
Self-Stabilization
Slides based on S. Dolev Slides, Klara Nahrstedt

https://www.cs.bgu.ac.il/~dolev/book/slides.html
https://courses.engr.illinois.edu/cs425/fa2009/

What is a Self-Stabilizing Algorithm?

The “Stabilizing Orchestra” problem:

• The conductor is unable to participate – harmony is achieved
by players listening to their neighbor players

• Windy evening – the wind can turn some pages in the score,
and the players may not notice the change

Our Goal:

To guarantee that harmony is achieved at some point following the last
undesired page turn

Imagine that the drummer notices a different page of the violin next to him:

1. The drummer turns to its neighbors new page – what if the violin player noticed
the difference as well?

2. Both the drummer and violin player start from the beginning
- what if the player next to the violin player notices the change only after sync
between the other 2?

The “Stabilizing Orchestra” Example

Every player will join the neighboring player who is
playing the earliest page (including himself)

Note that the score has a bounded length. What
happens if a player goes to the first page of the
score before harmony is achieved?

 In every long enough period in which the wind
does not turn a page, the orchestra resumes
playing in synchrony

The “Stabilizing Orchestra” Example – the
Self-Stabilizing Solution

• As the number of computing elements increase in
distributed systems failures become more common

• Fault tolerance (FT) should be automatic, without
external intervention

Motivation

Some Properties of Distributed Systems…
A Safety Property:

“bad things never happen to the system”

e.g., Consensus:

𝑝1: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 𝑣1 → 𝑑𝑒𝑐𝑖𝑑𝑒 𝑣

𝑝2: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 𝑣2 → 𝑑𝑒𝑐𝑖𝑑𝑒(𝑣)

𝑝3: 𝑝𝑟𝑜𝑝𝑜𝑠𝑒 𝑣3 → 𝑑𝑒𝑐𝑖𝑑𝑒(𝑣)

Safety properties:

1. The decided value is the same for all processes

2. The decided value is proposed by some process

Some Properties of Distributed Systems…

A Liveness Property:

“good things eventually happen”

Consensus Liveness:

1. All processes eventually decide

Safety and Liveness Safety Liveness

Sometimes Impossible

In a fully asynchronous system, is there a deterministic consensus algorithm that can be
safe, live, and fault tolerant? (The FLP impossibility Theorem)

It is impossible to have a deterministic algorithm that achieves safety and liveness

However: Randomized consensus algorithms can circumvent the FLP impossibility result by
achieving both safety and liveness with overwhelming probability, even under worst-case
scheduling scenarios such as an intelligent denial-of-service attacker in the network.

Some Types of Fault Tolerance Handling

• masking: application layer does not see faults, e.g., redundancy and replication (safety
and liveness properties are unaffected)

• non-masking: system deviates, deviation is detected and then corrected: e.g., feedback,
roll back and recovery (safety is affected and not liveness, eventually safety is restored)

• fail-safe: the system does not respond but with time-outs we can recover (the liveness
property is compromised but not its safety properties)

• graceful degradation: some nodes failed in the Chord protocol, but we were able to
recover with an aggravation in efficiency (affects safety but not liveness, and the system
eventually recovers to a weaker state that is acceptable to the system).

Two classes of configurations (or behaviors)
• Legitimate configuration

• In a non-reactive system, it is represented by invariant over global state of
the system

• Example: legal state of network routing: no cycle in a route between pair of
nodes

• In a reactive system, it is determined by a state predicate and by behavior.

• Example: in token ring, legitimate config: When (i) there is exactly one token
in the network; (ii) in infinite behavior of the system, each process receives the
token infinitely often.

• Illegitimate configuration

• Example: if process grasps token, but does not release it, then the first
criterion of the legitimate config is true, but the second criterion is not
satisfied, hence configuration becomes illegitimate.

Configurations of Distributed Systems

Recover from any initial configuration to a legitimate configuration in a bounded
number of steps, as long as the protocols (codes) are not corrupted

Assumptions:

• failures affect the state (and data) but not the program since program executes
the self-stabilization;

• Such systems can be deployed ad hoc, and are guaranteed to function properly in
bounded time

• Guarantees fault tolerance when the Mean Time Between Failures (MTBF) >>
Mean Time To Recovery (MTTR)

• Stabilization provides solution when failures are infrequent and temporary malfunctions are
acceptable or unavoidable

Self-stabilizing Systems

• Transient failures perturb the global state. The ability to spontaneously recover from any
initial state implies that no initialization is ever required.

• Example: disappearance of the only circulating token in token ring; data corruption due to radio
interference or power supply variations;

• Topology changes: topology of network changes at run time when node crashes or new
node is added to the system

• Example: peer-to-peer networks and their churn rate (dynamic networks) – see stabilization
protocol in Chord

• Environmental changes: environment of a program may change without notice
• Example: traffic lights in city may run different programs depending on volume and distribution

of traffic. If system runs “early morning program” in the afternoon rush hours, we have illegal
configuration.

Reasons for Illegal Configurations

Self-stabilizing systems exhibits non-
masking fault-tolerance

They satisfy the following two criteria
➢ convergence

regardless of initiate state, the system eventually returns
to legal configuration

➢ closure

once in legal configuration, system continues in legal

configuration unless failure or perturbation corrupts data
memory

L: Legitimate configuration

Noτ L: Illegitimate configuration

Self-Stabilizing Systems

Not L L
convergence

fault
closure

Definition: Convergence + Closure

Configurations of the System

Illegitimate Configurations
Legitimate
Configurations

Closure
Convergence

Back To
Models ☺
Asynchronous Computation

• A communication link which is unidirectional from 𝑃𝑖 to 𝑃𝑗 transfers message
from 𝑃𝑖 to 𝑃𝑗

• For a unidirectional link we will use the abstract 𝑞𝑖𝑗 (a FIFO queue)

P1

P2P3

q13 = ()

q32 = ()

q21 = (m2,m10)

P1

P2P3

q13 = ()

q32 = (m1)

q21 = (m10)

send m1

receive m2

P1

P2P3

q13 = ()

q32 = (m1)

q21 = (m2, m10)

Asynchronous Distributed Systems –
Message Passing

System configuration: Description of a distributed system at a
particular time.

A configuration will be denoted by

c = (s1,s2,…,sn,q12,q13,…,qij,…,qn,n-1) , where

 si =State of Pi

 qi,j (ij) the message queue

m1

P1

P2P3

q13 = ()

q32 = ()

q21 = (m2,m10)

Asynchronous Distributed Systems - Message
passing

loss21(m3)

P1 P2

q12 = (m1)

q21 = (m2,m3,m4)

P1 P2

q12 = (m1)

q21 = (m2,m4)

P1 receives

P1 P2

q12 = (m1)

q21 = (m4)m2

The Distributed System – A Computation Step

• Computation step (atomic step): Internal Computation + Single
communication operation

• Every state transition of a process is due to communication-step execution

• A step will be denoted by 𝑎

• 𝑐1 →
𝑎 𝑐2 denotes the fact that 𝑐2 can be reached from 𝑐1 by a single step 𝑎

• An execution 𝐸 = 𝑐1, 𝑎1, 𝑐2, 𝑎2, … , is an alternating sequence such that
𝑐𝑖−1 →

𝑎𝑖 𝑐𝑖 𝑖 > 1

The Daemon
(in a less spooky manner: Scheduler)

The asynchronism of the system is modelled by a non-deterministic
adversary called daemon.

• Decides which running/enabled nodes are activated in each step

Progress Property (Proper Daemon):

The configuration of the distributed system changes in every step.

They are defined by their spreading and fairness.

Spreading of a Daemon

The choice of the daemon at each step is oblivious

• Central (sequential) Daemon: Only one enabled node activated per step

• Locally Central Daemon: It does not activate two enabled neighbors in the
same step

• Distributed: at least one enabled node in each step without restrictions

• Synchronous: all enabled nodes are activated in each step

Fairness of a Daemon

Regulates the relative activation rate of nodes by taking past actions into
account.

• Strongly Fair Daemon: It activates infinitely often all nodes that are enabled
infinitely often

• Weakly Fair Daemon: It eventually activates any continuously enabled node

• Unfair Daemon: No restrictions (it will activate a node if it is the only
enabled – due to progress property)

A Daemon Hierarchy

 The first asynchronous round (round) in an execution E is the shortest prefix E’ of E
such that each node executes at least one step in E’, E=E’E’’.

 The number of rounds = time complexity

 A Self-Stabilizing algorithm is usually a do forever loop

 The number of steps required to execute a single iteration of such a loop is O(), where
 is an upper bound on the number of neighbors of Pi

 Asynchronous cycle (cycle) the first cycle in an execution E is the shortest prefix E’ of
E such that each node executes at least one complete iteration of it’s do forever loop in
E’, E=E’E’’.

 Note : each cycle spans O() rounds

 The time complexity of a synchronous algorithm is the number of pulses/ticks in the
execution

Time Complexity

 The space complexity of an algorithm is the total number of
memory bits used to implement the algorithm

Space complexity

Some Formalities

Self-Stabilization (Definition)

𝐴 is self-stabilizing over the terminal predicate 𝑆𝑃 in network 𝐺 under
daemon 𝐷 if there exists a non-empty subset of all configurations 𝐿 ⊆ 𝐶,
called the legitimate configurations (the rest are the illegitimate
configurations) such that:

1. 𝐿 is closed (by 𝐴 in 𝐺 under 𝐷): ∀𝛿 ∈ 𝐿 and ∀𝛿′ ∈ 𝐶: if 𝛿 → 𝛿′, then
𝛿′ ∈ 𝐿

2. 𝐴 converges under 𝐷 το 𝐿 in 𝐺: ∀𝑒 ∈ 𝐸, ∃𝛿 ∈ 𝑒 such that 𝛿 ∈ 𝐿

3. Under 𝐷, 𝑆𝑃 is satisfied from 𝐿: ∀𝑒 ∈ 𝐸 𝐿 , 𝑆𝑃 𝑒 holds, where 𝐸 𝐿
is the subset of executions of 𝐸 that starts from a configuration in 𝐿

Silence

A self-stabilizing algorithm is silent if it converges within finite time to a
configuration from which the values of the communication variables

used by the algorithm remain fixed.

In our setting: All executions in the considered networks under the
considered daemon are finite.

𝐴 is silent and self-stabilizing for the configuration predicate 𝑆𝑃 in
network 𝐺 under daemon 𝐷 if:

1. (Termination) ∀𝑒 ∈ 𝐸, 𝑒 is finite

2. (Partial Correctness) Every terminal configuration satisfies 𝑆𝑃

Self-Stabilizing Algorithm: A Scaffolding

General Self-Stabilizing Algorithm

1. If 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 then
1. the system is in a legitimate state

2. else
1. If 𝑔𝑢𝑎𝑟𝑑 then

1. 𝑎𝑐𝑡𝑖𝑜𝑛

Self-Stabilization Algorithms -
Coloring

(not again )

Coloring under a Locally Central Unfair
Daemon

Assumptions:

• No Ids

• Knowledge of Max Degree

If the power of the Daemon is not restricted, then the problem cannot
be solved by any deterministic self-stabilizing algorithm.

RESTRICT THE DAEMON!!!

Algorithm

Inputs:
𝑝.𝑁 : the set of 𝑝’s neighbors
𝐾 : an integer such that 𝐾 ≥ Δ

Local Variable:
𝑝. 𝑐 ∈ 0,1,… , 𝐾 : the color of 𝑝

Macros:
𝑈𝑠𝑒𝑑 𝑝 : 𝑞. 𝑐: 𝑞 ∈ 𝑝.𝑁
𝐹𝑟𝑒𝑒 𝑝 : 0,… , 𝐾 \𝑈𝑠𝑒𝑑 𝑝

Guard:
𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑝 : ∃𝑞 ∈ 𝑝.𝑁: 𝑞. 𝑐 = 𝑝. 𝑐

Action:

𝐶𝑜𝑙𝑜𝑟 : 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑝 → 𝑝. 𝑐 ← min 𝐹𝑟𝑒𝑒 𝑝

Terminal Configuration (predicate):

𝐶𝑜𝑙𝑜𝑟𝑒𝑑 : ∀𝑝 ∈ 𝑉, ∀𝑞 ∈ 𝑝.𝑁: 𝑝. 𝑐 ≠ 𝑞. 𝑐

 Used for proving convergence

 Can be used to estimate the number of steps required
to reach a legitimate/safe configuration

step
c c1 c2 c3

step
csafe

step steps

|VF(c)|  |VF(c1)|  |VF(c2)|  |VF(c3)|  …  |VF(csafe)|  …  bound

Variant(Potential) Function
A threshold below

which we are in a safe
configuration

Analysis (1)

Partial Correctness:

1. The predicate 𝐶𝑜𝑙𝑜𝑟𝑒𝑑 holds in every terminal configuration.

Termination (let an execution 𝑒 = 𝛿0, 𝛿1, … , 𝛿𝑖 , …):

1. Let 𝑝 a node. In any configuration, for any node 𝑝, 𝐹𝑟𝑒𝑒 𝑝 ≠ ∅.

2. Variant function (def): 𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖 = 𝑝 ∈ 𝑉: 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑝 ∈ 𝛿𝑖
3. If 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑝 holds in 𝛿𝑖 then there exists 𝑞 ∈ 𝑝. 𝑁 such that 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑞

holds in 𝛿𝑖 as well (𝛿𝑖 is a configuration)

4. Either 𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖 = 0 or 2 ≤ 𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖 ≤ 𝑛

5. 𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖 = 0 if and only if 𝛿𝑖 is terminal

6. For every node 𝑝 and every step 𝛿𝑖 → 𝛿𝑖+1 , if ¬𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑝 holds in 𝛿𝑖,
then ¬𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑝 holds in 𝛿𝑖+1.

Analysis (2) - Termination

7. For every 2 configurations 𝛿𝑖 and 𝛿𝑗 such that 𝑖 ≤ 𝑗 it holds that
𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖 ≥ 𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑗

8. For every node 𝑝 and every step 𝛿𝑖 → 𝛿𝑖+1, if node 𝑝 is activated in
𝛿𝑖 → 𝛿𝑖+1, then 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑝 holds in 𝛿𝑖 but not in 𝛿𝑖+1.

9. For every step 𝛿𝑖 → 𝛿𝑖+1, if 𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖 = 2, then exactly one process
is activated in 𝛿𝑖 → 𝛿𝑖+1 and 𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖+1 = 0.

10. For every step 𝛿𝑖 → 𝛿𝑖+1, we have that 𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖 ≥ 2 and
𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖+1 < 𝐸𝑛𝑒𝑟𝑔𝑦 𝛿𝑖

11. The execution 𝑒 terminates after at most 𝑛 − 1 steps.

12. For every execution 𝑒, 𝑒 is finite (Termination)

Time Complexity

1. The Stabilization Time for this algorithm is one round ☺

2. The Stabilization Time for this algorithm is 𝑛 − 1 steps

Self-Stabilization
Algorithms - MIS
(not again )

MIS – Spot The Difference (Nodes have IDs)

Non-stabilizing Algorithm for MIS:

Every node 𝑣 executes the following code:

1. If all neighbors of 𝑣 with larger identifiers have decided not to join the MIS, then
1. 𝑣 decides to join the MIS

Stabilizing Algorithm for MIS:

Every node 𝑣 executes the following code:

1. do iteratively:
1. Leave MIS if a neighbor with a larger ID is in MIS

2. Join MIS if no neighbor with larger ID joins MIS

3. Send (node ID, MIS or not MIS) to all neighbors

Self-Stabilization
Algorithms –
Mutual Exclusion

What?

The Problem

Requirement for the infinite circulation of a token in a ring network.

Predicate:

1. (Safety) In each configuration, there is at most one token holder:
∀𝑖 ≥ 0, ∀𝑝, 𝑞 ∈ 𝑉: 𝑇𝑜𝑘𝑒𝑛 𝑝 ∧ 𝑇𝑜𝑘𝑒𝑛 𝑞 → 𝑝 = 𝑞

2. (Liveness) Each process holds the token infinitely often:
∀𝑖 ≥ 0, ∀𝑝 ∈ 𝑉, ∃𝑗 ≥ 𝑖: 𝑇𝑜𝑘𝑒𝑛 𝑝 ∈ 𝛿𝑗

Assumptions:
1. Distributed Unfair Daemon

2. Ring is rooted

3. Ring is oriented (consistent orientation: successor of predecessor of 𝑝
is always itself)

Two Algorithms

Algorithm for the Root 𝑝0
Inputs:

𝑝0. 𝑃𝑟𝑒𝑑 : the predecessor of 𝑝0 in the ring

𝐾 : a positive integer 𝐾 > 𝑛

Local Variable:

𝑝0. 𝑣 ∈ 0,1,… , 𝐾 − 1

Guard:

𝑇𝑜𝑘𝑒𝑛 𝑝0 : 𝑝0. 𝑣 = 𝑝0. 𝑃𝑟𝑒𝑑. 𝑣

Action:

𝑇 : 𝑇𝑜𝑘𝑒𝑛 𝑝0 → 𝑝0. 𝑣 ← 𝑝0. 𝑣 + 1 𝑚𝑜𝑑 𝐾

Algorithm for non-root node 𝑝
Inputs:
𝑝. 𝑃𝑟𝑒𝑑 : the predecessor of 𝑝 in the ring
𝐾 : a positive integer 𝐾 > 𝑛

Local Variable:

𝑝. 𝑣 ∈ 0,1, … , 𝐾 − 1

Guard:
𝑇𝑜𝑘𝑒𝑛 𝑝 : 𝑝0. 𝑣 ≠ 𝑝0. 𝑃𝑟𝑒𝑑. 𝑣

Action:
𝑇 : 𝑇𝑜𝑘𝑒𝑛 𝑝 → 𝑝. 𝑣 ← 𝑝. 𝑃𝑟𝑒𝑑. 𝑣

The root 𝑝0 holds the token if 𝑇𝑜𝑘𝑒𝑛 𝑝0 holds.
The non-root node 𝑝 holds the token if 𝑇𝑜𝑘𝑒𝑛 𝑝 holds.

Convergence 𝑛 = 8, 𝛫 = 9

1

3

3

2

2

0

1

1

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

3

2

0

Διαμόρφωση 𝛿0

1

3

3

3

2

0

1

1

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

30

𝛿1

1

3

3

3

3

0

1

1

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

30

𝛿2

Convergence 𝑛 = 8, 𝛫 = 9

1

3

3

3

3

1

1

1

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

3

𝛿3

2

2

3

3

3

1

3

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

1

𝛿5

2

3

3

3

3

1

1

1

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

3

𝛿4

Convergence 𝑛 = 8, 𝛫 = 9

2

2

2

3

3

1

1

3

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

3

𝛿6

2

2

2

2

3

1

1

3

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝛿7

2

2

2

2

2

1

3

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

1

𝛿8

Convergence 𝑛 = 8, 𝛫 = 9

2

2

2

2

2

2

2

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

3

𝛿10

2

2

2

2

2

2

2

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

2

𝛿11

2

2

2

2

2

1

3

2

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

1

𝛿9

Closure 𝑛 = 8, 𝛫 = 9

8

8

8

8

8

8

8

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

7

𝛿𝑖+1

8

8

8

8

8

8

8

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

8

𝛿𝑖+2

8

8

8

8

8

7

7

8

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝛿𝑖

Closure 𝑛 = 8, 𝛫 = 9

0

8

8

8

8

8

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

08

𝛿𝑖+4

0

0

0

7

8

8

8

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

8

8

𝛿𝑖+5

0

7

8

8

8

8

8

8

𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

8

𝛿𝑖+3

Why does it work ?

1. At any configuration, at least one process can make a move
(has token)

2. Set of legal configurations is closed under all moves

3. Total number of possible moves from (successive
configurations) never increases

4. Any illegal configuration 𝐶 converges to a legal configuration
in a finite number of moves

Why does it work ?

1. At any configuration, at least one process can make a move

(has token), i.e., if condition is false at all processes

Proof by contradiction: suppose no one can make a move

• Then 𝑝1, … , 𝑝𝑛−1 cannot make a move

• Then 𝑝1. 𝑣 = 𝑝2. 𝑣 = 𝑝𝑁−1. 𝑣 = 𝑝0. 𝑣

• But this means that 𝑝0 can make a move. Contradiction

Why does it work ?

1. At any configuration, at least one process can make a move (has token)

2. Set of legal configurations is closed under all moves

• If only 𝑝0 can make a move, then ∀𝑖, 𝑗: 𝑝𝑖 . 𝑣 = 𝑝𝑗 . 𝑣. After 𝑝0’s move, only 𝑝1 can make a move

• If only 𝑝𝑖 𝑖 ≠ 0 can make a move

• ∀𝑖, 𝑗: 𝑗 < 𝑖 → 𝑝𝑗 . 𝑣 = 𝑝𝑖−1. 𝑣

• ∀𝑖, 𝑘: 𝑘 ≥ 𝑖 → 𝑝𝑘 . 𝑣 = 𝑝𝑖 . 𝑣

• 𝑝𝑖−1. 𝑣 ≠ 𝑝𝑖 𝑖 ≠ 0

• 𝑝𝑜 ≠ 𝑝𝑛−1

in this case, after 𝑝𝑖’s move only 𝑝𝑖+1 can move

Why does it work ?

1. At any configuration, at least one process can make a move

(has token)

2. Set of legal configurations is closed under all moves

3. Total number of possible moves from (successive

configurations) never increases

• any move by 𝑝𝑖 either enables a move for 𝑝𝑖+1 (𝑚𝑜𝑑 𝑛) or none at all

Why does it work ?

1. At any configuration, at least one process can make a move (has token)

2. Set of legal configurations is closed under all moves

3. Total number of possible moves from (successive configurations) never increases

4. Any illegal configuration 𝐶 converges to a legal configuration in a finite number of moves

• There must be a value, say 𝑥, that does not appear in 𝐶 (since the set of values is in the range 0,1, … , 𝐾 and 𝐾 ≥ 𝑛)

• Except for 𝑝0, none of the processes create new values (since they only copy values)

• Thus, 𝑝0 takes infinitely many steps, and since it only self-increments, it eventually sets 𝑝0. 𝑣 = 𝑥

• Soon after, all other processes copy value 𝑥 and a legal configuration is reached

Self-Stabilization Algorithms –
Maximal Matching
Wait a minute… ☺

Program for 𝑃𝑖:
01 do forever

02 if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑛𝑢𝑙𝑙 and ∃𝑃𝑗 ∈ 𝑁 𝑃𝑖 : 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑗 = 𝑖 then
03 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑗

04 if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑛𝑢𝑙𝑙 and ∀𝑃𝑗 ∈ 𝑁 𝑃𝑖 : 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑗 ≠ 𝑖 and

05 ∃𝑃𝑗 ∈ 𝑁 𝑃𝑖 : 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑗 = 𝑛𝑢𝑙𝑙 then
06 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑗

07 if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑗 and 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑗 = 𝑘 and 𝑘 ≠ 𝑖 then
08 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑛𝑢𝑙𝑙
09 od

Every node 𝑃𝑖 tries to find a matching neighbor 𝑃𝑗

Self-Stabilizing Maximal Matching

 The algorithm should reach a configuration in which 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑗 implies
that 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑗 = 𝑖

 We will assume the existence of a central daemon

 The set of legal executions 𝑀𝑀 for the maximal matching task includes
every execution in which the values of the pointers of all the nodes are
fixed and form a maximal matching (legitimate configurations)

Remarks - Assumptions

Program for 𝑃𝑖:
01 do forever

02 if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑛𝑢𝑙𝑙 and ∃𝑃𝑗 ∈ 𝑁 𝑃𝑖 : 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑗 = 𝑖 then
03 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑗

04 if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑛𝑢𝑙𝑙 and ∀𝑃𝑗 ∈ 𝑁 𝑃𝑖 : 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑗 ≠ 𝑖 and

05 ∃𝑃𝑗 ∈ 𝑁 𝑃𝑖 : 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑗 = 𝑛𝑢𝑙𝑙 then
06 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑗

07 if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑗 and 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑗 = 𝑘 and 𝑘 ≠ 𝑖 then
08 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑖 = 𝑛𝑢𝑙𝑙
09 od

Some Definitions

matched

waiting

chaining

free

single

 The variant function VF(c) returns a vector (m+s,w,f,c)

m - matched, s – single, w – waiting, f – free, c – chaining

 Values of VF are compared lexicographically

 VF(c) = (n,0,0,0)  c is a safe configuration with relation to
MM and to our algorithm

 Once a system reaches a safe configuration, no node changes
the value of its pointer

Correctness

 In every non-safe configuration, there exists at least one node that can
change the value of its pointer

 Every change of a pointer-value increases the value of VF

 The number of such pointer-value changes is bounded by the number of
all possible vector values.

The first three elements of the vector (m+s,w,f,c)

imply the value of c, thus there at most O(n3) changes.

Correctness

Advanced
Stabilization

A glimpse from decentralization…

Opinion Dynamics

In Kalavryta, every evening each citizen calls all his (or her) friends, asking them whether they will vote for the
Left or the Right party at the next election. In our village, citizens listen to their friends, and everybody re-
chooses his or her vote according to the majority of friends. Is this process going to stabilize" (in one way or
another)?

Remarks:

• Is eventually everybody voting for the same party? No.

• Will each citizen eventually stay with the same party? No.

• Will citizens that stayed with the same party for some time, stay with that party forever? No.

• Will this beast stabilize at all?!? Yes!

Theorem: Eventually every citizen is rooting for the same party every other day.

Example that flip-flops

L R L R

L R

Example that flip-flops

R L R L

R L

Example that flip-flops

L R L R

L R

Example that flip-flops

R L R L

R L

Just Before Course
Stabilization

Advantage of self-stabilization (1/3)

• Tolerance to any transient fault

• Transient fault:
• Duration: finite

• Periodicity: rare

• Effect: alter the contain of some component(s) of the network (processes
and/or links)

• E.g., memory/message corruption, crash-recover, lose of messages…

Advantage of self-stabilization (1/3)

Advantage of self-stabilization (2/3)

• No initialization
• Large-scale network

• Self-organization in sensor network

Advantage of self-stabilization (3/3)

• Dynamicity 1

3

3

0

1 1

2

2

23

4

5

5

Sémimaire VERIMAG

Drawbacks of self-stabilization (1/2)

• Eventually safe
Stabilization Time

Drawbacks of self-stabilization (2/2)

• Do not tolerate any kind of faults, e.g.:
• Crash

• Byzantine faults

Making Faults
with Chord …

Chord Ring

• Associate nodes to m-bit identifiers

hash(IP Addr)  Node ID

• Associate keys to m-bit identifiers

hash(File Name)  key

• The key is given to the 1st node with

Node ID ≥ key

• Search(key)

Search(9)  N21

N1

N8

N21

N32

N42

N55

N51

(8,21]

(1,8]

m=6

N80

0

Say m=7

N32

N45

File cnn.com/index.html with

key K42 stored here

All “arrows” are RPCs

N112

N96

N16

Who has cnn.com/index.html?

(hashes to K42)

(lookup in finger table)

(lookup in finger table)

N45 > K42, hence

Take successori ft[i]

0 96

1 96

2 96

3 96

4 96

5 112

6 16

16 < 42

32 < 42

45 > 42

P2P Systems - Chord Search
At node n, send query for key k to largest successor/finger entry < k (mod m)
If none exist, send query to successor(n)

• Chord has to deal with peer churns – topological changes!!!

• Maintaining finger tables only is expensive in case of
dynamic joint and leave nodes

• Chord therefore separates correctness from performance
goals via stabilization protocols

• Basic stabilization protocol

• Keep successor’s pointers correct!

• Then use them to correct finger tables

Self-Organizing Protocol in Chord

Search under peer failures

N80

0

N32

N45

File cnn.com/index.html with

key K42 stored here

X
X

X

Lookup fails

(N16 does not know N45)

N112

N96

N16

Who has cnn.com/index.html?

(hashes to K42)

0 32

1 32

2 32

3 32

4 32

5 80

6 80

N80

0
Say m=7

N32

N45

File cnn.com/index.html with

key K42 stored here

X

One solution: maintain r multiple successor entries in case of

failure, use successor entries

N112

N96

N16

Who has cnn.com/index.html?

(hashes to K42)

Search under peer failures

N80

0

N32

N45

File cnn.com/index.html with

key K42 stored here

X

X

Lookup fails

(N45 is dead) N112

N96

N16

Who has cnn.com/index.html?

(hashes to K42)

0 32

1 32

2 32

3 32

4 32

5 80

6 80

0 45

1 45

2 45

3 45

4 80

5 96

6 0

Search under peer failures (2)

Search under peer failures (2)

N80

0

N32

N45

File cnn.com/index.html with

key K42 stored here

X

One solution: replicate file/key at r

successors and predecessors

N112

N96

N16

K42 replicated

K42 replicated

Who has cnn.com/index.html?

(hashes to K42)

N80

0

N32

N45

N112

N96

N16

N40

1. N40 acquires that N45 is its successor

2. N45 updates its info about predecessor to be N40

3. N32 runs stabilizer and asks N45 for predecessor

4. N45 returns N40

5. N32 updates its info about successor to be N40

6. N32 notifies N40 to be its predecessor

N40 periodically talks to neighbors to update own finger table

Stabilization

protocol

Peers also keep info

about their predecessors

to deal with dynamics

New peers joining

N80

0

N32

N45

N112

N96

N16

N40

N40 may need to copy some files/keys from N45

(files with fileid between 32 and 40)

K34,K38

New peers joining (2)

Concurrent peer joins, leaves, failures might cause loopiness of
pointers, and failure of lookups

• Chord peers periodically run a stabilization algorithm that checks and updates
pointers and keys

• Ensures non-loopiness of fingers, eventual success of lookups and O(log(N)) lookups

• [TechReport on Chord webpage] defines weak and strong stability

• Each stabilization round at a peer involves a constant number of messages

• Strong stability takes 𝑂(𝑁2) stabilization rounds (!)

Chord Stabilization Protocol

References

1. Introduction to Distributed Self-Stabilizing Algorithms. Karine
Altisen; Stéphane Devismes; Swan Dubois; Franck Petit.
Morgan & Claypool, 2019.

2. Self-Stabilization. S. Dolev. MIT Press. 2000.

3. S. Schmid and P.S. Mandal. Distributed Network Algorithms. Lecture
Notes for GIAN Course, Chapter 13: Self-Stabilization, 2016.

https://link.springer.com/book/10.1007/978-3-031-02013-1
https://direct.mit.edu/books/book/3220/Self-Stabilization
https://schmiste.github.io/GIAN-Lecture-Notes-NetAlg.pdf

	Slide 1: Self-Stabilization
	Slide 2: What is a Self-Stabilizing Algorithm?
	Slide 3: The “Stabilizing Orchestra” Example
	Slide 4: The “Stabilizing Orchestra” Example – the Self-Stabilizing Solution
	Slide 5: Motivation
	Slide 6: Some Properties of Distributed Systems…
	Slide 7: Some Properties of Distributed Systems…
	Slide 8: Safety and Liveness
	Slide 9: Some Types of Fault Tolerance Handling
	Slide 10: Configurations of Distributed Systems
	Slide 11: Self-stabilizing Systems
	Slide 12: Reasons for Illegal Configurations
	Slide 13: Self-Stabilizing Systems
	Slide 14: Definition: Convergence + Closure
	Slide 15: Back To Models 
	Slide 16: Asynchronous Distributed Systems – Message Passing
	Slide 17: Asynchronous Distributed Systems - Message passing
	Slide 18: The Distributed System – A Computation Step
	Slide 19: The Daemon (in a less spooky manner: Scheduler)
	Slide 20: Spreading of a Daemon
	Slide 21: Fairness of a Daemon
	Slide 22: A Daemon Hierarchy
	Slide 23: Time Complexity
	Slide 24: Space complexity
	Slide 25: Some Formalities
	Slide 26: Self-Stabilization (Definition)
	Slide 27: Silence
	Slide 28: Self-Stabilizing Algorithm: A Scaffolding
	Slide 29: Self-Stabilization Algorithms - Coloring
	Slide 30: Coloring under a Locally Central Unfair Daemon
	Slide 31: Algorithm
	Slide 32: Variant(Potential) Function
	Slide 33: Analysis (1)
	Slide 34: Analysis (2) - Termination
	Slide 35: Time Complexity
	Slide 36: Self-Stabilization Algorithms - MIS
	Slide 37: MIS – Spot The Difference (Nodes have IDs)
	Slide 38: Self-Stabilization Algorithms – Mutual Exclusion
	Slide 39: The Problem
	Slide 40: Two Algorithms
	Slide 41: Convergence open paren n equals 8,, cap kappa equals 9 , close paren
	Slide 42: Convergence open paren n equals 8,, cap kappa equals 9 , close paren
	Slide 43: Convergence open paren n equals 8,, cap kappa equals 9 , close paren
	Slide 44: Convergence open paren n equals 8,, cap kappa equals 9 , close paren
	Slide 45: Closure open paren n equals 8,, cap kappa equals 9 , close paren
	Slide 46: Closure open paren n equals 8,, cap kappa equals 9 , close paren
	Slide 47: Why does it work ?
	Slide 48: Why does it work ?
	Slide 49: Why does it work ?
	Slide 50: Why does it work ?
	Slide 51: Why does it work ?
	Slide 52: Self-Stabilization Algorithms – Maximal Matching
	Slide 53: Self-Stabilizing Maximal Matching
	Slide 54: Remarks - Assumptions
	Slide 55: Some Definitions
	Slide 56: Correctness
	Slide 57: Correctness
	Slide 58: Advanced Stabilization
	Slide 59: Opinion Dynamics
	Slide 60: Example that flip-flops
	Slide 61: Example that flip-flops
	Slide 62: Example that flip-flops
	Slide 63: Example that flip-flops
	Slide 64: Just Before Course Stabilization
	Slide 65: Advantage of self-stabilization (1/3)
	Slide 66: Advantage of self-stabilization (1/3)
	Slide 67: Advantage of self-stabilization (2/3)
	Slide 68: Advantage of self-stabilization (3/3)
	Slide 69: Drawbacks of self-stabilization (1/2)
	Slide 70: Drawbacks of self-stabilization (2/2)
	Slide 71: Making Faults with Chord …
	Slide 72: Chord Ring
	Slide 73: P2P Systems - Chord Search
	Slide 74: Self-Organizing Protocol in Chord
	Slide 75: Search under peer failures
	Slide 76: Search under peer failures
	Slide 77: Search under peer failures (2)
	Slide 78: Search under peer failures (2)
	Slide 79: New peers joining
	Slide 80: New peers joining (2)
	Slide 81: Chord Stabilization Protocol
	Slide 82: References

