
Modeling (Natural) Processes

Noy-Meir water flow model for a desert ecosystem



Analysis

Model

Up Until Now… & From Now and on…
Problem

Protocol 
Design

Execution Results

Phenomenon

Model

Feedback Loop?

Intervention?



Natural Processes

We look at certain modeling techniques for natural processes in: 

• Physics (e.g., fluid mechanics)

• Environmental Sciences (e.g., river modeling)

• Biology (e.g., tissue growth)

• Ecosystems (e.g,. epidemics, competition, ant behavior)

• Finance, social sciences, traffic, pedestrian movement,… 

• …



What is a Model?

This is not a pipe. It is only a 
depiction of a pipe. 

• Simplified abstraction of reality

• Only necessary ingredients are 
retained
• These must be related to the questions 

at hand

• Representation of phenomena in a 
mathematical or computer language 
(algorithms?)



Why a Model?

Describe, classify and:

• Understand

• Predict

• Control Phenomena (Make Interventions)

What is a good model?

• It depends on the questions asked. Based on these questions, 
different aspects of the process are studied.



Scales

The same system can be described at different scales, and different scales require 
different methods to be applied

• mechanical parts, car, traffic

• cells, tissues, organs, human being, societies

• atoms, molecules, fluid mechanics, pressure fields, climate

• virus propagation within human body, within a family, within a school/workplace, 
within a town, in a country, globally

1. One has to identify important ingredients and their interactions

2. Often, one defines a model at a finer scale than the scale on which questions 
are asked.



Several Models – Different Languages
Partial differential equation for a fluid (Navier-Stokes)

𝜗𝑡𝑢 + 𝑢 ⋅ ∇ 𝑢 = −
1

𝜌
∇𝑝 + 𝑣∇2𝑢

phenomena → PDE → discretization → numerical solution

vs 

Virtual model of reality. We consider a discrete universe as an 
abstraction of the real world. phenomena → computer model



Models…

• Mathematical Equations, ODE, PDE

• Monte-Carlo methods

• Cellular Automata

• Multi-agent Systems

• Complex Networks

• …



Opinion Dynamics - Consensus
Let's start with opinion models with linear dynamics



Common Types of Opinion Dynamics 
Phenomena and Respective Modesls



Seeing from a Learning “Lens”

Bayesian Learning

• Repeated actions (complicated updating)

• Observe each other

DeGroot Model

• Repeated communication

• “naïve” updating

We will only touch on the Bayesian approach: a model of Bala and Goyal



Simple Bayesian Learning



The Questions

• Will society converge?
• Converging in having the same opinion.

• Will they aggregate information properly?
• Will they eventually converge to the right opinion?

• …



Setting
𝑛 players in an undirected connected component 𝑔

• Choose action 𝐴 or 𝐵 each period

• 𝐴 pays 1 for sure

• 𝐵 pays 2 with probability 𝑝 and 0 with probability 1 − 𝑝

Learning:

• Each period get a payoff based on choice

• Also observe neighbors’ choices

• Maximize discounted stream of payoffs 𝐸 σ𝑡 𝛿𝑡𝜋𝑖𝑡 (𝜋𝑖𝑡: payoff at 𝑡 for agent 𝑖, 
𝛿𝑡: belief of agent 𝑖 at time 𝑡)

• 𝑝 is unknown, takes on finite set of values
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Challenges

Complicated inferences about the choice for 𝐴 and 𝐵 for 
non-neighbors. 

• In this model we assume bounded rationality: just look at 
the history of 𝐴s and 𝐵s and do not make inferences

If my prior is 𝑝 <
1

2
, then by experimentation I may try to 

look at whether this belief is right. However, I could play 
strategically and let the others experiment and see what 
happens (free rider) – complicated game

• In this model we assume that players are not strategic
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Convergence to Conformism

Proposition: If 𝑝 is not exactly 1/2, then with probability 1 there is a time such that all 
agents in a given component play just one action (and all play the same action) from that 
time onward

Proof:

• Suppose contrary

• Some agent in some component plays 𝐵 infinitely often

• That agent will converge to true belief by the law of large numbers

• Must be that belief converges to 𝑝 > 1/2, or that agent would stop playing 𝐵

• With probability 1, all agents who see 𝐵 played infinitely often converge to a belief that 
𝐵 pays 2 with prob 𝑝 > 1/2

• Neighbors of agent must play 𝐵, after some time, and so forth

• All agents must play 𝐵 from some time on



Do we Play the Right Action?

• If 𝐵 is the right action, then play the right action if converge to it, but 
might not

• If 𝐴 is the right action, then must converge to right action

What is the probability of converging to correct action?

• Arbitrarily high if each action has some agent who initially has 
arbitrarily high prior that the action is the best one



Temporal and Spatial Evolution of Learning

Simulations:

• Set of farmers in a 𝑘 × 𝑘 grid

• Each farmer owns a single plot of land

• Each farmer 𝑖 observes the actions and payoffs of 
surrounding 8 neighbors 



Temporal Patterns

Assume 2 crops. 

• Crop 1: payoff equal to 
1

2

• Crop 2: payoff either equal to 0,45 or to 0,55

Assuming the best for crop 2: Assuming the best for crop 2 is 0,57:



Spatial Patterns

We consider the previous example.



Limitations of this Model

• Homogeneity of actions and payoffs across players. What if 
heterogeneity?

• Repeated actions over time (experimentation is not always possible –
e.g., global warming)

• Stationarity

• Networks are not playing role here!



Linear Network Systems
Focusing on Communication



Opinion Dynamics in Social Influence 
Networks

𝑝𝑖
+ = 

1≤𝑗≤𝑛

𝑎𝑖𝑗𝑝𝑗

𝑎𝑖𝑗:weight that 𝑖 assigns to the opinion 𝑝𝑗 of 𝑗

Questions:
(i) Is this model of human opinion dynamics believable? Is there empirical evidence in its support?

(ii) How does one measure the coefficients 𝑎𝑖𝑗?

(iii) Under what conditions do the pdfs converge to the same pdf? In other words, when do the agents achieve 
consensus? And to what final pdf?

(iv) What are more realistic, empirically-motivated models, possibly including stubborn individuals or antagonistic 
interactions?



Averaging Algorithms in Wireless Sensor 
Networks

𝑥𝑖
+ = 𝑎𝑣𝑔 𝑥𝑖 , 𝑥𝑗 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑛𝑜𝑑𝑒𝑠 𝑗 𝑜𝑟 𝑖

𝑥𝑖: a scalar quantity (e.g., temperature)

Questions:
(i) Does each node converge to a value? Is this value the same for all nodes?

(ii) Is this value equal to the average of the initial conditions? In other words, when do the agents achieve average 
consensus?

(iii) What properties do the graph and the corresponding matrix need to have in order for the algorithm to 
converge?

(iv) How quick is the convergence?



Flocking Dynamics in Animal Behavior

𝛥𝜃𝜄 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝜃𝑗 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑗 − 𝜃𝑖

Questions:
(i) how valid is this model in understanding and reproducing animal behavior?

(ii) what are equilibrium headings and when are they attractive?

(iii) what properties does the graph need to have to ensure a proper flocking behavior?

𝜃𝑖



Dynamical Flow Systems in Ecosystems
(Compartmental Systems)

Water flow model for a desert ecosystem.

The Noy-Meir water flow model for a 
desert ecosystem. 

1. The black dashed line denotes an 
inflow from the outside environment.

2. Each compartment functions as 
storage unit. 

3. The light-gray dashed lines denote 
outflows into the outside environment



Discrete-Time Model

𝑞𝑖 𝑘 + 1 = 

1≤𝑗≤𝑛

𝑎𝑗𝑖𝑞𝑗 + 𝑢𝑖

𝑞𝑖 𝑘 : quantity of water at compartment 𝑖 in time step 𝑘.

𝑎𝑖𝑗: (routing fractions) fraction of water from 𝑖 to 𝑗 in one step.

𝑢𝑖: non-negative supply to compartment 𝑖.

𝐴𝑁𝑜𝑦−𝑀𝑒𝑖𝑟 =

1 − 𝑎𝑒𝑑𝑟 − 𝑎𝑢 − 𝑎𝑑 𝑎𝑢 𝑎𝑑
0 1 − 𝑎𝑡 − 𝑎ℎ 𝑎ℎ
0 0 1 − 𝑎𝑒

, 𝑈 =

𝑎𝑝
0
0

𝑄 𝑘 + 1 = 𝐴𝑁𝑜𝑦−𝑀𝑒𝑖𝑟
𝑇 𝑄𝑘 + 𝑈



Continuous-Time Model

𝑑𝑞𝑖 𝑡

𝑑𝑡
= 

𝑗=1,𝑗≠𝑖

𝑛

𝑓𝑗𝑖𝑞𝑗 𝑡 − 𝑓𝑖𝑗𝑞𝑖 𝑡 − 𝑓0,𝑖𝑞𝑖 𝑡 + 𝑢𝑖

𝑞𝑖 𝑡 : denote the quantity of water at compartment 𝑖 at time 𝑡 ∈ ℜ+ ∪ 0

𝑓𝑖𝑗: denote the flow rates of commodity at compartment 𝑖 flowing to 
compartment 𝑗 (positive)

𝑢𝑖: external supply to compartment 𝑖

𝑓0,𝑖: outflow rate of compartment 𝑖 to the environment



Averaging 
Dynamics
DeGroot Model



Some Basic Characteristics

• Repeated Communication

• External Information only during initialization

• Information dissemination

• Influence, convergence speed, network impact

Bounded Rationality Model

• Repeatedly average (with weights) beliefs with neighbors

• Weights do not change (otherwise Bayesian)



Example



Each Updating Step we get Information from 
Further Away



Each Updating Step we get Information from 
Further Away



Each Updating Step we get Information from 
Further Away



De Groot Model

• Individuals: 1, … , 𝑛

• 𝐴: weighted directed network, row-stochastic matrix 

• Start with beliefs, attitude, etc. 𝑏𝑖 0 ∈ 0,1 – or 0,1 𝑘 
(vectors)…

• Updating: 𝑏𝑖
+ 𝑡 = σ𝑗 𝑎𝑖𝑗𝑏𝑗 𝑡 − 1



Matrices

DeGroot Model:

𝑏𝑖 𝑡 =

𝑗

𝑎𝑖𝑗𝑏𝑗 𝑡 − 1

𝑏1 𝑡
…

𝑏𝑛 𝑡
=

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑛
⋅
𝑏1 𝑡 − 1

…
𝑏𝑛 𝑡 − 1

𝑏 𝑡 = 𝐴 ⋅ 𝑏 𝑡 − 1 ⇒
𝑏 𝑡 = 𝐴𝑡 ⋅ 𝑏 0



Convergence – It is not Always Possible

𝐴 =
0 1/2 1/2
1 0 0
1 0 0

𝑏 0 =
1
0
0
, 𝑏 1 = 𝐴 ⋅

1
0
0

=
0
1
1

𝑏 2 = 𝐴 ⋅
0
1
1

=
1
0
0
, 𝑏 3 = 𝐴 ⋅

1
0
0

=
0
1
1
, … (𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐)



Convergence

• 𝐴 converges if lim
𝑡→∞

𝐴𝑡𝑏 0 exists for all 𝑏 0

• 𝐴 is aperiodic if the greatest common divisor of its cycle 
lengths is 1



Convergence Theorem

Assumption: 𝐴 is strongly connected.

Theorem:

i. 𝐴 is convergent if and only if 𝐴 is aperiodic

ii. 𝐴 is convergent if and only if lim
𝑡→∞

𝐴𝑡 = 1 1 …1 𝑇𝑠𝑇, where 𝑠 is the

unique left hand-side eigenvector with eigenvalue 1

Under these assumptions the DeGroot model converges to:
lim
𝑡→∞

𝐴𝑡𝑏 0 = 1 1 …1 𝑇 ⋅ 𝑠𝑇 ⋅ 𝑏 0



Proof

𝐴 is primitive if ∃𝑡0: 𝐴𝑖𝑗
𝑡 > 0, for all 𝑡 ≥ 𝑡0

Known theorems:

• If 𝐴 is strongly connected and stochastic then it is aperiodic if and 
only if it is primitive

• If 𝐴 is strongly connected and primitive, then lim
𝑡→∞

𝐴𝑡 = 1 1 …1 𝑇𝑠

where 𝑠 is the unique lhs eigenvector with eigenvalue 1. All entries of 𝑠
are positive (𝑠 must be rescaled so that all entries add to 1)



Proof

⇒ Strongly connectedness, stochasticity and aperiodicity 
implies convergence 

⇐ Strongly connectedness, stochasticity and convergence 
implies that 𝐴 is primitive  



Aperiodicity

Aperiodicity is easy to achieve

• Have some agent weigh him or herself

• Or have at least one communicating dyad and a transitive 
triple…



Influence in DeGroot Model



Influence

The DeGroot model converges and achieves consensus.

• Converges to (normalized) eigenvector weighted sum of 
original beliefs.

𝐴1 =
0 1/2 1/2
1 0 0
0 1 0

𝐴2 =
1/2 1/2 0
0 1/2 1/2
0 1 0

𝐴3 =

1/2 1/4 1/4
1/2 1/2 0
0 1/2 1/2

𝐴4 =

1/4 1/2 1/4
1/2 1/4 1/4
1/2 1/2 0

𝐴5 =

1/2 3/8 1/8
1/4 1/2 1/4
1/2 1/4 1/4

… 𝐴∞ =

2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5



Limiting Beliefs

•When group reaches a consensus, what is it?

•Who are the influential agents in terms of steering the 
limiting belief?



Example of Influence

2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5

⋅
1
0
0

=

2/5
2/5
2/5

2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5

⋅
0
1
0

=

2/5
2/5
2/5

2/5 2/5 1/5
2/5 2/5 1/5
2/5 2/5 1/5

⋅
0
0
1

=

1/5
1/5
1/5



Who has Influence?

• Note that 𝑠 = 𝑠 ⋅ 𝐴, which is 

𝑠𝑖 =

𝑗

𝑎𝑗𝑖𝑠𝑗

• Eigenvector Centrality for unweighted graph:

𝐶𝑖 = 𝑎

𝑗

𝑔𝑖𝑗𝐶𝑗



Stubborn Agents

• An agent that puts too much weight on itself will drag others to 
his/her belief

• Groups that are highly introspective and visible will have major 
influence on others



Krackardt’s (1987) advice network



Averaging
Wireless Sensors Networks



Let’s Look at Sensor Networks

Wireless sensor network:

• Spatially distributed devices

• Measurements of physical variables (e.g., temperature)

• Local computations

• Transmitting info to neighbors

Assume the following averaging distributed algorithm:
𝑥𝑖 𝑡 + 1 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑥𝑖 𝑡 , 𝑥𝑗 𝑡 : 𝑗 ∈ 𝑁𝑖



The Equal-Neighbor Model

𝐺: Connected undirected graph
𝐴𝑒𝑞𝑢𝑎𝑙_𝑛𝑒𝑖𝑔ℎ = 𝐷−1𝐴

1 2

3 4
0 1
1/3 0

0 0
1/3 1/3

0 1/2
0 1/2

0 1/2
1/2 0

=

1 0
0 3

0 0
0 0

0 0
0 0

2 0
0 2

−1
0 1
1 0

0 0
1 1

0 1
0 1

0 1
1 0



The Equal-Neighbor Model

Let 𝐺 an undirected graph with adjacency matrix 𝐴 and let the degree matrix 𝐷 =
𝑑𝑖𝑎𝑔 𝑑1, 𝑑2, … , 𝑑𝑛 , where 𝑑1, 𝑑2, … , 𝑑𝑛 are the degree of the 𝑛 nodes. We 
define the following matrix:

𝐴𝑒𝑛 = 𝐷−1𝐴

Theorem: Let 𝐺 be a connected undirected graph (possibly with self loops) with 
adjacency matrix 𝐴 and degrees 𝑑1, 𝑑2, … , 𝑑𝑛. Then:

1. 𝐴𝑒𝑛 is well defined, row-stochastic and irreducible

2. The lhs principal eigenvector of 𝐴𝑒𝑛, normalized to have unit sum is:

𝑣𝑒𝑛 =
1

σ1≤𝑖≤𝑛 𝑑𝑖

𝑑1
…
𝑑𝑛

3. 𝐴𝑒𝑛 is double stochastic iff 𝐺 is regular (i.e., all nodes have the same degree)



Proof
1. 𝐺 is connected. Thus, each degree is strictly positive. The degree 

matrix is invertible and thus 𝐴𝑒𝑛 is well-defined. Since 𝐺 is 
connected, the corresponding directed graph to 𝐴𝑒𝑛 is also strongly 
connected ant thus 𝐴𝑒𝑛 is irreducible. Indeed, it is row stochastic 
since:

𝐴𝑒𝑛 ⋅ 𝟏𝑛 = 𝐷−1𝐴 ⋅ 𝟏𝑛 = 𝐷−1𝑑 = 𝟏𝑛

2. 𝑣𝑒𝑛
𝑇 𝐴𝑒𝑛 =

1

σ1≤𝑖≤𝑛 𝑑𝑖

𝑑1
…
𝑑𝑛

𝑇

𝐴𝑒𝑛 =
1

𝐷
𝑑𝑇𝐷−1𝐴 =

1

𝐷
𝟏𝑇𝐴 =

1

𝐷
𝑑𝑇 = 𝑣𝑒𝑛

𝑇

𝐴𝑒𝑛 is irreducible and aperiodic (assumption): from previous theorem it 
converges to 1 1 …1 𝑇 ⋅ 𝑣𝑒𝑛 ⋅ 𝑏 0



Linear System – Example

𝑥1 𝑡 + 1

𝑥2 𝑡 + 1

𝑥3 𝑡 + 1

𝑥4 𝑡 + 1

=

1/2 1/2
1/4 1/4

0 0
1/4 1/4

0 1/3
0 1/3

1/3 1/3
1/3 1/3

𝑥1 𝑡

𝑥2 𝑡

𝑥3 𝑡

𝑥4 𝑡
1 2

3 4

This means that for general wireless sensor networks we get a linear system for
averaging:

𝑥𝑖 𝑡 + 1 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑥𝑖 𝑡 , 𝑥𝑗 𝑡 : 𝑗 ∈ 𝑁𝑖
Questions:
1. Does each node converge to a value? Is the value the same for all nodes?

Yes, it converges to the same value.

2. Is the values equal to the average of the initial conditions? No. Degree centrality

3. Properties for convergence? Aperiodic – stochastic – strongly connected

4. Speed of convergence? ☺



Graph Transformation

1 2

3 4

1 2

3 4

1/2 1/4

1/3

1/3

1/4

1/4

1/4

1/2

1/3

1/3

1/3

1/3

The lhs eigenvector corresponding to eigenvalue 1 of 𝐴 is:

2/12
4/12
3/12
3/12

=

1/6
1/3
1/4
1/4

If we start with initial values

3
1
1
3

, then the nodes converge to value:

1/6
1/3
1/4
1/4

𝑇

⋅

3
1
1
3

=
11

6
≠ 2

Can we assign 
different weights to 

compute the average?

The lhs eigenvector of this matrix is 𝑤𝑒𝑞𝑢𝑎𝑙𝑛𝑒𝑖𝑔ℎ+𝑠𝑒𝑙𝑓_𝑙𝑜𝑜𝑝𝑠 =
1

𝑛+σ𝑖=1
𝑛 𝑑𝑖

𝑑1 + 1
…

𝑑𝑛 + 1



Metropolis-Hastings Model
We define the weighted adjacency matrix 𝐴𝑀𝐻 as follows:

𝐴𝑀𝐻 𝑖𝑗 =

1

1 +max 𝑑𝑖 , 𝑑𝑗
, 𝑖𝑓 𝑖, 𝑗 ∈ 𝐸 𝑎𝑛𝑑 𝑖 ≠ 𝑗

1 − 

𝑖,ℎ ∈𝐸,𝑖≠ℎ

𝐴𝑀𝐻 𝑖ℎ , 𝑖𝑓 𝑖 = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Properties:

1. 𝐴𝑀𝐻 𝑖𝑖 > 0 for all nodes 𝑖, 𝐴𝑀𝐻 𝑖𝑗 > 0, for all pairs 𝑖, 𝑗 ∈ 𝐸, and 𝐴𝑀𝐻 𝑖𝑗 = 0, otherwise

2. 𝐴𝑀𝐻 is symmetric and double stochastic

3. 𝐴𝑀𝐻 is primitive iff 𝐺 is connected

4. The averaging model 𝑥 𝑡 + 1 = 𝐴𝑀𝐻𝑥 𝑡 achieves average consensus



Back in the Example

𝐴𝑀𝐻 =

3/4 1/4
1/4 1/4

0 0
1/4 1/4

0 1/4
0 1/4

5/12 1/3
1/3 5/12

1 2

3 4

The lhs eigenvector corresponding to eigenvalue 1 of 𝐴 is:

1
1
1
1

, since 𝐴 is double stochastic.

If we start with initial values 

3
1
1
3

, then the nodes converge to value (we scale): 

1/4
1/4
1/4
1/4

𝑇

⋅

3
1
1
3

= 2



Averaging Dynamics

Averaging Dynamics have been studied in many forms and used in 
many other applications:

• Control: coordination of network of robots

• Distributed: in network estimation and tracking

• Optimization and learning: distributed multi-agent optimization over 
network, distributed resource allocation, distributed learning

• Social/Economic Behavior: spread of influence, polarization, 
emergent behavior



Friedkin-Johnsen Model
Or: “what happens when stubbornness is introduced in DeGroot model”.



FJ Model

• Consensus is not realistic in most cases.

• Social experiments have shown influence among agents but settling to opinions 
within a convex hull ch of the initial opinions (no consensus)

• The FJ model is meant to represent this contraction towards ch(x(0)) which is 
however not necessarily a consensus point. 

𝑥 𝑡 + 1 = 𝐼 − Θ 𝐴𝑥 𝑡 + Θ𝑥 0

Θ is a diagonal matrix such that: Θ𝑖𝑖 = 𝜃𝑖 , 𝜃𝑖 ∈ 0,1 , where 𝜃𝑖 is the stubbornness 
of agent 𝑖. In components:

𝑥𝑖 𝑡 + 1 = 1 − 𝜃𝑖 

1≤𝑗≤𝑛

𝐴𝑖𝑗𝑥𝑗 𝑡 + 𝜃𝑖𝑥𝑖 0



Convergence

Definition: The FJ model is said 𝜃-connected if all nodes of the graph 𝐺 𝐴 either 
have 𝜃𝑖 > 0 or are connected via directed paths to some nodes 𝑖 for which 𝜃𝑖 > 0.

Theorem: Consider the FJ model with 𝐴 row stochastic, 𝜃𝑖 > 0 for some 𝑖, and 𝜃-
connected. Then:

1. 𝜌 𝐼 − Θ 𝐴 < 1 (stability)

2. the state converges to 𝑥∗ = lim
𝑡→∞

𝑥 𝑡 = 𝑉𝑥 0 , with 𝑉 = 𝐼 − 𝐼 − Θ 𝐴 −1Θ, a 

row-stochastic matrix

3. 𝑥∗ ∈ 𝑐ℎ 𝑥 0



Speed of Convergence 
Just a glimpse



Symmetric Row-Stochastic Primitive Matrix 𝐴

𝑥 𝑡 + 1 = 𝐴𝑥 𝑡

Define the essential spectral radius:
𝜌𝑒𝑠𝑠 𝐴 = max 𝜆 : 𝜆 ∈ 𝑠𝑝𝑒𝑐 𝐴 \{1}
𝜌𝑒𝑠𝑠 𝐴 = 0, 𝑖𝑓 𝑠𝑝𝑒𝑐 𝐴 = 1,… , 1

We can compute the error as follows and then bound it by an 휀 to find 
the number of steps:

𝑥 𝑡 − 𝑎𝑣𝑔 𝑥 0 𝕝𝑛 2
≤ 𝜌𝑒𝑠𝑠

𝑡 𝐴 𝑥 0 − 𝑎𝑣𝑔 𝑥 0 𝕝𝑛 2



Time-Varying Graphs
Just to see what happens…



For Doubly Stochastic Symmetric Matrices

Let 𝐴 𝑡 𝑡∈ℕ be a sequence of symmetric and doubly stochastic 
matrices with associated digraphs 𝐺 𝑡 𝑡∈ℕ so that:

1. Each non-zero edge weight 𝑎𝑖𝑗 𝑡 , including the self loops 

𝑎𝑖𝑖 𝑡 , is larger than a constant 휀 and

2. Each graph 𝐺 𝑡 is strongly connected and aperiodic

Then the solution to 𝑥 𝑡 + 1 = 𝐴 𝑡 𝑥 𝑡 converges exponentially 

fast to 𝑎𝑣𝑔 𝑥 0 𝟏𝑛



HK-Models (Bounded Confidence 
Models)
non-linear system – looking at homophily

Time-varying but the variation is state-dependent



Averaging Dynamic Model
• Set of agents 1,2, … , 𝑛

• Discrete time

The dynamics are specified by:

• Initial opinion profile: 𝑥𝑖 0 ∈ ℜ𝑛, 𝑖 ∈ 𝑛 and the bounded 

confidence 휀 that limits the interactions of agents
• At time 𝑡 the opinion of 𝑖 is given by vector 𝑥𝑖 𝑡
• The neighbors of agent 𝑖 are:

𝑁𝑖 𝑡 = 𝑗 ∈ 𝑛 : 𝑥𝑗 𝑡 − 𝑥𝑖 𝑡 2
≤ 휀

• Each agent updates its opinion by averaging the opinions of its neighbors:

𝑥𝑖 𝑡 + 1 =
1

𝑁𝑖 𝑡


𝑗∈𝑁𝑖 𝑡

𝑥𝑗 𝑡



HK Properties (1d) 

1. order preserving: ∀𝑡, 𝑥𝑖 0 ≤ 𝑥𝑗 0 ⇒ 𝑥𝑖 𝑡 ≤ 𝑥𝑗 𝑡

Assume 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛. Then

2. 𝑥1 𝑡 non-decreasing: ∀𝑡: 𝑥1 𝑡 + 1 ≥ 𝑥1 𝑡

3. 𝑥𝑛 𝑡 non-increasing: ∀𝑡: 𝑥𝑛 𝑡 + 1 ≤ 𝑥𝑛 𝑡

4. If 𝑖, 𝑖 + 1 ∉ 𝐸 𝑡 ⇒ 𝑖, 𝑖 + 1 ∉ 𝐸 𝑡 + 𝑘 , ∀𝑘 > 0 (i.e., adjacent agents that are 
disconnected stay disconnected)

5. If 𝐺 𝑡 is disconnected, then 𝐺 𝑡 + 𝑘 is also disconnected ∀𝑘 > 0

6. The connected components of 𝐺 𝑡 can split as 𝑡 grows, but cannot merge

7. Properties 2 and 3 are valid for any connected component of 𝐺

8. 𝑥𝑖 𝑡 converges to 𝑥𝑖
∗ in finite time. ∀𝑖, 𝑗 it is either that 𝑥𝑖

∗ = 𝑥𝑗
∗ or 𝑥𝑖

∗ − 𝑥𝑗
∗ > 휀



An Example

HK model for 𝑛 = 100 agents. A simulation with opinions 𝑥 0
uniformly distributed in −5,5 and 𝑑 = 1. The resulting clusters have 
consensus values that differ by >1.
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