
Populations 
Protocols

Some slides are taken from James Aspnes slides (2007), his keynote talk in PODC 2020, the 
presentation of “Black Ninjas in the Dark: Formal Analysis of Population Protocols” by Javier 

Esparza and the presentation of “Composable Computation in Discrete Chemical Reaction 
Networks” by E.E. Severson.



The Story

• Black Ninjas meet in a thunderous night 
at a garden in the dark (no moon)

• They must decide by majority to attack 
or not attack a castle (no attack if tie)

• How can they conduct the vote?



The Amateur (A) Sensei Thinks Beforehand 
about a Communication Protocol
• Ninjas wonder randomly, interacting when they bump onto each other

• Ninjas store their current estimation of the final outcome: attack or don’t 
attack

• Ninjas are either active or passive

• Initially: all ninjas active, estimation = own vote

attack
active

don’t attack
active

attack
passive

don’t attack
passive



The Goal of A

Goal of voting protocol:

• eventually all ninjas reach the same estimation, and

• this estimation corresponds to the majority.

Graphically:

• Initially more red ninjas → eventually all ninjas red.

• Initially more blue ninjas or tie → eventually all ninjas blue.



The Protocol of A

• Active ninjas of opposite colors 
become passive and blue



The Protocol of A 

• Active ninjas of opposite colors 
become passive and blue

• Active ninjas convert passive 
ninjas to their color

ATTACK!



One Night Disaster Strikes… (Animation)

https://peregrine.model.in.tum.de/lics18/example1/


The Professional (P) Sensei Takes Over

He finds out that in case of a tie, things can go bad because the first 
rule has no priority over the other two
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The Professional (P) Sensei Takes Over

He finds out that in case of a tie, things can go bad because the first 
rule has no priority over the other two NO CONSENSUS



The New Protocol of Sensei P

Passive blue ninjas convert
passive red ninjas to their color

+



The New Protocol of Sensei P

Passive blue ninjas convert
passive red ninjas to their color



The New Protocol of Sensei P (Animation)

Passive blue ninjas convert
passive red ninjas to their color

Don’t Attack

https://peregrine.model.in.tum.de/lics18/example2/


Another Night Disaster Strikes… (Animation)

https://peregrine.model.in.tum.de/lics18/example3/


The Master (M) Sensei Takes Over…

Expected number of steps to stable consensus for a 
population of 15 ninjas

Sensei A
Sensei P



The New Protocol of Sensei M (Animation)

https://peregrine.model.in.tum.de/lics18/example4/


The New Protocol of Sensei M (Animation)

https://peregrine.model.in.tum.de/lics18/example4/


The New Protocol

Expected number of steps to stable consensus for a 
population of 15 ninjas

Sensei A

Sensei P

Sensei M



M Wonders while Wandering …

Formalization Questions:
• What is a protocol?
• When is a protocol “correct”?
• When is a protocol “efficient”?

Verification Questions:
• How do I check that my protocol is correct?
• How do I check that my protocol is efficient?

Expressivity Questions:
• Are there protocols for other problems?
• How large is the smallest protocol for a problem?



Population Protocols: Model



Motivation

Formal model of distributed computation by collections of identical (anonymous), 
finite-state (weak) and mobile agents (asynchronous – unpredictable interactions). 

Ad-hoc networks of 
mobile sensors

“Soups” of molecules (Chemical 
Reaction Networks)

People in Social 
Networks



Discrete Chemical Reaction Network (CRN) Model

26

• Finite set of species and finite set of reactions
• Configuration: integer counts of species, changes 

by successive asynchronous reactions
• Similar Models: Population Protocols, Petri Nets, 

Vector Addition Systems

CRN Population Protocols

Molecule (anonymous) Agent (anonymous)

Species State

Reaction (asynchronous) Transition Function (2 
input, 2 output)

𝑋1 𝑋1

𝑋1 𝑋1

𝑋1

𝑋2 𝑋2

𝑋2𝑋2

𝑍2

𝑌𝑌

𝑍1
𝑍2

𝑌

𝐷

𝑋1 → 𝑍1 + 𝑌
𝑋2 → 𝑍2 + 𝑌
𝑍1 + 𝑍2 → 𝐷
𝐷 + 𝑌 → ∅



Formal Model

• States: Finite set 𝑄

• Output: 𝑂:𝑄 → 0,1

• Initial States: 𝐼 ⊆ 𝑄

• Transitions: 𝑇 ⊆ 𝑄2 × 𝑄2
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Don’t 
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• States: Finite set 𝑄

• Output: 𝑂:𝑄 → 0,1

• Initial States: 𝐼 ⊆ 𝑄
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How do “we” Choose Interactions?
• Interaction Graph (usually we assume the 

complete (un)directed graph)

• Interaction: initiator – responder

• 2-way communication

• 1-way communication

• Transmission model

• Observation model

A scheduler (daemon ☺) chooses the next 
interaction:

• Adversarial scheduler (worst-case) but strongly fair

• Other: Uniformly random scheduler



Formal Model

• States: Finite set 𝑄

• Output: 𝑂:𝑄 → 0,1

• Initial States: 𝐼 ⊆ 𝑄

• Transitions: 𝑇 ⊆ 𝑄2 × 𝑄2

• Configurations: 𝑄 → ℕ (for complete interaction graphs)

• Initial Configurations: 𝐼 → ℕ (for complete interaction graphs)

( 4 3 6         1)   
( 6 8 0         0)   



Configuration Graph

Configuration Space for (3,2,0,0):

An execution is an infinite path from initial 
configuration in the configuration graph.



Uniformly Random Scheduler

The configuration graph can be seen as a Markov Chain.



Stable Computable Predicates

A predicate 𝑃: 𝐼 → 0,1 is stably computable under a strongly fair 
adversarial scheduler, if there exists a population protocol such that for 
every 𝑐 ∈ 𝐼, all executions starting at 𝑐 reach eventually a stationary 
configuration where each agent correctly outputs whether 𝑃 is true or 
false.

For a uniformly random scheduler, the execution reaches a stationary 
configuration with probability 1. Note that in this case the scheduler is 
strongly fair as well.



Time Complexity

• For an adversarial scheduler the fairness condition is not enough to 
reason about time complexity.

• For uniformly random schedulers we can count the number of 
interactions to convergence
• Parallel time: since it is probably folly to assume that in each step only one 

interaction takes place (no parallelism!!!) we use the parallel time which is 
defined as the number of interactions divided by the number of agents.
• A Poisson process governs the occurrence of interactions in parallel: expected O(1) 

interactions per time unit.



Compute the “or” Function

1. Write the program (2-way communication) (Q, O, I, δ)

2. Prove Correctness

3. Prove Complexity



Some Protocols



Flock of Birds (adversarial fair scheduler)

We want to find out whether at least 5 birds in a flock are sick. Each 
bird is equipped with a sensor that detects elevated temperature:

• States: 𝑄 = 𝑞0, 𝑞1, … , 𝑞5
• Initial States: 𝐼 0 = 𝑞0 and 𝐼 1 = 𝑞1
• Output: 𝑂 𝑞𝑖 = 0, 0 ≤ 𝑖 ≤ 4 and 𝑂 𝑞5 = 1

• Transitions: 𝑞𝑖 , 𝑞𝑗 → 𝑞𝑖+𝑗 , 𝑞0 , if 𝑖 + 𝑗 < 5

𝑞𝑖 , 𝑞𝑗 → 𝑞5, 𝑞5 , otherwise



Epidemics (Uniform Scheduler)

If one is sick (state 1) then everyone will get infected:

One-way communication 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟, 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 .

• States: 𝑄 = 0 (𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒), 1(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑)

• Initial States: 𝐼 0 = 𝑞0 and 𝐼 1 = 𝑞1

• Output: 𝑂 𝑞0 = 0 and 𝑂 𝑞1 = 1

• Transitions: 𝑞𝑖 , 𝑞𝑗 → 𝑞𝑖 , max 𝑞𝑖 , 𝑞𝑗



Leader Election

Among 𝑛 agents we wish one to become the leader. 

• States: 𝑄 = 𝐿, 𝐹 (Leaders and Followers)

• Initial States: 𝐼 = 𝐿 , for all nodes – initially all nodes are leaders

• Output: 𝑂 𝐿 = 1 for some node, and 𝑂 𝐹 = 0, for the rest

• Transitions: 𝐿, 𝐿 → 𝐿, 𝐹



Using Leader Election: Parity

• red: odd, blue: even, white non-leader

• Initially all are red

• Coalesce values along with leadership

• Last remaining leader shows parity

• Stable computation: converges to correct answer then stays there



Using Leader Election: Remainder mod 𝑚

Count the number of agents in some special state 𝐴, modulo a constant 𝑚.

• States: 𝑄 = 𝑙, 𝑥 , 𝑙 ∈ 𝐿, 𝐹 and 𝑥 ∈ 0,1,… ,𝑚 − 1

• Initial States: 𝐼 𝐴 = 𝐿, 1 and everything else to 𝐿, 0

• Output: The leader contains the number of 𝐴s modulo 𝑚.

• Transitions: 𝐿, 𝑥 , 𝐿, 𝑦 → 𝐿, 𝑥 + 𝑦 𝑚𝑜𝑑 𝑚 , 𝐹, 0

Proof of Correctness

Invariant: the sum over all agents of the second component (mod 𝑚) is unchanged by 
the transition.

Thus, the unique leader will contain the desired output.



There are similar 
biological switches at 

the level of a cell (e.g., 
delta-notch mechanism)

3-State Approximate Majority Protocol
Uniform scheduler. Initial configuration of 𝑥, 𝑦 and 𝑏 𝑏𝑙𝑎𝑛𝑘𝑠 reach 

consensus provided that the majority exceeds minority by a 

sufficient margin. One-way communication.

• States: 𝑄 = 𝑥, 𝑦, 𝑏

• Initial States: 𝐼 𝑏 = 𝑏, 𝐼 𝑥 = 𝑥, 𝐼 𝑦 = 𝑦

• Output: 𝑂 𝑥 = 𝑂 𝑦 = 1 and 𝑂 𝑏 = 0

• Transitions: 𝑥, 𝑦 → 𝑥, 𝑏

𝑥, 𝑏 → 𝑥, 𝑥

𝑦, 𝑥 → 𝑦, 𝑏

𝑦, 𝑏 → 𝑦, 𝑦

Theorem: Let 𝜏∗ be the time at which all are 𝑥 or all are 𝑦 for 

the first time. Then for any fixed 𝑐 > 0 and sufficiently large 𝑛:

𝑃𝑟 𝜏∗ ≥ 6754𝑛𝑙𝑜𝑔𝑛 + 6759𝑐𝑛𝑙𝑜𝑔𝑛 ≤ 5𝑛−𝑐

Theorem: With high probability, the 3-state approximate 

majority protocol converges to the initial majority value if the 

difference between the initial majority and initial minority 

populations is ω 𝑛𝑙𝑜𝑔𝑛 .



Expressiveness

Basic population protocols with adversarial and strongly fair scheduler 
with a complete interaction graph compute precisely the predicates 
definable in Presburger Arithmetic:

• 1st order theory of natural numbers with addition, equality, 0 and 1

• e.g., “𝑥 is even”: ∃𝑦 𝑥 = 𝑦 + 𝑦

• Decidable (although in double exponential time)

• Quantifier elimination (using predicates < and ≡𝑘)



What can(‘t) we do?

We can:

• 𝑚𝑜𝑑𝑘  for fixed 𝑘 (coalescence)

• < and = (cancellation)

• Addition by renaming: 𝐴 → 𝐵 and 𝐴 → 𝐶 implements 𝐶 = 𝐴 + 𝐵

• Run protocols in parallel for 𝑓 ∨ 𝑔, 𝑓 ∧ 𝑔, etc.

• Relabel output for ¬𝑓

We can’t:

• Everything else ☺

• Anything that requires nested iterations like multiplication by a non-constant and division 



Main Characteristic of Population Protocols 
and Variants
Population protocols have no communication structure:

➢No network addresses

➢No persistent connections

➢No addressable memory

Nowadays, it seems that agent ids and relatively large states are OK.



Variants of Population Protocols that Make it 
Stronger

• Allow for ids (community protocols)

• 𝑂 1 bits on edges (mediated population protocols)

• Base station (sensors communicate with a powerful computational unit)

• Oracles (existence of a leader, stationary configuration, leader has 
interacted with all agents)

• Randomized scheduling
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