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Συναρτήσεις πολλών μεταβλητών: Θεωρία και Εφαρμογές

1 Συναρτήσειςπολλών
μεταβλητών: ΘεωρίακαιΕφαρμογές

1.1 Συναρτήσεις πολλών μεταβλητών

1.1.1 Εισαγωγή

Οι συναρτήσεις πολλών μεταβλητών αποτελούν έναν θεμελιώδη λίθο τόσο των Μαθηματικών
όσο και πολλών εφαρμοσμένων επιστημών, όπως η Φυσική, η Μηχανική, η Οικονομία και η
Επιστήμη των Υπολογιστών. Από τον απλό υπολογισμό εμβαδών γεωμετρικών σχημάτων, έως
τη μελέτη μεταβολών φυσικών μεγεθών όπως η θερμοκρασία ή η πυκνότητα, οι συναρτήσεις
δύο μεταβλητών παρέχουν την απαραίτητη γλώσσα για την περιγραφή και ανάλυση φαινομένων
που εξελίσσονται σε δύο διαστάσεις. Σκοπός του παρόντος κεφαλαίου είναι να παρουσιάσει
με σαφήνεια και πληρότητα τη θεωρία, τις μεθόδους και τις εφαρμογές των συναρτήσεων δύο
μεταβλητών με βασικά παραδείγματα - όπως το εμβαδόν παραλληλογράμμου ή η απόσταση ση-
μείου από την αρχή των αξόνων - και καταλήγοντας σε πιο σύνθετες περιπτώσεις όπως παραδεί-
γματα από την φυσική και την θεωρία υπολογιστών, το κεφάλαιο αυτό ξεδιπλώνει τη δύναμη
και την πολυδιάστατη ισχύ των συναρτήσεων με δύο μεταβλητές. Παράλληλα, η γεωμετρική
απεικόνιση μέσω ισοταθμικών καμπύλων και επιφανειών εμπλουτίζει τη θεωρητική προσέγγιση
με πολύτιμες διαισθητικές γνώσεις, προσφέροντας το απαραίτητο εργαλείο για την ανάλυση και
μοντελοποίηση πολύπλοκων συστημάτων. Είτε πρόκειται για την περιγραφή φαινομένων της
φύσης, είτε για την ανάλυση δεδομένων στην επιστήμη των υπολογιστών και την τεχνολογία, οι
συναρτήσεις δύο μεταβλητών βρίσκονται στον πυρήνα κάθε ουσιαστικής μελέτης και σύνθεσης,
επιτρέποντας μας να κατανοήσουμε, να προβλέψουμε και να μετασχηματίσουμε τον κόσμο γύρω
μας.

Η μετάβαση από τις συναρτήσεις μιας μεταβλητής στις συναρτήσεις δύο μεταβλητών ανοίγει
νέους ορίζοντες στη μαθηματική ανάλυση, καθώς απαιτεί την αναδιατύπωση και επέκταση θεμε-
λιωδών εννοιών σε δύο διαστάσεις. Στο προηγούμενο κεφάλαιο ασχοληθήκαμε εκτενώς με βασι-
κές έννοιες όπως το πεδίο ορισμού, η γραφική απεικόνιση, η έννοια της συνέχειας, η δυνατότητα
παραγωγής και η διαφορισιμότητα για συναρτήσεις πραγματικών αριθμών μιας μεταβλητής. Σε
αυτό το κεφάλαιο, η μελέτη εστιάζει στο πώς επιμηκύνονται οι έννοιες αυτές όταν η συνάρτηση
εξαρτάται από δύο ανεξάρτητες μεταβλητές και επομένως το πεδίο ορισμού αποκτά γεωμετρική
υπόσταση - δεν πρόκειται πλέον για διάστημα, αλλά για περιοχή στο επίπεδο των (x,y). Η
έννοια της περιοχής γίνεται κεντρική: το πλήθος των σημείων όπου ορίζεται μια συνάρτηση δύο
μεταβλητών συχνά παρουσιάζει γεωμετρικούς περιορισμούς και επιτρέπει τη μελέτη φαινομένων
πολύ πιο σύνθετων σε σχέση με τη μονοδιάστατη ανάλυση. Η συνέχεια, η παραγωγισιμότητα και
η διαφορισιμότητα αναλύονται σε νέο πλαίσιο, ενώ η έννοια της μερικής παραγώγου εισάγει την
ικανότητα περαιτέρω ανάλυσης της μεταβολής συναρτήσεωνως προς κάθε ανεξάρτητη μεταβλητή
ξεχωριστά. Εμφανίζονται νέα εργαλεία όπως τα όρια κατεύθυνσης, οι μερικές παράγωγοι, η ολική
συνέχεια, οι γραφικές παραστάσεις επιφανειών και οι ισοταθμικές καμπύλες, οι οποίες είναι και το
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κλειδί για τη διαισθητική κατανόηση της συμπεριφοράς των συναρτήσεων πολλών μεταβλητών.
Επιπλέον, στο διδιάστατο χώρο αποκτούν ιδιαίτερο ενδιαφέρον τα φαινόμενα τοπικής συμπερι-
φοράς: εντοπίζονται και μελετώνται μέγιστα, ελάχιστα και σημεία σαγματικής συμπεριφοράς με
εργαλεία όπως το διαφορικό και ο πίνακας Hess. Τέλος, ο συνδυασμός μαθηματικών εννοιών
και γεωμετρικής οπτικής προσφέρει ένα ισχυρό πλαίσιο για την ανάλυση και μοντελοποίηση
φαινομένων που συναντάμε στη φυσική, στην οικονομία, αλλά και στους υπολογιστές, με εφαρμο-
γές από την ανάλυση δεδομένων και την μαθηματική μοντελοποίηση έως τη βελτιστοποίηση
συστημάτων.

Γενικά, οι πραγματικές συναρτήσεις πολλών ανεξάρτητων πραγματικών μεταβλητών ορίζονται
ανάλογα με τις συναρτήσεις μίας μεταβλητής. Τα στοιχεία του πεδίου ορισμού είναι διατεταγμένα
ζεύγη (τριάδες, τετράδες, n-άδες) πραγματικών αριθμών, ενώ τα στοιχεία του πεδίου τιμών είναι
πραγματικοί αριθμοί.

Ορισμός 1.1.1 Έστω ότι το D είναι ένα σύνολο n-άδων πραγματικών αριθμών (x1,x2, . . . ,xn).
Μια πραγματική συνάρτηση f ορισμένη στοD είναι ένας κανόνας που αντιστοιχίζει έναν (μονα-
δικό) πραγματικό αριθμό

w = f (x1,x2, . . . ,xn)

σε κάθε στοιχείο τουD. Το σύνολοD είναι το πεδίο ορισμού της συνάρτησης f . Το σύνολο των
τιμών που παίρνει η f είναι το πεδίο τιμών της συνάρτησης. Τοw είναι η εξαρτημένη μεταβλητή
της f , και η f είναι συνάρτηση των n ανεξάρτητων μεταβλητών x1 έως xn. Ονομά- ζουμε επίσης
τα x j μεταβλητές εισόδου της συνάρτησης και το w μεταβλητή εξόδου της συνάρτη- σης.

Αν η f είναι συνάρτηση δύο ανεξάρτητων μεταβλητών, συνήθως συμβολίζουμε τις ανεξάρτη-
τες μεταβλητές με x και y και την εξαρτημένη μεταβλητή με z, ενώ φανταζόμαστε το πεδίο
ορισμού της f ως χωρίο στο επίπεδο xy. Αν η f είναι συνάρτηση τριών ανεξάρτητων μεταβλητών,
ονομάζουμε τις ανεξάρτητες μεταβλητές x, y και z και την εξαρτημένη μεταβλητήw, και φανταζό-
μαστε το πεδίο ορισμού ως χωρίο (περιοχή) του χώρου.

D x

y

0

(x, y)

(x0, y0)

z
0

f(a, b) f(x, y)

f

Σχήμα 1.1 Απεικόνιση του f : D⊆ R2→ R

Στις εφαρμογές, τείνουμε να χρησιμοποιούμε γράμματα που μας θυμίζουν τι σημαίνουν οι μετα-
βλητές που αυτά συμβολίζουν. Για να δηλώσουμε ότι ο όγκος ενός ορθού κυλινδρικού κυλίνδρου
είναι συνάρτηση της ακτίνας του και του ύψους του, μπορούμε να γράψουμε V = f (r,h). Για
περισσότερη ακρίβεια, μπορούμε να αντικαταστήσουμε το f (r,h) με τον τύπο που υπολογίζει
την τιμή του V από τις τιμές των r και h, και να γράψουμε V = πr2h. Σε κάθε περίπτωση, τα r
και h θα είναι οι ανεξάρτητες μεταβλητές και τοV η εξαρτημένη μεταβλητή της συνάρτησης.

Η μελέτη συναρτήσεων δύο μεταβλητών βασίζεται σε έννοιες που είναι ουσιαστικά ανάλογες
με εκείνες της ανάλυσης συναρτήσεων μίας μεταβλητής.
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Πεδίο ορισμού, πεδίο τιμών, γραφική παράσταση, όρια,
συνέχεια, παράγωγοι και ολοκληρώματα αποτελούν τα
βασικά εργαλεία κατανόησης της συμπεριφοράς μιας
συνάρτησης και στον δισδιάστατο χώρο. Η ειδοποιός
διαφορά έγκειται στο ότι οι έννοιες αυτές δεν εξετάζονται
πλέον κατά μήκος μιας ευθείας, αλλά σε περιοχές
του επιπέδου, γεγονός που εμπλουτίζει τη γεωμετρική
ερμηνεία και αυξάνει την αναλυτική πολυπλοκότητα.
Ωστόσο, η φιλοσοφία της μελέτης παραμένει κοινή:
κατανόηση της τοπικής και ολικής συμπεριφοράς της
συνάρτησης μέσω των ίδιων θεμελιωδών εννοιών.

Σχήμα 1.2

1.2 Πεδία ορισμού και Πεδία Τιμών
1.2.1 Συναρτήσεις δύο μεταβλητών

R
(x0, y0)

(a) Εσωτερικό Σημείο

R

(x0, y0)

(b) Εξωτερικό Σημείο

Σχήμα 1.3

Παράδειγμα 1.2.1 Να σχεδιάσετε το πεδίο ορισμού της συνάρτησης:
f (x,y) =

√
9− x2− y

Ποιο είναι το εύρος των τιμών αυτών των συναρτήσεων;

Σχήμα 1.4 Το πεδίο ορισμού της συνάρτησης f (x,y) =
√

9− x2− y είναι το σύνολο των σημείων που βρίσκονται πάνω στην
παραβολή y = 9− x2 ή κάτω από αυτήν.
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Ασκήσεις 1.2.2 1. f (x,y) =
√

y− x−2

2. f (x,y) = ln(x2 + y2−4)

3. f (x,y) =
(x−1)(y+2)
(y− x)(y− x3)

4. f (x,y) =
sin(xy)

x2 + y2−25

5. f (x,y) = cos−1(y− x2)

6. f (x,y) = ln(xy+ x− y−1)

7. f (x,y) =
√

(x2−4)(y2−9)

8. f (x,y) =
1

ln(4− x2− y2)

1.2.2 Γραφική αναπαράσταση συναρτήσεων
με δύο μεταβλητές

Στην περίπτωση του Λογισμού των συναρτήσεων μίας μεταβλητής, μπορούμε να χρησιμοποιή-
σουμε τις γραφικές παραστάσεις για να οπτικοποιήσουμε τα πιο σημαντικά από τα χαρακτηριστικά
μιας συνάρτησης (βλ. Σχήμα 1.5a).

(a) Γραφική παράσταση της y = f (x). (b) Γραφική παράσταση της z = f (x,y).

Σχήμα 1.5

Οι γραφικές παραστάσεις παίζουν έναν παρόμοιο ρόλο και στην περίπτωση των συναρτήσεων
με δύο μεταβλητές. Το γράφημα μιας συνάρτησης f δύο μεταβλητών αποτελείται από το σύνολο
των σημείων (a,b, f (a,b)) του χώρουR3 για όλα τα ζεύγη τιμών (a,b) που ανήκουν στο πεδίο
ορισμούD της f . Υποθέτοντας ότι η f είναι συνεχής (η έννοια της συνέχειας στην πολυμεταβλητή
ανάλυση θα οριστεί στην επόμενη ενότητα), το γράφημα είναι μια επιφάνεια το ύψος της οποίας
πάνω ή κάτω από το επίπεδο xy στο (a,b) είναι η τιμή της συνάρτησης f (a,b) (βλ. Σχήμα
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1.5b). Πολύ συχνά γράφουμε z = f (x,y) προκειμένου να δώσουμε έμφαση στο γεγονός ότι η z
συντεταγμένη ενός σημείου του γραφήματος είναι συνάρτηση των x και y.

1.2.3 ’Ιχνη
Ένας τρόπος μέσω του οποίου μπορούμε να αναλύσουμε το γράφημα μιας συνάρτησης f (x,y)
είναι σταθεροποιώντας («παγώνοντας») τη συντεταγμένη x, θέτοντας για παράδειγμα x = a και
εξετάζοντας την προκύπτουσα καμπύλη που περιγράφεται από την z = f (a,y). Παρομοίως,
μπορούμε να θέσουμε y = b και να μελετήσουμε την καμπύλη z = f (x,b). Οι καμπύλες αυτού
του είδους είναι γνωστές ως κατακόρυφα ίχνη, καθώς προκύπτουν από την τομή της γραφικής
παράστασης με επίπεδα που είναι παράλληλα σε ένα από τα κατακόρυφα επίπεδα συντεταγμένων
(βλ. Σχήμα 1.6).

(a) Κατακόρυφα ίχνη παράλληλα στο επίπεδο yz. (b) Κατακόρυφα ίχνη παράλληλα στο επίπεδο xz.

Σχήμα 1.6

• Κατακόρυφο ίχνος στο επίπεδο x = a: Προκύπτει από την τομή της γραφικής παράστασης
της συνάρτησης με το κατακόρυφο επίπεδο x = a και αποτελείται από το σύνολο των
σημείων της μορφής (a,y, f (a,y)).

• Κατακόρυφο ίχνος στο επίπεδο y = b: Προκύπτει από την τομή της γραφικής παράστασης
της συνάρτησης με το κατακόρυφο επίπεδο y = b και αποτελείται από το σύνολο των
σημείων της μορφής (x,b, f (x,b)).

13



Παράδειγμα 1.2.3 Να περιγράψετε τα κατακόρυφα ίχνη της συνάρτησης f (x,y) = xsiny
(Σχήμα 1.7).

(a) Τα ίχνη στα επίπεδα x = a είναι οι καμπύλες z = asiny.
(b) Τα ίχνη στα επίπεδα y = b είναι οι καμπύλες
z = xsinb.

Σχήμα 1.7 Κατακόρυφα ίχνη της συνάρτησης f (x,y) = xsiny.

1.3 Ισοσταθμικές καμπύλες και ισοσταθμικοί χάρτες

Πέραν των κατακόρυφων ιχνών, τα γραφήματα των συναρτήσεων f (x,y) έχουν και οριζόντια
ίχνη. Τα οριζόντια ίχνη, αλλά και οι συνδεόμενες με αυτά ισοσταθμικές καμπύλες, είναι εξαιρετικά
σημαντικά κατά την ανάλυση της συμπεριφοράς μιας συνάρτησης (βλ. Σχήμα 1.8):

• Το οριζόντιο ίχνος σε ύψος c προκύπτει από την τομή της γραφικής παράστασης με το οριζόντιο
επίπεδο z = c, αποτελείται δε από το σύνολο των σημείων της μορφής (x,y, f (x,y)) που είναι
τέτοια ώστε να ισχύει f (x,y) = c. Επομένως, η ισοσταθμική καμπύλη που αντιστοιχεί στην τιμή
c αποτελείται από όλα εκείνα τα σημεία (x,y) στο πεδίο ορισμού της συνάρτησης f στο επίπεδο
xy για τα οποία η συνάρτηση παίρνει την τιμή c. Κάθε ισοσταθμική καμπύλη είναι η προβολή
πάνω στο επίπεδο xy του οριζόντιου ίχνους του γραφήματός της που βρίσκεται ακριβώς από πάνω
της.

• Ένας ισοσταθμικός χάρτης είναι μια «κάτοψη» στο πεδίο ορισμού επί του επιπέδου xy, που
απεικονίζει τις ισοσταθμικές καμπύλες f (x,y) = c για τιμές της c που ισαπέχουν. Η απόσταση
m που μεσολαβεί μεταξύ των διαδοχικών τιμών της c αποκαλείται ισοσταθμικό διάστημα. Όταν
μετακινούμαστε από τη μια ισοσταθμική καμπύλη στην επόμενη, η τιμή της συνάρτησης f (x,y)
(και επομένως και το ύψος της γραφικής παράστασης) μεταβάλλεται κατά±m.

Πώς μπορούμε όμως να προσδιορίσουμε, με κάποιον ποσοτικό τρόπο, πόσο απότομο είναι το
γράφημα μιας συνάρτησης; Ας φανταστούμε την επιφάνεια που ορίζεται από τη z = f (x,y) ως
έναν λόφο, όπως φαίνεται στο Σχήμα 1.9. Αν τοποθετήσουμε το επίπεδο xy στο επίπεδο της
θάλασσας, τότε το f (a,b) θα είναι το ύψος του λόφου στο σημείο (a,b) του επιπέδου, μετρημένο
ως προς το επίπεδο της θάλασσας.
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(a) Μια ισοσταθμική καμπύλη αποτελείται από το σύνολο των
σημείων (x,y) για τα οποία η συνάρτηση παίρνει την ίδια τιμή c.

(b) Ο ισοσταθμικός χάρτης της συνάρτησης
g(x,y) = x2−3y2 με διάστημα m = 10.

Σχήμα 1.8

Στο Σχήμα 1.9(a) απεικονίζονται δύο σημεία P και Q, που ανήκουν στο επίπεδο xy, μαζί με
τα σημεία του γραφήματος που βρίσκονται ακριβώς από πάνω τους και τα οποία δηλώνονται ως
P̃ και Q̃ αντίστοιχα.

Ορίζουμε τον μέσο ρυθμό μεταβολής της συνάρτησης ως εξής:

Μέσος ρυθμός μεταβολής από το P μέχρι το Q.

Μέσος ρυθμός μεταβολής από το P μέχρι το Q =
∆ ύψος

∆οριζόντιο

όπου ∆ ύψος = η μεταβολή του ύψους από το σημείο P̃ μέχρι το σημείο Q̃ και ∆ οριζόντιο = η
απόσταση μεταξύ των σημείων P και Q.

Παράδειγμα 1.3.1 Ο μέσος ρυθμός μεταβολής εξαρτάται από την κατεύθυνση Να υπολογίσετε
τον μέσο ρυθμό μεταβολής καθώς κινούμαστε από το σημείο A προς τα σημεία B,C και D του
Σχήματος 1.9.

Λύση.Το ισοσταθμικό διάστημα στον χάρτη του Σχήματος 1.9(β) είναιm= 100m. Αυτό σημαίνει
ότι αφού τα τμήματαAB καιAC εκτείνονται καλύπτοντας δύο ισοσταθμικές καμπύλες, η μεταβολή
στο ύψος είναι ίση με 200 m και στις δύο αυτές περιπτώσεις. Χρησιμοποιώντας την οριζόντια
κλίμακα προκύπτει ότι το AB αντιστοιχεί σε οριζόντια μεταβολή ίση με 200 m, ενώ για το AC
η οριζόντια απόσταση είναι ίση με 400 m. Αντιθέτως, δεν υπάρχει μεταβολή του ύψους καθώς
κινούμαστε από το σημείο A προς το σημείο D. Επομένως, θα ισχύει:
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Σχήμα 1.9

Μέσος ρυθμός μεταβολής από το A στο B =
∆ ύψος

∆ οριζόντιο
=

200
200

= 1.0

Μέσος ρυθμός μεταβολής από το A στοC =
∆ ύψος

∆ οριζόντιο
=

200
400

= 0.5

Μέσος ρυθμός μεταβολής από το A στο D =
∆ ύψος

∆ οριζόντιο
= 0.

Πράγματι, διαπιστώνουμε ότι ο μέσος ρυθμός μεταβολής εξαρτάται από την κατεύθυνση.

Σημείωση 1.3.2 • Μια ισοσταθμική καμπύλη είναι μια καμπύλη στο επίπεδο xy που ορίζε-
ται από την εξίσωση f (x,y) = c. Η ισοσταθμική καμπύλη f (x,y) = c είναι η προβολή
στο επίπεδο xy μιας οριζόντιας καμπύλης-ίχνους η οποία προκύπτει από την τομή του
γραφήματος της συνάρτησης με το οριζόντιο επίπεδο z = c.

• Ένας ισοσταθμικός χάρτης απεικονίζει τις ισοσταθμικές καμπύλες f (x,y) = c για διαφο-
ρετικές τιμές της σταθεράς c οι οποίες ισαπέχουν. Αυτή η σταθερή απόσταση m μεταξύ
των τιμών της c ονομάζεται ισοσταθμικό διάστημα.

• Όταν παρατηρούμε έναν ισοσταθμικό χάρτη, θα πρέπει να έχουμε πάντα κατά νου ότι:
– Το ύψος δεν μεταβάλλεται όταν κανείς κινείται κατά μήκος μιας ισοσταθμικής
καμπύλης.

– Το ύψος αυξάνεται ή μειώνεται κατά m (το ισοσταθμικό διάστημα) όταν κανείς
μεταβαίνει από τη μία ισοσταθμική καμπύλη στη γειτονική της.

• Η απόσταση των ισοσταθμικών καμπυλών υποδηλώνει το πόσο απότομο είναι το γράφημα:
Όσο πιο κοντά βρίσκονται οι ισοσταθμικές καμπύλες τόσο πιο απότομη είναι η γραφική
παράσταση.

• Ο μέσος ρυθμός μεταβολής από ένα σημείο P σε ένα άλλο σημείο Q είναι το πηλίκο
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∆ύψος
∆οριζόντιο

.

• Η κατεύθυνση της πιο απότομης ανόδου σε ένα σημείοP είναι εκείνη η κατεύθυνση κατά
μήκος της οποίας η f (x,y) αυξάνεται πιο γρήγορα. Η πιο απότομη άνοδος προκύπτει
(κατά προσέγγιση τουλάχιστον) σχεδιάζοντας τα ευθύγραμμα τμήματα ξεκινώντας από
το σημείοP και κινούμενοι κάθε φορά προς το κοντινότερο σημείο της γειτονικής ισοστα-
θμικής καμπύλης.

• Οι ισοσταθμικές επιφάνειες μπορούν να χρησιμοποιηθούν για να γίνουν κατανοητές οι
συναρτήσεις των τριών μεταβλητών f (x,y,z). Στην περίπτωση που η συνάρτηση αναπα-
ριστά τη θερμοκρασία, αυτές οι ισοσταθμικές επιφάνειες αποκαλούνται ισόθερμες.

Ασκήσεις 1.3.3 Να απαντήσετε στα παρακάτω ερωτήματα με βάση το σχήμα 1.10.
1. Η πυκνότητα του θαλασσινού νερού φαίνεται να είναι πιο ευαίσθητη στις μεταβολές της

θερμοκρασίας στο σημείο A ή στο σημείο B;

2. Βρείτε τη μεταβολή της πυκνότητας του θαλασσινού νερού από το A στο B.

3. Εκτιμήστε τον μέσο ρυθμό μεταβολής της πυκνότητας του θαλασσινού νερού από το A
στο B και από το A στοC.

4. Εκτιμήστε τον μέσο ρυθμό μεταβολής της πυκνότητας του θαλασσινού νερού από το A
στα σημεία i, ii και iii.

5. Σχεδιάστε τη διαδρομή της πιο απότομης ανόδου η οποία ξεκινά από το σημείο D.

1.4 Συναρτήσεις με περισσότερες από δύο μεταβλητές
Υπάρχουν αρκετές περιπτώσεις όπου για να περιγράψουμε μια κατάσταση είναι απαραίτητο να
χρησιμοποιήσουμε μια συνάρτηση με περισσότερες από δύο μεταβλητές. Έτσι, για παράδειγμα,
αν θελήσουμε να παρακολουθούμε τη θερμοκρασία στα διαφορετικά σημεία ενός δωματίου, θα
πρέπει να χρησιμοποιήσουμε μια συνάρτηση T (x,y,z) η οποία εξαρτάται από τρεις μεταβλητές
που αντιστοιχούν στις τρεις συντεταγμένες κάθε σημείου. Επίσης, κατά τη δημιουργία ποσοτικών
οικονομικών μοντέλων καταλήγουμε πολύ συχνά σε συναρτήσεις που εξαρτώνται από περισσό-
τερες από 100 μεταβλητές.

Σχήμα 1.10
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Δυστυχώς, δεν είναι δυνατόν να σχεδιάσουμε τη γραφική παράσταση μιας συνάρτησης με
περισσότερες από δύο μεταβλητές. Το γράφημα μιας συνάρτησης f (x,y,z) θα αποτελείται από
το σύνολο των σημείων (x,y,z, f (x,y,z)) που ανήκουν στον τετραδιάστατο χώροR4. Παρ’ όλα
αυτά, ακριβώς όπως μπορούμε να χρησιμοποιούμε ισοσταθμικούς χάρτες για να οπτικοποιούμε
ένα τρισδιάστατο βουνό χρησιμοποιώντας καμπύλες στο επίπεδο των δύο διαστάσεων, είναι επίσης
εφικτό να σχεδιάζουμε ισοσταθμικές επιφάνειες για μια συνάρτηση τριών μεταβλητών f (x,y,z).
Πρόκειται για επιφάνειες που περιγράφονται από εξισώσεις της μορφής

f (x,y,z) = c,

για διαφορετικές τιμές του c.

Στην περίπτωση μιας συνάρτησης T (x,y,z) που αναπαριστά τη θερμοκρασία σε κάθε σημείο
του χώρου, συνηθίζουμε να αποκαλούμε τις ισοσταθμικές επιφάνειες που περιγράφονται από τις
T (x,y,z) = k ισόθερμες, καθώς πρόκειται για σύνολα σημείων που έχουν μια κοινή θερμοκρασία
k. Για τις συναρτήσεις με τέσσερις ή και ακόμα περισσότερες μεταβλητές, δεν μπορούμε πλέον
να οπτικοποιούμε ούτε το γράφημα ούτε τις ισοσταθμικές επιφάνειές τους, έτσι θα πρέπει να
αρκούμαστε στη διαίσθησή μας, η οποία θα έχει στο μεταξύ οξυνθεί μέσω της μελέτης των
συναρτήσεων με δύο και τρεις μεταβλητές.

Σχήμα 1.11 Οι ισοσταθμικές επιφάνειες της συνάρτησης f (x,y,z) = x2 + y2 + z2 είναι σφαίρες.

Σημείωση 1.4.1 • Το πεδίο ορισμού D μιας συνάρτησης f (x1, . . . ,xn) με n μεταβλητές
είναι το σύνολο των n-άδων (a1, . . . ,an) του χώρουRn, για τις οποίες οι τιμές f (a1, . . . ,
an) ορίζονται. Το εύρος τιμών της f είναι το σύνολο των τιμών που παίρνει η συνάρτηση
f .

• Η γραφική παράσταση μιας συνεχούς συνάρτησης f (x,y), η οποία παίρνει πραγματικές
τιμές, είναι η επιφάνεια τουR3 που αποτελείται από το σύνολο των σημείων της μορφής
(a,b, f (a,b)), για όλα τα ζεύγη (a,b) που ανήκουν στο πεδίο ορισμού D της f .

• Ένα κατακόρυφο ίχνος είναι η καμπύλη που προκύπτει από την τομή του γραφήματος
της συνάρτησης με κάποιο από τα κατακόρυφα επίπεδα x = a ή y = b.

1.5 Όρια και συνέχεια στην περίπτωση των συναρτήσεων
πολλών μεταβλητών

Στην παρούσα ενότητα θα αναπτύξουμε τις έννοιες του ορίου και της συνέχειας στο πλαίσιο της
πολυμεταβλητής ανάλυσης. Παρόλο που θα επικεντρώσουμε την προσοχή μας στην περίπτωση
των συναρτήσεων με δύο μεταβλητές, οι ορισμοί και τα αποτελέσματα που θα παρουσιάσουμε
εξακολουθούν να ισχύουν για τις συναρτήσεις με τρεις ή και περισσότερες μεταβλητές.
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1.5.1 Ιστορικό Σχόλιο

Η έννοια του ορίου αποτελεί έναν από τους θεμέλιους λίθους των μαθηματικών και
ειδικότερα της ανάλυσης. Η ανάγκη των μαθηματικών να περιγράψουν φαινόμενα
μεταβολής, όπως η κίνηση και η μεταβολή των μεγεθών, οδήγησε στη διαμόρφωση αυτής
της θεμελιώδους ιδέας. Ερωτήματα όπως «ποια είναι η ακριβής ταχύτητα σε μια χρονική
στιγμή;» ή «πώς υπολογίζεται το εμβαδόν κάτω από μια καμπύλη;» απαιτούν τη χρήση του
ορίου.
Οι απαρχές αυτής της έννοιας ανάγονται στην αρχαία Ελλάδα, με τη μέθοδο εξάντλησης
του Ευδόξου και τις εργασίες του Αρχιμήδη. Η μέθοδος αυτή σχεδίαζε ακολουθίες
σχημάτων, φτάνοντας όσο κοντά θέλουμε στο ζητούμενο μέγεθος, χωρίς να το υπερβαίνει.
Παρά την απουσία της σύγχρονης ανάλυσης του απείρου, η «προσέγγιση όσο κοντά
θέλουμε» αντανακλά τον πυρήνα της έννοιας του ορίου.
Στην σύγχρονη ανάλυση, το όριο αποτελεί το θεμέλιο για την μελέτη της συνέχειας,
των παραγώγων, των ολοκληρωμάτων και της διατύπωσης των πραγματικών αριθμών.
Μελετώντας τα όρια, αποκτούμε τα θεμελιακά εργαλεία για τη σύγχρονη μαθηματική
σκέψη και ανάλυση.

Θυμηθείτε ότι στην ευθεία των πραγματικών αριθμών λέγαμε ότι ένας αριθμός x είναι κοντά στο
a αν η απόσταση |x−a| είναι μικρή. Στο επίπεδο, θα λέμε ότι ένα σημείο (x,y) είναι κοντά σε
ένα άλλο σημείο P = (a,b) αν η μεταξύ τους απόσταση

d
(
(x,y),(a,b)

)
=
√

(x−a)2 +(y−b)2

είναι μικρή.
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Αξίζει να παρατηρήσουμε ότι
αν θεωρήσουμε το σύνολο των
σημείων που βρίσκονται σε απόσταση
μικρότερη από r από το σημείο
P = (a,b), τότε θα σχηματιστεί ένας
δίσκος D(P,r) με κέντρο το σημείο
P, όπως φαίνεται στο Σχήμα 1.14a,
που δεν θα περιλαμβάνει όμως τη
συνοριακή γραμμή του δίσκου. Αν
επιπλέον «επιμείνουμε»ώστε να ισχύει
η συνθήκη d

(
(x,y),(a,b)

)
6= 0, τότε

θα καταλήξουμε σε έναν «τρύπιο»
δίσκο καθώς σε αυτόν δεν θα
συμπεριλαμβάνεται το κέντρο P.
Αυτόν τον τελευταίο δίσκο θα τον
συμβολίζουμε με D∗(P,r).

Σχήμα 1.12 Ο ανοικτός δίσκος D(P,r) αποτελείται
από το σύνολο των σημείων (x,y) που βρίσκονται σε
απόσταση μικρότερη του r από το σημείο P. Σε αυτόν δεν
συμπεριλαμβάνεται ο συνοριακός κύκλος..

Ας υποθέσουμε ότι η συνάρτηση f (x,y) ορίζεται κοντά στο σημείο P αλλά όχι απαραίτητα
στο ίδιο το P. Με άλλα λόγια, υποθέτουμε ότι η f (x,y) ορίζεται για όλα τα ζεύγη (x,y) που
ανήκουν σε έναν τρύπιο δίσκο D∗(P,r), στο κέντρο του, με r > 0. Θα λέμε ότι η συνάρτηση
f (x,y) προσεγγίζει το όριοL καθώς το (x,y) προσεγγίζει τοP=(a,b), αν η ποσότητα | f (x,y)−
L| γίνεται όσο μικρή θέλουμε ενώ το (x,y) προσεγγίζει αρκούντως κοντά στο σημείο P = (a,b)
(βλ. Σχήμα ??). Σε αυτή την περίπτωση γράφουμε

lim
(x,y)→P

f (x,y) = lim
(x,y)→(a,b)

f (x,y) = L

Ο ακριβής ορισμός είναι ο ακόλουθος.

Ορισμός 1.5.1 Όριο Έστω ότι η συνάρτηση f (x,y) ορίζεται κοντά στο σημείο P = (a,b).
Τότε

lim
(x,y)→P

f (x,y) = L

αν για κάθε ε > 0 υπάρχει δ > 0 τέτοιο ώστε, αν το (x,y) ικανοποιεί τη συνθήκη

0 < d
(
(x,y),(a,b)

)
< δ ,

τότε να ισχύει

| f (x,y)−L|< ε.

Σχήμα 1.13

Πρόκειται για έναν ορισμό που είναι παρόμοιος με τον
ορισμό του ορίου στην περίπτωση των συναρτήσεων μίας
μεταβλητής, υπάρχει όμως μια σημαντική διαφορά. Στην
περίπτωση του ορίου στον Λογισμό των συναρτήσεων μίας
μεταβλητής απαιτούμε η f (x) να τείνει στο όριο L καθώς το
x προσεγγίζει το a και από τις δύο κατευθύνσεις – δηλαδή
από αριστερά αλλά και δεξιά του a (βλ. Σχήμα 1.14b).
Στην περίπτωση του ορίου στην πολυμεταβλητή ανάλυση, η
συνάρτηση f (x,y) θα πρέπει να τείνει στο όριο L καθώς
το (x,y) προσεγγίζει το σημείο P από άπειρες διαφορετικές
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κατευθύνσεις (βλ. Σχήμα 1.14c).

(a) | f (x,y)− L| < ε για κάθε (x,y)
εντός του τρύπιου δίσκου

(b) Στη μία μεταβλητή μπορούμε να
προσεγγίσουμε το a από δύο μόνο
δυνατές κατευθύνσεις

(c) Στις δύο μεταβλητές, το (x,y) μπορεί
να προσεγγίσει το P = (a,b) κατά μήκος
οποιασδήποτε κατεύθυνσης ή διαδρομής

Σχήμα 1.14

Παράδειγμα 1.5.2 Έστω

f (x,y) = 5x2y2

x2+y2

Να αποδείξετε, χρησιμοποιώντας τον ε-δ ορισμό, ότι:

lim
(x,y)→(0,0)

f (x,y) = 0

Λύση. Είναι σχετικά εύκολο να δείξουμε ότι κατά μήκος κάθε
ευθείας y = mx, το όριο είναι μηδέν. Αυτό δεν αρκεί για
να αποδείξουμε ότι το όριο υπάρχει, αλλά μας λέει ότι αν
υπάρχει τότε πρέπει να είναι μηδέν.

Για να αποδείξουμε ότι το όριο είναι μηδέν, εφαρμόζουμε τον ορισμό του ορίου. Έστω ε > 0
δοσμένο. Θέλουμε να βρούμε δ > 0 τέτοιο ώστε αν√

(x−0)2 +(y−0)2 < δ

τότε

| f (x,y)−0|< ε.

Παρατηρούμε ότι
5y2

x2 + y2 ≤ 5 για όλα τα (x,y) 6= (0,0), και ότι αν
√

x2 + y2 < δ , τότε

x2 < δ 2.

Έστω
√

(x−0)2 +(y−0)2 =
√

x2 + y2 < δ . Εξετάζουμε:
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| f (x,y)−0|=
∣∣∣∣ 5x2y2

x2 + y2 −0
∣∣∣∣= ∣∣∣∣x2 ·5y2

x2 + y2

∣∣∣∣< 5δ 2.

Θέτουμε δ <

√
ε

5
. Συνεπώς, αν θέσουμε

√
(x−0)2 +(y−0)2 < δ τότε

| f (x,y)−0|< 5δ 2 <
ε
5
·5 = ε,

όπως θέλαμε να δείξουμε. Άρα:

lim
(x,y)→(0,0)

5x2y2

x2 + y2 = 0.

Παράδειγμα 1.5.3 Έστω η συνάρτηση

f (x,y) =


x

x2 + y2 , (x,y) 6= (0,0)

0, (x,y) = (0,0)

Να αποδείξετε, με τον ορισμό ότι  δεν υπάρχει το όριο

lim
(x,y)→(0,0)

f (x,y) = 0.

Λύση.

Για να αποδείξουμε με τον ορισμό ότι

lim
(x,y)→(0,0)

f (x,y) = 0,

όπου

f (x,y) =


x

x2 + y2 (x,y) 6= (0,0)

0 (x,y) = (0,0)

χρησιμοποιούμε το ε-δ ορισμό για διδιάστατα όρια.

Βήματα απόδειξης με τον ορισμό

Για κάθε ε > 0, ζητούμε να βρούμε δ > 0 τέτοιο ώστε αν
√

x2 + y2 < δ και (x,y) 6= (0,0),
τότε

| f (x,y)−0|< ε.

Για (x,y) 6= (0,0), έχουμε:

| f (x,y)|=
∣∣∣∣ x
x2 + y2

∣∣∣∣≤ |x|
x2 + y2
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Αλλά |x| ≤
√

x2 + y2 οπότε:

| f (x,y)| ≤
√

x2 + y2

x2 + y2 =
1√

x2 + y2

Αν διαλέξουμε
√

x2 + y2 < δ , τότε:

| f (x,y)|< 1
δ

Αλλά η παραπάνω ποσότητα δεν μπορεί να γίνει αυθαίρετα μικρή όταν (x,y) → (0,0):
αντίθετα, γίνεται αυθαίρετα μεγάλη όταν δ → 0.

Άρα, το όριο αυτό δεν υπάρχει, δηλαδή το

lim
(x,y)→(0,0)

f (x,y)

δεν τείνει στο 0.

Παράδειγμα 1.5.4 Να διερευνηθεί αν υπάρχει το όριο της συνάρτησης

lim
(x,y)→(0,0)

x2

x2 + y2 .

Σε περίπτωση που δεν υπάρχει, να αιτιολογήσετε κατάλληλα την απάντησή σας.

Λύση. Πρώτη μέθοδος
Θα δείξουμε ότι η f (x,y) προσεγγίζει
διαφορετικά όρια καθώς πλησιάζουμε προς
την αρχή των αξόνων (0,0) κατά μήκος των
αξόνων x και y (βλ. Σχήμα 1.15).
Όριο κατά μήκος του άξονα x:

lim
x→0

f (x,0) = lim
x→0

x2

x2 +02 = lim
x→0

1 = 1

Όριο κατά μήκος του άξονα y:

lim
y→0

f (0,y) = lim
y→0

02

02 + y2 = lim
y→0

0 = 0

Αφού αυτά τα δύο όρια είναι διαφορετικά,
αυτό σημαίνει ότι το

lim
(x,y)→(0,0)

f (x,y)

δεν υπάρχει.

Σχήμα 1.15 Η γραφική παράσταση και ο ισοσταθμικός

χάρτης της συνάρτησης f (x,y) =
x2

x2 + y2 .

Δεύτερη μέθοδος Αν θέσουμε y = mx, τότε θα έχουμε περιορίσει την «κίνηση» μας πάνω σε
μια ευθεία που διέρχεται από την αρχή των αξόνων και έχει κλίση ίση με m. Στην περίπτωση
αυτή το ζητούμενο όριο παίρνει τη μορφή:

lim
x→0

f (x,mx) = lim
x→0

x2

x2 +(mx)2 =
1

1+m2 .
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Το αποτέλεσμα στο οποίο καταλήξαμε είναι προφανές ότι εξαρτάται από την τιμή της κλίσης m,
γεγονός που σημαίνει ότι θα προκύπτουν διαφορετικά αποτελέσματα για το όριο καθώς η αρχή
των αξόνων προσεγγίζεται κατά μήκος ευθειών με διαφορετικές κλίσεις. Έτσι, αν για παράδειγμα
m = 0, γεγονός που σημαίνει ότι προσεγγίζουμε την αρχή κινούμενοι κατά μήκος του άξονα x,
το όριο προκύπτει ίσο με 1. Αν πάλι m = 1, γεγονός που σημαίνει ότι τώρα προσεγγίζουμε την

αρχή μέσω της ευθείας y = x, το όριο σε αυτή την περίπτωση προκύπτει ίσο με
1
2
. Αυτό όμως

σημαίνει ότι το ζητούμενο όριο δεν υπάρχει. Ο ισοσταθμικός χάρτης του Σχήματος 5 δείχνει
τα διαφορετικά όρια που υπολογίζονται καθώς προσεγγίζουμε την αρχή των αξόνων κατά μήκος
διαφορετικών ευθειών.

Τρίτη μέθοδος Θα μετασχηματίσουμε τη συνάρτηση της οποίας αναζητούμε το όριο στις
πολικές συντεταγμένες, χρησιμοποιώντας τις σχέσεις x = r cosθ και y = r sinθ . Με τον τρόπο
αυτό όμως, για οποιαδήποτε διαδρομή προσεγγίζει την αρχή των αξόνων (0,0) θα πρέπει να
ισχύει ότι το r πλησιάζει το 0. Προσεγγίσεις κατά μήκος διαφορετικών ευθειών μπορούν να
εξεταστούν σταθεροποιώντας τη γωνία θ σε διαφορετικές τιμές και επιτρέποντας στο r να τείνει
στην τιμή 0.

Επομένως, πρέπει να μελετήσουμε το όριο

lim
r→0

x2

x2 + y2 = lim
r→0

(r cosθ)2

(r cosθ)2 +(r sinθ)2 = lim
r→0

cos2 θ .

Η τιμή αυτού του ορίου εξαρτάται από τη γωνία θ . Έτσι, αν για παράδειγμα η θ πάρει την
τιμή 0, γεγονός που σημαίνει ότι προσεγγίζουμε το (0,0) κινούμενοι κατά μήκος του θετικού
ημιάξονα x, το όριο προκύπτει ίσο με 1. Αν πάλι δώσουμε στη γωνία θ την τιμή π/2, πράγμα
που σημαίνει ότι τώρα θα προσεγγίζουμε το (0,0) κινούμενοι πάνω στον θετικό ημιάξονα y, τότε
το όριο προκύπτει να είναι ίσο με 0.

Αφού για διαφορετικές τιμές της γωνίας θ προκύπτουν διαφορετικά αποτελέσματα, καταλήγουμε
και πάλι στο συμπέρασμα ότι το ζητούμενο όριο δεν υπάρχει.

Παραδείγματα 1.5.5 (a) Επιβεβαίωση ενός ορίου Υπολογίστε το όριο

lim
(x,y)→(0,0)

f (x,y),

όπου η f (x,y) ορίζεται για (x,y) 6= (0,0) από την

f (x,y) =
xy2

x2 + y2 ,

και απεικονίζεται στο Σχήμα 1.16.
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Το όριο που ζητείται είναι:

lim
(x,y)→(0,0)

xy2

x2 + y2 .

Εξέταση κατά μήκος ευθείας

Έστω x = ky όπου k είναι σταθερά:

f (x,y) =
xy2

x2 + y2 =
(ky)y2

(ky)2 + y2 =
ky3

k2y2 + y2 =

ky3

(k2 +1)y2 =
ky

k2 +1
.

Σχήμα 1.16 Η γραφική παράσταση της

συνάρτησης f (x,y) =
xy2

x2 + y2

Όταν (x,y)→ (0,0), δηλαδή y→ 0, τότε το παραπάνω τείνει στο 0, ανεξάρτητα από την τιμή
του k.

Εξέταση σε πολικές συντεταγμένες

Θέτουμε x = r cosθ , y = r sinθ :

f (x,y) =
(r cosθ)(r sinθ)2

(r cosθ)2 +(r sinθ)2 =
r cosθ · r2 sin2 θ

r2(cos2 θ + sin2 θ)
=

r3 cosθ sin2 θ
r2 = r cosθ sin2 θ .

Άρα

| f (x,y)|= |r cosθ sin2 θ | ≤ r.

Για r→ 0, το | f (x,y)| → 0 ανεξαρτήτως της γωνίας θ .

Συμπέρασμα

Το όριο υπάρχει και είναι 0:

lim(x,y)→(0,0)
xy2

x2 + y2 = 0.

Απόδειξη με ε-δ ορισμό
Θέλουμε για κάθε ε > 0 να βρούμε δ > 0 ώστε

0 < x2 + y2 < δ 2 =⇒
∣∣∣∣ xy2

x2 + y2

∣∣∣∣< ε.

Γνωρίζουμε πως |x| ≤
√

x2 + y2, |y| ≤
√

x2 + y2. Επομένως:

|xy2|= |x||y|2 ≤
√

x2 + y2 ·
(√

x2 + y2
)2

=
√

x2 + y2(x2 + y2).
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Άρα: ∣∣∣∣ xy2

x2 + y2

∣∣∣∣≤√x2 + y2.

Αν διαλέξουμε δ = ε , τότε αν 0 < x2 + y2 < δ 2, θα ισχύει:∣∣∣∣ xy2

x2 + y2

∣∣∣∣< ε.

Συνεπώς, το όριο είναι πράγματι 0.

(b)

lim
(x,y)→(0,0)

x2y
x4 + y2

Εξέταση κατά μήκος ευθειών

• Για x = 0:
f (0,y) =

0 · y
0+ y2 = 0

Άρα κατά μήκος του y-άξονα το όριο είναι 0.
• Για y = 0:

f (x,0) =
x2 ·0

x4 +0
= 0

Εξέταση κατά μήκος y = kx2:

Θέτουμε y = kx2:

f (x,y) =
x2y

x4 + y2 =
x2(kx2)

x4 +(kx2)2 =
kx4

x4 + k2x4 =
kx4

x4(1+ k2)
=

k
1+ k2

Εδώ βλέπουμε ότι το όριο κατά μήκος της ευθείας y = kx2 προκύπτει μια σταθερά που

εξαρτάται από το k, και όχι μηδέν (για παράδειγμα, για k = 1 παίρνουμε
1
2
, για k =

1
2
παίρνουμε

1
1/4+1

=
1

5/4
=

4
5
).

Η μετατροπή σε πολικές συντεταγμένες μας επέτρεψε να υπολογίσουμε το πρώτο απο τα δύο
προηγούμενα όρια. Στο δεύτερο παράδειγμα, η μετατροπή σε πολικές συντεταγμένες δεν βοηθά,
καθώς δεν οδηγεί σε κάποια χρήσιμη απλοποίηση.

Σημείωση 1.5.6 Για να αποδείξουμε ότι ένα όριο δεν υπάρχει, αρκεί να προσδιορίσουμε δύο
διαδρομές με βάση τις οποίες προκύπτουν διαφορετικές τιμές για το όριο. Για να αποδείξουμε
όμως ότι το όριο σε ένα σημείο πραγματικά υπάρχει, δεν είναι αρκετό να εξετάσουμε απλώς
και μόνο το όριο κατά μήκος ενός συνόλου διαδρομών μέσω των οποίων προσεγγίζουμε το
σημείο. Αντί αυτού είμαστε αναγκασμένοι να χρησιμοποιούμε τους νόμους και τα θεωρήματα
των ορίων για να αποδείξουμε ότι το υπό μελέτη όριο πραγματικά υπάρχει.
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1.5.2 Επάλληλα όρια

Ορισμός 1.5.7 Λέμε επάλληλα ή διαδοχικά όρια μίας συνάρτησης f (x,y) στο (a,b) τα όρια

lim
y→b

(
lim
x→a

f (x,y)
)
, lim

x→a

(
lim
y→b

f (x,y)
)

Σημείωση 1.5.8

1. Αν τα επάλληλα όρια υπάρχουν και δεν είναι ίσα, τότε το lim
(x,y)→(a,b)

f (x,y) δεν υπάρχει,

ενώ αν υπάρχει το όριο της f στο (a,b) και υπάρχουν τα επάλληλα όρια, τότε αυτά είναι
ίσα.

2. Αν τα επάλληλα όρια υπάρχουν και είναι ίσα με l, τότε το l είναι πιθανό όριο (πηγαίνουμε
στον ορισμό).

3. Μπορεί να μην υπάρχουν τα επάλληλα όρια και να υπάρχει το όριο.

Σημείωση 1.5.9

1. Αν | f (x,y)| ≤ g(x,y) για (x,y) ∈ B((0,0),a), a > 0 και ισχύει

lim
(x,y)→(0,0)

g(x,y) = 0,

τότε

lim
(x,y)→(0,0)

f (x,y) = 0,

δηλαδή όταν μία συνάρτηση φράσεται απολύτως από μία μηδενική, τότε είναι μηδενική.

2. Αν μπορούμε να γράψουμε f (x,y) = h(x,y) ·g(x,y) με |g(x,y)|< M (φραγμένη) για
(x,y) ∈ B((0,0),a) και

lim
(x,y)→(0,0)

h(x,y) = 0

(μηδενική), τότε

lim
(x,y)→(0,0)

f (x,y) = 0.

Παράδειγμα 1.5.10 Παράδειγμα συνάρτησης f όπου τα επάλληλα όρια υπάρχουν, αλλά το
lim

(x,y)→(0,0)
f (x,y) δεν υπάρχει. Να εξετάσετε αν υπάρχει το όριο

lim
(x,y)→(0,0)

x2− y2

x2 + y2 , (x,y) 6= (0,0).
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Λύση.

f (x,y) =
x2− y2

x2 + y2 , (x,y) 6= (0,0)

Υπολογίζουμε τα επάλληλα όρια:

lim
x→0

[
lim
y→0

f (x,y)
]
= lim

x→0

[
lim
y→0

x2− y2

x2 + y2

]
= lim

x→0

x2

x2 = 1

lim
y→0

[
lim
x→0

f (x,y)
]
= lim

y→0

[
lim
x→0

x2− y2

x2 + y2

]
= lim

y→0

−y2

y2 =−1

Άρα τα δύο επάλληλα όρια υπάρχουν, αλλά δεν είναι ίσα.

Παράδειγμα 1.5.11 Έστω η συνάρτηση

f (x,y) =

(x+ y)sin
(

1
x

)
sin
(

1
y

)
, αν x 6= 0 και y 6= 0

0, αν x = 0 ή y = 0

Προσδιορίστε ποιά από τα όρια

lim
(x,y)→(0,0)

f (x,y), lim
x→0

(
lim
y→0

f (x,y)
)
, lim

y→0

(
lim
x→0

f (x,y)
)

υπάρχουν και υπολογίστε τα. Τι σχέση υπάρχει ως προς την ύπαρξη ή όχι των επάλληλων ορίων
και του ορίου μίας συνάρτησης f : R2→ R σε ένα σημείο;

Λύση. Παρατηρούμε ότι

| f (x,y)| ≤ |x+ y|

επειδή ∣∣∣∣sin
1
x

sin
1
y

∣∣∣∣≤ 1.

Επίσης, είναι προφανές ότι

lim
(x,y)→(0,0)

|x+ y|= 0.

Άρα από την σημείωση 1.5.9 έχουμε ότι

lim
(x,y)→(0,0)

f (x,y) = 0.

Για τα επάλληλα όρια έχουμε:

lim
y→0

(
lim
x→0

f (x,y)
)
= lim

y→0

(
lim
x→0

(
xsin

1
x

sin
1
y
+ ysin

1
x

sin
1
y

))
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= lim
y→0

(0+ δεν υπάρχει) = δεν υπάρχει

(λόγω της βοηθητικής άσκησης και του ότι lim
x→0

xsin
1
x
= 0)

Όμοια, λόγω κυκλικότητας των x,y, δεν υπάρχει και το

lim
x→0

(
lim
y→0

f (x,y)
)

Επομένως είναι δυνατόν να μην υπάρχουν τα επάλληλα όρια και να υπάρχει το όριο της
συνάρτησης.

Παράδειγμα 1.5.12 Έστω η συνάρτηση

f (x,y) =
x2y2

x2y2 +(x− y)2

με πεδίο ορισμού το R2 \ {(0,0)}. Αποδείξτε ότι δεν υπάρχει το όριο στο (0,0), ενώ τα
διαδοχικά (επάλληλα) όρια υπάρχουν και είναι ίσα.

Λύση. Για την f (x,x) =
x4

x4 +0
και f (x,0) = 0 έχουμε

lim
x→0

f (x,x) = 1, lim
x→0

f (x,0) = 0.

Δηλαδή τα όρια της f πλησιάζοντας το (0,0) πάνω στις ευθείες y= x και y= 0 είναι διαφορετικά,
επομένως το όριο της f στο (0,0) δεν υπάρχει.

Για τα επάλληλα όρια έχουμε:

lim
x→0

(
lim
y→0

f (x,y)
)
= 0

διότι για x 6= 0 ισχύει

lim
y→0

f (x,y) = lim
y→0

x2y2

x2y2 +(x− y)2 = 0

επειδή lim
y→0

x2y2 = 0 και lim
y→0

(x2y2 +(x− y)2) = x2 6= 0.

Με τον ίδιο τρόπο βρίσκουμε ότι

lim
y→0

(
lim
x→0

f (x,y)
)
= 0

1.6 Συνέχεια
Όπως και στην περίπτωση των συναρτήσεων μίας μεταβλητής, θα λέμε ότι η f είναι συνεχής στο
σημείο P = (a,b) αν

lim
(x,y)→(a,b)

f (x,y) = f (a,b).
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Ορισμός 1.6.1 Συνέχεια Μια συνάρτηση f με δύο μεταβλητές είναι συνεχής στο σημείο P =
(a,b) αν ισχύει

lim
(x,y)→(a,b)

f (x,y) = f (a,b).

Θα λέμε ότι η f είναι συνεχής αν είναι συνεχής σε κάθε σημείο (a,b) του πεδίου ορισμού
της.

Σύμφωνα με τους νόμους των ορίων, όλα τα αθροίσματα, τα πολλαπλάσια και τα γινόμενα συνεχών
συναρτήσεων είναι επίσης συνεχείς συναρτήσεις. Οι συναρτήσεις της μορφής f (x,y) = xmyn

είναι επίσης συνεχείς για όλους τους ακέραιους αριθμούς m και n, γεγονός που με τη σειρά
του σημαίνει ότι και όλα τα πολυώνυμα είναι επίσης συνεχή. Επιπλέον, κάθε ρητή συνάρτηση
h(x,y)/g(x,y), όπου τα h και g είναι κάποια πολυώνυμα, είναι επίσης συνεχής σε όλα τα σημεία
(a,b) για τα οποία ισχύει g(a,b) 6= 0. Όπως ακριβώς και στην περίπτωση των ορίων των
συναρτήσεων μίας μεταβλητής, έτσι και εδώ μπορούμε να υπολογίζουμε τα όρια των συνεχών
συναρτήσεων κάνοντας αντικατάσταση.

Παράδειγμα 1.6.2 Έστω η συνάρτηση

f (x,y) =

 xy2

x2 + y2 , (x,y) 6= (0,0)

0, (x,y) = (0,0)

και έστω ε > 0. Να δείξετε ότι υπάρχει δ > 0 τέτοιο ώστε για κάθε (x,y) που ικανοποιεί√
x2 + y2 < δ ,

έχουμε

| f (x,y)− f (0,0)|< ε.

Αν συμβαίνει αυτό, πώς το ερμηνεύετε;

Παράδειγμα 1.6.3 Υπολογισμός ορίων με αντικατάσταση Να αποδείξετε ότι η συνάρτηση

f (x,y) =
3x+ y

x2 + y2 +1

είναι συνεχής (βλ. Σχήμα 1.17). Στη συνέχεια, να υπολογίσετε το όριο

lim
(x,y)→(1,2)

f (x,y).

Θεώρημα 1.6.4 Συναρτήσεις γινόμενα Έστω f (x,y) = h(x) ·g(y), όπου h : R→R, g : R→
R, και υποθέτουμε ότι τα όρια lim

x→a
h(x) και lim

y→b
g(y) υπάρχουν και είναι πραγματικοί αριθμοί.

Τότε:

lim
(x,y)→(a,b)

f (x,y) =
(

lim
x→a

h(x)
)
·
(

lim
y→b

g(y)
)
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Σχήμα 1.17

Παράδειγμα 1.6.5 Υπολογίστε το όριο

lim
(x,y)→(3,0)

x3 siny
y

.

Λύση. Αρχικά, παρατηρούμε ότι καθώς (x,y)→ (3,0), το x→ 3 και το y→ 0. Το όριο
μπορεί να γραφεί ως το γινόμενο δύο ορίων:

lim
(x,y)→(3,0)

x3 siny
y

= lim
x→3

x3 · lim
y→0

siny
y

Επειδή x3 είναι συνεχής στο x = 3, υπολογίζουμε:

lim
x→3

x3 = 33 = 27

Επιπλέον, είναι γνωστό ότι:

lim
y→0

siny
y

= 1
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Συνδυάζουμε λοιπόν τα παραπάνω:

lim
(x,y)→(3,0)

x3 siny
y

= 27 ·1 = 27

Θεώρημα 1.6.6 Όριο σύνθεσης συναρτήσεων Έστω f : R2→ R και g : R→ R. Αν

lim
(x,y)→(a,b)

f (x,y) = L

και η g είναι συνεχής στο L, τότε

lim
(x,y)→(a,b)

g( f (x,y)) = g
(

lim
(x,y)→(a,b)

f (x,y)
)
= g(L)

Παράδειγμα 1.6.7 Σύνθεση συνεχών συναρτήσεων Να εκφράσετε τη συνάρτηση H(x,y) =
e−x2+2y ως μια σύνθεση συναρτήσεων και στη συνέχεια να υπολογίσετε το όριο

lim
(x,y)→(1,2)

H(x,y).

Παράδειγμα 1.6.8 Αν γνωρίζουμε ότι

2|xy|− x2y2

6
< 4−4cos

√
|xy|< 2|xy|

τι μπορούμε να συμπεράνουμε για το όριο

lim
(x,y)→(0,0)

4−4cos
√
|xy|

|xy|
;

Αιτιολογήστε την απάντησή σας.

Ορισμός 1.6.9 Έστω f : D⊆ R2→ R και (a,b) ∈ D. Λέμε ότι

lim
(x,y)→(a,b)

f (x,y) = L

αν για κάθε ε > 0 υπάρχουν δ1 > 0 και δ2 > 0 τέτοια ώστε για κάθε (x,y) ∈ D με

0 < |x−a|< δ1 και 0 < |y−b|< δ2

να ισχύει

| f (x,y)−L|< ε.
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Παράδειγμα 1.6.10 Είναι γνωστό ότι ο ορισμός της συνέχειας μιας συνάρτησης f : R2→ R
σε ένα σημείο (x0,y0) του πεδίου ορισμού της δίνεται από τον κάτωθι ορισμό:

lim
(x,y)→(x0,y0)

f (x,y) = l ⇐⇒ (∀ε > 0)(∃δ1(ε)> 0)(∃δ2(ε)> 0) τ.ω.

(|x− x0|< δ1) και (|y− y0|< δ2) =⇒ (| f (x,y)− l|< ε).

Έστω η συνάρτηση

f (x,y) =


x3y

x2 + y2 , αν (x,y) 6= (0,0)

0, αν (x,y) = (0,0)

Χρησιμοποιώντας τον παραπάνω ορισμό, για να είναι η συνάρτηση f συνεχής στο σημείο
O(0,0) θα πρέπει:

(i) δ1 ≤
√

ε
2

,

(ii) δ2 ≤
√

ε
2

,

(iii) δ1 ≤
√

ε και δ2 ≤
√

ε,
(iv) δ 2

1 +δ 2
2 ≤ ε.

Παράδειγμα 1.6.11 Εξετάστε ως προς τη συνέχεια στο (0,0) τη συνάρτηση

f (x,y) =


xy

x2 + y2 tan(x+ y), αν (x,y) 6= (0,0)

0, αν (x,y) = (0,0)

Ασκήσεις 1.6.12 Στις επόμενες ασκήσεις να χρησιμοποιήσετε κατάλληλη μέθοδο για να υπολο-
γίσετε το ζητούμενο όριο ή να αποδείξετε ότι αυτό δεν υπάρχει.

1. (a)

lim
(x,y)→(0,0)

x2− y2

x2 + y2

(b)
lim

(x,y)→(0,0)

xy
3x2 +2y2

(c)
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lim
(x,y)→(0,0)

x4− y4

x4 + x2y2 + y4

2. Ελέγξτε αν η ακόλουθη συνάρτηση είναι συνεχής:

f (x,y) =
{

x2 + y2, αν x2 + y2 < 1,
1, αν x2 + y2 ≥ 1.

3. Έστω a,b≥ 0. Να αποδείξετε ότι αν a+b > 2, τότε

lim
(x,y)→(0,0)

xayb

x2 + y2 = 0,

ενώ αν a+b≤ 2, τότε το προηγούμενο όριο δεν υπάρχει.

4. Να αποδείξετε ότι η συνάρτηση

f (x,y) =

{
(2x−1)(siny)

xy
, αν xy 6= 0,

ln2, αν xy = 0

είναι συνεχής στο (0,0).

Λύση της άσκησης 2.

Η συνάρτηση δίνεται ως

f (x,y) =

x2 + y2, αν x2 + y2 < 1,

1, αν x2 + y2 ≥ 1.

Εξέταση συνέχειας
• Στο εσωτερικό του δίσκου x2 + y2 < 1 το f (x,y) = x2 + y2 είναι πολυωνυμική και άρα
συνεχής.

• Έξω από το δίσκο x2 + y2 > 1 η f (x,y) = 1 είναι σταθερή και άρα συνεχής.

• Πρόβλημα εντοπίζεται στη γραμμή x2 + y2 = 1 (σύνορο των δύο περιοχών).

Συνοριακός Έλεγχος

Έστω σημείο (x0,y0) με x2
0 + y2

0 = 1:
• lim

(x,y)→(x0,y0),x2+y2<1
f (x,y) = lim

(x,y)→(x0,y0)
(x2 + y2) = x2

0 + y2
0 = 1.

• Η τιμή της συνάρτησης επί του συνόρου είναι επίσης f (x0,y0) = 1.
Άρα,

lim
(x,y)→(x0,y0)

f (x,y) = f (x0,y0)

για κάθε (x0,y0) με x2
0 + y2

0 = 1. Συμπέρασμα
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Η συνάρτηση f (x,y) είναι συνεχής σε όλο το R2.

Λύση της άσκησης 3.

Για να αποδείξουμε ότι αν a+b > 2, τότε

lim
(x,y)→(0,0)

xayb

x2 + y2 = 0,

αρκεί να περάσουμε σε πολικές συντεταγμένες.
Θέτουμε x = r cosθ , y = r sinθ , με r→ 0:

xayb = (r cosθ)a(r sinθ)b = ra+b(cosθ)a(sinθ)b,

x2 + y2 = r2,

οπότε

xayb

x2 + y2 = ra+b−2(cosθ)a(sinθ)b.

Το γινόμενο (cosθ)a(sinθ)b είναι πάντοτε φραγμένο (ανήκει στο [−1,1]), οπότε το όριο
εξαρτάται μόνο από τη δύναμη του r.

• Αν a+b > 2, τότε ο εκθέτης a+b−2 > 0, άρα καθώς r→ 0, ra+b−2→ 0 και τελικά
το όριο είναι 0 για κάθε διεύθυνση.

• Αν a+ b ≤ 2, τότε το όριο δεν υπάρχει ή δεν είναι 0, διότι ο εκθέτης δεν είναι θετικός
και το πηλίκο είτε συγκλίνει σε μη μηδενικό όριο είτε δεν υπάρχει (π.χ. ελέγχοντας πάνω
στους άξονες ή σε καμπύλες).

Άρα, πράγματι, το ζητούμενο ισχύει.

Λύση της άσκησης 4.

Θέλουμε να δείξουμε ότι η συνάρτηση

f (x,y) =


(2x−1)siny

xy
, αν xy 6= 0,

ln2, αν xy = 0

είναι συνεχής στο σημείο (0,0).
Για να το αποδείξουμε, αρκεί να δείξουμε ότι:

lim
(x,y)→(0,0)

f (x,y) = f (0,0) = ln2

Υπολογίζουμε το όριο:

lim
(x,y)→(0,0)

(2x−1)siny
xy

= lim
x→0

2x−1
x

lim
y→0

siny
y

= ln2 ·1 = ln2.

΄Αρα η f είναι συνεχής στο (0,0).
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1.7 Μερικές παράγωγοι

Όπως έχουμε ήδη τονίσει, μια συνάρτηση f με δύο ή περισσότερες μεταβλητές δεν έχει έναν
μοναδικό ρυθμό μεταβολής αφού η κάθε μεταβλητή μπορεί να επηρεάζει με διαφορετικό τρόπο
την f . Έτσι, για παράδειγμα, η ένταση του ρεύματος I που κυκλοφορεί σε ένα κύκλωμα είναι
συνάρτηση τόσο της διαφοράς δυναμικού V όσο και της αντίστασης R, με την εξάρτηση να
περιγράφεται μέσω του νόμου του Ohm που έχει τη μορφή:

I(V,R) =
V
R
.

Η ένταση του ρεύματος I αυξάνεται ως συνάρτηση του V (όταν η R είναι σταθερή), αλλά
μειώνεται ως συνάρτηση του R (όταν τοV είναι σταθερό).

Οι μερικές παράγωγοι είναι οι ρυθμοί μεταβολήςως προς καθεμία από τις μεταβλητές ξεχωριστά.
Έτσι, μια συνάρτηση f (x,y) με δύο μεταβλητές θα έχει δύο μερικές παραγώγους, που συμβολίζονται
με fx και fy, οι οποίες μάλιστα θα ορίζονται από τα ακόλουθα όρια (εφόσον αυτά υπάρχουν):

Οι μερικές παράγωγοι ισούνται με τον ρυθμό μεταβολής ως προς κάθε μεταβλητή.

fx(a,b) = lim
h→0

f (a+h,b)− f (a,b)
h

, fy(a,b) = lim
k→0

f (a,b+ k)− f (a,b)
k

.

Αυτό σημαίνει ότι η fx είναι η παράγωγος της f (x,b), που είναι συνάρτηση μόνο του x, ενώ
η fy είναι η παράγωγος της f (a,y) που είναι συνάρτηση μόνο του y. Η fx ονομάζεται μερική
παράγωγος της f ως προς τη μεταβλητή x ή ως η x παράγωγος της f , ενώ παρόμοια ορολογία
χρησιμοποιείται για την fy.

Ο συμβολισμός κατά Leibniz για τις μερικές παραγώγους είναι ο ακόλουθος:

∂ f
∂x

= fx,
∂ f
∂y

= fy,

και

∂ f
∂x

∣∣∣∣
(a,b)

= fx(a,b),
∂ f
∂y

∣∣∣∣
(a,b)

= fy(a,b).

Σημείωση 1.7.1 Το σύμβολο ∂ που χρησιμοποιείται για τη μερική παράγωγο είναι ένα «στρογ-
γυλεμένο d». Χρησιμοποιείται προκειμένου να διαχωρίσει τις παραγώγους μιας συνάρτησης
πολλών μεταβλητών από τις παραγώγους των συναρτήσεων μίας μεταβλητής όπου χρησιμο-
ποιούμε το σύμβολο «d».
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Παράδειγμα 1.7.2 Υπολογίστε τις τιμές των
μερικών παραγώγων gx(1,3) και gy(1,3), όπου

g(x,y) =
y2

(1+ x2)3 .

Σχήμα 1.18 Οι κλίσεις των
εφαπτόμενων ευθειών στις καμπύλες-
ίχνη στο σημείο P είναι οι gx(1,3)
και gy(1,3)

Προπαρασκευαστικές ερωτήσεις 1.7.3 1. Η Ηρώ κατέληξε στην ακόλουθη λανθασμένη
σχέση, καθώς δεν εφάρμοσε σωστά τον κανόνα του γινομένου:

∂
∂x(x

2y2) = x2(2y)+ y2(2x).

Ποιο ήταν το λάθος που έκανε και πώς θα πρέπει να γίνει σωστά ο υπολογισμός;

2. Εξηγήστε γιατί δεν είναι απαραίτητο να χρησιμοποιήσουμε τον κανόνα του πηλίκου
προκειμένου να υπολογίσουμε τη μερική παράγωγο

∂
∂x

(
x+ y
y+1

)
.

Εφαρμόζεται ο κανόνας παραγώγισης πηλίκου στον υπολογισμό της μερικής παραγώγου

∂
∂y

(
x+ y
y+1

)
;

3. Ποια από τις ακόλουθες μερικές παραγώγους μπορεί να υπολογιστεί χωρίς προσφυγή
στον κανόνα του πηλίκου;

α)
∂
∂x

(
xy

y2 +1

)
β)

∂
∂y

(
xy

y2 +1

)
γ)

∂
∂x

(
y2

y2 +1

)

Εμβάθυνση στα σχήματα

Οι μερικές παράγωγοι στο σημείο P = (a,b) αντιπροσωπεύουν τις κλίσεις των
εφαπτόμενων ευθειών των καμπυλών-ιχνών του γραφήματος της f (x,y) στο σημείο
(a,b, f (a,b)) του Σχήματος 1.20(a). Για να υπολογίσουμε την fx(a,b) θέτουμε y = b
και παραγωγίζουμε στην κατεύθυνση x. Με τον τρόπο αυτόν προκύπτει η κλίση της
εφαπτόμενης ευθείας στην καμπύλη που είναι το ίχνος του γραφήματος της f στο επίπεδο
y = b (βλ. Σχήμα 1.20(b)). Παρομοίως, η fy(a,b) είναι η κλίση της καμπύλης που είναι
το ίχνος του γραφήματος της f στο επίπεδο x = a (βλ. Σχήμα 1.20(c)).

37



(a) (b) (c)

Σχήμα 1.19 Οι μερικές παράγωγοι και οι κλίσεις των καμπυλών-ιχνών

(a) (b) (c)

Σχήμα 1.20 Οι μερικές παράγωγοι και οι κλίσεις των καμπυλών-ιχνών

1.7.1 Μερικές παράγωγοι υψηλότερης τάξης

Οι μερικές παράγωγοι υψηλότερης τάξης είναι οι παράγωγοι των παραγώγων. Έτσι, για παράδειγμα,
οι μερικές παράγωγοι δεύτερης τάξης μιας συνάρτησης f είναι οι μερικές παράγωγοι των fx και
fy. Θα γράφουμε λοιπόν fxx για την x παράγωγο της fx και fyy για την y παράγωγο της fy:

fxx =
∂
∂x

(
∂ f
∂x

)
, fyy =

∂
∂y

(
∂ f
∂y

)
.

Υπάρχουν επίσης και οι μεικτές μερικές παράγωγοι:

fxy =
∂
∂y

(
∂ f
∂x

)
, fyx =

∂
∂x

(
∂ f
∂y

)
.

Η διαδικασία «δημιουργίας» μερικών παραγώγων μπορεί να συνεχιστεί με παρόμοιο τρόπο.
Έτσι, για παράδειγμα, η fxyx είναι η x παράγωγος της fxy, ενώ η fxyy είναι η y παράγωγος της
fxy (εκτελούμε τις διαδοχικές παραγώγισεις με τη σειρά που υποδεικνύουν οι δείκτες ξεκινώντας
από αριστερά και κινούμενοι προς τα δεξιά).

Ο συμβολισμός κατά Leibniz για τις παραγώγους υψηλότερης τάξης είναι:

fxx =
∂ 2 f
∂x2 , fxy =

∂ 2 f
∂y∂x

, fyx =
∂ 2 f

∂x∂y
, fyy =

∂ 2 f
∂y2 .
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Οι μερικές παράγωγοι υψηλότερης τάξης ορίζονται για συναρτήσεις με τρεις ή και περισσότερες
μεταβλητές με παρόμοιο τρόπο.

Παράδειγμα 1.7.4Υπολογίστε τις μερικές παραγώγους πρώτης και δεύτερης τάξης της συνάρτησης

f (x,y) = x3 + y2ex.

Θεώρημα 1.7.5 Θεώρημα Clairaut: ισότητα των μεικτών παραγώγων Αν υπάρχουν οι μερικές
παράγωγοι fxy και fyx και είναι συνεχείς σε έναν δίσκο D, τότε ισχύει fxy(a,b) = fyx(a,b)
για όλα τα σημεία (a,b) ∈ D. Έτσι, στο D θα έχουμε ότι

∂ 2 f
∂x∂y

=
∂ 2 f

∂y∂x
.

Παράδειγμα 1.7.6 Αν ικανοποιούνται οι υποθέσεις του θεωρήματος Clairaut, ποια από τις
ακόλουθες παραγώγους είναι ίση με την fxxy;

(a) fxyx β) fyyx γ) fxyy δ) fyxx

1.8 Κανόνας της Αλυσίδας

Το θεώρημα που είναι γνωστό ως κανόνας της αλυσίδας αποτελεί βασικό εργαλείο του Διαφορικού
Λογισμού. Η ιδέα του είναι ότι, όταν μια συνάρτηση εξαρτάται από πολλές μεταβλητές, οι οποίες
με τη σειρά τους εξαρτώνται από άλλες ανεξάρτητες μεταβλητές, τότε η παράγωγος της αρχικής
συνάρτησης ως προς καθεμία από τις νέες μεταβλητές μπορεί να υπολογιστεί «αλυσιδωτά» μέσω
των παραγώγων των ενδιάμεσων συναρτήσεων. Το θεώρημα που είναι γνωστό ως κανόνας της
αλυσίδας αποτελεί βασικό εργαλείο του Διαφορικού Λογισμού. Η ιδέα του είναι ότι, όταν μια
συνάρτηση εξαρτάται από πολλές μεταβλητές, οι οποίες με τη σειρά τους εξαρτώνται από άλλες
ανεξάρτητες μεταβλητές, τότε η παράγωγος της αρχικής συνάρτησης ως προς καθεμία από τις
νέες μεταβλητές μπορεί να υπολογιστεί «αλυσιδωτά» μέσω των παραγώγων των ενδιάμεσων
συναρτήσεων. Ο κανόνας της αλυσίδας για σύνθεση δύο συναρτήσεων μίας μεταβλητής f και g
είναι:

( f ◦g)′(x) = f ′(g(x)) ·g′(x)

ή με συμβολισμό διαφορών, όπως χρησιμοποιείται από τον Lipschitz,

d( f ◦g)
dx

=
d f
dg
· dg

dx
.

Με λίγα λόγια, αν έχουμε z = f (g) και g = g(x), τότε η σύνθεση δίνει z = f (g(x)). Ο κανόνας
της αλυσίδας για αυτή την περίπτωση δίνει:

dz
dx

= f ′(g(x)) ·g′(x)
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ή με διαφορετική σημειογραφία,

dz
dx

=
d f
dg
· dg

dx

Στην περίπτωση μιας συνάρτησης πολλών μεταβλητών

z = f (x1,x2, . . . ,xn),

όπου καθεμία από τις μεταβλητές x1,x2, . . . ,xn είναι διαφορίσιμη συνάρτηση άλλων μεταβλητών,
δηλαδή

xi = xi(t1, t2, . . . , tm), i = 1,2, . . . ,n,

η μερική παράγωγος της f ως προς την tk δίνεται από τον τύπο:

∂ f
∂ tk

=
∂ f
∂x1

∂x1

∂ tk
+

∂ f
∂x2

∂x2

∂ tk
+ · · ·+ ∂ f

∂xn

∂xn

∂ tk
, k = 1,2, . . . ,m.

Με αυτόν τον τρόπο, ο κανόνας της αλυσίδας
επεκτείνεται στις συναρτήσεις πολλών μεταβλητών
και μας επιτρέπει να μελετούμε περίπλοκες
εξαρτήσεις σε προβλήματα γεωμετρίας, φυσικής,
οικονομίας και άλλων επιστημών.
Μπορούμε να θεωρούμε τις εξαρτήσεις που υπάρχουν
μεταξύ των μεταβλητών με ένα σκαρίφημα όπως αυτό
του Σχήματος 1.21. Βοηθητικά, προκειμένου να
θυμόμαστε τον κανόνα της αλυσίδας, θα αναφέρουμε
τις παραγώγους

∂ f
∂x1

, . . . ,
∂ f
∂xn

.

ως πρωτεύουσες παραγώγους.
Σχήμα 1.21 Σκαρίφημα με το οποίο μπορούμε να
παρατηρούμε τις εξαρτήσεις μεταξύ των μεταβλητών.

Σύμφωνα με την εξίσωση του κανόνα της αλυσίδας, η παράγωγος της συνάρτησης f ως προς
την ανεξάρτητη μεταβλητή tk είναι ίση με το άθροισμα n όρων της μορφής:

j-οστός όρος:
∂ f
∂x j

∂x j

∂ tk
, για j = 1,2, . . . ,n

Παράδειγμα 1.8.1 Δίνεται η συνάρτηση:

z = f (x,y) = x2y+ sin(y)

όπου

x = et +u, y = t2u

Υπολογίστε το
∂ z
∂ t

χρησιμοποιώντας τον κανόνα της αλυσίδας.
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Ασκήσεις 1.8.2 1. Χρησιμοποιήστε τον ορισμό μέσω του ορίου για να επιβεβαιώσετε τις
ακόλουθες σχέσεις για τις μερικές παραγώγους:

∂
∂x

(xy2) = y2,
∂
∂y

(xy2) = 2xy.

2. Χρησιμοποιήστε τον ορισμό μέσω του ορίου για να επιβεβαιώσετε τις ακόλουθες σχέσεις
για τις μερικές παραγώγους:

∂
∂x

(
x
y

)
=

1
y
,

∂
∂y

(
x
y

)
=− x

y2 .

3. Να υπολογίσετε τις μερικές παραγώγους πρώτης τάξης των συναρτήσεων.

(a) f (x,y) = x2 + y2, (b) f (x,y) = x4y+ xy−2,

(d) f (x,y,z) =
x

(x2 + y2 + z2)3/2 , (e) f (x,y) =
√

9− x2− y2,

( f ) f (x,y) =
x√

x2 + y2
, (g) f (x,y) =

x
x− y

.

4. Να αποδείξετε ότι δεν υπάρχει συνάρτηση f (x,y) τέτοια ώστε να ισχύει

∂ f
∂x

= xy και
∂ f
∂y

= x2.

Υπόδειξη: Σκεφτείτε με βάση το θεώρημα του Clairaut.

5. Να αποδείξετε ότι η συνάρτηση

u(x, t) = sin(nx)e−n2t

ικανοποιεί την εξίσωση διάδοσης θερμότητας

∂u
∂ t

=
∂ 2u
∂x2 για κάθε σταθερό n.

6. Στις επόμενες ασκήσεις χρησιμοποιήστε τον κανόνα της αλυσίδας για να υπολογίσετε τις
ζητούμενες μερικές παραγώγους. Να εκφράσετε την απάντησή σας ως συνάρτηση μόνο
των ανεξάρτητων μεταβλητών.

(a)
∂ f
∂ s

,
∂ f
∂ r

, f (x,y,z) = xy+ z2, x = s2, y = 2rs, z = r2

(b)
∂ f
∂ r

,
∂ f
∂ t

, f (x,y,z) = xy+ z2, x = r+ s−2t, y = 3rt, z = s2
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(c)
∂g
∂x

,
∂g
∂y

, g(θ ,ϕ) = tan(θ +ϕ), θ = xy, ϕ = x+ y

(d)
∂R
∂v

,
∂R
∂w

, R(x,y) = (x−2y)3, x = w2, y = vw

(e)
∂F
∂y

, F(u,v) = eu+v, u = x2, v = xy

(f)
∂ f
∂u

, f (x,y) = x2 + y2, x = eu+v, y = u+ v

(g)
∂h
∂ t2

, h(x,y) =
x
y
, x = t1t2, y = t2

1t2

(h)
∂ f
∂θ

, f (x,y,z) = xy− z2, x = r cosθ , y = cos2 θ , z = r

7. O τελεστής Laplace ∆ για μία συνάρτηση f ορίζεται ως

∆ f = fxx + fyy.

Μια συνάρτηση f (x,y) που ικανοποιεί την εξίσωσηLaplace∆ f = 0 ονομάζεται αρμονική.
75. Να αποδείξετε ότι οι ακόλουθες συναρτήσεις είναι αρμονικές:

α) f (x,y) = x, β) f (x,y) = ex cosy,

γ) f (x,y) = tan−1
(y

x

)
, δ) f (x,y) = ln(x2 + y2).

Ασκήσεις 1.8.3 Η σημασία των υποθέσεων
Η παρούσα άσκηση είναι σχεδιασμένη για να τονίσει τη σημασία και την αναγκαιότητα των
υποθέσεων του θεωρήματος Clairaut. Έστω η συνάρτηση

f (x,y) =

xy
x2− y2

x2 + y2 if (x,y) 6= (0,0)

0, if (x,y) = (0,0).

a) Επιβεβαιώστε ότι για (x,y) 6= (0,0) ισχύει:

fx(x,y) =
y(x4 +4x2y2− y4)

(x2 + y2)2 , fy(x,y) =
x(x4−4x2y2− y4)

(x2 + y2)2 .

b) Χρησιμοποιήστε τον ορισμό της μερικής παραγώγου με το όριο για να αποδείξετε ότι

fx(0,0) = fy(0,0) = 0
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και επιπλέον ότι οι μερικές παράγωγοι fyx(0,0) και fxy(0,0) υπάρχουν και οι δύο αλλά
δεν είναι ίσες.

c) Δείξτε ότι για (x,y) 6= (0,0) ισχύει:

fxy(x,y) = fyx(x,y) =
x6 +9x4y2−9x2y4− y6

(x2 + y2)3 .

Δείξτε ότι η fxy δεν είναι συνεχής στο (0,0). Υπόδειξη: Δείξτε ότι ισχύει

lim
h→0

fxy(h,0) 6= lim
k→0

fxy(0,k).

d) Εξηγήστε τον λόγο για τον οποίο το αποτέλεσμα του ερωτήματος (b) δεν αντιφάσκει με
το θεώρημα του Clairaut.

→Μετάβαση στη Λύση της Άσκησης 1.11.9

Λύση.

(a) Για (x,y) 6= (0,0) γράφουμε f (x,y) = xy(x2− y2)(x2 + y2)−1. Παραγωγίζοντας και
εφαρμόζοντας τον κανόνα ilorίθμου/αλυσίδας,

fx(x,y) = y(x2−y2)(x2+y2)−1+xy(2x)(x2+y2)−1−xy(x2−y2)(2x)(x2+y2)−2

=
y(x4 +4x2y2− y4)

(x2 + y2)2 ,

fy(x,y) =
x(x2− y2)(x2 + y2)−1 + xy(−2y)(x2 + y2)−1− xy(x2− y2)(2y)(x2 + y2)−2

=
x(x4−4x2y2− y4)

(x2 + y2)2 .

(b) Με τον ορισμό:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0, fy(0,0) =

lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

0−0
k

= 0,

αφού f (h,0) = f (0,k) = 0 για h 6= 0, k 6= 0.
Για τις μικτές στο (0,0) χρησιμοποιούμε τα fx, fy του (α):

fx(0,y) =
y(0+0− y4)

(y2)2 =−y (y 6= 0), fx(0,0) = 0,

άρα

fxy(0,0) = lim
y→0

fx(0,k)− fx(0,0)
k

= lim
k→0

−k−0
k

=−1.
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Ομοίως,

fy(x,0) =
x(x4−0−0)

(x2)2 = x (x 6= 0), fy(0,0) = 0,

οπότε

fyx(0,0) = lim
h→0

fy(h,0)− fy(0,0)
h

= lim
h→0

h−0
h

= 1.

Άρα fyx(0,0) = 1 6=−1 = fxy(0,0), ενώ και οι δύο υπάρχουν.
(c) Για (x,y) 6= (0,0) παραγωγίζουμε ξανά (ή ισοδύναμα παραγωγίζουμε τις εκφράσεις του

(α)) και βρίσκουμε

fxy(x,y) = fyx(x,y) =
x6 +9x4y2−9x2y4− y6

(x2 + y2)3 .

Για τη συνέχεια στο (0,0), εξετάζουμε όρια κατά μήκος των αξόνων:

lim
h→0

fxy(h,0) = lim
h→0

h6

(h2)3 = 1, lim
k→0

fxy(0,k) = lim
k→0

−k6

(k2)3 =−1.

Τα όρια διαφέρουν⇒ το fxy (και αντίστοιχα το fyx) δεν είναι συνεχές στο (0,0).
(d) Το θεώρημα τουClairaut (ήYoung) απαιτεί, εκτός από την ύπαρξη των fxy, fyx, και συνέχεια

κάποιας μικτής παραγώγου σε γειτονιά του σημείου ώστε να συμπέσουν στο σημείο. Στην
παρούσα άσκηση, από το (γ) είδαμε ότι το fxy δεν είναι συνεχές στο (0,0), άρα οι υποθέσεις
του θεωρήματος δεν ισχύουν· επομένως δεν υπάρχει αντίφαση με το (β) όπου fxy(0,0) 6=
fyx(0,0).

← Επιστροφή στην Άσκηση 1.11.9

1.9 Διαφορισιμότητα, εφαπτόμενα επίπεδα
και γραμμική προσέγγιση

Στην παρούσα ενότητα θα διερευνήσουμε τη σημαντική έννοια της διαφορισιμότητας για συνα-
ρτήσεις με περισσότερες από μία μεταβλητές, σε συνδυασμό με τις σχετιζόμενες ιδέες του εφαπτό-
μενου επιπέδου και της γραμμικής προσέγγισης. Στον Λογισμό των συναρτήσεων μίας μεταβλη-
τής, μια συνάρτηση f είναι παραγωγίσιμη αν υπάρχει η παράγωγός της. Δηλαδή, αν υπάρχει η

κλίση της εφαπτομένης της καμπύλης σε ένα σημείο a και συμβολίζεται ως f ′(a) ή
dy
dx

∣∣∣∣
x=a
. Ενώ

μία συνάρτηση είναι διαφορίσιμη αν μπορεί να περιγραφεί τοπικά από μια γραμμική συνάρτηση,
δηλαδή η συνάρτηση συμπεριφέρεται “σαν ευθεία” όταν τη μελετούμε σε μικροσκοπική κλίμακα
γύρω από ένα σημείο. Αυτό σημαίνει ότι η τιμή της y για τιμές του x κοντά στο a μπορεί
να προσεγγιστεί χρησιμοποιώντας την εξίσωση της εφαπτομένης της συνάρτησης στο σημείο
(a, f (a)). Με μαθηματικούς όρους η παραπάνω ιδέα εκφράζεται ως:

∆y = f ′(a)∆x+ ε∆x,όπου ε → 0 καθώς ∆x→ 0.

Αυτός ο τύπος οδηγεί στη έννοια του διαφορικού που εκφράζεται ως εξής:
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Ορισμός 1.9.1Ἔστω y= f (x) μια διαφορίσιμη συνάρτηση στο x και∆x= h 6= 0 μια οποιαδή-
ποτε μεταβολή του x. Τότε σαν διαφορικό της f στο x ορίζεται το γινόμενο

f ′(x) ·h = f ′(x) ·∆x,

το οποίο συμβολίζεται με d f (x) ή dy, δηλαδή

dy = d f (x) = f ′(x) ·h = f ′(x) ·∆x

Σχήμα 1.22 Η γραμμική προσέγγιση του ∆x δίνεται από το διαφορικό dx.

Από τον ορισμό της παραγώγου στη μία μεταβλητή προκύπτει ότι αν η συνάρτηση y = f (x) είναι
διαφορίσιμη στο a, τότε

lim
∆x→0

∆y
∆x

= lim
∆x→0

f ′(a)∆x+ ε∆x
∆x

= f ′(a)+ lim
∆x→0

ε = f ′(a),

και συνεπώς η f είναι παραγωγίσιμη.
Αντίστροφα, αν η f είναι παραγωγίσιμη στο a, τότε θα έχουμε

lim
∆x→0

∆y
∆x

= f ′(a).

Συνεπώς,

∆y
∆x

= f ′(a)+ ε, όπου ε → 0 καθώς ∆x→ 0.

Ισοδύναμα έχουμε

∆y = f ′(a)∆x+ ε∆x,όπου ε → 0 καθώς ∆x→ 0

που συνεπάγεται ότι η f είναι διαφορίσιμη.
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Επεκτείνοντας την ιδέα αυτή, θα περίμενε κανείς
ότι μια συνάρτηση f (x,y) θα είναι διαφορίσιμη αν
υπάρχουν οι μερικές παράγωγοί της fx(x,y) και
fy(x,y). Δυστυχώς όμως, όπως θα διαπιστώσουμε,
η ύπαρξη των μερικών παραγώγων δεν είναι
αρκετά ισχυρή συνθήκη ώστε να εξασφαλίζει
τη διαφορισιμότητα μιας συνάρτησης. Αρχικά,
θα αποδείξουμε ότι η ύπαρξη των μερικών
παραγώγων δεν είναι ικανή συνθήκη που
εξασφαλίζει τη διαφορισιμότητα μιας συνάρτησης. Η
διαφορισιμότητα μιας συνάρτησης f (x,y) στο (a,b)
θα πρέπει να εξασφαλίζει το γεγονός ότι υπάρχει ένα
εφαπτόμενο επίπεδο στο γράφημα της f (x,y) και
στο σημείο P = (a,b, f (a,b)), όπως φαίνεται στο
Σχήμα 1.23.

Σχήμα 1.23 Το εφαπτόμενο επίπεδο
Αν υπάρχουν οι μερικές παράγωγοι της f (x,y), fx(a,b) και fy(a,b) στο (a,b), τότε αυτές
προσδιορίζουν ευθείες που είναι εφαπτόμενες στο γράφημα της f (x,y) στο σημείο P. Στο Σχήμα
1.24(α) φαίνεται ότι η μία από αυτές τις εφαπτόμενες ευθείες κείται στο επίπεδο y= b, ενώ η άλλη
βρίσκεται στο επίπεδο x = a. Θα ονομάζουμε, αντιστοίχως, τις ευθείες αυτές ως την εφαπτόμενη
ευθεία για την fx και την εφαπτόμενη ευθεία για την fy. Αυτές οι δύο εφαπτόμενες ευθείες
προσδιορίζουν ένα επίπεδο που εύλογα μπορεί να είναι το εφαπτόμενο επίπεδο στο γράφημα της
συνάρτησης (βλ. Σχήμα 1.24(β). Θα αναφερόμαστε σε αυτό το επίπεδο ως το επίπεδο που ορίζεται
από τις fx και fy. Δυστυχώς, όμως, αυτό το επίπεδο μπορεί να μην είναι πλήρως εφαπτόμενο
στο γράφημα της συνάρτησης στο σημείο P καθώς υπάρχει η πιθανότητα άλλες ευθείες, που
διέρχονται από το σημείο P και ανήκουν στο επίπεδο, να μην εφάπτονται στο γράφημα, όπως
φαίνεται στο Σχήμα 1.24(γ).

Σχήμα 1.24 Είναι το επίπεδο που προσδιορίζεται από τις fx και fy εφαπτόμενο στο γράφημα της συνάρτησης;

1.10 Αυξήσεις και Διαφορικά

Ορισμός 1.10.1 Ο όρος o(
√

h2 + k2).

Ο όρος o(
√

h2 + k2) είναι βασικό εργαλείο στη μαθηματική ανάλυση, καθώς διακρίνει τις
γραμμικές από τις μη γραμμικές συνιστώσες της τοπικής συμπεριφοράς μιας συνάρτησης. Πιο
συγκεκριμένα, λέμε ότι μια συνάρτηση f (h,k) ανήκει στο o(

√
h2 + k2) αν,

(∀ε > 0)(∃δ > 0) ώστε για κάθε σημείο (h,k) με
√

h2 + k2 < δ να ισχύει:
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| f (h,k)|< ε
√

h2 + k2.

Με άλλα λόγια: f (h,k) = o
(√

h2 + k2
)
⇐⇒ f (h,k)√

h2 + k2
→ 0.

Θεώρημα 1.10.2 (Κριτήριο διαφορισιμότητας) Έστω f : S⊆R2→R, S ανοικτό, και (a,b)∈
S. Αν οι μερικές παράγωγοι fx, fy υπάρχουν σε μία περιοχή του (a,b) και είναι συνεχείς στο
(a,b), τότε η f είναι διαφορίσιμη στο (a,b), δηλαδή

f (a+h,b+k) = f (a,b)+ fx(a,b)h+ fy(a,b)k+o
(√

h2 + k2
)

καθώς (h,k)→ (0,0).

Υπενθυμίζουμε ότι η αύξηση ∆y της f (x) στο x = a είναι

∆y = f (a+∆x)− f (a),

και για “μικρό” ∆x έχουμε την προσέγγιση

∆y≈ dy = f ′(a)∆x.

Έστω z = f (x,y). Ορίζουμε την αύξηση της f στο (a,b) ως

∆z = f (a+∆x, b+∆y)− f (a,b).

Τότε έχουμε

∆z =
[

f (a+∆x,b+∆y)− f (a,b+∆y)
]
+
[

f (a,b+∆y)− f (a,b)
]
.

Με βάση το Θεώρημα Μέσης Τιμής (MVT):

f (a+∆x,b+∆y)− f (a,b+∆y) = fx(u,b+∆y)∆x,

f (a,b+∆y)− f (a,b) = fy(a,v)∆y,

όπου u ∈ (a,a+∆x) και v ∈ (b,b+∆y).
Άρα

∆z = fx(u,b+∆y)∆x+ fy(a,v)∆y.

Γράφουμε

∆z =
(

fx(a,b)+ [ fx(u,b+∆y)− fx(a,b)]︸ ︷︷ ︸
ε1

)
∆x+

(
fy(a,b)+ [ fy(a,v)− fy(a,b)]︸ ︷︷ ︸

ε2

)
∆y.

Έτσι,

∆z = fx(a,b)∆x+ fy(a,b)∆y︸ ︷︷ ︸
dz

+ε1∆x+ ε2∆y︸ ︷︷ ︸
σφάλμα

.

Αν fx, fy είναι συνεχείς στο (a,b), τότε

ε1→ 0, ε2→ 0 όταν (∆x,∆y)→ (0,0).
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Συνεπώς

∆z = dz+ ε1∆x+ ε2∆y = dz+o(
√

(∆x)2 +(∆y)2).

Απο την ισότητα

∆z = dz+o(
√

(∆x)2 +(∆y)2).

έχουμε

lim
(∆x,∆y)

∆z−dz√
(∆x)2 +(∆y)2

= 0

που σημαίνει ότι η f είναι διαφορίσιμη στο (a,b).

Σημείωση 1.10.3 Πως προκύπτει dz+ ε1∆x+ ε2∆y = dz+o(
√
(∆x)2 +(∆y)2). ’Εχουμε

ε1∆x+ ε2∆y =

(
ε1∆x+ ε2∆y√
(∆x)2 +(∆y)2

)
·
√

(∆x)2 +(∆y)2.

Θέτουμε

η =
ε1∆x+ ε2∆y√
(∆x)2 +(∆y)2

.

Τότε το σφάλμα γράφεται:

ε1∆x+ ε2∆y = η ·
√
(∆x)2 +(∆y)2.

Όριο καθώς (∆x,∆y)→ (0,0):

Αν ε1 → 0 και ε2 → 0, τότε και ο συνδυασμός τους η «πακετάρεται» σε μια μορφή που
εξαρτάται μόνο από την ευκλείδεια απόσταση√

(∆x)2 +(∆y)2.

Πράγματι,

|ε1∆x+ ε2∆y| ≤
√

ε 2
1 + ε 2

2

√
(∆x)2 +(∆y)2.

Αρκεί να υψώσουμε στο τετράγωνο και να δείξουμε ότι

(ε1∆x+ ε2∆y)2 ≤ (ε 2
1 + ε 2

2 )
(
(∆x)2 +(∆y)2

)
.

Πράγματι,

(ε1∆x+ ε2∆y)2 = ε 2
1 (∆x)2 +2ε1ε2 ∆x∆y+ ε 2

2 (∆y)2.

Ενώ

(ε 2
1 + ε 2

2 )
(
(∆x)2 +(∆y)2

)
= ε 2

1 (∆x)2 + ε 2
1 (∆y)2 + ε 2

2 (∆x)2 + ε 2
2 (∆y)2.

Άρα η διαφορά είναι
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[
(ε 2

1 + ε 2
2 )((∆x)2 +(∆y)2)

]
− (ε1∆x+ ε2∆y)2 = (ε1∆y− ε2∆x)2 ≥ 0.

Συνεπώς η αρχική ανισότητα ισχύει.

Ορισμός 1.10.4 Έστω f : R2 → R και z = f (x,y). Λέμε ότι η f είναι διαφορίσιμη στο
σημείο (a,b) αν υπάρχουν οι μερικές παράγωγοι fx(a,b), fy(a,b) και ισχύει ότι για κάθε
(∆x,∆y)→ (0,0) έχουμε

∆z = f (a+∆x,b+∆y)− f (a,b) = fx(a,b)∆x+ fy(a,b)∆y+ ε1∆x+ ε2∆y,

όπου ε1,ε2→ 0 καθώς (∆x,∆y)→ (0,0) ή ισοδύναμα:

lim
(∆x,∆y)→(0,0)

f (a+∆x,b+∆y)− f (a,b)− fx(a,b)∆x− fy(a,b)∆y√
(∆x)2 +(∆y)2

= 0.

Δηλαδή, η μεταβολή ∆z γράφεται ως άθροισμα μιας γραμμικής συνάρτησης των (∆x,∆y)
και ενός σφάλματος που τείνει στο μηδέν όταν (∆x,∆y)→ (0,0).

Σχήμα 1.25 Είναι το επίπεδο που προσδιορίζεται από τις fx και fy εφαπτόμενο στο γράφημα της συνάρτησης;

Υπενθύμιση 1.10.5 Ικανή και Αναγκαία Συνθήκη Έστω δύο προτάσεις A και B.
Αν ισχύει η συνεπαγωγή

A⇒ B,

τότε λέμε ότι η πρότασηA είναι ικανή συνθήκη για τηνB, δηλαδή η ισχύς τηςA εξασφαλίζει
την ισχύ της B.

1.2. Αν ισχύει η συνεπαγωγή

B⇒ A,

τότε λέμε ότι η πρόταση A είναι αναγκαία συνθήκη για την B, δηλαδή για να ισχύει η B,
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πρέπει οπωσδήποτε να ισχύει και η A.
3. Αν ισχύουν και οι δύο συνεπαγωγές

A⇒ B και B⇒ A,

τότε γράφουμε

A⇔ B

και λέμε ότι η πρόταση A ικανή και αναγκαία συνθήκη για την B.

Λογική μορφή Φραστική διατύπωση Ερμηνεία

A⇒ B «Αν ισχύει το A, τότε ισχύει το
B»

Το A είναι ικανή συνθήκη για
το B

B⇒ A «Αν ισχύει το B, τότε ισχύει το
A»

Το A είναι αναγκαία συνθήκη
για το B

A⇔ B «Αν και μόνο αν» Το A είναι και ικανή και
αναγκαία συνθήκη για το B

Πίνακας 1.1 Ικανή, αναγκαία και ικανή-αναγκαία συνθήκη

Παράδειγμα 1.10.6 Ένας αριθμός είναι άρτιος αν και μόνο αν διαιρείται με το 2.
• Αν ένας αριθμός είναι άρτιος, τότε διαιρείται με το 2 σημαίνει ότι η ιδιότητα «άρτιος»
είναι ικανή συνθήκη.

• Αν ένας αριθμός διαιρείται με το 2, τότε είναι άρτιος σημαίνει ότι η ιδιότητα «άρτιος»
είναι αναγκαία συνθήκη.

Σημείωση 1.10.7 Το θεώρημα 1.10.2 δίνει ικανή συνθήκη, όχι όμως αναγκαία. Υπάρχουν
συναρτή- σεις που είναι διαφορίσιμες αλλά οι μερικές τους παράγωγοι δεν είναι συνεχείς.

Παράδειγμα 1.10.8 Εξετάστε αν η συνάρτηση f

f (x,y) =

(x2 + y2)sin
(

1
x2 + y2

)
, (x,y) 6= (0,0),

0, (x,y) = (0,0)

είναι διαφορίσιμη στο σημείο (0,0) και αν οι

∂ f
∂x

,
∂ f
∂y
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είναι συνεχείς στο (0,0). Τι συμπεραίνετε;

→Μετάβαση στη Λύση του Παραδείγματος 1.10.8

Λύση.Υπολογισμοί των ∆ f , d f :

∂ f
∂x

(0,0) = lim
x→0

f (x,0)− f (0,0)
x−0

= lim
x→0

xsin
1
x2 = 0.

Όμοια, λόγω κυκλικότητας των x,y, θα ισχύει

∂ f
∂y

(0,0) = 0.

Άρα d f = 0.

Επίσης

∆ f = f (h,k)− f (0,0) = (h2 + k2)sin
1

h2 + k2 .

Και από (Μ.σ.2.5) έχουμε

∆ f −d f√
h2 + k2

=
(h2 + k2)sin

1
h2 + k2

√
h2 + k2

=
√

h2 + k2 sin
1

h2 + k2 .

Η έκφραση αυτή τείνει στο μηδέν για h→ 0, k→ 0, διότι
√

h2 + k2→ 0 και sin
1

h2 + k2 είναι

φραγμένη. (Μηδενική επί φραγμένη = μηδενική). Άρα η f (x,y) είναι διαφορίσιμη στο (0,0). Για

τη συνέχεια των fx, fy στο (0,0) έχουμε:

fx =
∂
∂x

(
(x2 + y2)sin

1
x2 + y2

)
= 2xsin

1
x2 + y2 −

2x
x2 + y2 cos

1
x2 + y2 ,

fy =
∂
∂y

(
(x2 + y2)sin

1
x2 + y2

)
= 2ysin

1
x2 + y2 −

2y
x2 + y2 cos

1
x2 + y2 .

Οι fx, fy είναι συνεχείς για κάθε (x,y) ∈R2−{(0,0)}. Θα εξετάσουμε τη συνέχεια της fx
στο σημείο (0,0). Έχουμε

fx(x,x) = 2xsin
1

2x2 −
x
x2 cos

1
x2 = 2xsin

1
2x2 −

1
x

cos
1
x2 .

Επειδή

lim
x→0

2xsin
1

2x2 = 0 και lim
x→0

1
x

cos
1
x2

δεν υπάρχει, το
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lim
x→0

fx(x,x)

δεν υπάρχει. Συνεπώς και το

lim
(x,y)→(0,0)

fx(x,y)

δεν υπάρχει. Όμοια, δεν υπάρχει και το

lim
(x,y)→(0,0)

fy(x,y).

Συμπέρασμα: Συμπεραίνουμε ότι κάθε διαφορίσιμη συνάρτηση δεν έχει κατ’ ανάγκην μερικές
παραγώγους πρώτης τάξης συνεχείς.
← Επιστροφή στο Παράδειγμα 1.10.8

Παράδειγμα 1.10.9 Η συνάρτηση δύο μεταβλητών που είναι διαφορίσιμη και δεν έχει μερικές
παράγωγους συνεχείς στο σημείο αυτό Έστω η συνάρτηση

f (x,y) =


x2y

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).

Να εξετάσετε αν η συνάρτηση f είναι διαφορίσιμη στο σημείο (0,0) και αν οι μερικές παρά-
γωγοι πρώτης τάξης της είναι συνεχείς στο ίδιο σημείο. Τι παρατηρείτε σχετικά με τη σχέση
μεταξύ διαφορισιμότητας και συνέχειας των μερικών παραγώγων;

Λύση.

f (x,y) =


x2y

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).

Ερώτημα: Εξετάζουμε αν η f είναι διαφορίσιμη στο σημείο (0,0) και αν οι μερικές παράγωγοι
πρώτης τάξης είναι συνεχείς στο ίδιο σημείο.

1. Υπολογισμός μερικών παραγώγων στο σημείο (0,0):

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0.

fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

0−0
k

= 0.

Άρα fx(0,0) = 0 και fy(0,0) = 0.

2. Τύποι μερικών παραγώγων για (x,y) 6= (0,0):
Με χρήση του κανόνα του πηλίκου:

fx(x,y) =
(2xy)(x2 + y2)− x2y(2x)

(x2 + y2)2 =
2xy3

(x2 + y2)2 .
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fy(x,y) =
x2(x2 + y2)− x2y(2y)

(x2 + y2)2 =
x2(x2− y2)

(x2 + y2)2 .

3. Συνέχεια των μερικών παραγώγων στο σημείο (0,0):
Θα δείξουμε ότι

lim
(x,y)→(0,0)

fx(x,y) = 0 και lim
(x,y)→(0,0)

fy(x,y) = 0.

Για τη fx:

| fx(x,y)|=
∣∣∣∣ 2xy3

(x2 + y2)2

∣∣∣∣≤ 2
|x| |y|3

(x2 + y2)2 .

Θέτουμε r =
√

x2 + y2. Τότε |x| ≤ r, |y| ≤ r, άρα

| fx(x,y)| ≤ 2
r r3

r4 = 2r→ 0 όταν (x,y)→ (0,0).

Άρα lim
(x,y)→(0,0)

fx(x,y) = 0 = fx(0,0). Η fx είναι συνεχής στο (0,0).

Για τη fy:

| fy(x,y)|=
∣∣∣∣x2(x2− y2)

(x2 + y2)2

∣∣∣∣≤ x2(|x|2 + |y|2)
(x2 + y2)2 =

x2

x2 + y2 ≤ 1.

Για να βρούμε το όριο, εκφράζουμε ξανά σε πολικές συντεταγμένες: x = r cosθ , y = r sinθ :

fy =
r4 cos2 θ(cos2 θ − sin2 θ)

r4 = cos2 θ(cos2 θ − sin2 θ).

Το αποτέλεσμα δεν εξαρτάται από το r, άρα το όριο ως (x,y)→ (0,0) είναι cos2 θ(cos2 θ−
sin2 θ), που εξαρτάται από τη διεύθυνση. Όμως αυτό είναι λάθος για τη συνέχεια: το όριο δεν
τείνει στο μηδέν για όλες τις διευθύνσεις, οπότε πρέπει να επανελέγξουμε προσεκτικά.

Εξετάζουμε συγκεκριμένες πορείες:

- Αν y = 0: fy(x,0) =
x2 · x2

x4 = 1. - Αν x = 0: fy(0,y) = 0.

Άρα το όριο της fy(x,y) δεν υπάρχει στο (0,0).

Συμπέρασμα:
- Οι μερικές παράγωγοι fx(0,0) και fy(0,0) υπάρχουν. - Η fx είναι συνεχής στο (0,0). - Η

fy δεν είναι συνεχής στο (0,0).
Επομένως, η f δεν είναι διαφορίσιμη στο (0,0), παρόλο που οι μερικές παράγωγοι της υπάρχουν.

Παράδειγμα 1.10.10 Παράδειγμα συνάρτησης που οι μερικές παράγωγοι fx(0,0), fy(0,0)
υπάρχουν αλλά δεν είναι συνεχείς εκεί. Θεωρούμε τη συνάρτηση

f (x,y) =


xy

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).
, .
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Λύση.

Βήμα 1: Υπολογισμός μερικών παραγώγων στο (0,0):

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= 0, fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= 0.

Βήμα 2: Για (x,y) 6= (0,0) έχουμε

fx(x,y) =
y(y2− x2)

(x2 + y2)2 , fy(x,y) =
x(x2− y2)

(x2 + y2)2 .

Πράγματι, για να είναι η f διαφορίσιμη στο (0,0) απαιτείται, μεταξύ άλλων, οι μερικές παρά-
γωγοι να είναι συνεχείς εκεί. Δηλαδή πρέπει

lim
(x,y)→(0,0)

fx(x,y) = fx(0,0), lim
(x,y)→(0,0)

fy(x,y) = fy(0,0).

Εξετάζουμε το fx(x,y):
• Αν y = x, τότε fx(x,x) = 0.

• Αν y = 0, τότε fx(x,0) = 0.

• Αν x = 0, τότε fx(0,y) =
y3

y4 =
1
y
→ ∞.

Επομένως, το όριο lim
(x,y)→(0,0)

fx(x,y) δεν υπάρχει. Άρα η fx δεν είναι συνεχής στο (0,0).

Ανάλογα δείχνουμε ότι και η fy δεν είναι συνεχής στο (0,0).

Συμπερασματικά, αν και οι μερικές παράγωγοι fx(0,0), fy(0,0) υπάρχουν, δεν είναι συνε-
χείς εκεί. Άρα η f δεν είναι διαφορίσιμη στο (0,0).

Ορισμός 1.10.11 Έστω f : R2→R και z = f (x,y). Καλούμε γραμμικοποίηση της f (x,y) με
κέντρο το σημείο (a,b) την παράσταση

L(x,y) = f (a,b)+ fx(a,b)(x−a)+ fy(a,b)(y−b)

Θα αναφέρουμε την L(x,y) ως γραμμικοποίηση της f (x,y) με κέντρο το σημείο (a,b).
Αυτή μπορεί να χρησιμοποιηθεί για να προσεγγιστεί η συνάρτηση f (x,y) κοντά στο (a,b).
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Σχήμα 1.26 Το γράφημα της συνάρτησης μοιάζει ολοένα και περισσότερο με το εφαπτόμενο επίπεδο
στο σημείο P καθώς προχωράμε στην ολοένα και μεγαλύτερη μεγέθυνσή του.

Θεώρημα 1.10.12 Διαφορισιμότητα και εφαπτόμενο επίπεδο Έστω ότι η συνάρτηση f (x,y)
ορίζεται σε έναν δίσκο D που περιέχει το (a,b) και ότι επιπλέον οι μερικές παράγωγοι fx(a,b)
και fy(a,b) υπάρχουν. Τότε:

• Η συνάρτηση f (x,y) είναι διαφορίσιμη στο (a,b) αν

lim
(x,y)→(a,b)

f (x,y)−L(x,y)√
(x−a)2 +(y−b)2

= 0.

• Αν η f (x,y) είναι διαφορίσιμη στο (a,b), τότε το εφαπτόμενο επίπεδο στο γράφημα της
συνάρτησης και στο σημείο (a,b, f (a,b)) είναι το επίπεδο με εξίσωση z= L(x,y). Η αναλυτι-
κή εξίσωση του εφαπτόμενου επιπέδου είναι η

z = f (a,b)+ fx(a,b)(x−a)+ fy(a,b)(y−b)

Υπενθύμιση 1.10.13 Μια συνάρτηση f λέγεται ότι έχει συνεχείς μερικές παραγώγους στο
σημείο (x0,y0) αν υπάρχουν οι μερικές παράγωγοι σε μία περιοχή του (x0,y0) και είναι συνεχείς
στο σημείο αυτό.
Αν ισχύει αυτό σε κάθε σημείο του πεδίου ορισμού της, τότε λέμε ότι η f ανήκει στην κλάση
C1 (C1(R2)). Δηλαδή:

f ∈C1(R2) ⇐⇒ f είναι παραγωγίσιμη και οι fx, fy είναι συνεχείς στο R2

Έτσι και γενικότερα: Μια συνάρτηση ανήκει στην κλάση Ck αν όλες οι μερικές παράγωγοι
μέχρι και τάξης k υπάρχουν και είναι συνεχείς.
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1.11 Διαφορικά και γραμμική προσέγγιση

Έστω ότι η συνάρτηση f είναι διαφορίσιμη στο (a,b)
και ότι επιπλέον dx = ∆x, dy = ∆y. Τότε το
διαφορικό d f ορίζεται ως:

d f = fx(x,y)dx+ fy(x,y)dy

Στο Σχήμα 1.27 φαίνεται ότι το διαφορικό d f
αντιπροσωπεύει τη μεταβολή στο ύψος του
εφαπτόμενου επιπέδου για δεδομένες μεταβολές
dx και dy των μεταβλητών x και y.
Αν με ∆ f συμβολίσουμε την πραγματική αλλαγή
της συνάρτησης f (x,y), τότε προκύπτει ότι ∆ f ≈
d f και έτσι καταλήγουμε στη διαφορική μορφή της
γραμμικής προσέγγισης:

∆ f ≈ d f = fx(x,y)dx+ fy(x,y)dy

Σχήμα 1.27 Η γραφική παράσταση της συνάρτησης

f (x,y) =
xy2

x2 + y2 .

Σχόλιο 1.11.1 Η ύπαρξη των μερικών παραγώγων δεν εγγυάται τη διαφορσιμότητα μιας συνά-
ρτησης. Η συνάρτηση

f (x,y) =


2xy(x+ y)

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0),

δείχνει μια τέτοια περίπτωση. Πράγματι, έχουμε fx(0,0) = 0 και fy(0,0) = 0. Αυτό σημαίνει
ότι το επίπεδο που ορίζεται από τις μερικές παραγώγους είναι το επίπεδο xy. Όμως, το γράφημα
της f κοντά στην αρχή των αξόνων αποτελείται από ευθείες που διέρχονται από την αρχή, οι
οποίες δεν ανήκουν όλες στο επίπεδο xy. Καθώς μεγεθύνουμε την περιοχή γύρω από (0,0),
οι ευθείες αυτές συνεχίζουν να σχηματίζουν γωνίες με το επίπεδο xy και έτσι το γράφημα δεν
τείνει να γίνει επίπεδο. Επομένως, η f (x,y) δεν είναι διαφορίσιμη στο (0,0) και δεν υπάρχει
εφαπτόμενο επίπεδο εκεί.

f (x,y) =


2xy(x+ y)

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).

1) Μερικές παράγωγοι στο (0,0)

f (x,0) = 0⇒ fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= 0, f (0,y) = 0⇒ fy(0,0) = 0.

2) Συνέχεια στο (0,0)

Θέτουμε r =
√

x2 + y2. Ισχύει |xy| ≤ x2 + y2

2
, άρα

|2xy(x+ y)| ≤ (x2 + y2)(|x|+ |y|)≤
√

2(x2 + y2)3/2 =
√

2r3.

56



Οπότε

| f (x,y)|=
∣∣∣∣2xy(x+ y)

x2 + y2

∣∣∣∣≤√2r→ 0

καθώς (x,y)→ (0,0). Επομένως η f είναι συνεχής στο (0,0).

(a) Το οριζόντιο ίχνος στο z = 0
περιλαμβάνει τους άξονες x και y

(b) Το οριζόντιο ίχνος στο z = 0 περιλαμβάνει τους άξονες x και y. Αλλά η
γραφική παράσταση περιέχει επίσης μη οριζόντιες ευθείες που διέρχονται

από την αρχή των αξόνων. Επομένως, η γραφική παράσταση δεν
εμφανίζεται πιο επίπεδη καθώς μεγεθύνουμε στην αρχή των αξόνων.

Σχήμα 1.28 Η συνάρτηση f (x,y) δεν είναι διαφορίσιμη στο σημείο (0,0).

3) Μη διαφορισιμότητα στο (0,0)
Αν η f ήταν διαφορίσιμη στο (0,0), θα είχαμε

d f (0,0) = fx(0,0)dx+ fy(0,0)dy = 0,

και επομένως

lim
(x,y)→(0,0)

f (x,y)− f (0,0)√
x2 + y2

= 0.

Ελέγχουμε κατά μήκος της ευθείας y = x:

f (x,x) =
2x · x(x+ x)

x2 + x2 =
4x3

2x2 = 2x,
√

x2 + y2 =
√

2 |x|.

Άρα

| f (x,x)|√
x2 + y2

=
|2x|√
2 |x|

=
√

2 6→ 0.

Η αναγκαία συνθήκη αποτυγχάνει, συνεπώς η f δεν είναι διαφορίσιμη στο (0,0).
Συμπέρασμα: Η f είναι συνεχής και έχει μερικές παραγώγους στο (0,0), όμως δεν είναι

διαφορίσιμη. Η ύπαρξη των μερικών παραγώγων δεν εγγυάται τη διαφορισιμότητα.
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Ασκήσεις 1.11.2 Εξετάστε αν η συνάρτηση f με

f (x,y) =


xy√

x2 + y2
, (x,y) 6= (0,0)

0, (x,y) = (0,0)

είναι διαφορίσιμη στο (0,0).

Λύση.Από (Μ.σ.2.5) πρέπει να βρούμε τα d f ,∆ f στο (0,0).

∂ f
∂x

(0,0) = lim
x→0

f (x,0)− f (0,0)
x−0

= 0

∂ f
∂y

(0,0) = lim
y→0

f (0,y)− f (0,0)
y−0

= 0

Άρα

d f = 0h+0k = 0

Επίσης,

∆ f = f (0+h,0+ k)− f (0,0) =
hk√

h2 + k2

Συνεπώς,

∆ f −d f√
h2 + k2

=
hk

h2 + k2

Πλησιάζουμε το (0,0) με πολικές συντεταγμένες h = r cosθ , k = r sinθ με r→ 0 και θ ∈
[0,2π), οπότε έχουμε

lim
r→0

∆ f −d f√
h2 + k2

= lim
r→0

r2 cosθ sinθ
r2 = cosθ sinθ

Το όριο για r→ 0 δεν υπάρχει διότι είναι εξαρτώμενο του θ . Συνεπώς δεν είναι διαφορίσιμη στο
(0,0), αν και είναι συνεχής.

Λυμένες ασκήσεις 1.11.3 Έστω η συνάρτηση

f (x,y) =


x3 +2y3

x2 + y2 , (x,y) 6= (0,0)

0, (x,y) = (0,0)

Να βρεθούν οι μερικές παράγωγοι fx(0,0), fy(0,0) και να εξεταστεί αν είναι συνεχείς στο
(0,0).

Υπολογισμός μερικών παραγώγων στο (0,0):
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fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

h3

h2 −0

h
= lim

h→0

h
h
= 1

fy(0,0) = lim
h→0

f (0,h)− f (0,0)
h

= lim
h→0

2h3

h2 −0

h
= lim

h→0

2h
h

= 2

Αναλυτικός έλεγχος συνέχειας για fx:
Υπολογίζουμε τη μερική παράγωγο:

fx(x,y) = ∂
∂x

(
x3 +2y3

x2 + y2

)
=

3x2(x2 + y2)−2x(x3 +2y3)

(x2 + y2)2

Περνάμε σε πολικές συντεταγμένες:

x = r cosθ , y = r sinθ

fx(r cosθ ,r sinθ) =
3(r cosθ)2 · r2−2r cosθ · [r3 cos3 θ +2r3 sin3 θ ]

r4

Υπολογίζοντας τους όρους:

3(r cosθ)2 · r2 = 3r4 cos2 θ

2r cosθ · [r3 cos3 θ +2r3 sin3 θ ] = 2r4 cos4 θ +4r4 cosθ sin3 θ

Άρα:

fx(r cosθ ,r sinθ) =
3r4 cos2 θ −2r4 cos4 θ −4r4 cosθ sin3 θ

r4

Απλοποιείται ως:

= cos4 θ −4cosθ sin3 θ

Παίρνουμε το όριο:

lim
(r,θ)→(0,0)

fx(r cosθ ,r sinθ) = lim
(r,θ)→(0,0)

cos4 θ −4cosθ sin3 θ = 1

και επειδή fx(0,0) = 1 έχουμε ότι η fx είναι συνεχής στο (0,0).

Ομοίως ισχύει για την fy

fy(x,y) =
6y2(x2 + y2)−2y(x3 +2y3)

(x2 + y2)2

Περνάμε πάλι σε πολικές συντεταγμένες, εκτελούμε αναλυτικούς υπολογισμούς και βρίσκουμε
ότι το όριο είναι παντού ίσο με 2 όπως η τιμή στο σημείο (0,0).
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Συμπέρασμα:

fx(0,0) = 1, fy(0,0) = 2

και οι μερικές παράγωγοι είναι συνεχείς στο (0,0).

Θεώρημα 1.11.4 Αν η συνάρτηση f : R2→ R είναι διαφορίσιμη σε ένα σημείο (a,b), τότε
στο ίδιο σημείο υπάρχουν οι μερικές παράγωγοι fx(a,b) και fy(a,b).

Λύση. Εφόσον η f είναι διαφορίσιμη στο (a,b), υπάρχει γραμμικός μετασχηματισμός L : R2→
R τέτοιος ώστε

lim
(h,k)→(0,0)

| f (a+h,b+ k)− f (a,b)−L(h,k)|√
h2 + k2

= 0.

Ο γραμμικός αυτός μετασχηματισμός γράφεται ως

L(h,k) = Ah+Bk,

όπου A,B ∈ R.
Θα δείξουμε ότι A = fx(a,b) και B = fy(a,b).
Πράγματι, για h 6= 0 και k = 0 έχουμε:

f (a+h,b)− f (a,b) = Ah+R(h,0), όπου
|R(h,0)|
|h|

−−→
h→0

0.

Διαίρεση με h δίνει:

f (a+h,b)− f (a,b)
h

= A+
R(h,0)

h
,

και λαμβάνοντας όριο όταν h→ 0 προκύπτει

fx(a,b) = lim
h→0

f (a+h,b)− f (a,b)
h

= A.

Ανάλογα, θέτοντας h = 0 και k 6= 0:

f (a,b+ k)− f (a,b) = Bk+R(0,k), με
|R(0,k)|
|k|

−−→
k→0

0,

οπότε

fy(a,b) = lim
k→0

f (a,b+ k)− f (a,b)
k

= B.

Άρα οι μερικές παράγωγοι fx(a,b) και fy(a,b) υπάρχουν και ισούνται με τους συντελεστές
του γραμμικού μέρους L(h,k) της διαφορικής.
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Σχόλιο 1.11.5 Η διαφορισιμότητα συνεπάγεται ύπαρξη των μερικών παραγώγων στο σημείο,
αλλά όχι τη συνέχειά τους.

Παράδειγμα 1.11.6 Η διαφορισιμότητα δεν συνεπάγεται τη συνέχειά των μερικών παραγώγων
Εξετάστε αν η συνάρτηση

f (x,y) =

(x2 + y2)sin
( 1

x2 + y2

)
, (x,y) 6= (0,0),

0, (x,y) = (0,0)

είναι διαφορίσιμη στο (0,0) και αν οι μερικές παράγωγοι
∂ f
∂x

,
∂ f
∂y

είναι συνεχείς στο (0,0).

Τι συμπεραίνετε;

Λύση.
Βήμα 1: Συνέχεια στο (0,0). Για (x,y) 6= (0,0) θέτουμε r2 = x2 + y2, άρα

f (x,y) = r2 sin
( 1

r2

)
.

Εφόσον |sin(
1
r2 )| ≤ 1, προκύπτει

| f (x,y)| ≤ r2 −−→
r→0

0,

οπότε lim
(x,y)→(0,0)

f (x,y) = 0 = f (0,0) και η f είναι συνεχής στο (0,0).

Βήμα 2: Μερικές παράγωγοι στο (0,0). Υπολογίζουμε με τον ορισμό:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

h2 sin(
1
h2 )

h
= lim

h→0
hsin(

1
h2 ) = 0.

Ομοίως

fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

k sin(
1
k2 ) = 0.

Άρα fx(0,0) = fy(0,0) = 0.

Η συνάρτηση f είναι διαφορίσιμη. Πράγματι

lim
(h,k)→(0,0)

f (0+h,0+ k)− f (0,0)− fx(0,0)h− fy(0,0)k√
h2 + k2

= lim
(h,k)→(0,0)

f (h,k)√
h2 + k2

= lim
(h,k)→(0,0)

(h2 + k2)sin
(

1
h2 + k2

)
√

h2 + k2

61



= lim
(h,k)→(0,0)

√
h2 + k2 · sin

(
1

h2 + k2

)
= 0

Βήμα 3: Μερικές παράγωγοι για (x,y) 6= (0,0). Χρησιμοποιούμε τον κανόνα γινομένου και
αλυσίδας:

fx(x,y) = 2xsin
( 1

x2 + y2

)
− (x2 + y2)cos

( 1
x2 + y2

) 2x
(x2 + y2)2 .

Απλοποιώντας:

fx(x,y) = 2x

sin
( 1

x2 + y2

)
−

cos
( 1

x2 + y2

)
x2 + y2

 .
Ανάλογα,

fy(x,y) = 2y

sin
( 1

x2 + y2

)
−

cos
( 1

x2 + y2

)
x2 + y2

 .
Βήμα 4: Συνέχεια των fx, fy στο (0,0). Εξετάζουμε το όριο του fx(x,y) στο (0,0).

Χρησιμοποιούμε ξανά r2 = x2 + y2, οπότε

| fx(x,y)|= 2|x|

∣∣∣∣∣∣∣sin
( 1

r2

)
−

cos
( 1

r2

)
r2

∣∣∣∣∣∣∣ .
Το δεύτερο σκέλος περιέχει

cos(1/r2)

r2 που δεν τείνει στο 0 καθώς r→ 0 (ταλαντώνεται απεριόριστα).
Ειδικά, αν πάρουμε κατά μήκος του άξονα y = 0:

fx(x,0) = 2x

sin(
1
x2 )−

cos(
1
x2 )

x2

 ,
και ο όρος −2xcos(1/x2)

x2 = −2cos(1/x2)

x
δεν έχει όριο. Άρα το fx δεν είναι συνεχές στο

(0,0) (αντίστοιχα και το fy).

Συμπέρασμα: Η διαφορισιμότητα δεν συνεπάγεται τη συνέχεια των μερικών παραγώγων.
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Θεώρημα 1.11.7 Έστω U ⊂ R2 ανοιχτό και f : U → R με τις μερικές παραγώγους fx, fy
ορισμένες σε μια γειτονιά του a ∈U και συνεχείς στο a. Τότε η f είναι διαφορίσιμη στο a.

Λύση.Γράφουμε, για (x,y) κοντά στο a = (a1,a2),

f (x,y)− f (a1,a2) =
[

f (x,y)− f (a1,y)
]
+
[

f (a1,y)− f (a1,a2)
]
.

Εφαρμόζοντας το θεώρημα μέσης τιμής μίας μεταβλητής στις συναρτήσεις u 7→ f (u,y) και v 7→
f (a1,v), υπάρχουν ξ μεταξύ a1 και x, και η μεταξύ a2 και y με

f (x,y)− f (a1,y) = fx(ξ ,y)(x−a1), f (a1,y)− f (a1,a2) = fy(a1,η)(y−a2).

Άρα

f (x,y)− f (a1,a2) = fx(a)(x−a1)+ fy(a)(y−a2)+R(x,y),

όπου

R(x,y) =
[

fx(ξ ,y)− fx(a)
]
(x−a1)+

[
fy(a1,η)− fy(a)

]
(y−a2).

Θέτουμε h = x− a1, k = y− a2. Από τη συνέχεια των fx, fy στο a, καθώς (h,k)→ (0,0)
έχουμε fx(ξ ,y)→ fx(a) και fy(a1,η)→ fy(a), οπότε

|R(a1 +h,a2 + k)|√
h2 + k2

≤

| fx(ξ ,a2 + k)− fx(a)|
|h|√

h2 + k2
+ | fy(a1,η)− fy(a)|

|k|√
h2 + k2

−−−−−−→
(h,k)→(0,0)

0.

Άρα

f (a1 +h,a2 + k) = f (a)+ fx(a)h+ fy(a)k+o
(√

h2 + k2
)
,

δηλαδή η f είναι διαφορίσιμη στο a με διαφορική D f (a)(h,k) = fx(a)h+ fy(a)k.

Σχόλιο 1.11.8Από το Θεώρημα 1.11.7 προκύπτει ότι αν οι fx, fy είναι συνεχείς σε έναU ⊆D f ,
τότε η f είναι διαφορίσιμη στοU . Το αντίστροφο δεν ισχύει, όπως έδειξε το αντιπαράδειγμα.

Ασκήσεις 1.11.9 1. Να δείξετε ότι η συνάρτηση

f (x,y) = x3y

είναι διαφορίσιμη σε κάθε σημείο (a,b).
Να βρείτε την γραμμική προσέγγιση της f (x,y) στο σημείο (1,2) και να την χρησιμο-
ποιήσετε για να προσεγγίσετε την τιμή f (1.01, 1.99).

2. Να δείξετε ότι η συνάρτηση

f (x,y) =
√

x2 + y2
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δεν είναι διαφορίσιμη στο σημείο (0,0).

3. Εξετάστε αν η συνάρτηση f με

f (x,y) =


xy√

x2 + y2
, (x,y) 6= (0,0),

0, (x,y) = (0,0)

είναι διαφορίσιμη στο (0,0).

4. Να δείξετε ότι η συνάρτηση

f (x,y) =


x2y2

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0)

είναι διαφορίσιμη στο (0,0).

5. Να δείξετε ότι η συνάρτηση

f (x,y) =


2x2y

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0)

δεν είναι διαφορίσιμη στο (0,0).

6. Αν η f είναι διαφορίσιμη συνάρτηση με τοπική γραμμικοποίηση

L(x,y) = f (a,b)+m(x−a)+n(y−b),

τότε m = fx(a,b) και n = fy(a,b).

7. Θεωρήστε τη συνάρτηση

f (x,y) = 3
√

xy.

Δείξτε ότι οι μερικές παράγωγοι της f υπάρχουν, αλλά η f δεν είναι διαφορίσιμη στο
(0,0).

8. Χρησιμοποιήστε τον ορισμό της διαφορισιμότητας για να αποδείξετε ότι αν μια συνάρτηση
f είναι διαφορίσιμη στο (a,b), τότε η f θα είναι και συνεχής στο (a,b).

9. Έστω η συνάρτηση

f (x,y) =


2xy(x+ y)

x2 + y2 , (x,y) 6= (0,0),

0, (x,y) = (0,0).

Στην άσκηση αυτή μπορείτε να αποδείξετε ότι αν και η g(x,y) είναι συνεχής στο (0,0)
και οι μερικές παράγωγοιgx(0,0) καιgy(0,0) υπάρχουν, η g(x,y) δεν είναι διαφορίσιμη
στο (0,0).
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a) Να αποδείξετε, χρησιμοποιώντας πολικές συντεταγμένες, ότι η f (x,y) είναι συνεχής
στο (0,0).

b) Να χρησιμοποιήσετε τους ορισμούς με βάση το όριο για να δείξετε ότι οι fx(0,0)
και fy(0,0) υπάρχουν και είναι ίσες με το μηδέν.

c) Δείξτε ότι η γραμμικοποίηση της f (x,y) στο (0,0) είναι η L(x,y) = 0.
d) Δείξτε ότι αν η f (x,y) ήταν διαφορίσιμη στο (0,0), τότε θα έπρεπε να ισχύει ότι

lim
h→0

g(h,h)
h

= 0.

Στη συνέχεια, παρατηρήστε ότι κάτι τέτοιο δεν ισχύει καθώς f (h,h) = 2h. Αυτό
μας οδηγεί στο συμπέρασμα ότι η f (x,y) δεν είναι διαφορίσιμη στο (0,0).

10. Χρησιμοποιήστε τον ορισμό της διαφορσιμότητας για να αποδείξετε ότι αν μια συνάρτηση
f (x,y) είναι διαφορίσιμη στο (0,0) και ισχύει

f (0,0) = fx(0,0) = fy(0,0) = 0,

τότε

lim
(x,y)→(0,0)

f (x,y)√
x2 + y2

= 0.

→Μετάβαση στη Λύση της Άσκησης 1.11.9

1. Λύση.

Η f είναι πολυωνυμική ως προς x,y, άρα είναιC∞ στο R2 και ιδίως διαφορίσιμη σε κάθε
(a,b).
Οι μερικές παράγωγοι:

fx(x,y) = 3x2y, fy(x,y) = x3.

Στο (1,2):

f (1,2) = 2, fx(1,2) = 6, fy(1,2) = 1.

Η γραμμική προσέγγιση (εφαπτόμενο επίπεδο) είναι

L(1,2)(x,y) = f (1,2)+ fx(1,2)(x−1)+ fy(1,2)(y−2) = 2+6(x−1)+(y−2) =
6x+ y−6.

Άρα

f (1.01,1.99)≈ L(1,2)(1.01,1.99) = 6(1.01)+1.99−6 = 2.05.

Έλεγχος: Ηακριβής τιμή είναι f (1.01,1.99)= (1.01)3 ·1.99≈ 2.0503, οπότε το σφάλμα
της προσέγγισης είναι περίπου 3×10−4.

2. Λύση.

Η συνάρτηση είναι προφανώς συνεχής παντού, και στο (0,0) συγκεκριμένα,

lim
(x,y)→(0,0)

f (x,y) = 0 = f (0,0).
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Οι μερικές παράγωγοι στο (0,0) είναι:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

|h|
h
.

Το όριο αυτό είναι 1 αν h > 0 και−1 αν h < 0, άρα δεν υπάρχει. Ομοίως, η fy(0,0) δεν
υπάρχει για τον ίδιο λόγο (αν υπολογιστεί με k αντί h).
Άρα η f δεν έχει μερικές παραγώγους στο (0,0) και επομένως δεν μπορεί να είναι διαφορίσιμη
εκεί. Συμπέρασμα: Η συνάρτηση f (x,y) =

√
x2 + y2 είναι συνεχής αλλά όχι διαφορίσιμη

στο σημείο (0,0).

9. (a) Συνέχεια στο (0,0). Για (x,y) 6= (0,0) θέτουμε r2 = x2 + y2. Τότε

| f (x,y)|=
∣∣∣∣2xy(x+ y)

x2 + y2

∣∣∣∣≤ 2|x+ y| |xy|
x2 + y2 ≤ 2|x+ y|.

Επειδή |x+ y| ≤
√

2(x2 + y2) =
√

2r, έχουμε

| f (x,y)| ≤ 2
√

2r −−→
r→0

0.

Άρα lim
(x,y)→(0,0)

f (x,y) = 0 = f (0,0), επομένως η f είναι συνεχής στο (0,0).

(b) Μερικές παράγωγοι στο (0,0). Με τον ορισμό:

fx(0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0.

Ομοίως,

fy(0,0) = lim
k→0

f (0,k)− f (0,0)
k

= lim
k→0

0−0
k

= 0.

Άρα fx(0,0) = fy(0,0) = 0.
(c) Γραμμικοποίηση. Η γραμμικοποίηση της f στο (0,0) είναι

L(x,y) = f (0,0)+ fx(0,0)x+ fy(0,0)y = 0.

(d) Έλεγχος διαφορισιμότητας. Αν η f ήταν διαφορίσιμη στο (0,0), τότε θα ίσχυε

lim
(x,y)→(0,0)

f (x,y)−L(x,y)√
x2 + y2

= 0.

Θεωρούμε την ευθεία y = x. Τότε

f (x,x) =
2x · x(2x)
x2 + x2 =

4x3

2x2 = 2x.

Άρα

f (x,x)√
x2 + x2

=
2x√
2|x|

=
√

2 sgn(x),
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που δεν τείνει στο 0 όταν x→ 0.
Επομένως, η f δεν είναι διαφορίσιμη στο (0,0), παρότι είναι συνεχής και έχει μηδενικές
μερικές παραγώγους στο σημείο αυτό.

Συμπέρασμα: Η f είναι συνεχής στο (0,0), οι μερικές παράγωγοι υπάρχουν και είναι 0,
όμως η συνάρτηση δεν είναι διαφορίσιμη στο (0,0).

10. Έστω ότι η συνάρτηση f (x,y) είναι διαφορίσιμη στο (0,0) και ισχύει

f (0,0) = fx(0,0) = fy(0,0) = 0.

Από τον ορισμό της διαφορισιμότητας έχουμε ότι η συνάρτηση f (x,y) είναι διαφορίσιμη
στο (0,0) αν

lim
(x,y)→(0,0)

f (x,y)−L(0,0)√
(x−0)2 +(y−0)2

= 0.

Επειδή L(0,0) = fx(0,0)x+ fy(0,0)y = 0, θα έχουμε

lim
(x,y)→(0,0)

f (x,y)√
x2 + y2

= 0.

1.12 Βελτιστοποίηση στον Λογισμό πολλών μεταβλητών

Θυμηθείτε, καταρχάς, ότι η βελτιστοποίηση είναι
η διαδικασία της εύρεσης των ακρότατων τιμών
μιας συνάρτησης. Αυτό ισοδυναμεί με την εύρεση
των μεγίστων και ελαχίστων τιμών στο γράφημα
της συνάρτησης και στο δεδομένο κάθε φορά
πεδίο ορισμού. Όπως διαπιστώσαμε από την περί-
πτωση των συναρτήσεων μίας μεταβλητής, είναι
σημαντικό να διαχωρίσουμε μεταξύ τοπικών και
ολικών ακρότατων τιμών.
Μια τοπικά ακρότατη τιμή είναι μια τιμή f (a,b) που
είναι μέγιστη ή ελάχιστη σε κάποιον μικρό ανοικτό
δίσκο γύρω από το (a,b) (βλ. Σχήμα 1.29). Σχήμα 1.29 Η συνάρτηση f (x,y) έχει ένα τοπικό

μέγιστο στο P.

Ορισμός 1.12.1 Τοπικά ακρότατες τιμές Μια συνάρτηση f (x,y) έχει τοπικό ακρότατο στο
P = (a,b) αν υπάρχει ένας ανοικτός δίσκος D(P,r) τέτοιος ώστε

•• Τοπικό μέγιστο: f (x,y)≤ f (a,b) για όλα τα (x,y) ∈ D(P,r).
• Τοπικό ελάχιστο: f (x,y)≥ f (a,b) για όλα τα (x,y) ∈ D(P,r).

Σύμφωνα με το θεώρημα του Fermat για τις συναρτήσεις μίας μεταβλητής, αν η τιμή f (a) είναι
ένα τοπικό ακρότατο, τότε το a είναι ένα κρίσιμο σημείο, γεγονός που σημαίνει ότι η εφαπτόμενη
ευθεία (αν υπάρχει) είναι οριζόντια στο x = a. Ένα παρόμοιο αποτέλεσμα ισχύει για τις συναρτή-
σεις με δύο μεταβλητές, αλλά σε αυτή την περίπτωση είναι το εφαπτόμενο επίπεδο αυτό που πρέπει
να είναι οριζόντιο, όπως φαίνεται στο Σχήμα 1.30.
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Το εφαπτόμενο επίπεδο της επιφάνειας z = f (x,y) στο P = (a,b) έχει εξίσωση

z = f (a,b)+ fx(a,b)(x−a)+ fy(a,b)(y−b).

Συνεπώς, το εφαπτόμενο επίπεδο είναι οριζόντιο αν fx(a,b)= fy(a,b)= 0, δηλαδή αν η εξίσωση
ανάγεται στην z = f (a,b). Η συνθήκη αυτή μας οδηγεί στον ακόλουθο ορισμό για ένα κρίσιμο
σημείο, όπου λάβαμε υπόψη μας την πιθανότητα να μην υπάρχουν είτε η μία είτε και οι δύο
μερικές παράγωγοι.

Σχήμα 1.30 Το γράφημα της συνάρτησης μοιάζει ολοένα και περισσότερο με το εφαπτόμενο επίπεδο στο σημείο P καθώς
προχωράμε στην ολοένα και μεγαλύτερη μεγέθυνσή του.

Ορισμός 1.12.2 Κρίσιμο σημείο Ένα σημείο P = (a,b) στο πεδίο ορισμού της συνάρτησης
f (x,y) ονομάζεται κρίσιμο αν:

fx(a,b) = 0 ή fx(a,b) δεν υπάρχει και

•• fy(a,b) = 0 ή fy(a,b) δεν υπάρχει.

Θεώρημα 1.12.3Θεώρημα Fermat Αν η συνάρτηση f (x,y) έχει τοπικό μέγιστο ή ελάχιστο στο
P = (a,b), τότε το (a,b) είναι κρίσιμο σημείο της συνάρτησης f (x,y).

Γνωρίζουμε ότι μια συνάρτηση f με μία μεταβλητή μπορεί να έχει ένα σημείο καμπής αντί για ένα
τοπικό ακρότατο σε ένα κρίσιμο σημείο. Ένα παρόμοιο φαινόμενο εμφανίζεται και στον Λογισμό
πολλών μεταβλητών. Για καθεμία από τις συναρτήσεις του Σχήματος 1.31, το (0,0) είναι κρίσιμο
σημείο. Όμως, η συνάρτηση του Σχήματος 1.31c έχει ένα σαγματικό σημείο, δηλαδή ένα κρίσιμο
σημείο, το οποίο δεν είναι ούτε τοπικό ελάχιστο ούτε τοπικό μέγιστο. Αν σταθείτε σε ένα τέτοιο
σημείο και ξεκινήσετε να περπατάτε, τότε αν κινηθείτε προς ορισμένες κατευθύνσεις όπως οι+ j
και − j θα «οδηγηθείτε» προς τα επάνω, ενώ αν ακολουθήσετε άλλες, όπως οι κατευθύνσεις +i
και−i, θα «οδηγηθείτε» προς τα κάτω.
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(a) Τοπικό μέγιστο (b) Τοπικό ελάχιστο (c) Σαγματικό σημείο

Σχήμα 1.31

Σημείωση 1.12.4 Τετραγωνικές μορφές
Η μελέτη των τετραγωνικών μορφών, δηλαδή του αν ένας ακέραιος μπορεί να εκφραστεί ως
τιμή μιας τέτοιας μορφής, ξεκινά από πολύ παλιά. Ένα κλασικό παράδειγμα είναι το θεώρημα
του Fermat για το άθροισμα δύο τετραγώνων, που εξετάζει πότε ένας ακέραιος μπορεί να
γραφεί ως x2 + y2, με x,y ακεραίους. Το πρόβλημα αυτό σχετίζεται στενά με την εύρεση
των Πυθαγόρειων τριάδων. Ήδη από το 628, ο Ινδός μαθηματικός Brahmagupta μελέτησε
εξισώσεις της μορφής x2−ny2 = c, γνωστές σήμερα ως εξίσωση του Pell, και έδωσε μεθόδους
επίλυσής τους. Στην Ευρώπη, το πρόβλημα αυτό ασχολήθηκαν να μελετήσουν οι Brouncker,
Euler και Lagrange. Αργότερα, το 1801, ο Gauss δημοσίευσε το έργο Disquisitiones Arithmeti-
cae, όπου ανέπτυξε πλήρη θεωρία για τις δυαδικές τετραγωνικές μορφές πάνω στους ακεραίους.
Η θεωρία των τετραγωνικών μορφών εξαρτάται σε μεγάλο βαθμό από τη φύση των συντε-
λεστών: μπορεί να είναι πραγματικοί, μιγαδικοί, ρητοί ή ακέραιοι αριθμοί. Στη γραμμική
άλγεβρα και τη αναλυτική γεωμετρία, οι συντελεστές θεωρούνται συνήθως πραγματικοί ή μιγα-
δικοί, ενώ στη θεωρία αριθμών είναι στοιχεία ενός δακτυλίου ή ενός πεδίου.

Ας θεωρήσουμε δύο σημεία

A(x1,y1,z1) και B(x2,y2,z2)

του χώρου R3. Η Ευκλείδεια απόστασή τους είναι:

d =
√

(x1− x2)2 +(y1− y2)2 +(z1− z2)2

=
√

x2
1 + x2

2−2x1x2 + y2
1 + y2

2−2y1y2 + z2
1 + z2

2−2z1z2.

Η παράσταση

Q(A,B) = x2
1 + x2

2−2x1x2 + y2
1 + y2

2−2y1y2 + z2
1 + z2

2−2z1z2

είναι ουσιαστικά ένα πολυώνυμο, κάθε όρος του οποίου είναι δευτέρου βαθμού ως προς τις
μεταβλητές x1,y1,z1,x2,y2,z2. Κάθε παράσταση που μπορεί να γραφεί σε αυτή τη μορφή
ονομάζεται τετραγωνική μορφή.

Ορισμός Με τον όρο τετραγωνική μορφή (quadratic form) Q(x) n μεταβλητών x1,x2, . . . ,xn
εννοούμε κάθε έκφραση που μπορεί να γραφεί ως:

Q(x) = a11x2
1 +a22x2

2 + ...+annx2
n +2a12x1x2 +2a13x1x3 + · · ·+2a(n−1)nxn−1xn.

69



Τετραγωνικές μορφές με Μήτρες

Q(x) =
n

∑
i=1

aiix2
i +∑

i< j
∑

j
ai jxix j,

ή

Q(x) =
n

∑
i=1

n

∑
j=1

ai jxix j,

όπου

x =


x1
x2
...

xn

 και ai j = a ji, i, j = 1,2, . . . ,n.

Μια τετραγωνική μορφή μπορεί να γραφεί συνοπτικά με τη βοήθεια μητρών. Για την τετραγωνική
μορφή (16) θεωρούμε τη συμμετρική μήτρα:

A =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann


Για τη μήτρα αυτή ισχύει ai j = a ji για i, j = 1,2, . . . ,n. Με τη βοήθεια της μήτρας A, η
τετραγωνική μορφή μπορεί να γραφεί ως:

Q(x) = ∑n
i=1 ∑n

j=1 ai jxix j = xT Ax.

Επειδή η τετραγωνική μορφή συνδέεται άμεσα με τη μήτρα A, συμβολίζεται συχνά και ως
QA(x).

Παράδειγμα 1 Για n = 2 και A =

(
4 2
2 −3

)
έχουμε την τετραγωνική μορφή

QA(x) = (x1,x2)

(
4 2
2 −3

)(
x1
x2

)
= 4x2

1−3x2
2 +4x1x2.

Παράδειγμα 2 Η τετραγωνική μορφή

QA(x) = x2
1 +5x2

2 +6x1x2

γράφεται ως

QA(x) = (x1,x2)

(
1 3
3 5

)(
x1
x2

)
.
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Θετικότητα και Αρνητικότητα Τετραγωνικής Μορφής

Ορισμός Έστω τετραγωνική μορφή QA(x) με x ∈ S, S⊆ Rn.

Η τετραγωνική αυτή μορφή λέγεται ότι είναι:
• Θετικά ορισμένη (positive definite) αν και μόνο αν QA(x)> 0 για κάθε x 6= 0.

• Θετικά ημιορισμένη (positive semidefinite) αν και μόνο αν QA(x)≥ 0 για κάθε x 6= 0.

• Αρνητικά ορισμένη (negative definite) αν και μόνο αν QA(x)< 0 για κάθε x 6= 0.

• Αρνητικά ημιορισμένη (negative semidefinite) αν και μόνο αν QA(x)≤ 0 για κάθε x 6= 0.

Ορισμός Η k-τάξης κύρια ελάσσων ορίζουσα, είναι η ορίζουσα της υπομήτρας Dk τάξης k, της
οποίας τα διαγώνια στοιχεία βρίσκονται επάνω στη διαγώνιο της A.

Για παράδειγμα, έστω μια τετραγωνική μήτρα τάξης 3×3:

A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)

Οι διαδοχικές κύριες ελάσσονες προκύπτουν καθώς κινούμαστε κατά μήκος της διαγωνίου
a11,a22,a33:

A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
⇒



D1 = a11,

D2 =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ,
D3 =

∣∣∣∣a11 a12 a13a21 a22 a23a31 a32 a33

∣∣∣∣ .
Κριτήριο Θετικότητας και Αρνητικότητας
(α) Η τετραγωνική μορφήQA(x) είναι θετικά ορισμένη αν και μόνο αν οι διαδοχικές κύριες

ελάσσονες ικανοποιούν

D1 > 0, D2 > 0, . . . , Dn > 0.

Δηλαδή, όλες οι διαδοχικές κύριες ελάσσονες είναι θετικές.

(β) Η τετραγωνική μορφή QA(x) είναι αρνητικά ορισμένη αν και μόνο αν οι διαδοχικές
κύριες ελάσσονες εναλλάσσονται στο πρόσημο, αρχίζοντας από αρνητική:

D1 < 0, D2 > 0, . . . , (−1)nDn > 0.

Για μια συμμετρική μήτρα A, αν είναι θετικά ορισμένη, τότε

|A|= Dn > 0.
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(γ) Η τετραγωνική μορφή QA(x) είναι θετικά ημιορισμένη αν και μόνο αν

D̄1 ≥ 0, D̄2 ≥ 0, . . . , D̄k ≥ 0,

δηλαδή αν και μόνο αν όλες οι κύριες ελάσσονες είναι μη αρνητικές.

(δ) Η τετραγωνική μορφή QA(x) είναι αρνητικά ημιορισμένη αν και μόνο αν

D̄1 ≤ 0, D̄2 ≥ 0, . . . , (−1)nD̄n ≥ 0.

Παράδειγμα 3

1. Η τετραγωνική μορφή

QA(x) = (x1,x2)

(
3 1
1 5

)(
x1
x2

)
= 3x2

1 + x2
2 +2x1x2

είναι θετικά ορισμένη γιατί

|A1|= 3 > 0, |A2|=
∣∣∣∣3 1
1 5

∣∣∣∣= 14 > 0.

2. Η τετραγωνική μορφή

QA(x) = (x1,x2)

(
−6 2
2 −3

)(
x1
x2

)
=−6x2

1−3x2
2 +4x1x2

είναι αρνητικά ορισμένη γιατί

|A1|=−6 < 0, |A2|=
∣∣∣∣−6 2

2 −3

∣∣∣∣= 14 > 0.

3. Η τετραγωνική μορφή

QA(x) = (x1,x2)

(
1 3
3 5

)(
x1

x2

)
= x2

1 +5x2
2 +6x1x2

δεν είναι ούτε θετικά ούτε αρνητικά ορισμένη γιατί

|A1|= 1 > 0, |A2|=
∣∣∣∣1 3
3 5

∣∣∣∣=−4 < 0.

Διαφορικό δευτέρας τάξεως και τετραγωνική μορφή.

Υπόθεση: f ∈C2, fxy = fyx - Θεώρημα Clairaut. ’Εχουμε ότι dz = fx dx+ fy dy.

Παίρνουμε δεύτερο διαφορικό (χρησιμοποιούμε ότι d(dx) = d(dy) = 0 και τη γραμμικότητα
του d):

d2z = d(dz) = d( fx)dx+d( fy)dy.
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Υπολογίζουμε τα d( fx) και d( fy):

d( fx) = fxx dx+ fxy dy, d( fy) = fyx dx+ fyy dy.

Άρα

d2z =
(

fxx dx+ fxy dy
)

dx+
(

fyx dx+ fyy dy
)

dy =

= fxx dx2 +( fxy + fyx)dxdy+ fyy dy2.

Επειδή f ∈C2, τότε fxy = fyx και επομένως

d2z = fxx dx2 +2 fxy dxdy+ fyy dy2 = (dx, dy)
(

fxx fxy

fyx fyy

)(
dx
dy

)
.

1.12.1 Από τον Λογισμό της Μίας στη Θεωρία
των Πολλών Μεταβλητών

Ακριβώς όπως στον Λογισμό της μίας μεταβλητής, όπου η μελέτη των κρίσιμων σημείων μιας
συνάρτησης βασίζεται στα λεγόμενα κριτήρια της πρώτης και δεύτερης παραγώγου, έτσι και
στον Λογισμό πολλών μεταβλητών υπάρχουν ανάλογες συνθήκες που μας επιτρέπουν να καθορί-
σουμε τη φύση ενός κρίσιμου σημείου - αν δηλαδή αντιστοιχεί σε τοπικό μέγιστο, τοπικό ελάχιστο
ή σημείο σαγματικού τύπου.

Στην περίπτωση μίας μεταβλητής, γνωρίζουμε ότι η εξίσωση

f ′(x) = 0

χαρακτηρίζει τα κρίσιμα σημεία, ενώ το πρόσημο της δεύτερης παραγώγου f ′′(x) καθορίζει το
είδος του ακροτάτου. Αν f ′′(x)> 0, τότε το σημείο είναι ελάχιστο, αν f ′′(x)< 0, μέγιστο, και
αν f ′′(x) = 0, το κριτήριο είναι αβέβαιο.

Στις συναρτήσεις δύο μεταβλητών f (x,y), η ίδια λογική επεκτείνεται, αλλά οι παράγωγοι δεν
αρκούν μόνες τους για να περιγράψουν τη γεωμετρική συμπεριφορά της επιφάνειας. Εδώ, τα
ολικά διαφορικά αποτελούν το κατάλληλο εργαλείο για να εκφράσουμε και να γενικεύσουμε τις
έννοιες του πρώτου και του δεύτερου κριτηρίου.

Η συνθήκη

dz = fx dx+ fy dy = 0

αντιστοιχεί στο γνωστό κριτήριο f ′(x) = 0 της μίας μεταβλητής: εκφράζει το γεγονός ότι, στο
κρίσιμο σημείο, το ολικό διαφορικό μηδενίζεται, δηλαδή η εφαπτομένη επιφάνεια είναι οριζόντια.
Επομένως για να υπάρξει κρίσιμο σημείο, απαιτείται το ολικό διαφορικό να μηδενίζεται ανεξάρτητα
από τις κατευθύνσεις dx,dy. Αυτό σημαίνει ότι για να είναι ένα σημείο (a,b) κρίσιμο σημείο
πρέπει:

Κριτήριο Πρώτης Τάξεως για συναρτήσεις δύο μεταβλητών
fx(a,b) = fy(a,b) = 0.

Αντίστοιχα, το διαφορικό δευτέρας τάξεως
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d2z = (dx, dy)

 fxx fxy

fyx fyy


x1

x2


γενικεύει τη δεύτερη παράγωγο f ′′(x). Η παραπάνω σχέση δείχνει ότι το δεύτερο διαφορικό είναι
τετραγωνική μορφή, της οποίας το πρόσημο καθορίζει τον τύπο του κρίσιμου σημείου, ακριβώς
όπως το πρόσημο της f ′′(x) στον μονοδιάστατο λογισμό. Έτσι, ενώ στον χώρο μίας μεταβλητής
η κυρτότητα ή κοίλανση της γραφικής παράστασης καθορίζεται από ένα απλό πρόσημο, στον
χώρο δύο μεταβλητών ο ρόλος αυτός αναλαμβάνεται από το σύμβολο του Hessian, δηλαδή τη
μήτρα των δευτέρων παραγώγων. Με αυτόν τον τρόπο, η μετάβαση από τον Λογισμό της μίας
μεταβλητής στον Λογισμό πολλών μεταβλητών δεν αποτελεί απλώς τεχνική γενίκευση, αλλά μια
θεμελιακή ενοποίηση. Οι έννοιες της παραγωγισιμότητας και της διαφορισιμότητας ταυτίζονται,
ενώ τα γνωστά κριτήρια του μονοδιάστατου λογισμού εκφράζονται πλέον μέσα από τα ολικά
διαφορικά. Η θεωρία αποκτά έτσι μια ενιαία γεωμετρική ερμηνεία, που ισχύει σε κάθε διάσταση
και επιτρέπει τον καθορισμό του είδους των κρίσιμων σημείων μέσω της συμπεριφοράς του
διαφορικού δευτέρας τάξεως. Με βάση τα παραπάνω, το κριτήριο δευτέρας τάξεως για συναρτή-
σεις δύο μεταβλητών σε ένα κρίσιμο σημείο (a,b) με την βοήθεια της Εισσιανής

H =

 fxx(a,b) fyx(a,b)

fyx(a,b) fyy(a,b)


διαμορφώνεται ως εξής:

Κριτήριο Δευτέρας Τάξεως για συναρτήσεις δύο μεταβλητών

Aν D(a,b) = detH =

∣∣∣∣∣∣∣
fxx(a,b) fxy(a,b)

fyx(a,b) fyy(a,b)

∣∣∣∣∣∣∣= fxx(a,b) fyy(a,b)− [ fxy(a,b)]2.

Τότε ισχύουν:

1. Αν D(a,b)> 0 και fxx(a,b)> 0⇒ το σημείο (a,b) είναι τοπικό ελάχιστο.

2. Αν D(a,b)> 0 και fxx(a,b)< 0⇒ το σημείο (a,b) είναι τοπικό μέγιστο.

3. Αν D(a,b)< 0⇒ το σημείο (a,b) είναι σαγματικό σημείο.

4. Αν D(a,b) = 0⇒ το κριτήριο είναι απροσδιόριστο.

Σχόλιο 1.12.5 Σύμφωνα με το Θεώρημα Weierstrass, κάθε συνεχής συνάρτηση ορισμένη σε
κλειστό και φραγμένο σύνολο παίρνει τουλάχιστον μία μέγιστη και μία ελάχιστη τιμή. Επομέ-
νως, αν στο εσωτερικό του συνόλου δεν υπάρχουν κρίσιμα σημεία που να ικανοποιούν τις
συνθήκες πρώτης τάξης, τα ολικά ακρότατα της συνάρτησης θα εντοπίζονται αναγκαστικά σε
σημεία του συνόρου του πεδίου ορισμού.
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Περίληψη 1.12.6 • Θα λέμε ότι το P = (a,b) είναι ένα κρίσιμο σημείο της συνάρτησης
f (x,y) αν:

fx(a,b) = 0 ή fx(a,b) δεν υπάρχει, και fy(a,b) = 0 ή fy(a,b) δεν υπάρχει.

• Τα τοπικά μέγιστα και ελάχιστα μιας συνάρτησης f εμφανίζονται στα κρίσιμα σημεία.

• Η διακρίνουσα της f (x,y) στο P = (a,b) είναι η ποσότητα:

D(a,b) = fxx(a,b) fyy(a,b)−
(

fxy(a,b)
)2

• Κριτήριο δεύτερης μερικής παραγώγου: Αν τοP=(a,b) είναι κρίσιμο σημείο της f (x,y):
D(a,b)> 0, fxx(a,b)> 0 ⇒ f (a,b) τοπικό ελάχιστο,

D(a,b)> 0, fxx(a,b)< 0 ⇒ f (a,b) τοπικό μέγιστο,

D(a,b)< 0 ⇒ σαγματικό σημείο,

D(a,b) = 0 ⇒ το κριτήριο δεν αποφασίζει.

• Ένα σημείο P είναι εσωτερικό σημείο του χωρίου D αν το D περιέχει κάποιον ανοικτό
δίσκο D(P,r). Ένα σημείο P είναι συνοριακό αν κάθε D(P,r) περιέχει σημεία εντός
και εκτός του D. Το εσωτερικό του D είναι το σύνολο όλων των εσωτερικών σημείων,
ενώ το σύνορο το σύνολο όλων των συνοριακών σημείων. Ένα χωρίο είναι κλειστό αν
περιέχει και τα συνοριακά του σημεία και ανοικτό αν περιέχει μόνο τα εσωτερικά του.

• Ακρότατα τιμών σε κλειστά και φραγμένα σύνολα: Αν f είναι συνεχής και D κλειστό και
φραγμένο, τότε:

– Η f παίρνει ελάχιστη και μέγιστη τιμή στο D.

– Οι ακραίες τιμές εμφανίζονται είτε στα κρίσιμα σημεία του εσωτερικού του D, είτε
σε σημεία του συνόρου του D.

Για τον προσδιορισμό των ακρότατων τιμών: πρώτα εξετάζουμε τα κρίσιμα σημεία στο εσωτερικό
του D, έπειτα συγκρίνουμε με τις τιμές της f στα συνοριακά σημεία.

Ασκήσεις 1.12.7 1. Έστω το σημείοP=(a,b) ένα κρίσιμο σημείο της συνάρτησης f (x,y)=
x2 + y4− 4xy. (α) Χρησιμοποιήστε τη συνθήκη fx(x,y) = 0 για να αποδείξετε ότι

πρέπει να ισχύει η σχέση a = 2b. Στη συνέχεια, βασιστείτε στη συνθήκη fy(x,y) = 0
για να αποδείξετε ότι μπορεί να ισχύει

P = (0,0), (2
√

2,
√

2) ή (−2
√

2,−
√

2).
(β) Συμβουλευτείτε το Σχήμα 1.32 για να προσδιορίσετε τα τοπικά ελάχιστα καθώς και
τα σαγματικά σημεία για τη συνάρτηση f (x,y) και να προσδιορίσετε το ολικό ελάχιστό
της.
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Σχήμα 1.32

2. Έστω η συνάρτηση

f (x,y) = y2x− yx2 + xy.

(a) Δείξτε ότι τα κρίσιμα σημεία (x,y) της συνάρτησης ικανοποιούν τις εξισώσεις

y
(
y−2x+1

)
= 0, x

(
2y− x+1

)
= 0.

(b) Δείξτε ότι η συνάρτηση f έχει τρία κρίσιμα σημεία στα οποία είτε x = 0 είτε y = 0
(είτε και x = 0 και y = 0) και ένα κρίσιμο σημείο στο οποίο και το x και το y είναι
διαφορετικά του μηδενός.

(c) Χρησιμοποιήστε το κριτήριο της δεύτερης μερικής παραγώγου για να αποφασίσετε
για το είδος του κρίσιμου σημείου (τοπικό μέγιστο, τοπικό ελάχιστο ή σαγματικό
σημείο).

3. Να προσδιορίσετε τα ολικά ακρότατα των παρακάτω συναρτήσεων στο χωρίο που δίνεται
σε κάθε περίπτωση.

(a) f (x,y) = x3−2y, 0≤ x≤ 1, 0≤ y≤ 1.

(b) f (x,y) = 5x−3y, y≥ x−2, y≥−x−2, y≤ 3.

(c) f (x,y) = x2 +2y2, 0≤ x≤ 1, 0≤ y≤ 1.

(d) f (x,y) = x3 + x2y+2y2, x,y≥ 0, x+ y≤ 1.

(e) f (x,y) = x2 + xy2 + y2, x,y≥ 0, x+ y≤ 1.

(f) f (x,y) = x3 + y3−3xy, 0≤ x≤ 1, 0≤ y≤ 1.

(g) f (x,y) = x2 + y2−2x−4y, x≥ 0, 0≤ y≤ 3, y≥ x.

(h) f (x,y) = (4y2− x2)e−x2−y2
, x2 + y2 ≤ 2.

(i) f (x,y) = x2 +2xy2, x2 + y2 ≤ 1.

4. Βρείτε το σημείο του επιπέδου

z = x+ y+1

που βρίσκεται εγγύτερα στο P = (1,0,0).
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5. Προσδιορίστε τα κρίσιμα σημεία των συναρτήσεων

f (x,y) = x2 +2y2−4y+6x, g(x,y) = x2−12xy+ y.

Στη συνέχεια, χρησιμοποιήστε το κριτήριο της δεύτερης μερικής παραγώγου για να απο-
φασίσετε αν έχετε τοπικό ελάχιστο, τοπικό μέγιστο ή σαγματικό σημείο σε καθένα από
τα κρίσιμα σημεία.
Τέλος, αντιστοιχίστε τις συναρτήσεις f (x,y) και g(x,y) με τα γραφήματα (α) και (β) του
Σχήματος 1.33.

Σχήμα 1.33

6. Προσδιορίστε τη μέγιστη τιμή της συνάρτησης

f (x,y) = x+ y− x2− y2− xy

στο τετράγωνο του Σχήματος 1.33 που ορίζεται από τις ανισώσεις 0≤ x≤ 2, 0≤ y≤ 2,
ακολουθώντας τα εξής βήματα:

a) Αρχικά προσδιορίστε το κρίσιμο σημείο της συνάρτησης f (x,y) μέσα στο τετρά-
γωνο και στη συνέχεια εκτιμήστε την τιμή της συνάρτησης f στο σημείο αυτό.

b) Στην κάτω πλευρά του τετραγώνου ισχύει ότι y = 0 και f (x,y) = x− x2. Υπολο-
γίστε τις ακρότατες τιμές της συνάρτησης f σε αυτή την πλευρά.

c) Προσδιορίστε τις ακρότατες τιμές της συνάρτησης f στις υπόλοιπες πλευρές του
τετραγώνου.

d) Βρείτε τώρα τη μέγιστη των τιμών που υπολογίσατε στα ερωτήματα α), β) και γ).
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Σχήμα 1.34 Οι τύποι της συνάρτησης f (x,y) = x+ y− x2− y2− xy στο σύνορο του τετραγώνου 0 ≤ x ≤
2, 0≤ y≤ 2

7. Έστω n σημεία (x1,y1), . . . ,(xn,yn). Η βέλτιστη ευθεία ελαχίστων τετραγώνων είναι
η γραμμική συνάρτηση

f (x) = mx+b

η οποία ελαχιστοποιεί το άθροισμα των τετραγώνων (βλ. Σχήμα 1.35):

E(m,b) = ∑n
j=1 (y j− f (x j))

2

Δείξτε ότι η ελάχιστη τιμή της ποσότητας E επιτυγχάνεται για τις τιμές των m και b που
ικανοποιούν τις εξισώσεις:

m
(

∑n
j=1 x j

)
+bn = ∑n

j=1 y j

m∑n
j=1 x2

j +b∑n
j=1 x j = ∑n

j=1 x jy j

Σχήμα 1.35 Η βέλτιστη ευθεία ελαχίστων τετραγώνων ελαχιστοποιεί το άθροισμα των τετραγώνων των κατακόρυφων
αποστάσεων μεταξύ των δεδομένων σημείων και της ευθείας.

f (x,y) = x3 + x2y+2y2, x,y≥ 0, x+ y≤ 1.
Βήμα 1. Υπολογίζουμε τις μερικές παραγώγους:

fx = 3x2 +2xy, fy = x2 +4y.
Βήμα 2. Εσωτερικά κρίσιμα σημεία:

fx = 0, fy = 0.
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Από το fy = x2 + 4y = 0 προκύπτει y = −x2

4
, που δεν ικανοποιεί y ≥ 0, άρα δεν υπάρχουν

εσωτερικά κρίσιμα σημεία.
Βήμα 3. Εξετάζουμε τα όρια της περιοχής.

(a) Στην πλευρά x = 0: f (0,y) = 2y2, με 0≤ y≤ 1.
f ′(y) = 4y = 0⇒ y = 0.

Άρα, f (0,0) = 0, f (0,1) = 2. Μέγιστο 2 στο (0,1).
(b) Στην πλευρά y = 0: f (x,0) = x3, με 0≤ x≤ 1.

f ′(x) = 3x2⇒ x = 0.
f (0,0) = 0, f (1,0) = 1. Μέγιστο 1 στο (1,0).

(c) Στην πλευρά x+ y = 1: θέτουμε y = 1− x, 0≤ x≤ 1.
f (x,1−x) = x3+x2(1−x)+2(1−x)2 = x2+2(1−2x+x2) = 3x2−4x+2.

f ′(x) = 6x−4 = 0⇒ x =
2
3
, y = 1− 2

3
=

1
3
.

f
(

2
3
,
1
3

)
= 3

(
4
9

)
−4
(

2
3

)
+2 =

4
3
− 8

3
+2 =

2
3
.

f (0,1) = 2, f (1,0) = 1.
Συμπέρασμα:

fmin = 0 στο (0,0), fmax = 2 στο (0,1).
Λύση.
2. Έστω

f (x,y) = y2x− yx2 + xy.

(a) Υπολογίζουμε τις πρώτες μερικές:

fx = y2−2yx+ y = y(y−2x+1), fy = 2xy− x2 + x = x(2y− x+1).

Τα κρίσιμα σημεία ικανοποιούν το σύστημα

y(y−2x+1) = 0, x(2y− x+1) = 0,

όπως ζητήθηκε.

(b) Επίλυση του συστήματος κατά περιπτώσεις.

(i) x = 0. Τότε y(y+1) = 0⇒ y = 0 ή y =−1.

(0,0), (0,−1).

(ii) y = 0. Τότε x(1− x) = 0⇒ x = 0 ή x = 1.

(0,0), (1,0).

(iii) x 6= 0, y 6= 0. Τότε

y−2x+1 = 0, 2y− x+1 = 0 =⇒
{

y = 2x−1,
2(2x−1)− x+1 = 0 =⇒ x =

1
3
, y =−1

3
.
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Άρα συνολικά τέσσερα κρίσιμα σημεία:

(0,0), (0,−1), (1,0),
(1

3
,−1

3

)
.

Τα τρία πρώτα έχουν είτε x = 0 είτε y = 0, ενώ το τέταρτο έχει και x και y διάφορα του
μηδενός.
(γ) Κριτήριο δεύτερης παραγώγου. Οι δεύτερες μερικές είναι

fxx =−2y, fyy = 2x, fxy = 2y−2x+1.

Η Εσσιανή είναι

H =

 fxx fxy

fyx fyy

 , και D = fxx fyy− f 2
xy =−4xy− (2y−2x+1)2.

Έλεγχος στα κρίσιμα σημεία:
1) Στο (0,0):

fxx = 0, fyy = 0, fxy = 1⇒ D =−1 < 0

⇒ σαγματικό.
2) Στο (0,−1):

fxx = 2, fyy = 0, fxy =−1⇒ D =−1 < 0

⇒ σαγματικό.
3) Στο (1,0):

fxx = 0, fyy = 2, fxy =−1⇒ D =−1 < 0

⇒ σαγματικό.

4) Στο
(1

3
,−1

3
)
:

fxx =
2
3
, fyy =

2
3
, fxy =−

1
3
⇒ D =

(2
3

)(2
3

)
−
(
− 1

3

)2
=

1
3
> 0,

και fxx =
2
3
> 0⇒ τοπικό ελάχιστο. Η τιμή του ελαχίστου:

f
(1

3
,−1

3

)
=
(1

9

)(1
3

)
−
(
− 1

3

)(1
9

)
+
(1

3

)(
− 1

3

)
=

2
27
− 3

27
=− 1

27
.

Συμπέρασμα: Τα (0,0), (0,−1), (1,0) είναι σαγματικά σημεία, ενώ στο
(1

3
,−1

3
)
η f

έχει τοπικό ελάχιστο με τιμή− 1
27

.

5. (i) Για f (x,y) = x2 +2y2−4y+6x.

fx = 2x+6, fy = 4y−4.

Κρίσιμα σημεία: fx = fy = 0⇒ x =−3, y = 1.
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Δεύτερες μερικές:

fxx = 2 > 0, fyy = 4 > 0, fxy = 0⇒ D = fxx fyy− f 2
xy = 8 > 0.

Άρα, επειδή fxx > 0, στο (−3,1) έχουμε τοπικό (και καθολικό) ελάχιστο με

f (−3,1) = (−3)2 +2 ·12−4 ·1+6(−3) =−11.

Εναλλακτικά, f = (x+3)2+2(y−1)2−11, σαφώς κυρτή (ελλειπτικό παραβολοειδές).

(ii) Για g(x,y) = x2−12xy+ y.

gx = 2x−12y, gy =−12x+1.

Κρίσιμο σημείο από gx = gy = 0:

−12x+1 = 0⇒ x =
1

12
, 2x−12y = 0⇒ y =

x
6
=

1
72

.

Δεύτερες μερικές:

gxx = 2, gyy = 0, gxy =−12⇒D = gxxgyy−g2
xy = 2 ·0− (−12)2 =−144 < 0.

Άρα στο
( 1

12
,

1
72
)
έχουμε σαγματικό σημείο (υπερβολικό παραβολοειδές).

Αντιστοίχιση με γραφήματα Σχ. 1.33:

• f (x,y): ελλειπτικό παραβολοειδές με ελάχιστο στο (−3,1)⇒ αντιστοιχεί στο (α).

• g(x,y): υπερβολικό παραβολοειδές (σαγματικό)⇒ αντιστοιχεί στο (β).

6. Η συνάρτηση είναι

f (x,y) = x+ y− x2− y2− xy,

και ορίζεται στο τετράγωνο 0≤ x≤ 2, 0≤ y≤ 2.
(a) Κρίσιμα σημεία στο εσωτερικό.
Υπολογίζουμε τις πρώτες μερικές:

fx = 1−2x− y, fy = 1−2y− x.

Θέτουμε fx = fy = 0:{
1−2x− y = 0
1−2y− x = 0 ⇒

{
y = 1−2x
1−2(1−2x)− x = 0 ⇒ −1+3x= 0⇒ x=

1
3
, y=

1
3
.

Το σημείο (
1
3
,
1
3
) ανήκει στο εσωτερικό του τετραγώνου.

Υπολογίζουμε

f
(1

3
,
1
3

)
=

1
3
+

1
3
−
(1

3

)2
−
(1

3

)2
−
(1

3

)2
=

2
3
− 1

3
=

1
3
.

(b) Στην πλευρά y = 0:
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f (x,0) = x− x2.

Η παράγωγος f ′(x) = 1− 2x = 0⇒ x =
1
2
. Άρα f (

1
2
,0) =

1
2
− 1

4
=

1
4
. Στα άκρα

x = 0,2: f (0,0) = 0, f (2,0) =−2.

(c) Πλευρές:

• x = 0: f (0,y) = y− y2,

f ′(y) = 1−2y = 0⇒ y =
1
2
, f (0,

1
2
) =

1
4
.

• x = 2: f (2,y) = 2+ y−4− y2−2y =−2− y2− y,

f ′(y) =−2y−1 = 0⇒ y =−1
2
(εκτός περιοχής).

Άρα στις άκρες y = 0,2:

f (2,0) =−2, f (2,2) =−8.

• y = 2: f (x,2) = x+2− x2−4−2x =−2− x2− x,

f ′(x) =−2x−1 = 0⇒ x =−1
2
(εκτός περιοχής),

οπότε f (0,2) =−2, f (2,2) =−8.

(d) Συνοψίζουμε τις τιμές:

• Εσωτερικό: f (
1
3
,
1
3
) =

1
3

• Πλευρές: μέγιστο=
1
4
στα (0,

1
2
) και (

1
2
,0)

• Άκρα: μικρότερες τιμές (−2,−8).

Συμπέρασμα: Η μέγιστη τιμή της f στο τετράγωνο είναι

fmax =
1
3

και προσεγγιστικά εμφανίζεται στο εσωτερικό σημείο (
1
3
,
1
3
).

7. Έστω n σημεία (x1,y1), . . . ,(xn,yn) και η γραμμική συνάρτηση

f (x) = mx+b.

Θέλουμε να προσδιορίσουμε τις τιμές τωνm,b που ελαχιστοποιούν το άθροισμα τετραγώνων
των σφαλμάτων:
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E(m,b) =
n

∑
j=1

(
y j− f (x j)

)2
=

n

∑
j=1

(
y j− (mx j +b)

)2
.

Για ελάχιστο, απαιτούμε οι μερικές παράγωγοι να μηδενίζονται:

∂E
∂m

= 0,
∂E
∂b

= 0.

Υπολογίζουμε:

∂E
∂m

=−2
n

∑
j=1

x j
(
y j− (mx j +b)

)
= 0,

∂E
∂b

=−2
n

∑
j=1

(
y j− (mx j +b)

)
= 0.

Διαιρούμε και τις δύο εξισώσεις με−2:
n

∑
j=1

x j(y j−mx j−b) = 0,

n

∑
j=1

(y j−mx j−b) = 0.

Αναπτύσσοντας:
n

∑
j=1

x jy j−m
n

∑
j=1

x2
j −b

n

∑
j=1

x j = 0,

n

∑
j=1

y j−m
n

∑
j=1

x j−bn = 0.

Επαναγράφοντας το σύστημα με τα m,b ως αγνώστους:
m

n

∑
j=1

x j +bn =
n

∑
j=1

y j,

m
n

∑
j=1

x2
j +b

n

∑
j=1

x j =
n

∑
j=1

x jy j.

Αυτό είναι το σύστημα ελαχίστων τετραγώνων, το οποίο δίνει τις βέλτιστες τιμές των m και
b.
Λύνοντας για m,b:

m =
n∑x jy j−∑x j ∑y j

n∑x2
j − (∑x j)

2 , b =
∑y j−m∑x j

n
.

Έτσι η ευθεία ελαχίστων τετραγώνων είναι
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f (x) = mx+b,

όπου m,b δίνονται από τους παραπάνω τύπους.

1.13 Πολλαπλασιαστές Lagrange:
Βελτιστοποίηση υπό συνθήκη

Σε ορισμένα από τα προβλήματα βελτιστοποίησης
ζητείται ο προσδιορισμός των ακρότατων τιμών μιας
συνάρτησης f (x,y) η οποία υπόκειται σε κάποια
συνθήκη που μπορεί να εκφραστεί ως g(x,y) = 0.
αποθέστε ότι επιδιώκουμε να προσδιορίσουμε εκείνο
το σημείο της ευθείας 2x+3y= 6 το οποίο βρίσκεται
πλησιέστερα στην αρχή των αξόνων (βλ. Σχήμα 1.36).
Η απόσταση από το σημείο (x,y) μέχρι την αρχή των
αξόνων είναι

f (x,y) =
√

x2 + y2,

επομένως το πρόβλημα που έχουμε να επιλύσουμε
στη συγκεκριμένη περίπτωση μπορεί να διατυπωθεί
ως εξής:
Ελαχιστοποίηση της συνάρτησης

f (x,y) =
√

x2 + y2

Σχήμα 1.36 Εύρεση του ελαχίστου της συνάρτησης
f (x,y) =

√
x2 + y2 πάνω στην ευθεία 2x+3y = 6.

που υπόκειται στη συνθήκη g(x,y) = 2x+3y= 6. Δεν αναζητούμε, λοιπόν, γενικά την ελάχιστη
τιμή της f (x,y) (η οποία πολύ εύκολα άλλωστε προκύπτει ότι είναι η τιμή 0), αλλά την ελάχιστη
τιμή μεταξύ όλων των σημείων (x,y) που βρίσκονται στην ευθεία. Γενικά, στη βελτιστοποίηση
υπό συνθήκη δεν αναζητούμε τα ακρότατα (μέγιστα ή ελάχιστα) μιας συνάρτησης δύο μεταβλητών
f (x,y), σε όλο το επίπεδο, αλλά μόνο σε σημεία που ικανοποιούν μία επιπλέον συνθήκη, η οποία
μπορεί να γραφεί με τη μορφή εξίσωσης

g(x,y) = c.

1.14 Μέθοδος των πολλαπλασιαστών Lagrange
1.14.1 Κριτήριο Πρώτης Τάξεως
Ξεκινάμε με ένα θεώρημα που αποτελεί τη βάση της μεθόδου των πολλαπλασιαστών Lagrange.
Το θεώρημα αυτό μας δίνει τις αναγκαίες συνθήκες ώστε μια συνάρτηση f (x,y) να παρουσιάζει
τοπικό μέγιστο ή τοπικό ελάχιστο υπό έναν περιορισμό της μορφής g(x,y) = c.

Θεώρημα 1.14.1 Πολλαπλασιαστές Lagrange Έστω ότι οι f (x,y) και g(x,y) είναι διαφορίσι-
μες συναρτήσεις. Αν η f (x,y) έχει ένα τοπικό ελάχιστο ή τοπικό μέγιστο υπό τον περιορισμό

g(x,y) = c

στο σημείο P = (a,b) και εφόσον

(gx(a,b),gy(a,b)) 6= (0,0),
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τότε υπάρχει κάποια βαθμωτή ποσότητα λ τέτοια ώστε να ισχύει το σύστημα:
fx(a,b)−λgx(a,b) = 0,
fy(a,b)−λgy(a,b) = 0,
g(a,b) = c.

Με άλλα λόγια, το θεώρημα μάς λέει ότι η διαδικασία αναζήτησης ακροτάτων υπό περιορισμούς
μπορεί να περιγραφεί με τη μέθοδο των πολλαπλασιαστών Lagrange. Πιο αναλυτικά, έστω η
συνάρτηση z = f (x,y) και έστω ότι έχουμε το πρόβλημα

max f (x,y) υπό τον περιορισμό g(x,y) = c,

τότε εισάγουμε τον πολλαπλασιαστή Lagrange λ και ορίζουμε τη συνάρτηση

L(x,y,λ ) = f (x,y)+λ (c−g(x,y)).

Τα πιθανά ακρότατα της συνάρτησης f (x,y), υπό τον περιορισμό g(x,y) = c, προσδιορίζονται
από την επίλυση του συστήματος εξισώσεων που εκφράζει τις συνθήκες πρώτης τάξης βελτιστο-
ποίησης, γνωστές ως συνθήκες των πολλαπλασιαστών του Lagrange, και διατυπώνονται ως εξής:

Κριτήριο Πρώτης Τάξης

∂L
∂x

= 0,
∂L
∂y

= 0, g(x,y) = c..

1.14.2 Κριτήριο Δευτέρας Τάξεως

Για να διαπιστωθεί αν τα σημεία που προκύπτουν από το σύστημα είναι τοπικά μέγιστα, ελάχιστα
ή σαγματικά σημεία, εξετάζουμε την Εσσιανή της L(x,y,λ ) ως προς τις μεταβλητές x,y, δηλαδή
τον πίνακα

Κριτήριο Πρώτης Τάξης

det(H) =

∣∣∣∣∣∣∣
0 gx(x,y) gy(x,y)

gx(x,y) Lxx(x,y) Lxy(x,y)

gy(x,y) Lyx(x,y) Lyy(x,y)

∣∣∣∣∣∣∣
Η φύση του σημείου καθορίζεται από την οριστικότητα του πίνακα H:

• Αν ο πίνακας H είναι θετικά ορισμένος, τότε το σημείο είναι τοπικό ελάχιστο.

• Αν ο πίνακας H είναι αρνητικά ορισμένος, τότε το σημείο είναι τοπικό μέγιστο.

• Αν ο πίνακας H αλλάζει πρόσημο, τότε το σημείο είναι σαγματικό.

• Αν κάποια κύρια ορίζουσα μηδενίζεται, τότε το κριτήριο παραμένει απροσδιόριστο και
απαιτείται περαιτέρω μελέτη της συνάρτησης.
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Με τον τρόπο αυτό, το Κριτήριο Δευτέρας Τάξεως δίνει ένα αποτελεσματικό εργαλείο για την
ταξινόμηση των κρίσιμων σημείων σε τοπικά μέγιστα, τοπικά ελάχιστα ή σαγματικά σημεία,
στηριζόμενο στην ανάλυση του προσήμου των ιδιοτιμών ή ισοδύναμα στις συνθήκες των κυρίων
οριζουσών.

Σημείωση 1.14.2 Συνθήκες αριστοποίησης υπό περιορισμούς Εδώ θα εξετάσουμε πώς προ-
κύπτουν τα κριτήρια πρώτης και δεύτερης τάξεως για την αριστοποίηση συναρτήσεων όταν
υπάρχουν περιορισμοί. Ας ξεκινήσουμε με τα κριτήρια πρώτης τάξης. Έστω η συνάρτηση z =
f (x,y), την οποία επιθυμούμε να αριστοποιήσουμε υπό τον περιορισμό g(x,y) = c. Γνωρίζου-
με ότι, ανεξάρτητα αν οι μεταβλητές x και y είναι εξαρτημένες ή ανεξάρτητες μεταξύ τους,
ισχύει:

dz = fx dx+ fy dy

Ενώ αν πάρουμε το ολικό διαφορικό του περιορισμού έχουμε:

dg = gx dx+gy dy = 0

Λύνοντας το γραμμικό σύστημα πρώτου βαθμού με αγνώστους τα dx και dy έχουμε:

dz = fx dx−gx
fy

gy
dx =

(
fx−gx

fy

gy

)
dx = 0.

Για να είναι dz = 0, επειδή dx 6= 0, συνεπάγεται ότι:

fx−gx
fy

gy
= 0,

ή ισοδύναμα,

fx

gx
=

fy

gy
.

Η εξίσωση αυτή δείχνει ότι οι παραγώγοι της f ως προς κάθε μεταβλητή είναι ανάλογοι με τις
παραγώγους της g. Δηλαδή, υπάρχει κάποιος αριθμός λ ώστε:

fx =−λgx, fy =−λgy

Λύνοντας τις εξισώσεις ως προς x, y και λ , βρίσκουμε τα ακρότατα της συνάρτησης. Το
ερώτημα που τίθεται είναι αν υπάρχει κάποιος τρόπος που να μας οδηγεί στο παραπάνω σύστημα
εξισώσεων. Η απάντηση είναι καταφατική· η εξίσωση που μας δίνει την παραπάνω λύση είναι
η εξίσωση του Lagrange, που γράφεται:

L = f (x,y)+λ (c−g(x,y)).

Τα ακρότατα της f υπό τον περιορισμό g(x,y)= c προκύπτουν από την επίλυση του συστήματος
Κριτήριο Πρώτης Τάξης

∂L
∂x

= 0,
∂L
∂y

= 0, g(x,y) = c.

Όμοια, για να εξετάσουμε το κριτήριο δεύτερης τάξης στα δεσμευμένα ακρότατα, παρατηρούμε
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ότι - όπως ακριβώς συμβαίνει και με τα ελεύθερα ακρότατα - το διαφορικό δεύτερης τάξης
πρέπει να ικανοποιεί τις ίδιες συνθήκες προσήμου: να είναι θετικά ορισμένο, δηλαδή d2z > 0,
στην περίπτωση τοπικού ελαχίστου, και αρνητικά ορισμένο, δηλαδή d2z < 0, στην περίπτωση
τοπικού μεγίστου. Έτσι λοιπόν από

dz = fx dx+ fy dy

έχουμε:

d2z = fx d2x+ fxx dx2 +2 fxy dxdy+ fyy dy2

και

d2g = gx d2x+gxx dx2 +2gxy dxdy+gyy dy2 = 0

Συνεχίζοντας έχουμε

gxd2z− fxd2g =
gx( fxd2x+ fxxdx2 +2 fxydxdy+ fyydy2)− fx(gxd2x+gxxdx2 +2gxydxdy+gyydy2)

= (gx fxx− fxgxx)dx2 +(gx fyy− fxgyy)dy2 +2(gx fxy− fxgxy)dxdy

Διαιρούμε με gx, έχοντας υπόψη ότι d2g = 0, και καταλήγουμε:

d2z =
(

fxx−
fx

gx
gxx

)
dx2 +

(
fyy−

fx

gx
gyy

)
dy2 +2

(
fxy−

fx

gx
gxy

)
dxdy

Το δεξί μέλος της παραπάνω σχέσης αποτελεί μια τετραγωνική μορφή, και ανάλογα με το αν
είναι θετικά ή αρνητικά ορισμένη, έχουμε ελάχιστο ή μέγιστο αντίστοιχα.

d2z =
[
0 gx gy

] 0 gx gy

gx fxx−λgxx fxy−λgxy

gy fxy−λgxy fyy−λgyy

 0
dx
dy


ή

d2z =
[
0 dx dy

] 0 gx gy

gx Lxx Lxy

gy Lxy Lyy

 0
dx
dy


όπου L = f (x,y)+λ (c−g(x,y).

Αποδεικνύεται ότι η ορίζουσα
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Κριτήριο Δεύτερης Τάξης

H =

∣∣∣∣∣∣∣
0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣
είναι θετικά ορισμένη αν η H είναι μεγαλύτερη του μηδενός, και αρνητικά ορισμένη αν
η H είναι μικρότερη του μηδενός.

Ασκήσεις 1.14.3 1. Να εφαρμόσετε τη μέθοδο των πολλαπλασιαστών Lagrange για τη συ-
νάρτηση

f (x,y) = (x2 +1)y

υπό τον περιορισμό

x2 + y2 = 5.

2. Στις επόμενες ασκήσεις να υπολογίσετε τις ελάχιστες και μέγιστες τιμές της συνάρτησης
που δίνεται σε κάθε περίπτωση, υπό τον δεδομένο περιορισμό.
a) f (x,y) = 2x+3y, x2 + y2 = 4

b) f (x,y) = x2 + y2, 2x+3y = 6

c) f (x,y) = 4x2 +9y2, xy = 4

d) f (x,y) = xy, 4x2 +9y2 = 32

e) f (x,y) = x2y+ x+ y, xy = 4

3. Προσδιορίστε το σημείο (a,b) του γραφήματος της συνάρτησης

y = ex

για το οποίο το γινόμενο ab γίνεται ελάχιστο.

4. Βρείτε το ορθογώνιο παραλληλεπίπεδο με τον μέγιστο όγκο αν το άθροισμα των ακμών
του είναι ίσο με 300cm.

5. Να αποδείξετε ότι η μέγιστη τιμή που παίρνει η συνάρτηση

f (x,y) = x2y3

πάνω στον μοναδιαίο κύκλο είναι
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6
25

√
3
5
.

6. Δείξτε ότι οι εξισώσεις Lagrange για τη συνάρτηση

f (x,y) = 2x+ y

που υπόκειται στον περιορισμό

g(x,y) = x2− y2−1 = 0

έχουν λύση, αλλά παρ’ όλα αυτά η συνάρτηση f δεν έχει μέγιστη ή ελάχιστη τιμή πάνω
στην καμπύλη της συνθήκης. Αντιφάσκει το συμπέρασμα αυτό με το Θεώρημα 1;

7. Το εμβαδόν της επιφάνειας ενός ορθού κυκλικού κώνου ακτίνας r και ύψους h δίνεται
από τη σχέση

S = πr
√

r2 +h2,

ενώ ο όγκος του είναι

V = 1
3πr2h.

(a) Προσδιορίστε τον λόγο h/r για εκείνον τον κώνο που έχει δεδομένη επιφάνεια S
και μέγιστο όγκοV .

(b) Ποια είναι η τιμή του λόγου h/r για τον κώνο με δεδομένο όγκο V και ελάχιστη
επιφάνεια S;

(c) Υπάρχει κώνος με δεδομένο όγκοV και μέγιστη επιφάνεια S;

8. Ο Αντώνης έχει $5.00 που μπορεί να διαθέσει για ένα γεύμα αποτελούμενο από χάμπουρ-
γκερ (με κόστος $1.50 το ένα) και τηγανητές πατάτες (με κόστος $1.00 η μερίδα). Η
ικανοποίηση που παίρνει ο Αντώνης από το φαγητό του όταν καταναλώσει x χάμπουρ-
γκερ και y μερίδες πατάτες μετριέται από τη συνάρτηση

U(x,y) =
√

xy.

Ποιες ποσότητες φαγητού από κάθε είδος θα πρέπει να καταναλώσει ώστε να μεγιστοποι-
ηθεί το αίσθημα της απόλαυσης που θα αισθανθεί; (Υποθέστε ότι μπορεί να αγοράσει και
κλασματικές ποσότητες από το κάθε είδος φαγητού.)

Λύση.

1. Έστω

f (x,y) = (x2 +1)y, g(x,y) = x2 + y2−5 = 0.

Εισάγουμε τον πολλαπλασιαστή Lagrange και ορίζουμε τη συνάρτηση

L(x,y,λ ) = f (x,y)+(c−g(x,y)) = (x2 +1)y+λ (5− x2− y2).

Υπολογίζουμε τις μερικές παραγώγους:
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Lx = 2xy−2λx, Ly = x2 +1−2λy, gx = 2x, gy = 2y.

Οι συνθήκες πρώτης τάξης είναι:
Lx(x,y) = 2xy−2λx = 0,

Ly(x,y) = x2 +1−2λy = 0,

x2 + y2 = 5.

Άρα το σύστημα γίνεται 
2xy = 2λx,

x2 +1 = 2λy,

x2 + y2 = 5.

Περίπτωση 1: x 6= 0.
Από την πρώτη εξίσωση έχουμε

2xy = 2xλ ⇒ y = λ .

Αντικαθιστούμε στη δεύτερη:

x2 +1 = 2y2⇒ x2 +1 = 2y2.

Από τον περιορισμό x2 + y2 = 5 προκύπτει

5− y2 +1 = 2y2⇒ 3y2 = 6⇒ y2 = 2⇒ y =±
√

2.

Τότε x2 = 5− y2 = 3⇒ x =±
√

3.
Άρα τα σημεία είναι:

(
√

3,
√

2), (−
√

3,
√

2), (
√

3,−
√

2), (−
√

3,−
√

2).

Δεύτερες συνθήκες (Lagrange).

’Εχουμε

Lxx = 2y−2λ , Lxy = Lyx = 2x, Lyy =−2λ .

Συνεπώς, από y = ;ambda έχουμε

H =

∣∣∣∣∣∣∣∣∣∣∣∣

0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 2x 2y

2x 2y−2λ 2x

2y 2x −2λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 24x2y.,

Εύκολα τώρα βρίσκουμε τα μέγιστα και τα ελάχιστα, για παράδειγμα για το σημείο (
√

3,
√

2)
έχουμε H = 144 > 0, άρα μέγιστο.

2. (α) ’Εχουμε f (x,y)= 2x+3y με περιορισμό x2+y2 = 4. Εισάγουμε τον πολλαπλασιαστή
Lagrange και ορίζουμε τη συνάρτηση
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L(x,y,) = f (x,y)+(c−g(x,y)) = 2x+3y+λ (4− x2− y2).

Συνεπώς,

Lx = 2−2λx, Ly = 3−2λy, Lxx =−2λ , Lxy = Lyx = 0, Lyy =−2λ .

Από τις συνθήκες πρώτης τάξης έχουμε

2−2λx = 0,

3−2λy = 0,

x2 + y2 = 4.

⇒



2 = 2λx ⇒ x =
1
λ
,

3 = 2λy ⇒ y =
3

2λ
,

x2 + y2 = 4.

Επομένως,

1
λ 2 +

9
4λ 2 = 4 ⇒ 13

4λ 2 = 4 ⇒ λ 2 =
13
16

.

Άρα

(x,y) =
(
± 4√

13
, ± 6√

13

)
.

Από τις συνθήκες δευτέρας τάξεως έχουμε

H =

∣∣∣∣∣∣∣∣∣∣∣∣

0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 2x 2y

2x 0 −2λ

2y −2λ 0

∣∣∣∣∣∣∣∣∣∣∣∣
=−16λxy.

Αφου βάλουμε τις αντίστοχες τιμές στην παραπάνω ορίζουσα με απλές πράξεις έχουμε:

fmax στο
( 4√

13
,

6√
13

)
, fmin στο

(
− 4√

13
,− 6√

13

)
.

(β) Έχουμε f (x,y)= x2+y2 με περιορισμό 2x+3y= 6. Εισάγουμε τον πολλαπλασιαστή
Lagrange και ορίζουμε τη συνάρτηση

L(x,y,) = f (x,y)+(c−g(x,y)) = x2 + y2 +λ (6−2x−3y).
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Συνεπώς,

Lx = 2x−2λ , Ly = 2y−3λ , Lxx = 2, Lxy = Lyx = 0, Lyy = 2.

Από τις συνθήκες πρώτης τάξης έχουμε

2x−2λ = 0,

2y−3λ = 0,

2x+3y = 6.

⇒



x = λ ,

y =
3
2

λ ,

x2 + y2 = 4.

Άρα

2λ +3 · 3
2

λ = 6 ⇒ 13
2

λ = 6 ⇒ λ =
12
13

.

Οπότε

(x,y) =
(12

13
,

18
13

)
.

Από τις συνθήκες δευτέρας τάξεως έχουμε

H =

∣∣∣∣∣∣∣∣∣∣∣∣

0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
0 2 3
2 2 0
3 0 2

∣∣∣∣∣∣∣=−26 < 0.

Επομένως η συνάρτηση παρουσιάζει ελάχιστο στο σημείο (x,y) =
(12

13
,

18
13

)
το οποίο

ειναι

fmin =
468√
169

.

5. Έχουμε

f (x,y) = x2y3, g(x,y) = x2 + y2−1 = 0.

Με τη μέθοδο των πολλαπλασιαστών Lagrange έχουμε την συνάρτηση

L(x,y,) = f (x,y)+(c−g(x,y)) = x2y3 +λ (1− x2− y2).
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Συνεπώς,

Lx = 2xy3−2λx, Ly = 3x2y2−2λy, Lxx = 2y3−2λ ,

Lxy = Lyx = 6xy2, Lyy = 6x2y−2λ .

Το σύστημα γίνεται 
2xy3 = 2λx,

3x2y2 = 2λy,

x2 + y2 = 1.

Περίπτωση 1: x 6= 0, y 6= 0.
Από την πρώτη εξίσωση:

2xy3 = 2xλ ⇒ λ = y3.

Από τη δεύτερη:

3x2y2 = 2yλ = 2y4⇒ 3x2y2 = 2y4⇒ 3x2 = 2y2⇒ x2 =
2
3

y2.

Από τον περιορισμό x2 + y2 = 1 έχουμε

2
3

y2 + y2 = 1⇒ 5
3

y2 = 1⇒ y2 =
3
5
.

Άρα

x2 =
2
5
, y =±

√
3
5
, x =±

√
2
5
.

Από τις συνθήκες δευτέρας τάξεως έχουμε

H =

∣∣∣∣∣∣∣∣∣∣∣∣

0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣∣
Οι συνδυασμοί σημείων είναι

(±
√

2
5
, ±
√

3
5
).
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Εύκολα επίσης αποδεικνύεται ότι στο σημείο (

√
2
5
,

√
3
5
) έχουμε H > 0 και άρα μέγιστο.

Συνεπώς

f (x,y) = x2y3 = (
2
5
)

(√
3
5

)3

=
2
5
· 3
√

3
5
√

5
=

6
√

3
25
√

5
=

6
25

√
3
5
.

Άρα η συνάρτηση f (x,y) = x2y3 πάνω στον μοναδιαίο κύκλο x2+y2 = 1 παίρνει μέγιστη
τιμή

fmax =
6

25

√
3
5
.

7. Δίνονται

S = πr
√

r2 +h2, V =
1
3

πr2h.

Θέλουμε τον λόγο
h
r
για εκείνον τον κώνο που έχει δεδομένη επιφάνεια S και μέγιστο

όγκο V . ’Αρα πρέπει πρώτα να λύσουμε το πρόβλημα εύρεσης του μέγιστου όγκου με
περιορισμό την συγκεκριμένη επιφάνεια S. Συνεπώς, εφαρμόζουμε τη μέθοδο των πολλαπλασιαστών
Lagrange για τη μεγιστοποίηση τουV (r,h) με περιορισμό g(r,h) = πr

√
r2 +h2−S = 0.

Άρα

L(r,h,λ ) = f (r,h)+(c−g(r,h)) =
1
3

πr2h+λ (S−πr
√

r2 +h2).

Συνεπώςαπό τις συνθήκες πρώτης τάξεως έχουμε

Lr =
2
3

πrh−λπ
2r2 +h2
√

r2 +h2
= 0, Lh =

1
3

πr2−λπ
rh√

r2 +h2
= 0.

Από τη δεύτερη συνιστώσα:

1
3

πr2 = λ π
rh√

r2 +h2
⇒ λ =

1
3

r
√

r2 +h2

h
.

Αντικαθιστούμε στην πρώτη συνιστώσα:

2
3

πrh = λ π
2r2 +h2
√

r2 +h2
=

1
3

πr
2r2 +h2

h
.

Άρα

2h2 = 2r2 +h2⇒ h2 = 2r2⇒ h
r
=
√

2 .

Οι λεπτομερείς επαληθεύσεις των συνθηκών δεύτερης τάξεως (θετικής/αρνητικής οριστικότητας)
αφήνονται ως άσκηση στον αναγνώστη.
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8. Λύση. Έχουμε τον περιορισμό προϋπολογισμού:

1.5x+1.0y = 5.

Θέτουμε το πρόβλημα Lagrange:

L(x,y,λ ) =√xy+λ (5−1.5x− y).

Παράγωγοι: 

∂L
∂x

=
1
2

y1/2

x1/2 −1.5λ = 0,

∂L
∂y

=
1
2

x1/2

y1/2 −λ = 0,

5−1.5x− y = 0.

Διαιρούμε την πρώτη με τη δεύτερη:

y1/2

x1/2

x1/2

y1/2

= 1.5 ⇒ y
x
= 1.5 ⇒ y = 1.5x.

Αντικαθιστούμε στον περιορισμό:

1.5x+1(1.5x) = 5 ⇒ 3x = 5 ⇒ x =
5
3
.

y = 1.5x = 2.5.

Άρα:

x =
5
3
≈ 1.67, y = 2.5.

Έλεγχος με κριτήριο δευτέρας τάξεωςΘέτουμε g(x,y)= 1.5x+y−5= 0 καιL (x,y,λ )=√
xy+λ (5−1.5x− y). Τα δεύτερα παράγωγα (επειδή g είναι γραμμικό) είναι:

Lxx =
∂ 2L
∂x2 =−1

4

√
y

x3/2 , Lyy =
∂ 2L
∂y2 =−1

4

√
x

y3/2 , Lxy =
1
4

1
√

xy
.

Επίσης gx = 1.5, gy = 1.

Στο σημείο 1ης τάξης x =
5
3
, y = 2.5 ο Hessian είναι
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H =

∣∣∣∣∣∣∣∣∣∣∣
0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
0 1.5 1

1.5 −0.183712 0.122474

1 0.122474 −0.081650

∣∣∣∣∣∣∣∣∣∣∣
,

του οποίου η ορίζουσα υπολογίζεται

H ≈ 0.734847 > 0.

Για ένα πρόβλημα με έναν ισοπεριορισμό, η συνθήκη δευτέρας τάξεως για μέγιστο είναι

H > 0. Επομένως το σημείο x1 =
5
3
, y = 2.5 ικανοποιεί τις συνθήκες δευτέρας τάξεως

και δίνει μέγιστο. Η μέγιστη χρησιμότητα είναι:

U =
√

(1.67)(2.5) =
√

4.175≈ 2.04.

Επομένως, 0 Αντώνης πρέπει να αγοράσει περίπου 1.67 χάμπουργκερ και 2.5 μερίδες
πατάτες για να μεγιστοποιήσει την απόλαυσή του.

Παρατήρηση. ΗU(x,y) =
√

xy είναι κοίλη στοR2
++ και το σύνολο προϋπολογισμού είναι

κυρτό, άρα οι συνθήκες πρώτης τάξης είναι ήδη επαρκείς. Ο έλεγχος με την εισ/νη δευτέρας
τάξεως το επιβεβαιώνει.

Σημείωση 1.14.4 Δομικά σχήματα βελτιστοποίησης χωρίς και με συνθήκες

Παράδειγμα: Προσδιορίστε τα ακρότατα της f (x,y) = 2x+5y πάνω στην έλλειψη(x
4

)2
+
(y

3

)2
= 1.

Λύση.Θέτουμε

g(x,y) =
x2

16
+

y2

9
−1 = 0

και

L(x,y,λ ) = 2x+5y+λ
(

1− x2

16
− y2

9

)
.

Lx = 2−λ
x
8
= 0 ⇒ x =

16
λ
, Ly = 5−λ

2y
9

= 0 ⇒ y =
45
2λ

.

(x
4

)2
+
(y

3

)2
= 1⇒

(
4
λ

)2

+

(
15
2λ

)2

= 1⇒ 289
4λ 2 = 1⇒ λ =±17

2
.

λ =
17
2
⇒ (x,y) =

(
32
17

,
45
17

)
.
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λ =−17
2
⇒ (x,y) =

(
−32

17
,−45

17

)
.

Έλεγχος Συνθηκών Δευτέρας Τάξεως
Έστω ο περιορισμός

g(x,y) =
x2

16
+

y2

9
−1 = 0 ⇒ gx(x,y) =

x
8
, gy(x,y) =

2y
9
.

Η Εισσιανή δευτέρας τάξεως είναι:

H =

∣∣∣∣∣∣
0 gx gy

gx Lxx Lxy

gy Lxy Lyy

∣∣∣∣∣∣ , Lxx =−
λ
8
, Lyy =−

2λ
9
, Lxy = 0.

Για λ =
17
2
:

Lxx =−
17
16

, Lyy =−
17
9
, gx(x,y) =

4
17

, gy(x,y) =
10
17

.

=−g2
xLyy−Lxxg2

y =
17
36

> 0.

Επομένως, σύμφωνα με τις συνθήκες Lagrange ότι το σημείο
(

32
17

,
45
17

)
είναι τοπικό μέγιστο.

Ομοίως για λ =−17
2
:

Lxx =
17
16

, Lyy =
17
9

και H =−17
36

< 0.

Άρα το σημείο είναι ελάχιστο.
Συνοψίζοντας:

fmax = 17 στο
(32

17
,

45
17

)
, fmin =−17 στο

(
− 32

17
,−45

17

)
.

Σε ένα συνηθισμένο πρόβλημα βελτιστοποίησης, χωρίς κάποια συνθήκη, το ολικό μέγιστο είναι
το ύψος του υψηλότερου σημείου της επιφάνειας

z = f (x,y)

(δηλαδή το σημείοQ του Σχήματος 1.37(α)). Όταν όμως δίνεται ένας περιορισμός, τότε εστιάζουμε
την προσοχή μας στην καμπύλη που βρίσκεται πάνω στην υπό μελέτη επιφάνεια και πάνω από
την περιοριστική καμπύλη

g(x,y) = c

. Η ζητούμενη μέγιστη τιμή που υπόκειται στη συνθήκη είναι το ύψος του υψηλότερου σημείου
αυτής της καμπύλης. Το Σχήμα 1.37(β) απεικονίζει το πρόβλημα βελτιστοποίησης που επιλύσαμε
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στο προηγούμενο παράδειγμα.

Σχήμα 1.37 Η γραμμική προσέγγιση του ∆x δίνεται από το διαφορικό dx.

1.15 Πολλαπλή Ολοκλήρωση
Τα ολοκληρώματα των συναρτήσεων με πολλές μεταβλητές είναι γνωστά ως πολλαπλά ολοκληρώ-
ματα και αποτελούν τη φυσική επέκταση των ολοκληρωμάτων των συναρτήσεων μίας μεταβλητής,
τα οποία μελετήσαμε στο πρώτο μέρος του παρόντος βιβλίου. Τα ολοκληρώματα αυτού του τύπου
χρησιμοποιούνται για τον υπολογισμό πολλών διαφορετικών ποσοτήτων που εμφανίζονται σε
διάφορες εφαρμογές, όπως ο όγκος, η μάζα, η ροή θερμότητας, το συνολικό φορτίο αλλά και η
συνισταμένη δύναμη.

Οι στήλες από ηφαιστειογενή βράχο που
σχηματίζουν τον Πύργο του Διαβόλου στην
Πολιτεία του Wyoming μοιάζουν με τις στήλες
όγκου ενός αθροίσματος Riemann μέσω του οποίου
αναπαρίσταται ο όγκος που περιορίζεται κάτω από
το γράφημα μιας συνάρτησης δύο μεταβλητών.
Όπως και στην περίπτωση των συναρτήσεων με μία
μεταβλητή, έτσι και στις περιπτώσεις των δύο και
τριών μεταβλητών τα ολοκληρώματα ορίζονται ως
όρια αθροισμάτων Riemann.

Σχήμα 1.38

1.15.1 Ολοκλήρωση συναρτήσεων με δύο μεταβλητές
Τα ολοκληρώματα των συναρτήσεων με πολλές μεταβλητές είναι γνωστά ως πολλαπλά ολοκληρώ-
ματα και αποτελούν τη φυσική επέκταση των ολοκληρωμάτων των συναρτήσεων μίας μεταβλητής,
τα οποία μελετήσαμε στο πρώτο μέρος του παρόντος βιβλίου. Τα ολοκληρώματα αυτού του τύπου
χρησιμοποιούνται για τον υπολογισμό πολλών διαφορετικών ποσοτήτων που εμφανίζονται σε
διάφορες εφαρμογές, όπως ο όγκος, η μάζα, η ροή θερμότητας, το συνολικό φορτίο αλλά και η
συνισταμένη δύναμη.
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Το ολοκλήρωμα μιας συνάρτησης δύο μεταβλητών
f (x,y), που αποκαλείται διπλό ολοκλήρωμα,
συμβολίζεται ως ∫

D
f (x,y)dA

Όταν για την ολοκληρωτέα συνάρτηση ισχύει
f (x,y) ≥ 0 σε ένα χωρίο D του επιπέδου xy, τότε
το ολοκλήρωμα παριστάνει τον όγκο του στερεού
που βρίσκεται μεταξύ της γραφικής παράστασης
της f (x,y) και του επιπέδου xy, όπως φαίνεται στο
Σχήμα 1.39. Γενικότερα, ένα διπλό ολοκλήρωμα
αναπαριστά έναν προσημασμένο όγκο, όπου οι
θετικές συνεισφορές προέρχονται από τις περιοχές
που βρίσκονται πάνω από το επίπεδο xy, ενώ οι
αρνητικές συνεισφορές οφείλονται στις περιοχές που
βρίσκονται κάτω από αυτό το επίπεδο. Υπάρχουν
αρκετές ομοιότητες μεταξύ των διπλών και των
απλών ολοκληρωμάτων:

Σχήμα 1.39

• Τα διπλά ολοκληρώματα ορίζονται ως όρια αθροισμάτων Riemann.
• Τα διπλά ολοκληρώματα μπορούν να υπολογιστούν με τη βοήθεια του θεμελιώδους θεωρήματος
του Λογισμού

Ωστόσο, μια σημαντική διαφορά που υπάρχει είναι ότι τα χωρία στα οποία λαμβάνει χώρα μια
διπλή ολοκλήρωση μπορεί να είναι αρκετά πολύπλοκα. Στην περίπτωση του Λογισμού μίας
μεταβλητής, η ολοκλήρωση γίνεται σε ένα απλό διάστημα της μορφής [a,b]. Στην ολοκλήρωση
συναρτήσεων με δύο μεταβλητές, το χωρίο D είναι μια επίπεδη περιοχή, τα σύνορα της οποίας
μπορεί να αποτελούνται από ένα πλήθος διαφορετικών καμπυλών αλλά και ευθύγραμμων τμημά-
των (όπως για παράδειγμα το χωρίο D στο Σχήμα 1.39 αλλά και το R του Σχήματος 1.40).

Στην τρέχουσα ενότητα θα εστιάσουμε την προσοχή
μας στην απλούστερη περίπτωση, σε αυτή δηλαδή
όπου το χωρίο στο οποίο γίνεται η ολοκλήρωση είναι
ένα ορθογώνιο.
Ας υποθέσουμε λοιπόν ότι έχουμε το ορθογώνιο
χωρίο του επιπέδου

R = [a,b]× [c,d]

που απεικονίζεται στο Σχήμα 1.40 το οποίο
αποτελείται από το σύνολο των σημείων (x,y)
ώστε:

R : a≤ x≤ b, c≤ y≤ d
Σχήμα 1.40

’Oπως και τα ολοκληρώματα των συναρτήσεων της μίας μεταβλητής, έτσι και τα διπλά ολοκληρώ-
ματα ορίζονται μέσω μιας διαδικασίας τριών βημάτων που συνίσταται σε διαμέριση του χωρίου,
άθροιση, κατάστρωση και υπολογισμό του ορίου. Στο Σχήμα 1.41 απεικονίζεται το πρώτο βήμα,
αυτό της διαμέρισης του χωρίου, το οποίο με τη σειρά του υλοποιείται σε τρία διακριτά στάδια:

1. Διαίρεση των διαστημάτων [a,b] και [c,d] με επιλογή αντίστοιχων διαμερίσεων:

a = x0 < x1 < · · ·< xN = b, c = y0 < y1 < · · ·< yM = d

όπου N και M θετικοί ακέραιοι αριθμοί.
2. Δημιουργία ενός πλέγματος αποτελούμενου από N×M μικρότερα ορθογώνια υποχωρία
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Ri j.
3. Επιλογή ενός τυχαίου σημείου Pi j σε κάθε μικρότερο ορθογώνιο υποχωρίο Ri j.

Σχήμα 1.41

Παρατηρήστε ότι αφού για κάθε ορθογώνιο υποχωρίο ισχύει

Ri j = [xi−1,xi]× [y j−1,y j],

το Ri j έχει εμβαδόν

∆Ai j = ∆xi ∆y j

όπου

∆xi = xi− xi−1 και ∆y j = y j− y j−1.

Το επόμενο βήμα στον ορισμό του διπλού ολοκληρώματος είναι η διαδικασία της άθροισης, κατά
την οποία σχηματίζουμε το άθροισμα Riemann με τη βοήθεια των τιμών της συνάρτησης f (Pi j):

SN,M =
N

∑
i=1

M

∑
j=1

f (Pi j)∆Ai j =
N

∑
i=1

M

∑
j=1

f (Pi j)∆xi ∆y j.

Σημείωση 1.15.1 Θα πρέπει να θυμάστε ότι το άθροισμα Riemann εξαρτάται από την επιλογή
της διαμέρισης και από την επιλογή των σημείων Pi j σε κάθε υποχωρίο. Θα ήταν λοιπόν πιο
σωστό να γράψουμε

SN,M({Pi j},{xi},{y j})

αλλά παρ’ όλα αυτά επιλέγουμε να γράφουμε απλώς SN,M προκειμένου να έχουμε απλούστερο
συμβολισμό.

Το προηγούμενο διπλό άθροισμα διατρέχει όλα τα ζεύγη i και j στις περιοχές τιμών 1 ≤ i ≤ N
και 1≤ j ≤M και αποτελείται συνολικά από NM όρους.
Η γεωμετρική ερμηνεία του αθροίσματος SN,M φαίνεται στο Σχήμα 1.75. Έστω ότι f (x,y)≥ 0
στο χωρίο R. Κάθε επιμέρους όρος του αθροίσματος, f (Pi j)∆Ai j, είναι ίσος με τον όγκο ενός
στενού κουτιού ύψους f (Pi j) που ορθώνεται πάνω από το μικρό υποχωρίο Ri j, δηλαδή:

f (Pi j)∆Ai j = f (Pi j)∆xi∆y j = ύψος× εμβαδόν︸ ︷︷ ︸
όγκος του κουτιού

.
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(a) Στον Λογισμό των συναρτήσεων
μίας μεταβλητής, ένα άθροισμα
Riemann προσεγγίζει το εμβαδόν που
βρίσκεται κάτω από την καμπύλη
μέσω του αθροίσματος των εμβαδών
των ορθογωνίων περιοχών που
σχηματίζονται στη διαμέριση του
διαστήματος.

(b) Ο όγκος του ορθογώνιου
κουτιού είναι f (Pi j)∆Ai j , με
∆Ai j = ∆xi ∆y j.

(c) Το άθροισμα Riemann SN,M είναι
το άθροισμα των όγκων των στενών
ορθογωνίων κουτιών.

Σχήμα 1.42

Το άθροισμα SN,M των επιμέρους όγκων αυτών των στενών ορθογώνιων κουτιών προσεγγίζει
τον όγκο με τον ίδιο τρόπο που τα αθροίσματα Riemann, στην περίπτωση του Λογισμού των
συναρτήσεων μίας μεταβλητής, προσεγγίζουν το εμβαδόν μέσω των ορθογωνίων, όπως φαίνεται
στο Σχήμα 1.75a.
Στην περίπτωση που f (Pi j) < 0, ο όρος f (Pi j)∆Ai j παριστάνει τον προσημασμένο όγκο ενός
στενού κουτιού που εκτείνεται κάτω από το επίπεδο xy. Γενικά, μπορούμε να σκεφτούμε το
άθροισμα Riemann SN,M ως ένα άθροισμα προσημασμένων όγκων στενών ορθογώνιων κουτιών,
κάποια εκ των οποίων υψώνονται πάνω από το επίπεδο xy και κάποια εκτείνονται κάτω από αυτό.
Το τελευταίο βήμα στον ορισμό ενός διπλού ολοκληρώματος είναι η διαδικασία του ορίου. Θα
χρησιμοποιήσουμε τον συμβολισμόP = {{xi},{y j}} για τη διαμέριση που έχουμε επιλέξει ενώ
με ‖P‖ δηλώνονται το μέγιστο από τα πλάτη ∆xi,∆y j. Ο ακόλουθος ορισμός κάνει πιο σαφή
την έννοια των αθροισμάτων Riemann τα οποία συγκλίνουν σε ένα όριο, καθώς τα ορθογώνια
υποχωρία της διαμέρισης γίνονται ολοένα και μικρότερα:

Ορισμός 1.15.2 Όριο των αθροισμάτων Riemann Το άθροισμα Riemann SN,M προσεγγίζει ένα
όριο L καθώς ‖P‖→ 0, αν για κάθε ε > 0 υπάρχει κάποιο δ > 0 τέτοιο ώστε∣∣L−SN,M

∣∣< ε

για όλες τις διαμερίσεις που ικανοποιούν τη συνθήκη ‖P‖ < δ και για όλες τις επιλογές
σημείων. Πιο συγκεκριμένα, γράφουμε

lim
‖P‖→0

SN,M = lim
‖P‖→0

N

∑
i=1

M

∑
j=1

f (Pi j)∆Ai j = L.

Για παράδειγμα, το Σχήμα 1.43 απεικονίζει πώς τα διαδοχικά αθροίσματα Riemann συγκλίνουν
σταδιακά στον όγκο που περικλείεται κάτω από το γράφημα της συνάρτησης

z = 24−3x2− y2

και πάνω από το χωρίο

R = [0,2]× [0,3],
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επειδή όσο πιο στενά γίνονται τα ορθογώνια κουτιά τόσο καλύτερα καλύπτει το στερεό η διαμέρισή
τους.

Σχήμα 1.43

Ορισμός 1.15.3 Διπλό ολοκλήρωμα σε ορθογώνιο χωρίο Το διπλό ολοκλήρωμα μιας συνάρτη-
σης f (x,y) σε ένα ορθογώνιο χωρίο ορίζεται από το όριο∫∫

R
f (x,y)dA = lim

‖P‖→0

N

∑
i=1

M

∑
j=1

f (Pi j)∆Ai j.

Στην περίπτωση που το όριο αυτό υπάρχει, θα λέμε ότι η συνάρτηση f (x,y) είναι ολοκληρώ-
σιμη στο χωρίο R.

Θεώρημα 1.15.4Οι συνεχείς συναρτήσεις είναι ολοκληρώσιμες Αν μια συνάρτηση f δύο μετα-
βλητών είναι συνεχής σε ένα ορθογώνιο χωρίο R, τότε η f (x,y) είναι ολοκληρώσιμη στο R.

Σημείωση 1.15.5Το αντίστροφο τουΘεωρήματος 1.15.4 δεν ισχύει απαραίτητα. Έτσι, υπάρχουν
ολοκληρώσιμες συναρτήσεις που δεν είναι συνεχείς.

Θεώρημα 1.15.6 Γραμμικές ιδιότητες του διπλού ολοκληρώματος Έστω ότι οι συναρτήσεις
f (x,y) και g(x,y) είναι ολοκληρώσιμες σε ένα ορθογώνιο χωρίο R. Τότε:

1. ∫
R

(
f (x,y)+g(x,y)

)
dA =

∫
R

f (x,y)dA+
∫

R
g(x,y)dA

2. ∫
R

C f (x,y)dA =C
∫

R
f (x,y)dA, για οποιαδήποτε σταθεράC.

1.15.2 Διαδοχικά ολοκληρώματα
Το βασικό εργαλείο για τον υπολογισμό των διπλών ολοκληρωμάτων είναι η πρώτη πρόταση
από το θεμελιώδες θεώρημα του Λογισμού, όπως και στην περίπτωση των συναρτήσεων μίας
μεταβλητής. Για να χρησιμοποιήσουμε την πρόταση αυτή θα εκφράσουμε το διπλό ολοκλήρωμα
ως ένα διαδοχικό (επαναληπτικό) ολοκλήρωμα στη μορφή:
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∫ b

a

(∫ d

c
f (x,y)dy

)
dx

Τέτοια διαδοχικά ολοκληρώματα υπολογίζονται με μια διαδικασία δύο βημάτων.
Βήμα 1 Κρατάμε σταθερή τη μεταβλητή x και υπολογίζουμε το εσωτερικό ολοκλήρωμα ως

προς τη μεταβλητή y. Με τον τρόπο αυτόν προκύπτει μια συνάρτηση που εξαρτάται μόνο από τη
μεταβλητή x, δηλαδή:

S(x) =
∫ d

c
f (x,y)dy

Βήμα 2 Ολοκληρώνουμε την προκύπτουσα συνάρτηση S(x) ως προς τη μεταβλητή x.

Θεώρημα 1.15.7 Θεώρημα Fubini Έστω ότι η συνάρτηση f (x,y) είναι ολοκληρώσιμη (π.χ.
συνεχής) πάνω σε ένα ορθογώνιο χωρίο

R = [a,b]× [c,d]⊂ R2.

Τότε το διπλό ολοκλήρωμα της f πάνω στοR μπορεί να υπολογιστεί ως διαδοχικό ολοκλήρωμα
με οποιαδήποτε σειρά ολοκλήρωσης:

∫∫
R

f (x,y)dA =
∫ b

x=a

(∫ d

y=c
f (x,y)dy

)
dx =

∫ d

y=c

(∫ b

x=a
f (x,y)dx

)
dy.

Σχήμα 1.44

Σημείωση 1.15.8 Εμβάθυνση στα σχήματα Έστω ότι f (x,y) ≥ 0 σε ένα ορθογώνιο χωρίο R,
επομένως το διπλό ολοκλήρωμα της συνάρτησης f πάνω στο R είναι ο όγκος του στερεού S
που περιορίζεται μεταξύ του χωρίου R και του γραφήματος της συνάρτησης f (Σχήμα 1.44).
Όταν γράφουμε το διπλό ολοκλήρωμαως ένα διαδοχικό ολοκλήρωμα με τη σειρά ολοκλήρωσης
να είναι αυτή που ορίζεται από το dydx, τότε για κάθε σταθερή τιμή x = x0 το εσωτερικό
ολοκλήρωμα είναι το εμβαδόν της εγκάρσιας τομής του στερεού S στο κατακόρυφο επίπεδο
x = x0 κάθετα στον άξονα x, όπως φαίνεται στο Σχήμα 1.44(α). Επομένως,

S(x0) =
∫ d

c
f (x0,y)dy = εμβαδόν της εγκάρσιας τομής στο κατακόρυφο επίπεδο x =

x0 κάθετα στον άξονα x

Το θεώρημα Fubini λέει ότι ο όγκοςV του στερεού S μπορεί να υπολογιστεί ως το ολοκλήρωμα
της συνάρτησης των εμβαδών των εγκάρσιων τομών S(x), δηλαδή:
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V =
∫ b

a

∫ d

c
f (x,y)dydx =

∫ b

a
S(x)dx = ολοκλήρωμα του εμβαδού των εγκάρσιων τομών.

Παρομοίως, το διαδοχικό ολοκλήρωμα που υπολογίζεται με τη σειρά που ορίζεται από το dxdy
υπολογίζει τον όγκο V ως το ολοκλήρωμα της συνάρτησης των εγκάρσιων τομών που είναι
κάθετες στον άξονα y, όπως φαίνεται στο Σχήμα 1.44(β).

Παράδειγμα 1.15.9 Υπολογίστε το διπλό ολοκλήρωμα∫ 4

y=0

∫ 3

x=0

dxdy√
3x+4y

.

Παράδειγμα 1.15.10 Αλλαγή της σειράς ολοκλήρωσης Επιβεβαιώστε ότι∫ 4

y=0

∫ 3

x=0

dxdy√
3x+4y

=
∫ 3

x=0

∫ 4

y=0

dydx√
3x+4y

.

Λύση.Θα υπολογίσουμε αρχικά το εσωτερικό ολοκλήρωμα αντιμετωπίζοντας το y ως μια
σταθερά. Αφού ολοκληρώσουμε ως προς τη μεταβλητή x, θα πρέπει να προσδιορίσουμε την

αντιπαράγωγο της
1√

3x+4y
ως συνάρτηση του x. Χρησιμοποιώντας την αντικατάσταση u =

3x+4y, από την οποία προκύπτει ότι du = 3dx, βρίσκουμε:∫ dx√
3x+4y

=
2
3

√
3x+4y+C

Επομένως, θα ισχύει∫ 3

x=0

dx√
3x+4y

=
2
3

√
3x+4y

∣∣∣3
x=0

=
2
3
(√

4y+9−
√

4y
)

Τελικά∫ 4

y=0

∫ 3

x=0

dxdy√
3x+4y

=
2
3

∫ 4

y=0

(√
4y+9−2

√
y
)

dy =
2
3

(
1
6
(4y+9)3/2− 4

3
y3/2

)∣∣∣4
y=0

=
1
9
(
253/2)− 8

9
(
43/2)− 1

9
(
93/2)= 34

9

Αλλαγή της σειράς ολοκλήρωσης

Έχοντας ήδη υπολογίσει το αριστερό διαδοχικό ολοκλήρωμα στο προηγούμενο παράδειγμα, όπου

καταλήξαμε στην τιμή
34
9
, αρκεί να υπολογίσουμε το δεξιό ολοκλήρωμα και να επιβεβαιώσουμε

ότι και αυτό δίνει την ίδια τιμή.∫ 4

y=0

dy√
3x+4y

=
1
2

√
3x+4y

∣∣∣4
y=0

=
1
2
(√

3x+16−
√

3x
)
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∫ 3

x=0

∫ 4

y=0

dydx√
3x+4y

=
1
2

∫ 3

0

(√
3x+16−

√
3x
)

dx

=
1
2

(
2
9
(3x+16)3/2− 2

9
(3x)3/2

)∣∣∣3
x=0

=
1
9
(
253/2−93/2−163/2)= 34

9

Ασκήσεις 1.15.11 1. Με ποια από τις απαντήσεις α) ή β) είναι ίση το διπλό ολοκλήρωμα∫ 2

1

∫ 5

4
f (x,y)dydx ;

a)
∫ 2

1

∫ 5

4
f (x,y)dxdy

b)
∫ 5

4

∫ 2

1
f (x,y)dxdy

2. Υπολογίστε το άθροισμα Riemann γιαN = M = 2 ώστε να εκτιμήσετε το διπλό ολοκλή-
ρωμα της συνάρτησης

√
x+ y πάνωστο ορθογώνιοR = [0,1]× [0,1]. Χρησιμοποιήστε

μια κανονική διαμέριση και επιλέξτε τα μέσα των ορθογώνιων υποχωρίων για το άθροισμα
Riemann.

3. Στις συναρτήσεις (a) - (d) να υπολογίσετε τα αθροίσματα Riemann για το διπλό ολοκλή-

ρωμα
∫∫

R
f (x,y)dA, όπου R = [1,4]× [1,3], για το πλέγμα και τις δύο επιλογές

σημείων που φαίνονται στο Σχήμα 1.45.
(a) f (x,y) = 2x+ y
(b) f (x,y) = 7
(c) f (x,y) = 4x
(d) f (x,y) = x−2y

Σχήμα 1.45

Λύση.
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Δίνεται: f (x,y) =
√

x+ y, R = [0,1]× [0,1], N = M = 2.

Κανονική διαμέριση: ∆x = ∆y =
1
2
, ∆A = ∆x∆y =

1
4
.

Σημεία μέσων: (0.25,0.25), (0.75,0.25), (0.25,0.75), (0.75,0.75).
Υπολογισμοί:

f (0.25,0.25) =
√

0.5 =
1√
2
,

f (0.75,0.25) =
√

1 = 1,

f (0.25,0.75) =
√

1 = 1,

f (0.75,0.75) =
√

1.5 =

√
3√
2
.

Άρα, το άθροισμα Riemann (με σημεία μέσων) είναι:

S = ∆A∑ f (x∗i ,y
∗
j) =

1
4

(
1√
2
+1+1+

√
3√
2

)
=

1
2
+

1+
√

3
4
√

2
≈ 0.983.

1.16 Διπλά ολοκληρώματα σε γενικότερα χωρία
Στην προηγούμενη ενότητα περιορίσαμε την προσοχή μας σε ολοκληρώματα πάνω σε ορθογώνια
χωρία. Στη γενικότερη περίπτωση τα χωρία ολοκλήρωσης D έχουν ως σύνορα απλές, κλειστές
καμπύλες (μια καμπύλη είναι απλή εφόσον δεν τέμνει τον εαυτό της και ορίζεται ως κλειστή
αν η αρχή και το πέρας της συμπίπτουν). Υποθέτουμε, επιπλέον, ότι το σύνορο του χωρίου D
είναι λείο, όπως φαίνεται στο Σχήμα 1.46(α), ή αποτελείται από ένα πεπερασμένο πλήθος λείων
καμπυλών οι οποίες ενώνονται με γωνίες, όπως φαίνεται στο Σχήμα 1.46(β). Μια συνοριακή
καμπύλη αυτού του τύπου είναι γνωστή ως κατά τμήματα λεία καμπύλη. Θα υποθέσουμε, τέλος,
ότι το χωρίο D είναι κλειστό, γεγονός που σημαίνει ότι περιλαμβάνει και το σύνορό του.

Σχήμα 1.46

Με βάση το θεμελιώδες θεώρημα του Λογισμού σε συναρτήσεις με μία μεταβλητή, έχουμε ότι αν

dF
dx

= f (x)

τότε
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∫ b

a
f (x)dx = F(b)−F(a),

όπου a,b ∈ R, a ≤ x ≤ b. Ομοίως, με βάση την επέκταση του θεμελιώδους θεωρήματος του
Λογισμού στην περίπτωση των συναρτήσεων με δύο μεταβλητές, έχουμε το παρακάτω θεώτημα:

Θεώρημα 1.16.2 Έστω R = [a,b]× [c,d] και F ∈C2(R) με

∂ 2F
∂x∂y

(x,y) = f (x,y).

Τότε∫
R

f (x,y)dA =
∫ b

a

∫ d

c
f (x,y)dydx = F(b,d)−F(a,d)−F(b,c)+F(a,c).

Λύση.Έχουμε∫ b

b

∫ d

c
f (x,y)dydx =

∫ b

a

(∫ d

c
f (x,y)dy

)
dx =

∫ b

a

∂
∂y

(∂F
∂x

(x,y)
)

dx.

Αφού F ∈C2(R), επιτρέπεται η αντιμετάθεση παραγώγισης και ολοκλήρωσης (Leibniz):∫ b

a

∂
∂y

(∂F
∂x

(x,y)
)

dx =
d
dy

∫ b

a

∂F
∂x

(x,y)dx.

Με το Θ. Θεμελιώδες του Λογισμού (ως προς x):∫ b

a

∂F
∂x

(x,y)dx = F(b,y)−F(a,y).

Τώρα ολοκληρώνουμε ως προς y στο [c,d] και εφαρμόζουμε ξανά το Θ. Θεμελιώδες:∫ b

a

∫ d

c
f (x,y)dydx =

∫ d

c

d
dy

(
F(b,y)−F(a,y)

)
dy =

[
F(b,y)−F(a,y)

]y=d
y=c .

Δηλαδή ∫ a

b

∫ c

d
f (x,y)dydx = F(b,d)−F(a,d)−F(b,c)+F(a,c),

όπως θέλαμε.

Παράδειγμα 1.16.3 Προσδιορίστε μία συνάρτηση F(x,y) που να ικανοποιεί

∂ 2F
∂x∂y

= 6x2y,

και στη συνέχεια χρησιμοποιήστε το αποτέλεσμα της επέκτασης του θεμελιώδους θεωρήματος
του Λογισμού, στην περίπτωση των συναρτήσεων με δύο μεταβλητές, για να υπολογίσετε το
διπλό ολοκλήρωμα
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∫∫
R

6x2ydA, R = [0,1]× [0,4].

(i) Εξηγήστε ποια αντιπαραγώγιση της συνάρτησης y
√

1+ xy είναι ευκολότερη: ως προς
x ή ως προς y;

(ii) Υπολογίστε το διπλό ολοκλήρωμα∫∫
R

y
√

1+ xy dA, με R = [0,1]× [0,1].

Λύση.
Μέρος Α. Ζητείται F(x,y) με

∂ 2F
∂x∂y

= 6x2y.

Ολοκληρώνουμε ως προς x:

Fy =
∫

6x2ydx = 2x3y+g(y).

Ολοκληρώνουμε ως προς y:

F(x,y) = x3y2 +G(y)+h(x).

Μία απλή επιλογή είναι

F(x,y) = x3y2,

η οποία δίνει Fxy = 6x2y.
Για R = [0,1]× [0,4] ισχύει το θεώρημα:∫∫

R
6x2ydA = F(1,4)−F(0,4)−F(1,0)+F(0,0) = 16.

Μέρος Β. Συνάρτηση y
√

1+ xy.
(i) Ποια αντιπαραγώγιση είναι ευκολότερη; Ως προς x: με u = 1+ xy, du = ydx,∫

y
√

1+ xydx =
∫ √

udu =
2
3
(1+ xy)3/2 +C.

Ως προς y προκύπτει αλλαγή μεταβλητής u = 1+xy με παράγοντα
1
x2 και αλγεβρικά πιο βαριές

δυνάμεις. Άρα ευκολότερη είναι η αντιπαραγώγιση ως προς x.

(ii) Υπολογισμός
∫∫

[0,1]×[0,1]
y
√

1+ xydA.

Πρώτα ως προς x:∫ 1

0
y
√

1+ xydx =
[2

3
(1+ xy)3/2

]1

x=0
=

2
3
(
(1+ y)3/2−1

)
.

Έπειτα ως προς y:∫ 1

0

2
3
(
(1+ y)3/2−1

)
dy =

2
3

[2
5
(1+ y)5/2

]1

0
−
[
y
]1

0
=

4
15
(
25/2−1

)
−1 =

16
15

√
2− 19

15
.
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Άρα ∫∫
[0,1]×[0,1]

y
√

1+ xydA =
16
15

√
2− 19

15
.

1.16.1 Ολοκλήρωση σε χωρία που περιορίζονται μεταξύ δύο γραφημάτων
Όταν το χωρίοD είναι η περιοχή που βρίσκεται μεταξύ δύο γραφημάτων στο επίπεδο xy, μπορούμε
να υπολογίσουμε ένα διπλό ολοκλήρωμα πάνω στοD με την τεχνική της διαδοχικής ολοκλήρωσης.
Θυμηθείτε, από την προηγούμενυ ενότητα, ότι το χωρίο D είναι κατακόρυφα απλό αν καλύπτει
την περιοχή που βρίσκεται μεταξύ των γραφημάτων δύο συνεχών συναρτήσεων y = g1(x) και
y = g2(x) για ένα δεδομένο διάστημα τιμών της μεταβλητής x, όπως φαίνεται στο Σχήμα 1.47a,
δηλαδή:

D = {(x,y) : a≤ x≤ b, g1(x)≤ y≤ g2(x)}.

Παρομοίως, θα λέμε ότι το χωρίο είναι οριζόντια απλό (βλ. Σχήμα 1.47b) αν

D = {(x,y) : c≤ y≤ d, h1(y)≤ x≤ h2(y)}.

Σχήμα 1.47

Θεώρημα 1.16.4 Αν το χωρίο D είναι κατακόρυφα απλό και περιγράφεται ως

a≤ x≤ b, g1(x)≤ y≤ g2(x),

τότε ∫∫
D

f (x,y)dA =
∫ b

a

(∫ g2(x)

g1(x)
f (x,y)dy

)
dx.

Αν το D είναι οριζόντια απλό χωρίο και περιγράφεται ως

c≤ y≤ d, h1(y)≤ x≤ h2(y),

τότε ∫∫
D

f (x,y)dA =
∫ d

c

(∫ h2(y)

h1(y)
f (x,y)dx

)
dy.
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Παράδειγμα 1.16.5 Υπολογισμός όγκου με ολοκλήρωμα Υπολογίστε τον όγκοV του στερεού
που βρίσκεται κάτω από το επίπεδο z = 2x+3y και πάνω από το τρίγωνο D του επιπέδου xy
που φαίνεται στο Σχήμα 1.48a.

(a) (b)

Σχήμα 1.48

Από το Σχήμα 1.48b διαπιστώνουμε ότι το χωρίο D είναι μία οριζόντια απλή περιοχή που
περιγράφεται ως

D : 0≤ y≤ 2, y≤ x≤ 2y.

Ο ζητούμενος όγκος είναι ίσος με το διπλό ολοκλήρωμα της συνάρτησης f (x,y) = 2x+3y
πάνω στο χωρίο D, δηλαδή:

V =
∫∫

D f (x,y)dA =
∫ 2

0

∫ 2y

x=y
(2x+3y)dxdy.

Υπολογίζουμε:

V =
∫ 2

0

[
x2 +3yx

]2y

x=y
dy =

∫ 2

0

(
(4y2 +6y2)− (y2 +3y2)

)
dy.

V =
∫ 2

0
(6y2)dy = 6 · y

3

3

∣∣∣2
0
= 2 ·8 = 16.

Παράδειγμα 1.16.6Αλλαγή της σειράς ολοκλήρωσης Σχεδιάστε το χωρίοD στο οποίο γίνεται
η ολοκλήρωση∫ 9

1

∫ 3

√
y
xey dxdy

και στη συνέχεια αλλάξτε τη σειρά της ολοκλήρωσηςώστε να υπολογίσετε το ζητούμενο ολοκλή-
ρωμα.

Η περιοχή αυτή φαίνεται στο Σχήμα 1.49, από το οποίο διαπιστώνουμε ότι τοD μπορεί επίσης
να περιγραφεί και ως ένα κατακόρυφα απλό χωρίο, δηλαδή:

1≤ x≤ 3, 1≤ y≤ x2.

Επομένως, μπορούμε να εκφράσουμε το ολοκλήρωμα που θέλουμε να υπολογίσουμε ως εξής:
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Σχήμα 1.49

∫ 9

1

∫ 3

√
y
xey dxdy =

∫ 3

1

∫ x2

1
xey dydx =

∫ 3

1

(∫ x2

y=1
xey dy

)
dx.

Υπολογίζουμε το εσωτερικό ολοκλήρωμα:

∫ x2

1
xey dy = x [ey]y=x2

y=1 = x
(
ex2− e

)
.

Άρα

∫ 3

1

(
xex2− ex

)
dx =

[
1
2ex2− 1

2ex2
]3

1
.

Τελικό αποτέλεσμα:

1
2
(
e9−9e− (e− e)

)
=

1
2
(e9−9e).

Παράδειγμα 1.16.7 Όγκος που περικλείεται μεταξύ δύο επιφανειών Υπολογίστε τον όγκο
V του στερεού που βρίσκεται πάνω από το παραβολοειδές που περιγράφεται από την εξίσωση
z = 8− x2− y2 και κάτω από το παραβολοειδές με εξίσωση z = x2 + y2 στο χωρίο D =
{(x,y) :−1≤ x≤ 1, −1≤ y≤ 1}.
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Το στερεό του οποίου ζητείται ο όγκος φαίνεται στο
Σχήμα 1.50 και προκύπτει από την περιοχή που
βρίσκεται μεταξύ του παραβολοειδούς z = 8− x2−
y2 και του χωρίου D αν αφαιρέσουμε τον όγκο που
βρίσκεται μεταξύ του παραβολοειδούς z = x2 + y2

και του χωρίου D. Επομένως, ο ζητούμενος όγκος
υπολογίζεται από τη διαφορά των αντίστοιχων όγκων
ως εξής:

Σχήμα 1.50 Προσδιορισμός του όγκου ενός στε-
ρεού που βρίσκεται μεταξύ δύο παραβολοειδών πά-
νω από ένα τετράγωνο χωρίο

Γενικεύοντας την ιδέα του προηγούμενου
παραδείγματος, μπορούμε να υπολογίσουμε τον
όγκο ενός στερεού Q που περικλείεται μεταξύ
δύο επιφανειών και ορίζεται πάνω σε ένα χωρίο
D του επιπέδου xy, όπως φαίνεται στο Σχήμα 14.
Οι επιφάνειες είναι ουσιαστικά τα γραφήματα
των συναρτήσεων z1(x,y) και z2(x,y), με
z1(x,y) ≤ z2(x,y) στο D και ο όγκος υπολογίζεται
ως

V =
∫∫
D

z2(x,y)dA−
∫∫
D

z1(x,y)dA =∫∫
D

(z2(x,y)− z1(x,y))dA

Η δεύτερη ισότητα δικαιολογείται από την ιδιότητα
της γραμμικότητας του ολοκληρώματος.

Σχήμα 1.51 Προσδιορισμός του όγκου ενός στερεού
Q το οποίο περικλείεται μεταξύ δύο επιφανειών πάνω
από ένα χωρίο D

Ασκήσεις 1.16.8 1. Ποιες από τις ακόλουθες εκφράσεις δεν έχουν νόημα;

a)
∫ 1

0

∫ x

1
f (x,y)dydx

b)
∫ 1

0

∫ y

1
f (x,y)dydx

c)
∫ 1

0

∫ y

x
f (x,y)dydx

d)
∫ 1

0

∫ 1

x
f (x,y)dydx
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2.

Βρείτε ποια από τις τέσσερις περιοχές του
Σχήματος 1.52 είναι το χωρίο στο οποίο λαμβάνει
χώρα η διπλή ολοκλήρωση∫ 0

−
√

2/2

∫ √1−x2

−x
f (x,y)dydx.

Σχήμα 1.52

3.

Εκφράστε το χωρίο D του Σχήματος 1.53 ως
μια κατακόρυφα και οριζόντια απλή περιοχή
και εκτιμήστε το ολοκλήρωμα της συνάρτησης
f (x,y) = xy πάνω στο D ως διαδοχικό
ολοκλήρωμα με δύο τρόπους.

Σχήμα 1.53

4. Να σχεδιάσετε το χωρίο

D : 0≤ x≤ 1, x2 ≤ y≤ 4− x2

και υπολογίστε το ολοκλήρωμα ∫∫
D

ydA

εκφράζοντάς το στη μορφή ενός διαδοχικού ολοκληρώματος.

5. (α) Εξηγήστε ποια αντιπαραγώγιση της συνάρτησης xexy είναι ευκολότερη: ως προς x ή
ως προς y;
(β) Υπολογίστε το διπλό ολοκλήρωμα∫∫

R
xexy dA

με R = [0,1]× [0,1].

6. Στις επόμενες συναρτήσεις να υπολογίσετε το διπλό ολοκλήρωμα πάνω στο χωρία που
δίνονται.
(a) f (x,y) = x3y, 0≤ x≤ 5, x≤ y≤ 2x+3.

(b) f (x,y) =−2, 0≤ x≤ 3, 1≤ y≤ ex.

(c) f (x,y) = x, 0≤ x≤ 1, 1≤ y≤ ex2
.

(d) f (x,y) = cos(2x+ y), 1
2 ≤ x≤ π

2 , 1≤ y≤ 2x.

(e) f (x,y) = 6xy− x2, στο χωρίο που φράσσεται από κάτω από την y = x2 και από
πάνω από την y =

√
x.

(f) f (x,y) = sinx, στο χωρίο που περικλείεται από τα γραφήματα των x = 0, x =
1, y = 0, y = cosx.
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(g) f (x,y) = ex+y, στο χωρίο που περικλείεται από τα γραφήματα των y = x−1 και
y = 12− x για 2≤ y≤ 4.

(h) f (x,y) = (x + y)−1, στο χωρίο που περικλείεται από τα γραφήματα των y =
x, y = 1, y = e και x = 0.

7. Υπολογίστε τον όγκο της περιοχής που περικλείεται από τις επιφάνειες

z = 16− y, z = y, y = x2 και y = 8− x2.

8. Υπολογίστε τον όγκο της περιοχής που περικλείεται από τις επιφάνειες

y = 1− x2, z = 1, y = 0 και z+ y = 2.

9. Να γράψετε, χωρίς να υπολογίσετε, το διπλό ολοκλήρωμα με το οποίο υπολογίζεται ο
όγκος της περιοχής που περικλείεται από τα παραβολοειδή

z = x2 + y2 και z = 8− x2− y2.

10. Υπολογίστε τον όγκο της περιοχής που περικλείεται από τις επιφάνειες

z = 2− y2, z = y, x = 0, y = 0 και x+ y = 1.

11.
Υπολογίστε το διπλό ολοκλήρωμα της
συνάρτησης f (x,y) = y2 πάνω στον
ρόμβο R του Σχήματος 1.54.

Σχήμα 1.54 |x|+ 1
2 |y| ≤ 1

12. Ολοκληρώστε τη συνάρτηση f (x,y) = x πάνω στην περιοχή που περικλείεται από τις
y = x, y = 4x− x2 και y = 0 με δύο τρόπους: εκφράζοντας το χωρίο ως κατακόρυφα
απλή περιοχή και ως οριζόντια απλή περιοχή.

13. Να υπολογίσετε το διπλό ολοκλήρωμα των παρακάτω συναρτήσεων πάνω στο χωρίο D
που δημιουργείται από τους περιορισμούς των x και y.

a. f (x,y) = x3y, 0≤ x≤ 5, x≤ y≤ 2x+3.

a. f (x,y) =−2, 0≤ x≤ 3, 1≤ y≤ ex.

c. f (x,y) = x, 0≤ x≤ 1, 1≤ y≤ ex2
.

d. f (x,y) = cos(2x+ y), 1
2 ≤ x≤ π

2 , 1≤ y≤ 2x.
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e. f (x,y) = 6xy− x2, στο χωρίο που φράσσεται από κάτω από την y = x2 και από
πάνω από την y =

√
x.

14.

Υπολογίστε το διπλό ολοκλήρωμα της συνάρτησης

f (x,y) =
siny

y
στο χωρίο D που απεικονίζεται στο

Σχήμα 1.55.

Σχήμα 1.55

15. Να υπολογίσετε το διπλό ολοκλήρωμα των παρακάτω συναρτήσεων πάνω στο χωρίο D
που δημιουργείται από τους περιορισμούς των x και y.

a. f (x,y) = x3y, 0≤ x≤ 5, x≤ y≤ 2x+3.

a. f (x,y) =−2, 0≤ x≤ 3, 1≤ y≤ ex.

c. f (x,y) = x, 0≤ x≤ 1, 1≤ y≤ ex2
.

d. f (x,y) = cos(2x+ y), 1
2 ≤ x≤ π

2 , 1≤ y≤ 2x.

e. f (x,y) = 6xy− x2, στο χωρίο που φράσσεται από κάτω από την y = x2 και από
πάνω από την y =

√
x.

16.

Υπολογίστε το διπλό ολοκλήρωμα∫
D

xdA πάνω στο χωρίο D του
Σχήματος 1.56.

Σχήμα 1.56

Λύση.
3. Κατακόρυφη απλή περιοχή (ως y-προς-x):

D = {(x,y) : 0≤ x≤ 1, 0≤ y≤ 1− x2}.

Οριζόντια απλή περιοχή (ως x-προς-y):

D = {(x,y) : 0≤ y≤ 1, 0≤ x≤
√

1− y}.

Ολοκλήρωση δύο τρόπων για f (x,y) = xy:
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(α) Κατακόρυφη διάταξη∫∫
D

xydxdy =
∫ 1

0

∫ 1−x2

0
xydydx =

∫ 1

0
x
(1− x2)2

2
dx =

1
2

∫ 1

0

(
x−2x3 + x5)dx =

1
12

.

(β) Οριζόντια διάταξη∫∫
D

xydxdy =
∫ 1

0

∫ √1−y

0
xydxdy =

∫ 1

0
y

1− y
2

dy =
1
2

∫ 1

0
(y− y2)dy =

1
12

.

4. Δίνεται το χωρίο

D = {(x,y) : 0≤ x≤ 1, x2 ≤ y≤ 4− x2}.

Ως διαδοχικό ολοκλήρωμα (κατακόρυφη απλή περιοχή):∫∫
D

ydA =
∫ 1

0

∫ 4−x2

x2
ydydx =

∫ 1

0

[
1
2y2
]4−x2

y=x2
dx =

∫ 1

0

(
8−4x2

)
dx

=
[
8x− 4

3x3
]1

0
=

20
3
.

Εναλλακτικά (οριζόντια απλή περιοχή): το D γράφεται ως ένωση τριών ζωνών

0≤ y≤ 1 : 0≤ x≤√y,
1≤ y≤ 3 : 0≤ x≤ 1,

3≤ y≤ 4 : 0≤ x≤
√

4− y ,

οπότε ∫∫
D

ydA =
∫ 1

0

∫ √y

0
ydxdy+

∫ 3

1

∫ 1

0
ydxdy+

∫ 4

3

∫ √4−y

0
ydxdy =

20
3
.

5. (α) Η αντιπαραγώγιση ως προς y είναι ευκολότερη, γιατί

∂
∂y

exy = xexy

οπότε
∫

xexy dy = exy +C. Αντίθετα, ως προς x απαιτεί ολοκλήρωση κατά μέρη:

∫
xexy dx =

1
y2 (xy−1)exy +C.

(β)Με R = [0,1]× [0,1],∫∫
R

xexy dA =
∫ 1

0

∫ 1

0
xexy dydx =

∫ 1

0

[
exy]1

y=0 dx =
∫ 1

0

(
ex−1

)
dx =

[
ex− x

]1
0 =

e−2.
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6.(c)
Περιοχή: 0≤ x≤ 1, 1≤ y≤ ex2

, f (x,y) = x.

∫∫
D

xdA =
∫ 1

0

∫ ex2

1
xdydx =

∫ 1

0
x(ex2−1)dx =

[
1
2

ex2− 1
2

x2
]1

0
=

e−2
2

.

(Έλεγχος με αλλαγή σειράς): Για 1≤ y≤ e έχουμε
√

lny≤ x≤ 1, άρα∫∫
D

xdA =
∫ e

1

∫ 1

√
lny

xdxdy =
∫ e

1

1
2 (1− lny)dy =

e−2
2

.

16.
Το χωρίο D είναι ο δεξιός ημιδακτύλιος της στεφάνης 1≤ r ≤ 2, −π

2 ≤ θ ≤ π
2 .

∫∫
D

xdA =
∫ π/2

−π/2

∫ 2

1
(r cosθ)r dr dθ =

∫ π/2

−π/2
cosθ dθ

∫ 2

1
r2 dr =[

sinθ
]π/2

−π/2

[r3

3

]2

1
.

= (2)
(

8−1
3

)
=

14
3
.

1.17 Τριπλά ολοκληρώματα

Τα τριπλά ολοκληρώματα των συναρτήσεων
τριών μεταβλητών f (x,y,z) αποτελούν επέκταση
των διπλών ολοκληρωμάτων. Αρχικά, θα
αντιμετωπίσουμε την πιο απλή από τις περιπτώσεις,
όπου αντί για ένα ορθογώνιο που ανήκει στο επίπεδο,
το χωρίο μας θα είναι ένα κουτί, όπως φαίνεται στο
Σχήμα 1.57, που θα περιγράφεται ως

B = [a,b]× [c,d]× [p,q]

και θα αποτελείται από το σύνολο των σημείων
(x,y,z) του R3 ώστε

a≤ x≤ b, c≤ y≤ d, p≤ z≤ q

Σχήμα 1.57
Για να ολοκληρώσουμε μια συνάρτηση πάνω σε ένα τέτοιο κουτί, θα πρέπει να διαιρέσουμε

το κουτί σε μικρότερα κουτιά της μορφής
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Bi jk = [xi−1,xi]× [y j−1,y j]× [zk−1,zk]

επιλέγοντας τις διαμερίσεις των τριών διαστημάτων

a = x0 < x1 < · · ·< xN = b

c = y0 < y1 < · · ·< yM = d

p = z0 < z1 < · · ·< zL = q

με τα N, M και L να είναι θετικοί ακέραιοι αριθμοί. Ο όγκος κάθε μικρότερου κουτιού Bi jk είναι

∆Vi jk = ∆xi ∆y j ∆zk,

όπου

∆xi = xi− xi−1, ∆y j = y j− y j−1, ∆zk = zk− zk−1

Επιλέγουμε στη συνέχεια ένα τυχαίο σημείοPi jk από κάθε μικρότερο κουτίBi jk και σχηματίζουμε
το άθροισμα Riemann:

SN,M,L =
N

∑
i=1

M

∑
j=1

L

∑
k=1

f (Pi jk)∆Vi jk

Συμβολίζουμε με P = {{xi},{y j},{zk}} τη διαμέριση και έστω ‖P‖ το μέγιστο από τα
πλάτη ∆xi,∆y j,∆zk. Αν τα αθροίσματα Riemann SN,M,L προσεγγίζουν ένα όριο καθώς ‖P‖→
0 για μια τυχαία επιλογή των σημείων Pi jk, τότε θα λέμε ότι η συνάρτηση f είναι ολοκληρώσιμη
στο B. Αυτή η οριακή τιμή συμβολίζεται ως∫∫∫

B
f (x,y,z)dV = lim

‖P‖→0
SN,M,L

Σημείωση 1.17.1Ο όρος dA που χρησιμοποιείται στα διπλά ολοκληρώματα και αναφέρεται σε
ένα στοιχείο εμβαδού υποδηλώνει ότι οι επιφάνειες αυτές που εμπλέκονται στα ολοκληρώματα
πάνω σε χωρία του επιπέδου είναι μικρές. Παρομοίως, ο όρος dV που χρησιμοποιείται στα
τριπλά ολοκληρώματα καλείται στοιχείο όγκου και δηλώνει ότι οι όγκοι που εμπλέκονται στην
ολοκλήρωση σε ένα χωρίο R3 είναι μικροί.

Θεώρημα 1.17.2 Θεώρημα Fubini για τριπλά ολοκληρώματα Το τριπλό ολοκλήρωμα μιας
συνεχούς συνάρτησης f (x,y,z) σε ένα κουτί B = [a,b]× [c,d]× [p,q] είναι ίσο με ένα
διαδοχικό ολοκλήρωμα της μορφής:

∫∫∫
B

f (x,y,z)dV =

b∫
x=a

d∫
y=c

q∫
z=p

f (x,y,z)dzdydx

Επιπλέον, αυτό το διαδοχικό ολοκλήρωμα μπορεί να υπολογιστεί επιλέγοντας οποιαδήποτε
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σειρά ολοκλήρωσης ως προς τις τρεις μεταβλητές.

Παράδειγμα 1.17.3 Ολοκλήρωση σε ένα
κουτί Υπολογίστε το τριπλό ολοκλήρωμα∫∫∫

B
x2ey+3z dV , όπου

B = [1,4]× [0,3]× [2,6].

Σχήμα 1.58 Το σημείο P = (x,y,z) ανήκει στη z-απλή
περιοχή W αν (x,y) ∈D και z1(x,y)≤ z≤ z2(x,y)

Λύση. Αρχικά, θα εκφράσουμε το τριπλό ολοκλήρωμα ως διαδοχικό ολοκλήρωμα με τον εξής
τρόπο: ∫∫∫

B
x2ey+3z dV =

∫ 4

1

∫ 3

0

∫ 6

2
x2ey+3z dzdydx

Βήμα 1: Υπολογίστε το εσωτερικό ολοκλήρωμα ως προς τη μεταβλητή z, κρατώντας τις μεταβλητές
x και y σταθερές.

∫ 6

z=2
x2ey+3zdz =

1
3

x2ey+3z

∣∣∣∣∣
6

z=2

=
1
3

x2ey+18− 1
3

x2ey+6 =
1
3

(
e18− e6

)
x2ey

Βήμα 2: Υπολογίστε το μεσαίο ολοκλήρωμα ως προς τη μεταβλητή y, διατηρώντας τη x σταθερή.∫ 3

y=0

1
3
(e18− e6)x2eydy =

1
3
(e18− e6)x2

∫ 3

y=0
eydy =

1
3
(e18− e6)x2(e3−1)

Βήμα 3: Υπολογίστε το εξωτερικό ολοκλήρωμα ως προς τη μεταβλητή x.∫∫∫
B
(x2ey+3z)dV =

1
3
(e18− e6)(e3−1)

∫ 4

x=1
x2dx = 7(e18− e6)(e3−1)

Στη συνέχεια, θα μελετήσουμε την περίπτωση όπου η ολοκλήρωση δεν γίνεται πάνω σε ένα κουτί,
αλλά λαμβάνει χώρα σε ένα στερεόW που περικλείεται μεταξύ δύο επιφανειών z = z1(x,y) και
z = z2(x,y) που βρίσκονται πάνω από ένα χωρίο D του επιπέδου xy (βλ. Σχήμα 2). Δηλαδή:

W = {(x,y,z) : (x,y) ∈ D και z1(x,y)≤ z≤ z2(x,y)}.

Θεώρημα 1.17.4 Το τριπλό ολοκλήρωμα μιας συνεχούς συνάρτησης f (x,y,z) σε μια περιοχή

W : (x,y) ∈ D, z1(x,y)≤ z≤ z2(x,y)

θα είναι ίσο με το διαδοχικό ολοκλήρωμα
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∫∫∫
W

f (x,y,z)dV =
∫∫

D

(∫ z2(x,y)

z=z1(x,y)
f (x,y,z)dz

)
dA

Παρατηρήστε ότι το εσωτερικό ολοκλήρωμα στο δεξιό μέρος της ισότητας του θεωρήματος είναι
ένα απλό ολοκλήρωμα ως προς τη μεταβλητή z, ενώ το εξωτερικό ολοκλήρωμα είναι ένα διπλό
ολοκλήρωμα πάνω στις μεταβλητές x και y. Κατά κανόνα, μπορούμε να υπολογίσουμε αυτό
το διπλό ολοκλήρωμα ως ένα διπλό διαδοχικό ολοκλήρωμα. Ένα σημείο που δεν έχουμε θίξει
μέχρι στιγμής κατά τη θεώρησή μας είναι η γεωμετρική ερμηνεία των τριπλών ολοκληρωμάτων.
Είναι γνωστό ότι ένα διπλό ολοκλήρωμα αναπαριστά τον προσημασμένο όγκο μιας τρισδιάστατης
περιοχής που περικλείεται μεταξύ του γραφήματος z = f (x,y) και του επιπέδου xy. Το γράφημα
όμως μιας συνάρτησης τριών μεταβλητών f (x,y,z) βρίσκεται σε έναν τετραδιάστατο χώρο, επο-
μένως ένα τριπλό ολοκλήρωμα αναπαριστά έναν προσημασμένο «όγκο» μιας τετραδιάστατης
περιοχής. Μια τέτοια περιοχή είναι δύσκολο ή και αδύνατο να τη φανταστούμε. Από την άλλη
πλευρά, τα τριπλά ολοκληρώματα μπορούν να χρησιμοποιηθούν για τον υπολογισμό πολλών
διαφορετικών ποσοτήτων που εμφανίζονται σε ένα τρισδιάστατο πλαίσιο. Ορισμένα σχετικά
παραδείγματα είναι η μάζα, οι συντεταγμένες του κέντρου μάζας, οι ροπές αδράνειας, το θερμικό
περιεχόμενο ενός σώματος καθώς και το συνολικό φορτίο.

Επιπλέον, ο όγκοςV μιας περιοχήςW ορίζεται ως το τριπλό ολοκλήρωμα της σταθερής συνάρτησης
f (x,y,z) = 1, δηλαδή:

V =
∫∫∫

W 1dV

Πιο συγκεκριμένα, αν η W είναι μια z-απλή περιοχή που βρίσκεται μεταξύ των επιφανειών z =
z1(x,y) και z = z2(x,y), τότε:∫∫∫

W
1dV =

∫∫
D

(∫ z2(x,y)

z=z1(x,y)
1dz
)

dA =
∫∫

D
(z2(x,y)− z1(x,y))dA

Επομένως, το τριπλό ολοκλήρωμα από το οποίο υπολογίζεται ένας όγκος V είναι ίσο με
το διπλό ολοκλήρωμα που υπολογίζει τον όγκο της περιοχής που βρίσκεται μεταξύ των δύο
επιφανειών, όπως διαπιστώσαμε στην προηγούμενη ενότητα.

Παράδειγμα 1.17.5 Περιοχή που
εκτείνεται πάνω από ορθογώνιο χωρίο
Υπολογίστε το τριπλό ολοκλήρωμα∫∫∫

W
z dV

όπου W είναι η περιοχή που βρίσκεται
μεταξύ των επιπέδων z = x + y και
z = 3x + 5y και εκτείνεται πάνω από
το ορθογώνιοD = [0,3]× [0,2] (Σχήμα
1.59). Σχήμα 1.59 Η περιοχή W περικλείεται μεταξύ των επιπέδων

z = x+ y και z = 3x+5y και εκτείνεται πάνω
από το χωρίο D = [0,3]× [0,2]

Λύση.Θα εφαρμόσουμε το Θεώρημα 2 με z1(x,y) = x+ y και z2(x,y) = 3x+5y:∫∫∫
W

zdV =
∫∫

D

(∫ 3x+5y

z=x+y
zdz
)

dA
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=
∫ 3

x=0

∫ 2

y=0

∫ 3x+5y

z=x+y
zdzdydx

Βήμα 1: Υπολογίστε το εσωτερικό ολοκλήρωμα ως προς τη μεταβλητή z.∫ 3x+5y

z=x+y
zdz =

1
2

z2
∣∣∣3x+5y

z=x+y
=

1
2
(3x+5y)2− 1

2
(x+ y)2 = 4x2 +14xy+12y2

Βήμα 2: Υπολογίστε το ολοκλήρωμα ως προς τη μεταβλητή y.∫ 2

y=0

(
4x2 +14xy+12y2)dy =

(
4x2y+7xy2 +4y3)∣∣∣2

y=0
= 8x2 +28x+32

Βήμα 3: Υπολογίστε το ολοκλήρωμα ως προς τη μεταβλητή x.∫∫∫
W

zdV =
∫ 3

x=0
(8x2+28x+32)dx =

(
8
3

x3 +14x2 +32x
)∣∣∣3

0
= 72+126+96 = 294

Παράδειγμα 1.17.6 Περιοχή που
εκτείνεται πάνω από τριγωνικό χωρίο
Υπολογίστε το τριπλό ολοκλήρωμα∫∫∫

W zdV , όπου W είναι η περιοχή που
φαίνεται στο Σχήμα 1.60.

Σχήμα 1.60 Η περιοχή W περικλείεται μεταξύ των επιπέδων
z = x+ y και z = 3x+5y και εκτείνεται πάνω από το

τριγωνικό χωρίο D

Λύση.Πρόκειται για μια περίπτωση τριπλού ολοκληρώματος που μοιάζει με αυτήν του προηγούμενου
παραδείγματος, με τη διαφορά ότι τώρα η περιοχή W εκτείνεται πάνω από το τριγωνικό χωρίο
που βρίσκεται στο επίπεδο xy και ορίζεται από τις ανισότητες:

0≤ x≤ 1, 0≤ y≤ 1− x

Επομένως, το ζητούμενο τριπλό ολοκλήρωμα θα είναι ίσο με το διαδοχικό ολοκλήρωμα:∫∫∫
W

zdV =
∫∫

D

(∫ 3x+5y

z=x+y
zdz
)

dA

=
∫ 1

x=0

∫ 1−x

y=0︸ ︷︷ ︸
ολοκλήρωμα

στο τριγωνικό χωρίο

∫ 3x+5y

z=x+y
zdzdydx

Το εσωτερικό ολοκλήρωμα υπολογίστηκε στο προηγούμενο παράδειγμα:∫ 3x+5y

z=x+y
zdz =

1
2

z2
∣∣∣3x+5y

z=x+y
= 4x2 +14xy+12y2
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Στη συνέχεια, θα ολοκληρώσουμεως προς τη μεταβλητή y (παραλείποντας ορισμένα ενδιάμεσα
βήματα):∫ 1−x

y=0
(4x2 +14xy+12y2)dy = 4x2y+7xy2 +4y3

∣∣∣1−x

y=0
= 4−5x+2x2− x3

Τέλος, έχουμε: ∫∫∫
W

zdV =
∫ 1

x=0

(
4−5x+2x2− x3) dx =

23
12

.

Παράδειγμα 1.17.7Περιοχή που βρίσκεται μεταξύ τεμνόμενων επιφανειών Να ολοκληρώσετε
τη συνάρτηση f (x,y,z) = x στην περιοχή W που βρίσκεται κάτω από την επιφάνεια z =
4− x2− y2 και πάνω από την z = x2 + 3y2 στο ογδοημόριο x ≥ 0, y ≥ 0, z ≥ 0 (βλέπε
Σχήμα 1.61).

Λύση. Η περιοχή της ολοκλήρωσης W είναι z-απλή, επομένως θα έχουμε:∫∫∫
W

xdV =
∫∫

D

∫ 4−x2−y2

z=x2+3y2
xdzdA

όπου D είναι η προβολή της περιοχής W στο επίπεδο xy. Για να υπολογίσουμε το ζητούμενο
ολοκλήρωμα στο χωρίο W πρέπει να προσδιορίσουμε την εξίσωση της καμπύλης που αποτελεί
το σύνορο του D .

Σχήμα 1.61 Το στερεό που περιορίζεται μεταξύ των παραβολοειδών z = 4− x2− y2 και z = x2 +3y2 φαίνεται στο (α).
Η περιοχή στην οποία λαμβάνει χώρα η ολοκλήρωση φαίνεται στο (β).

Βήμα 3: Προσδιορίστε το σύνορο του D . Οι επιφάνειες τέμνονται στα σημεία (x,y,z) που
ικανοποιούν ταυτόχρονα τις δύο εξισώσεις που περιγράφουν τις επιφάνειες, δηλαδή:

z = x2 +3y2 και z = 4− x2− y2

Άρα:

4− x2− y2 = x2 +3y2 ή αλλιώς x2 +2y2 = 2
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Επομένως, όπως διαπιστώνουμε παρατηρώντας το Σχήμα 5β, η προβολή του στερεού W πάνω
στο χωρίοD είναι το ένα τέταρτο του εσωτερικού της έλλειψης x2+2y2 = 2 που βρίσκεται στο
πρώτο τεταρτημόριο. Η έλλειψη αυτή τέμνει τους άξονες στα σημεία (

√
2,0) και (0,1).

Βήμα 1: Εκφράστε το D ως ένα απλό χωρίο. Αφού το D είναι ταυτόχρονα κατακόρυφα
και οριζόντια απλό μπορούμε να προχωρήσουμε στην ολοκλήρωση είτε επιλέγοντας τη σειρά
ολοκλήρωσης dydx είτε την dxdy. Αν επιλέξουμε τη σειρά dxdy, τότε η y μεταβάλλεται από 0
μέχρι 1 και το χωρίο περιγράφεται από τις ανισώσεις:

D : 0≤ y≤ 1, 0≤ x≤
√

2−2y2

Βήμα 2: Γράψτε το τριπλό ολοκλήρωμα ως ένα διαδοχικό ολοκλήρωμα.∫∫∫
W

xdV =
∫ 1

y=0

∫ √2−2y2

x=0

∫ 4−x2−y2

z=x2+3y2
xdzdxdy

Βήμα 3: Προχωρήστε στους υπολογισμούς. Τα αποτελέσματα από τις διαδοχικές ολοκληρώσεις
είναι τα εξής:

Εσωτερικό ολοκλήρωμα:∫ 4−x2−y2

z=x2+3y2
xdz = x(z)

∣∣∣4−x2−y2

z=x2+3y2
= 4x−2x3−4y2x

Μεσαίο ολοκλήρωμα:

∫ √2−2y2

x=0
(4x−2x3−4y2x)dx =

(
2x2− 1

2
x4−2x2y2

)∣∣∣∣∣
√

2−2y2

x=0

= 2−4y2 +2y4

Τριπλό ολοκλήρωμα:∫∫∫
W

xdV =
∫ 1

y=0
(2−4y2 +2y4)dy = 2− 4

3
+

2
5
=

16
15

Έως τώρα έχουμε υπολογίσει τριπλά ολοκληρώματα σε
περιοχές W που ήταν z-απλές και η προβολή τους ήταν ένα
χωρίο στο επίπεδο xy. Με ανάλογο απλό τρόπο μπορούμε να
προχωρήσουμε σε ολοκληρώσεις σε περιοχές που είναι είτε x
είτε y απλές. Έτσι, για παράδειγμα, αν η περιοχή W είναι
η x-απλή περιοχή που περιορίζεται μεταξύ των γραφημάτων
των συναρτήσεων x = x1(y,z) και x = x2(y,z) και βρίσκονται
πάνω από ένα χωρίο D στο επίπεδο yz, όπως φαίνεται στο
Σχήμα 1.62, τότε θα ισχύει:∫∫∫

W
f (x,y,z)dV =

∫∫
D

(∫ x2(y,z)

x=x1(y,z)
f (x,y,z)dx

)
dA

Σχήμα 1.62 Το χωρίο D είναι η
προβολή του στερεού W πάνω στο
επίπεδο yz
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Ασκήσεις 1.17.8 Να υπολογίσετε το τριπλό ολοκλήρωμα∫∫∫
B

f (x,y,z)dV

για τη συνάρτηση f και το κουτί B που δίνεται σε κάθε περίπτωση.

1. (a) f (x,y,z) = xy+ z2, [−2,2]× [0,1]× [0,2]

(b) f (x,y,z) = xey−2z, 0≤ x≤ 2, 0≤ y≤ 1, 0≤ z≤ 1

(c) f (x,y,z) = x
(y+z)2 , [0,2]× [2,4]× [−1,1]

(d) f (x,y,z) = (x+ y− z)2, [0,a]× [0,b]× [0,c]

2. Να υπολογίσετε το τριπλό ολοκλήρωμα∫∫∫
W

f (x,y,z)dV

για τη συνάρτηση f και την περιοχή W που δίνεται σε κάθε περίπτωση.

(a) f (x,y,z) = x+ y, W : y≤ z≤ x, 0≤ y≤ x, 0≤ x≤ 1

(b) f (x,y,z) = ex+y+z, W : 0≤ z≤ 1, 0≤ y≤ x, 0≤ x≤ 1

(c) f (x,y,z) = xyz, W : 0≤ z≤ 1, 0≤ y≤
√

1− x2, 0≤ x≤ 1

(d) f (x,y,z) = x, W : x2 + y2 ≤ z≤ 4

(e) f (x,y,z) = ez, W : x+ y+ z≤ 1, x≥ 0, y≥ 0, z≥ 0

(f) f (x,y,z) = z, W : 0≤ x≤ 1, x2 ≤ y≤ 2, x− y≤ z≤ x+ y

3.

Υπολογίστε το τριπλό ολοκλήρωμα της
συνάρτησης

f (x,y,z) = z

πάνω στην περιοχήW του Σχήματος 11, η
οποία βρίσκεται κάτω από το ημισφαίριο
ακτίνας 3 και εκτείνεται πάνω από το
τριγωνικό χωρίο D του επιπέδου xy, με το
τελευταίο να φράσσεται από τις ευθείες

x = 1, y = 0, x = y. Σχήμα 1.63 Το χωρίο D είναι η
προβολή του στερεού W πάνω στο

επίπεδο yz
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4.

Έστω η περιοχή του Σχήματος 1.65 η οποία
φράσσεται από τις

y+ z = 2, 2x = y, x =
0 και z = 0

Να εκφράσετε και να υπολογίσετε το
τριπλό ολοκλήρωμα της συνάρτησης

f (x,y,z) = 2x−4y+6z

θεωρώντας την περιοχή W ως: Σχήμα 1.64 Το χωρίο D είναι η
προβολή του στερεού W πάνω στο
επίπεδο yz

(i) z-απλή περιοχή, οπότε θα πρέπει αρχικά να ολοκληρώσετε ως προς τη μεταβλητή
z, με z1(x,y)≤ z≤ z2(x,y) για τις κατάλληλες συναρτήσεις z1 και z2.

(ii) x-απλή περιοχή, οπότε θα πρέπει αρχικά να ολοκληρώσετε ως προς τη μεταβλητή
x, με x1(y,z)≤ x≤ x2(y,z) για τις κατάλληλες συναρτήσεις x1 και x2.

(iii) y-απλή περιοχή, οπότε θα πρέπει αρχικά να ολοκληρώσετε ως προς τη μεταβλητή
y, με y1(x,z)≤ y≤ y2(x,z) για τις κατάλληλες συναρτήσεις y1 και y2.

Έστω

W = {(x,y,z) :
√

x2 + y2 ≤ z≤ 1}

(βλ. Σχήμα 1.65). Να εκφράσετε το τριπλό
ολοκλήρωμα∫∫∫

W f (x,y,z)dV

ως ένα διαδοχικό ολοκλήρωμα με σειρά
ολοκλήρωσης την dzdydx (για μια τυχαία
συνάρτηση f ).

5.

Σχήμα 1.65
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1.18 Ολοκλήρωση σε πολικές, κυλινδρικές και σφαιρικές συντετα-
γμένες

Στον Λογισμό μίας μεταβλητής, μια καλά επιλεγμένη
αντικατάσταση (που αποκαλείται επίσης και αλλαγή
μεταβλητών) μετασχηματίζει πολύ συχνά ένα πολύπλοκο
ολοκλήρωμα σε ένα πολύ απλούστερο. Η αλλαγή μεταβλητών
αποδεικνύεται ότι είναι επίσης εξαιρετικά χρήσιμη στον
Λογισμό πολλών μεταβλητών, αλλά η έμφαση βρίσκεται τώρα
σε ένα διαφορετικό σημείο. Έτσι, στον Λογισμό πολλών
μεταβλητών, ενδιαφερόμαστε συνήθως για την απλοποίηση
όχι μόνο της ολοκληρωτέας παράστασης, αλλά και για την
απλοποίηση της αναπαράστασης του χωρίου στο οποίο
λαμβάνει χώρα η ολοκλήρωση.
Στην παρούσα ενότητα θα μελετήσουμε τρεις από τις πλέον
χρήσιμες αλλαγές μεταβλητών, με τη βοήθεια των οποίων
εκφράζουμε ένα ολοκλήρωμα σε πολικές, κυλινδρικές ή
σφαιρικές συντεταγμένες. Όπως φαίνεται στο Σχήμα 1.66,
συγκεκριμένα φυσικά συστήματα μπορούν να περιγραφούν
πολύ πιο εύκολα με το κατάλληλο σύστημα συντεταγμένων. .

Σχήμα 1.66 Οι
σφαιρικές συντεταγμένες
χρησιμοποιούνται στη μελέτη
μαθηματικών μοντέλων του
γήινου μαγνητικού πεδίου. Στην
εικόνα, που έχει δημιουργηθεί
με τη βοήθεια προσομοίωσης
σε ηλεκτρονικό υπολογιστή με
βάση το μοντέλο Glatzmaier-
Roberts, απεικονίζονται οι
μαγνητικές δυναμικές γραμμές
που εισέρχονται (με μπλε
χρώμα) και εξέρχονται (με
κίτρινο χρώμα) από τη Γη.

1.18.1 Διπλό ολοκλήρωμα σε πολικές συντεταγμένες
Οι πολικές συντεταγμένες είναι βολικές όταν το χωρίο
ολοκλήρωσης είναι ένας γωνιακός τομέας ή ένα πολικό
ορθογώνιο, όπως αυτό του Σχήματος 1.67, που ορίζεται ως:

R : θ1 ≤ θ ≤ θ2, r1 ≤ r ≤ r2

Στην ανάλυση που θα ακολουθήσει θα υποθέσουμε ότι r1 ≥
0 και επίσης ότι όλες οι ακτινικές συντεταγμένες δεν είναι
αρνητικές. Θυμηθείτε τώρα ότι οι ορθογώνιες και οι πολικές
συντεταγμένες συνδέονται μέσω των σχέσεων

x = r cosθ , y = r sinθ

Αυτό σημαίνει ότι μπορούμε να εκφράσουμε μια συνάρτηση
f (x,y) σε πολικές συντεταγμένες ως f (r cosθ ,r sinθ). Ο
τύπος αλλαγής μεταβλητών για ένα πολικό ορθογώνιο R έχει
τη μορφή:

Σχήμα 1.67 Πολικές συντεταγμένες

Ύπαρξη του επιπλέον παράγοντα rστην ολοκληρωτέα μορφή

∫
R

f (x,y)dA =
∫ θ2

θ1

∫ r2

r1

f (r cosθ ,r sinθ)r dr dθ

Παρατηρήστε την ύπαρξη του επιπλέον παράγοντα r στην ολοκληρωτέα μορφή που εμφανίζεται
στο δεξιό μέλος της ισότητας. Η ύπαρξη του παράγοντα αυτού θα αιτιολογηθεί όταν αποδείξουμε
τον γενικό τύπο αλλαγής μεταβλητών.
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Παράδειγμα 1.18.1 Υπολογίστε το διπλό ολοκλήρωμα∫
D
(x+ y)dA,

όπουD είναι το ένα τέταρτο του δακτυλίου που φαίνεται στο
Σχήμα 1.68.

Σχήμα 1.68 Το ένα τέταρτο ενός
δακτυλίου που ορίζεται από τις
ανισώσεις 0≤ θ ≤ π

2
, 2≤ r ≤ 4.

Λύση.Το ένα τέταρτο ενός δακτυλίου αποτελεί παράδειγμα χωρίου που είναι ακτινικά απλό.
Βήμα 1 Περιγράψτε το χωρίο D και τη συνάρτηση f σε πολικές συντεταγμένες.
Το ένα τέταρτο του δακτυλίου D ορίζεται από τις ανισότητες (βλ. Σχήμα 1.68):

D : 0≤ θ ≤ π
2
, 2≤ r ≤ 4.

Σε πολικές συντεταγμένες η συνάρτηση παίρνει τη μορφή

f (x,y) = x+ y = r cosθ + r sinθ = r(cosθ + sinθ).

Βήμα 2 Αλλαγή μεταβλητών και υπολογισμός.
Για να εκφράσουμε το ζητούμενο ολοκλήρωμα σε πολικές συντεταγμένες θα αντικαταστήσουμε

το dA με r dr dθ , οπότε θα έχουμε:∫∫
D
(x+ y)dA =

∫ π
2

0

∫ 4

2
r(cosθ + sinθ)r dr dθ .

Το εσωτερικό ολοκλήρωμα είναι:∫ 4

r=2
(cosθ + sinθ)r2 dr = (cosθ + sinθ)

(
43

3
− 23

3

)
=

56
3
(cosθ + sinθ).

και τελικά:∫∫
D
(x+ y)dA =

56
3

∫ π
2

0
(cosθ + sinθ)dθ =

56
3
(
sinθ − cosθ

)∣∣∣π
2

0
=

112
3

.

Παράδειγμα 1.18.2 Υπολογίστε το διπλό
ολοκλήρωμα ∫∫

D(x
2 + y2)−2 dA

για το σκιασμένο χωρίο D του Σχήματος 1.69.

Σχήμα 1.69

Λύση.Βήμα 1 Περιγράψτε το χωρίο D και τη συνάρτηση f σε πολικές συντεταγμένες.

Το τεταρτοκύκλιο βρίσκεται στον γωνιακό τομέα
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0≤ θ ≤ π
4
,

καθώς η ευθεία που διέρχεται από το σημείο

P = (1,1)

σχηματίζει γωνία
π
4
με τον άξονα x, όπως φαίνεται στο Σχήμα 1.69.

• Η κατακόρυφη ευθεία γραμμή x = 1 περιγράφεται από την πολική εξίσωση

r cosθ = 1 =⇒ r = secθ .

• Ο κύκλος με ακτίνα 1 και κέντρο το σημείο (1,0) έχει πολική εξίσωση

r = 2cosθ .

Επομένως, μια ημιευθεία που σχηματίζει γωνία θ με τον θετικό ημιάξονα x θα τέμνει το χωρίο
D σε τμήμα όπου η ακτινική μεταβλητή παίρνει τιμές μεταξύ secθ και 2cosθ . Με άλλα λόγια,
το χωρίο ολοκλήρωσης είναι ακτινικά απλό και περιγράφεται σε πολικές συντεταγμένες από τις
ανισώσεις:

D : 0≤ θ ≤ π
4 , secθ ≤ r ≤ 2cosθ .

Η ολοκληρωτέα συνάρτηση εκφράζεται σε πολικές συντεταγμένες ως:

f (x,y) = (x2 + y2)−2 = (r2)−2 = r−4.

Βήμα 2 Αλλαγή μεταβλητών και υπολογισμός.
Για να εκφράσουμε το ζητούμενο ολοκλήρωμα σε πολικές συντεταγμένες θα αντικαταστήσουμε

το dA με r dr dθ , οπότε θα έχουμε:

∫∫
D
(x2 + y2)−2 dA =

∫ π
4

0

∫ 2cosθ

r=secθ
r−4 r dr dθ =

∫ π
4

0

∫ 2cosθ

secθ
r−3 dr dθ .

Βήμα 3 Εσωτερικό ολοκλήρωμα και τελικό αποτέλεσμα.
Το εσωτερικό ολοκλήρωμα είναι:∫ 2cosθ

r=secθ
r−3 dr =

[
−1

2r−2]2cosθ
r=secθ =−1

8
sec2 θ +

1
2

cos2 θ .

Επομένως:

∫∫
D
(x2 + y2)−2 dA =

∫ π
4

0

(1
2

cos2 θ − 1
8

sec2 θ
)

dθ =
[1

4
(
θ +

1
2

sin2θ
)
− 1

8
tanθ

]π
4

0
=

π
16

.

1.18.2 Τριπλό ολοκλήρωμα σε κυλινδρικές συντεταγμένες
Οι κυλινδρικές συντεταγμένες είναι χρήσιμες όταν το χωρίο στο οποίο γίνεται η ολοκλήρωση
έχει αξονική συμμετρία - διαθέτει, δηλαδή, συμμετρία ως προς κάποιον άξονα. Στις κυλινδρικές
συντεταγμένες (r,θ ,z) ο άξονας συμμετρίας είναι ο άξονας z. Θυμηθείτε επίσης τις σχέσεις
μετατροπής των κυλινδρικών συντεταγμένων σε ορθογώνιες (βλ. Σχήμα 1.70a):
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x = r cosθ , y = r sinθ , z = z.

Για να γράψουμε ένα τριπλό ολοκλήρωμα σε κυλινδρικές συντεταγμένες θα υποθέσουμε ότι
η περιοχή ολοκλήρωσης W μπορεί να περιγραφεί ως μια περιοχή που περικλείεται μεταξύ δύο
επιφανειών, όπως φαίνεται στο Σχήμα 1.70b, δηλαδή ως:

z1(r,θ) ≤ z≤ z2(r,θ)

η οποία αναπτύσσεται πάνω από το ακτινικά απλό χωρίο D του επιπέδου xy που περιγράφεται,
σε πολικές συντεταγμένες, από τις ανισώσεις:

D : θ1 ≤ θ ≤ θ2, r1(θ)≤ r ≤ r2(θ).

Τότε το τριπλό ολοκλήρωμα ∫∫∫
W

f (x,y,z)dV

μετατρέπεται σε ∫ θ2

θ1

∫ r2(θ)

r1(θ)

∫ z2(r,θ)

z1(r,θ)
f
(
r cosθ ,r sinθ ,z

)
r dzdr dθ .

(a) Γραφική παράσταση της y = f (x). (b) Γραφική παράσταση της z = f (x,y).

Σχήμα 1.70 Κυλινδρικές συντεταγμένες και περιγραφή χωρίου

Θεώρημα 1.18.3Τριπλό ολοκλήρωμα σε κυλινδρικές συντεταγμένες Για μια συνεχή συνάρτηση
f στην περιοχή

θ1 ≤ θ ≤ θ2, r1(θ)≤ r ≤ r2(θ), z1(r,θ)≤ z≤ z2(r,θ),

το τριπλό ολοκλήρωμα ∫∫∫
W

f (x,y,z)dV

είναι ίσο με
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∫ θ2

θ1

∫ r2(θ)

r1(θ)

∫ z2(r,θ)

z1(r,θ)
f (r cosθ ,r sinθ ,z) r dzdr dθ

Παράδειγμα 1.18.4

Να ολοκληρώσετε τη συνάρτηση f (x,y,z) =

z
√

x2 + y2 στην κυλινδρική περιοχή W η οποία
ορίζεται από τις ανισώσεις x2+y2 ≤ 4 για 1≤ z≤
5 (βλ. Σχήμα 1.71).

Σχήμα 1.71

Λύση. Η περιοχή W στην οποία γίνεται η ολοκλήρωση εκτείνεται πάνω από τον δίσκο ακτίνας 2
με κέντρο την αρχή των αξόνων, επομένως σε κυλινδρικές συντεταγμένες περιγράφεται ως εξής

W : 0≤ θ ≤ 2π, 0≤ r ≤ 2, 1≤ z≤ 5

Θα εκφράσουμε την ολοκληρωτέα συνάρτηση σε κυλινδρικές συντεταγμένες, οπότε θα έχουμε:

f (x,y,z) = z
√

x2 + y2 = zr

και θα ολοκληρώσουμε χρησιμοποιώντας το στοιχείο όγκου dV = r dzdr dθ .

∫∫∫
W

z
√

x2 + y2 dV =
∫ 2π

0

∫ 2

0

∫ 5

z=1
(zr)r dzdr dθ =

∫ 2π

0

∫ 2

0
12r2 dr dθ =

∫ 2π

0
32dθ = 64π

1.18.3 Τριπλό ολοκλήρωμα σε σφαιρικές συντεταγμένες

Στον τύπο αλλαγής μεταβλητών που
χρησιμοποιήσαμε στην περίπτωση των κυλινδρικών
συντεταγμένων, ο στοιχειώδης όγκος εκφράστηκε ως
dV = r dr dθ dz. Στις σφαιρικές συντεταγμένες, η
ανάλογη σχέση για τον στοιχειώδη όγκο είναι

dV = ρ2 sinϕ dρ dϕ dθ

Σχήμα 1.72 Σφαιρικές
συντεταγμένες

130



Για να ξεκινήσουμε τη διαδικασία που θα μας οδηγήσει στην απόδειξη αυτής της σχέσης θα πρέπει
να θυμηθούμε τις σχέσεις:

x = ρ sinϕ cosθ , y = ρ sinϕ sinθ , z = ρ cosϕ , r = ρ sinϕ

οι οποίες φαίνονται στο το Σχήμα 1.72.

Θεώρημα 1.18.5 Τριπλό ολοκλήρωμα σε σφαιρικές συντεταγμένες Για μια περιοχή W που
ορίζεται ως

θ1 ≤ θ ≤ θ2, ϕ1 ≤ ϕ ≤ ϕ2, ρ1(θ ,ϕ)≤ ρ ≤ ρ2(θ ,ϕ)

το τριπλό ολοκλήρωμα ∫∫∫
W

f (x,y,z)dV

είναι ίσο με∫ θ2

θ1

∫ ϕ2

ϕ1

∫ ρ2(θ ,ϕ)

ρ1(θ ,ϕ)
f (ρ sinϕ cosθ , ρ sinϕ sinθ , ρ cosϕ)ρ2 sinϕ dρ dϕ dθ

Παράδειγμα 1.18.6 Υπολογίστε το τριπλό
ολοκλήρωμα της συνάρτησης f (x,y,z) = z πάνω
στην κωνική περιοχή W του Σχήματος 1.73, που
θυμίζει το χωνάκι ενός παγωτού, η οποία βρίσκεται
πάνω από τον κώνο και κάτω από τη σφαίρα.

Σχήμα 1.73 Το χωνάκι ενός
παγωτού ορίζεται από τις ανισώσεις

0≤ ρ ≤ R, 0≤ ϕ ≤ π
4

Λύση. Ο κώνος έχει εξίσωση x2 + y2 = z2 και σε σφαιρικές συντεταγμένες εκφράζεται ως:

(ρ sinϕ cosθ)2 +(ρ sinϕ sinθ)2 = (ρ cosϕ)2

ρ2 sin2 ϕ(cos2 θ + sin2 θ) = ρ2 cos2 ϕ

sin2 ϕ = cos2 ϕ

sinϕ =±cosϕ ⇒ ϕ =
π
4
,
3π
4

Ο μισός κώνος που βρίσκεται πάνω από το επίπεδο xy έχει εξίσωση ϕ =
π
4
. Η σφαίρα έχει
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εξίσωση ρ =R, επομένως το χωνάκι του παγωτού στο οποίο γίνεται η ολοκλήρωση περιγράφεται
ως:

W : 0≤ θ ≤ 2π, 0≤ ϕ ≤ π
4
, 0≤ ρ ≤ R

Προκύπτει, επομένως, το ακόλουθο ολοκλήρωμα για το οποίο, όπως και στο προηγούμενο
παράδειγμα, θα ολοκληρώσουμε πρώτα ως προς τη συντεταγμένη θ , καθώς το αποτέλεσμα των
δύο εσωτερικών ολοκληρωμάτων είναι ανεξάρτητα από αυτήν. Δηλαδή:∫∫∫

W
zdV =

∫ 2π

0

∫ π/4

0

∫ R

0
(ρ cosϕ)ρ2 sinϕ dρ dϕ dθ

= 2π
∫ π/4

0
∫ R

0 ρ3 cosϕ sinϕ dρ dϕ =
πR4

2

∫ π/4

0
sinϕ cosϕ dϕ =

πR4

8

Ασκήσεις 1.18.7 1. Στις Ασκήσεις (a) - (f) να σχεδιάσετε το χωρίο D που αναφέρεται σε
κάθε περίπτωση και να υπολογίσετε το ολοκλήρωμα της αντίστοιχης συνάρτησης f (x,y)
πάνω στο χωρίο D χρησιμοποιώντας πολικές συντεταγμένες.

(a) f (x,y) =
√

x2 + y2, x2 + y2 ≤ 2

(b) f (x,y) = x2 + y2, 1≤ x2 + y2 ≤ 4

(c) f (x,y) = xy, x≥ 0, y≥ 0, x2 + y2 ≤ 4

(d) f (x,y) = y(x2 + y2)3, y≥ 0, x2 + y2 ≤ 1

(e) f (x,y) = y(x2 + y2)−1, y≥ 1
2 , x2 + y2 ≤ 1

(f) f (x,y) = ex2+y2
, x2 + y2 ≤ R

2. Για κάθε ένα από τα παρακάτω ολοκληρώματα:

(i) να σχεδιαστεί το χωρίο ολοκλήρωσης, και

(ii) να υπολογιστεί το ολοκλήρωμα έπειτα από μεταβολή μεταβλητών σε πολικές συν-
τεταγμένες.

(a)
∫ 2

−2

∫ √4−x2

0
(x2 + y2)dydx

(b)
∫ 3

0

∫ √9−y2

0

√
x2 + y2 dxdy

(c)
∫ 1/2

0

∫ √1−x2

√
3x

xdydx
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(d)
∫ 4

0

∫ √16−x2

0
tan−1

(y
x

)
dydx

(e)
∫ 5

0

∫ y

0
xdxdy

(f)
∫ 2

0

∫ √3x

x
ydydx

(g)
∫ 2

−1

∫ √4−x2

0
(x2 + y2)dydx

(h)
∫ 2

1

∫ √2x−x2

0

1√
x2 + y2

dydx

3. Χρησιμοποιήστε κυλινδρικές συντεταγμένες για να υπολογίσετε το τριπλό ολοκλήρωμα
της συνάρτησης f (x,y,z)= z στην περιοχή που βρίσκεται πάνω από τον δίσκο x2+y2≤
1 του επιπέδου xy και κάτω από την επιφάνεια

z = 4+ x2 + y2.

1.19 Αλλαγή μεταβλητών

Στην παρούσα ενότητα θα μελετήσουμε απεικονίσεις της μορφής

G : D ⊆ R2 −→ R2,

όπου D είναι ένα χωρίο του επιπέδου R2. Για να μη δημιουργείται σύγχυση ανάμεσα στις
μεταβλητές του πεδίου ορισμού και σε εκείνες του πεδίου τιμών, θα χρησιμοποιούμε συνήθως τα
γράμματα u,v για τις μεταβλητές στο πεδίο ορισμού, ενώ τα x,y θα αναφέρονται στις αντίστοιχες
μεταβλητές του πεδίου τιμών. Με βάση αυτή τη σύμβαση, η απεικόνιση G γράφεται

G(u,v) = (x(u,v), y(u,v)),

όπου οι συναρτήσεις x(u,v) και y(u,v) παριστούν τις καρτεσιανές συντεταγμένες ενός σημείου
του πεδίου τιμών ως συναρτήσεις των μεταβλητών u,v του πεδίου ορισμού. Δηλαδή,

x = x(u,v), y = y(u,v).

Αντιστρόφως, αν η απεικόνιση είναι αντιστρέψιμη, μπορούμε να εκφράσουμε και τις u,v ως
συναρτήσεις των x,y:

u = u(x,y), v = v(x,y).
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Σχήμα 1.74 Η απεικόνιση G απεικονίζει το χωρίο R του επιπέδου (u,v) στο αντίστοιχο χωρίο D του επιπέδου (x,y).

Ορισμός 1.19.1 Ιακωβιανός Πίνακας Έστω ένας μετασχηματισμός

G : (u,v) 7−→ (x,y),

όπου οι συναρτήσεις x = x(u,v) και y = y(u,v) είναι συνεχώς παραγωγίσιμες. Ο Ιακωβιανός
πίνακας του G ορίζεται ως ο πίνακας όλων των πρώτων μερικών παραγώγων:

JG(u,v) =


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 .

Η Ιακωβιανή ορίζουσα του μετασχηματισμού G είναι

det(JG) = |J(u,v)|=
∂ (x,y)
∂ (u,v)

=
∂x
∂u

∂y
∂v
− ∂x

∂v
∂y
∂u

.

Σχόλιο 1.19.2 Γεωμετρική Ερμηνεία της Αλλαγής Μεταβλητών Το πρόβλημα της αλλαγής
μεταβλητών μπορεί να διατυπωθεί γεωμετρικά ως εξής:
Δοθέντος ενός χωρίου προς ολοκλήρωση πάνω σε μια επιφάνεια του επιπέδου xy, αναζητούμε
ένα νέο σύστημα συντεταγμένων (u,v), έτσι ώστε μέσω ενός κατάλληλου μετασχηματισμού

G : (u,v) 7→ (x,y)

να εκφράσουμε το στοιχειώδες μέτρο dxdy ως παραμορφωμένη εικόνα του στοιχειώδους μέ-
τρου dudv. Με αυτόν τον τρόπο μπορούμε να υπολογίσουμε το ίδιο ολοκλήρωμα στην περιοχή
του επιπέδου xy με πιο συμβατό και απλούστερο τρόπο. Η σχέση μεταξύ των δύο στοιχείων
μέτρου δίνεται από

dxdy = |J(u,v)|dudv,

όπου ο παράγοντας |J(u,v)| εκφράζει την τοπική παραμόρφωση εμβαδού που προκαλεί ο μετα-
σχηματισμός G.
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Παράδειγμα 1.19.3 Υπολογισμός Ιακωβιανής ορίζουσας Υπολογίστε την Ιακωβιανή ορίζουσα
της απεικόνισης

G(u,v) = (u3 + v, uv)

για (u,v) = (2,1).

Λύση. Έχουμε ότι x = u3 + v και y = uv, επομένως:

JG(u,v) =
∂ (x,y)
∂ (u,v)

=

∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
3u2 1

v u

∣∣∣∣∣∣∣∣= 3u3− v

Η τιμή της Ιακωβιανής ορίζουσας στο (2,1) είναι:

JG(x,y)(2,1) = 3(2)3−1 = 23.

Αν λοιπόν το χωρίο R στο επίπεδο uv είναι απλό (π.χ. ορθογώνιο), και το D = G(R) είναι το
αντίστοιχο χωρίο στο xy–επίπεδο, τότε η παραπάνω αντιστοίχιση γράφεται

G(R) = D ,

και το ολοκλήρωμα

∫∫
D

f (x,y)dxdy

ισοδυναμεί με

∫∫
R

f (G(u,v)) |JG(u,v)|dudv.

Επομένως, ζητούμε έναν μετασχηματισμό G που να προσαρμόζει το μονάδιαιο «πλακάκι» του
uv–επιπέδου στο μονάδιαιο μέτρο επιφάνειας του xy–επιπέδου, με συντελεστή παραμόρφωσης
k = |JG(u,v)|, ώστε η ολοκλήρωση πάνω στο δύσκολο χωρίοD να μετατραπεί σε ολοκλήρωση
πάνω σε ένα απλούστερο χωρίο R.

Θεώρημα 1.19.4 Τύπος αλλαγής μεταβλητών, Έστω ότι ηG : R→D είναι μιαC1 απεικόνιση
που είναι ένα προς ένα στο εσωτερικό του R. Αν η συνάρτηση f (x,y) είναι συνεχής, τότε:∫∫

D
f (x,y)dxdy =

∫∫
R

f (x(u,v), y(u,v))
∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv.
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Σχήμα 1.75 Η G απεικονίζει ένα ορθογώνιο πλέγμα R σε ένα καμπυλωμένο πλέγμα D .

Παράδειγμα 1.19.5Αναθεώρηση των πολικών συντεταγμένωνΧρησιμοποιήστε τον τύπο αλλαγής
μεταβλητών για να αποδείξετε τη σχέση που ισχύει για την ολοκλήρωση σε πολικές συντεταγμένες.

Λύση. Η Ιακωβιανή ορίζουσα της απεικόνισης των πολικών συντεταγμένων

G(r,θ) = (r cosθ ,r sinθ)

είναι:

JG(r,θ) =

∣∣∣∣∣∣∣∣
∂x
∂ r

∂x
∂θ

∂y
∂ r

∂y
∂θ

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
cosθ −r sinθ

sinθ r cosθ

∣∣∣∣∣∣∣∣= r(cos2 θ + sin2 θ) = r

Ας υποθέσουμε ότιD =G(R) είναι η εικόνα υπό την απεικόνιση των πολικών συντεταγμένων
G του ορθογωνίουR που ορίζεται από τις ανισώσεις r1 ≤ r≤ r2, θ1 ≤ θ ≤ θ2, όπως φαίνεται
στο Σχήμα 1.76. Τότε, προκύπτει η γνωστή σχέση για την ολοκλήρωση σε πολικές συντεταγμένες,
δηλαδή: ∫∫

D
f (x,y)dxdy =

∫ θ2

θ1

∫ r2

r1

f (r cosθ ,r sinθ)r dr dθ

Σχήμα 1.76 Η απεικόνιση πολικών συντεταγμένων G(r,θ) = (r cosθ , r sinθ).
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Παράδειγμα 1.19.6Απεικόνιση πολικών συντεταγμένων. Περιγράψτε την εικόνα ενός πολικού
ορθογωνίου

R = [r1,r2]× [θ1,θ2]

μέσω της απεικόνισης πολικών συντεταγμένων.

Λύση.Μια γνωστή απεικόνιση αυτού του τύπου είναι η απεικόνιση των πολικών συντεταγμένων:

G(r,θ) = (r cosθ , r sinθ),

η οποία αντιστοιχίζει κάθε σημείο (r,θ) (απόσταση και γωνία) στο σημείο (x,y) του καρτεσια-
νού επιπέδου. Η αντίστροφη απεικόνιση δίνεται από

r =
√

x2 + y2, θ = tan−1
(y

x

)
.

Από το Σχήμα 1.76 παρατηρούμε ότι:
• Μια κατακόρυφη ευθεία γραμμή

r = r1

(σημειώνεται με κόκκινο χρώμα στο σχήμα) απεικονίζεται σε ένα σύνολο σημείων με ακτινική
συντεταγμένη ίση με r1 και οποιαδήποτε τιμή γωνίας. Πρόκειται λοιπόν για έναν κύκλο
ακτίνας r1.

• Μια οριζόντια ευθεία

θ = θ1

(σημειώνεται με στικτή γραμμή στο σχήμα) απεικονίζεται σε ένα σύνολο σημείων με ίδια
γωνία θ1 και αυθαίρετη τιμή της r-συντεταγμένης. Πρόκειται για μια ευθεία γραμμή που
διέρχεται από την αρχή των αξόνων και σχηματίζει γωνία θ1 με τον θετικό ημιάξονα x.

Η εικόνα του

R = [r1,r2]× [θ1,θ2]

υπό την απεικόνιση πολικών συντεταγμένων

G(r,θ)

είναι το πολικό ορθογώνιο στο επίπεδο xy, που ορίζεται από τις ανισώσεις

r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2.

Σχόλιο 1.19.7Η αλλαγή συντεταγμένων καθιστά πολλές περιοχές συμμετρίας (όπως κύκλους ή
τομείς) ευκολότερα περιγράψιμες, καθώς σε πολικές συντεταγμένες γράφονται με απλούστερες
εξισώσεις.

1.19.1 Γραμμικές απεικονήσεις
Οι πιο γενικές απεικονίσεις μπορεί να είναι εξαιρετικά πολύπλοκες, επομένως είναι χρήσιμο να
ξεκινήσουμε μελετώντας λεπτομερώς τις απλούστερες των περιπτώσεων— δηλαδή τις γραμμικές
απεικονίσεις.
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Μια απεικόνιση

G(u,v)

λέγεται γραμμική αν έχει τη μορφή

G(u,v) = (Au+Cv, Bu+Dv),

όπου A,B,C,D είναι σταθερές.

Μπορούμε να αποκτήσουμε καλύτερη εικόνα μιας τέτοιας γραμμικής απεικόνισης θεωρώντας
την G ως μια αντιστοίχιση μεταξύ των διανυσμάτων του επιπέδου uv και των διανυσμάτων του
επιπέδου xy.

Η απεικόνιση G διαθέτει τις ακόλουθες ιδιότητες γραμμικότητας.

G(u1 +u2, v1 + v2) = G(u1,v1)+G(u2,v2)

G(cu, cv) = cG(u,v) (c οποιαδήποτε σταθερά)

Σχήμα 1.77 Η απεικόνιση πολικών συντεταγμένων G(r,θ) = (r cosθ , r sinθ).

Μια άμεση συνέπεια αυτών των δύο ιδιοτήτων είναι ότι ηG απεικονίζει το παραλληλόγραμμο που
σχηματίζεται από δύο οποιαδήποτε διανύσματα a και b στο επίπεδο uv στο παραλληλόγραμμο
που σχηματίζεται από τις εικόνες G(a) και G(b), όπως φαίνεται στο Σχήμα 1.77. Γενικότερα,
η απεικόνιση G απεικονίζει το ευθύγραμμο τμήμα που ενώνει δύο οποιαδήποτε σημεία P και
Q στο ευθύγραμμο τμήμα που ενώνει τις εικόνες τους G(P) και G(Q). Έτσι, το πλέγμα που
σχηματίζεται από τα διανύσματα βάσης i = 〈1,0〉 και j = 〈0,1〉 απεικονίζεται σε ένα πλέγμα
που σχηματίζεται από τις εικόνες αυτών των διανυσμάτων, όπως φαίνεται στο Σχήμα 1.77, δηλαδή
τα διανύσματα:

r = G(1,0) = 〈A,B〉, s = G(0,1) = 〈C,D〉.

Παράδειγμα 1.19.8Εικόνα ενός τριγώνουΠροσδιορίστε την εικόνα ενός τριγώνουT με κορυφές
τα σημεία (1,2), (2,1) και (3,4) υπό τη γραμμική απεικόνιση

G(u,v) = (2u− v, u+ v).
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Λύση.
Αφού η απεικόνιση G είναι γραμμική, θα αντιστοιχεί σε κάθε ευθύγραμμο τμήμα που ενώνει

δύο κορυφές του τριγώνου T το ευθύγραμμο τμήμα που ενώνει τις εικόνες των αντίστοιχων
κορυφών. Επομένως, η εικόνα του τριγώνου T θα είναι το τρίγωνο με κορυφές τις εικόνες των
σημείων (βλ. Σχήμα 1.78):

G(1,2) = (0,3), G(2,1) = (3,3), G(3,4) = (2,7).

Σχήμα 1.78 Η απεικόνιση G(u,v) = (2u− v, u+ v).

Παράδειγμα 1.19.9Έστω η απεικόνισηG(u,v)= (uv−1, uv) γιαu> 0 και v> 0. Προσδιορίστε
τις εικόνες:
(α) Των ευθειών u = c και v = c.

(β) Του ορθογωνίου [1,2]× [1,2].
Προσδιορίστε επίσης την αντίστροφη απεικόνιση G−1.

Λύση. (a) Στη συγκεκριμένη απεικόνιση ισχύει

x = uv−1, y = uv.

Επομένως,

xy = u2,
y
x
= v2.

Η G απεικονίζει την κατακόρυφη ευθεία u = c στην υπερβολή xy = c2. και η οριζόντια ευθεία
v = c απεικονίζεται στο σύνολο των σημείων για τα οποία ισχύει

y
x
= c2, δηλαδή y = c2x, που

είναι ευθεία που διέρχεται από την αρχή των αξόνων και έχει κλίση c2 (βλ. Σχήμα 1.79).
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Σχήμα 1.79 Η απεικόνιση G(u,v) = (uv−1, uv).

(b) Η εικόνα του ορθογωνίου [1,2]× [1,2] είναι το καμπυλωμένο ορθογώνιο που περιορίζεται
από τέσσερις καμπύλες, οι οποίες είναι οι εικόνες των ευθειών u = 1, u = 2 και v = 1, v = 2.
Με βάση τα προηγούμενα, η ζητούμενη περιοχή ορίζεται από τις ανισότητες

1≤ xy≤ 4, 1≤ y
x
≤ 4.

Για να προσδιορίσουμε την αντίστροφη απεικόνισηG−1 θα χρησιμοποιήσουμε τις προηγούμενες
εξισώσεις, προκειμένου να καταλήξουμε στις σχέσεις

u =
√

xy και v =
√

y
x
.

Επομένως, η αντίστροφη απεικόνιση θα είναι

G−1(x,y) =
(
√

xy,
√

y
x

)
,

όπου κρατήσαμε τις θετικές τετραγωνικές ρίζες, καθώς ισχύει u > 0 και v > 0 στο συγκεκριμένο
χωρίο.

Σχόλιο 1.19.10 Θα πρέπει να θυμάστε ότι ο τύπος αλλαγής μεταβλητών μετατρέπει ένα ολοκλή-
ρωμα με μεταβλητές τις x,y σε ολοκλήρωμα με μεταβλητές τις u,v, αλλά η απεικόνιση G
έχει ως πεδίο ορισμού ένα χωρίο uv και ως πεδίο τιμών ένα χωρίο xy. Ορισμένες φορές είναι
πιο εύκολο να προσδιορίσουμε μια απεικόνιση F που έχει τη αντίθετη κατεύθυνση, δηλαδή
«ξεκινά» από ένα χωρίο xy και «καταλήγει» σε ένα χωρίοuv. Στην περίπτωση αυτή, η επιθυμητή
απεικόνιση G είναι η αντίστροφη της F , δηλαδή

G = F−1.

Το παράδειγμα που ακολουθεί δείχνει ότι ορισμένες φορές είναι εφικτό να υπολογίσουμε ένα
ολοκλήρωμα χωρίς καν να χρειαστεί να επιλύσουμε ως προς G. Το σημείο-κλειδί που εκμεταλ-
λευόμαστε για να επιτύχουμε κάτι τέτοιο είναι το γεγονός ότι η Ιακωβιανή ορίζουσα τηςG είναι
η αντίστροφη της Ιακωβιανής της απεικόνισης F , δηλαδή:
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Αν G = F−1 και JF(x,y) 6= 0, τότε

JG(u,v) = JF−1(x,y).

Η σχέση μεταξύ των Ιακωβιανών οριζουσών των F και G μπορεί να γραφεί και στην ακόλουθη
μορφή:

∂ (x,y)
∂ (u,v)

=

(
∂ (u,v)
∂ (x,y)

)−1

.

Παράδειγμα 1.19.11 Χρήση της αντίστροφης απεικόνισης, Ολοκληρώστε τη συνάρτηση

f (x,y) = xy(x2 + y2)

στο χωρίο

D :−3≤ x2− y2 ≤ 3, 1≤ xy≤ 4.

Λύση. Υπάρχει μια απλή απεικόνιση F η οποία έχει τη «λάθος» κατεύθυνση. Θέτουμε

u = x2− y2, v = xy.

Με τον τρόπο αυτόν, το χωρίο μας ορίζεται από τις ανισότητες

−3≤ u≤ 3, 1≤ v≤ 4,

επομένως μπορούμε να ορίσουμε μια απεικόνιση από το χωρίοD στο ορθογώνιοR = [−3,3]×
[1,4] στο επίπεδο uv, όπως φαίνεται στο Σχήμα 1.80, δηλαδή:

F : D →R, (x,y) 7→ (x2− y2, xy).

Σχήμα 1.80 Η απεικόνιση F έχει την αντίστροφη κατεύθυνση.
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Ο Ιακωβιανός πίνακας του F είναι

JF(x,y) =

∣∣∣∣∣∣∣∣
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
2x −2y

y x

∣∣∣∣∣∣∣∣= 2x · x− (−2y) · y = 2
(
x2 + y2

)
.

Συνεπώς, αφού JF(x,y) 6= 0 στην R, ισχύει ο τύπος

JG(u,v) = JF−1(x,y) =
1

JF(x,y)
=

1
2
(
x2 + y2

) .
Κανονικά το επόμενο βήμα θα ήταν να εκφράσουμε τη συνάρτηση f (x,y) με τη βοήθεια των
μεταβλητών u και v. Μπορούμε όμως, στην περίπτωσή μας, να αποφύγουμε αυτό το βήμα αν
παρατηρήσουμε ότι η Ιακωβιανή απλοποιείται με έναν από τους παράγοντες της συνάρτησης
f (x,y), δηλαδή:

∫∫
D

f (x,y)dxdy =
∫∫

D
xy(x2 + y2)dxdy =

∫∫
R

f (x(u,v),y(u,v)) |J(G)|dudv

=
∫∫

R
xy(x2 + y2)

1
2(x2 + y2)

dudv =
1
2

∫∫
R

xydudv.

Επειδή v = xy, προκύπτει:

1
2

∫∫
R

xydudv =
1
2

∫∫
R

vdudv =
1
2

∫ 3

−3

∫ 4

1
vdvdu =

1
2
.6
(

1
2

42− 1
2

12
)
=

45
2
.

Σχόλιο 1.19.12 Μπορούμε να ορίσουμε απευθείας τον μετασχηματισμό G από το ορθογώνιο
R = [−3,3]× [1,4] στο uv–επίπεδο στο χωρίο D στο xy–επίπεδο, χωρίς να χρειαστεί να
υπολογίσουμε τον αντίστροφο του F . Να δούμε αν αντιμετωπίσουμε προβλήματα και ποιά;
Ξεκινάμε από το σύστημα {

u = x2− y2,
v = xy.

Λύνουμε ως προς x,y. Θέτουμε R =
√

u2 +4v2, οπότε:

x2 + y2 =
√

u2 +4v2 = R, x2 =
R+u

2
, y2 =

R−u
2

.

Επειδή στο συγκεκριμένο χωρίο έχουμε v > 0 (άρα x,y > 0), παίρνουμε τον θετικό κλάδο των
ριζών. Επομένως:

G(u,v) =

(√
R+u

2
,

√
R−u

2

)
, R =

√
u2 +4v2.

Πράγματι, ελέγχουμε ότι:
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xy =

√
R+u

2

√
R−u

2
=

√
R2−u2

2
=

√
4v2

2
= v,

και

x2− y2 =
(R+u)− (R−u)

2
= u.

Επομένως έχουμε

x(u,v) =

√
R+u

2
, y(u,v) =

√
R−u

2
, R =

√
u2 +4v2.

Ru =
u
R
, Rv =

4v
R
.

∂ux =
1

2
√

(R+u)/2
· Ru +1

2
=

Ru +1
4x

, ∂vx =
1

2
√
(R+u)/2

· Rv

2
=

Rv

4x
,

∂uy =
1

2
√

(R−u)/2
· Ru−1

2
=

Ru−1
4y

, ∂vy =
1

2
√
(R−u)/2

· Rv

2
=

Rv

4y
.

JG =

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= (∂ux)(∂vy)− (∂vx)(∂uy) =
1

16xy

[
(Ru +1)Rv− (Ru−1)Rv

]
=

Rv

8xy
.

Με Rv =
4v
R

παίρνουμε

JG =
1

8xy
· 4v

R
=

v
2Rxy

.

Από τους ορισμούς x,y:

xy =

√
R+u

2

√
R−u

2
=

√
R2−u2

4
=

√
u2 +4v2−u2

4
=

√
4v2

4
= |v|.

Στο εξεταζόμενο χωρίο v > 0, άρα xy = v και επομένως

JG =
1

2R
=

1
2
√

u2 +4v2
.

Τελική μορφή του ολοκληρώματος χωρίς χρήση αντιστρόφου:∫∫
D

f (x,y)dxdy =
∫∫

D ′
f
(
x(u,v),y(u,v)

) ∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv =∫∫
D ′

f
(√R+u

2
,

√
R−u

2

) 1
2
√

u2 +4v2
dudv, R =

√
u2 +4v2.
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f (x,y) = xy(x2 + y2), D : −3≤ x2− y2 ≤ 3, 1≤ xy≤ 4.

Θέτουμε:

u = x2− y2, v = xy.

Τότε το χωρίο D αντιστοιχίζεται στο

D ′ : −3≤ u≤ 3, 1≤ v≤ 4.

Εκφράζουμε τη f (x,y) συναρτήσει των (u,v):

f (x(u,v),y(u,v)) = xy(x2 + y2) = v(x2 + y2) = vR = v
√

u2 +4v2.

Από τα προηγούμενα έχουμε:

JG =

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= 1
2
√

u2 +4v2
.

Άρα το ολοκλήρωμα γράφεται:∫∫
D

f (x,y)dxdy =
∫∫

D ′
f
(
x(u,v),y(u,v)

) ∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv =∫∫
D ′

f
(√R+u

2
,

√
R−u

2

) 1
2
√

u2 +4v2
dudv =∫∫

D ′
v
√

u2 +4v2 1
2
√

u2 +4v2
dudv =

1
2

∫∫
D ′

vdudv.

Υπολογίζουμε:∫∫
D ′

vdudv =
∫ 3

u=−3

∫ 4

v=1
vdvdu =

∫ 3

u=−3
du ·

∫ 4

v=1
vdv

= 6
∫ 4

1
vdv = 6

[
v2

2

]4

1
= 3(16−1) = 45.

Τελικά: ∫∫
D

f (x,y)dxdy =
1
2
×45 = 22.5.

1.20 Αλλαγή μεταβλητών στην περίπτωση τριών μεταβλητών

Ο τύπος αλλαγής μεταβλητών έχει την ίδια μορφή στην περίπτωση που έχουμε τρεις (ή και ακόμα
περισσότερες) μεταβλητές, με τη σχέση που αναλύσαμε για την περίπτωση των δύο μεταβλητών.
Έστω η

G : W0→W

η οποία απεικονίζει μια περιοχή W0 του τρισδιάστατου χώρου (u,v,w) σε μια περιοχή W του
τρισδιάστατου χώρου (x,y,z), μέσω των σχέσεων
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x = x(u,v,w), y = y(u,v,w), z = z(u,v,w).

Η Ιακωβιανή ορίζουσα JG(x,y,z) είναι η ορίζουσα 3×3:

JG(x,y,z) =
∂ (x,y,z)
∂ (u,v,w)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂ z
∂u

∂ z
∂v

∂ z
∂w

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

οπότε ο τύπος αλλαγής μεταβλητών παίρνει τη μορφή:

dxdydz =
∣∣∣∣ ∂ (x,y,z)
∂ (u,v,w)

∣∣∣∣dudvdw.

Αν θέλουμε να είμαστε πιο αυστηροί, θα πρέπει να αναφέρουμε ότι αν η απεικόνιση G είναι C1

και ένα προς ένα στο εσωτερικό της περιοχής W0 και η f είναι συνεχής, τότε:∫∫∫
W

f (x,y,z)dxdydz =
∫∫∫

W0

f (x(u,v,w), y(u,v,w), z(u,v,w))
∣∣∣∣ ∂ (x,y,z)
∂ (u,v,w)

∣∣∣∣dudvdw.

Στις Ασκήσεις 42 και 43 θα έχετε την ευκαιρία να χρησιμοποιήσετε τον γενικό τύπο αλλαγής
μεταβλητών, για να αποδείξετε τις σχέσεις για την ολοκλήρωση σε κυλινδρικές και σφαιρικές
συντεταγμένες που αναφέρθηκαν στην Ενότητα 15.4.

Παράδειγμα 1.20.1 1. Στις Ασκήσεις (a)–(c) θεωρήστε ότι η

G(u,v) = (2u+ v, 5u+3v)

είναι μια απεικόνιση από το επίπεδο uv στο xy.

(a) Να αποδείξετε ότι η εικόνα της οριζόντιας ευθείας v = c, υπό την απεικόνιση G,
είναι η ευθεία με εξίσωση

y =
5
2

x+
1
2

c.

Ποια είναι η εικόνα (σε μορφή κλίσης–τεταγμένης) της κατακόρυφης ευθείας u= c;

(b) Περιγράψτε την εικόνα της ευθείας που διέρχεται από τα σημεία

(u,v) = (1,1) και (u,v) = (1,−1),

υπό την απεικόνιση G, στη μορφή κλίσης–τεταγμένης.

(c) Περιγράψτε την εικόνα της ευθείας

v = 4u,
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υπό την απεικόνιση G, στη μορφή κλίσης–τεταγμένης.

2. Στις Ασκήσεις (a)–(f) υπολογίστε την Ιακωβιανή ορίζουσα (στο σημείο, εφόσον αυτό αναφέ-
ρεται).

(a) G(u,v) = (3u+4v, u−2v)

(b) G(r,s) = (rs, r+ s)

(c) G(r, t) = (r sin t, r− cos t), (r, t) = (1,π)

(d) G(u,v) = (v lnu, u2v−1), (u,v) = (1,2)

(e) G(r,θ) = (r cosθ , r sinθ), (r,θ) =
(
4,

π
6
)

(f) G(u,v) = (uev, eu)

3. ΈστωD το παραλληλόγραμμο του Σχήματος 1.81. Εφαρμόστε τον τύπο αλλαγής μεταβλη-
τών στην απεικόνιση

G(u,v) = (5u+3v, u+4v)

προκειμένου να υπολογίσετε το ολοκλήρωμα∫∫
D

xydxdy

ως ένα ολοκλήρωμα πάνω στο χωρίο

R = [0,1]× [0,1].

Σχήμα 1.81

4. Έστω η απεικόνιση

G(u,v) = (u−uv, uv).

(a) Δείξτε ότι η εικόνα της οριζόντιας ευθείας v = c είναι η

y =
c

1− c
x αν c 6= 1,

ενώ είναι ο άξονας y αν c = 1.
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(b) Προσδιορίστε τις εικόνες των κατακόρυφων ευθειών του επιπέδου uv.

(c) Υπολογίστε την Ιακωβιανή ορίζουσα της απεικόνισης G. Υπολογίστε το διπλό
ολοκλήρωμα ∫∫

D xydxdy.

Σχήμα 1.82

(d) Παρατηρήστε ότι, σύμφωνα με τον τύπο του εμβαδού ενός τριγώνου, το χωρίο D
του Σχήματος 1.82 έχει εμβαδόν

1
2
(b2−a2).

Υπολογίστε το εμβαδόν αυτό εκ νέου, χρησιμοποιώντας τον τύπο αλλαγής μετα-
βλητών για την απεικόνιση G.

5. Υπολογίστε το διπλό ολοκλήρωμα∫∫
D
(x+3y)dxdy

όπου D είναι η σκιασμένη περιοχή του Σχήματος 1.83.
Υπόδειξη: Χρησιμοποιήστε την απεικόνιση

G(u,v) = (u−2v, v).

Σχήμα 1.83

6. Χρησιμοποιήστε την απεικόνιση

G(u,v) =
(

u
v+1

,
uv

v+1

)
για να υπολογίσετε το διπλό ολοκλήρωμα
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∫∫
D(x+ y)dxdy,

όπου D είναι η σκιασμένη περιοχή του Σχήματος 1.84.

Σχήμα 1.84

7. Σχεδιάστε το χωρίο

D = {(x,y) : 1≤ x+ y≤ 4,−4≤ y−2x≤ 1}.

(a) Έστω F η απεικόνιση

u = x+ y, v = y−2x

από το επίπεδο xy στο επίπεδο uv, ενώ G είναι η αντίστροφή της. Χρησιμοποιήστε
την Εξίσωση (14) για να υπολογίσετε την JG(x,y).

(b) Υπολογίστε το διπλό ολοκλήρωμα∫∫
D

ex+y dxdy

με τον τύπο αλλαγής μεταβλητών για την απεικόνιση G.

8. Να σχεδιάσετε το χωρίο D που φράσσεται από τις καμπύλες

y =
2
x
, y =

1
2x

, y = 2x, y =
x
2

και βρίσκεται στο πρώτο τεταρτημόριο. Έστω F η απεικόνιση

u = xy, v =
y
x

από το επίπεδο xy στο επίπεδο uv.
(a) Βρείτε την εικόνα του χωρίου D υπό την απεικόνιση F .

(b) Έστω ότι G = F−1. Να αποδείξετε ότι

|JG|=
1

2|v|
.

(c) Χρησιμοποιήστε τον τύπο αλλαγής μεταβλητών για να αποδείξετε τη σχέση
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∫∫
D

f
(y

x

)
dxdy =

3
4

∫ 2

1/2

f (v)
v

dv.

(d) Εφαρμόστε το αποτέλεσμα που αποδείξατε στο ερώτημα (γ) για να υπολογίσετε το
διπλό ολοκλήρωμα ∫∫

D

yey/x

x
dxdy.

9. Χρησιμοποιήστε την απεικόνιση

G(u,v) =
(u+ v

2
,

u− v
2

)
για να υπολογίσετε το διπλό ολοκλήρωμα∫∫

R

(
(x− y)sin(x+ y)

)2 dxdy

όπου R είναι το τετράγωνο με κορυφές τα σημεία (π,0), (2π,π), (π,2π) και (0,π).

Λύση.

1. Δίνεται η απεικόνιση

G(u,v) = (x,y) = (2u+ v, 5u+3v)

(a) Έστω η οριζόντια ευθεία v = c στο επίπεδο uv.
Τότε:

x = 2u+ c, y = 5u+3c

Απομονώνουμε u από την πρώτη:

u =
x− c

2
και αντικαθιστούμε στη δεύτερη:

y = 5
x− c

2
+3c =

5
2

x− 5
2

c+3c =
5
2

x+
1
2

c

Άρα η εικόνα της ευθείας v = c είναι η ευθεία

y =
5
2

x+
1
2

c.

Για την κατακόρυφη ευθεία u = c ισχύει:

x = 2c+ v, y = 5c+3v.

Από την πρώτη v = x−2c και στη δεύτερη:

y = 5c+3(x−2c) = 3x− c.

Άρα η εικόνα της κατακόρυφης ευθείας u = c είναι:
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y = 3x− c.

(b) Η ευθεία που διέρχεται από τα σημεία (u,v) = (1,1) και (u,v) = (1,−1) έχει
εξίσωση u = 1.
Από το (a) γνωρίζουμε ότι η εικόνα της u = c είναι y = 3x− c. Άρα, για c = 1
έχουμε:

y = 3x−1.

(c) Για την ευθεία v = 4u ισχύει:

x = 2u+4u = 6u, y = 5u+3(4u) = 17u.

Απομονώνουμε u από την πρώτη: u =
x
6
, και αντικαθιστούμε:

y = 17
x
6
⇒ y =

17
6

x.

Άρα η εικόνα της ευθείας v = 4u είναι η ευθεία:

y =
17
6

x.

3.
G(u,v) = (x,y) = (5u+3v, u+4v), R = [0,1]× [0,1].

Υπολογίζουμε τον Ιακωβιανό:

JG(u,v) =

∣∣∣∣∣∣∣
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
5 3

1 4

∣∣∣∣∣∣∣= 5 ·4−3 ·1 = 17.

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= 17.

Αντικαθιστούμε: x = 5u+3v, y = u+4v.

xy = (5u+3v)(u+4v) = 5u2 +23uv+12v2.

∫∫
D

xydxdy =
∫∫

R
(5u2 +23uv+12v2)

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv =

17
∫ 1

0

∫ 1

0
(5u2 +23uv+12v2)dvdu.
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∫ 1

0
(5u2 +23uv+12v2)dv = 5u2v+

23
2

uv2 +4v3
∣∣∣1
0
= 5u2 +

23
2

u+4.

∫ 1

0
(5u2 +

23
2

u+4)du =
5
3
+

23
4
+4 =

20+69+48
12

=
137
12

.

I = 17 · 137
12

=
2329

12
.

4.
G(u,v) = (u−uv, uv).

(a)

Για την οριζόντια ευθεία v = c, έχουμε: x = u(1− c), y = uc.

Άρα y =
c

1− c
x, αν c 6= 1, και y είναι ο άξονας y αν c = 1.

(b)

Για κάθετα σημεία u = k, προκύπτει: x = k(1− v), y = kv ⇒ x+ y = k.

(c)

Υπολογίζουμε τον Ιακωβιανό:

J =

∣∣∣∣∣∣∣
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
1− v −u

v u

∣∣∣∣∣∣∣= u.

(d)

Αν το χωρίο D αντιστοιχεί στο R : [a,b]× [0,1], τότε το ολοκλήρωμα γίνεται:

∫∫
D

xydxdy =
∫∫

R
x(u,v)y(u,v)

∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣ dudv =
∫∫

R
(u−uv)(uv) |u|dudv.

Εφόσον u > 0, έχουμε:
∫∫

R
(u−uv)(uv)ududv =

∫∫
R
(u3v−u3v2)dudv.

∫∫
R
(u3v−u3v2)dudv =

∫ b

a
u3 du

∫ 1

0
(v− v2)dv =

[
u4

4

]b

a

[
v2

2
− v3

3

]1

0
.

=
1
4
(b4−a4)

(
1
2
− 1

3

)
=

1
4
(b4−a4)

1
6
=

1
24

(b4−a4) .
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Το εμβαδόν του χωρίου (όπως στο Σχήμα 1.9) είναι:

A =
1
2
(b2−a2),και επαληθεύεται μέσω του μετασχηματισμού G.

5.
G(u,v) = (x,y) = (u−2v, v). ⇒ R = [6,10]× [1,3].

JG(x,y) =

∣∣∣∣∣∣∣
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
1 −2

0 1

∣∣∣∣∣∣∣= 1, x+3y = (u−2v)+3v = u+v.

∫∫
D
(x+3y)dxdy =

∫∫
R
(u+ v)dudv =

∫ 3

1

∫ 10

6
(u+ v)dudv.

∫ 10

6
(u+ v)du =

u2

2
+ vu

∣∣∣10

6
= 32+4v, ⇒

∫ 3

1
(32+4v)dv =

32 ·2+2(32−12) = 80.

Επομένως, ∫∫
D
(x+3y)dxdy = 80.

6.
G(u,v) = (x,y) =

( u
v+1

,
uv

v+1

)
, ⇒ u = x+ y, v =

y
x
.

Όρια: y= x⇒ v= 1, y= 2x⇒ v= 2, x+y= 6⇒ u= 6. ⇒ R = [0,6]× [1,2].

Ιακωβιανός:
∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣=
∣∣∣∣∣∣∣∣

1
v+1

− u
(v+1)2

v
v+1

u
(v+1)2

∣∣∣∣∣∣∣∣=
u

(v+1)2 .

∫∫
D
(x+ y)dxdy =

∫∫
R

u
u

(v+1)2 dudv =
∫ 2

1

∫ 6

0

u2

(v+1)2 dudv.

∫ 6

0
u2 du =

[
u3

3

]6

0
= 72,

∫ 2

1

1
(v+1)2 dv =

[
− 1

v+1

]2

1
=

1
6
.

Επομένως,
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∫∫
D
(x+ y)dxdy = 72 · 1

6
= 12.

7.
D = {(x,y) : 1≤ x+ y≤ 4, −4≤ y−2x≤ 1}.

(a) Ο μετασχηματισμός:

F(x,y) = (u,v) = (x+ y, y−2x).

JF =

∣∣∣∣∣∣∣
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

1 1

−2 1

∣∣∣∣∣∣∣= 3 ⇒ JG(x,y) =
∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= 1
3
.

(β) Αλλαγή μεταβλητών για
∫∫

D
ex+y dxdy. Από τους ορισμούς:

u = x+ y, v = y−2x⇒R = [1,4]× [−4,1]. Επίσης ex+y = eu.

∫∫
D

ex+y dxdy =
∫∫

R
eu JG dudv =

∫∫
R

eu 1
3

dudv

=
1
3

∫ 1

−4

∫ 4

1
eu dudv =

1
3
(1− (−4))(e4− e) =

5
3
(e4− e) .

8. Δίνεται: D ⊂ R2 στο τεταρτημόριο με σύνορα

y =
2
x
, y =

1
2x

, y = 2x, y =
x
2
. F(x,y) = (u,v) = (xy,

y
x
).

(a) Εικόνα του D με τον F .

y =
2
x
⇒ u = 2, y =

1
2x
⇒ u =

1
2
, y = 2x⇒ v = 2, y =

x
2
⇒ v =

1
2
.

⇒ R = {(u,v) :
1
2
≤ u≤ 2,

1
2
≤ v≤ 2}.

(b) Ιακωβιανός του G = F−1.

JF(u,v) =

∣∣∣∣∣∣∣
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

y x

− y
x2

1
x

∣∣∣∣∣∣∣= 2
y
x
= 2v.

⇒ |JG|=
∣∣∣∣∂ (x,y)∂ (u,v)

∣∣∣∣= 1
|JF |

=
1

2|v|
. (στο D : v > 0⇒ |v|= v)
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(c) Τύπος αλλαγής μεταβλητών για ∫∫
D

f
(y

x

)
dxdy.

∫∫
D

f
(y

x

)
dxdy =

∫∫
R

f (v) |JG|dudv =
∫∫

R
f (v)

1
2v

dudv =(∫ 2

1
2

du
)

1
2

∫ 2

1
2

f (v)
v

dv =
3
4

∫ 2

1/2

f (v)
v

dv .

(d) Υπολογισμός ∫∫
D

yey/x

x
dxdy.

y
x
= v⇒ ολοκλ. συνάρτηση vev.

∫∫
D

yey/x

x
dxdy =

∫∫
R

(
vev) |JG|dudv =

∫∫
R

(
vev) 1

2v
dudv

=
1
2

(∫ 2

1
2

du
)∫ 2

1
2

ev dv =
3
4
(
e2− e1/2) .

9. Θέτουμε την αλλαγή

(x,y) = G(u,v) =
(u+ v

2
,

u− v
2

)
οπότε

u = x+ y, v = x− y.

Ο Ιακωβιανός είναι

JG(x,y) =

∣∣∣∣∣∣∣∣∣∣
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1
2

1
2

1
2
−1

2

∣∣∣∣∣∣∣∣∣∣
=−1

2
,

|JG(x,y)|=
1
2
, dxdy =

1
2

dudv.

Το ολοκλήρωμα γράφεται

((x− y)sin(x+ y))2 = (vsinu)2 = v2 sin2 u.

Η περιοχή R έχει κορυφές (π,0),(2π,π),(π,2π),(0,π). Με u = x+ y, v = x− y
παίρνουμε ορθογώνιο:

π ≤ u≤ 3π, −π ≤ v≤ π.
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Πράγματι, Για τον μετασχηματισμό

u = x+ y, v = x− y,

παίρνουμε τα 4 κορυφαία σημεία της περιοχής R:

(π,0), (2π,π), (π,2π), (0,π).

Υπολογίζουμε u και v σε καθένα:
• Στο (π,0): u = π +0 = π , v = π−0 = π .

• Στο (2π,π): u = 2π +π = 3π , v = 2π−π = π .

• Στο (π,2π): u = π +2π = 3π , v = π−2π =−π .

• Στο (0,π): u = 0+π = π , v = 0−π =−π .

Άρα οι τιμές του u κυμαίνονται από π έως 3π , ενώ οι τιμές του v από−π έως π :

π ≤ u≤ 3π, −π ≤ v≤ π.

Άρα ∫∫
R

(
(x− y)sin(x+ y)

)2 dxdy =
∫ 3π

π

∫ π

−π
v2 sin2 u

1
2

dvdu =

1
2

(∫ π

−π
v2 dv

)(∫ 3π

π
sin2 udu

)
.

Υπολογίζουμε ∫ π

−π
v2 dv =

2π3

3
,

∫ 3π

π
sin2 udu = π.

Συνεπώς ∫∫
R

(
(x− y)sin(x+ y)

)2 dxdy =
1
2
· 2π3

3
·π =

π4

3
.

1.21 Πεπλεγμένες Συναρτήσεις
Στον λογισμό των συναρτήσεων μίας μεταβλητής χρησιμοποιήσαμε την πεπλεγμένη παράγωγη

για να προσδιορίσουμε την
dy
dx

στην περίπτωση που η y ορίζεται πεπλεγμένα ως συνάρτηση του

x μέσω μιας εξίσωσης της μορφής f (x,y) = 0. Η μέθοδος αυτή μπορεί να χρησιμοποιηθεί και
για συναρτήσεις με περισσότερες μεταβλητές. Ας υποθέσουμε ότι η z ορίζεται πεπλεγμένα από
μια εξίσωση της μορφής

F(x,y,z) = 0.

Τότε γενικεύοντας την πεπλεγμένη παράγωγη στις εξισώσεις της μορφής f (x,y) = 0 έχουμε τα
εξής:
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Ορισμός 1.21.1 Λέμε ότι η εξίσωση F(x,y,z) = 0 ορίζει με πεπλεγμένη μορφή μια συνάρτηση
z = f (x,y) στον χωρίο D ⊆ R2, αν για κάθε (x,y) ∈D ισχύει η σχέση

F(x,y, f (x,y)) = 0.

Θεώρημα 1.21.2 Έστω η εξίσωση F(x,y,z) = 0 και το σημείο (x0,y0,z0) εσωτερικό σημείο
ενός χωρίου D ⊆ R3. Αν ισχύουν οι παρακάτω προϋποθέσεις:


(i) F(x0,y0,z0) = 0,

(ii) Fx, Fy, Fz είναι συνεχείς στο D ,

(iii) Fz(x0,y0,z0) 6= 0,

τότε υπάρχει μια περιοχή I0 γύρω από το σημείο (x0,y0) στην οποία ορίζεται μία και μόνον
μία διαφορίσιμη συνάρτηση z = f (x,y) τέτοια ώστε:

(a) z0 = f (x0,y0),

(b) F(x,y, f (x,y)) = 0,

(c)
∂ z
∂x

=−Fx

Fz
,

∂ z
∂y

=−
Fy

Fz
.

Λύση. Από

F(x,y,z) = 0 ⇒ dF(x,y,z) = 0

έχουμε
∂F
∂x

dx+
∂F
∂y

dy+
∂F
∂ z

dz = 0 (i)

Επίσης, από

z = f (x,y)

παίρνουμε

dz =
∂ f
∂x

dx+
∂ f
∂y

dy (ii)

Αντικαθιστούμε τη (ii) στη (i):

∂F
∂x

dx+
∂F
∂y

dy+
∂F
∂ z

(
∂ f
∂x

dx+
∂ f
∂y

dy
)
= 0

Συγκεντρώνοντας όρους ως προς dx και dy:
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(
∂F
∂x

+
∂F
∂ z

∂ f
∂x

)
dx+

(
∂F
∂y

+
∂F
∂ z

∂ f
∂y

)
dy = 0

Επειδή η σχέση ισχύει για κάθε dx,dy, οι συντελεστές πρέπει να μηδενίζονται:

∂F
∂x

+
∂F
∂ z

∂ f
∂x

= 0,
∂F
∂y

+
∂F
∂ z

∂ f
∂y

= 0

Άρα προκύπτει:

∂ f
∂x

=−Fx

Fz
,

∂ f
∂y

=−
Fy

Fz

Σημείωση 1.21.3
1. Αν μας ζητείται να αποδείξουμε ότι η F(x,y,z) = 0 ορίζει συνάρτηση z = f (x,y) γύρω

από το σημείο (x0,y0,z0), τότε αρκεί να δείξουμε ότι ικανοποιούνται οι σχέσεις (i),
(ii), (iii) του προηγούμενου θεωρήματος. (Η συνέχεια των Fx,Fy,Fz συνήθως θα είναι
προφανής από άθροισμα – γινόμενο – πηλίκο συνεχών συναρτήσεων.)

2. Αν μας ζητείται να αποδείξουμε ότι ηF(x,y,z)= 0 ορίζει συνάρτηση z= f (x,y) γενικό-
τερα στο χωρίοD , τότε δείχνουμε ότι ηF(x,y,z)= 0 έχει ως προς z μοναδική λύση στον
και ότι ικανοποιούνται στον οι σχέσεις (ii), (iii) του θεωρήματος.

Σχόλιο 1.21.4 Πολλές φορές, προς χάριν ομοιομορφίας και απλότητας των αποδείξεων στις
ασκήσεις, θα χρησιμοποιούμε τον συμβολισμό zx αντί για fx και zy αντί για fy, όταν η συνάρτηση
z = f (x,y) ορίζεται πεπλεγμένα ή ρητά. Η ίδια σύμβαση θα ακολουθείται και για παραγώγους
ανώτερης τάξης, όπως zxx, zxy, zyy, ώστε να διατηρείται ενιαίος και σαφής τρόπος γραφής σε
όλες τις μορφές και βαθμίδες των παραγώγων.

Παράδειγμα 1.21.5Να δειχθεί ότι υπάρχει συνάρτηση z= f (x,y) που επαληθεύει την εξίσωση

sin(xyz) = 2x+3y+ z

στην περιοχή του (0,0,0). Να υπολογιστεί προσεγγιστικά η τιμή του z όταν x= 0.1, y=−0.2
(προσέγγιση πρώτης τάξης).

Λύση.

F(x,y,z) = sin(xyz)−2x−3y− z.

Ελέγχουμε στο (0,0,0):

F(0,0,0) = 0, Fz(x,y,z) = cos(xyz)xy−1 ⇒ Fz(0,0,0) =−1 6= 0.

Άρα, από τοΘεώρημαΈμμεσης Συνάρτησης, υπάρχει (και είναι μοναδική) συνάρτηση z= f (x,y)
κοντά στο (0,0) με F(x,y, f (x,y)) = 0 και f (0,0) = 0.

Οι μερικές παράγωγοι δίνονται από

157



fx =−
Fx

Fz
, fy =−

Fy

Fz
,

όπου

Fx(x,y,z) = cos(xyz)yz−2, Fy(x,y,z) = cos(xyz)xz−3.

Στο (0,0,0):

Fx(0,0,0) =−2, Fy(0,0,0) =−3, Fz(0,0,0) =−1 ⇒

fx(0,0) =−2, fy(0,0) =−3.

Επομένως η γραμμική προσέγγιση πρώτης τάξης του f γύρω από το (0,0) είναι

L(x,y) = f (0,0)+ fx(0,0)x+ fy(0,0)y =−2x−3y.

z = f (0.1,−0.2)≈−2(0.1)−3(−0.2) = 0.4.

Παράδειγμα 1.21.6 Δίνεται η εξίσωση

z3− xz− y = 0.

Να βρεθούν τα σημεία (x,y,z)∈R3 για τα οποία η εξίσωση αυτή μπορεί να ορίσει μία συνάρτη-
ση z = f (x,y) και να υπολογιστούν οι παράγωγοι fx(0,1) και fyy(0,1).

Λύση.
Έχουμε ότι

F(x,y,z) = z3− xz− y = 0.

Για κάθε (x,y) ∈R2 η εξίσωση z3−xz−y = 0 είναι κυβική ως προς z και έχει τουλάχιστον
μία πραγματική ρίζα. Επιπλέον:

Fx =−z, Fy =−1, Fz = 3z2− x

οι οποίες είναι συνεχείς στο R3.
Για να ορίζεται τοπικά η z = z(x,y), πρέπει να ισχύει

Fz = 3z2− x 6= 0 ⇒ 3z2 6= x.

Άρα, από το Θεώρημα Έμμεσης Συνάρτησης, η εξίσωση F(x,y,z) = 0 ορίζει συνάρτηση z =
f (x,y) όταν 3z2 6= x.

Έχουμε:

fx =−
Fx

Fz
=− −z

3z2− x
⇒ fx =

z
3z2− x

.

Βρίσκουμε το z για το σημείο (x,y) = (0,1) από F(x,y,z) = 0:
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z3−0 · z−1 = 0 ⇒ z = 1.

Άρα

fx(0,1) =
1

3 ·12−0
=

1
3
.

Επίσης:

fy =−
Fy

Fz
=− −1

3z2− x
⇒ fy =

1
3z2− x

.

Παραγωγίζουμε την fy ως προς y, θεωρώντας το x σταθερό και z = f (x,y):

fyy =
∂
∂y

(
1

3z2− x

)
=−

(6zzy)

(3z2− x)2 .

Αντικαθιστούμε το fy από την (ii):

fyy =−
6z

(3z2− x)3 .

Στο σημείο (x,y) = (0,1), όπου z = 1:

fyy(0,1) =−
6 ·1

(3 ·12−0)3 =−2
9
.

Παράδειγμα 1.21.7 Δείξτε ότι η σχέση

x+ y+ z− exyz = 0

ορίζει στην περιοχή του σημείου (0, 1
2 ,

1
2) πεπλεγμένη συνάρτηση z = f (x,y). Στη συνέχεια,

βρείτε την εξίσωση του εφαπτόμενου επιπέδου της επιφάνειας z= f (x,y) στο σημείο (0, 1
2 ,

1
2).

Λύση.Θέτουμε F(x,y,z) = x+ y+ z− exyz. Έχουμε F(0, 1
2 ,

1
2) = 0 και

Fz = 1− exyzxy ⇒ Fz(0, 1
2 ,

1
2) = 1 6= 0,

άρα (Θ. έμμεσης συνάρτησης) υπάρχει τοπικά z = f (x,y). Επιπλέον

Fx = 1− exyzyz, Fy = 1− exyzxz, Fz = 1− exyzxy,

οπότε στο (0, 1
2 ,

1
2):

Fx =
3
4
, Fy = 1, Fz = 1⇒ fx =−

Fx

Fz
=−3

4
, fy =−

Fy

Fz
=−1.

Το εφαπτόμενο επίπεδο:

z =−3
4

x−
(

y− 1
2

)
(ισοδύναμα:

3
4

x+ y+ z =
1
2
).
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Παράδειγμα 1.21.8 Αν y3− xy− z = 0 και 3y2− x 6= 0, δείξτε ότι

∂ 2y
∂ z∂x

=− 3y2 + x
(3y2− x)3 .

Λύση.Έστω F(x,y,z) = y3− xy− z. Προφανώς οι Fx,Fy,Fz είναι συνεχείς, και επειδή Fy =
3y2− x 6= 0, από την υπόθεση ορίζεται συνάρτηση y = f (x,z).

Από y3− xy− z = 0, παραγώγιση ως προς z (με x σταθερό, y = y(x,z)):

3y2 ∂y
∂ z
− x

∂y
∂ z
−1 = 0.

Άρα

(3y2− x)
∂y
∂ z

= 1 ⇒ ∂y
∂ z

=
1

3y2− x
.

Παραγώγιση ως προς x:

∂
∂x

(
∂y
∂ z

) =
∂ 2y

∂ z∂x
=

∂
∂x

(
1

3y2− x

)
=− ∂ (3y2− x)/∂x

(3y2− x)2 .

Επειδή

∂ (3y2− x)
∂x

= 6y
∂y
∂x
−1,

έχουμε

∂ 2y
∂x∂ z

=− 6yyx−1
(3y2− x)2 .

Από παραγώγιση της y3− xy− z = 0 ως προς x:

3y2 ∂y
∂x
− y− x

∂y
∂x

= 0⇒ ∂y
∂x

=
y

3y2− x
.

Άρα

∂ 2y
∂x∂ z

=−
6y · y

3y2− x
−1

(3y2− x)2 =− 3y2 + x
(3y2− x)3 .
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Παράδειγμα 1.21.9 Να δειχθεί ότι η εξίσωση z+ xez2
= y επιλύεται μονοσήμαντα ως προς z

στην περιοχή της αρχής (0,0,0) και να προσεγγιστεί η επιλύουσα συνάρτηση z(x,y) με ένα
πολυώνυμο δεύτερου βαθμού ως προς x,y.

Λύση.Έχουμε F(x,y,z) = z+ xez2− y, οπότε

Fz = 1+ xez2 ·2z = 1+2xzez2
.

Στο σημείο (0,0,0):

Fz(0,0,0) = 1 6= 0, F(0,0,0) = 0.

Επομένως, από το Θεώρημα Έμμεσης Συνάρτησης, η εξίσωση F(x,y,z) = 0 ορίζει τοπικά
μοναδικά συνάρτηση z = z(x,y) στην περιοχή του (0,0,0).

Για να προσεγγίσουμε τη συνάρτηση με πολυώνυμο δεύτερου βαθμού, χρησιμοποιούμε τον
τύπο του Taylor:

z(x,y)≈ z(0,0)+ zx(0,0)x+ zy(0,0)y+
1
2

[
zxx(0,0)x2 +2zxy(0,0)xy+ zyy(0,0)y2

]
.

Προφανώς z(0,0) = 0.
Για τις μερικές παραγώγους ως προς x:

zx + ez2
+ xez2

2zzx = 0⇒ zx =−
ez2

1+2xzez2 .

Στο (0,0,0):

zx(0,0) =−1.

Για τη δεύτερη παράγωγο zxx, παραγωγίζουμε ως προς x:

zxx =
ez2

zx(1+2xzez2
)− ez2

(2zxez2
+2xzez2

2zzx)

(1+2xzez2
)2

.

Στο (0,0,0):

zxx(0,0) = 2.

Για τις μερικές παραγώγους ως προς y:

zy + xez2
2zzy−1 = 0⇒ zy =

1
1+2xzez2 .

Στο (0,0,0):

zy(0,0) = 1.

Για τη δεύτερη παράγωγο zyy:

zyy =−
xez2

2zzy

(1+2xzez2
)2
.

Στο (0,0,0):
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zyy(0,0) = 0.

Τέλος, για zxy:

zxy =
ez2

zy(1+2xzez2
)− ez2

(2zxez2
+2xzez2

2zzy)

(1+2xzez2
)2

.

Στο (0,0,0):

zxy(0,0) =−1.

Άρα το πολυώνυμο δεύτερου βαθμού είναι:

z(x,y) =−x+ y+
1
2
(
2x2−2xy

)
=−x+ y+ x2− xy.
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