
Blockchains & Bitcoin & …
S O M E S L I D ES A R E TA K E N F RO M :
1 . S . C H A K RA BORT Y, S . S U RA L
2 . P. V I S WA N AT H

https://cse.iitkgp.ac.in/~sandipc/courses/cs61065/cs61065.html
https://courses.grainger.illinois.edu/ece598pv/sp2021/

A Bird’s Eye View
BEFORE LOOKING AT SOME DETAILS IN THE NEXT LECTURES

Tasks for Designing a P2P System for
Managing Ownership

Describing Ownership

Goal

Protecting Ownership

Storing Transaction Data

Preparing Ledgers for
being Distributed

Distributing Ledgers

Adding New Transactions

Deciding which Ledger
Represents the Truth

History of Transaction
Data

Major Concept

Digital Signature

Blockchain Data Structure

Immutability

Information Forwarding
in Networks

Blockchain Algorithm

Distributed Consensus

Technical Concepts of the Blockchain and
their Purpose (1)

Transaction Data

Technical Concept

Transaction History

Cryptographic Hash Value

Asymmetric Cryptography

Digital Signature

Hash Reference

Change-Sensitive Data
Structures

Describing Transfer of
Ownership

Purpose

Proving the Current State of
Ownership

Identifying any kind of Data
Uniquely

Encrypting and Decrypting
Data

Stating Agreement with the
Content of Transaction Data

A Reference that becomes Invalid once
the Data being Referred are Changed

Storing Data in a way that Makes any
Manipulation Stand out Immediately

Technical Concepts of the Blockchain and
their Purpose (2)

Hash Puzzle

Technical Concept

Blockchain Data Structure

Immutability

P2P Network

Message Passing

BlockChain Algorithm

Distributed Consensus

Imposing a Computational
Expensive Task

Purpose

Storing Transaction Data in a Change-Sensitive
way and Maintaining their Order

Making it impossible to Change
the History of Transaction Data

Sharing the Transaction History
Among all Nodes in Network

Ensure that all Nodes of the System
Eventually Receive all Information

Ensure that only Valid Transaction Data are
added to the Blockchain Data Structure

Ensure that all Nodes of the System use
the Identical History of Transaction Data

Compensation
Giving Nodes an Incentive to Maintain

Integrity

Purpose of BlockChain

1. Clarifying Ownership

2. Transferring Ownership

Properties of BlockChain
➢ Highly Available

➢ Censorship Proof

➢ Reliable

➢ Open

➢ Pseudoanonymous

➢ Secure

➢ Resilient

➢ Eventually Consistent

➢ Keeping Integrity

Internal Functioning of BlockChain
➢ Ownership Logic

➢ Transaction Security

➢ Transaction Processing Logic

➢ Storage Logic

➢ P2P Architecture

➢ Consensus Logic

Ownership Logic

Ownership Logic

Proof of Ownership Use of Ownership

Upper concepts depend
on lower concepts

Clarifying Ownership Transfer of Ownership

Whole History of Transaction Data Individual Transaction Data

Storage Logic Consensus Logic
Transaction

Processing Logic

Transaction
Security

Transaction Security

Transaction Security

Authorization
Authentication

Upper concepts depend
on lower concepts

Digital Signature

Private Key Public Key
Cryptographic
Hash Values

Asymmetric Cryptography

Identification

Transaction Processing Logic

Transaction Processing Logic

Competition

Upper concepts depend
on lower concepts

Reward

Peer Control

PoW/PoS
P2P

Architecture
Punishment

Validation of
Block Headers

Validation of
Transaction Data

Storage Logic

Storage Logic

Proof of Work BlockChain Data Structure

Upper concepts depend
on lower concepts

Computationally Expensive
Tasks

Change-Sensitive Data
Structures

Hash Puzzles Hash Reference

Immutable Append-Only Data Store

Cryptographic Hash Values

Consensus Logic

Consensus Logic

Upper concepts depend
on lower concepts

Transaction
Processign Logic

P2P Architecture Storage Logic Selection Criterion

Abstraction
Application Specific Components

Upper concepts depend
on lower concepts

BlockChain Technology Suite

Purely Distributed P2P Architecture

Ownership Logic Transaction Data
Transaction

Validation Logic

Transaction
Security

Storage Logic Consensus Logic
Data Processing

Logic

Asymmetric
Cryptography

Distributed
Systems Crypto

Economic
Models

The Three
Pillars

Decentralization & Blockchains

Secure
Hash
Functions

Takes any arbitrarily sized string as input
◦ Input M: The message

Fixed size output (usually 256 bits are used in Blockchain)
◦ Output H(M): We call this the message digest

Efficiently computable

Cryptographic Hash Functions

Deterministic
◦ Always yield identical hash value for identical input data

Collision-Free
◦ If two messages are different, then their digests also differ (with high

probability ☺)

Hiding
◦ Hide the original message (the avalanche effect)

Puzzle-friendly
◦ Given X and Y, find out k such that 𝑌 = 𝐻(𝑋| 𝑘 - used to solve the

mining puzzle in Bitcoin Proof of Work (PoW)

Cryptographic Hash Function: Properties

Hash functions are one-way; Given a 𝑥, it is easy to find 𝐻(𝑥). However, given an
𝐻(𝑥), no efficient deterministic/probabilistic algorithm can find 𝑥

It is difficult to find 𝑥 and 𝑦, where 𝑥 ≠ 𝑦, but 𝐻 𝑥 = 𝐻(𝑦)

Note the phrase difficult to find, collision is not impossible

Try with randomly chosen inputs to find out a collision – but it takes too long

Collision Free

It may be relatively easy to find collision for some hash functions

Birthday Paradox: Find the probability that in a set of 𝑛 randomly chosen persons, some of them will have

the same birthday
◦ By Pigeonhole Principle, the probability reaches 1 when number of people reaches 366 (not a leap year) or 367 (a

leap year)

◦ 0.999 probability is reached with just ~70 people, and 0.5 probability is reached with only ~23 people

If a hash function produces 𝑁 bits of output, an attacker need to compute only 2
𝑁

2 hash operations on a

random input to find two matching outputs with probability > 0.98

For a 256-bit hash function, the attacker needs to compute 2128 hash operations – this is significantly time

consuming
◦ If every hash computation takes only 1μsec, it will need ~1025 years

Collision Free – How Do We Guarantee?

If we observe 𝐻 𝑥 = 𝐻(𝑦), it is safe to assume 𝑥 = 𝑦

We need to remember just the hash value rather than the entire
message – we call this the message digest

To check if two messages 𝑥 and 𝑦 are same, i. e. , whether 𝑥 = y,
simply check if 𝐻 𝑥 = 𝐻(𝑦)
◦ This is efficient because the size of the digest is significantly less than the size

of the original messages

Hash as A Message Digest

➢ Given an 𝐻(𝑥), it is “computationally difficult” to find 𝑥

➢ The difficulty depends on the size of the message digests

➢ Hiding helps to commit a value and then check it later
➢ Compute the message digest and store it in a digest store – commit

➢ To check whether a message has been committed, match the message digest at the digest store

Information Hiding through Hash

SHA256 is used in Bitcoin mining – to construct the Bitcoin
blockchain

Secure Hash Algorithm (SHA) that generates 256 bit message digest

A part of SHA-2, a set of cryptographic hash functions designed by
United States National Security Agency (NSA)

Hash Function – SHA256

SHA-256 Algorithm from afar

256-bit
Initialization

Vector
C C C

M(0) M(1) M(N)

Message
Digest

Say 𝑀 is chosen from a widely spread distribution; it is computationally difficult
to compute 𝑘, such that 𝑍 = 𝐻(𝑀||𝑘), where 𝑀 and 𝑍 are known a priori.

A Search Puzzle (Used in Bitcoin Mining)
◦ 𝑀 and 𝑍 are given, 𝑘 is the search solution

◦ Note: It might be not exactly a particular value Z, but some properties that Z satisfies, i.e., Z
could be a set of possible values

Puzzle friendly property implies that random searching is the best strategy to
solve the above puzzle

Puzzle Friendly

On Computational Puzzles

Elements of a hash puzzle:

1. Data that must be kept unchanged

2. Data that can be freely changed (nonce)

3. The hash function

4. Restrictions on the hash value of the
combined hashing (1) and (2) – the difficulty
level

Causing Time Consuming Computations

Hash puzzles can be only solved by trial
and error:

1. Guess a nonce

2. Calculate the hash value of data+nonce

3. If the hash value satisfy restrictions (solution)
end, else repeat from 1

The solution is easy to check given the nonce.

Basic Cryptography

Asymmetric vs Symmetric Cryptography

Encryption Decryption

CypherText

Symmetric: Key for
Encryption and Decryption
is the same.

Encryption Decryption

CypherText

Asymmetric: Key for
Encryption and Decryption
are different.

Public Key Private Key

Symmetric vs Asymmetric

Differences Symmetric Cryptography Asymμetric Cryptography

Data Size Use for Sending Large Data Use for Sending Small Data

Resources Low High

Key Size 128-256 bits RSA key: ≥2048 bits

Number of Keys One Key for Encryption/Decryption Two Keys: One for Encryption and one for Decryption

Security Less because of One Key More because of Two Keys

History Old Technique Newer Technique

Dangers The Use of One Key The Loss of the Private Key

Speed Fast Slow

Also known as asymmetrical cryptography or asymmetric key cryptography

Key: A parameter that determines the functional output of a cryptography algorithm
◦ Encryption: The key is used to convert a plain-text to a cypher-text; 𝑀′ = 𝐸 𝑀, 𝑘

◦ Decryption: The key is used to convert the cypher-text to the original plain text; 𝑀 = 𝐷 𝑀′, 𝑘

Properties of a cryptographic key (you need to prevent it from being guessed)
◦ Generate the key truly randomly so that the attacker cannot guess it

◦ The key should be of sufficient length – increasing the length makes the key difficult to guess

◦ The key should contain sufficient entropy, all the bits in the key should be equally random

Public Key Cryptography

Two keys are used
◦ Private key: Only Alice has her private key

◦ Public key: “Public” to everyone – everyone knows Alice’s public key

Public Key Cryptography

Encrypt the
message with
Bob’s public key

𝑴′ = 𝑬(𝑴, 𝑲𝒑𝒖𝒃
𝑩)

Decrypt the
message with his
private key

𝑴 = 𝑬(𝑴′, 𝑲𝒑𝒓𝒊
𝑩)

M΄

Named over (Ron) Rivest – (Adi) Shamir – (Leonard) Adleman – inventors of the public key
cryptosystem

The encryption key is public and decryption key is kept secret (private key)
◦ Anyone can encrypt the data

◦ Only the intended receiver can decrypt the data

Public Key Encryption - RSA

Digital
Signatures

A digital code, which can be included with an electronically transmitted
document to
◦ Verify the identity of the sender

◦ Authenticate the content of the document

◦ Prevent non-repudiation – sender will not be able to deny about the origin of the
document

Purpose of Digital Signature:
◦ Only the signing authority can sign a document, but everyone can verify the signature

◦ Signature is associated with the particular document
◦ Signature of one document cannot be transferred to another document

Digital Signature

Sign the message using the Private key
◦ Only Alice can know her private key

Verify the signature using the Public key
◦ Everyone has Alice’s public key and they can verify the signature

Digital Signature using Public Key
Cryptography

Sign the message
with her private
key

𝑴′ = 𝑬(𝑴, 𝑲𝒑𝒓𝒊
𝑨)

Verify the
signature using
Alice’s public key

𝑴 = 𝑬(𝑴′, 𝑲𝒑𝒖𝒃
𝑨)

M, M’

Use the message digest to sign, instead of the original message

Reduce the Signature Size

Sign the message
with her private key

𝑺 = 𝑬(𝑯(𝑴), 𝑲𝒑𝒓𝒊
𝑨)

Verify the signature
using Alice’s public key

𝑯(𝑴) = 𝑬(𝑺, 𝑲𝒑𝒖𝒃
𝑨)

M, S

In a Figure…

Signer: Alice Document
Hash 10011101001 Encryption

Private Key

Digitally Signed
Document

Network

Digitally Signed
Document

01110011111

Hash 10011101001

Decryption

Public Key

10011101001

Signature is valid when
hash values match

Verifier: Bob

01110011111

Importance of User Keys
➢ Get a blockchain address

➢ Make transactions sending or receiving in her address

➢ Sign transactions to prove that she is the owner of the transferred goods

Private Key Public Key BlockChain
Address

ECC Hash

Used to validate the origin of a transaction
◦ Prevent non-repudiation

◦ Alice cannot deny her own transactions

◦ No one else can claim Alice’s transaction as his/her own transaction

Bitcoin uses Elliptic Curve Digital Signature Algorithm (ECDSA)
◦ Based on elliptic curve cryptography

◦ Supports good randomness in key generation

Digital Signature in Blockchain

Immutable
Linked
Structures

A Cryptographic Hash Pointer (Often called Hash Reference) is a
pointer to a location:
◦ The location stores some information

◦ Hash of this information is stored in the pointer

With the hash pointer, we can
◦ Retrieve the information

◦ Check that the information has not been modified (by computing the
message digest and then matching the digest with the stored hash value)

Hash Pointer

Hash Pointer

DATA

H(DATA)

Hash Pointer

Reminds you of a linked list??

Tamper Detection using Hash Pointer

Detect Tampering from Hash Pointers
Hashchain: A Change-Sensitive Linked List

D(i)

H(D(i-1))

D(i+1)

H(D(i))

D(i+2)

H(D(i+1))

Organization of Hash Pointers in a Tree
Merkle Tree: A Change-Sensitive Tree

Root Hash
Hroot=Hash(H0+H1)

L1 Hash
H0= Hash(H00+H01)

L1 Hash
H1=Hash(H10+H11)

L2 Hash
H00=Hash(T1)

L2 Hash
H01=Hash(T2)

L2 Hash
H10=Hash(T3)

L2 Hash
H11=Hash(T4)

T1
T2 T3 T4

Merkle Root

Efficient Verification of a Transaction

Verify efficiently
transaction TD

Blockchain is a Hashchain
(a bird’s eye view)

Block Header

T11 T12 T1k
. . .

Merkle Root

Merkle Tree
on

Transactions

Timestamp

Prev. Hash

Nonce

Diff. Target

Version

Block Header

T21 T22 T2k
. . .

Merkle Root

Merkle Tree
on

Transactions

Timestamp

Prev. Hash

Nonce

Diff. Target

Version

Block Header

T31 T32 T3k
. . .

Merkle Root

Merkle Tree
on

Transactions

Timestamp

Prev. Hash

Nonce

Diff. Target

Version

The BlockChain Data Structure

Adding New Transactions

Detecting Changes
Changing the Content of a Transaction

Detecting Changes
Changing a Reference in the Merkle Tree

Detecting Changes
Replacing a Transaction

Detecting Changes
Changing the Merkle Root

Changing the Hash Pointer to Previous
Block

Detecting Changes
Making a Correct Change

TRANSACTIONS IN BLOCKCHAIN

Public key 0xa8fc93875a972ea

Signature 0xa87g14632d452cd

Public key 0xc7b2f68...

Unspent Transaction Output (UTXO)
(Example: Bitcoin)

Verification of a Transaction
(Before Broadcast – this is for Bitcoin)

1. Transaction Format and Structure Check

2. Duplicate Transactions Check (check whether you have already acquired this
transaction)

3. Digital Signature Verification

4. Inputs Existence (looking up that the UTXOs exist)

5. No Double-Spending (look whether a UTXO has been already spent)

6. Transaction Outputs Validity (the sum of the outputs must not exceed inputs)

7. Sufficient Transaction Fees (fees=Outputs-Inputs)

8. Script Executions, Locktime and Sequence Numbers

Bitcoin Network
Each P2P node runs the following algorithm:
◦ New transactions are broadcast to all nodes.

◦ Each node (miners) collects new transactions into a block.

◦ Each node works on finding a proof-of-work for its block. (Hard to do.
Probabilistic. The one to finish early will probably win.)

◦ When a node finds a proof-of-work, it broadcasts the block to all nodes.

◦ Nodes accept the block only if all transactions in it are valid (e.g., digital
signature checking) and not already spent (check all the transactions).

◦ Nodes express their acceptance by working on creating the next block in the
chain, using the hash of the accepted block as the previous hash.

Simplified Transaction Verification
Any user can verify a transaction easily by
asking a node.

First, get the longest proof-of-work chain

Query the block that the transaction to be
verified (tx3) is in.

Only need Hash01 and Hash2 to verify; not the
entire Tx’s.

Account-Based
(Example: Ethereum)

State n:

Alice’s Account 10ETH

Contract’s Account 1ETH

Vader’s Account 10000 ETH

State n+1:

Alice’s Account 9 ETH

Contract’s Account 1 ETH

Vader’s Account 10001 ETH

From: Alice’s Address

Value: 1 ETH

To: Vader’s Address

Verification of a Transaction
(Before Broadcast – for Ethereum)

The validator:

1. Checks transaction format and structure

2. Verifies signature

3. Checks for sufficient balance

4. Checks gas price and gas limit

5. Executes the transaction (even if it is a smart contract)

6. Applies state transition if successful execution

7. Packages the transaction(s) in a block.

Ethereum 2.0
The validator:

1. Broadcast the block to other validators

2. The block is checked by other validators and signal about its correctness
(attestation – vote)

3. Aggregation of votes (by aggregators – special validators)

4. The aggregated votes are included in the blockchain

5. Finalization of a block (through consensus)

6. Validators get rewards or penalties for their work

7. Epoch processing

On Simple
CryptoCurrency
GOOFY AND SCROOGE

The GoofyCoin

Creation of Coins
Goofy can create coins whenever he wants.

◦ These coins belong to him

How?

1. Creates a unique coin ID [uniqueCoidID] constructing the string:
s=“CreateCoin [uniqueCoinID]”

2. Computation of digital signature d of string s

3. d+s is a valid digital coin, and anyone can validate it through the public
key of Goofy

Transfer of Coins
Whoever owns a coin can transfer it to someone else.

• To transfer a coin, cryptographic operations must be used

s=“Pay [this]
to [Alice]” Digitally sign

s

public key of
Alice

hash pointer
to the coin

s+d
Send to Alice (and
anyone else) s+d

I own the coin
[this] because

there is the
statement s+d

Now I will pay
Bob with [this]

The Goofy Coin has a Critical Security
Problem: Double Spending Attack

• The witch sends the coin to Alice but
does not tell it anyone else.

• She sends the same coin at almost the
same time to the dwarf as well.

• She has used the same coin twice. Who
owns the coin?

The ScroogeCoin
SOLVING THE DOUBLE SPENDING ATTACK IN THE GOOFYCOIN

MORE COMPLICATED DATA STRUCTURES ☺

Using the BlockChain
• Scrooge create coins like Goofy BUT

• he publishes an append-only ledger with the history of transactions that have happened.

• Append-only: the transaction cannot change/be deleted.

• All transactions are written to the ledger before accepted.

Use a BlockChain:

Two Types of Transactions
PayCoins is valid if:

• The consumed coins are
valid

• not already consumed

• total value out = total
value in

• Signed by all owners of
spent coins

Coins are Immutable
Coins cannot be transferred, subdivided or combined

Solution: Use Transactions!!!

To Subdivide:
1. Create a new transaction

1. Consume your coin

2. Pay out two new coins to yourself (of same total value)

The Double-Spending Attack
• A transaction is valid if in a block in the blockchain signed by Scrooge

• Scrooge makes sure that no double-spending transactions are registered

• All can check the validity of the blocks digitally signed by Scrooge

ScroogeCoin Problems
Can Scrooge change a transaction in the history (already registered)?

• No, the others will understand it because the hash pointers will be invalid

• Of course, one can say: “Who cares? He is Scrooge. He is doing whatever he likes”

Don’t worry. I am
an honest guy ☺

Question:

Can we descroogify the currency?
Can we operate without a central trusted party?

➢ Highly Available
➢ Censorship Proof
➢ Reliable
➢ Open
➢ Pseudoanonymous
➢ Secure
➢ Resilient
➢ Eventually Consistent
➢ Keeping Integrity

Smart
Contracts

➢ Executable code

➢ Turing Complete

➢ Function like an external account
➢ Hold funds

➢ Can interact with other accounts and smart contracts

➢ Contain code

➢ Can be called through transactions

Smart Contracts
(in the case of Ethereum)

➢ Every node contains a virtual machine (similar to Java)

➢ Called the Ethereum Virtual Machine (EVM)

➢ Compiles code from high-level language to bytecode

➢ Executes smart contract code and broadcasts state

➢ Every full-node on the blockchain processes

every transaction and stores the entire state

Code Execution
(in the case of Ethereum)

➢ Halting problem (infinite loop) – reason for Gas
➢ Problem: Cannot tell whether or not a program will run infinitely from

compiled code

➢ Solution: charge fee per computational step to limit infinite loops and
stop flawed code from executing

➢ Every transaction needs to specify an estimate of the
amount of gas it will spend

➢ Essentially a measure of how much one is willing to spend
on a transaction, even if buggy

Gas
(in the case of Ethereum)

Advantages Disadvantages

Agent neutrality in signing deals Difficult to make changes

Automation in signing deals, time saving: excludes
human participation in transactions, everything is
done by the prescribed program code

The third party agents do not disappear but starts playing a
different role. The need for lawyers experienced in IT increases in
the future because the programmers of smart contracts will need
consultations for making new kinds of contracts

Safety: data in the decentralized registry cannot be
lost and cyber attacked

The consumers are quite suspicious because it is a new
technology and they do not understand it yet

Precision: no mistakes can be made due to the
absence of hand-filled forms

One can keep and save data in smart contracts safely and it is
void of any distortions, only if the code is written perfectly and
precisely

Summary of Advantages and Disadvantages
of Smart Contracts

Βιβλιογραφία
Αλυσίδες Συστοιχιών (BlockChain). Κάλλιπος.

Blockchain Basics: A Non-Technical Introduction in 25 Steps

https://repository.kallipos.gr/handle/11419/9130
https://link.springer.com/book/10.1007/978-1-4842-2604-9

	Slide 1: Blockchains & Bitcoin & …
	Slide 2: A Bird’s Eye View
	Slide 3: Tasks for Designing a P2P System for Managing Ownership
	Slide 4: Technical Concepts of the Blockchain and their Purpose (1)
	Slide 5: Technical Concepts of the Blockchain and their Purpose (2)
	Slide 6: Purpose of BlockChain
	Slide 7: Properties of BlockChain
	Slide 8: Internal Functioning of BlockChain
	Slide 9: Ownership Logic
	Slide 10: Transaction Security
	Slide 11: Transaction Processing Logic
	Slide 12: Storage Logic
	Slide 13: Consensus Logic
	Slide 14: Abstraction
	Slide 15: Decentralization & Blockchains
	Slide 16: Secure Hash Functions
	Slide 17: Cryptographic Hash Functions
	Slide 18: Cryptographic Hash Function: Properties
	Slide 19: Collision Free
	Slide 20: Collision Free – How Do We Guarantee?
	Slide 21: Hash as A Message Digest
	Slide 22: Information Hiding through Hash
	Slide 23: Hash Function – SHA256
	Slide 26: SHA-256 Algorithm from afar
	Slide 27: Puzzle Friendly
	Slide 28: On Computational Puzzles
	Slide 29: Causing Time Consuming Computations
	Slide 30: Basic Cryptography
	Slide 31: Asymmetric vs Symmetric Cryptography
	Slide 32: Symmetric vs Asymmetric
	Slide 33: Public Key Cryptography
	Slide 34: Public Key Cryptography
	Slide 35: Public Key Encryption - RSA
	Slide 36: Digital Signatures
	Slide 37: Digital Signature
	Slide 38: Digital Signature using Public Key Cryptography
	Slide 39: Reduce the Signature Size
	Slide 40: In a Figure…
	Slide 41: Importance of User Keys
	Slide 42: Digital Signature in Blockchain
	Slide 43: Immutable Linked Structures
	Slide 44: Hash Pointer
	Slide 45: Hash Pointer
	Slide 46: Tamper Detection using Hash Pointer
	Slide 47: Detect Tampering from Hash Pointers Hashchain: A Change-Sensitive Linked List
	Slide 48: Organization of Hash Pointers in a Tree Merkle Tree: A Change-Sensitive Tree
	Slide 49: Efficient Verification of a Transaction
	Slide 50: Blockchain is a Hashchain (a bird’s eye view)
	Slide 51: The BlockChain Data Structure
	Slide 52: Adding New Transactions
	Slide 53: Detecting Changes Changing the Content of a Transaction
	Slide 54: Detecting Changes Changing a Reference in the Merkle Tree
	Slide 55: Detecting Changes Replacing a Transaction
	Slide 56: Detecting Changes Changing the Merkle Root
	Slide 57: Changing the Hash Pointer to Previous Block
	Slide 58: Detecting Changes Making a Correct Change
	Slide 59
	Slide 60: Unspent Transaction Output (UTXO) (Example: Bitcoin)
	Slide 61: Verification of a Transaction (Before Broadcast – this is for Bitcoin)
	Slide 62: Bitcoin Network
	Slide 64: Simplified Transaction Verification
	Slide 65: Account-Based (Example: Ethereum)
	Slide 66: Verification of a Transaction (Before Broadcast – for Ethereum)
	Slide 67: Ethereum 2.0
	Slide 68: On Simple CryptoCurrency
	Slide 69: The GoofyCoin
	Slide 70: Creation of Coins
	Slide 71: Transfer of Coins
	Slide 72: The Goofy Coin has a Critical Security Problem: Double Spending Attack
	Slide 73: The ScroogeCoin
	Slide 74: Using the BlockChain
	Slide 75: Two Types of Transactions
	Slide 76: Coins are Immutable
	Slide 77: The Double-Spending Attack
	Slide 78: ScroogeCoin Problems
	Slide 79: Smart Contracts
	Slide 80: Smart Contracts (in the case of Ethereum)
	Slide 81: Code Execution (in the case of Ethereum)
	Slide 82: Gas (in the case of Ethereum)
	Slide 83
	Slide 84: Βιβλιογραφία

