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Κυκλική Συνέλιξη:

Συνέλιξη Γειτνίασης:
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Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
from (a).
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.
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original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.



ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ & ΓΡΑΦΗΜΑΤΩΝ
Αποσύνθεση Μητρώου Κυκλικής Ολίσθησης: 
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Το Μητρώο είναι 
ΔΙΑΓΩΝΟΠΟΙΗΣΙΜΟ:
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Μητρώο Ολίσθησης Γραφημάτων: 
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Αν το Μητρώο Γειτνίασης 
είναι ΔΙΑΓΩΝΟΠΟΙΗΣΙΜΟ:
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1. Ολίσθηση γραφοσήματος
2. Ενέργεια Ολισθημένου Σήματος
3. Ενέργεια Ολισθημένου Σήματος σε Γράφημα (κανονικοποίηση)
4. Σήματα σε Γραφήματα & Συστήματα
5. Μετασχηματισμός Fourier Σήματος σε Γράφημα
6. Απόκριση Συχνότητας
7. Φασματική Κατάταξη ιδιοδιανυσμάτων
8. Φιλτράρισμα στο φασματικό χώρο & στο χώρο των ακμών
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ΒΑΣΙΣΜΕΝΗ ΣΤΟ ΜΗΤΡΩΟ ΓΕΙΤΝΙΑΣΗΣ

Μητρώο Κυκλικής Ολίσθησης: Ολίσθηση Γραφημάτων – Ιδιότητες 

Η ενέργεια ενός ολισθημένου γραφήματος είναι ||𝒙#||$$=||Α𝒙||$$ όπου 
Α το μητρώο γειτνίασης.
Χρησιμοποιώντας την l2 στάθμη ενός πίνακα, μπορούμε να
αποδείξουμε ότι η ενέργεια του ολισθημένου γραφήματος και του
αρχικού, ικανοποιούν την ακόλουθη σχέση:

max
𝒙

||)𝒙||!!
||𝒙||!!

= max
𝒙

𝒙")#)𝒙
||𝒙||!!

=𝜆!+,- , όπου 𝜆!+, = max
𝒌

{𝜆/}



Ολίσθηση Γραφημάτων – Ιδιότητες 
Επομένως η ενέργεια ενός ολισθημένου γραφήματος δεν διατηρείται!

Η ενέργεια ενός ολισθημένου σήματος γραφήματος είναι μικρότερη ή
ίση με την ενέργεια του αρχικού σήματος γραφήματος.
Η ισότητα ισχύει αν και μόνο αν το σήμα είναι ανάλογο του
ιδιοδιανύσματος που αντιστοιχεί στην ιδιοτιµή 𝜆)*+ .
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3. Ενέργεια Ολισθημένου Σήματος σε Γράφημα (κανονικοποίηση)
4. Σήματα σε Γραφήματα & Συστήματα
5. Μετασχηματισμός Fourier Σήματος σε Γράφημα
6. Απόκριση Συχνότητας
7. Φασματική Κατάταξη ιδιοδιανυσμάτων
8. Φιλτράρισμα στο φασματικό χώρο & στο χώρο των ακμών



Ιδιότητες 
Επομένως, η έξοδος ενός συστήματος σε ένα γράφημα με
κανονικοποιημένο μητρώο γειτνίασης μπορεί να γραφεί ισοδύναμα
ως εξής:

𝒚 = !
!"#

$%&

ℎ!𝐴012!! 𝒙 = 𝐻(𝐴012!)𝒙
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Ιδιότητες 

Ας υποθέσουμε ότι το μητρώο 𝐻(𝐴,-.)) είναι διαγωνοποιήσιμο,
δηλαδή: 𝐻 𝐴012! = 𝑼𝑯 𝚲 𝑼%𝟏, τότε:

𝒚 = 𝐻 𝐴012! 𝒙 = 𝑼𝑯 𝚲 𝑼%𝟏 𝒙

ή:

𝚼 = 𝑯 𝚲 𝚾, όπου 𝚼 = 𝑼%𝟏𝒚 και 𝚾 = 𝑼%𝟏𝒙ή ισοδύναμα:

𝑼%𝟏𝒚 = 𝑯 𝚲 𝑼%𝟏 𝒙

είναι οι Μετασχηματισμοί Fourier (GFT) των γραφοσημάτων x και y
αντίστοιχα.
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Συνάρτηση Μεταφοράς - Aπόκριση Συχνότητας;

Αν 𝜆/ µία ιδιοτιµή του µητρώου	𝐴012!, τότε:

Αν 𝚼 = 𝑼%𝟏𝒚 και 𝚾 = 𝑼%𝟏𝒙	είναι οι Μετασχηματισμοί Fourier των
γραφημάτων (GFT) x και y αντίστοιχα, τότε το διαγώνιο μητρώο:

𝐻 𝛬 𝐗 = 𝚼
αποτελεί τον GFT	της “κρουστική𝜍 απόκρισης” του διακριτού
χρόνου συστήµατος

𝐻 𝜆/ = !
𝒎"𝟎

𝑴%𝟏

ℎ! 𝜆/!
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ΟΜΑΛΑ ΓΡΑΦΟΣΗΜΑΤΑ (Smooth Graps Signals)

• Πώς μπορούμε να ορίσουμε την ομαλότητα στο χώρο του
γραφήματος;

• Μπορούμε να την ορίσουμε με μοναδικό τρόπο;
• Πώς μπορούμε να ορίσουμε την ομαλότητα στο Φασματικό χώρο;
• Ποιά ποσότητα παίζει το ρόλο της συχνότητας
• Τι σημαίνει Χαμηλή και Υψηλή συχνότητα;
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Μητρώο Γειτνίασης: A

Συνδυαστικό Λαπλασιανό Μητρώο Γειτνίασης: LC=D-A

Συμμετρικό Λαπλασιανό Μητρώο (Κανονικοποιημένο): LS=I-D-1/2AD-1/2

Μη συμμετρικό Λαπλασιανό Μητρώο (Random walk): LNS=I-D-1A



Ομαλότητα στο χώρο του γραφήματος: G=(V, E), A, D, LC=D-A, P=D-1A

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ &ΓΡΑΦΗΜΑΤΩΝ
ΟΜΑΛΑ ΣΗΜΑΤΑ ΓΡΑΦΗΜΑΤΩΝ (Smooth Graps Signals)
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original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.

H τετραγωνική μορφή: 
𝒙!" 	𝐿#𝒙!

που βασίζεται στο Συνδυαστικό Λαπλασιανό Μητρώο Γειτνίασης
μπορεί επίσης να χρησιμοποιθεί σαν μέτρο της συνολικής
ομαλότητας του σήματος γραφήματος



Φασματική Κατάταξη: Spectral Ordering Χαμηλοπερατό & Υψηπερατό
Γραφήματα
Η συνολική διακύμανση ενός γραφήματος:

	
	0 = ΕΔ𝜉!"#=	ΕΔ𝜉$ ≤ ΕΔ𝜉% ≤ ΕΔ𝜉& ≤	…≤ ΕΔ𝜉' = (1− 0!"#

0!$%
)$

	 𝜆𝑚𝑎𝑥 = 𝜆1	 ≥ 	 𝜆2	 ≥ 	 𝜆3	 ≥	… ≥ 𝜆𝑁= 𝜆𝑚𝑖𝑛
είναι το κριτήριο κατάταξης ιδιοδιανυσμάτων σε αυτά των αργών και
γρήγορων αλλαγών (ισχύει πάντα αυτό;)

ΕΔ𝜉(=||Δ𝝃1||1 = ||𝝃7− 𝐴012!𝝃7||1=
ΤVAnorm(𝜉8)
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Φασματική Αποθορυβοποίηση: Spectral Denoising-filtering
Ιδανικό χαμηλοπερατό Φίλτρο 

Διατηρούμε όλα τα ιδιοδιανύσματα των οποίων οι ιδιοτιμές είναι
μεγαλύτερες από την ιδιοτιμή λ*, δηλαδή:

𝜑(𝜆)= (1, 𝜆 > λ∗
0 𝜆 < λ∗
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Αποθορυβοποίηση μέ “κανονικοποίηση” (regularization)
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Ας θεωρήσουμε ότι διαθέτουμε τις παρατηρήσεις: 𝒚𝑵	= 𝒙𝑵+ 𝒘𝑵

min ||𝒘𝑵||$$ + 𝝀|| 𝒙𝑵−𝚨𝒙𝑵||$$
	 𝒙𝑵

𝒙∗
𝑵 = [𝑰 + 𝝀 𝚰 − 𝑨 𝑻 𝚰 − 𝑨 ]%&𝒚𝑵

Ας σχολιάσουμε το κόστος της λύσης…



Σχεδίαση Φίλτρων στον Χώρο των Κόμβων
Έστω 𝑫 𝚲  o ιδανικός GFT του Γραφήματος τον οποίο, στην γενική
περίπτωση, θέλουμε να προσεγγίσουμε με το ακόλουθο διάνυσμα:

	
	𝒅𝒊𝒂𝒈(𝑫 𝚲 ) = 	∑)3"!%# Λ!)𝒉! 
ή ισοδύναμα:

𝑑 𝜆, ~	`
)3"

!%#

λ,)ℎ) , 𝑛 = 1,2, …𝑀
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Μητρώο Γειτνίασης: A

Συνδυαστικό Λαπλασιανό Μητρώο Γειτνίασης: LC=D-A
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Μη συμμετρικό Λαπλασιανό Μητρώο (Random walk): LNS=I-D-1A
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Συμμετρικό Λαπλασιανό Μητρώο (Κανονικοποιημένο): LS=I-D-1/2AD-1/2

Βασική ιδιότητα: έχει ιδιοτιμές πάντα στο διάστημα [0 2]!!
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Minimax Design of Graph Filter Using Chebyshev 
Polynomial Approximation Chien-Cheng Tseng , Senior Member, IEEE, and Su-Ling Lee 
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n and m means that (m,n) 2 B. The graph from Fig. 2(b) is described by

V = {0, 1, 2, 3, 4, 5, 6, 7}

B ⇢ {0, 1, 2, 3, 4, 5, 6, 7}⇥ {0, 1, 2, 3, 4, 5, 6, 7}

B = {(0,1),(1,3),(1,7),(2,0),(2,1),(3,2),(3,5),(4,6),(4,7),(5,3),(5,4),(6,5),(7,0),(7,1),(7,3)}.
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Fig. 2 Examples of: (a) Undirected graph and (b) Directed graph.

A graph can be undirected and directed. In the case of undirected graphs,
as in Fig. 2(a), it is assumed that the edge connecting the vertex n to the vertex
m also connects the vertex m to the vertex n. This means that if (n,m) 2 B

then (m,n) 2 B.
In general, this property does not hold for directed graphs. An example of a

directed graph is shown in Fig. 2(b). The undirected graphs can be considered
as a special case of directed graphs.

For a given set of vertices and edges, the graph can be represented by an
adjacency matrix A. This matrix describes the vertices connectivity. If there
are N vertices then A is an N⇥N matrix. The elements Amn of the adjacency
matrix A assume values Amn 2 {0, 1}. The value Amn = 0 is assigned if the
vertices m and n are not connected with an edge, and Amn = 1 if these vertices
are connected,

Amn =

(
1 if (m,n) 2 B

0 if (m,n) /2 B.

The adjacency matrices for the graphs from Fig. 2(a) and (b) are

A =

0

1

2

3

4

5

6

7

2

66666666664

0 1 1 0 0 0 0 1
1 0 1 1 1 0 0 1
1 1 0 1 0 0 0 0
0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
1 1 0 1 1 0 0 0

3

77777777775

0 1 2 3 4 5 6 7

, A =

2

66666666664

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1
1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0

3

77777777775

, (1)
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Fig. 7 A disconnected graph.

As an example, let us consider a graph derived form Fig. 2(a) by removing
some edges. This graph is presented in Fig. 7.
The adjacency matrix for this graph is

A =

2

66666666664

0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 1
0 0 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0

3

77777777775

(9)

with the corresponding Laplacian

L =

2

66666666664

2 �1 �1 0 0 0 0 0
�1 2 �1 0 0 0 0 0
�1 �1 2 0 0 0 0 0
0 0 0 3 �1 �1 0 �1
0 0 0 �1 4 �1 �1 �1
0 0 0 �1 �1 3 �1 0
0 0 0 0 �1 �1 2 0
0 0 0 �1 �1 0 0 2

3

77777777775

. (10)

These matrices are in a block-diagonal form with two blocks.
If there is an isolated vertex in a graph, then the corresponding row and
column of the matrices A and L will be zero-valued.

16. If we have two graphs defined on the same vertices, with adjacency matrices
A1 and A2, we can define a sum of the graphs as a new graph with the
adjacency matrix

A = A1 +A2.

If we want to keep binary values 0, 1 in the adjacency matrix then the
logical (Boolean) summation rule 1 + 1 = 1 should be used in the matrix
addition. In this chapter we will use the arithmetic summation rule only.

Μη Συνδεδεμένο Γράφημα Μητρώο Γειτνίασης
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addition. In this chapter we will use the arithmetic summation rule only.
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0

1

2
3

4

5

6
7

Fig. 7 A disconnected graph.

As an example, let us consider a graph derived form Fig. 2(a) by removing
some edges. This graph is presented in Fig. 7.
The adjacency matrix for this graph is

A =

2

66666666664

0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 1
0 0 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0

3

77777777775

(9)

with the corresponding Laplacian

L =

2

66666666664

2 �1 �1 0 0 0 0 0
�1 2 �1 0 0 0 0 0
�1 �1 2 0 0 0 0 0
0 0 0 3 �1 �1 0 �1
0 0 0 �1 4 �1 �1 �1
0 0 0 �1 �1 3 �1 0
0 0 0 0 �1 �1 2 0
0 0 0 �1 �1 0 0 2

3

77777777775

. (10)

These matrices are in a block-diagonal form with two blocks.
If there is an isolated vertex in a graph, then the corresponding row and
column of the matrices A and L will be zero-valued.

16. If we have two graphs defined on the same vertices, with adjacency matrices
A1 and A2, we can define a sum of the graphs as a new graph with the
adjacency matrix

A = A1 +A2.

If we want to keep binary values 0, 1 in the adjacency matrix then the
logical (Boolean) summation rule 1 + 1 = 1 should be used in the matrix
addition. In this chapter we will use the arithmetic summation rule only.
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16. If we have two graphs defined on the same vertices, with adjacency matrices
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Λαπλασιανό Μητρώο Γειτνίασης
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Fig. 13 Eigenvalues �k and corresponding eigenvectors uk(n) for Laplacian of the graph
presented in Fig. 7.
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Fig. 13 Eigenvalues �k and corresponding eigenvectors uk(n) for Laplacian of the graph
presented in Fig. 7.

Αποσύνθεση Λαπλασιανού Μητρώου Γειτνίασης: Το δεύτερο
ιδιοδιάνυσμα 𝒗𝟏
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Fig. 13 Eigenvalues �k and corresponding eigenvectors uk(n) for Laplacian of the graph
presented in Fig. 7.

Αποσύνθεση Λαπλασιανού Μητρώου Γειτνίασης: Το τρίτο
ιδιοδιάνυσμα 𝒗𝟐
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Fig. 13 Eigenvalues �k and corresponding eigenvectors uk(n) for Laplacian of the graph
presented in Fig. 7.

Αποσύνθεση Λαπλασιανού Μητρώου Γειτνίασης: Το πέμπτο
ιδιοδιάνυσμα 𝒗𝟒
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Fig. 13 Eigenvalues �k and corresponding eigenvectors uk(n) for Laplacian of the graph
presented in Fig. 7.
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Αποσύνθεση Λαπλασιανού Μητρώου Γειτνίασης: Το όγδοο
ιδιοδιάνυσμα 𝒗𝟕
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Ο στόχος  η δειγματοληψία και η ανάκτηση σημάτων που 
ορίζονται σε γραφήματα. 
• Συνθήκες για τέλεια ανάκτηση σημάτων γραφήματος

περιορισμένης ζώνης από δείγματα που συλλέχθηκαν από
ένα σύνολο κορυφών.
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Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
from (a).
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.



Ένα σήμα γραφήματος θα λέμε ότι είναι ζωνοπεριορισμένο
σε σχέση με τη βάση V ενός GFT, με εύρος ζώνης Κ αν:

𝑥 = 𝑉!𝑎, 𝑎 ∈ 𝑅"

όπου 𝑉! 	είναι είναι ένας υποπίνακας που περιέχει τις
πρώτες Κ στήλες του μητρώου βάσης V. H κλάση των
σημάτων γραφήματος είναι γνωστή ως 𝐵𝐿#(𝛫)
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Όταν η βάση V είναι το μητρώο ιδιοδιανυσμάτων 𝑉:; του
Συνδυαστικού Λαπλασιανού Μητρώου Γειτνίασης LC=D-A τότε,
τα σήματα που ανήκουν στη κλάση 𝐵𝐿#(𝛫)	 είναι
συνολικά ομαλά κατά Lipschitz με παράμετρο
𝐾 (αποδείξτε το).

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ & ΓΡΑΦΗΜΑΤΩΝ

min ||𝒚𝑵 − 𝒙𝑵||$$ + 𝝀𝒙𝑵𝒕 𝑳𝑪𝒙𝑵
	 𝒙𝑵



Ομαλότητα στο χώρο του γραφήματος: G=(V, E), A, D, LC=D-A, P=D-1A

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ &ΓΡΑΦΗΜΑΤΩΝ
ΟΜΑΛΑ ΣΗΜΑΤΑ ΓΡΑΦΗΜΑΤΩΝ (Smooth Graps Signals)

Θα λέμε ότι το σήμα γραφήματος είναι συνολικά ομαλό κατά
Lipschitz με παράμετρο 𝐾
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Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
from (a).
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.

Αν:
∑(,,))∈E 𝑙,) |𝑥, − 𝑥)|$ ≤ 𝐾



Όταν η βάση V είναι το μητρώο ιδιοδιανυσμάτων 𝑉<	του
Μητρώου Μετάβασης P=D-1A τότε, τα σήματα που ανήκουν
στη κλάση 𝐵𝐿#&(𝛫)	 είναι ανά γειτονιά ομαλά κατά
Lipschitz με παράμετρο 𝐾 (αποδείξτε το)
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PPL(1,K) is the polynomial class with degree K, PL(K)
from Definition 4, and PPL(C, 0) is the piecewise-constant
class with C pieces, PC(C) from Definition 7. The degrees
of freedom for a local set Sc at the polynomial degree k is the
number of origins, that is,

��⇥ak,1,c ak,2,c . . . ak,|Sc|,c
⇤��

0
.

Definition 9. A graph signal x is piecewise-bandlimited with
C pieces and bandwidth K when

x =
CX

c=1

x(c)1Sc ,

where x(c) is a bandlimited signal on the subgraph GSc with
x
(c)
i =

PK
k=0 ak,c V

(c)
i,k , and V(c) is a graph Fourier basis of

GSc . Denote this class by PBL(C,K).
We use zero padding to ensure V(c) 2 RN⇥N for all GSc ,
where N is the number of nodes of G. Still, V(c) can be the
eigenvector matrix of either the graph Laplacian matrix or the
transition matrix.

3. MULTIRESOLUTION REPRESENTATIONS
We now discuss representations for piecewise-smooth graph
signals based on multiresolution local sets.

Multiresolution Local Sets. Our aim is to construct a
series of local sets in a multiresolution fashion. We ini-
tialize S0,1 = V to correspond to the 0th level subspace
V0, that is, V0 = {c01S0,1 , c0 2 R}. We then partition
S0,1 into two disjoint local sets S1,1 and S1,2, correspond-
ing to the first level subspace V1, where V1 = {c11S1,1 +
c21S1,2 , c1, c2 2 R}. We then recursively partition each larger
local set into two smaller local sets. For the ith level subspace,
we have Vi =

P2i

j=1 cj1Si,j and then, we partition Si,j into
Si+1,2j�1, Si+1,2j for all j = 1, 2, . . . , 2i. We call Si,j the
parent set of Si+1,2j�1, Si+1,2j and Si+1,2j�1, Si+1,2j are the
children sets of Si,j . When |Si,j |  1, Si+1,2j�1 = Si,j and
Si+1,2j = ;. At the finest resolution, each local set corre-
sponds to an individual node or an empty set. In other words,
we build a binary decomposition tree that partitions a graph
structure into multiple local sets. The ith level of the decom-
position tree corresponds to the ith level subspace. The depth
of the decomposition T depends on how local sets are parti-
tioned; T ranges from N to dlogNe, where N corresponds to
partitioning one node at a time and dlogNe corresponds to an
even partition at each level. We show an example in Figure 2.

This graph partitioning is the key step in constructing the
local sets. The proposed construction does not restrict us to
any particular graph partitioning algorithm; depending on the
application, the partitioning step can be implemented by many
existing graph partition algorithms, the only requirement is to
satisfy Definition 6. Some candidate algorithms are the graph
cuts [11] and the balance cut in the spanning tree [15].

The proposed construction of local sets mimics the clas-
sical multiresolution analysis to some extent. The initial sub-
space V0 is at the coarsest resolution. Through partitioning,
local sets zoom into increasingly finer resolutions in the graph
vertex domain. The subspace VT at the finest resolution zooms

Fig. 2: Local set decomposition tree. In each partition, we
decompose a node set into two disjoint connected sets.

into each individual node and covers the entire RN . Classical
scale invariance requires that when f(t) 2 V0, then f(2mt) 2
Vm, which is ill-posed in the graph domain because graphs are
finite and discrete; the classical translation invariance requires
that when f(t) 2 V0, then f(t � n) 2 V0, which is again
ill-posed, this time because graphs are irregular. The essence
of scaling and translation invariance, however, is to use the
same function and its scales and translates to span different
subspaces, which is what the proposed construction promotes.

Dictionary Construction. We collect local sets by level
in ascending order in a dictionary, with atoms corresponding
to each local set, that is, DLSPC = {1Si,j}

i=T,j=2i

i=0,j=1 . We call it
the local-set-based piecewise-constant dictionary. After re-
moving empty sets, the dictionary has 2N � 1 atoms, that
is, DLSPC 2 RN⇥(2N�1); each atom is a piecewise-constant
graph signal with various sizes and localizing various parts of
a graph. While for an arbitrary piecewise-constant signal we
do not know the support of its underlying pieces, DLSPC still
provides sparse representations.
Theorem 1. For all x 2 RN , we have ka⇤k0  1+2T k�xk0,
where T is the maximum level of the decomposition and

a⇤ = argmin
a

kak0 , subject to : x = DLSPC a.

When x is piecewise-constant, k�xk0 is small; thus,
DLSPC is particularly good for representing piecewise-constant
graph signals. The graph partitioning influences the quality of
representation; the even partition of each local set optimizes
the worst case scenario. For piecewise-constant graph signals,
the sizes of the local sets matter, not the shape.

To represent piecewise-smooth graph signals, we use
multiple atoms for each local set. We take the piecewise-
polynomial signals as an example. For each local set,

DSi,j =
h
1 D(1)

Si,j
D(2)

Si,j
. . . D(K)

Si,j

i
,

where (D(k)
Si,j

)m,n = d
k(vm, vn), when vm, vn 2 Si,j ; and

0, otherwise. The number of atoms in D(k)
Si,j

is 1 + K|Si,j |.
We collect the sub-dictionaries for all the multiresolution local
sets to form the local-set-based piecewise-smooth dictionary,
that is, DLSPS = {DSi,j}

i=T,j=2i

i=0,j=1 . The number of atoms
in DLSPS is O(KNT ), where K is the maximum degree of
polynomial, N is the size of the graph and T is the maximum

Δειγματοληψία και multiresolution analysis
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ABSTRACT
We study representations of piecewise-smooth signals on
graphs. We first define classes for smooth, piecewise-constant,
and piecewise-smooth graph signals, followed by a series of
multiresolution local sets to analyze those signals by imple-
menting a multiresolution analysis on graphs. Based on these
local sets, we propose local-set-based piecewise-constant and
piecewise-smooth dictionaries as graph signal representations
that, in spirit, resemble the classical Haar wavelet basis and
are naturally localized in both graph vertex and graph Fourier
domains. Moreover, they promote sparsity when representing
piecewise-smooth graph signals. In the experiments, we show
that local-set-based dictionaries outperform graph Fourier do-
main based representations when approximating both simu-
lated and real-world graph signals.

Index Terms— Piecewise smooth graph signal, sparse
representations, local sets

1. INTRODUCTION
Signal representation is one of the most fundamental tasks in
our discipline; it is related to approximation, compression, de-
noising, inpainting, detection, and localization [1]. Represen-
tations are particularly crucial for signals with complex, irreg-
ular underlying structure that are being generated at an un-
precedented rate from various sources, including social, bio-
logical, and physical infrastructure [2], among others; we call
such signals graph signals. While prior work on graph signal
representations focused mainly on smooth graph signals [3],
such as bandlimited [4, 5], approximately bandlimited [6], and
signals with small variation [7], it did not address graph signal
localization. As localization properties of graph signals are of
interest in a number of applications (e.g. in community detec-
tion, the community labels are piecewise-constant on a social
network), representations that consider both smoothness and
localization are of interest.

We thus study piecewise-smooth graph signals and con-
sider both smoothness and localization properties. We first
define classes for smooth, piecewise-constant, and piecewise-
smooth graph signals, followed by a series of multiresolution
local sets to analyze those signals by implementing a mul-
tiresolution analysis on graphs. Based on these local sets,

The authors gratefully acknowledge support from the NSF through
awards 1130616 and 1421919. Due to the lack of space, the proof of theo-
rems and some details are omitted, and will be shown in a longer version.

we propose local-set-based piecewise-constant and piecewise-
smooth dictionaries as graph signal representations that, in
spirit, resemble the classical Haar wavelet basis and are nat-
urally localized in both graph vertex and graph Fourier do-
mains. Moreover, they promote sparsity when representing
piecewise-smooth graph signals. The main advantages of the
proposed local-set-based dictionaries are that they are sim-
ple, general, easy to visualize, and effective. In the experi-
ments, we show that local-set-based dictionaries outperform
windowed graph Fourier when approximating both simulated
and real-world graph signals.

2. GRAPH SIGNAL MODELS
Let G = (V, E) be a graph, where V is the set of nodes and
E is the set of edges that represent the underlying relations
between pairs of nodes. Let A 2 RN⇥N be the adjacency
matrix, with Aj,k the edge weight. Let D be the degree ma-
trix, with (D)i,i =

P
j Ai,j , L = D�A the graph Laplacian

matrix, and let P = D�1 A be the transition matrix. We call
x =

⇥
x0, x1, . . . , xN�1

⇤T 2 RN a graph signal, with xi the
signal coefficient at the ith node.

Smooth Graph Signals. We start with three smoothness
criteria for graph signals; while they have been implicitly men-
tioned previously, none has been rigorously defined.
Definition 1. A graph signal x is pairwise Lipschitz smooth
with parameter L when it satisfies

|xi � xj |  L d(vi, vj), for all i, j = 0, 1, . . . , N � 1,

with d(vi, vj) the distance between the ith and the jth nodes.

We can choose the geodesic distance, the diffusion distance [8],
or some other distance metric for d(·, ·). Similarly to the tradi-
tional Lipschitz criterion [9], the pairwise Lipschitz smooth-
ness criterion emphasizes pairwise smoothness, which zooms
onto the difference between each pair of adjacent nodes.
Definition 2. A graph signal x is total Lipschitz smooth with
parameter L when it satisfies

X

(i,j)2E

Ai,j(xi � xj)
2  L.

The total Lipschitz smoothness criterion generalizes the pair-
wise Lipschitz smoothness criterion while still emphasizing
pairwise smoothness, but in a less restricted manner; it is also
known as the Laplacian smoothness criterion [10].
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the discrete vector ŝ instead. We prefer to work with a kernel for two reasons. 1) In practice when the
graph is large, the Fourier basis cannot be computed making it impossible to localize a vector. On the
other side, for a kernel g, there are techniques to approximate Tig. 2) The localization properties are
theoretically easier to interpret when g is a filter. Let us suppose that g is a K order polynomial, then the
support of Tig is exactly contained in a ball of radius K centered at node i. Building on this idea, for a
sufficiently regular function g, it has been proved in [11, Theorem 1 and Corollary 2] that the localization
operator concentrates the kernel g around the vertex i.

Let us now clarify how generalized translation and localization are linked. The main difference between
these two operators is the domain on which they are applied. Whereas, the translation operator acts on
a discrete signal defined in the time or the vertex domain, the localization operator requires a continuous
kernel or alternatively a discrete signal in the spectral domain. Both return a signal in the time or the
vertex domain. To summarize, the localization operator can be seen as computing the inverse Fourier
transform first and then translating the signal. It is an operator that takes a filter from the spectral
domain and localizes it at a given node i while adapting it to the graph structure.

In the classical periodic case ("ring" graph), the translation and localization operators coincide, i.e:

Tig[n] =
1

N

NX

`=1

g(�`)e
�j2⇡ `i

N ej2⇡
`n
N

=
1

N

NX

`=1

g(�`)e
j2⇡ `(n�i)

N = T0g[n� i]. (3)

In this case, localizing a kernel g can be done by computing the inverse discrete Fourier transform of
the vector ŝ(`) = g(�`) and then translating at node i. However, for irregular graphs, localization differs
from translation because the shape of the localized filter adapts to the graph and varies as a function of
its topology. Figure 3 shows an example of localization using the Mexican hat wavelet filter. The shape
of the localized filter depends highly on the graph topology. However, we observe that the general shape
of the wavelet is preserved. It has large positive values around the node where it is localized. It then
goes negative a few nodes further away and stabilizes at zero for nodes far away. To summarize, the
localization operator preserves the global behavior of the filter while adapting to the the graph topology.
Additional insights about the localization operator can be found in [11, 10, 21, 22].

2.3 Stationarity for temporal signals

Let x[t] be a time indexed stochastic process. Throughout this paper, all random variables are written
in bold fonts. We use mx = E

�
x
 

to denote the expected value of x. In this section, we work with the
periodic discrete case.

Definition 2 (Time Wide-Sense Stationarity). A signal is Time Wide-Sense Stationary (WSS) if its
first two statistical moments are invariant under translation, i.e:

1. mx[t] = E
�
x[t]

 
= c 2 R,

2. E
�
(x[t]�mx)(x[s]�mx)⇤

 
= ⌘x[t� s],

where ⌘x is called the autocorrelation function of x.

Note that using (3), the autocorrelation can be written in terms of the localization operator:

⌘x[t� s] = Ts�x[t]. (4)

For a WSS signal, the autocorrelation function depends only on one parameter, t � s, and is linked to
the Power Spectral Density (PSD) through the Wiener-Khintchine Theorem [23]. The latter states that
the PSD of the stochastic process x denoted �x[`] is the Fourier transform of its auto-correlation :

�x[`] =
1

p
N

NX

i=1

⌘x[t]e
�j2⇡ `t

N , (5)

where j =
p
�1. As a consequence, when a signal is convolved with a filter ȟ, its PSD is multiplied by

the energy of the convolution kernel: for y = ȟ ⇤ x, we have

�y[`] = |h[`]|2 �x[`],

5

Figure 3: Top left: Mexican hat filter in the spectral domain g(x) = 5x
�max

exp
⇣
�

25x2

�2
max

⌘
. The filter is

localized around three different vertices (highlighted by a black circle).

where h[`] is the Fourier transform of ȟ. For more information about stationarity, we refer the reader
to [24].

When generalizing these concepts to graphs, the underlying structure for stationarity will no longer
be time, but graph vertices.

3 Stationarity of graph signals
We now generalize stationarity to graph signals. While we define stationarity through the localization
operator, Girault [15] uses an isometric translation operator instead. That proposition is briefly described
in Section 3.2, where we also show the equivallence of both definitions.

3.1 Stationarity under the localisation operator

Let x 2 RN be a stochastic graph signal with a finite number of variables indexed by the vertices of
a weighted undirected graph. The expected value of each variable is written mx[i] = E

�
x[i]

 
and the

covariance matrix of the stochastic signal is ⌃x = E
�
(x � mx)(x � mx)⇤

 
). We additionally define

x̃ = x � mx. For discrete time WSS processes, the covariance matrix ⌃x is Toeplitz, or circulant for
periodic boundary conditions, reflecting translation invariance. In that case, the covariance is diagonalized
by the Fourier transform. We now generalize this property to take into account the intricate graph
structure.

As explained in Section 2.2, the localization operator adapts a kernel to the graph structure. As a
result, our idea is to use the localization operator to adapt the correlation between the samples to the
graph structure. This results in a localised version of the correlation function, whose properties can then
be studied via the associated kernel.

Definition 3. A stochastic graph signal x defined on the vertices of a graph G is called Graph Wide-Sense
(or second order) Stationary (GWSS), if and only if it satisfies the following properties:

1. its first moment is constant over the vertex set: mx[i] = E
�
x[i]

 
= c 2 R and

62. its covariance is invariant with respect to the localization operator:

⌃x[i, n] = E
�
(x[i]�mx)(x[n]�mx)

 
= Ti�x[n].

The first part of the above definition is equivalent to the first property of time WSS signals. The
requirement for the second moment is a natural generalization where we are imposing an invariance with
respect to the localization operator instead of the translation. It is a generalization of Definiton 2 using (4).
In simple words, the covariance is assumed to be driven by a global kernel (filter) �x. The localization
operator adapts this kernel to the local structure of the graph and provides the correlation between the
vertices. Additionally, Definition 3 implies that the spectral components of x are uncorrelated.

Theorem 1. If a signal is GWSS, its covariance matrix ⌃x[i, j]is jointly diagonalizable with the Laplacian
of G, i.e ⌃x = U�xU⇤, where �x is a diagonal matrix.

Proof. By Definition 1, the covariance localization operator can be written as:

Ti�x[n] = �x(L)[i, n] = U�x(⇤)U
⇤[i, n] (6)

where �x(⇤) is a diagonal matrix satisfying �x(⇤)[`, `] = �x(�`). To complete the proof set �x =
�x(⇤).

The choice of the filter �x in this result is somewhat arbitrary, but we shall soon see that we are
interested in localized kernels. In that case, �x will be typically be the lowest degree polynomial satisfying
the constraints and can be constructed using Lagrange interpolation for instance.

Definition 3 provides a fundamental property of the covariance. The size of the correlation (distance
over the graph) depends on the support of localized the kernel Ti�x. In [11, Theorem 1 and Corollary
2], it has been proved that the concentration of Ti�x around i depends on the regularity2 of �x. For
example, if �x is polynomial of degree K, it is exactly localized in a ball of radius K. Hence we will be
mostly interested in such low degree polynomial kernels.

The graph spectral covariance matrix of a stochastic graph signal is given by �x = U⇤⌃xU . For a
GWSS signal this matrix is diagonal and the graph power spectral density (PSD) of x becomes:

�x(�`) = (U⇤⌃xU)
`,`

. (7)

Table 1 presents the differences and the similarities between the classical and the graph case. For a regular
cyclic graph (ring), the localization operator is equivalent to the traditional translation and we recover
the classical cyclic-stationarity results by setting ⌘x = T0�x. Our framework is thus a generalization of
stationarity to irregular domains.

Example 1 (Gaussian i.i.d. noise). Normalized Gaussian i.i.d. noise is GWSS for any graph. Indeed,
the first moment is E

�
x[k]

�
= 0. Moreover, the covariance matrix can be written as I = ⌃x = UIU⇤

with any orthonormal matrix U and thus is diagonalizable with any graph Laplacian. We also observe
that the PSD is constant, which implies that similar to the classical case, white noise contains all "graph
frequencies".

When �x is a bijective function, the covariance matrix contains an important part of the graph
structure: the Laplacian eigenvectors. On the contrary, if �x is not bijective, some of the graph structure
is lost as it is not possible to recover all eigenvectors. This is for instance the case when the covariance
matrix is low-rank. As another example, let us consider completely uncorrelated centered samples with
variance 1. In this case, the covariance matrix becomes ⌃x = I and loses all graph information, even if
by definition the stochastic signal remains stationary on the graph.

One of the crucial benefits of stationarity is that it is preserved by filtering, while the PSD is simply
reshaped by the filter. The same property holds on graphs.

Theorem 2. When a graph filter g is applied to a GWSS signal, the result remains GWSS, the mean
becomes mg(L)x = mxg(0) and the PSD satisfies:

�g(L)x(�`) = |g(�`)|
2
· �x(�`). (8)

2
A regular kernel can be well approximated by a smooth function, for instance a low order polynomial, over spectrum
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the discrete vector ŝ instead. We prefer to work with a kernel for two reasons. 1) In practice when the
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Let us now clarify how generalized translation and localization are linked. The main difference between
these two operators is the domain on which they are applied. Whereas, the translation operator acts on
a discrete signal defined in the time or the vertex domain, the localization operator requires a continuous
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In the classical periodic case ("ring" graph), the translation and localization operators coincide, i.e:

Tig[n] =
1

N

NX

`=1

g(�`)e
�j2⇡ `i

N ej2⇡
`n
N

=
1

N

NX

`=1

g(�`)e
j2⇡ `(n�i)

N = T0g[n� i]. (3)

In this case, localizing a kernel g can be done by computing the inverse discrete Fourier transform of
the vector ŝ(`) = g(�`) and then translating at node i. However, for irregular graphs, localization differs
from translation because the shape of the localized filter adapts to the graph and varies as a function of
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localization operator preserves the global behavior of the filter while adapting to the the graph topology.
Additional insights about the localization operator can be found in [11, 10, 21, 22].

2.3 Stationarity for temporal signals

Let x[t] be a time indexed stochastic process. Throughout this paper, all random variables are written
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�
x
 

to denote the expected value of x. In this section, we work with the
periodic discrete case.
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1. mx[t] = E
�
x[t]

 
= c 2 R,

2. E
�
(x[t]�mx)(x[s]�mx)⇤

 
= ⌘x[t� s],

where ⌘x is called the autocorrelation function of x.
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⌘x[t� s] = Ts�x[t]. (4)
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the PSD of the stochastic process x denoted �x[`] is the Fourier transform of its auto-correlation :

�x[`] =
1

p
N

NX

i=1

⌘x[t]e
�j2⇡ `t

N , (5)

where j =
p
�1. As a consequence, when a signal is convolved with a filter ȟ, its PSD is multiplied by

the energy of the convolution kernel: for y = ȟ ⇤ x, we have

�y[`] = |h[`]|2 �x[`],

5



ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ & ΓΡΑΦΗΜΑΤΩΝ

2. its covariance is invariant with respect to the localization operator:

⌃x[i, n] = E
�
(x[i]�mx)(x[n]�mx)

 
= Ti�x[n].
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that the PSD is constant, which implies that similar to the classical case, white noise contains all "graph
frequencies".

When �x is a bijective function, the covariance matrix contains an important part of the graph
structure: the Laplacian eigenvectors. On the contrary, if �x is not bijective, some of the graph structure
is lost as it is not possible to recover all eigenvectors. This is for instance the case when the covariance
matrix is low-rank. As another example, let us consider completely uncorrelated centered samples with
variance 1. In this case, the covariance matrix becomes ⌃x = I and loses all graph information, even if
by definition the stochastic signal remains stationary on the graph.

One of the crucial benefits of stationarity is that it is preserved by filtering, while the PSD is simply
reshaped by the filter. The same property holds on graphs.

Theorem 2. When a graph filter g is applied to a GWSS signal, the result remains GWSS, the mean
becomes mg(L)x = mxg(0) and the PSD satisfies:

�g(L)x(�`) = |g(�`)|
2
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0 = �0 < �1  · · ·  �N�1 = �max. When the graph is connected1, there is only one zero eigenvalue. In
fact, the multiplicity of the zero eigenvalue is equal to the number of connected components. For more
details on spectral graph theory, we refer the reader to [17, 18]. The eigenvectors of the Laplacian are
used to define a graph Fourier basis [5, 11] which we denote as U . The eigenvalues are considered as a
generalization of squared frequencies. The Laplacian matrix can thus be decomposed as

L = U⇤U⇤,

where U⇤ denotes the transposed conjugate of U . The graph Fourier transform is written f̂ = U⇤f and
its inverse f = Uf̂ . This Graph Fourier Transform possesses interesting properties further studied in [11].
Note that the graph Fourier transform is equivalent to the Discrete Fourier transform for cyclic graphs.
The detailed computation for the "ring" can be found in [19, pp 136-137].

Graph convolutive filters The graph Fourier transform plays a central role in graph signal processing
since it allows a natural extension of filtering operations. In the classical setting, applying a filter to
a signal is equivalent with a convolution, which is simply a point-wise multiplication in the spectral
domain. For a graph signal, where the domain is not regular, filtering is still well defined, as a point-wise
multiplication in the spectral domain [11, Equation 17]. A graph convolutive filter g(L) is defined from
a continuous kernel g : R+ ! R. In the spectral domain, filtering a signal s with a convolutive filter
g(L) is, as the classical case, a point-wise multiplication written as ŝ0[`] = g(�`) · ŝ[`], where ŝ0, ŝ are the
Fourier transform of the signals s0, s. In the vertex domain, we have

s0 := g(L)s = Ug(⇤)U⇤s, (1)

where g(⇤) is a diagonal matrix with entries g(�`). For convenience, we abusively call ’filter’ the gen-
erative kernel g. We also drop the term convolutive as we are only going to use this type of filters. A
comprehensive definition and study of these operations can be found in [11]. It is worth noting that these
formulas make explicit use of the Laplacian eigenvectors and thus its diagonalization. The complexity
of this operation is in general O(N3). In order to avoid this cost, there exist fast filtering algorithms
based on Chebyshev polynomials or the Lanczos method [10, 20]. These methods scale with the number
of edges |E| and reduce the complexity to O(|E|), which is advantageous in the case of sparse graphs.

2.2 Localization operator

As most graphs do not possess a regular structure, it is not possible to translate a signal around the
vertex set with an intuitive shift. As stationarity is an invariance with respect to translation, we need
to address this issue first. A solution is present in [11, Equation 26], where Shuman et. al. define the
generalized translation for graphs as a convolution with a Kroneker delta. The convolution ⇤ is defined
as the element-wise multiplication in the spectral domain leading to the following generalized translation
definition:

Tis[n] := (s ⇤ �i)[n] =
N�1X

`=0

ŝ[`]u⇤
`
[i]u`[n].

Naturally, the generalized translation operator does not perform what we would intuitively expect
from it, i.e it does not shift a signal s from node n to node i as this graph may not be shift-invariant.
Instead when ŝ changes smoothly across the frequencies (more details later on), then Tis is localized
around node i, while s is in general not localized at a particular node or set of nodes.

In order to avoid this issue, we define the localization operator as follow

Definition 1. Let C be the set of functions R+
! R. For agraph kernel g 2 C (defined in the spectral

domain) and a node i, the localization operator Ti : C ! RN reads:

Tig[n] :=
N�1X

`=0

g(�`)u
⇤
`
[i]u`[n] = (g(L)�i)[n] = g(L)[i, n]. (2)

Here we use the calligraphic notation Ti to differentiate with the generalized translation operator Ti.
We first observe from (2) that the ith line of graph filter matrix g(L) is the kernel g localized at node
i. Intuitively, it signifies [g(L)s](i) = hs, Tigi. We could replace g(�`) by ŝ[`] in Definition 1 and localize

1
a path connects each pair of nodes in the graph
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Abstract

Graphs are a central tool in machine learning and information processing as they allow to conve-
niently capture the structure of complex datasets. In this context, it is of high importance to develop
flexible models of signals defined over graphs or networks. In this paper, we generalize the traditional
concept of wide sense stationarity to signals defined over the vertices of arbitrary weighted undirected
graphs. We show that stationarity is intimately linked to statistical invariance under a localization
operator reminiscent of translation. We prove that stationary graph signals are characterized by a
well-defined Power Spectral Density that can be efficiently estimated even for large graphs. We lever-
age this new concept to derive Wiener-type estimation procedures of noisy and partially observed
signals and illustrate the performance of this new model for denoising and regression.

Index terms— Stationarity, graphs, spectral graph theory, power spectral density, Wiener filter, co-
variance, Gaussian random fields

1 Introduction
Stationarity is a traditional hypothesis in signal processing used to represent a special type of statistical
relationship between samples of a temporal signal. The most commonly used is wide-sense stationarity,
which assumes that the first two statistical moments are invariant under translation, or equivalently that
the correlation between two samples depends only on their time difference. Stationarity is a corner stone
of many signal analysis methods. The expected frequency content of stationary signals, called Power
Spectral Density (PSD), provides an essential source of information used to build signal models, generate
realistic surrogate data or perform predictions. In Figure 1, we present an example of a stationary process
(blue curve) and two predictions (red and green curves). As the blue signal is a realization of a stationary
process, the red curve is more probable than the green one because it respects the frequency content of
the observed signal.

Classical stationarity is a statement of statistical regularity under arbitrary translations and thus
requires a regular structure (often "time"). However many signals do not live on such a regular structure.
For instance, imagine that instead of having one sensor returning a temporal signal, we have multiple
sensors living in a two-dimensional space, each of which delivers only one value. In this case (see Figure 2
left), the signal support is no longer regular. Since there exists an underlying continuum in this example
(2D space), one could assume the existence of a 2D stationary field and use Kriging [1] to interpolate
observations to arbitrary locations, thus generalizing stationarity for a regular domain but irregularly
spaced samples.

On the contrary, the goal of this contribution is to generalize stationarity for an irregular domain that
is represented by a graph, without resorting to any underlying regular continuum. Graphs are convenient
for this task as they are able to capture complicated relations between variables. In this work, a graph is
composed of vertices connected by weighted undirected edges and signals are now scalar values observed
at the vertices of the graph. Our approach is to use a weak notion of translation invariance, define on a
graph, that captures the structure (if any) of the data. Whereas classical stationarity means correlations
are computed by translating the auto-correlation function, here correlations are given by localizing a
common graph kernel, which is a generalized notion of translation as detailed in Section 2.2.

Figure 2 (left) presents an example of random multivariate variable living in a 2-dimensional space.
Seen as scattered samples of an underlying 2D stochastic function, one would (rightly) conclude it is not
stationary. However, under closer inspection, the observed values look stationary within the spiral-like
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