x≤ y και 0≤ y≤ 1.

∫∫
S

f (x,y,z)dS =
∫ 1

y=0

∫ y

x=0
y2
√

2+4y2 dxdy =
∫ 1

y=0

(
y2
√

2+4y2
)

x
∣∣∣x=y

x=0
dy

=
∫ 1

0
y3
√

2+4y2 dy

Χρησιμοποιώντας την αντικατάσταση u = 2+4y2 προκύπτει du = 8ydy. Έτσι y2 =
1
4
(u−2),

οπότε: ∫ 1

0
y3
√

2+4y2 dy =
1
8

∫ 6

2

1
4
(u−2)

√
udu =

1
32

∫ 6

2
(u3/2−2u1/2)du
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=
1

32

(
2
5

u5/2− 4
3

u3/2
)∣∣∣∣∣

6

2

=
1
30

(
6
√

6+
√

2
)
≈ 0.54

Περίληψη 3.19.6

• Μια παραμετριμένη επιφάνεια είναι μια επιφάνεια S της οποίας τα σημεία περιγράφονται
από την

G(u,v) = (x(u,v), y(u,v), z(u,v))

όπου οι παράμετροι u και v παίρνουν τιμές εντός ενός χωρίου D στο επίπεδο uv.

• Εφαπτόμενα και κάθετο διάνυσμα:

Tu =
∂G
∂u

= 〈∂x
∂u

,
∂y
∂u

,
∂ z
∂u
〉

Tv =
∂G
∂v

= 〈∂x
∂v

,
∂y
∂v

,
∂ z
∂v
〉

N = N(u,v) = Tu×Tv

Η παραμέτρηση είναι κανονική στο (u,v) αν N(u,v) 6= 0.

• Η ποσότητα ‖N‖ είναι ένας παράγοντας κλίμακας του εμβαδού. Αν D είναι μια μικρή
περιοχή στο επίπεδο uv και S = G(D), τότε:

εμβαδόν(S)≈ ‖N(u0,v0)‖ εμβαδόν(D)

όπου (u0,v0) είναι ένα τυχαίο σημείο της περιοχής D.

• Επιφανειακά ολοκληρώματα και εμβαδόν μιας επιφάνειας:∫∫
S

f (x,y,z)dS =
∫∫

D
f (G(u,v))‖N(u,v)‖dudv

εμβαδόν(S) =
∫∫

D
‖N(u,v)‖dudv

• Ορισμένες συνήθεις παραμετρήσεις:

– Κύλινδρος ακτίνας R (με κεντρικό άξονα τον άξονα z):

G(θ ,z) = (Rcosθ , Rsinθ , z)

Κάθετο διάνυσμα με κατεύθυνση προς το εξωτερικό του κυλίνδρου:

N = Tθ ×Tz = R〈cosθ , sinθ , 0〉

dS = ‖N‖dθ dz = Rdθ dz
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– Σφαίρα ακτίνας R με κέντρο την αρχή των αξόνων:

G(θ ,ϕ) = (Rcosθ sinϕ , Rsinθ sinϕ , Rcosϕ)

Μοναδιαίο ακτινικό διάνυσμα:

er = 〈cosθ sinϕ , sinθ sinϕ , cosϕ〉

Κάθετο διάνυσμα με κατεύθυνση προς το εξωτερικό της σφαίρας:

N = Tϕ ×Tθ = (R2 sinϕ)er

dS = ‖N‖dϕ dθ = R2 sinϕ dϕ dθ

– Γράφημα της συνάρτησης z = g(x,y):

G(x,y) = (x, y, g(x,y))

N = Tx×Ty = 〈−gx, −gy, 1〉

dS = ‖N‖dxdy =
√

1+g2
x +g2

y dxdy

Ασκήσεις 3.19.7

1. Να αποδείξετε ότι η

G(u,v) = (2u+1, u− v, 3u+ v)

παραμετρά το επίπεδο 2x− y− z = 2 και:

(a) Υπολογίστε τα διανύσματα Tu, Tv, N(u,v).

(b) Προσδιορίστε το εμβαδόν του S = G(D), όπου

D = {(u,v) : 0≤ u≤ 2, 0≤ v≤ 1}.

(c) Εκφράστε τη συνάρτηση f (x,y,z) = yz με τη βοήθεια των παραμέτρων u και v
και υπολογίστε το ∫∫

S
f (x,y,z)dS.

2. Έστω G(x,y) = (x, y, xy).

(a) Υπολογίστε τα διανύσματα Tx, Ty, N(x,y).

(b) Έστω S το τμήμα της επιφάνειας με πεδίο ορισμού των παραμέτρων το χωρίο
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D = {(x,y) : x2 + y2 ≤ 1, x≥ 0, y≥ 0}.

Επιβεβαιώστε την ακόλουθη σχέση και στη συνέχεια υπολογίστε το επιφανειακό
ολοκλήρωμα που σημειώνεται σε αυτή χρησιμοποιώντας πολικές συντεταγμένες:∫∫

S
1dS =

∫∫
D

√
1+ x2 + y2 dxdy

Στις Ασκήσεις 3- 5 να υπολογίσετε τα διανύσματα Tu, Tv και N(u,v) για τις παραμετρημέ-
νες επιφάνειες στο σημείο που υποδεικνύεται σε κάθε περίπτωση. Στη συνέχεια, να προσδιο-
ρίσετε την εξίσωση του εφαπτόμενου επιπέδου της επιφάνειας στο συγκεκριμένο σημείο.

3. G(u,v) = (2u+ v, u−4v, 3u), u = 1, v = 4

4. G(u,v) = (u2− v2, u+ v, u− v), u = 2, v = 3.

5. G(θ ,ϕ) = (cosθ sinϕ , sinθ sinϕ , cosϕ), θ =
π
2
, ϕ =

π
4
.

Στις Ασκήσεις 6- 9 να υπολογίσετε το επιφανειακό ολοκλήρωμα∫∫
S

f (x,y,z)dS

για τη συνάρτηση και την επιφάνεια που δίνονται σε κάθε περίπτωση.

6.
G(r,θ) = (r cosθ , r sinθ , θ), 0≤ r ≤ 1, 0≤ θ ≤ 2π,

f (x,y,z) =
√

x2 + y2

7.
x2 + y2 = 4, 0≤ z≤ 4, f (x,y,z) = e−z

8.
G(u,v) = (u, v3, u+ v), 0≤ u≤ 1, 0≤ v≤ 1, f (x,y,z) = y.

9. Τμήμα του επιπέδου x+ y+ z = 1, όπου x,y,z≥ 0, f(x,y,z) = z.

10. Μια επιφάνεια S παραμετράται από τη G(u,v) με πεδίο ορισμού το ορθογώνιο

0≤ u≤ 2, 0≤ v≤ 4.

Η παραμέτρηση είναι τέτοια ώστε οι ακόλουθες μερικές παράγωγοι να είναι σταθερές:

∂G
∂u

= 〈2, 0, 1〉, ∂G
∂v

= 〈4, 0, 3〉.

Ποιο είναι το εμβαδόν της επιφάνειας S;
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11. Έστω S η σφαίρα ακτίναςR με κέντρο την αρχή των αξόνων. Εξηγήστε, χρησιμοποιώντας
επιχειρήματα συμμετρίας, γιατί πρέπει να ισχύουν οι ισότητες∫∫

S
x2 dS =

∫∫
S

y2 dS =
∫∫

S
z2 dS.

Στη συνέχεια, να αποδείξετε ότι ∫∫
S

x2 dS =
4
3

πR4

προσθέτοντας τα ολοκληρώματα.
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Λυμένες ασκήσεις 3.19.8

1. (a) Από τον ορισμό της G έχουμε

x = 2u+1, y = u− v, z = 3u+ v.

Τότε

2x− y− z = 2(2u+1)− (u− v)− (3u+ v) = 4u+2−u+ v−3u− v = 2,

άρα κάθε σημείο της επιφάνειας ικανοποιεί 2x−y−z= 2. Επομένως ηG παραμε-
τρά το επίπεδο 2x− y− z = 2.

(b) Υπολογισμός Tu, Tv, N(u,v).

Tu = Gu(u,v) =
(∂x

∂u
,

∂y
∂u

,
∂ z
∂u

)
= (2, 1, 3),

Tv = Gv(u,v) =
(∂x

∂v
,
∂y
∂v

,
∂ z
∂v

)
= (0,−1, 1).

Το κάθετο διάνυσμα δίνεται από το διανυσματικό γινόμενο

N(u,v) = Tu×Tv =

∣∣∣∣∣∣
i j k
2 1 3
0 −1 1

∣∣∣∣∣∣= (4,−2,−2).

Παρατηρούμε ότι το N(u,v) είναι σταθερό, όπως αναμένεται για επίπεδο.

(b) Εμβαδόν της επιφάνειας S = G(D).
Για επιφάνεια που δίνεται από παραμέτρηση G(u,v), το στοιχείο επιφάνειας είναι

dS = ‖N(u,v)‖dudv.

Εδώ

‖N(u,v)‖=
√

42 +(−2)2 +(−2)2 =
√

16+4+4 =
√

24 = 2
√

6.

Άρα το εμβαδόν του S είναι

Area(S) =
∫∫

D
‖N(u,v)‖dudv =

∫∫
D

2
√

6dudv.

Το χωρίο D είναι 0≤ u≤ 2, 0≤ v≤ 1, οπότε

Area(S) =
∫ 2

0

∫ 1

0
2
√

6dvdu = 2
√

6 · (2 ·1) = 4
√

6.

(c) Επιφανειακό ολοκλήρωμα της f (x,y,z) = yz.
Πρώτα γράφουμε το f σε όρους των u,v. Από τη παραμέτρηση:

y = u− v, z = 3u+ v,

άρα
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f (G(u,v)) = yz = (u− v)(3u+ v) = 3u2−2uv− v2.

Το επιφανειακό ολοκλήρωμα της βαθμωτής συνάρτησης f πάνω στην S είναι∫∫
S

f dS =
∫∫

D
f (G(u,v))‖N(u,v)‖dudv =∫∫

D
(3u2−2uv− v2)2

√
6dudv.

Υπολογίζουμε:∫∫
D
(3u2−2uv− v2)dudv =

∫ 2

0

∫ 1

0
(3u2−2uv− v2)dvdu.

Εσωτερικό ολοκλήρωμα ως προς v:∫ 1

0
(3u2−2uv− v2)dv =

[
3u2v−uv2− 1

3
v3
]1

0
= 3u2−u− 1

3
.

Έπειτα ως προς u:∫ 2

0

(
3u2−u− 1

3

)
du =

[
u3− 1

2
u2− 1

3
u
]2

0
= 8−2− 2

3
= 6− 2

3
=

16
3
.

Άρα ∫∫
S

f dS = 2
√

6 · 16
3

=
32
√

6
3

.

Έτσι, το επιφανειακό ολοκλήρωμα της f (x,y,z) = yz πάνω στην επιφάνεια S είναι

∫∫
S

f dS =
32
√

6
3

.

2. (a) Έχουμε την παραμέτρηση

G(x,y) = (x, y, xy).

(b) Υπολογισμός των Tx, Ty, N(x,y)

Tx = Gx(x,y) =
(

∂x
∂x

,
∂y
∂x

,
∂ (xy)

∂x

)
= (1, 0, y),

Ty = Gy(x,y) = (0, 1, x) .

Το κάθετο διάνυσμα προκύπτει από το διανυσματικό γινόμενο:

N(x,y) = Tx×Ty =

∣∣∣∣∣∣
i j k
1 0 y
0 1 x

∣∣∣∣∣∣= (−y,−x, 1).
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‖N(x,y)‖=
√

x2 + y2 +1.

(c) Το χωρίο παραμέτρων
Δίνεται

D = {(x,y) : x2 + y2 ≤ 1, x≥ 0, y≥ 0},

δηλαδή το πρώτο τεταρτημόριο του μοναδιαίου δίσκου.
Η επιφάνεια είναι

S = G(D).

(d) Απόδειξη της σχέσης και υπολογισμός του επιφανειακού ολοκληρώματος
Γνωρίζουμε ότι για παραμέτρηση G(x,y):∫∫

S
1dS =

∫∫
D
‖N(x,y)‖dxdy =

∫∫
D

√
1+ x2 + y2 dxdy.

Αλλάζουμε σε πολικές συντεταγμένες στο D:

x = r cosθ , y = r sinθ , 0≤ r ≤ 1, 0≤ θ ≤ π
2
.

Τότε:

1+ x2 + y2 = 1+ r2, dxdy = r dr dθ .

Άρα ∫∫
S

1dS =
∫ π/2

0

∫ 1

0

√
1+ r2 r dr dθ .

Υπολογίζουμε το εσωτερικό ολοκλήρωμα:∫ 1

0
r
√

1+ r2 dr.

Θέτουμε u = 1+ r2, du = 2r dr:

∫ 1
0 r
√

1+ r2 dr =
1
2

∫ 2

1
u1/2 du =

1
2
· 2

3
(
23/2−13/2)= 1

3
(2
√

2−1).

Τελικό ολοκλήρωμα:∫∫
S

1dS =
∫ π/2

0

1
3
(2
√

2−1)dθ =
π

6(2
√

2−1).

∫∫
S

dS =
π
6
(
2
√

2−1
)
.

* Στις τρεις ασκήσεις που ακολουθούν έχουμε παραμετρικές επιφάνειες
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G(u,v) = (x(u,v),y(u,v),z(u,v))

και ορίζουμε

Tu = Gu(u,v), Tv = Gv(u,v), N(u,v) = Tu×Tv.

Στο ζητούμενο σημείο παίρνουμε το σημείο

P = G(u0,v0)

και ένα διάνυσμα κάθετο στο εφαπτόμενο επίπεδο

n0 = N(u0,v0).

Η εξίσωση του εφαπτόμενου επιπέδου στο P = (x0,y0,z0) με κάθετο διάνυσμα n0 =
(A,B,C) είναι

A(x− x0)+B(y− y0)+C(z− z0) = 0.

3.
G(u,v) = (2u+ v, u−4v, 3u), u0 = 1, v0 = 4.

Υπολογίζουμε

Tu = Gu(u,v) = (2, 1, 3), Tv = Gv(u,v) = (1,−4, 0).

Άρα

N(u,v) = Tu×Tv =

∣∣∣∣∣∣
i j k
2 1 3
1 −4 0

∣∣∣∣∣∣= (12, 3,−9).

Μπορούμε να χρησιμοποιήσουμε και το απλούστερο

N(u,v) = (4, 1,−3).

Στο σημείο

P = G(1,4) = (6,−15, 3).

Η εξίσωση του εφαπτόμενου επιπέδου στο P με κάθετο διάνυσμα n0 = (4,1,−3) είναι

4(x−6)+1(y+15)−3(z−3) = 0

που απλοποιείται σε

4x+ y−3z = 0.

4.
G(u,v) = (u2− v2, u+ v, u− v), u0 = 2, v0 = 3.

Υπολογίζουμε
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Tu = Gu(u,v) = (2u, 1, 1), Tv = Gv(u,v) = (−2v, 1,−1).

Άρα

N(u,v) = Tu×Tv =

∣∣∣∣∣∣
i j k

2u 1 1
−2v 1 −1

∣∣∣∣∣∣= (−2, 2u−2v, 2(u+ v))..

Στο σημείο (u0,v0) = (2,3) έχουμε

N(2,3) = (−2,−2, 10)

και μπορούμε να πάρουμε το απλούστερο κάθετο διάνυσμα

n0 = (1, 1,−5).

Το σημείο της επιφάνειας είναι

P = G(2,3) = (4−9, 2+3, 2−3) = (−5, 5,−1).

Η εξίσωση του εφαπτόμενου επιπέδου στο P είναι

1(x+5)+1(y−5)−5(z+1) = 0

δηλαδή

x+ y−5z−5 = 0.

5.
G(θ ,ϕ) = (cosθ sinϕ , sinθ sinϕ , cosϕ), θ0 =

π
2
, ϕ0 =

π
4
.

Υπολογίζουμε

Tθ = Gθ (θ ,ϕ) = (−sinθ sinϕ , cosθ sinϕ , 0),

Tϕ = Gϕ (θ ,ϕ) = (cosθ cosϕ , sinθ cosϕ , −sinϕ).

Το διανυσματικό γινόμενο είναι

N(θ ,ϕ) = Tθ ×Tϕ = (−cosθ sin2 ϕ , −sinθ sin2 ϕ , −sinϕ cosϕ).

Στο σημείο (θ0,ϕ0) = (π/2,π/4)

P = G
(π

2
,
π
4

)
=
(

0,

√
2

2
,

√
2

2

)
,

και

N
(π

2
,
π
4

)
=
(

0,−1
2
,−1

2

)
.

Μπορούμε να πάρουμε ως κάθετο διάνυσμα το

n0 = (0, 1, 1).
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Η εξίσωση του εφαπτόμενου επιπέδου στο P είναι

0(x−0)+1
(

y−
√

2
2

)
+1
(

z−
√

2
2

)
= 0

οπότε

y+ z−
√

2 = 0.

Έτσι, για καθεμία από τις τρεις παραμετρικές επιφάνειες υπολογίσαμε τα διανύσματα Tu,
Tv, N στο αντίστοιχο σημείο και βρήκαμε την εξίσωση του εφαπτόμενου επιπέδου.

3.20 Επιφανειακά ολοκληρώματα των διανυσματικών πεδίων

Το τελευταίο είδος ολοκληρώματος που θα μελετήσουμε είναι το επιφανειακό ολοκλήρωμα ενός
διανυσματικού πεδίου. Τα ολοκληρώματα αυτού του είδους αντιπροσωπεύουν τη ροή ή τον ρυθμό
με τον οποίο συντελείται η ροή μέσω μιας επιφάνειας, όπως για παράδειγμα η ροή μορίων που
διασχίζουν μια κυτταρική μεμβράνη (σε αριθμό μορίων ανά μονάδα χρόνου).

(a) Ένας πιθανός προσανατολισμός της S (b) Ο αντίθετος προσανατολισµός

Σχήμα 3.67 Η επιφάνεια S διαθέτει δύο πιθανούς προσανατολισμούς

Καθώς η ροή που διέρχεται μέσω μιας επιφάνειας S «διαπερνά» την επιφάνεια από τη μία της
πλευρά στην άλλη, θα πρέπει να ορίσουμε μια θετική κατεύθυνση για μια τέτοια ροή. Ο ορισμός
αυτός γίνεται με τη βοήθεια ενός προσανατολισμού που στην περίπτωσή μας είναι η επιλογή ενός
μοναδιαίου κάθετου διανύσματος n(P) σε κάθε σημείο P της επιφάνειας S, που επιλέγεται να
μεταβάλλεται με συνεχή τρόπο, όπως φαίνεται στο Σχήμα 3.67. Υπάρχουν δύο κάθετες κατευθύν-
σεις σε κάθε σημείο της επιφάνειας, επομένως ο προσανατολισμός χρησιμοποιείται για να επιλέ-
ξουμε τη μία από τις δύο πλευρές της επιφάνειας με έναν συνεπή τρόπο.
Η κάθετη συνιστώσα ενός διανυσματικού πεδίου F
σε ένα σημείο P μιας προσανατολισμένης επιφάνειας
S προκύπτει ως ένα εσωτερικό γινόμενο με τον
ακόλουθο τρόπο:

Κάθετη συνιστώσα στο σημείο
P = F(P) ·n(P) = ‖F(P)‖cosθ

όπου θ είναι η γωνία μεταξύ των διανυσμάτων F(P)
και n(P), όπως φαίνεται στο Σχήμα 3.68. Πολύ
συχνά γράφουμε n αντί για n(P), κατανοώντας όμως
ότι το διάνυσμα n μεταβάλλεται από σημείο σε
σημείο καθώς κινούμαστε πάνω σε μια επιφάνεια.

Σχήμα 3.68 Η κάθετη συνιστώσα ενός διανύσματος σε
μια επιφάνεια



296 Λογισμός των Διανυσματικών Συναρτήσεων

Επιφανειακό ολοκλήρωμα διανυσματικού πεδίου
∫∫

S
(F ·n)dS

Το επιφανειακό ολοκλήρωμα του διανυσματικού πεδίου F πάνω στην επιφάνεια S ορίζεται ως το
επιφανειακό ολοκλήρωμα της κάθετης συνιστώσας του πεδίου F και είναι γνωστή ως η ροή του
διανυσματικού πεδίου F που διασχίζει την επιφάνεια S. Μια προσανατολισμένη παραμέτρηση
G(u,v) είναι μια κανονική παραμέτρηση [δηλαδή το διάνυσμα N(u,v) είναι μη μηδενικό για
όλες τις τιμές των u,v] το μοναδιαίο διάνυσμα της οποίας ορίζει τον προσανατολισμό:

n = n(u,v) =
N(u,v)
‖N(u,v)‖

Από την προηγούμενη ενότητα, η έκφραση για το επιφανειακό ολοκλήρωμα μιας βαθμωτής συνάρτησης
με τη βοήθεια μιας παραμέτρησης είναι η:∫∫

S
f (x,y,z)dS =

∫∫
f (G(u,v))‖N(u,v)‖dudv

Εφαρμόζοντας την τελευταία εξίσωση για το εσωτερικό γινόμενο F ·n προκύπτει:∫∫
S
(F ·n)dS =

∫∫
D
(F ·n)‖N(u,v)‖dudv

=
∫∫

D
F(G(u,v)) ·

(
N(u,v)
‖N(u,v)‖

)
‖N(u,v)‖dudv

=
∫∫

D
F(G(u,v)) ·N(u,v)dudv

Η τελευταία σχέση εξακολουθεί να ισχύει ακόμα και όταν το διάνυσμα N(u,v) είναι μηδέν σε
σημεία που ανήκουν στο σύνορο του πεδίου ορισμού D των παραμέτρων. Αν αντιστρέψουμε τον
προσανατολισμό της επιφάνειας S στο επιφανειακό ολοκλήρωμα ενός διανυσματικού πεδίου, τότε
θα πρέπει να αντικαταστήσουμε το διάνυσμα N(u,v) με το−N(u,v), οπότε και το ολοκλήρωμα
θα αλλάξει πρόσημο.

Με τον τρόπο αυτόν καταλήγουμε στο ακόλουθο θεώρημα.

Θεώρημα 3.20.1Επιφανειακό ολοκλήρωμα διανυσματικού πεδίουΈστωG(u,v) μια προσανατο-
λισμένη παραμέτρηση μιας επιφάνειας S με πεδίο ορισμού των παραμέτρων τοD. Υποθέστε ότι
η G είναι ένα–προς–ένα και κανονική, εκτός πιθανώς από σημεία που βρίσκονται στο σύνορο
του χωρίου D. Τότε ∫∫

S
(F ·n)dS =

∫∫
D

F(G(u,v)) ·N(u,v)dudv

Αν ο προσανατολισμός της επιφάνειας S αντιστραφεί, το επιφανειακό ολοκλήρωμα αλλάζει
πρόσημο.

Ένας άλλος συμβολισμός για το επιφανειακό ολοκλήρωμα ενός διανυσματικού πεδίου προκύπτει
αν εκφράσουμε το γινόμενο του μοναδιαίου κάθετου διανύσματος n και του διαφορικού της
επιφάνειας dS ως το διανυσματικό διαφορικό της επιφάνειας dS = ndS. Έτσι, καταλήγουμε
στην έκφραση:
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∫∫
S
(F ·n)dS =

∫∫
S

F ·dS

Παράδειγμα 3.20.2
Υπολογίστε το επιφανειακό ολοκλήρωμα

∫∫
S

F ·dS,

όπου F = 〈0,0,x〉, αν S είναι η επιφάνεια με παραμέτρηση G(u,v) = (u2, v, u3− v2) για
0≤ u≤ 1, 0≤ v≤ 1 που είναι προσανατολισμένη από κάθετα διανύσματα που κατευθύνονται
προς τα επάνω.

Λύση.
Βήμα 1 Υπολογίζουμε τα εφαπτόμενα διανύσματα
και το κάθετο διάνυσμα.

Tu = 〈2u, 0, 3u2〉, Tv = 〈0, 1,−2v〉

N(u,v) = Tu×Tv =

∣∣∣∣∣∣∣∣∣∣
i j k

2u 0 3u2

0 1 −2v

∣∣∣∣∣∣∣∣∣∣
=

−3u2 i+4uv j+2uk = 〈−3u2, 4uv, 2u〉

Σχήμα 3.69 Η επιφάνεια, με παραμέτρηση G(u,v) =
(u2, v, u3 − v2), με κάθετα διανύσματα κατευθυνόμενα
προς τα επάνω. Το διανυσματικό πεδίο F = 〈0,0,x〉 έχει
κατακόρυφη διεύθυνση.

Η z συνιστώσα του διανύσματος N είναι θετική όταν 0≤ u≤ 1, επομένως το διάνυσμα N είναι
το κάθετο διάνυσμα με προσανατολισμό προς τα επάνω (βλ. Σχήμα 3.69).

Βήμα 2 Υπολογίζουμε το εσωτερικό γινόμενο F ·N. Θα εκφράσουμε αρχικά το πεδίο F με τη
βοήθεια των παραμέτρων u και v. Αφού x = u2, θα έχουμε:

F(G(u,v)) = 〈0,0,x〉= 〈0,0,u2〉

οπότε

F(G(u,v)) ·N(u,v) = 〈0,0,u2〉 · 〈−3u2, 4uv, 2u〉= 2u3

Βήμα 3 Υπολογίζουμε το επιφανειακό ολοκλήρωμα.
Το πεδίο ορισμού των παραμέτρων είναι 0≤ u≤ 1, 0≤ v≤ 1, επομένως:∫∫

S
F ·dS =

∫ 1

u=0

∫ 1

v=0
F(G(u,v)) ·N(u,v)dvdu

=
∫ 1

u=0

∫ 1

v=0
2u3 dvdu =

∫ 1

u=0
2u3 du =

1
2
.
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Παράδειγμα 3.20.3
Ολοκλήρωμα πάνω σε ημισφαίριο Υπολογίστε τη ροή του πεδίου F = 〈z,x,1〉 διαμέσου της
επιφάνειας του άνω ημισφαιρίουτης σφαίρας x2+y2+z2 = 1 που είναι προσανατολισμένη με
κάθετα διανύσματα κατευθυνόμενα προς τα έξω, όπως φαίνεται στο Σχήμα 3.70.

Λύση. Θα παραμετρήσουμε το ημισφαίριο με τη
βοήθεια των σφαιρικών συντεταγμένων:

G(θ ,ϕ) = (cosθ sinϕ ,sinθ sinϕ ,cosϕ), 0≤
ϕ ≤ π

2
, 0≤ θ < 2π

Βήμα 1 Υπολογίζουμε το κάθετο διάνυσμα. Το κάθετο
διάνυσμα με κατεύθυνση προς τα έξω είναι το:

N = Tϕ ×Tθ =
sinϕ〈cosθ sinϕ ,sinθ sinϕ ,cosϕ〉

Σχήμα 3.70 Το διανυσματικό πεδίο F = 〈z,x,1〉.

Πράγματι, έστω η παραμετροποίηση του ημισφαιρίου

G(θ ,ϕ) = (cosθ sinϕ , sinθ sinϕ , cosϕ), 0≤ ϕ ≤ π
2 , 0≤ θ < 2π.

Παίρνουμε τις μερικές παραγώγους:

Tθ = Gθ (θ ,ϕ) = (−sinθ sinϕ , cosθ sinϕ , 0),

Tϕ = Gϕ (θ ,ϕ) = (cosθ cosϕ , sinθ cosϕ , −sinϕ).

Επομένως,

N =

∣∣∣∣∣∣∣∣∣∣
i j k

cosθ cosϕ sinθ cosϕ −sinϕ

−sinθ sinϕ cosθ sinϕ 0

∣∣∣∣∣∣∣∣∣∣
Υπολογίζοντας τις συνιστώσες έχουμε:

Nx = cosθ sin2 ϕ , Ny = sinθ sin2 ϕ , Nz = cosϕ sinϕ .

Άρα

N(θ ,ϕ) =
(
cosθ sin2 ϕ , sinθ sin2 ϕ , cosϕ sinϕ

)
.

Βήμα 2 Υπολογίζουμε το εσωτερικό γινόμενο F ·N.

F(G(θ ,ϕ)) = 〈z,x,1〉= 〈cosϕ ,cosθ sinϕ ,1〉

Επομένως,
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F(G(θ ,ϕ)) ·N(θ ,ϕ) = 〈cosϕ ,cosθ sinϕ ,1〉 · 〈cosθ sin2 ϕ ,sinθ sin2 ϕ ,cosϕ sinϕ〉=
cosθ sin2 ϕ cosϕ + cosθ sinθ sin3 ϕ + cosϕ sinϕ

Βήμα 3 Υπολογίζουμε το επιφανειακό ολοκλήρωμα.∫∫
S

F ·dS =
∫ π/2

ϕ=0

∫ 2π

θ=0
F(G(θ ,ϕ)) ·N(θ ,ϕ)dθ dϕ

=
∫ π/2

ϕ=0

∫ 2π

θ=0
(cosθ sin2 ϕ cosϕ + cosθ sinθ sin3 ϕ︸ ︷︷ ︸
Το ολοκλήρωμα στο διάστημα 0≤θ≤2π είναι μηδέν

+cosϕ sinϕ)dθ dϕ

Τα ολοκληρώματα των cosθ και cosθ sinθ στο διάστημα [0,2π] είναι και τα δύο μηδέν,
επομένως απομένει ο όρος∫ π/2

ϕ=0

∫ 2π

θ=0
cosϕ sinϕdθdϕ = 2π

∫ π/2

ϕ=0
cosϕ sinϕdϕ =−2π

cos2 ϕ
2

∣∣∣∣π/2

0
= π

Παράδειγμα 3.20.4
Επιφανειακό ολοκλήρωμα πάνω σε ένα γράφημα
Υπολογίστε τη ροή του πεδίου F = x2j δια μέσου
της επιφάνειας S η οποία ορίζεται από την y =
1 + x2 + z2 για 1 ≤ y ≤ 5. Η επιφάνεια είναι
προσανατολισμένη με κάθετα διανύσματα τα οποία
κατευθύνονται προς τα αρνητικά του άξονα y.

Λύση. Η επιφάνεια που περιγράφεται στην εκφώνηση
του παραδείγματος είναι το γράφημα της συνάρτησης

y = 1+ x2 + z2
Σχήμα 3.71

που απεικονίζεται στο Σχήμα 3.71, με τις x και z να είναι οι ανεξάρτητες μεταβλητές.

Βήμα 1 Βρίσκουμε μια παραμέτρηση της επιφάνειας. Εξυπηρετεί να χρησιμοποιήσουμε τις x
και z ως μεταβλητές της παραμέτρησης καθώς η y δίνεται ως συνάρτηση αυτών των δύο. Έτσι,
ορίζουμε την παραμέτρηση:

G(x,z) = (x, 1+ x2 + z2, z)

Ποιο είναι το πεδίο ορισμού των παραμέτρων; Αφού y = 1+x2+z2, η συνθήκη 1≤ y≤ 5 είναι
ισοδύναμη με την 1≤ 1+x2+ z2 ≤ 5, ή 0≤ x2+ z2 ≤ 4. Αυτό σημαίνει ότι το πεδίο ορισμού
των παραμέτρων είναι ο δίσκος ακτίνας 2 στο επίπεδο xz – δηλαδή

D = {(x,z) : x2 + z2 ≤ 4}.

Επειδή το πεδίο ορισμού των παραμέτρων είναι ένας δίσκος, είναι βολικό να χρησιμοποιήσουμε
τις πολικές συντεταγμένες r και θ στο επίπεδο xz. Με άλλα λόγια, γράφουμε x = r cosθ και
z = r sinθ . Αν χρησιμοποιήσουμε αυτές τις σχέσεις, θα έχουμε:

y = 1+ x2 + z2 = 1+ r2

G(r,θ) = (r cosθ , 1+ r2, r sinθ), 0≤ θ ≤ 2π, 0≤ r ≤ 2.
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Βήμα 2 Υπολογίστε τα εφαπτόμενα διανύσματα και το κάθετο διάνυσμα.

Tr = 〈cosθ , 2r, sinθ〉, Tθ = 〈−r sinθ , 0, r cosθ〉

N = Tr×Tθ =

∣∣∣∣∣∣∣∣∣∣
i j k

cosθ 2r sinθ

−r sinθ 0 r cosθ

∣∣∣∣∣∣∣∣∣∣
= 2r2 cosθ i− rj+2r2 sinθ k.

Η j συνιστώσα του κάθετου διανύσματος είναι −r. Επειδή το πρόσημο είναι αρνητικό, το
διάνυσμα N έχει την αρνητική κατεύθυνση του άξονα y, όπως απαιτείται.

Υπολογίστε το εσωτερικό γινόμενο F ·N και ολοκληρώστε.

F(G(r,θ)) = x2j = r2 cos2 θ j = 〈0, r2 cos2 θ , 0〉

F(G(r,θ)) ·N = 〈0, r2 cos2 θ , 0〉 · 〈2r2 cosθ , −r, 2r2 sinθ〉

=−r3 cos2 θ

∫∫
S

F ·dS =
∫∫

D
F(G(r,θ)) ·N dr dθ

=
∫ 2π

0

∫ 2

0

(
−r3 cos2 θ

)
dr dθ

=−
(∫ 2π

0
cos2 θ dθ

)(∫ 2

0
r3 dr

)
=−(π)

(
24

4

)
=−4π

Δεν πρέπει να αποτελεί έκπληξη το γεγονός ότι η ροή είναι αρνητική αφού η θετική κατεύθυνση
κάθετα στην επιφάνεια επελέχθη να είναι προς την αρνητική κατεύθυνση του άξονα y, ενώ το
διανυσματικό πεδίο F κατευθύνεται προς τα θετικά του άξονα y.

Σχόλιο 3.20.5 Στο τρίτο βήμα ολοκληρώνουμε το εσωτερικό γινόμενο F ·N ως προς dr dθ και
όχι ως προς r dr dθ . Ο παράγοντας r στην έκφραση r dr dθ είναι ένας Ιακωβιανός παράγοντας
που εμφανίζεται μόνο όταν αλλάζουμε μεταβλητές στο διπλό ολοκλήρωμα. Στα επιφανειακά
ολοκληρώματα, αυτός είναι ενσωματωμένος στο μέτρο του διανύσματος N (θυμηθείτε ότι το
‖N‖ είναι ένας παράγοντας κλίμακας του εμβαδού).

Σημείωση 3.20.6 Αφού το επιφανειακό ολοκλήρωμα ενός διανυσματικού πεδίου εξαρτάται
από την κατεύθυνση της επιφάνειας, θα ορίζεται μόνο για επιφάνειες που έχουν δύο όψεις.
Υπάρχουν όμως ορισμένες επιφάνειες, όπως για παράδειγμα η λωρίδα τουMöbius (που ανακαλύφθηκε
το 1858 ανεξάρτητα από τους August Möbius και Johann Listing), η οποία δεν μπορεί να
προσανατολιστεί καθώς έχει μία μόνο όψη. Μπορείτε να κατασκευάσετε μια λωρίδα Möbius
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M με τη βοήθεια μιας ορθογώνιας μακρόστενης λωρίδας από χαρτί, της οποίας θα ενώσετε τα
δύο άκρα αφού προηγουμένως κάνετε μια στροφή του ενός από τα δύο κατά 180◦. Αντίθετα
από μια συνηθισμένη λωρίδα που διαθέτει δύο όψεις, η λωρίδα M του Möbius έχει μία μόνο
όψη, γεγονός που σημαίνει ότι είναι αδύνατο να ορίσουμε μια θετική κάθετη κατεύθυνση με
συνεπή τρόπο (βλ. Σχήμα 3.72). Αυτό συμβαίνει γιατί αν επιλέξουμε ένα μοναδιαίο κάθετο
διάνυσμα στο σημείοP το οποίο στη συνέχεια μεταφέρουμε με συνεπή τρόπο πάνω στη λωρίδα
M, τότε όταν επιστρέψουμε στο σημείο P το διάνυσμα θα έχει την αντίθετη από την αρχική
κατεύθυνση. Αυτό σημαίνει ότι δεν μπορούμε να ολοκληρώσουμε ένα διανυσματικό πεδίο
πάνω σε μια λωρίδα Möbius και επομένως δεν έχει έννοια να μιλάμε για τη ροή που διέρχεται
από αυτή. Από την άλλη όμως είναι εφικτό να ολοκληρώσουμε μια βαθμωτή συνάρτηση πάνω
στη λωρίδα M. Έτσι, για παράδειγμα, το ολοκλήρωμα της πυκνότητας μάζας θα είναι ίσο με
τη συνολική μάζα της λωρίδας του Möbius.

Σχήμα 3.72 Δεν είναι εφικτό να επιλέξουμε ένα μοναδιαίο κάθετο διάνυσμα που να μεταβάλλεται με συνεχή τρόπο πάνω σε
μια λωρίδα Möbius.

3.20.1 Είδη ολοκληρωμάτων

Θα ολοκληρώσουμε την ενότητα με έναν κατάλογο των ολοκληρωμάτων που εισαγάγαμε σε αυτό
το κεφάλαιο.

1. Επικαμπύλιο ολοκλήρωμα βαθμωτής συνάρτησης κατά μήκος μιας καμπύληςC που περιγράφεται
από την r(t) για a≤ t ≤ b (μπορεί να χρησιμοποιηθεί για τον υπολογισμό του μήκους ενός
τόξου, της μάζας ή του ηλεκτρικού δυναμικού):∫

C
f (x,y,z)ds =

∫ b

a
f (r(t))‖r′(t)‖dt

2. Επικαμπύλιο ολοκλήρωμα διανυσματικού πεδίου με το οποίο υπολογίζεται το έργο κατά
μήκος μιας καμπύληςC που περιγράφεται από την r(t) για a≤ t ≤ b:∫

C
F ·dr =

∫ b

a
F(r(t)) · r′(t)dt =

∫
C

F1 dx+F2 dy+F3 dz

3. Επικαμπύλιο ολοκλήρωμα διανυσματικού πεδίου με το οποίο υπολογίζεται η ροή που διασχίζει
την καμπύληC η οποία περιγράφεται από την r(t) για a≤ t ≤ b:∫

C
F ·nds =

∫ b

a
F(r(t)) ·N(t)dt

4. Επιφανειακό ολοκλήρωμα πάνω σε μια επιφάνεια με παραμέτρησηG(u,v) και πεδίο ορισμού
των παραμέτρων το χωρίο D (μπορεί να χρησιμοποιηθεί για τον υπολογισμό του εμβαδού
της επιφάνειας, του συνολικού φορτίου, του βαρυτικού δυναμικού):∫∫

S
f (x,y,z)dS =

∫∫
D

f (G(u,v))‖N(u,v)‖dudv
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5. Επιφανειακό ολοκλήρωμα διανυσματικής συνάρτησης με το οποίο υπολογίζεται η ροή ενός
διανυσματικού πεδίου F που διέρχεται από μια επιφάνεια S με παραμέτρηση G(u,v) και
πεδίο ορισμού των παραμέτρων το χωρίο D:∫∫

S
(F ·n)dS =

∫∫
S

F ·dS =
∫∫

D
F(G(u,v)) ·N(u,v)dudv

Ασκήσεις 3.20.7

1. Έστω το διανυσματικό πεδίο F = 〈z, 0, y〉 και S η προσανατολισμένη επιφάνεια που
παραμετροποιείται από τη

G(u,v) = (u2− v, u, v2), 0≤ u≤ 2, −1≤ v≤ 4.

Υπολογίστε:
(a) Το κάθετο διάνυσμα N και το εσωτερικό γινόμενο F ·N ως συναρτήσεις των μετα-

βλητών u και v.

(b) Την κάθετη συνιστώσα του πεδίουF στην επιφάνεια και στο σημείοP=(3,2,1)=
G(2,1).

(c) Το επιφανειακό ολοκλήρωμα
∫∫

S
F ·dS.

2. Έστω το διανυσματικό πεδίο F = 〈y,−x, x2 + y2〉 και S το τμήμα της επιφάνειας του
παραβολοειδούς z = x2 + y2 με x2 + y2 ≤ 3.
(a) Δείξτε ότι αν η επιφάνεια S παραμετρηθεί με τις πολικές μεταβλητές x= r cosθ , y=

r sinθ , τότε F ·N = r3.

(b) Να αποδείξετε ότι ∫∫
S

F ·dS =
∫ 2π

0

∫ 3

0
r3 dr dθ

και να υπολογίσετε αυτό το επιφανειακό ολοκλήρωμα.

Στις Ασκήσεις 5–10 να υπολογίσετε το επιφανειακό ολοκλήρωμα
∫∫

S F⃗ ·dS⃗ για το διανυσμα-
τικό πεδίο και την προσανατολισμένη επιφάνεια που δίνονται σε κάθε περίπτωση.

3. F = 〈y,z,x〉, επίπεδο 3x−4y+ z = 1, 0≤ x≤ 1, 0≤ y≤ 1, με το κάθετο διάνυσμα
να κατευθύνεται προς τα επάνω.

4. F = 〈ez,z,x〉, G(r,s) = (rs,r+ s,r), 0≤ r ≤ 1, 0≤ s≤ 1, προσανατολισμένη από
το Tr×Ts.

5. F = 〈0,3,x〉, στο τμήμα της σφαίρας x2 + y2 + z2 = 9, με x≥ 0, y≥ 0, z≥ 0, με το
κάθετο διάνυσμα να κατευθύνεται προς τα έξω.

6. F = 〈x,y,z〉, στο τμήμα της σφαίρας x2 + y2 + z2 = 1, με
1
2
≤ z≤

√
3

2
, με το κάθετο

διάνυσμα να κατευθύνεται προς τα μέσα.
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7. F= 〈z,z,x〉, z= 9−x2−y2, x≥ 0, y≥ 0, z≥ 0, με το κάθετο διάνυσμα να κατευθύνε-
ται προς τα επάνω.

8. F = 〈siny,sinz,yz〉, στο ορθογώνιο 0 ≤ y ≤ 2, 0 ≤ z ≤ 3 του επιπέδου yz, με το
κάθετο διάνυσμα να κατευθύνεται προς τα αρνητικά του άξονα x.

9. F = 〈0,0,e,y+z〉, στο σύνορο του μοναδιαίου κύβου 0≤ x≤ 1, 0≤ y≤ 1, 0≤ z≤ 1,
με το κάθετο διάνυσμα να κατευθύνεται προς τα έξω.

10. F = 〈0,0,z2〉, G(u,v) = (ucosv, usinv, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π , με το
κάθετο διάνυσμα να κατευθύνεται προς τα επάνω.

11. F = 〈y,z,0〉, G(u,v) = (u3−v, u+v, v2), 0≤ u≤ 2, 0≤ v≤ 3, με το κάθετο
διάνυσμα να κατευθύνεται προς τα κάτω.

12. Έστω S η προσανατολισμένη επιφάνεια
του ημικυλίνδρου του Σχήματος 3.73.
Για καθεμία από τις περιπτώσεις
a)–f) των διανυσματικών πεδίων, να
ελέγξετε αν το επιφανειακό ολοκλήρωμα∫∫

S
F · dS⃗ είναι θετικό, αρνητικό ή

μηδέν. Εξηγήστε την απάντησή σας.

a) F⃗ = i b) F⃗ = j

c) F⃗ = k d) F⃗ = y i

e) F⃗ =−y j f) F⃗ = x j
Σχήμα 3.73

13. Να αποδείξετε ότι η ροή του διανυσματικού πεδίου F =
er

r2 μέσα από μια σφαίρα με
κέντρο την αρχή των αξόνων δεν εξαρτάται από την ακτίνα της σφαίρας.

14. Η ένταση του ηλεκτρικού πεδίου που δημιουργείται από ένα σημειακό φορτίο τοποθετημέ-
νο στην αρχή του χώρουR3 είναιE = k

er

r2 , όπου r =
√

x2 + y2 + z2 και k μια σταθερά.
Υπολογίστε τη ροή του πεδίουE μέσα από τον δίσκοD ακτίνας2, ο οποίος είναι παράλλη-
λος στο επίπεδο xy και το κέντρο του βρίσκεται στο σημείο (0,0,3).

Στις Ασκήσεις 17–18 μια απόχη είναι βυθισμένη στη ροή ενός ποταμού. Προσδιορίστε την
παροχή του νερού μέσα από την απόχη αν το πεδίο ταχυτήτων του νερού είναι το v, ενώ η
απόχη περιγράφεται από τις εξισώσεις που δίνονται σε κάθε περίπτωση.

15. v = 〈x− y, z+ y+4, z2〉, με την απόχη να περιγράφεται από την x2 + z2 ≤ 1, y = 0
και είναι προσανατολισμένη στη θετική κατεύθυνση του άξονα y.

16. v = 〈x− y, z+ y+ 4, z2〉, με την απόχη να περιγράφεται από την y = 1− x2− z2,
y≥ 0 και είναι προσανατολισμένη στη θετική κατεύθυνση του άξονα y.
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Στις Ασκήσεις 19 και 20 υποθέστε ότι T
είναι η τριγωνική επιφάνεια με κορυφές
τα σημεία (1,0,0), (0,1,0) και (0,0,1)
προσανατολισμένη έτσι ώστε το κάθετο
διάνυσμα να κατευθύνεται προς τα επάνω,
όπως φαίνεται στο Σχήμα 3.74. Υποθέστε
ότι όλες οι αποστάσεις είναι σε m.

Σχήμα 3.74

17. Ένα ρευστό ρέει με σταθερή ταχύτητα που περιγράφεται από το πεδίο v= 2k (εκφρασμέ-
νο σε m/s). Υπολογίστε:
(a) Την παροχή του ρευστού μέσα από την επιφάνεια T .

(b) Την παροχή του ρευστού μέσα από την προβολή της περιοχής T πάνω στο επίπεδο
xy [δηλαδή του τριγώνου με κορυφές τα σημεία (0,0,0), (1,0,0) και (0,1,0)].

18. Υπολογίστε την παροχή διαμέσου της επιφάνειας T αν το πεδίο των ταχυτήτων του
ρευστού είναι v =− j m/s.

Λυμένες ασκήσεις 3.20.8

1.
F(x,y,z) = 〈z,0,y〉, G(u,v) = (u2− v, u, v2), 0≤ u≤ 2, −1≤ v≤ 4.

(a)
Gu(u,v) = (2u,1,0), Gv(u,v) = (−1,0,2v).

N(u,v) = Gu×Gv =

∣∣∣∣∣∣
i j k

2u 1 0
−1 0 2v

∣∣∣∣∣∣= (2v,−4uv, 1).

F(G(u,v)) = 〈v2, 0, u〉

F ·N(u,v) = 2v3 +u.

(b) Το σημείο P=(3,2,1)=G(2,1).

N(2,1) = (2,−8,1), ‖N(2,1)‖=
√

69.

n(2,1) =
1√
69

(2,−8,1), F(P) = 〈1,0,2〉.
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F(P) ·n(2,1) = 4√
69

.

(c) ∫∫
S

F ·dS =
∫∫

D
F(G(u,v)) · (Gu×Gv)dudv =

∫∫
D
(u+2v3)dudv,

όπου

D = {(u,v) : 0≤ u≤ 2, −1≤ v≤ 4}.

∫ 2

0

∫ 4

−1
(u+2v3)dvdu =

∫ 2

0

[
uv+

1
2

v4
]v=4

v=−1
du =

∫ 2

0

(
5u+

255
2

)
du.

∫ 2

0

(
5u+

255
2

)
du =

[
5
2

u2 +
255
2

u
]2

0
= 10+255 = 265.

∫∫
S

F ·dS = 265.

2. (a)
F(x,y,z) = 〈y,−x, x2 + y2〉, S : z = x2 + y2, x2 + y2 ≤ 3.

Παραμετροποιούμε το S με πολικές μεταβλητές

x = r cosθ , y = r sinθ , z = x2 + y2 = r2,

οπότε

G(r,θ) = (r cosθ , r sinθ , r2), 0≤ r ≤
√

3, 0≤ θ ≤ 2π.

Τα εφαπτόμενα διανύσματα είναι

Gr(r,θ) = (cosθ , sinθ , 2r), Gθ (r,θ) = (−r sinθ , r cosθ , 0).

Άρα ένα κάθετο διάνυσμα είναι

N(r,θ)=Gr×Gθ =

∣∣∣∣∣∣
i j k

cosθ sinθ 2r
−r sinθ r cosθ 0

∣∣∣∣∣∣=(−2r2 cosθ ,−2r2 sinθ , r).

Το N έχει θετική z–συνιστώσα, άρα δίνει την προς τα πάνω (εξωτερική) φορά.
Το πεδίο F πάνω στην επιφάνεια γράφεται

F(G(r,θ)) = 〈r sinθ ,−r cosθ , r2〉.

Υπολογίζουμε το εσωτερικό γινόμενο:
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F ·N = r sinθ(−2r2 cosθ)+(−r cosθ)(−2r2 sinθ)+ r2 · r =
−2r3 sinθ cosθ +2r3 sinθ cosθ + r3 = r3.

Άρα πράγματι

F ·N = r3.

(b) Το επιφανειακό ολοκλήρωμα ροής γράφεται∫∫
S

F ·dS =
∫∫

D
F(G(r,θ)) ·

(
Gr×Gθ

)
dr dθ =

∫∫
D

r3 dr dθ ,

όπου D = {(r,θ) : 0≤ r ≤
√

3, 0≤ θ ≤ 2π}.
Έχουμε λοιπόν ∫∫

S
F ·dS =

∫ 2π

0

∫ √3

0
r3 dr dθ .

Υπολογισμός:

∫ √3

0
r3 dr =

[
r4

4

]√3

0
=

9
4
,

άρα ∫∫
S

F ·dS =
∫ 2π

0

9
4

dθ =
9
4
·2π =

9π
2
.

∫∫
S

F ·dS =
9π
2

3.
F(x,y,z) = 〈y,z,x〉, 3x−4y+ z = 1, 0≤ x≤ 1, 0≤ y≤

1, με κάθετο προς τα επάνω.

Το επίπεδο είναι γράφημα z = f (x,y) = 1−3x+4y, οπότε

fx =−3, fy = 4, N = (− fx,− fy,1) = (3,−4,1).

Πάνω στο S,

F(x,y, f (x,y)) = 〈y, 1−3x+4y, x〉
και

F ·N = 3y−4(1−3x+4y)+ x = 13x−13y−4.

Άρα ∫∫
S

F ·dS =
∫ 1

0

∫ 1

0
(13x−13y−4)dydx =−4.
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4.
F(x,y,z) = 〈ez,z,x〉, G(r,s) = (rs,r+ s,r), 0≤ r,s≤ 1, με φορά Tr×Ts.

Υπολογίζουμε

Gr = (s,1,1), Gs = (r,1,0),

οπότε

N(r,s) = Gr×Gs = (−1, r, s− r).

Πάνω στο S έχουμε

z = r, x = rs =⇒ F(G(r,s)) = 〈er,r,rs〉.
Άρα

F ·N =−er + r2 + rs2− r2s.

Το επιφανειακό ολοκλήρωμα είναι∫∫
S

F ·dS =
∫ 1

0

∫ 1

0

(
−er + r2 + rs2− r2s

)
dsdr =−e+

4
3
.

5.
F(x,y,z) = 〈0,3,x〉 στο τμήμα της σφαίρας x2 + y2 + z2 = 9, x,y,z≥

0, με κάθετο προς τα έξω.

Παραμετροποιούμε με σφαιρικές συντεταγμένες:

x = 3sinφ cosθ , y = 3sinφ sinθ , z = 3cosφ,
με

0≤ φ ≤ π
2
, 0≤ θ ≤ π

2
.

Για σφαίρα ακτίνας 3 η μοναδιαία εξωτερική κάθετη είναι

n =
1
3
〈x,y,z〉,

ενώ dS = 9sinφ dφ dθ . Πάνω στο S:

F = 〈0,3,x〉= 〈0,3,3sinφ cosθ〉,
οπότε

F ·n =
1
3
(
3y+ xz

)
=

1
3
(
9sinφ sinθ +9sinφ cosφ cosθ

)
.

Άρα ∫∫
S

F ·dS =
∫ π/2

0

∫ π/2

0

(
F ·n

)
dS =∫ π/2

0

∫ π/2

0
27sin2 φ

(
sinθ + cosφ cosθ

)
dθ dφ.
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Υπολογίζοντας:∫ π/2

0
sinθ dθ =

∫ π/2

0
cosθ dθ = 1,

∫ π/2

0
sin2 φ dφ =

π
4
,

∫ π/2

0
sin2 φ cosφ dφ =

1
3
,

παίρνουμε ∫∫
S

F ·dS = 27
(π

4
+

1
3

)
=

9
4
(3π +4).

6.
F(x,y,z) = 〈x,y,z〉 στο τμήμα της σφαίρας x2 + y2 + z2 = 1,

1
2
≤ z≤

√
3

2
, με κάθετο προς τα μέσα.

Στη μοναδιαία σφαίρα η εξωτερική μοναδιαία κάθετη είναι

nout = 〈x,y,z〉.
Επομένως

F ·nout = ‖nout‖2 = 1, F ·nin =−1,

όπου nin =−nout είναι η εσωτερική κάθετη.
Η περιοχή είναι ζωνάρι της σφαίρας με

cosφ = z,
1
2
≤ z≤

√
3

2
=⇒ π

6
≤ φ ≤ π

3
, 0≤ θ ≤ 2π.

Το στοιχείο επιφάνειας είναι dS = sinφ dφ dθ . Άρα η ροή (προς τα μέσα) είναι∫∫
S

F ·dS =
∫ 2π

0

∫ π/3

π/6
(−1)sinφ dφ dθ =−2π

[
cosφ

]π/3
π/6 = π(1−

√
3).

7.
F(x,y,z)= 〈z,z,x〉, z= 9−x2−y2, x≥ 0, y≥ 0, z≥ 0, με κάθετο προς τα επάνω.

Η επιφάνεια είναι γράφημα z = f (x,y) = 9− x2− y2 πάνω από το τεταρτοκύκλιο

D = {(x,y) : x≥ 0, y≥ 0, x2 + y2 ≤ 9}.
Έχουμε

fx =−2x, fy =−2y, N = (− fx,− fy,1) = (2x,2y,1).

Πάνω στο S:

z = 9− x2− y2, F = 〈9− x2− y2, 9− x2− y2, x〉.
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Άρα

F ·N = 2x(9− x2− y2)+2y(9− x2− y2)+ x =
19x+18y−2x3−2x2y−2xy2−2y3.

Περνάμε σε πολικές συντεταγμένες στο D:

x = r cosθ , y = r sinθ , 0≤ r ≤ 3, 0≤ θ ≤ π
2
,

οπότε dA = r dr dθ και

F ·N = r2
[
(18−2r2)sinθ +(19−2r2)cosθ

]
.

Τελικά∫∫
S

F ·dS =
∫ π/2

0

∫ 3

0
r2[(18−2r2)sinθ +(19−2r2)cosθ

]
dr dθ .

Θέτουμε

A =
∫ 3

0
r2(18−2r2)dr =

324
5

, B =
∫ 3

0
r2(19−2r2)dr =

369
5

,

και χρησιμοποιούμε ∫ π/2

0
sinθ dθ =

∫ π/2

0
cosθ dθ = 1.

Έτσι ∫∫
S

F ·dS = A+B =
324
5

+
369
5

=
693

5
.

12 Έστω S η (κλειστή) προσανατολισμένη επιφάνεια του ημικυλίνδρου καιV ο αντίστοιχος
όγκος. Με το Θεώρημα Απόκλισης∫∫

S
F ·dS =

∫∫∫
V
(∇ ·F)dV.

Άρα αρκεί να βρούμε την απόκλιση σε κάθε περίπτωση.
(a) F = 〈1,0,0〉= i

∇ ·F =
∂
∂x

(1)+
∂
∂y

(0)+
∂
∂ z

(0) = 0.

(b) F = 〈0,1,0〉= j

∇ ·F = 0.

(c) F = 〈0,0,1〉= k

∇ ·F = 0.
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(d) F = 〈y,0,0〉= y i

∇ ·F =
∂
∂x

(y)+0+0 = 0.

(e) F = 〈0,−y,0〉=−y j

∇ ·F = 0+
∂
∂y

(−y)+0 =−1.

(f) F = 〈0,x,0〉= x j

∇ ·F = 0+
∂
∂y

(x)+0 = 0.

Επομένως ∫∫
S

F ·dS =
∫∫∫

V
(∇ ·F)dV

είναι
(a) μηδέν στις περιπτώσεις (a), (b), (c), (d), (f), αφού ∇ ·F = 0,

(b) αρνητικό στην (e), γιατί∫∫
S

F ·dS =
∫∫∫

V
(−1)dV =−Vol(V )< 0.

Επαναληπτικές ασκήσεις κεφαλαίου 3.20.9

1. Βρείτε το διάνυσμα που αντιστοιχίζει στο σημείο P = (−3,5) καθένα από τα διανυσμα-
τικά πεδία:

(a) F(x,y) = 〈xy, ,y− x〉

(b) F(x,y) = 〈4, ,8〉

(c) F(x,y) = 〈3x+y, , log2(x+ y)〉

2. Προσδιορίστε ένα διανυσματικό πεδίο F του επιπέδου, τέτοιο ώστε ‖F(x,y)‖ = 1 και
το F(x,y) να είναι ορθογώνιο στο G(x,y) = 〈x, ,y〉 για κάθε x,y.

Στις Ασκήσεις 3–6 να σχεδιάσετε το διανυσματικό πεδίο που δίνεται σε κάθε περίπτωση.

3. F(x,y) = 〈y, ,1〉

4. F(x,y) = 〈4, ,1〉

5. ∇ f , όπου f (x,y) = x2− y
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6. F(x,y) =

〈
4y√

x2 +4y2
,

−x√
x2 +16y2

〉
Υπόδειξη: Δείξτε ότι το F είναι ένα μοναδιαίο διανυσματικό πεδίο που είναι εφαπτόμενο
στην οικογένεια των ελλείψεων x2 +4y2 = c2.

Στις Ασκήσεις 7–14 να υπολογίσετε την κλίση div(F) και τον στροβιλισμό curl(F) του
διανυσματικού πεδίου που δίνεται σε κάθε περίπτωση.

7. F = 〈x2, ,y2, ,z2〉

8. F = 〈yz, ,xz, ,xy〉

9. F = 〈x3y, ,xz2, ,y2z〉

10. F = 〈sin(xy), ,cos(yz), ,sin(xz)〉

11. F = y, i− z,k

12. F = 〈ex+y, ,ey+z, ,xyz〉

13. F = ∇
(

e−x2−y2−z2
)

14. er = r−1〈x, ,y, ,z〉 όπου r =
√

x2 + y2 + z2.

15. Να αποδείξετε ότι αν οιF1,F2 καιF3 είναι παραγωγίσιμες συναρτήσεις μιας μεταβλητής,
τότε

curl
(
(F1(x),F2(y),F3(z))

)
= 0.

Χρησιμοποιήστε την ιδιότητα αυτή για να υπολογίσετε τον στροβιλισμό του διανυσματι-
κού πεδίου

F(x,y,z) =
〈

x2 + y2, lny+ z2, z3 sin(z2)ez3
〉
.

16. Να δώσετε ένα παράδειγμα ενός μη μηδενικού διανυσματικού πεδίου F με

curl(F) = 0 και div(F) = 0.

17. Να επιβεβαιώσετε την ταυτότητα

div(curl(F)) = 0

για την περίπτωση των διανυσματικών πεδίων

F = 〈xz, yex, yz〉, G = 〈z2, xy3, x2y〉.

Στις Ασκήσεις 18–26 να προσδιορίσετε αν το διανυσματικό πεδίο που δίνεται σε κάθε
περίπτωση είναι συντηρητικό ή όχι. Αν είναι, να βρείτε μια συνάρτηση δυναμικού.
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18. F(x,y) = 〈x2y, y2x〉

19. F(x,y) = 〈4x3y5, 5x4y4〉

20. F(x,y,z) = 〈sinx, ey, z〉

21. F(x,y,z) = 〈2, 4, ez〉

22. F(x,y,z) = 〈xyz, 1
2x2z, 2z2y〉

23. F(x,y) = 〈y4x3, x4y3〉

24. F(x,y,z) =
〈

y
1+ x2 , tan−1 x, 2z

〉

25. F(x,y,z) =
〈

2xy
x2 + z

, ln(x2 + z),
y

x2 + z

〉
26. F(x,y,z) = 〈xe2x, ye2z, ze2y〉

27. Προσδιορίστε ένα συντηρητικό διανυσματικό πεδίο της μορφής F = 〈g(y), h(x)〉 με
F(0,0)= 〈1,1〉, με τιςh(x) καιg(y) να είναι παραγωγίσιμες συναρτήσεις. Προσδιορίστε
όλα τα διανυσματικά πεδία αυτού του είδους.

Στις Ασκήσεις 28–31 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα
∫

C
f (x,y)ds για τη

συνάρτηση και τη διαδρομή που δίνονται σε κάθε περίπτωση.

28. f (x,y) = xy, για τη διαδρομή r(t) = 〈t, 2t−1〉, για 0≤ t ≤ 1.

29. f (x,y) = x− y, για το μοναδιαίο ημικύκλιο x2 + y2 = 1, y≥ 0.

30. f (x,y,z) = ex− y
2
√

2z
, για τη διαδρομή r(t) =

〈
ln t,
√

2 t, 1
2t2
〉
, 1≤ t ≤ 2.

31. f (x,y,z) = x+2y+ z, για την έλικα r(t) = 〈cos t, sin t, t〉, 0≤ t ≤ π
2
.

32. Προσδιορίστε τη συνολική μάζα μιας ράβδου σε σχήμαL που αποτελείται από τα τμήματα
(2t,2) και (2,2−2t) για 0≤ t ≤ 1 (τα μήκη εκφράζονται σε cm), αν η πυκνότητα μάζας
είναι δ (x,y) = x2y g/cm.

33. Υπολογίστε το διανυσματικό πεδίο F = ∇ f , όπου f (x,y,z) = xyez και υπολογίστε το

επικαμπύλιο ολοκλήρωμα
∫

C
F ·dr αν:

(a) ΗC είναι οποιαδήποτε καμπύλη που ξεκινά από το σημείο (1,1,0) και καταλήγει
στο (3,e,−1).

(b) Η C είναι το σύνορο του τετραγώνου
0≤ x≤ 1, 0≤ y≤ 1

το οποίο διαγράφεται αντι-ωρολογιακά.
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34. Υπολογίστε το επικαμπύλιο ολοκλήρωμα∫
C1

ydx+ x2ydy,

όπου C1 η προσανατολισμένη καμπύλη
του Σχήματος 3.75(α).

Σχήμα 3.75

35. Έστω το διανυσματικό πεδίο

F(x,y) = 〈9y− y3, e
√

y (x2−3x)〉

καιC2 η προσανατολισμένη καμπύλη του Σχήματος 3.75(β).
(a) Δείξτε ότι το πεδίο F δεν είναι συντηρητικό.

(b) Δείξτε ότι ∫
C2

F ·dr = 0

χωρίς να υπολογίσετε αναλυτικά το ολοκλήρωμα.

Υπόδειξη: Δείξτε ότι το πεδίο F είναι ορθογώνιο στις πλευρές του τετραγώνου.

Στις Ασκήσεις 36–39 να υπολογίσετε το επικαμπύλιο ολοκλήρωμα.∫
C

F ·dr

για το διανυσματικό πεδίο και τη διαδρομή που δίνεται σε κάθε περίπτωση.

36.

F(x,y) =
〈

2y
x2 +4y2 ,

x
x2 +4y2

〉
,

r(t) = 〈cos t, 1
2 sin t〉, 0≤ t ≤ 2π.

37.
F(x,y) = 〈2xy, x2 + y2〉,

για το τμήμα του μοναδιαίου κύκλου στο πρώτο τεταρτημόριο, αντιωρολογιακά.

38.
F(x,y,z) = 〈x2y, y2z, z2x〉,

r(t) = 〈e−t , e−2t , e−3t〉, 0≤ t < ∞.

39.
F = ∇ f , f (x,y,z) = 4x2 ln(1+ y4 + z2),
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r(t) = 〈t3, ln(1+ t2), et〉, 0≤ t ≤ 1.

40. Θεωρήστε τα επικαμπύλια ολοκληρώματα∫
C

F · dr για τα διανυσματικά πεδία

F και τις διαδρομές r του Σχήματος
3.76 Ποια δύο από αυτά τα επικαμπύλια
ολοκληρώματα φαίνονται να είναι μηδέν;
Ποιο από τα άλλα δύο φαίνεται να έχει
αρνητική τιμή;

Σχήμα 3.76

41. Υπολογίστε το έργο που απαιτείται για να μετακινηθεί ένα αντικείμενο από το σημείο
P = (1,1,1) στο σημείο Q = (3,−4,−2) ενάντια στο πεδίο δυνάμεων F(x,y,z) =
−12r−4〈x,y,z〉, (οι αποστάσεις σε m, η δύναμη σε N), όπου

r =
√

x2 + y2 + z2.

Υπόδειξη: Προσδιορίστε μια συνάρτηση δυναμικού για το πεδίο F.

42. Προσδιορίστε τις τιμές των σταθερών a, b και c ώστε η

G(u,v) = (u+av, bu+ v, 2u− c)

να παραμετρά το επίπεδο 3x− 4y + z = 5. Υπολογίστε τα διανύσματα Tu, Tv και
N(u,v).

43. Υπολογίστε το ολοκλήρωμα της συνάρτησης f (x,y,z)= ez πάνωστο τμήμα του επιπέδου
x+2y+2z = 3 με x,y,z≥ 0, δηλαδή το ολοκλήρωμα∫∫

S
f (x,y,z)dS.

44. Ἔστω S η επιφάνεια που παραμετράται από την

G(u,v) =
(
2usin v

2 , 2ucos v
2 , 3v

)
για 0≤ u≤ 1 και 0≤ v≤ 2π .

(a) Υπολογίστε τα εφαπτόμενα διανύσματα Tu και Tv καθώς και το κάθετο διάνυσμα
N(u,v) στο σημείο P = G

(
1, π

3

)
.

(b) Βρείτε την εξίσωση του εφαπτόμενου επιπέδου στο σημείο P.

(c) Υπολογίστε το εμβαδόν της επιφάνειας S.

45. Υπολογίστε το επιφανειακό ολοκλήρωμα
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∫∫
S

x2ydS,

αν S είναι η επιφάνεια z =
√

3x+ y2,−1≤ x≤ 1, 0≤ y≤ 1.

46. Υπολογίστε το επιφανειακό ολοκλήρωμα∫∫
S
(x2 + y2)e−z dS,

αν S είναι η επιφάνεια του κυλίνδρου με εξίσωση x2 + y2 = 9, για 0≤ z≤ 10.

47. Υποθέστε ότι S είναι η επιφάνεια του άνω ημισφαιρίου x2 + y2 + z2 = 1, z ≥ 0. Για
καθεμία από τις συναρτήσεις α)–δ) να προσδιορίσετε αν το επιφανειακό ολοκλήρωμα∫∫

S
f dS

είναι θετικό, αρνητικό ή μηδέν (χωρίς να το υπολογίσετε). Να δικαιολογήσετε την επιλογή
σας σε κάθε περίπτωση.

α) f (x,y,z) = y3

β) f (x,y,z) = z3

γ) f (x,y,z) = xyz

δ) f (x,y,z) = z2−2

48. Υποθέστε ότι S είναι ένα μικρό τμήμα μιας επιφάνειας με παραμετρική G(u,v), 0 ≤
u ≤ 0.1, 0 ≤ v ≤ 0.1 έτσι ώστε το κάθετο διάνυσμα N(u,v) για (u,v) = (0,0) να
είναι το N = 〈2,−2,4〉. Χρησιμοποιήστε την Εξίσωση

εµβαδoν(Si j)≈ ‖N(ui j,vi j)‖εµβαδoν(Ri j)

για να εκτιμήσετε το εμβαδόν της S.

49. Το άνω μισό της σφαίρας x2+y2+z2 = 9
παραμετράται από τη

G(r,θ) =
(
r cosθ , r sinθ ,

√
9− r2

)
σε κυλινδρικές συντεταγμένες (βλ. Σχήμα
3.77).

Σχήμα 3.77
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(a) Υπολογίστε το N = Tr×Tθ στο σημείο G
(

2,
π
3

)
.

(b) Χρησιμοποιήστε την Εξίσωση (3) της Ενότητας 16.4 για να εκτιμήσετε το εμβαδόν
της επιφάνειας G(R), όπου R είναι το μικρό χωρίο που ορίζεται από τις διπλές
ανισώσεις:

2≤ r ≤ 2.1,
π
3
≤ θ ≤ π

3
+0.05

Στις Ασκήσεις 50–55 να υπολογίσετε το επιφανειακό ολοκλήρωμα∫∫
S

F ·dS

για το διανυσματικό πεδίο και την προσανατολισμένη επιφάνεια ή την παραμετρημένη
επιφάνεια που δίνονται σε κάθε περίπτωση.

50. F(x,y,z) = 〈y, x, exz〉, x2 + y2 = 9, x≥ 0, y≥ 0, −3≤ z≤ 3, με κάθετο διάνυσμα
με κατεύθυνση προς τα έξω.

51. F(x,y,z) = 〈−y, z, −x〉,

G(u,v) = (u+3v, v−2u, 2v+5)

0≤ u≤ 1, 0≤ v≤ 1, με κάθετο διάνυσμα κατευθυνόμενο προς τα επάνω.

52. F(x,y,z) = 〈0, 0, x2 + y2〉, x2 + y2 + z2 = 4, z≥ 0.

53.
F(x,y,z) = 〈z, 0, z2〉,G(u,v) = (vcoshu, vsinhu, v)0≤ u≤ 1, 0≤ v≤ 1,

με κάθετο διάνυσμα κατευθυνόμενο προς τα επάνω.

54.
F(x,y,z) = 〈0, 0, xzexy〉,z = xy, 0≤ x≤ 1, 0≤ y≤ 1,

με κάθετο διάνυσμα με κατεύθυνση προς τα επάνω.

55.
F(x,y,z) = 〈0, 0, z〉, 3x2 +2y2 + z2 = 1, z≥ 0,

με κάθετο διάνυσμα με κατεύθυνση προς τα επάνω.

56. Υπολογίστε το συνολικό φορτίο του κυλίνδρου

x2 + y2 = R2, 0≤ z≤ H

αν η πυκνότητα του φορτίου σε κυλινδρικές συντεταγμένες είναι

δ (θ ,z) = Kz2 cos2 θ ,

όπου K μια σταθερά.
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57. Υπολογίστε τον ρυθμό με τον οποίο ρέει ένα ρευστό με πεδίο ταχυτήτων

v = 〈2x, y, xy〉 m/s

διασχίζοντας το τμήμα του κυλίνδρου

x2 + y2 = 9, x≥ 0, y≥ 0, 0≤ z≤ 4

(οι αποστάσεις εκφράζονται σε m).

58. Για το πεδίο ταχυτήτων v της Άσκησης 57 υπολογίστε τον ρυθμό με τον οποίο ρέει το
ρευστό διασχίζοντας το τμήμα του ελλειπτικού κυλίνδρου με εξίσωση

x2

4 + y2 = 1,

με x≥ 0, y≥ 0 και 0≤ z≤ 4.

59. Υπολογίστε τη ροή του διανυσματικού πεδίου E(x,y,z) = 〈0, 0, x〉 μέσα από το τμήμα
του ελλειψοειδούς

4x2 +9y2 + z2 = 36

με z≥ 3, x≥ 0, y≥ 0.

Υπόδειξη: Χρησιμοποιήστε την παραμέτρηση

G(r,θ) =
(

3r cosθ , 2r sinθ , 6
√

1− r2
)

Λυμένες ασκήσεις 3.20.10

1.
P = (−3,5).

(a) F(x,y) = 〈xy, y− x〉.

F(−3,5) = 〈(−3) ·5, 5− (−3)〉= 〈−15, 8〉.

(b) F(x,y) = 〈4, 8〉 (σταθερό πεδίο).

F(−3,5) = 〈4, 8〉.

(c) F(x,y) = 〈3x+y, log2(x+ y)〉.

F(−3,5) = 〈3(−3+5), log2(−3+5)〉= 〈32, log2 2〉= 〈9, 1〉.

2. Βήμα 1 Θέλουμε

F ·G = 0 =⇒ F1(x,y)x+F2(x,y)y = 0.
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Ένα απλό διάνυσμα κάθετο στο 〈x,y〉 είναι

〈−y, x〉.

Βήμα 2: Κανονικοποίηση (μήκος = 1).

‖F‖= 1 =⇒ F(x,y) = 1√
x2+y2

〈−y, x〉.

Αυτό ισχύει για όλα τα (x,y) 6= (0,0).

3.
F(x,y) = 〈y, 1〉.

Τα διανύσματα έχουν οριζόντια συνιστώσα= y και κάθετη= 1. Άρα όλα τα διανύσματα
”δείχνουν” προς τα πάνω και η κλίση τους αυξάνει με το y.

4.
F(x,y) = 〈4, 1〉.

Σταθερό διανυσματικό πεδίο: όλα τα διανύσματα έχουν την ίδια διεύθυνση και μέτρο.
Κάθε σημείο του επιπέδου έχει το ίδιο βέλος προς τα δεξιά και λίγο προς τα πάνω.

5.
F = ∇ f , f (x,y) = x2− y.

∇ f =
〈

∂ f
∂x

,
∂ f
∂y

〉
= 〈2x,−1〉.

Τα διανύσματα δείχνουν προς τα δεξιά όταν x > 0, προς τα αριστερά όταν x < 0, και
έχουν σταθερή κατακόρυφη συνιστώσα−1.

7.
F = 〈x2, y2, z2〉

∇ ·F =
∂
∂x

(x2)+
∂
∂y

(y2)+
∂
∂ z

(z2) = 2x+2y+2z.

∇×F =
〈 ∂

∂y
(z2)− ∂

∂ z
(y2),

∂
∂ z

(x2)− ∂
∂x

(z2),
∂
∂x

(y2)− ∂
∂y

(x2)
〉
= 〈0,0,0〉.

8.
F = 〈yz, xz, xy〉

∇ ·F =
∂
∂x

(yz)+
∂
∂y

(xz)+
∂
∂ z

(xy) = 0.
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∇×F =
〈 ∂

∂y
(xy)− ∂

∂ z
(xz),

∂
∂ z

(yz)− ∂
∂x

(xy),
∂
∂x

(xz)− ∂
∂y

(yz)
〉
= 〈0,0,0〉.

9.
F = 〈x3y, xz2, y2z〉

∇ ·F =
∂
∂x

(x3y)+
∂
∂y

(xz2)+
∂
∂ z

(y2z) = 3x2y+ y2.

∇×F =
〈 ∂

∂y
(y2z)− ∂

∂ z
(xz2),

∂
∂ z

(x3y)− ∂
∂x

(y2z),
∂
∂x

(xz2)− ∂
∂y

(x3y)
〉
=

〈2z(y− x), 0, z2− x3〉.

10.
F = 〈sin(xy), cos(yz), sin(xz)〉

∇ ·F =
∂
∂x

(
sin(xy)

)
+

∂
∂y

(
cos(yz)

)
+

∂
∂ z

(
sin(xz)

)
=

ycos(xy)− zsin(yz)+ xcos(xz).

∇×F =
〈 ∂

∂y

(
sin(xz)

)
− ∂

∂ z

(
cos(yz)

)
,

∂
∂ z

(
sin(xy)

)
−

∂
∂x

(
sin(xz)

)
,

∂
∂x

(
cos(yz)

)
− ∂

∂y

(
sin(xy)

)〉
=

〈ysin(yz), −zcos(xz), −xcos(xy)〉.

18.
F(x,y) = 〈x2y, y2x〉.

Έχουμε

∂P
∂y

= x2,
∂Q
∂x

= y2.

Αφού γενικά x2 6= y2, το πεδίο δεν είναι συντηρητικό.

19.
F(x,y) = 〈4x3y5, 5x4y4〉.

∂P
∂y

= 20x3y4,
∂Q
∂x

= 20x3y4,
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άρα το πεδίο είναι συντηρητικό.
Βρίσκουμε f ώστε ∇ f = F.

fx = 4x3y5 =⇒ f = x4y5 +g(y), fy = 5x4y4 +g′(y) = 5x4y4 =⇒ g′(y) = 0.

Άρα (παραλείποντας σταθερά δυναμικού)

f (x,y) = x4y5.

20.
F(x,y,z) = 〈sinx, ey, z〉.

∇×F = 0

στο R3, άρα το πεδίο είναι συντηρητικό.

fx = sinx =⇒ f =−cosx+g(y,z), fy = gy = ey =⇒ g = ey +h(z), fz =

h′(z) = z =⇒ h(z) =
1
2

z2.

Άρα

f (x,y,z) =−cosx+ ey +
1
2

z2.

21.
F(x,y,z) = 〈2, 4, ez〉.

∇×F = 0

στο R3, οπότε είναι συντηρητικό.

fx = 2 =⇒ f = 2x+g(y,z), fy = gy = 4 =⇒ g = 4y+h(z), fz = h′(z) =
ez =⇒ h(z) = ez.

Άρα

f (x,y,z) = 2x+4y+ ez.

22.
F(x,y,z) = 〈xyz,

1
2

x2z, 2z2y〉.

(∇×F)1 =
∂
∂y

(2z2y)− ∂
∂ z

(1
2

x2z
)
= 2z2− 1

2
x2 6= 0

γενικά, άρα το πεδίο δεν είναι συντηρητικό.
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23.
F(x,y) = 〈y4x3, x4y3〉.

∂P
∂y

= 4x3y3,
∂Q
∂x

= 4x3y3,

οπότε είναι συντηρητικό.

fx = x3y4 =⇒ f =
1
4

x4y4 +g(y), fy = x4y3 +g′(y) = x4y3 =⇒ g′(y) = 0.

Άρα

f (x,y) =
1
4

x4y4.

24.

F(x,y,z) =
〈

y
1+ x2 , tan−1 x, 2z

〉
.

∇×F = 0

στο R3, άρα είναι συντηρητικό.

fz = 2z =⇒ f = z2 +g(x,y), fx = gx =
y

1+ x2 =⇒ g =

y tan−1 x+h(y), fy = tan−1 x+h′(y) = tan−1 x =⇒ h′(y) = 0.

Άρα

f (x,y,z) = z2 + y tan−1 x.

25.

F(x,y,z) =
〈

2xy
x2 + z

, ln(x2 + z),
y

x2 + z

〉
, x2 + z > 0.

Στην περιοχή x2 + z > 0 ισχύει

∇×F = 0,

άρα το πεδίο είναι συντηρητικό.

fz =
y

x2 + z
=⇒ f = y ln(x2 + z)+g(x,y), fy = ln(x2 + z)+gy =

ln(x2 + z) =⇒ gy = 0

⇒ g = h(x), fx = y
2x

x2 + z
+h′(x) =

2xy
x2 + z

=⇒ h′(x) = 0.
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Άρα

f (x,y,z) = y ln(x2 + z).

28.
f (x,y) = xy, r(t) = 〈t,2t−1〉, 0≤ t ≤ 1.

f (r(t)) = t(2t−1) = 2t2− t, r′(t) = 〈1,2〉, ‖r′(t)‖=
√

5.

Άρα ∫
C

f ds =
∫ 1

0
(2t2− t)

√
5dt =

√
5
[

2
3

t3− 1
2

t2
]1

0
=

√
5

6
.

29.
f (x,y) = x− y, x2 + y2 = 1, y≥ 0.

Παράμετρος: x = cos t, y = sin t, 0≤ t ≤ π , οπότε ds = dt .

f (r(t)) = cos t− sin t,
∫

C
f ds =

∫ π

0
(cos t− sin t)dt = [sin t + cos t]π0 =−2.

30.
f (x,y,z) = ex− y

2
√

2z
, r(t) = 〈ln t,

√
2 t,

1
2

t2〉, 1≤ t ≤ 2.

Στην τροχιά: z =
1
2

t2⇒ 2z = t2,
√

2z = t ,

f (r(t)) = t−
√

2
2

.

Επίσης

r′(t) =
〈

1
t
,
√

2, t
〉
, ‖r′(t)‖=

√
1
t2 +2+ t2 =

t2 +1
t

.

Άρα ∫
C

f ds =
∫ 2

1

(
t−
√

2
2

)
t2 +1

t
dt =

∫ 2

1

(
t2 +1−

√
2

2
t−
√

2
2t

)
dt

=

[
1
3

t3 + t−
√

2
4

t2−
√

2
2

ln t

]2

1

=
10
3
− 3
√

2
4
−
√

2
2

ln2.
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31.
f (x,y,z) = x+2y+ z, r(t) = 〈cos t,sin t, t〉, 0≤ t ≤ π

2
.

f (r(t)) = cos t +2sin t + t, r′(t) = 〈−sin t,cos t,1〉, ‖r′(t)‖=
√

2.

Άρα ∫
C

f ds =
√

2
∫ π/2

0
(cos t +2sin t + t)dt =

√
2
[
sin t−2cos t +

1
2

t2
]π/2

0

=
√

2
(

1+
π2

8
+2
)
=
√

2
(

3+
π2

8

)
.

32. Το σχήμα L αποτελείται από τα τμήματα

r1(t) = 〈2t,2〉, r2(t) = 〈2,2−2t〉, 0≤ t ≤ 1,

με πυκνότητα μάζας δ (x,y) = x2y.
Πρώτο τμήμα:

x = 2t, y = 2⇒ δ = 8t2, r′1(t) = 〈2,0〉, ‖r′1(t)‖= 2,

m1 =
∫ 1

0
8t2 ·2dt = 16

[
1
3

t3
]1

0
=

16
3
.

Δεύτερο τμήμα:

x = 2, y = 2−2t⇒ δ = 4(2−2t) = 8−8t, r′2(t) = 〈0,−2〉, ‖r′2(t)‖= 2,

m2 =
∫ 1

0
(8−8t) ·2dt = 16

∫ 1

0
(1− t)dt = 16

[
t− 1

2
t2
]1

0
= 8.

Συνολική μάζα:

m = m1 +m2 =
16
3
+8 =

40
3

g.

33.
f (x,y,z) = xyez, F = ∇ f .

Υπολογίζουμε

F =

〈
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂ z

〉
= 〈yez, xez, xyez〉.

Επειδή F = ∇ f είναι συντηρητικό πεδίο,
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∫
C

F ·dr = f (B)− f (A)

για κάθε καμπύλη C από A σε B.
(a) A = (1,1,0), B = (3,e,−1).

f (1,1,0) = 1 ·1 · e0 = 1, f (3,e,−1) = 3 · e · e−1 = 3,

άρα ∫
C

F ·dr = 3−1 = 2.

(b) C είναι το σύνορο του τετραγώνου 0≤ x≤ 1, 0≤ y≤ 1 (π.χ. στο επίπεδο z = 0),
διαγραμμένο αντιωρολογιακά.
Η C είναι κλειστή καμπύλη, οπότε∫

C
F ·dr = f (τέλος)− f (αρχή) = 0.

∫
C F ·dr

36.

F(x,y) =
〈

2y
x2 +4y2 ,

x
x2 +4y2

〉
, r(t) = 〈cos t, 1

2 sin t〉, 0≤ t ≤ 2π.

Στην τροχιά:

x = cos t, y = 1
2 sin t ⇒ x2 +4y2 = cos2 t + sin2 t = 1,

οπότε

F(r(t)) = 〈2y,x〉= 〈sin t, cos t〉.
Επίσης

r′(t) = 〈−sin t, 1
2 cos t〉.

Άρα

F(r(t)) · r′(t) = sin t(−sin t)+ cos t
(

1
2 cos t

)
=−sin2 t + 1

2 cos2 t = 3
2 cos2 t−1.

∫
C F ·dr =

∫ 2π

0

(
3
2 cos2 t−1

)
dt =

∫ 2π

0

(3
4(1+ cos2t)−1

)
dt

=
∫ 2π

0

(
−1

4 +
3
4 cos2t

)
dt =−1

4(2π)+ 3
4

[
1
2 sin2t

]2π

0
=−π

2
.

37.
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F(x,y) = 〈2xy, x2 + y2〉,

για το τόξο του μοναδιαίου κύκλου στο πρώτο τεταρτημόριο, αντιωρολογιακά:

r(t) = 〈cos t, sin t〉, 0≤ t ≤ π
2
.

F(r(t)) = 〈2cos t sin t, 1〉, r′(t) = 〈−sin t, cos t〉.

F(r(t)) · r′(t) = 2cos t sin t(−sin t)+1 · cos t = cos t
(
1−2sin2 t

)
= cos t cos2t.

∫
C F ·dr =

∫ π/2

0
cos t cos2t dt =

∫ π/2

0

1
2
(
cos3t + cos t

)
dt

=
1
2

[1
3

sin3t + sin t
]π/2

0
=

1
2

(
1
3
(−1)+1

)
=

1
3
.

38.
F(x,y,z) = 〈x2y, y2z, z2x〉, r(t) = 〈e−t ,e−2t ,e−3t〉, 0≤ t < ∞.

Στην τροχιά:

x = e−t , y = e−2t , z = e−3t ⇒ F(r(t)) = 〈e−4t , e−7t , e−7t〉.

r′(t) = 〈−e−t , −2e−2t , −3e−3t〉.

F(r(t)) · r′(t) =−e−5t−2e−9t−3e−10t .

Άρα ∫
C F ·dr =

∫ ∞

0

(
−e−5t−2e−9t−3e−10t)dt

=−1
5
−2

1
9
−3

1
10

=−
(

1
5
+

2
9
+

3
10

)
=−13

18
.

43.
f (x,y,z) = ez, S : x+2y+2z = 3, x,y,z≥ 0.

Λύνουμε ως προς z:

z =
3− x−2y

2
, 0≤ x≤ 3, 0≤ y≤ 3− x

2
.

Για επιφάνεια-γράφημα z = z(x,y) ισχύει
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dS =
√

1+ z2
x + z2

y dxdy.

Εδώ

zx =−
1
2
, zy =−1 ⇒

√
1+ z2

x + z2
y =

√
1+

1
4
+1 =

3
2
.

Επίσης

f (x,y,z) = ez = e(3−x−2y)/2.

Άρα ∫∫
S

f (x,y,z)dS =
∫ 3

0

∫ (3−x)/2

0
e(3−x−2y)/2 3

2
dydx.

Υπολογίζουμε πρώτα ως προς y:∫ (3−x)/2

0
e(3−x−2y)/2 dy =

∫ (3−x)/2

0
e(3−x)/2e−y dy = e(3−x)/2(1− e−(3−x)/2)=

e(3−x)/2−1.

Έτσι ∫∫
S

f dS =
3
2

∫ 3

0

(
e(3−x)/2−1

)
dx.

Θέτουμε u =
3− x

2
, οπότε dx =−2du, u(0) =

3
2
, u(3) = 0:

∫ 3

0

(
e(3−x)/2−1

)
dx = 2

∫ 3/2

0
(eu−1)du = 2

[
eu−u

]3/2
0 = 2

(
e3/2− 5

2
)
.

Τελικά ∫∫
S

f dS =
3
2
·2
(

e3/2− 5
2

)
= 3e3/2− 15

2
.

44.
G(u,v) = (2usin v

2 , 2ucos v
2 , 3v), 0≤ u≤ 1, 0≤ v≤ 2π.

(a) Εφαπτόμενα διανύσματα:

Tu = Gu(u,v) = (2sin v
2 , 2cos v

2 , 0),

Tv = Gv(u,v) = (ucos v
2 , −usin v

2 , 3).

Κάθετο διάνυσμα:

N(u,v) = Gu×Gv =
(
6cos v

2 , −6sin v
2 , −2u

)
.
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Στο σημείο P = G(1,
π
3
) (όπου v

2 = π
6 , sin

π
6
=

1
2
, cos π

6 =

√
3

2
) έχουμε

P = (1,
√

3,π), Tu(1, π
3 ) = (1,

√
3,0), Tv(1, π

3 ) =
(√3

2
,−1

2
,3
)
,

N(1, π
3 ) = (3

√
3,−3,−2).

(b) Η εξίσωση του εφαπτόμενου επιπέδου στο P είναι

N(P) ·
(
(x,y,z)−P

)
= 0

δηλαδή

3
√

3(x−1)−3(y−
√

3)−2(z−π) = 0.

(c) Εμβαδόν της επιφάνειας:

|N(u,v)|=
√

36cos2 v
2 +36sin2 v

2 +4u2 =
√

36+4u2 = 2
√

9+u2.

Άρα

Εμβ(S) =
∫ 2π

0

∫ 1

0
2
√

9+u2 dudv = 2π ·2
∫ 1

0

√
9+u2 du.

Γνωστό ολοκλήρωμα:∫ √
u2 +9du =

u
2

√
u2 +9+

9
2

ln
(
u+
√

u2 +9
)
+C.

Άρα ∫ 1

0

√
9+u2 du =

1
2

√
10+

9
2

ln
1+
√

10
3

.

Τελικά

Εμβ(S) = 4π

(
1
2

√
10+

9
2

ln
1+
√

10
3

)
= 2π

√
10+18π ln

1+
√

10
3

.

45. ∫∫
S

x2ydS, S : z =
√

3x+ y2, 0≤ x≤ 1, 0≤ y≤ 1.

Παίρνουμε z = f (x,y) =
√

3x+ y2. Τότε

fx =
3

2
√

3x+ y2
, fy =

y√
3x+ y2

.

Για επιφάνεια-γράφημα ισχύει
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dS =
√

1+ f 2
x + f 2

y dxdy =

√
1+

9
4(3x+ y2)

+
y2

3x+ y2 dxdy =√
3x+2y2 + 9

4
3x+ y2 dxdy.

Επομένως

∫∫
S

x2ydS =
∫ 1

0

∫ 1

0
x2y

√
3x+2y2 + 9

4
3x+ y2 dxdy.

50.
F(x,y,z) = 〈y, x, exz〉, x2 + y2 = 9, x≥ 0, y≥ 0, −3≤ z≤

3, με κάθετο προς τα έξω.

x = 3cosθ , y = 3sinθ , z = z, 0≤ θ ≤ π
2
, −3≤ z≤ 3.

G(θ ,z) = (3cosθ ,3sinθ ,z), Gθ = (−3sinθ ,3cosθ ,0), Gz = (0,0,1).

N = Gθ ×Gz = (3cosθ ,3sinθ ,0)

(ακτινικά προς τα έξω).

F(G(θ ,z)) = 〈3sinθ , 3cosθ , e3zcosθ 〉.

F ·N = 3sinθ ·3cosθ +3cosθ ·3sinθ = 18sinθ cosθ = 9sin2θ .
Άρα ∫∫

S
F ·dS =

∫ π/2

0

∫ 3

−3
9sin2θ dzdθ =

∫ π/2

0
9sin2θ (6)dθ =

54
∫ π/2

0
sin2θ dθ = 54.

51.
F(x,y,z) = 〈−y, z, −x〉, G(u,v) = (u+3v, v−2u, 2v+5), 0≤ u≤ 1, 0≤

v≤ 1, με κάθετο προς τα επάνω.

Gu = (1,−2,0), Gv = (3,1,2).

N = Gu×Gv =

∣∣∣∣∣∣
i j k
1 −2 0
3 1 2

∣∣∣∣∣∣= (−4,−2, 7),
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όπου ο z–συντελεστής είναι θετικός (προς τα επάνω).
Στην επιφάνεια:

x = u+3v, y = v−2u, z = 2v+5,

οπότε

F(G(u,v)) = 〈2u− v, 2v+5, −u−3v〉.

F ·N = (2u− v)(−4)+(2v+5)(−2)+(−u−3v)7 =−15u−21v−10.

Άρα ∫∫
S

F ·dS =
∫ 1

0

∫ 1

0
(−15u−21v−10)dudv.

∫ 1

0
(−15u−21v−10)du =−15

2
−21v−10 =−35

2
−21v,

∫ 1

0

(
−35

2
−21v

)
dv =−35

2
− 21

2
=−56

2
=−28.

∫∫
S

F ·dS =−28.

52.
F(x,y,z) = 〈0, 0, x2 + y2〉, S : x2 + y2 + z2 = 4, z≥ 0, με κάθετο προς τα έξω.

Κλείνουμε την επιφάνεια με τον δίσκο

B : z = 0, x2 + y2 ≤ 4

και εφαρμόζουμε το θεώρημα απόκλισης.

∇ ·F =
∂
∂x

0+
∂
∂y

0+
∂
∂ z

(x2 + y2) = 0.

Άρα η ολική ροή από την κλειστή επιφάνεια S∪B είναι μηδέν:∫∫
S

F ·dS+
∫∫

B
F ·dS = 0.

Στον δίσκο B (στο z = 0) το κάθετο διάνυσμα προς τα κάτω είναι nB = 〈0,0,−1〉 και

F = 〈0,0,x2 + y2〉 ⇒ F ·nB =−(x2 + y2).

Σε πολικές συντεταγμένες x = r cosθ , y = r sinθ , r ∈ [0,2], θ ∈ [0,2π], έχουμε∫∫
B

F ·dS =
∫ 2π

0

∫ 2

0
−(r2)r dr dθ =−

∫ 2π

0

∫ 2

0
r3 dr dθ =−

∫ 2π

0
4dθ =−8π.

Επομένως
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∫∫
S

F ·dS =−
∫∫

B
F ·dS = 8π.

53.
F(x,y,z) = 〈z,0,z2〉, G(u,v) = (vcoshu, vsinhu, v), 0≤ u≤ 1, 0≤ v≤

1, με κάθετο προς τα επάνω.

Gu = (vsinhu, vcoshu, 0), Gv = (coshu, sinhu, 1).

N(u,v) = Gv×Gu = (−vcoshu, vsinhu, v)

(έχει θετική z–συνιστώσα).

F(G(u,v)) = 〈v,0,v2〉 ⇒ F ·N = v(−vcoshu)+ v2 · v =−v2 coshu+ v3.

∫∫
S

F ·dS =
∫ 1

0

∫ 1

0
(−v2 coshu+ v3)dudv =

∫ 1

0
(−v2 sinh1+ v3)dv =

−sinh1
3

+
1
4
.

54.
F(x,y,z) = 〈0,0,xzexy〉, z = xy, 0≤ x≤ 1, 0≤ y≤ 1, με κάθετο προς τα επάνω.

Παραμετροποίηση:

G(x,y) = (x,y,xy), Gx = (1,0,y), Gy = (0,1,x).

N = Gx×Gy = (−y,−x,1)

(θετική z–συνιστώσα).

F(G(x,y)) = 〈0,0,x2yexy〉 ⇒ F ·N = x2yexy.

∫∫
S

F ·dS =
∫ 1

0

∫ 1

0
x2yexy dydx.

Για σταθερό x: ∫ 1

0
yexy dy =

1
x2

∫ x

0
ses ds =

(x−1)ex +1
x2 ,

οπότε ∫ 1

0

∫ 1

0
x2yexy dydx =

∫ 1

0

(
(x−1)ex +1

)
dx = 3− e.

55.
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F(x,y,z) = 〈0,0,z〉, 3x2 +2y2 + z2 = 1, z≥ 0, με κάθετο προς τα επάνω.

Η επιφάνεια είναι γράφημα

z =
√

1−3x2−2y2, D = {(x,y) : 3x2 +2y2 ≤ 1}.

Για γράφημα z = z(x,y) με κάθετο προς τα επάνω,

F ·dS = zdA.

Άρα ∫∫
S

F ·dS =
∫∫

D

√
1−3x2−2y2 dA.

Θέτουμε

x =
r cosθ√

3
, y =

r sinθ√
2

, 0≤ r ≤ 1, 0≤ θ ≤ 2π,

οπότε 3x2 +2y2 = r2 και dA =
r√
6

dr dθ .

∫∫
D

√
1− r2 r√

6
dr dθ =

2π√
6

∫ 1

0
r
√

1− r2 dr.

Θέτουμε s = 1− r2, ds =−2r dr:∫ 1

0
r
√

1− r2 dr =
1
2

∫ 1

0
s1/2 ds =

1
2
· 2

3
=

1
3
.

Άρα ∫∫
S

F ·dS =
2π√

6
· 1

3
=

2π
3
√

6
.

56.
x2 + y2 = R2, 0≤ z≤ H, δ (θ ,z) = Kz2 cos2 θ (κυλινδρικές συντεταγμένες).

Πρόκειται για στερεό κύλινδρο ακτίνας R και ύψους H . Σε κυλινδρικές συντεταγμένες

0≤ r ≤ R, 0≤ θ ≤ 2π, 0≤ z≤ H, dV = r dr dθ dz.

Ο συνολικός φόρτιος

Q =
∫∫∫

V
δ dV =

∫ H

0

∫ 2π

0

∫ R

0
Kz2 cos2 θ r dr dθ dz.

∫ R

0
r dr =

R2

2
,

∫ 2π

0
cos2 θ dθ = π,

∫ H

0
z2 dz =

H3

3
.

Άρα
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Q = K · R
2

2
·π · H

3

3
=

KπR2H3

6
.

57.
v(x,y,z) = 〈2x, y, xy〉 m/s, x2 + y2 = 9, x≥ 0, y≥ 0, 0≤ z≤ 4.

Παραμετροποίηση του τμήματος του κυλίνδρου:

G(θ ,z) = (3cosθ , 3sinθ , z), 0≤ θ ≤ π
2
, 0≤ z≤ 4.

Gθ = (−3sinθ ,3cosθ ,0), Gz = (0,0,1),

N = Gθ ×Gz = (3cosθ ,3sinθ ,0)

(ακτινικό προς τα έξω).

v(G(θ ,z)) = 〈6cosθ , 3sinθ , 9cosθ sinθ〉.

v ·N = 6cosθ ·3cosθ +3sinθ ·3sinθ = 18cos2 θ +9sin2 θ = 9(1+ cos2 θ).

Ο ρυθμός ροής (όγκος ανά δευτερόλεπτο) είναι

Φ =
∫∫

S
v ·dS =

∫ 4

0

∫ π/2

0
9(1+ cos2 θ)dθ dz.

∫ π/2

0
(1+ cos2 θ)dθ =

[
θ +

1
2

(
θ +

sin2θ
2

)]π/2

0
=

3π
4
.

Φ = 9 ·4 · 3π
4

= 27π m3/s.
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3.21 Τα θεμελιώδη θεωρήματα της Διανυσματικής Ανάλυσης

Σε αυτό το τελευταίο κεφάλαιο θα μελετήσουμε τρεις γενικεύσεις της πρώτης πρότασης του θεμε-
λιώδους θεωρήματος του Λογισμού, σύμφωνα με το οποίο∫ b

a
F ′(x)dx = F(b)−F(a).

Αν σκεφτούμε ότι το σύνορο του διαστήματος [a,b] αποτελείται μόνο από δύο σημεία, τα {a,b},
τότε μπορούμε να καταλήξουμε στο συμπέρασμα ότι η πρώτη πρόταση του θεμελιώδους θεωρήμα-
τος του Λογισμού αναφέρει ότι μπορούμε να προσδιορίσουμε το ολοκλήρωμα της παραγώγου
μιας συνάρτησης πάνω σε ένα διάστημα υπολογίζοντας μόνο τις τιμές της συνάρτησης στο σύνορο
του διαστήματος στο οποίο γίνεται η ολοκλήρωση. Το πρώτο από τα καινούργια θεωρήματα που
θα αναλύσουμε στο κεφάλαιο αυτό, το θεώρημαGreen, αναφέρει ότι μπορούμε να προσδιορίσουμε
το διπλό ολοκλήρωμα μιας συγκεκριμένης παραγώγου πάνω σε ένα χωρίο του επιπέδου xy υπολο-
γίζοντας το επικαμπύλιο ολοκλήρωμα κατά μήκος της συνοριακής καμπύλης αυτού του χωρίου.
Το δεύτερο θεώρημα που θα μελετήσουμε, το θεώρημα Stokes, μας επιτρέπει να προσδιορίσουμε
το ολοκλήρωμα μιας συγκεκριμένης παραγώγου (στην οποία εμπλέκεται ο στροβιλισμός) πάνω σε
μια επιφάνεια με συνοριακές καμπύλες στον χώρο υπολογίζοντας ένα επικαμπύλιο ολοκλήρωμα
πάνω σε αυτές. Το τρίτο και τελευταίο θεώρημα που θα παρουσιάσουμε, το θεώρημα της απόκλι-
σης, μας επιτρέπει να προσδιορίσουμε το τριπλό ολοκλήρωμα μιας συγκεκριμένης παραγώγου
(όπου εμπλέκεται ο τελεστής της απόκλισης) πάνω σε ένα στερεό του χώρου υπολογίζοντας
ένα επιφανειακό ολοκλήρωμα πάνω στην συνοριακή επιφάνειά του στερεού. Πρόκειται για το
αποκορύφωμα της προσπάθειάς μας να επεκτείνουμε τις ιδέες του Λογισμού των συναρτήσεων
μιας μεταβλητής στο περιβάλλον των πολλών μεταβλητών. Θα πρέπει βέβαια να έχουμε υπόψη
μας ότι η διανυσματική ανάλυση δεν αποτελεί τόσο ένα τερματικό σημείο όσο την πύλη που
θα μας οδηγήσει στην πιο προχωρημένη μαθηματική θεωρία των πολλαπλοτήτων, αλλά και στη
σειρά εφαρμογών σε πολλά πεδία, συμπεριλαμβανομένων της φυσικής, της βιολογίας αλλά και
των επιστήμων μηχανικών και υπολογιστών. Προσθέτοντας τις τοπικές περιδινήσεις (στροβιλισ-
μούς–curl) πάνω στον ουρανό στον πίνακα
του Van Gogh με τίτλο Έναστρη Νύχτα
προκύπτει η συνολική κυκλοφορία κατά
μήκος του συνόρου της περιοχής του
ουρανού στον πίνακα. Στο παρόν κεφάλαιο,
με τη βοήθεια των διανυσματικών πεδίων,
του στροβιλισμού (curl), των επικαμπύλιων
και επιφανειακών ολοκληρωμάτων, θα
αναλύσουμε με μαθηματικούς όρους τη
σχέση μεταξύ του στροβιλισμού και της
κυκλοφορίας μέσω του θεωρήματος Stokes:∫∫

S
(∇×F) ·dS =

∮
∂S

F ·dr

3.22 Το θεώρημα Green

Στο προηγούμενο κεφάλαιο αποδείξαμε ότι η κυκλοφορία ενός συντηρητικού διανυσματικού
πεδίου F πάνω σε οποιαδήποτε κλειστή διαδρομή είναι μηδέν. Το θεώρημα Green μας επιτρέπει
να υπολογίζουμε το προηγούμενο ολοκλήρωμα για διανυσματικά πεδία που ανήκουν στο επίπεδο
και δεν είναι συντηρητικά.
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Προκειμένου να διατυπώσουμε το θεώρημα
Green πρέπει να χρησιμοποιήσουμε
κάποια καινούργια στοιχεία συμβολισμού.
Θεωρήστε ένα χωρίο D του επιπέδου,
το σύνορο C του οποίου είναι μια απλή
κλειστή καμπύλη – είναι δηλαδή μια
κλειστή καμπύλη που δεν τέμνει τον
εαυτό της, όπως η καμπύλη που φαίνεται
στο Σχήμα 3.78. Ακολουθώντας τη
συνηθισμένη πρακτική, θα συμβολίζουμε
τη συνοριακή καμπύλη C με ∂D. Ο
συνοριακός προσανατολισμός της
καμπύλης ∂D είναι η κατεύθυνση
εκείνη που όταν την ακολουθήσουμε
κινούμενοι πάνω στη συνοριακή καμπύλη
το χωρίο παραμένει συνεχώς στα αριστερά
μας, όπως φαίνεται στο Σχήμα 3.78.
Όταν η συνοριακή καμπύλη είναι απλή,
ο συνοριακός προσανατολισμός είναι
αντι−ωρολογιακός.

Σχήμα 3.78

Θυμηθείτε τώρα ότι έχουμε χρησιμοποιήσει τους ακόλουθους δύο συμβολισμούς για το επικα-
μπύλιο ολοκλήρωμα του διανυσματικού πεδίου F = 〈F1, F2〉:∫

C
F ·dr και

∫
C

F1 dx+F2 dy

Αν η καμπύληC παραμετράται από την r(t) = 〈x(t), y(t)〉 για a≤ t ≤ b, τότε θα ισχύει:

dx = x′(t)dt, dy = y′(t)dt

∫
C

F1 dx+F2 dy =
∫ b

a
F1(x(t), y(t))x′(t)dt +F2(x(t), y(t))y′(t)dt

Στο παρόν κεφάλαιο θα υποθέτουμε ότι οι συνιστώσες όλων των διανυσματικών πεδίων έχουν
συνεχείς παραγώγους δεύτερης τάξης, ενώ επίσης και οι καμπύλες C είναι λείες (δηλαδή κάθε
καμπύλη C έχει μία παραμέτρηση για την οποία υπάρχουν οι παράγωγοι όλων των τάξεων) ή
έστω κατά τμήματα λείες (κάθε καμπύλη αποτελείται από την ένωση ενός πεπερασμένου πλήθους
λείων καμπυλών που ενώνονται μεταξύ τους στα τερματικά τους σημεία).

Θεώρημα 3.22.1ΘεώρημαGreenΑς υποθέσουμε ότιD είναι ένα χωρίο του οποίου η συνοριακή
καμπύλη ∂D είναι μια απλή κλειστή καμπύλη προσανατολισμένη αντι-ωρολογιακά. Αν οι
συνιστώσεςF1 καιF2 έχουν συνεχείς μερικές παραγώγους σε μια ανοικτή περιοχή που περιέχει
το χωρίο D, τότε ∮

∂D
F1 dx+F2 dy =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA

Σχόλιο 3.22.2 Το επικαμπύλιο ολοκλήρωμα ενός διανυσματικού πεδίου πάνω σε μια κλειστή

καμπύλη λέγεται κυκλοφορία και παριστάνεται συχνά με το σύμβολο
∮
. Το θεώρημα Green
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μπορεί επίσης να γραφεί στη μορφή∮
∂D

F ·dr =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA.

Το dA είναι το στοιχειώδες εμβαδό στο επίπεδο. Σε καρτεσιανές συντεταγμένες:

dA = dxdy.

Σε πολικές συντεταγμένες (x = r cosθ , y = r sinθ):

dA = r dr dθ .

Γενικά, αν έχουμε αλλαγή μεταβλητών (x,y) = Φ(u,v), τότε

dA =

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv,

όπου
∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ είναι ο Ιακωβιανός.
Σημείωση 3.22.3ΤοΘεώρημαGreenως γενίκευση τουΘεμελιώδουςΘεωρήματος ΤοΘεώρημα
Green αποτελεί φυσική διδιάστατη γενίκευση τουΘεμελιώδουςΘεωρήματος τουΑπειροστικού
Λογισμού.
Ξεκινάμε από το Θεμελιώδες Θεώρημα του Απειροστικού Λογισμού. Για μια παραγωγίσιμη
συνάρτηση F : R→ R ισχύει: ∫ b

a
F ′(x)dx = F(b)−F(a).

Το θεώρημα αυτό εκφράζει ότι το ολοκλήρωμα της παραγώγου μιας συνάρτησης στο εσωτερικό
ενός διαστήματος ισούται με τη μεταβολή της συνάρτησης στα άκρα του διαστήματος. Δηλαδή,
το θεώρημα δηλώνει ότι ολοκληρώνοντας αυτή την τοπική μεταβολή στο εσωτερικό του διαστή-
ματος, προκύπτει η συνολική μεταβολή της συνάρτησης στα άκρα του. Η δε παράγωγος F ′(x)
εκφράζει τον τοπικό ρυθμό μεταβολής της F κατά μήκος της ευθείας.
Θεωρούμε τώρα το Θεώρημα Green:∮

∂D
(F1 dx+F2 dy) =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA.

Στις δύο διαστάσεις, η μεταβολή μιας συνάρτησης δεν περιορίζεται σε μία μόνο κατεύθυνση.
Αντί για μια απλή συνάρτηση, θεωρούμε ένα διανυσματικό πεδίο

F(x,y) =
(
F1(x,y), F2(x,y)

)
.

Ηέννοια που γενικεύει την παράγωγοως προς την κυκλική μεταβολή του πεδίου είναι ο στροβιλι-
σμός (curl), ο οποίος στο επίπεδο ορίζεται ως:∮

∂D
F ·dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

curlFdA,
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όπου D είναι περιοχή του επιπέδου και ∂D το σύνορό της. Δηλαδή, ολοκληρώνοντας την
τοπική κυκλική μεταβολή (curl) στο εσωτερικό της περιοχής, προκύπτει η ολική κυκλοφορία
του πεδίου στο σύνορό της.
Για να φανεί ότι το Θεμελιώδες Θεώρημα είναι ειδική περίπτωση του Green, θέτουμε:

F1(x,y) = 0, F2(x,y) = F(x).

Τότε:

curlF =
∂F2

∂x
= F ′(x).

Η περιοχή D εκφυλίζεται σε διάστημα [a,b] και το Θεώρημα Green ανάγεται στο:∫ b

a
F ′(x)dx = F(b)−F(a),

δηλαδή στο Θεμελιώδες Θεώρημα του Απειροστικού Λογισμού.
Συνεπώς, η παράγωγος στο R γενικεύεται στο curl στο R2, και το Θεώρημα Green εκφράζει
την ίδια θεμελιώδη αρχή σε ανώτερη διάσταση.

Παράδειγμα 3.22.4
Επιβεβαίωση του θεωρήματοςGreen Επιβεβαιώστε
ότι το θεώρημα Green ισχύει για την περίπτωση του
επικαμπύλιου ολοκληρώματος∮

C
xy2 dx+ xdy

που υπολογίζεται κατά μήκος του μοναδιαίου
κύκλου C που είναι προσανατολισμένος αντι-
ωρολογιακά, όπως φαίνεται στο Σχήμα 3.22.

Σχήμα 3.79

Βήμα 1Υπολογίστε απευθείας το επικαμπύλιο ολοκλήρωμα. Θα χρησιμοποιήσουμε τη συνηθισμένη
παραμέτρηση του μοναδιαίου κύκλου:

x = cosθ , y = sinθ

dx =−sinθ dθ , dy = cosθ dθ

Η ολοκληρωτέα έκφραση στο επικαμπύλιο ολοκλήρωμα παίρνει τη μορφή:

xy2 dx+ xdy = cosθ sin2 θ (−sinθ dθ)+ cosθ (cosθ dθ)

=
(
−cosθ sin3 θ + cos2 θ

)
dθ .

οπότε
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∮
C

xy2 dx+ xdy =
∫ 2π

0

(
−cosθ sin3 θ + cos2 θ

)
dθ

=−sin4 θ
4

∣∣∣2π

0
+

1
2

(
θ +

1
2

sin2θ
)∣∣∣2π

0
= 0+

1
2
(2π +0) = π.

Βήμα 2. Υπολογίστε το επικαμπύλιο ολοκλήρωμα χρησιμοποιώντας το θεώρημα Green.
Στο συγκεκριμένο παράδειγμα ισχύει F1 = xy2 και F2 = x, επομένως

∂F2

∂x
− ∂F1

∂y
=

∂
∂x

x− ∂
∂y

xy2 = 1−2xy

Σύμφωνα με το θεώρημα Green έχουμε∮
C

xy2 dx+ xdy =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D
(1−2xy)dA

όπου D είναι ο δίσκος x2 + y2 ≤ 1 που περικλείεται από την καμπύλη C. Το ολοκλήρωμα του
όρου 2xy πάνω στον δίσκο D είναι μηδέν λόγω συμμετρίας, αφού οι συνεισφορές από τα θετικά
και τα αρνητικά x αλληλοαναιρούνται. Μπορούμε να επιβεβαιώσουμε το γεγονός αυτό και με
απευθείας υπολογισμούς ως εξής:

∫∫
D
(−2xy)dA =−2

∫ 1

x=−1

∫ √1−x2

y=−
√

1−x2
xydydx =−

∫ 1

x=−1
xy2
∣∣∣y=√1−x2

y=−
√

1−x2
dx = 0

Επομένως ∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

1dA = εμβαδόν(D) = π

Πράγματι, εδώ D είναι ο μοναδιαίος δίσκος x2 + y2 ≤ 1, όπου στις πολικές συντεταγμένες θα
έχουμε: x = r cosθ , y = r sinθ , dA = r dr dθ , με 0≤ r ≤ 1, 0≤ θ ≤ 2π.

Άρα

∫∫
D

1dA =
∫ 2π

0

∫ 1

0
1 · r dr dθ =

∫ 2π

0

r2

2

∣∣∣1
0
dθ =

∫ 2π

0

1
2

dθ = π.

Το αποτέλεσμα αυτό συμφωνεί με την τιμή του ολοκληρώματος που υπολογίσαμε στο Βήμα 1.
Επομένως, επιβεβαιώσαμε ότι ισχύει το θεώρημα Green στη συγκεκριμένη περίπτωση.

Παράδειγμα 3.22.5
Υπολογισμός ενός επικαμπύλιου ολοκληρώματος με το θεώρημα Green Υπολογίστε την κυκλο-
φορία του πεδίου F(x,y) = 〈sinx, x2y3〉 κατά μήκος της τριγωνικής καμπύληςC του Σχήμα-
τος 3.80 που είναι προσανατολισμένη αντι-ωρολογιακά.
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Λύση. Για να μπορέσουμε να υπολογίσουμε το
ζητούμενο επικαμπύλιο ολοκλήρωμα απευθείας, θα
πρέπει να παραμετρήσουμε και τις τρεις πλευρές
του τριγώνου και στη συνέχεια να υπολογίσουμε
τρία διαφορετικά επικαμπύλια ολοκληρώματα. Αντί
αυτής της πολύπλοκης διαδικασίας, μπορούμε να
εφαρμόσουμε το θεώρημα Green στο χωρίο D που
περικλείεται από τις τρεις πλευρές του τριγώνου. Το
χωρίο περιγράφεται από τις ανισώσεις 0 ≤ x ≤ 2,
0≤ y≤ x.
Εφαρμόζοντας το θεώρημα Green προκύπτει:

∂F2

∂x
− ∂F1

∂y
=

∂
∂x

x2y3 − ∂
∂y

sinx = 2xy3 Σχήμα 3.80 Το χωρίο D περιγράφεται από τις ανισώ-
σεις 0≤ x≤ 2, 0≤ y≤ x.

∮
C

sinxdx+ x2y3 dy =
∫∫

D
2xy3 dA =

∫ 2

0

∫ x

y=0
2xy3 dydx =

∫ 2

0

(
1
2

xy4
∣∣∣y=x

y=0

)
dx =

1
2

∫ 2

0
x5 dx =

1
12

x6
∣∣∣2
0
=

16
3

Θα παραμετρήσουμε και τις τρεις πλευρές του τριγώνου και στη συνέχεια θα υπολογίσουμε τρία
διαφορετικά επικαμπύλια ολοκληρώματα.

Έχουμε ∮
C

sinxdx+ x2y3 dy,

όπου τοC είναι το τρίγωνο με κορυφές

A0 = (0,0), A1 = (2,0), A2 = (2,2),

και αντι-ωρολογιακή φορά: A0→ A1→ A2→ A0.

(i) ΠλευράC1: A0→ A1.

r1(t) = (1− t)A0 + tA1 = (1− t)(0,0)+ t(2,0) = (2t,0), 0≤ t ≤ 1.

Άρα x = 2t, y = 0, dx = 2dt, dy = 0 και

I1 =
∫ 1

0
sin(2t)2dt +(2t)2 ·03 ·0 =

∫ 1

0
2sin(2t)dt =−cos(2t)1

0 = 1− cos2.

(ii) ΠλευράC2: A1→ A2.

r2(t) = (1− t)A1 + tA2 = (1− t)(2,0)+ t(2,2) = (2,2t), 0≤ t ≤ 1.

Άρα x = 2, y = 2t, dx = 0, dy = 2dt και

I2 =
∫ 1

0
sin(2) ·0+22(2t)3 ·2dt =

∫ 1

0
4 ·8t3 ·2dt =

∫ 1

0
64t3 dt = 16.

(iii) ΠλευράC3: A2→ A0.;
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r3(t) = (1− t)A2 + tA0 = (1− t)(2,2)+ t(0,0) = (2−2t,2−2t), 0≤ t ≤ 1.

Άρα x = 2−2t, y = 2−2t, dx =−2dt, dy =−2dt και

I3 =
∫ 1

0
sin(2−2t)(−2)dt +(2−2t)2(2−2t)3(−2)dt.

Επειδή (2−2t)2(2−2t)3 = (2−2t)5, παίρνουμε

I3 =
∫ 1

0
−2sin(2−2t)−2(2−2t)5 dt.

Για τον πρώτο όρο, με u = 2−2t (οπότε du =−2dt):∫ 1

0
−2sin(2−2t)dt =

∫ 0

2
sinudu =−cosu0

2 = cos2−1.

Για τον δεύτερο όρο, επειδή 2−2t = 2(1− t):∫ 1

0
−2(2−2t)5 dt =

∫ 1

0
−2 ·32(1− t)5 dt =−64

∫ 1

0
(1− t)5 dt =−64 · 1

6
=−32

3
.

Άρα

I3 = cos2−1− 32
3
.

Συνολικά:∮
C

sinxdx+ x2y3 dy = I1 + I2 + I3 = 1− cos2+16+ cos2−1− 32
3

=
16
3
.

3.23 Υπολογισμός εμβαδού με τη βοήθεια του θεωρήματος Green

Μπορούμε τώρα να χρησιμοποιήσουμε το θεώρημα
Green για να βρούμε κατάλληλες σχέσεις
υπολογισμού του εμβαδού ενός χωρίου D το
οποίο περικλείεται από μια απλή κλειστή καμπύλη
C, όπως φαίνεται στο Σχήμα 3.81. Το «κόλπο»
που θα χρησιμοποιήσουμε για να επιτύχουμε κάτι
τέτοιο είναι να επιλέξουμε ένα διανυσματικό πεδίο
F = 〈F1,F2〉 τέτοιο ώστε

∂F2

∂x
− ∂F1

∂y
= 1.

Μερικά από τα διανυσματικά πεδία που διαθέτουν
την ιδιότητα αυτή είναι τα ακόλουθα:

Σχήμα 3.81 Το επικαμπύλιο ολοκλήρωμα του
διανυσματικού πεδίου 〈−y/2, x/2〉 πάνω στην καμπύλη
C είναι ίσο με το εμβαδόν του χωρίου D το οποίο
περικλείεται από την καμπύληC.
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Αν επιλέξουμε F(x,y) = 〈0,x〉, τότε

∂F2

∂x
− ∂F1

∂y
=

∂
∂x

x− ∂
∂y

0 = 1.

Αν επιλέξουμε F(x,y) = 〈−y,0〉, τότε

∂F2

∂x
− ∂F1

∂y
=

∂
∂x

0− ∂
∂y

(−y) = 1.

Αν επιλέξουμε F(x,y) = 〈−y/2, x/2〉, τότε

∂F2

∂x
− ∂F1

∂y
=

∂
∂x

(x
2

)
− ∂

∂y

(
−y

2

)
=

1
2
− (−1

2
) = 1.

Σύμφωνα με το θεώρημα Green, και στις τρεις αυτές περιπτώσεις θα έχουμε∮
C

F1 dx+F2 dy =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

1dA = εμβαδόν(D).

Αντικαθιστώντας τις εκφράσεις των συνιστωσώνF1 καιF2 για καθεμία από τις τρεις προηγούμενες
περιπτώσεις διανυσματικών πεδίων καταλήγουμε στους ακόλουθους τρείς τύπους με βάση τους
οποίους μπορούμε να προσδιορίσουμε το εμβαδόν ενός χωρίου D το οποίο περικλείεται από μια
καμπύληC:

Εμβαδόν που περικλείεται από τηC =
∮

C
xdy =

∮
C
−ydx =

1
2

∮
C
(xdy− ydx).

Θέλουμε να εξηγήσουμε γιατί ισχύει ο τύπος

Εμβαδόν(D) =
∮

C
xdy =−

∮
C

ydx =
1
2

∮
C

xdy− ydx,

όπουC = ∂D είναι απλή κλειστή καμπύλη με θετικό (αντιωρολογιακό) προσανατολισμό.

1) Από το θεώρημα Green. Το θεώρημα Green λέει ότι για F = 〈F1,F2〉:∮
C

F1 dx+F2 dy =
∫∫

D

∂F2

∂x
− ∂F1

∂y
dA.

2) Πρώτος τύπος: Εμβαδόν(D) =
∮

C
xdy. Διαλέγουμε

F(x,y) = 〈0,x〉.

Τότε F1 = 0, F2 = x και

∂F2

∂x
− ∂F1

∂y
=

∂
∂x

(x)− ∂
∂y

(0) = 1.

Άρα, από Green,
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∮
C

xdy =
∮

C
0dx+ xdy =

∫∫
D

1dA = Εμβαδόν(D).

3) Δεύτερος τύπος: Εμβαδόν(D) =−
∮

C
ydx. Διαλέγουμε

F(x,y) = 〈−y,0〉.

Τότε F1 =−y, F2 = 0 και

∂F2

∂x
− ∂F1

∂y
=

∂
∂x

(0)− ∂
∂y

(−y) = 1.

Άρα, από Green,

−
∮

C
ydx =

∮
C
−ydx+0dy =

∫∫
D

1dA = Εμβαδόν(D).

4) Τρίτος τύπος: ο συμμετρικός. Αφού και τα δύο ολοκληρώματα ισούνται με το ίδιο πράγμα (το
εμβαδόν), ισχύει ∮

C
xdy =−

∮
C

ydx.

Προσθέτουμε κατά μέλη:∮
C

xdy+
∮

C
ydx =

∮
C

xdy− ydx = 2Εμβαδόν(D).

Διαίρεση με 2 δίνει

Εμβαδόν(D) =
1
2

∮
C

xdy− ydx.

Σημείωση για τη φορά. Οι παραπάνω τύποι ισχύουν για αντιωρολογιακή φορά. Αν πάρεις την
αντίθετη (ωρολογιακή), τότε τα ολοκληρώματα αλλάζουν πρόσημο και βγαίνει−Εμβαδόν(D).

Αυτοί οι τύποι, αξιοθαύμαστης απλότητας, μας επιτρέπουν να υπολογίζουμε το εμβαδόν ενός
περικλειόμενου χωρίου κάνοντας μετρήσεις μόνο κατά μήκος του συνόρου του. Αποτελούν την
αρχή λειτουργίας του εμβαδομέτρου, μιας συσκευής που επιτρέπει τη μέτρηση του εμβαδού ενός
χωρίου ακανόνιστου σχήματος ακολουθώντας απλώς τη συνοριακή του καμπύλη με έναν δείκτη
που βρίσκεται στην άκρη ενός κινούμενου βραχίονα, όπως φαίνεται στο Σχήμα 3.82.

Σχήμα 3.82 Το εμβαδόμετρο είναι μια μηχανική συσκευή η οποία χρησιμοποιείται για τη μέτρηση των εμβαδών ακανόνιστων
σχημάτων



342 Λογισμός των Διανυσματικών Συναρτήσεων

Παράδειγμα 3.23.1
Υπολογισμός εμβαδού με τη βοήθεια του θεωρήματος Green. Υπολογίστε το εμβαδόν της

έλλειψης (x
a

)2
+
(y

b

)2
= 1

χρησιμοποιώντας ένα επικαμπύλιο ολοκλήρωμα.

Λύση.Μπορούμε να παραμετρήσουμε το σύνορο της έλλειψης μέσω των:

x = acosθ , y = bsinθ , 0≤ θ < 2π.

Για να υπολογίσουμε το ζητούμενο εμβαδόν μπορούμε να χρησιμοποιήσουμε οποιονδήποτε
από τους τύπους υπολογισμού, του εμβαδού που περικλείεται από μία καμπύλη, που περιγράψαμε
παραπάνω.

Έχουμε λοιπόν

Περικλειόμενο εμβαδόν=
∮

C
xdy =

∫ 2π

0
(acosθ)(bcosθ)dθ

= ab
∫ 2π

0
cos2 θ dθ = πab.

Επομένως, το εμβαδόν της έλλειψης(x
a

)2
+
(y

b

)2
= 1

είναι πab.

3.24 Το θεώρημα Green σε μορφή ροής
Αρχικά θα πρέπει να θυμηθούμε ότι η ροή ενός
διανυσματικού πεδίου F που διασχίζει μια καμπύλη
C είναι το ολοκλήρωμα της κάθετης συνιστώσας
του πεδίου F κατά μήκος της καμπύλης, όπως
φαίνεται στο Σχήμα 3.83. Ενδιαφερόμαστε για τη
ροή που διασχίζει μια απλή κλειστή καμπύλη C με
κατεύθυνση τέτοια ώστε να απομακρύνεται από την
περικλειόμενη περιοχή. Θα ονομάζουμε αυτή τη
ροή εξερχόμενη ροή ή προς τα έξω ροή διαμέσου
της καμπύλης C. Η ροή αυτή υπολογίζεται από το
ολοκλήρωμα ∮

C
F ·nds,

Σχήμα 3.83 Η ροή του πεδίου F είναι ίση με το
ολοκλήρωμα της κάθετης συνιστώσας F · n κατά μήκος
της καμπύλης.

όπου το διάνυσμα n έχει κατεύθυνση που απομακρύνεται από την περικλειόμενη περιοχή.
Θα υποθέσουμε ότι ηC παραμετρίζεται από την

r(t) = 〈x(t), y(t)〉, a≤ t ≤ b,

και ότι r′(t) 6= 0. Τότε, το μοναδιαίο εφαπτόμενο διάνυσμα είναι
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T =
r′(t)
‖r′(t)‖

=

〈
x′(t)
‖r′(t)‖

,
y′(t)
‖r′(t)‖

〉
,

και το μοναδιαίο κάθετο διάνυσμα με κατεύθυνση προς τα έξω είναι το

n(t) =
〈

y′(t)
‖r′(t)‖

,
−x′(t)
‖r′(t)‖

〉
,

εφόσον το εσωτερικό γινόμενο των δύο διανυσμάτων είναι ίσο με το μηδέν και το διάνυσμα n
κατευθύνεται προς τα δεξιά καθώς κινόμαστε κατά μήκος της καμπύληςC.
Αυτό σημαίνει ότι η εξερχόμενη ροή του πεδίου F από την καμπύληC είναι∮

C
F ·nds =

∫ b

a
(F ·n(t))‖r′(t)‖dt =

∫ b

a

[
F1 y′(t)
‖r′(t)‖

− F2 x′(t)
‖r′(t)‖

]
‖r′(t)‖dt

=
∫ b

a

(
F1 y′(t)−F2 x′(t)

)
dt =

∮
C

F1 dy−F2 dx.

Μπορούμε τώρα να εφαρμόσουμε το θεώρημα Green στο τελευταίο ολοκλήρωμα, αλλά θα πρέπει
προηγουμένως να συνειδητοποιήσουμε ότι ο ρόλος των F1 και F2 έχει αλλάξει, ενώ υπάρχει και
ένα αρνητικό πρόσημο που συνοδεύει τον δεύτερο όρο. ΑφούD είναι η περιοχή που περικλείεται
από την καμπύληC καιC = ∂D, προκύπτει από το θεώρημα Green:∮

∂D
F1 dy−F2 dx =

∫∫
D

(
∂F1

∂x
+

∂F2

∂y

)
dA.

Παρατηρούμε ότι η ολοκληρωτέα ποσότητα
∂F1

∂x
+

∂F2

∂y
είναι η απόκλιση του διανυσματικού

πεδίουF. Έτσι, καταλήγουμε στην έκφραση του θεωρήματοςGreen υπό τη μορφή ολοκληρώματος
ροής: ∮

∂D
F ·nds =

∫∫
D

div(F)dA.

Παράδειγμα 3.24.1
Υπολογίστε τη ροή του πεδίου F(x,y) = 〈x3, y3+y〉 που εξέρχεται από τον μοναδιαίο κύκλο.

Λύση.Θα προσδιορίσουμε αρχικά την απόκλιση του πεδίου F:

divF =
∂F1

∂x
+

∂F2

∂y
= 3x2 +3y2 +1.

Αυτό σημαίνει ότι η εξερχόμενη ροή του πεδίουF από τον μοναδιαίο κύκλο μπορεί να υπολογιστεί
ως:

Ροή=
∫∫

D
div(F)dA =

∫∫
D
(3x2 +3y2 +1)dA.

Μετατρέποντας το ολοκλήρωμα σε πολικές συντεταγμένες, έχουμε:
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Ροή=
∫ 2π

0

∫ 1

0
(3r2 +1)r dr dθ =

∫ 2π

0

∫ 1

0
(3r3 + r)dr dθ

= 2π
(

3r4

4
+

r2

2

)∣∣∣∣∣
1

0

= 2π
(

3
4
+

1
2

)
=

5π
2
.

Ασκήσεις 3.24.2

1. Ποιο είναι το ολοκληρωτέο πεδίο F στο επικαμπύλιο ολοκλήρωμα
∮

x2 dy− ey dx;

2. Να σχεδιάσετε ένα χωρίο που να έχει το σχήμα μιας έλλειψης και να σημειώσετε με ένα
βέλος τον συνοριακό προσανατολισμό της συνοριακής καμπύλης. Να κάνετε το ίδιο για
την περιοχή που βρίσκεται μεταξύ δύο ομόκεντρων κύκλων (αυτού του τύπου η περιοχή
ονομάζεται δακτύλιος).

3. Η κυκλοφορία ενός συντηρητικού διανυσματικού πεδίου πάνω σε μια κλειστή καμπύλη
είναι μηδέν. Είναι το αποτέλεσμα αυτό συμβατό με το θεώρημα Green; Εξηγήστε την
απάντησή σας.

4. Να βρείτε ποια από τα ακόλουθα διανυσματικά πεδία διαθέτουν την ακόλουθη ιδιότητα:

Για κάθε απλή κλειστή καμπύληC το ολοκλήρωμα
∮

C
F ·dr είναι ίσο με το εμβαδόν της

περικλειόμενης από την καμπύληC περιοχής.

(a) F(x,y) = 〈−y, 0〉

(b) F(x,y) = 〈x, y〉

(c) F(x,y) = 〈sin(x2), x+ ey2〉

5. Έστω A το εμβαδόν μιας περιοχής που περικλείεται από μια απλή κλειστή καμπύλη C
και υποθέστε ότι η C είναι προσανατολισμένη αντιωρολογιακά. Να ελέγξετε αν η τιμή
καθενός από τα ακόλουθα ολοκληρώματα είναι 0,−A ή A.

α)
∮

C
xdx β)

∮
C

ydx

γ)
∮

C
ydy δ)

∮
C

xdy

6. Επιβεβαιώστε το θεώρημα Green για το επικαμπύλιο ολοκλήρωμα∮
C

xydx+ ydy,

όπουC είναι ο μοναδιαίος κύκλος με αντιωρολογιακό προσανατολισμό.

7. Έστω το ολοκλήρωμα
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I =
∮

C
F ·dr

όπου

F(x,y) = 〈y+ sinx2, x2 + ey2〉

καιC είναι ο κύκλος ακτίνας 4 με κέντρο την αρχή των αξόνων.

(a) Τι είναι πιο εύκολο: ο απευθείας υπολογισμός του ολοκληρώματος I ή η χρήση του
θεωρήματος Green για τον έμμεσο υπολογισμό του I;

(b) Υπολογίστε το ολοκλήρωμα I χρησιμοποιώντας τον πιο εύκολο τρόπο.

Στις Ασκήσεις 8–16 να χρησιμοποιήσετε το θεώρημαGreen για να υπολογίσετε το επικαμπύ-
λιο ολοκλήρωμα που σημειώνεται σε κάθε περίπτωση. Ο προσανατολισμός της καμπύλης
είναι αντιω- ρολογιακός, εκτός αν αναφέρεται κάτι άλλο.

8.
∮

C
y2 dx+x2 dy, όπουC είναι το σύνορο ενός τετραγώνου που ορίζεται από τις ανισώσεις

0≤ x≤ 1, 0≤ y≤ 1.

9.
∮

C
y2 dx+x2 dy, όπουC είναι το σύνορο ενός τετραγώνου που ορίζεται από τις ανισώσεις

−1≤ x≤ 1,−1≤ y≤ 1.

10.
∮

C
5ydx+2xdy, όπουC είναι το σύνορο του τριγώνου με κορυφές τα σημεία (−1,0),

(1,0) και (0,1).

11.
∮

C
e2x+y dx+e−y dy, όπουC είναι το σύνορο του τριγώνου με κορυφές τα σημεία (0,0),

(1,0) και (1,1).

12.
∮

C
x2ydx, όπουC είναι ο μοναδιαίος κύκλος με κέντρο την αρχή των αξόνων.

13.
∮

C
F · dr, όπου F(x,y) = 〈x + y, x2 − y〉 και C είναι το σύνορο της περιοχής που

περικλείεται από τις y = x2 και y =
√

x για 0≤ x≤ 1.

14.
∮

C
F ·dr, όπου F(x,y) = 〈x2, x2〉 και η καμπύληC αποτελείται από τα τόξα y = x2 και

y = x για 0≤ x≤ 1.

15.
∮

C
(lnx+y)dx−x2 dy, όπουC είναι το ορθογώνιο με κορυφές τα σημεία (1,1), (3,1),

(1,4) και (3,4).

16. Το επικαμπύλιο ολοκλήρωμα του πεδίου Το επικαμπύλιο ολοκλήρωμα του πεδίου

F(x,y) = 〈ex+y, ex−y〉

κατά μήκος της καμπύλης (προσανατολισμένης ωρολογιακά) που αποτελείται από ευθύ-
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γραμμα τμήματα τα οποία ενώνουν τα σημεία (0,0), (2,2), (4,2), (2,0) και πάλι πίσω
στο (0,0) (δώστε προσοχή στον προσανατολισμό).

Στις Ασκήσεις 17–22 να υπολογίσετε τη ροή∮
C F ·nds

του διανυσματικού πεδίου F που διέρχεται διαμέσου της καμπύληςC χρησιμοποιώντας το
θεώρημα Green στη μορφή του ολοκληρώματος ροής.

17. F(x,y) = 〈3x, 2y〉 διαμέσου του κύκλου που περιγράφεται από την εξίσωση x2+y2 =
9.

18. F(x,y)= 〈xy, x−y〉 διαμέσου του συνόρου του τετραγώνου που ορίζεται από τις ανισώσεις
−1≤ x≤ 1, −1≤ y≤ 1.

19. F(x,y) = 〈x2, y2〉 διαμέσου του συνόρου του τριγώνου με κορυφές τα σημεία (0,0),
(1,0) και (0,1).

20. F(x,y) = 〈2x+ y3, 3y− x4〉 διαμέσου του μοναδιαίου κύκλου.

21. F(x,y) = 〈cosy, siny〉 διαμέσου του συνόρου του τετραγώνου που ορίζεται από τις

ανισώσεις 0≤ x≤ 2, 0≤ y≤ π
2
.

22. F(x,y) = 〈xy2 + 2x, x2y− 2y〉 διαμέσου της απλής κλειστής καμπύλης που αποτελεί
το σύνορο του μισού δίσκου που ορίζεται από την x2 + y2 ≤ 3, y≥ 0.
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23. Ένα αφηνιασμένο κοπάδι από βουβάλια
(βλ. Σχήμα 3.84) περιγράφεται από ένα
διανυσματικό πεδίο ταχυτήτων της μορφής

F(x,y) = 〈xy− y3, x2 + y〉
σε km/h στην περιοχή D που ορίζεται
από τις ανισώσεις 2 ≤ x ≤ 3,
2 ≤ y ≤ 3 σε km (βλ. Σχήμα 3.85).
Υποθέτοντας μια πυκνότητα της τάξης
των ρ = 500 βουβαλιών ανά km2, να
χρησιμοποιήσετε το θεώρημα Green
υπό μορφή ολοκληρώματος ροής για να
προσδιορίσετε τον συνολικό αριθμό των
ζώων που εξέρχονται ή εισέρχονται στην
περιοχή D ανά min (ο αριθμός αυτός θα
είναι ίσος με το γινόμενο της πυκνότητας
ρ επί τη ροή του πεδίου F διαμέσου του
συνόρου της περιοχής D).

24. Έστω ο τελεστής Laplace ∆ ορίζεται ως

∆φ =
∂ 2φ
∂x2 +

∂ 2φ
∂y2

Υποθέστε ότι n είναι το μοναδιαίο κάθετο
διάνυσμα σε μια απλή κλειστή καμπύληC
με κατεύθυνση προς τα έξω. Η κάθετη
παράγωγος της φ , η οποία συμβολίζεται

Σχήμα 3.84 Ένα κοπάδι από βουβάλια

Σχήμα 3.85 Το διανυσματικό πεδίο
F = 〈xy− y3, x2 + y〉

ως
∂φ
∂n

, είναι η κατευθυνόμενη παράγωγος

Dn(φ) = ∇φ ·n.

Να αποδείξετε ότι ∮
C

∂φ
∂n

ds =
∫∫

D
∆φ dA,

όπου D είναι το χωρίο που περικλείεται από μια απλή κλειστή καμπύληC.
Υπόδειξη: Θεωρήστε ότι F = ∇φ . Δείξτε ότι

∂φ
∂n

= F∗ ·T,

όπουT είναι το μοναδιαίο εφαπτόμενο διάνυσμα, και στη συνέχεια εφαρμόστε το θεώρη-
μα Green.

Λυμένες ασκήσεις 3.24.3

1. Το επικαμπύλιο ολοκλήρωμα
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∮
x2 dy− ey dx

γράφεται ως ∮ 〈
−ey, x2〉 · 〈dx, dy〉,

άρα το ολοκληρωτέο διανυσματικό πεδίο είναι

F(x,y) = 〈−ey, x2〉.

2. Για μια έλλειψη, παίρνουμε μια απλή κλειστή καμπύλη στο επίπεδο με σχήμα έλλειψης
και με θετική (αντικανονική) φορά: τα βέλη πάνω στην καμπύλη δείχνουν αντίθετα από
τη φορά των δεικτών του ρολογιού, έτσι ώστε το εσωτερικό του χωρίου να βρίσκεται
πάντα στα αριστερά της κίνησης.
Για τον «δακτύλιο» (περιοχή ανάμεσα σε δύο ομόκεντρους κύκλους) η συνοριακή καμπύ-
λη αποτελείται από δύο κύκλους: τον εξωτερικό και τον εσωτερικό. Ο εξωτερικός έχει
πάλι θετική φορά (αντικανονική), ενώ ο εσωτερικός πρέπει να προσανατολίζεται αντίθετα
(δηλ. με φορά των δεικτών του ρολογιού), ώστε και πάλι η περιοχή να βρίσκεται αριστερά
κατά την κίνηση πάνω σε κάθε κομμάτι του συνόρου.

3. Αν F είναι συντηρητικό πεδίο, τότε υπάρχει μία βαθμωτή συνάρτηση ϕ με F = ∇ϕ . Για
κάθε κλειστή καμπύλη C που βρίσκεται σε περιοχή όπου το πεδίο είναι συντηρητικό,
έχουμε ∮

C
F ·dr =

∮
C

∇ϕ ·dr = ϕ
(
τελικό

)
−ϕ
(
αρχικό

)
= 0,

επειδή το αρχικό και τελικό σημείο συμπίπτουν.
Το αποτέλεσμα είναι συμβατό με το θεώρημα Green: για F = 〈P,Q〉 ισχύει

∮
C Pdx+Qdy =

∫∫
D

(
∂Q
∂x
− ∂P

∂y

)
dA.

Σε συντηρητικό πεδίο πάνω σε απλά συνεκτική περιοχή έχουμε
∂Q
∂x

=
∂P
∂y

, άρα η ποσό-

τητα μέσα στην παρένθεση είναι μηδενική παντού και το ολοκλήρωμα στο δεξί μέλος
είναι 0, όπως και η κυκλοφορία στο αριστερό μέλος.

4. Θέλουμε για κάθε απλή κλειστή καμπύληC με περικλειόμενη περιοχή D να ισχύει∮
C

F ·dr = Area(D) =
∫∫

D
1dA.

Με βάση το θεώρημα Green,∮
C

F ·dr =
∫∫

D

(
∂Q
∂x
− ∂P

∂y

)
dA.

Για να είναι αυτό ίσο με το εμβαδόν κάθε περιοχής D, πρέπει

∂Q
∂x
− ∂P

∂y
= 1 παντού.
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(a) F(x,y) = 〈−y,0〉.
Εδώ P =−y, Q = 0, άρα

∂Q
∂x
− ∂P

∂y
= 0− (−1) = 1,

οπότε η ζητούμενη ιδιότητα ισχύει.

(b) F(x,y) = 〈x,y〉.
Εδώ P = x, Q = y, άρα

∂Q
∂x
− ∂P

∂y
= 0−0 = 0 6= 1,

οπότε η ιδιότητα δεν ισχύει.
Συμπέρασμα: από τα δοσμένα πεδία μόνο το

F(x,y) = 〈−y,0〉

έχει την ιδιότητα ότι το επικαμπύλιο ολοκλήρωμα γύρω από κάθε απλή κλειστή
καμπύλη ισούται με το εμβαδόν της περικλειόμενης περιοχής.

(c) F(x,y) = 〈sin(x2), x+ ey2〉.
Εξετάζουμε αν ισχύει για κάθε απλή κλειστή καμπύληC η σχέση∮

C
F ·dr = Area(D).

Με βάση το θεώρημα Green αυτό συμβαίνει αν και μόνο αν
∂Q
∂x
− ∂P

∂y
= 1.

Εδώ
P(x,y) = sin(x2), Q(x,y) = x+ ey2

.
Υπολογίζουμε

∂Q
∂x

= 1,
∂P
∂y

= 0.

Άρα
∂Q
∂x
− ∂P

∂y
= 1−0 = 1.

Επομένως το πεδίο διαθέτει την ζητούμενη ιδιότητα:∮
C

F ·dr = Area(D) για κάθε απλή κλειστή καμπύληC.

5. Έστω A το εμβαδόν της περιοχής D που περικλείεται από την απλή κλειστή καμπύληC
με αντιωρολογιακό προσανατολισμό. Γράφουμε κάθε ολοκλήρωμα ως∮

C Pdx+Qdy

και εφαρμόζουμε το θεώρημα Green

∮
C Pdx+Qdy =

∫∫
D

(
∂Q
∂x
− ∂P

∂y

)
dA.

(a)
∮

C
xdx : εδώ P = x, Q = 0, άρα
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∂Q
∂x
− ∂P

∂y
= 0−0 = 0

οπότε το ολοκλήρωμα είναι 0.

(b)
∮

C
ydx : P = y, Q = 0, άρα

∂Q
∂x
− ∂P

∂y
= 0−1 =−1

και ∮
C ydx =

∫∫
D
(−1)dA =−A.

(c)
∮

C
ydy : P = 0, Q = y, οπότε

∂Q
∂x
− ∂P

∂y
= 0−0 = 0

και το ολοκλήρωμα είναι 0.

(d)
∮

C
xdy : P = 0, Q = x, άρα

∂Q
∂x
− ∂P

∂y
= 1−0 = 1

οπότε ∮
C xdy =

∫∫
D

1dA = A.

6. Έχουμε ∮
C xydx+ ydy,

όπουC είναι ο μοναδιαίος κύκλος με αντιωρολογιακό προσανατολισμό.
Με θεώρημα Green. Θέτουμε P(x,y) = xy, Q(x,y) = y. Τότε

∂Q
∂x

= 0,
∂P
∂y

= x,

άρα

∂Q
∂x
− ∂P

∂y
=−x.

ΗC περικλείει τον μοναδιαίο δίσκο D = x2 + y2 ≤ 1, οπότε
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∮
C

xydx+ ydy =
∫∫

D
(−x)dA =−

∫∫
D

xdA = 0,

καθώς ο δίσκος D είναι συμμετρικός ως προς τον άξονα y.
Με άμεσο υπολογισμό. Παραμετροποιούμε

C : r(t) = 〈cos t,sin t〉, 0≤ t ≤ 2π,

οπότε dx =−sin t dt , dy = cos t dt και∮
C

xydx+ ydy =
∫ 2π

0

(
cos t sin t(−sin t)+ sin t cos t

)
dt =∫ 2π

0
cos t sin t(1− sin t)dt = 0.

Άρα οι δύο πλευρές του θεωρήματος Green συμπίπτουν.

7.
I =

∮
C

F ·dr, F(x,y) = 〈y+ sinx2, x2 + ey2〉,

όπουC είναι ο κύκλος ακτίνας4 με κέντρο την αρχή και αντιωρολογιακό προσανατολισμό.
(a) Ο άμεσος υπολογισμός απαιτεί παραμετροποίηση του κύκλου, αντικατάσταση στο

F και ολοκλήρωση τριγωνομετρικών και εκθετικών συναρτήσεων. Με χρήση του
θεωρήματοςGreen αρκεί να υπολογίσουμε ένα διπλό ολοκλήρωμα με απλή συμμετρία
στον δίσκο x2 + y2 ≤ 16, άρα η χρήση του θεωρήματος Green είναι σαφώς πιο
εύκολη.

(b) Θέτουμε P(x,y) = y+ sinx2, Q(x,y) = x2 + ey2
. Τότε

∂Q
∂x

= 2x,
∂P
∂y

= 1,

οπότε

∂Q
∂x
− ∂P

∂y
= 2x−1.

Ο κύκλοςC περικλείει τον δίσκο

D = x2 + y2 ≤ 16.

Άρα, από το θεώρημα Green,

I =
∮

C
F ·dr =

∫∫
D
(2x−1)dA = 2

∫∫
D

xdA−
∫∫

D
1dA.

Το πρώτο ολοκλήρωμα είναι 0 λόγω συμμετρίας του δίσκου ως προς τον άξονα y,
ενώ το δεύτερο είναι το εμβαδόν του δίσκου ακτίνας 4:∫∫

D
1dA = π ·42 = 16π.

Επομένως
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I =−16π.

8. Έχουμε ∮
C

y2 dx+ x2 dy, P(x,y) = y2, Q(x,y) = x2.

Με το θεώρημα Green∮
C

Pdx+Qdy =
∫∫

D

(∂Q
∂x
− ∂P

∂y

)
dA =

∫∫
D
(2x−2y)dA,

όπου D = (x,y) : 0≤ x≤ 1, 0≤ y≤ 1.
Υπολογίζουμε∫∫

D
(2x−2y)dA =

∫ 1

0

∫ 1

0
(2x−2y)dxdy =

∫ 1

0
(1−2y)dy =

[
y− y2]1

0 = 0.

Άρα ∮
C

y2 dx+ x2 dy = 0.

9. Η ίδια μορφή ολοκληρώματος με P = y2, Q = x2, αλλά τώρα

D = (x,y) :−1≤ x≤ 1, −1≤ y≤ 1.

Πάλι ∮
C

y2 dx+ x2 dy =
∫∫

D
(2x−2y)dA.

Λόγω συμμετρίας, ∫∫
D

2xdA = 0,
∫∫

D
(−2y)dA = 0,

επειδή η περιοχή είναι συμμετρική ως προς τους άξονες και οι συναρτήσεις x και y είναι
περιττές. Άρα ∮

C
y2 dx+ x2 dy = 0.

10. Τώρα ∮
C

5ydx+2xdy, P(x,y) = 5y, Q(x,y) = 2x,

και, με Green,∮
C

Pdx+Qdy =
∫∫

D

(∂Q
∂x
− ∂P

∂y

)
dA =

∫∫
D
(2−5)dA =

∫∫
D
(−3)dA.

Η περιοχή D είναι το τρίγωνο με κορυφές (−1,0), (1,0), (0,1), άρα έχει βάση 2 και
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ύψος 1, οπότε

Area(D) =
1
2
·2 ·1 = 1.

Επομένως ∮
C

5ydx+2xdy =−3Area(D) =−3.

11. ∮
C

e2x+y dx+ e−y dy, C : τρίγωνο με κορυφές (0,0),(1,0),(1,1).

Θέτουμε P(x,y) = e2x+y, Q(x,y) = e−y. Με Green:∮
C

Pdx+Qdy =
∫∫

D

(∂Q
∂x
− ∂P

∂y

)
dA =

∫∫
D

(
0− e2x+y)dA,

όπου η περιοχή D είναι το τρίγωνο

D = (x,y) : 0≤ y≤ 1, y≤ x≤ 1.

Άρα ∮
C

e2x+y dx+ e−y dy =−
∫ 1

0

∫ 1

y
e2x+y dxdy =−1

3
e3 +

1
2

e2− 1
6
.

12. ∮
C

x2ydx, C : x2 + y2 = 1 (μοναδιαίος κύκλος).

Έχουμε P(x,y) = x2y, Q(x,y) = 0 και

∂Q
∂x
− ∂P

∂y
= 0− x2 =−x2.

Άρα ∮
C

x2ydx =
∫∫

D
(−x2)dA,

όπου D ο μοναδιαίος δίσκος. Σε πολικές συντεταγμένες x = r cosθ , dA = r dr dθ :∫∫
D

x2 dA =
∫ 2π

0

∫ 1

0
r2 cos2 θ r dr dθ =

(∫ 2π

0
cos2 θ dθ

)(∫ 1

0
r3dr

)
= π · 1

4
=

π
4
.

Άρα
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∮
C

x2ydx =−π
4
.

13. ∮
C

F ·dr, F(x,y) = 〈x+ y, x2− y〉,

όπου C είναι το σύνορο της περιοχής μεταξύ y = x2 και y =
√

x, 0 ≤ x ≤ 1 (θετικός
προσανατολισμός).
Θέτουμε P = x+ y, Q = x2− y. Τότε

∂Q
∂x

= 2x,
∂P
∂y

= 1, ⇒ ∂Q
∂x
− ∂P

∂y
= 2x−1.

Η περιοχή είναι

D = (x,y) : 0≤ x≤ 1, x2 ≤ y≤
√

x.

Άρα ∮
C

F ·dr =
∫∫

D
(2x−1)dA =

∫ 1

0

∫ √x

x2
(2x−1)dydx =− 1

30
.

14. ∮
C

F ·dr, F(x,y) = 〈x2,x2〉,

όπουC αποτελείται από τα τόξα y = x2 και y = x για 0≤ x≤ 1 (σύνορο της περιοχής
ανάμεσά τους, με θετικό προσανατολισμό).
Θέτουμε P = x2, Q = x2, οπότε

∂Q
∂x

= 2x,
∂P
∂y

= 0, ⇒ ∂Q
∂x
− ∂P

∂y
= 2x.

Η περιοχή

D = (x,y) : 0≤ x≤ 1, x2 ≤ y≤ x,

άρα ∮
C

F ·dr =
∫∫

D
2xdA =

∫ 1

0

∫ x

x2
2xdydx =

∫ 1

0
2x(x− x2)dx =

2
∫ 1

0
(x2− x3)dx =

1
6
.

15. ∮
C
(lnx+ y)dx− x2 dy,

όπουC είναι το ορθογώνιο με κορυφές (1,1), (3,1), (3,4), (1,4), με θετικό (αντιωρολογιακό)
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προσανατολισμό.
Έχουμε P(x,y) = lnx+ y, Q(x,y) =−x2, οπότε

∂Q
∂x

=−2x,
∂P
∂y

= 1, ⇒ ∂Q
∂x
− ∂P

∂y
=−2x−1.

Η περιοχή είναι το ορθογώνιο

D = (x,y) : 1≤ x≤ 3, 1≤ y≤ 4,

άρα ∮
C
(lnx+ y)dx− x2 dy =

∫∫
D
(−2x−1)dA =

∫ 3

1

∫ 4

1
(−2x−1)dydx =

3
∫ 3

1
(−2x−1)dx =−30.

16. Το επικαμπύλιο ολοκλήρωμα του πεδίου

F(x,y) = 〈ex+y, ex−y〉

κατά μήκος της καμπύληςC (προσανατολισμένης ωρολογιακά) που αποτελείται από τα
ευθύγραμμα τμήματα

(0,0)→ (2,2)→ (4,2)→ (2,0)→ (0,0).

Θέτουμε P = ex+y, Q = ex−y. Τότε

∂Q
∂x

= ex−y,
∂P
∂y

= ex+y, ⇒ ∂Q
∂x
− ∂P

∂y
= ex−y− ex+y.

Η περιοχήD είναι το τετράπλευρο με κορυφές (0,0), (2,0), (4,2), (2,2). Για 0≤ y≤
2 έχουμε

y≤ x≤ y+2,

οπότε∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dA =

∫ 2

0

∫ y+2

y

(
ex−y− ex+y)dxdy =

1
2
(
−e6 + e4 +5e2−5

)
.

Αυτό είναι η τιμή του ολοκληρώματος για θετικό (αντιωρολογιακό) προσανατολισμό.
Όμως η καμπύληC δίνεται ωρολογιακά, άρα∮

C
F ·dr =−

∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dA =

1
2
(
e6− e4−5e2 +5

)
.

Στις Ασκήσεις 17–22 θα χρησιμοποιήσουμε τη μορφή ροής του θεωρήματος Green:∮
C

F ·nds =
∫∫

D
(∇ ·F)dA,

όπου D είναι η περιοχή που περικλείεται από τηνC και ∇ ·F η απόκλιση του πεδίου.
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17. F(x,y) = 〈3x,2y〉,C : x2 + y2 = 9.

∇ ·F = 3+2 = 5.

Η περιοχή είναι δίσκος ακτίνας 3, άρα∮
C

F ·nds =
∫∫

D
5dA = 5π ·32 = 45π.

18. F(x,y) = 〈xy,x− y〉,C το τετράγωνο−1≤ x≤ 1, −1≤ y≤ 1.

∇ ·F =
∂
∂x

(xy)+
∂
∂y

(x− y) = y−1.

Άρα ∮
C

F ·nds =
∫∫

D
(y−1)dA =

∫∫
D

ydA︸ ︷︷ ︸
=0

−
∫∫

D
1dA =−4.

19. F(x,y) = 〈x2,y2〉,C το τρίγωνο με κορυφές (0,0), (1,0), (0,1).

∇ ·F = 2x+2y.

Η περιοχή είναι

D = (x,y) : 0≤ y≤ 1, 0≤ x≤ 1− y,

οπότε ∮
C

F ·nds =
∫ 1

0

∫ 1−y

0
(2x+2y)dxdy =

2
3
.

20. F(x,y) = 〈2x+ y3,3y− x4〉,C ο μοναδιαίος κύκλος.

∇ ·F =
∂
∂x

(2x+ y3)+
∂
∂y

(3y− x4) = 2+3 = 5.

Άρα για τον μοναδιαίο δίσκο∮
C

F ·nds =
∫∫

D
5dA = 5π.

21. F(x,y) = 〈cosy,siny〉,C το σύνορο του τετραγώνου 0≤ x≤ 2, 0≤ y≤ π
2
.

∇ ·F =
∂
∂x

(cosy)+
∂
∂y

(siny) = 0+ cosy = cosy.

Επομένως
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∮
C

F ·nds =
∫ π/2

0

∫ 2

0
cosydxdy =

∫ π/2

0
2cosydy = 2.

22. F(x,y) = 〈xy2 +2x, x2y−2y〉,C το σύνορο του μισού δίσκου x2 + y2 ≤ 3, y≥ 0.

∇ ·F =
∂
∂x

(xy2 +2x)+
∂
∂y

(x2y−2y) = y2 +2+ x2−2 = x2 + y2.

Σε πολικές συντεταγμένες, στο άνω ημικύκλιο ακτίνας
√

3:

x2 + y2 = r2, dA = r dr dθ , 0≤ r ≤
√

3, 0≤ θ ≤ π.

Άρα∮
C

F ·nds =
∫ π

0

∫ √3

0
r2 · r dr dθ =

∫ π

0
dθ
∫ √3

0
r3 dr = π · (

√
3)4

4
=

9π
4
.

23. Το κοπάδι περιγράφεται από το διανυσματικό πεδίο ταχυτήτων

F(x,y) = 〈xy− y3, x2 + y〉

(σε km/h) μέσα στο τετράγωνο

D = (x,y) : 2≤ x≤ 3, 2≤ y≤ 3.

Η ροή του πεδίου μέσω του συνόρου C = ∂D (με κάθετα διανύσματα προς τα έξω)
δίνεται από

Φ =
∮

C
F ·nds =

∫∫
D
(∇ ·F)dA

(μορφή ροής του θεωρήματος Green).
Για F = 〈P,Q〉 με

P(x,y) = xy− y3, Q(x,y) = x2 + y

έχουμε

∇ ·F =
∂P
∂x

+
∂Q
∂y

= y+1.

Άρα

Φ =
∫∫

D
(y+1)dA =

∫ 3

2

∫ 3

2
(y+1)dxdy =

∫ 3

2
(y+1)dy =

[
y2

2
+ y
]3

2
=

7
2
.

Η ροή αυτή είναι προς τα έξω (θετική απόκλιση). Ο ρυθμός καθαρής εξόδου βουβαλιών
(ζώα/h) είναι

Rh = ρΦ = 500 · 7
2
= 1750 βουβάλια/ώρα.

Άρα ανά λεπτό
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Rmin =
1750
60

=
175

6
≈ 29,2 βουβάλια ανά λεπτό που εγκαταλείπουν την περιοχή D .

24. Θέλουμε να δείξουμε ότι, αν

∆φ =
∂ 2φ
∂x2 +

∂ 2φ
∂y2 ,

τότε ∮
C

∂φ
∂n

ds =
∫∫

D
∆φ dA,

όπου C = ∂D είναι απλή κλειστή καμπύλη, προσανατολισμένη με κάθετα διανύσματα
n προς τα έξω, και

∂φ
∂n

= Dn(φ) = ∇φ ·n

είναι η κατευθυνόμενη παράγωγος κατά τη διεύθυνση n.
Θεωρούμε το πεδίο

F = ∇φ =

〈
∂φ
∂x

,
∂φ
∂y

〉
.

Τότε

∂φ
∂n

= ∇φ ·n = F ·n.

Άρα ∮
C

∂φ
∂n

ds =
∮

C
F ·nds.

Εφαρμόζουμε τώρα το θεώρημα Green στη μορφή ροής:∮
C

F ·nds =
∫∫

D
(∇ ·F)dA.

Επειδή F = ∇φ , η απόκλιση του F είναι

∇ ·F =
∂ 2φ
∂x2 +

∂ 2φ
∂y2 = ∆φ.

Επομένως ∮
C

∂φ
∂n

ds =
∫∫

D
∆φ dA,

όπως ζητήθηκε.
(Παρατήρηση. Αν F = 〈P,Q〉, ο «περιστρεφόμενος» πεδίο F∗ = 〈Q,−P〉 ικανοποιεί
F ·n = F∗ ·T, όπου T το μοναδιαίο εφαπτόμενο διάνυσμα. Αν πάρουμε εδώ
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F = ∇φ, F∗ =
〈

∂φ
∂y

,−∂φ
∂x

〉
,

τότε ∮
C

∂φ
∂n

ds =
∮

C
F∗ ·Tds =

∮
C

∂φ
∂y

dx− ∂φ
∂x

dy,

και με το θεώρημαGreen στην κυκλοφοριακή μορφή καταλήγουμε πάλι στο ίδιο αποτέλεσμα.)

3.25 Θεώρημα Stokes
Το θεώρημα Stokes αποτελεί μια επέκταση του θεωρήματοςGreen στον χώρο των τριών διαστάσεων
στον οποίο η κυκλοφορία σχετίζεται με το ολοκλήρωμα πάνω σε κάποια επιφάνεια του R3 (αντί
για ένα διπλό ολοκλήρωμα πάνω σε μια περιοχή του επιπέδου). Για να μπορέσουμε να διατυπώσουμε
το θεώρημα Stokes θα πρέπει προηγουμένως να εισαγάγουμε μερικούς ορισμούς καθώς και την
απαραίτητη ορολογία. Στο Σχήμα 3.86 απεικονίζονται τρεις επιφάνειες με διαφορετικά είδη συνό-
ρων. Το σύνορο μιας επιφάνειας S θα σημειώνεται με ∂S. Παρατηρήστε ότι το σύνορο της
επιφάνειας του Σχήματος 3.86(α) είναι μια μοναδική απλή κλειστή καμπύλη, ενώ το σύνορο της
επιφάνειας του Σχήματος 3.86(β) αποτελείται από τρεις απλές κλειστές καμπύλες. Η επιφάνεια
του Σχήματος 3.86(γ) τέλος, αποκαλείται κλειστή επιφάνεια καθώς το σύνορό της είναι το κενό.
Σε αυτή την περίπτωση θα γράφουμε ∂S =∅.

Σχήμα 3.86 Επιφάνειες και τα σύνορά τους

Θυμηθείτε τώρα ότι ο προσανατολισμός μιας επιφάνειας S γίνεται επιλέγοντας ένα συνεχώς μετα-
βαλλόμενο μοναδιαίο διάνυσμα που είναι κάθετο σε κάθε σημείο της S. Όταν η επιφάνεια S είναι
προσανατολισμένη, τότε μπορούμε να ορίσουμε έναν προσανατολισμό για το σύνορο της ∂S
που είναι γνωστός ως συνοριακός προσανατολισμός. Φανταστείτε ότι είστε ένα μοναδιαίο κάθετο
διάνυσμα και βαδίζετε κατά μήκος της συνοριακής καμπύλης με το κεφάλι σας να έχει την ίδια
κατεύθυνση με το πέρας του κάθετου διανύσματος, ενώ τα πόδια σας να βρίσκονται στην ίδια
κατεύθυνση με την αρχή του συγκεκριμένου διανύσματος. Ο συνοριακός προσανατολισμός είναι
η κατεύθυνση για την οποία η επιφάνεια παραμένει συνεχώς στα αριστερά σας καθώς κινείστε
πάνω στη συνοριακή καμπύλη.

Έτσι, για παράδειγμα, το σύνορο της επιφάνειας του Σχήματος 3.87 αποτελείται από δύο
καμπύ- λες, τιςC1 καιC2. Στο (α), το κάθετο διάνυσμα κατευθύνεται προς τα έξω. Η γυναίκα που
φαίνεται στο σχήμα (και παριστάνει το κάθετο διάνυσμα) βαδίζει κατά μήκος της καμπύλης C1
έχοντας την επιφάνεια στα αριστερά της, επομένως κινείται στη θετική κατεύθυνση. Αντιθέτως,
η καμπύλη C2 είναι προσανατολισμένη στην αντίθετη κατεύθυνση καθώς θα πρέπει να βαδίσει
κατά μήκος τηςC2 προς αυτή την κατεύθυνση ώστε να έχει την επιφάνεια στα αριστερά της. Οι
συνοριακοί προσανατολισμοί στο (β) έχουν αντιστραφεί επειδή έχει επιλεγεί το αντίθετο κάθετο
διάνυσμα ως το διάνυσμα που προσανατολίζει την επιφάνεια.

Στο θεώρημα που ακολουθεί υποθέτουμε ότι η S είναι μια προσανατολισμένη επιφάνεια με
παραμέτρηση
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G : D−→ S,

όπου τοD είναι ένα χωρίο του επιπέδου που περιορίζεται από λείες, απλές κλειστές καμπύλες, ενώ
ηG είναι ένα προς ένα και κανονική, εκτός ίσως από το σύνορο τουD. Γενικότερα, η επιφάνεια S
μπορεί να αποτελείται από μια πεπερασμένη ένωση επιφανειών αυτού του τύπου. Οι επιφάνειες
στις εφαρμογές που θα συναντήσουμε, όπως οι σφαίρες, οι κύβοι αλλά και τα γραφήματα των
συναρτήσεων, ικανοποιούν όλες τις προαναφερόμενες συνθήκες.

Σχήμα 3.87 Οι προσανατολισμοί της συνοριακής καμπύλης ∂S για καθέναν από τους δύο πιθανούς προσανατολισμούς της
επιφάνειας S.

Θεώρημα 3.25.1 Θεώρημα Stokes Έστω S μια επιφάνεια με τις ιδιότητες που περιγράφηκαν
προηγουμένως και F ένα διανυσματικό πεδίο οι συνιστώσες του οποίου έχουν συνεχείς μερικές
παραγώγους σε μια ανοικτή περιοχή που περιλαμβάνει την επιφάνεια S. Τότε ισχύει:∮

∂S
F ·dr =

∫∫
S

curl(F) ·dS

Το ολοκλήρωμα στο αριστερό μέλος της προηγούμενης Εξίσωσης ορίζεται σε σχέση με τον
συνοριακό προσανατολισμό ∂S.
Αν η επιφάνεια S είναι κλειστή, τότε∫∫

S
curl(F) ·dS = 0

Χρησιμοποιώντας τον συμβολισμό ∇×F = curl(F) το θεώρημα Stokes μπορεί να γραφτεί στη
μορφή: ∮

∂S F ·dr =
∫∫

S
(∇×F) ·dS

Στη μορφή αυτή μπορούμε και πάλι να παρατηρήσουμε την αναλογία με την πρώτη πρόταση του
θεμελιώδους θεωρήματος του Λογισμού. Ένα διπλό ολοκλήρωμα πάνω σε μια επιφάνεια μιας
παραγώγου, που στη συγκεκριμένη περίπτωση είναι ο στροβιλισμός, δίνει ένα απλό ολοκλήρωμα
πάνω στο σύνορο αυτής της επιφάνειας.

Υπενθύμιση 3.25.2
Υπολογισμός του επιφανειακού ολοκληρώματος:
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∫∫
S

F ·dS =
∫∫

D
F(u,v) ·N(u,v)dudv

Αν η επιφάνεια S είναι το γράφημα της z = f (x,y) που παραμετράται από τη

G(x,y) = (x, y, f (x,y)),

και το διάνυσμα N επιλέγεται να έχει κατεύθυνση προς τα επάνω, τότε

N(x,y) = 〈− fx(x,y), − fy(x,y), 1〉 .

Παράδειγμα 3.25.3
Επιβεβαίωση του θεωρήματος Stokes
Επιβεβαιώστε το θεώρημα Stokes για το
διανυσματικό πεδίο

F(x,y,z) = 〈−y, 2x, x+ z〉
και για το άνω ημισφαίριο που περιγράφεται από
την

S = {(x,y,z) : x2 + y2 + z2 = 1, z≥ 0},

με τα κάθετα διανύσματα να κατευθύνονται προς τα
έξω, όπως φαίνεται στο Σχήμα 3.88.

Σχήμα 3.88 Το άνω ημισφαίριο με προσανατο-
λισμένη συνοριακή καμπύλη

Λύση. Θα αποδείξουμε ότι το επικαμπύλιο ολοκλήρωμα και το επιφανειακό ολοκλήρωμα που
εμφανίζονται στο θεώρημα Stokes είναι το καθένα ίσο με 3π .

Βήμα 1 Υπολογίζουμε το επικαμπύλιο ολοκλήρωμα πάνω στη συνοριακή καμπύλη. Το σύνορο της
επιφάνειας S είναι ο μοναδιαίος κύκλος προσανατολισμένος αντιωρολογιακά και παραμετράται
από την

r(t) = 〈cos t, sin t, 0〉.

Επομένως:

r′(t) = 〈−sin t, cos t, 0〉

F(r(t)) = 〈−sin t, 2cos t, cos t〉

F(r(t)) · r′(t) = 〈−sin t, 2cos t, cos t〉 · 〈−sin t, cos t, 0〉= sin2 t +2cos2 t = 1+ cos2 t.

∮
∂S

F ·dr =
∫ 2π

0
(1+ cos2 t)dt = 2π +π = 3π

Βήμα 2 Υπολογίζουμε τον στροβιλισμό του διανυσματικού πεδίου.
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curl(F) =

∣∣∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂ z

−y 2x x+ z

∣∣∣∣∣∣∣∣∣∣
=

(
∂
∂y

(x+ z)− ∂
∂ z

(2x)
)

i−
(

∂
∂x

(x+ z)− ∂
∂ z

(−y)
)

j+
(

∂
∂x

(2x)− ∂
∂y

(−y)
)

k

= 〈0,−1, 3〉.

Βήμα 3 Υπολογίστε το επιφανειακό ολοκλήρωμα του στροβιλισμού. Παραμετρούμε το ημισφαίριο
σε σφαιρικές συντεταγμένες:

G(θ ,ϕ) = (cosθ sinϕ , sinθ sinϕ , cosϕ).

Σύμφωνα με τα προηγούμενα, το κάθετο διάνυσμα με κατεύθυνση προς τα έξω είναι το:

N = sinϕ 〈cosθ sinϕ , sinθ sinϕ , cosϕ〉.

Επομένως

curl(F) ·N = sinϕ 〈0,−1, 3〉 · 〈cosθ sinϕ , sinθ sinϕ , cosϕ〉=
−sinθ sin2 ϕ +3cosϕ sinϕ .

Το άνω ημισφαίριο S αντιστοιχεί στις τιμές των παραμέτρων 0 ≤ ϕ ≤ π
2
και 0 ≤ θ ≤ 2π ,

επομένως: ∫∫
S

curl(F) ·dS =
∫ π/2

ϕ=0

∫ 2π

θ=0

(
− sinθ sin2 ϕ +3cosϕ sinϕ

)
dθ dϕ

= 0+2π
∫ π/2

ϕ=0
3cosϕ sinϕ dϕ = 2π

(
3
2

sin2 ϕ
)∣∣∣π/2

ϕ=0
= 3π.

Παράδειγμα 3.25.4
Χρησιμοποιήστε το θεώρημα Stokes για να αποδείξετε ότι

∮
C

F ·dr = 0

αν

F(x,y,z) = 〈sin(x2), ey2
+ x2, z4 +2x2〉

καιC είναι το σύνορο του τριγώνου που φαίνεται στο Σχήμα 3.89, με τον προσανατολισμό που
σημειώνεται σε αυτό.
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Παρατηρήστε ότι αν θέλαμε να υπολογίσουμε το

ολοκλήρωμα
∮

C
F · dr με απευθείας υπολογισμούς

θα έπρεπε να παραμετρήσουμε καθένα από τα
τρία ευθύγραμμα τμήματα της καμπύλης C και
στη συνέχεια να υπολογίσουμε τα αντίστοιχα
ολοκληρώματα.
Αντί αυτής της προσέγγισης, μπορούμε να
παρατηρήσουμε ότι S είναι η επιφάνεια του τριγώνου
που περικλείεται από την καμπύλη C και μπορούμε
να χρησιμοποιήσουμε το θεώρημα Stokes:∮

C
F ·dr =

∫∫
S

curl(F) ·dS

και να αποδείξουμε έτσι ότι το ολοκλήρωμα που
εμφανίζεται στο δεξιό μέλος της προηγούμενης
ισότητας είναι μηδέν. Θα ξεκινήσουμε
υπολογίζοντας τον στροβιλισμό του διανυσματικού
πεδίου:

Σχήμα 3.89 Το άνω ημισφαίριο με προσανατο-
λισμένη συνοριακή καμπύλη

curl
(〈

sin(x2), ey2
+ x2, z4 +2x2

〉)
=

∣∣∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂ z

sin(x2) ey2
+ x2 z4 +2x2

∣∣∣∣∣∣∣∣∣∣
= 〈0,−4x, 2x〉.

Στη συγκεκριμένη περίπτωση, αν παρατηρήσουμε προσεκτικά, μπορούμε να αποδείξουμε ότι
το επιφανειακό ολοκλήρωμα είναι μηδέν χωρίς να κάνουμε τον κόπο να το υπολογίσουμε. Πιο
συγκεκριμένα, παρατηρούμε ότι η τριγωνική επιφάνεια S κείται στο επίπεδο που διέρχεται από τα
σημεία (3,0,0), (0,2,0) και (0,0,1), γεγονός που σημαίνει ότι το επίπεδο αυτό έχει εξίσωση:

x
3
+

y
2
+ z = 1.

Επομένως, το διάνυσμα N = 〈1/3, 1/2, 1〉 είναι ένα κάθετο διάνυσμα στο επίπεδο αυτό, όπως
φαίνεται στο Σχήμα 5. Αλλά τα διανύσματα N και curl(F) είναι ορθογώνια:

curl(F) ·N = 〈0,−4x, 2x〉 ·
〈

1
3
,
1
2
,1
〉
=−2x+2x = 0.

Συνεπώς, αν το n είναι το μοναδιαίο διάνυσμα στην κατεύθυνση του N τότε curl(F) · n = 0.
Επιπλέον, ο δεδομένος προσανατολισμός της καμπύληςC είναι ο συνοριακός προσανατολισμός
που συνδέεται με το διάνυσμα n, επομένως:∮

C F ·dr =
∫∫

S
curl(F) ·dS =

∫∫
S

curl(F) ·ndS =
∫∫

S
0dS = 0.

Υπενθύμιση 3.25.5
Για ένα διανυσματικό πεδίο G ισχύει
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∫∫
S

G ·dS =
∫∫

S
G ·ndS

από τον ορισμό του επιφανειακού ολοκληρώματος ενός διανυσματικού πεδίου.

Σχήμα 3.90 Δύο διαδρομές με το ίδιο σύνορο Q−P
Σχήμα 3.91 Οι επιφάνειες S1 και S2 έχουν την ίδια
καμπύλη ως προσανατολισμένο σύνορο

Θυμηθείτε ότι αν το διανυσματικό πεδίο F είναι συντηρητικό – αν δηλαδή F = ∇ f – τότε για δύο
οποιεσδήποτε διαδρομές C1 καιC2 που οδηγούν από το σημείο P στο σημείο Q, όπως φαίνεται
στο Σχήμα 3.90, θα ισχύει ότι:∫

C1

F ·dr =
∫

C2

F ·dr = f (Q)− f (P).

Αυτό σημαίνει ότι το επικαμπύλιο ολοκλήρωμα του πεδίου F είναι ανεξάρτητο της διαδρομής,

επομένως το ολοκλήρωμα
∮

C
F ·dr είναι μηδέν αν η καμπύληC είναι κλειστή.

Κάτι ανάλογο ισχύει και για τα επιφανειακά ολοκληρώματα ενός διανυσματικού πεδίου όταν
έχουμε F = curl(A). Το διανυσματικό πεδίο A ονομάζεται διανυσματικό δυναμικό του πεδίου
F. Σύμφωνα με το θεώρημα Stokes, για δύο οποιεσδήποτε επιφάνειες S1 και S2 με την ίδια
προσανατολισμένη συνοριακή καμπύληC (βλ. Σχήμα 3.91) θα ισχύει:∫∫

S1

F ·dS =
∫∫

S2

F ·dS =
∮

C
A ·dr.

Μεάλλα λόγια, το επιφανειακό ολοκλήρωμα ενός διανυσματικού πεδίου με διανυσματικό δυναμικό
A είναι ανεξάρτητο από την επιφάνεια. Επιπλέον, αν η επιφάνεια είναι κλειστή, τότε το επιφανειακό
ολοκλήρωμα είναι μηδέν, δηλαδή:∫∫

S
F ·dS = 0 αν F = curl(A) και η S είναι κλειστή.

Ασκήσεις 3.25.6
Στις Ασκήσεις 1–4 να επαληθεύσετε το θεώρημα Stokes για το διανυσματικό πεδίο και την
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επιφάνεια που δίνονται σε κάθε περίπτωση. Θεωρήστε ότι η επιφάνεια είναι προσανατολισμένη
με κάθετα διανύσματα που κατευθύνονται προς τα επάνω.

1. F = 〈2xy, x, y+ z〉, επιφάνεια z = 1− x2− y2 για x2 + y2 ≤ 1.

2. F = 〈yz, 0, x〉, το τμήμα του επιπέδου x
2
+

y
3
+ z = 1 με x,y,z≥ 0.

3. F = 〈ey−z, 0, 0〉, το τετράγωνο με κορυφές τα σημεία (1,0,1), (1,1,1), (0,1,1) και
(0,0,1).

4. F = 〈y, x, x2 + y2〉, το άνω ημισφαίριο

x2 + y2 + z2 = 1, z≥ 0

Στις Ασκήσεις 5–9 να υπολογίσετε το curl(F) και να εφαρμόσετε το θεώρημα Stokes για
να υπολογίσετε τη ροή του curl(F) μέσα από την επιφάνεια που δίνεται σε κάθε περίπτωση
χρησιμοποιώντας ένα επικαμπύλιο ολοκλήρωμα.

5. F = 〈ez2− y, ez3
+ x, cos(xz)〉, το άνω μισό της μοναδιαίας σφαίρας x2 + y2 + z2 =

1, z≥ 0 με κάθετα διανύσματα κατευθυνόμενα προς τα έξω.

6. F = 〈3z, 5x,−2y〉, σε εκείνο το τμήμα του παραβολοειδούς z = x2+y2 που βρίσκεται
κάτω από το επίπεδο z= 4 με κάθετο μοναδιαίο διάνυσμα κατευθυνόμενο προς τα επάνω.

7. F = 〈yz,−xz, z3〉, στο τμήμα του κώνου z =
√

x2 + y2 που βρίσκεται μεταξύ των
επιπέδων z = 1 και z = 3 με κάθετο μοναδιαίο διάνυσμα κατευθυνόμενο προς τα επάνω.

8. F = 〈yz, xz, xy〉, στο τμήμα του κυλίνδρου x2 + y2 = 1 που βρίσκεται μεταξύ των
επιπέδων z = 1 και z = 4 με κάθετο μοναδιαίο διάνυσμα κατευθυνόμενο προς τα έξω.

9. F= 〈2y, ez,−arctanx〉, στο τμήμα του παραβολοειδούς z= 4−x2−y2 που αποκόπτε-
ται από το επίπεδο xy με κάθετο μοναδιαίο διάνυσμα κατευθυνόμενο προς τα επάνω.

10. Εξηγήστε προσεκτικά γιατί το θεώρημαGreen αποτελεί μία ειδική περίπτωση του θεωρή-
ματος Stokes.

Λυμένες ασκήσεις 3.25.7
Λύση.

1. Έχουμε

curlF = ∇×〈2xy,x,y+ z〉= 〈1, 0, 1−2x〉.

Παραμετροποιούμε το παραβολοειδές z = 1− x2− y2 με πολικές συντεταγμένες

r(r,θ) = 〈r cosθ , r sinθ , 1− r2〉, 0≤ r ≤ 1, 0≤ θ ≤ 2π.

Τότε

rr× rθ = 〈2r2 cosθ , 2r2 sinθ , r〉

(το διάνυσμα έχει θετική z–συνιστώσα, άρα είναι προς τα επάνω). Επομένως
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∫∫
S
(curlF) ·dS =

∫∫
D
(curlF)

(
r(r,θ)

)
· (rr× rθ )dr dθ =

∫∫
D

r dr dθ = π.

Το σύνορο είναι ο κύκλος C : x2 + y2 = 1, z = 0 με θετική φορά (αντικανονική).
Παίρνουμε

r(t) = 〈cos t,sin t,0〉, 0≤ t ≤ 2π, r′(t) = 〈−sin t,cos t,0〉.

Πάνω στονC έχουμε F = 〈2cos t sin t,cos t,sin t〉, άρα

F
(
r(t)
)
· r′(t) =−2cos t sin2 t + cos2 t.

Άρα ∫
C

F ·dr =
∫ 2π

0
(−2cos t sin2 t + cos2 t)dt = π.

Οι δύο τιμές συμπίπτουν, οπότε το θεώρημα Stokes επαληθεύεται.

2. Για F = 〈yz,0,x〉 έχουμε

curlF = 〈0, y−1, −z〉.

Το επίπεδο x/2+ y/3+ z = 1 γράφεται ως

z = f (x,y) = 1− x
2
− y

3
,

και η επιφάνεια στο πρώτο οκτάντο προβάλλεται στο τρίγωνο D με κορυφές (0,0),
(2,0), (0,3). Για γραφική επιφάνεια με κάθετα διανύσματα προς τα επάνω ισχύει

dS = 〈− fx,− fy, 1〉dxdy =
〈1

2
,

1
3
, 1
〉

dxdy.

Επομένως

(curlF) ·dS =
[
0 · 1

2
+(y−1)

1
3
− z
]
dxdy =

(2(y−2)
3

+
x
2

)
dxdy.

Άρα ∫∫
S
(curlF) ·dS =

∫∫
D

(2(y−2)
3

+
x
2

)
dxdy =−1.

Το σύνορο C είναι το τρίγωνο με κορυφές A(0,0,1), B(2,0,0), C(0,3,0) με κυκλική
φορά A→ B→C→ A. Γράφουμε τρία τμήματα:
(i) AB : r(t) = 〈t,0,1− t

2
〉, 0≤ t ≤ 2. (ii) BC : r(s) = 〈2(1−s),3s,0〉, 0≤ s≤ 1.

(iii)CA : r(t) = 〈0, t,1− t
3
〉, 3≥ t ≥ 0.

Μπορούμε να δείξουμε ότι∫
AB

F ·dr =−1,
∫

BC
F ·dr = 0,

∫
CA

F ·dr = 0,

άρα
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∫
C

F ·dr =−1 =
∫∫

S
(curlF) ·dS.

3. F = 〈ey−z,0,0〉 και

curlF = 〈0,−ey−z,−ey−z〉.

Το τετράγωνο βρίσκεται στο επίπεδο z = 1 με 0≤ x,y≤ 1 και κάθετα διανύσματα προς
τα επάνω, άρα dS = 〈0,0,1〉dxdy. Έτσι∫∫

S
(curlF) ·dS =

∫∫
0≤x,y≤1

(−ey−1)dxdy = e−1−1.

Για τη κυκλοφορία στο σύνοροC (το τετράγωνο με θετική φορά), ισχύει

F ·dr = ey−1 dx.

Στα κατακόρυφα τμήματα dx = 0, άρα δεν συμβάλλουν. Στα οριζόντια έχουμε:∫
κάτω πλευρά

ey−1dx =
∫ 1

0
e−1 dx = e−1,

∫
πάνω πλευρά

ey−1dx =
∫ 0

1
1dx =−1.

Άρα ∫
C

F ·dr = e−1−1 =
∫∫

S
(curlF) ·dS.

4. F = 〈y,x,x2 + y2〉,

curlF = 〈2y,−2x, 0〉.

Το σύνοροC είναι ο κύκλος x2 + y2 = 1, z = 0 με θετική φορά (αντικανονική). Με

r(t) = 〈cos t,sin t,0〉, r′(t) = 〈−sin t,cos t,0〉,

παίρνουμε πάνω στονC

F(r(t)) = 〈sin t,cos t,1〉, F · r′(t) = cos2t.

Άρα ∫
C

F ·dr =
∫ 2π

0
cos2t dt = 0.

Για την επιφάνεια S (άνω ημισφαίριο της μοναδιαίας σφαίρας) τα κάθετα διανύσματα
προς τα έξω είναι τα ακτινικά n = 〈x,y,z〉 (μοναδιαία). Τότε

(curlF) ·n = 〈2y,−2x,0〉 · 〈x,y,z〉= 2xy−2xy = 0

σε κάθε σημείο της σφαίρας, άρα∫∫
S
(curlF) ·dS = 0.

Και πάλι



368 Λογισμός των Διανυσματικών Συναρτήσεων

∫
C

F ·dr =
∫∫

S
(curlF) ·dS,

οπότε το θεώρημα Stokes επαληθεύεται.

5. F = 〈ez2− y, ez3
+ x, cos(xz)〉.

Το στροφικό είναι

curlF =
〈
−3z2ez3

, 2zez2
+ zsin(xz), 2

〉
.

Η επιφάνεια είναι το άνω ημισφαίριο της μοναδιαίας σφαίρας, άρα το σύνοροC είναι ο
κύκλος

C : r(t) = 〈cos t,sin t,0〉, 0≤ t ≤ 2π

με θετική φορά, οπότε

r′(t) = 〈−sin t,cos t,0〉.

Πάνω στοC έχουμε

F(r(t)) = 〈1− sin t, 1+ cos t, 1〉,
άρα

F(r(t)) · r′(t) = (1− sin t)(−sin t)+(1+ cos t)cos t =
√

2cos
(

t +
π
4

)
+1.

Επομένως ∫
C

F ·dr =
∫ 2π

0

[√
2cos

(
t +

π
4

)
+1
]

dt = 2π.

Άρα, κατά Stokes, ∫∫
S
(curlF) ·dS = 2π.

6. F = 〈3z, 5x, −2y〉.

curlF = 〈−2, 3, 5〉.

Το σύνοροC της επιφάνειας z = x2 + y2 κάτω από z = 4 είναι ο κύκλος

C : r(t) = 〈2cos t, 2sin t, 4〉, 0≤ t ≤ 2π,

με φορά αντίστροφη των δεικτών του ρολογιού (όπως φαίνεται από πάνω). Τότε

r′(t) = 〈−2sin t, 2cos t, 0〉, F(r(t)) = 〈12, 10cos t, −4sin t〉,
και

F(r(t)) · r′(t) =−24sin t +20cos2 t.

Άρα
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∫
C

F ·dr =
∫ 2π

0
(−24sin t +20cos2 t)dt = 20π.

Κατά Stokes, ∫∫
S
(curlF) ·dS = 20π.

7. F = 〈yz, −xz, z3〉.

curlF = 〈x, y, −2z〉.

Η επιφάνεια είναι το τμήμα του κώνου z =
√

x2 + y2 για 1 ≤ z ≤ 3. Το σύνορο
αποτελείται από δύο κύκλους:

C1 : z = 1, x2 + y2 = 1, C2 : z = 3, x2 + y2 = 9,

με φορά συμβατή με κάθετα προς τα επάνω διανύσματα. Παίρνουμε παραμετροποίηση

Cc : rc(t) = 〈ccos t, csin t, c〉, 0≤ t ≤ 2π,

όπου c = 1 ή c = 3. Τότε

r′c(t) = 〈−csin t, ccos t, 0〉, F(rc(t)) = 〈c2 sin t, −c2 cos t, c3〉,

οπότε

F(rc(t)) · r′c(t) =−c3.

Έτσι ∫
Cc

F ·dr =
∫ 2π

0
(−c3)dt =−2πc3.

Συνολικά ∫
C1∪C2

F ·dr =−2π(13 +33) =−56π,

άρα ∫∫
S
(curlF) ·dS =−56π.

8. F = 〈yz, xz, xy〉.

curlF = 〈0, 0, 0〉.
Επομένως ∫∫

S
(curlF) ·dS = 0.

Κατά το θεώρημα Stokes, το επικαμπύλιο ολοκλήρωμα στο σύνορο C του κυλίνδρου
είναι επίσης μηδενικό:
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∫
C

F ·dr = 0.

9. F = 〈2y, ez, −arctanx〉.

curlF =
〈
−ez,

1
x2 +1

, −2
〉
.

Η επιφάνεια είναι το τμήμα του παραβολοειδούς z = 4− x2− y2 πάνω από το επίπεδο
z = 0, άρα το σύνορο είναι ο κύκλος

C : r(t) = 〈2cos t, 2sin t, 0〉, 0≤ t ≤ 2π,

με θετική φορά. Τότε

r′(t) = 〈−2sin t, 2cos t, 0〉, F(r(t)) = 〈4sin t, 1, −arctan(2cos t)〉,
και

F(r(t)) · r′(t) = 4sin t(−2sin t)+1 ·2cos t =−8sin2 t +2cos t.

Άρα ∫
C

F ·dr =
∫ 2π

0
(−8sin2 t +2cos t)dt =−8π.

Κατά Stokes, ∫∫
S
(curlF) ·dS =−8π.

10. Θα δείξουμε ότι το θεώρημα Green προκύπτει αν εφαρμόσουμε το θεώρημα Stokes σε
μια κατάλληλη περίπτωση.
Θεώρημα Stokes: αν S είναι μια προσανατολισμένη λεία επιφάνεια με σύνορο C = ∂S
και μοναδιαίο κάθετο διάνυσμα n, τότε∫

C
F ·dr =

∫∫
S
(∇×F) ·ndS.

ΘεώρημαGreen (μορφή κυκλοφορίας): ανD είναι περιοχή του επιπέδου με θετικά προσα-
νατολισμένο σύνοροC = ∂D και F = 〈P(x,y),Q(x,y)〉, τότε∫

C
Pdx+Qdy =

∫∫
D

(
∂Q
∂x
− ∂P

∂y

)
dA.

Για να δούμε ότι το Green είναι ειδική περίπτωση του Stokes, θεωρούμε την περιοχή D
ως επιφάνεια

S = (x,y,0) : (x,y) ∈ D⊂ R3

στο επίπεδο z = 0, με κάθετα διανύσματα κατευθυνόμενα προς τα επάνω, δηλ. n =
〈0,0,1〉.
Επεκτείνουμε το διανυσματικό πεδίο στο R3 θέτοντας
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F(x,y,z) = 〈P(x,y), Q(x,y), 0〉.
Τότε

∇×F =

〈
0, 0,

∂Q
∂x
− ∂P

∂y

〉
.

Άρα

(∇×F) ·n =
∂Q
∂x
− ∂P

∂y
,

και το ολοκλήρωμα επιφανείας του Stokes γίνεται∫∫
S
(∇×F) ·ndS =

∫∫
D

(
∂Q
∂x
− ∂P

∂y

)
dA.

Από την άλλη πλευρά, το σύνορο C = ∂S είναι ακριβώς το σύνορο της περιοχής D
στο επίπεδο, με τη θετική (αντικανονική) φορά. Για μια παραμετροποίηση C : r(t) =
〈x(t),y(t),0〉 έχουμε

dr = 〈x′(t),y′(t),0〉dt, F(r(t)) = 〈P(x,y),Q(x,y),0〉,
οπότε

F ·dr = P(x,y)dx+Q(x,y)dy.

Έτσι το επικαμπύλιο ολοκλήρωμα του Stokes γράφεται∫
C

F ·dr =
∫

C
Pdx+Qdy.

Εφαρμόζοντας λοιπόν το θεώρημα Stokes στην επιφάνεια S και στο πεδίοF που ορίσαμε,
παίρνουμε ∫

C
Pdx+Qdy =

∫∫
D

(
∂Q
∂x
− ∂P

∂y

)
dA,

που είναι ακριβώς το θεώρημαGreen. Άρα το θεώρημαGreen είναι μια ειδική περίπτωση
του θεωρήματος Stokes, όταν η επιφάνεια S είναι μια περιοχή του επιπέδου z = 0 και το
πεδίο είναι της μορφής 〈P(x,y),Q(x,y),0〉.
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