
Cellular Automata
Complex Simplicity or Simple Complexity?

Example: Parity Rule
• Square Lattice

• Possible states 𝑠𝑖𝑗 ∈ 0,1

• Rule:
1. Each cell sums up the state of the 4 neighbors (south, west, east, north)

2. If the sum is even, then 𝑠𝑖𝑗 = 0, else 𝑠𝑖𝑗 = 1

Evolution of the Parity rule

What are Cellular Automata?

• It is a model that can be used to show how the
elements of a system interact with each other.

• Each element of the system is assigned a cell.

• The cells can be:

– 2-dimensional squares (e.g., patches of land)

– 3-dimensional blocks (e.g., voxels)

–or another shape such as a hexagon (e.g., beehives)

Using Voxels: Morphing (Cube → Bonsai)

Cellular Automata: More Specifically

A CA is a spatial lattice of 𝑁 cells, each of which is one of 𝑘
states at time 𝑡.
• Each cell follows the same simple rule for updating its state (homogeneity).

• The cell's state 𝑠 at time 𝑡 + 1 depends on its own state and the states of
some number of neighbouring cells at 𝑡 (locality).

• For 1-d CAs, the neighbourhood of a cell consists of the cell itself and 𝑟
neighbours on either side. Hence, 𝑘 and 𝑟 are the parameters of the CA.

• CAs are often described as discrete dynamical systems with the capability
to model various kinds of natural discrete or continuous dynamical systems

Cellular Automata: the specification

• A neighborhood function that specifies which of the cell’s adjacent
cells affect its state.

• A transition function that specifies mapping from state of neighbor
cells to state of given cell

Neumann

neighborhood

Moore

neighborhood

. . .

Computation Characteristics of
Cellular Automata

• Synchronous computation

• Infinitely-large grid:

• but finite occupancy,

• grows when needed

• Various dimensions (1D, 2D, 3D, …)

• If cells are distributed, they still need to communicate across
boundaries; they communicate once per cycle.

To Recap

A Cellular Automaton is:

1. A Discrete Space 𝐴 (regular lattice of cells/sites in 𝑑 dimensions)

2. Discrete Time (Continuous Time as well but we are not interested ☺)

3. A set of states 𝑆 for each cell

4. Local homogenous evolution rule 𝛷 (defined for a neighborhood 𝑁)

5. Synchronous (parallel) updating of all cells

6. Tuple: 𝐴, 𝑆, 𝛷, 𝑁

What are the Applications of Cellular
Automata?
• Universal computers (embedded Turing machines)

• Self-reproduction

• Diffusion equations

• Artificial Life

• Digital Physics

• …

Some Examples of Application of CA: Simulation
Models

• “Game of Life”

• Gas particles: Billiard-ball model

• Ising model: Ferro-magnetic spins

• Heat equation simulation

• Percolation models

• Wire models

• Lattice Gas models

1-d Cellular Automata

A Very Simple Rule

13

A (one-dimensional) cellular automaton consists of a line of ‘cells’ (boxes) each

with a certain color like black or grey and a rule on how the colors of the cells

change from one time step to the next.

Line
The first line is always given.

This is what is called the

‘initial condition’.

Time 0

Time 1

Time 2

This is how the Cellular

Automaton evolves

Rule This rule is trivial. It means black remains black and grey

remains grey.

Another Simple Rule

14

Line
The first line is always given.

This is what is called the

‘initial condition’.

Time 0

Time 1

Time 2

This is how the Cellular

Automaton evolves

Rule
Another simple rule. It means black turns into grey and

grey turns into black.

Waking up the Neighbours(B.A. 1991 ☺)

15

Like this, the rules are a bit boring of course because there is no spatial

dependence. That is to say, neighboring cells have no influence.

Therefore, let us look at rules that take nearest neighbors into account.

or

With 3 cells and 2 colors, there are 8 possible combinations.

3-Neighborhood

16

The 8 possible combinations:

Of course, for each possible combination we’ll need to state

to which color it will lead in the next time step.

Let us look at rule 254 (we’ll get back to why it has this

name later).

Rule 254

17

We can of course apply this rule to the initial condition we

had before but what to do at the boundary?

Rule 254:

Boundary Conditions

Executing Rule 254

19

Often one starts with a single black dot and takes all the neighbors

on the right and left to be grey (ad infinitum).

Now, let us apply rule 254. This is quite simple, everything, except for

three neighboring grey cells will lead to a black cell.

254:

Executing Rule 254

20

Continuing the procedure:

Time 0

Time 1

Time 2

Time 3

254:

Executing Rule 254

21

Of course, we don’t really need those arrows and the time so we might

just as well forget about them to obtain:

254:

Nice, but well … not very exciting.

Rule 90

22

So let us look at another rule. This one is called rule 90.

That doesn’t look like it’s very exciting either. What’s the big deal?

Rule 90:

Applying Rule 90

23

At least it seems to be a bit less boring than before….

After one time step:

After two time steps:

90:

Applying Rule 90

24

Hey! This is becoming more fun….

After three time steps:

90:

Applying Rule 90

25

Hmmmm

After four time steps:

90:

Applying Rule 90

26

It’s a Pac Man!

After five time steps:

90:

Applying Rule 90

27

Which is a fractal!

Well not really. It’s a Sierpinsky gasket:

90:

Applying Rule 90

28

It’s a Sierpinsky gasket:

From S. Wolfram: A new kind of Science

90:

Rule 30

29

So, we have seen that simple cellular automata can display very simple and

fractal behavior. Both these patterns are in a sense highly regular.

One may wonder now whether ‘irregular’ patterns can also exist.

Rule 30:Surprisingly

they do!

Note that only the

color of two boxes

has been changed

compared to rule

90.

Applying Rule 30

30

30:

Applying Rule 30

31

While one side has

repetitive patterns,

the other side

appears random.

From S. Wolfram: A new kind of Science

30:

Rule 30 in Nature

Numbering Scheme

33

The first thing to

notice is that the

top is always the

same.

This is the part

that changes.

Now if we examine the top more closely, we find that it just is the same

pattern sequence that we obtain in binary counting.

Numbering Scheme

34

If we say that black is one and grey is zero, then we can see that the top is just

counting from 7 to 0.

Good. Now we know how to get the sequence on the top.

V
al

u
e

1

V
al

u
e

4

V
al

u
e

2

V
al

u
e

1

V
al

u
e

4

V
al

u
e

2

= 4

= 3

Numbering Scheme

How about the bottom? We can do exactly the same thing but since we have 8

boxes on the bottom it’s counting from 0 to 255.

= 2+8+16+64 = 90

1-d Cellular Automata

36

Like this we can number all the possible 256 rules for this type of cellular

automaton.

1-d Cellular Automata

37

Like this we can number all the possible 256 rules for this type of cellular

automaton.

1-d Cellular Automata

38

Like this we can number all the possible 256 rules for this type of cellular

automaton.

And of course,

one does not need to

restrict oneself to two

colors and two

neighbors …

Classifying 1-d CA

I. Always reaches a state in which all cells are dead or alive

II. Periodic behavior

III. Everything occurs “randomly”

IV. Unstructured but complex behavior

𝜆 = chance that a cell is alive in the next state

0.0 0.1 0.2 0.3 0.4 0.5

I I II IV III

Critical Probabilities?

Class I: Very Dull
All Configurations map to a homogeneous state
(e.g., Rules 0, 160)

Class II: Dull
All configurations map to simple,
separated periodic structures (e.g., Rule 5)

Class III: Interesting
Produces chaotic patterns (impossible to predict
long time behavior) (e.g., Rules 30, 90)

Class IV: Very Interesting

Produces propagating structures, may be used in
computations (Rule 110)

2-d Cellular Automata

Example of a Cellular Automaton: VOTE

•Vote is an example of the simplest possible kind of
eight-neighbor CA.

•Vote is so simple because:

(1) Vote is a "one-bit rule" and,

(2) Vote is "totalistic.”

Sums

•NineSums: The NineSum for a cell (C) is the sum of 1’s
in all the surrounding cells (neighbors including cell
(C)).

• EightSum: EightSum for a cell (C) is the sum of 1’s in
all the surrounding cells (neighbors excluding cell (C)).

Example

• In this example, each cell can
be in either 0 or 1 state.

• Cell C has 8 neighbors, 3 of
them are in state 1,
• Then the EightSum for cell C is

3, NineSum is 4.

One-bit Rule

Vote is a one-bit rule.

•The cells of Vote have only two possible states:
on or off, zero or one.

•Choosing between two options requires one bit
of information, and this is why we call Vote a
one-bit rule.

Totalistic

Vote is totalistic.

• A totalistic rule updates a cell C by forming the EightSum of the eight
neighbors, adding in the value of C itself to get the full NineSum, and
then determining the cell's new value strictly on the basis of where
the NineSum lies in the range of ten possibilities 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9.

• Under a totalistic rule, a cell's next state depends only on the total
number of bits in its nine-cell neighborhood.

Vote
The idea behind Vote's rule is that if most cells in your neighborhood are 1, then you go
to 1, and if most cells in your neighborhood are 0, then you go to 0.

What do we mean by "most cells in your neighborhood?"

Since there are nine cells in your neighborhood, the most obvious interpretation is to
assume that "most" means "five or more".

NineSum 0 1 2 3 4 5 6 7 8 9

NewState 0 0 0 0 0 1 1 1 1 1

Majority (copy what neighbors do): 992

NineSum 0 1 2 3 4 5 6 7 8 9

NewState 0 0 0 0 1 0 1 1 1 1

Biased Majority (almost copy what neighbors do): 976

https://www.fourmilab.ch/cellab/webca/?ruleprog=vote

Implementation Issues

On the fly:
𝑠𝑖𝑗 𝑡 + 1 = 𝑠𝑖−1,𝑗 𝑡 ⊚ 𝑠𝑖+1,𝑗 𝑡 ⊚ 𝑠𝑖,𝑗−1 𝑡 ⊚ 𝑠𝑖,𝑗+1 𝑡

Using a look-up table:

𝑖𝑛𝑑𝑒𝑥 = 20𝑠𝑖−1,𝑗 𝑡 + 21𝑠𝑖+1,𝑗 𝑡 + 22𝑠𝑖,𝑗−1 𝑡 + 23𝑠𝑖,𝑗+1 𝑡

𝑠𝑖𝑗 𝑡 + 1 = Rule[index]

A Small Diversion
History of CAs

Origins of CA

• 1940s: J. von Neuman and S. Ulam

• Design a better computer with self-repair and self-correction
mechanisms

• Simpler Problem: Finding a mechanism for self-reproduction
• (before the discovery of DNA) Devise an algorithmic scheme

• Formalize in a discrete space

• Automaton with 29 states, arrangements of thousand of cells that self-
reproduce

• Universal Computer

A Simpler CA that Self-Reproduces: Langton
CA
• Simplified version: 8 states

• Not a universal computer

• Structures that contain their own fabrication recipe

• This is not a biological model, but an algorithmic abstraction

• Reproduction from a mechanistic point of view (energy and matter is
needed)

• No need for hierarchical structure that the more complicated builds the
less complicated

• Evolving hardware

Langton’s Loops

Chris Langton formulated a much simpler form of self-rep structure -
Langton's loops - with only a few different states, and only small
starting structures.

A Small Touch on Percolation Theory

Forest Fire

Rules – 2d Square Lattice (4-neighborhood)

In each tick:

1. A burning tree becomes an empty site.

2. A green tree becomes a burning tree if at least one of its nearest
neighbors is burning.

3. At an empty site, a tree grows with probability 𝑞.

4. A tree without a burning nearest neighbor becomes a burning tree
during one time step with probability 𝑓 (lightning).

Let 𝑞 = 0 and 𝑓 = 0
(no grow – no lightning – small time scale)

Initialization:

• Each cell with probability 𝑝
will be filled with a tree,
otherwise empty.

• First row of trees is ignited.

Questions:

Will the fire reach the last
row? How many trees will it
burn?

𝑝 = 0,58 𝑝 = 0,59 𝑝 = 0,6

What is Percolation Theory?

Start with an empty lattice - then occupy sites at random

• Connected occupied sites form clusters

• Percolation is about the properties of these clusters -- size,
connectivity, etc.

Connectivity on a Square Lattice
• Connectivity depends on concentration of occupied sites 𝑝

• Connectivity changes at 𝑝𝑐 (≈0.59 for site percolation on a square lattice)

𝑝𝑐 is the “critical” concentration for percolation

• A “connectivity” phase transition occurs at 𝑝𝑐 ~ 0.59

• A spanning cluster first appears at 𝑝𝑐
• Many properties are singular at 𝑝𝑐

𝑝𝑐 Depends on Lattice Type

Let’s Get Back to Forest Fire

The burn-out time diverges at 𝑝𝑐!

• An example of singular behavior at the percolation transition

• Singularity is due to the connectivity of the infinite cluster at 𝑝𝑐

Strange Properties at 𝑝𝑐

• The spanning cluster is infinite (since it spans the system) but contains a vanishing fraction of the
occupied sites!

• Forms a fractal

Focus on just the spanning (critical) cluster at 𝑝𝑐

• Remove all sites that are not part of the infinite cluster

• The spanning cluster contains large holes

• Need a way to describe the geometry of this cluster

Infinite????
In theory we assume an infinite space to

reason for CA. Of course, experimentation
is conducted on finite spaces.

Finding the Dimensions of 1-d CA

Dimension for geometric objects: scaling behavior

• Square of edge length 𝑙: 𝐴𝑟𝑒𝑎 = 𝑙2,
𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑙𝑒𝑛𝑔𝑡ℎ = 2

• Cube of edge length 𝑙: 𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑙3,
𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑙𝑒𝑛𝑔𝑡ℎ = 3

𝑙
𝑙

Fractal Dimensionality of a Cluster

Consider how the mass 𝑚 varies with radius 𝑟

•𝑚 varies as a power law
𝑚 𝑟 ~𝑟𝑑𝑓

• Exponent 𝑑𝑓~𝑟
2 for a “regular” 2-d cluster

• 𝑑𝑓 < 2 for the spanning cluster at 𝑝𝑐
• fractal cluster

Fractal Dimension at Percolation Threshold

mass (𝑚) of largest cluster as a function of lattice size (𝐿)

𝑚~𝑟𝑑𝑓

𝑑𝑓 =
91

48
≈ 1.90

What makes a fractal cluster different?

• Just having holes and cracks is not enough

• Presence of “holes” and “cracks” on all length scales

Finding the Dimensions of 1-d CA
Rule 20 Rule 50 Rule 18

Experimental discovery of
dimensions of a CA:
Count the number of cells in
each step.

For rule 18, the slope is 1.57,
meaning that the pattern
generated has a fractional
dimension, that is, it is a fractal.

Cellular
Automata
Models for
Traffic

Rule 184
current
pattern

111 110 101 100 011 010 001 000

new state 1 0 1 1 1 0 0 0

If a cell has state 0, its
new state is taken
from the cell to its
left. Otherwise, its
new state is taken
from the cell to its
right.

• Rule 184, run for 128 steps
from random configurations
with each of three different
starting densities: top 25%,
middle 50%, bottom 75%.

• The view shown is a 300-pixel
crop from a wider simulation.

Rule 184, run for 128 steps from random configurations with each of three different starting densities: top 25%, middle 50%, bottom 75%. The view shown is a 300-pixel crop from a wider simulation.

http://en.wikipedia.org/wiki/Image:Rule_184.png

Traffic flow

Rule 184 interpreted as a simulation of traffic flow. Each 1 cell
corresponds to a vehicle, and each vehicle moves forwards only
if it has open space in front of it.

Rule 184 interpreted as a simulation of traffic flow. Each 1 cell corresponds to a vehicle, and each vehicle moves forwards only if it has open space in front of it.

Although very primitive, the Rule 184 model of traffic flow already predicts some of the familiar
emergent features of real traffic: clusters of freely moving cars separated by stretches of open road
when traffic is light, and waves of stop-and-go traffic when it is heavy.

http://en.wikipedia.org/wiki/Image:Rule_184_cars.svg

Traffic Model

A vehicle can move only when downstream cell is free.

Motion Equations (for a single line)

𝑛𝑖 𝑡 + 1 = 𝑛𝑖
𝑖𝑛 𝑡 1 − 𝑛𝑖 𝑡 + 𝑛𝑖 𝑡 𝑛𝑖

𝑜𝑢𝑡 𝑡

𝑛𝑖 𝑡 : 0 if 𝑖 is free, 1 otherwise

𝑛𝑖
𝑖𝑛 𝑡 : the state of the cell from which a car can come to 𝑖

𝑛𝑖
𝑜𝑢𝑡 𝑡 : the state of the cell to which a car can go from 𝑖

Flow Diagram
The car density at time 𝑡 on a road segment 𝐿 of length 𝐿 is defined as

𝜌 𝑡 =
𝑁𝐿 𝑡

𝐿

where 𝑁𝐿(𝑡) is the number of cars along segment 𝐿 at time 𝑡

The average velocity 𝑣 at time 𝑡 on this segment is defined as

𝑣 =
𝑀𝐿 𝑡

𝑁𝐿 𝑡

where 𝑀𝐿 𝑡 is the number of cars moving at time 𝑡 on segment 𝐿

The traffic flow 𝑗 is defined as

𝑗 = 𝜌 𝜏 𝑣 =
𝑀 𝑡

𝐿

Flow Diagram of Rule 184

Traffic in a Manhattan-like City

Complex Systems

The Game of Life
3-d Game of life in Minecraft

Simple rules, executed at each time step:

• A live cell with 2 or 3 live neighbors survives to the next round.

• A live cell with 4 or more neighbors dies of overpopulation.

• A live cell with 1 or 0 neighbors dies of isolation.

• An empty cell with exactly 3 neighbors becomes a live cell in the next round.

Glider

Sequences

More

Sequence leading to

Blinkers

Clock

Barber’s pole

A Glider Gun

The Langton Ant

Ant’s Rule

This is a hypothetical animal moving on a 2D lattice,

according to a simple rule. This rule depends on the

“color” of the cell on which the ant is.

Long-term Behavior

• The ant diverges to infinity (creates a highway)

The Ant Always Escape to Infinity
(for any initial distribution of colors)

Impact on the Scientific Methodology

• We know perfectly well the fundamental law governing the system

• ...because we define it ourselves

• However, we cannot predict the detailed motion of the ant (e.g. at what time
does the highway appears)

• The microscopic description is not always able to predict the macroscopic
behavior

• The only solution (up to now): observe the system

• The only information we get on the trajectory is global and reflects the symmetry
of the rule.

Generalizations of CA

• Stochastic CA

• Asynchronous Update

• Non-uniform CA

• Structurally Dynamic CA

• …

Predator-Prey Model
In Cellular Automata

Main idea

• Model predator(shark)/prey(fish) relationship by CA

• Define set of rules

• Begins with a randomly distributed population of fish, sharks, and empty
cells in a 1000x2000 cell grid (2 million cells)

• Initially,
• 50% of the cells are occupied by fish
• 25% are occupied by sharks
• 25% are empty

Based on the work of Bill Madden, Nancy Ricca and Jonathan Rizzo
*Adapted from: Wilkinson,B and M. Allen (1999): Parallel Programming 2nd Edition, NJ, Pearson Prentice Hall, p189

Here’s the number 2 million

• Fish: red; sharks: yellow; empty: black

Rules

A dozen or so rules describe life in each cell:

• birth, longevity and death of a fish or shark

• breeding of fish and sharks

• over- and under-population

• fish/shark interaction

• Important: what happens in each cell is determined only by rules that
apply locally, yet which often yield long-term large-scale patterns.

Do a LOT of computation!

• Apply a dozen rules to each cell

• Do this for 2 million cells in the grid

• Do this for 20,000 generations

• Well over a trillion calculations per run!

• Do this as quickly as you can

Rules in detail: Breeding Rule

Breeding rule: if the current cell is empty

• If there are >= 4 neighbors of one species, and >= 3 of them are of
breeding age,

• Fish breeding age >= 2,

• Shark breeding age >=3,

and there are <4 of the other species:

then create a species of that type
• +1= baby fish (age = 1 at birth)

• -1 = baby shark (age = |-1| at birth)

Breeding Rule: Before

EMPTY

Breeding Rule: After

Rules in Detail: Fish Rules

If the current cell contains a fish:

• Fish live for 10 generations

• If >=5 neighbors are sharks, fish dies (shark food)

• If all 8 neighbors are fish, fish dies (overpopulation)

• If a fish does not die, increment age

Rules in Detail: Shark Rules

If the current cell contains a shark:

• Sharks live for 20 generations

• If >=6 neighbors are sharks and fish neighbors =0, the shark dies
(starvation)

• A shark has a 1/32 (.031) chance of dying due to random causes

• If a shark does not die, increment age

Shark Random Death: Before

I sure hope that the

random number

chosen is >.031

Shark Random Death: After

YES IT IS!!!

I LIVE ☺

110

Programming Logic

• Use 2-dimensional array to
represent grid

• At any one (x, y) position,
value is:
• Positive integer (fish present)
• Negative integer (shark

present)
• Zero (empty cell)
• Absolute value of cell is age

Parallelism

• A single CPU has to do it all:
• Applies rules to first cell in array

• Repeats rules for each successive cell in array

• After 2 millionth cell is processed, array is updated

• One generation has passed

• Repeat this process for many generations

• Every 100 generations or so, convert array to red, yellow and black pixels and
send results to screen

Parallelism

• How to split the work among 20 CPUs
• 1 CPU acts as Master (has copy of whole array)

• 18 CPUs act as Slaves (handle parts of the array)

• 1 CPU takes care of screen updates

• Problem: communication issue concerning cells along array
boundaries among slaves

Send Right Boundary Values

Receive Left Boundary Values

Send Left Boundary Values

Receive Right Boundary Values

Send Right Boundary Values

Receive Left Boundary Values

Send Left Boundary Values

Receive Right Boundary Values

At intervals, update the master CPU

has copy of entire array

Illustration

• Next several screens show behavior over a span of 10,000+
generations (about 25 minutes on a cluster of 20 processors)

Generation: 0

Generation: 100

Generation: 500

Generation: 1,000

Generation: 2,000

Generation: 4,000

Generation: 8,000

Generation: 10,500

Variations of Initial Conditions

• Still using randomly distributed populations:
• Medium-sized population. Fish/sharks occupy:

1/16th of total grid
Fish: 62,703; Sharks: 31,301

• Very small population. Fish/sharks occupy:
1/800th of total grid
Initial population:

Fish: 1,298; Sharks: 609

Generation 100 20001000

4000 8000

Medium-sized population (1/16 of grid)

 Random placement of very small populations can favor one
species over another

 Fish favored: sharks die out

 Sharks favored: sharks predominate, but fish survive in
stable small numbers

Very Small Populations

• Random placement of very small populations can favor one species
over another

• Fish favored: sharks die out

• Sharks favored: sharks predominate, but fish survive in stable small
numbers

References

1. Cellular Automata. Jarkko Kari, Lecture Notes, 2011.

2. Think Complexity. A.B. Downey, Green Tea Press, 2016.

3. An Introduction to Percolation. A. Yadin, Lecture Notes, 2020.

https://users.utu.fi/jkari/wp-content/uploads/sites/1251/2021/12/fullnotes.pdf
https://greenteapress.com/complexity2/thinkcomplexity2.pdf
https://www.math.bgu.ac.il/~yadina/percolation.pdf

	Slide 1: Cellular Automata
	Slide 2: Example: Parity Rule
	Slide 3: Evolution of the Parity rule
	Slide 4: What are Cellular Automata?
	Slide 5: Using Voxels: Morphing (Cube Bonsai)
	Slide 6: Cellular Automata: More Specifically
	Slide 7: Cellular Automata: the specification
	Slide 8: Computation Characteristics of Cellular Automata
	Slide 9: To Recap
	Slide 10: What are the Applications of Cellular Automata?
	Slide 11: Some Examples of Application of CA: Simulation Models
	Slide 12: 1-d Cellular Automata
	Slide 13: A Very Simple Rule
	Slide 14: Another Simple Rule
	Slide 15: Waking up the Neighbours(B.A. 1991)
	Slide 16: 3-Neighborhood
	Slide 17: Rule 254
	Slide 18: Boundary Conditions
	Slide 19: Executing Rule 254
	Slide 20: Executing Rule 254
	Slide 21: Executing Rule 254
	Slide 22: Rule 90
	Slide 23: Applying Rule 90
	Slide 24: Applying Rule 90
	Slide 25: Applying Rule 90
	Slide 26: Applying Rule 90
	Slide 27: Applying Rule 90
	Slide 28: Applying Rule 90
	Slide 29: Rule 30
	Slide 30: Applying Rule 30
	Slide 31: Applying Rule 30
	Slide 32: Rule 30 in Nature
	Slide 33: Numbering Scheme
	Slide 34: Numbering Scheme
	Slide 35: Numbering Scheme
	Slide 36: 1-d Cellular Automata
	Slide 37: 1-d Cellular Automata
	Slide 38: 1-d Cellular Automata
	Slide 39: Classifying 1-d CA
	Slide 40: Critical Probabilities?
	Slide 42: Class I: Very Dull
	Slide 43: Class II: Dull
	Slide 44: Class III: Interesting
	Slide 45: Class IV: Very Interesting
	Slide 46: 2-d Cellular Automata
	Slide 47: Example of a Cellular Automaton: VOTE
	Slide 48: Sums
	Slide 49: Example
	Slide 50: One-bit Rule
	Slide 51: Totalistic
	Slide 53: Vote
	Slide 54: Implementation Issues
	Slide 55: A Small Diversion
	Slide 56: Origins of CA
	Slide 57: A Simpler CA that Self-Reproduces: Langton CA
	Slide 58: Langton’s Loops
	Slide 63: Forest Fire
	Slide 64: Rules – 2d Square Lattice (4-neighborhood)
	Slide 65: Let q equals 0 and f equals 0 (no grow – no lightning – small time scale)
	Slide 66: What is Percolation Theory?
	Slide 67: Connectivity on a Square Lattice
	Slide 68: p sub c Depends on Lattice Type
	Slide 69: Let’s Get Back to Forest Fire
	Slide 70: Strange Properties at p sub c
	Slide 71: Finding the Dimensions of 1-d CA
	Slide 72: Fractal Dimensionality of a Cluster
	Slide 73: Fractal Dimension at Percolation Threshold
	Slide 74: Finding the Dimensions of 1-d CA
	Slide 75: Cellular Automata Models for Traffic
	Slide 77: Rule 184
	Slide 79: Traffic flow
	Slide 80: Traffic Model
	Slide 81: Motion Equations (for a single line)
	Slide 82: Flow Diagram
	Slide 83: Flow Diagram of Rule 184
	Slide 84: Traffic in a Manhattan-like City
	Slide 85: Complex Systems
	Slide 86: The Game of Life
	Slide 87: Simple rules, executed at each time step:
	Slide 88: Glider
	Slide 89: Sequences
	Slide 90: More
	Slide 91: A Glider Gun
	Slide 92: The Langton Ant
	Slide 93: Ant’s Rule
	Slide 94: Long-term Behavior
	Slide 95: The Ant Always Escape to Infinity (for any initial distribution of colors)
	Slide 96: Impact on the Scientific Methodology
	Slide 97: Generalizations of CA
	Slide 98: Predator-Prey Model
	Slide 99: Main idea
	Slide 100: Here’s the number 2 million
	Slide 101: Rules
	Slide 102: Do a LOT of computation!
	Slide 103: Rules in detail: Breeding Rule
	Slide 104: Breeding Rule: Before
	Slide 105: Breeding Rule: After
	Slide 106: Rules in Detail: Fish Rules
	Slide 107: Rules in Detail: Shark Rules
	Slide 108: Shark Random Death: Before
	Slide 109: Shark Random Death: After
	Slide 110: Programming Logic
	Slide 111: Parallelism
	Slide 112: Parallelism
	Slide 113: Send Right Boundary Values
	Slide 114: Receive Left Boundary Values
	Slide 115: Send Left Boundary Values
	Slide 116: Receive Right Boundary Values
	Slide 117: Send Right Boundary Values
	Slide 118: Receive Left Boundary Values
	Slide 119: Send Left Boundary Values
	Slide 120: Receive Right Boundary Values
	Slide 121: At intervals, update the master CPU
	Slide 122: Illustration
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131: Variations of Initial Conditions
	Slide 132
	Slide 133: Very Small Populations
	Slide 134: References

