
Tutorial	#3:	Procedures
NetLogo	6.3.0	User	Manual

This	tutorial	leads	you	through	the	process	of	building	a	complete	model,	built	up	in	stages,	with	every	step	explained	along	the	way.

Agents	and	procedures

In	Tutorial	#2,	you	learned	how	to	use	the	command	center	and	agent	monitors	to	inspect	and	modify	agents	and	make	them	do	things.
Now	you’re	ready	to	learn	about	the	real	heart	of	a	NetLogo	model:	the	Code	tab.

You’ve	seen	that	agents	in	NetLogo	are	divided	into	patches,	turtles,	links,	and	the	observer.	Patches	are	stationary	and	arranged	in	a
grid.	Turtles	move	over	that	grid.	Links	connect	two	turtles.	The	observer	oversees	everything	that’s	going	on	and	does	whatever	the
turtles,	patches	and	links	can’t	do	for	themselves.

All	four	types	of	agents	can	run	NetLogo	commands.	All	four	can	also	run	“procedures”.	A	procedure	combines	a	series	of	NetLogo
commands	into	a	single	new	command	that	you	define.

You	will	now	learn	to	write	procedures	that	make	turtles	move,	eat,	reproduce,	and	die.	You	will	also	learn	how	to	make	monitors,	sliders,
and	plots.	The	model	we’ll	build	is	a	simple	ecosystem	model	not	unlike	Wolf	Sheep	Predation	from	Tutorial	#1.

Making	the	setup	button

To	start	a	new	model,	select	“New”	from	the	File	menu.	Then	begin	by	creating	a	setup	button:

Click	the	“Add”	icon	in	the	toolbar	at	the	top	of	the	Interface	tab.
On	the	menu	next	to	Add,	select	Button	(if	it	isn’t	already	selected).
Click	wherever	you	want	the	button	to	appear	in	the	empty	white	area	of	the	Interface	tab.
A	dialog	box	for	editing	the	button	opens.	Type	setup	in	the	box	labeled	“Commands”.
Press	the	OK	button	when	you’re	done;	the	dialog	box	closes.

Now	you	have	a	setup	button.	Pressing	the	button	runs	a	procedure	called	“setup”.	A	procedure	is	a	sequence	of	NetLogo	commands
that	we	assign	a	new	name.	We’ll	define	that	procedure	soon,	but	we	haven’t	yet.	The	button	refers	to	a	procedure	that	doesn’t	exist,	so
the	button	turns	red:

If	you	want	to	see	the	actual	error	message,	click	the	button.

Now	we’ll	create	the	“setup”	procedure,	so	the	error message	will	go	away:

Switch	to	the	Code	tab.
Type	the	following:

to setup
 clear-all
 create-turtles 100 [setxy random-xcor random-ycor]
 reset-ticks
end

When	you’re	done,	the	Code	tab	looks	like	this:

Note	that	some	lines	are	indented.	Most	people	find	it	helpful	to	indent	their	code.	It	isn’t	mandatory,	but	it	makes	the	code	easier	to	read
and	change.

Your	procedure	begins	with	to	and	ends	with	end.	Every	procedure	begins	and	ends	with	these	words.

Let’s	look	at	what	you	typed	in	and	see	what	each	line	of	your	procedure	does:

to setup	begins	defining	a	procedure	named	“setup”.
clear-all	resets	the	world	to	an	initial,	empty	state.	All	the	patches	turn	black	and	any	turtles	you	might	have	created	disappear.
Basically,	it	wipes	the	slate	clean	for	a	new	model	run.
create-turtles 100	creates	100	turtles.	They	start	out	standing	at	the	origin,	that	is,	the	center	of	patch	0,0.
After	create-turtles	we	can	put	commands	for	the	new	turtles	to	run,	enclosed	by	square	brackets.
setxy random-xcor random-ycor	is	a	command	using	“reporters”.	A	reporter,	as	opposed	to	a	command,	reports a	result.	First	each
turtle	runs	the	reporter	random-xcor	which	will	report	a	random	number	from	the	allowable	range	of	turtle	coordinates	along	the	X
axis.	Then	each	turtle	runs	the	reporter	random-ycor,	same	for	the	Y	axis.	Finally	each	turtle	runs	the	setxy	command	with	those
two	numbers	as	inputs.	That	makes	the	turtle	move	to	the	point	with	those	coordinates.
reset-ticks	starts	the	tick	counter,	now	that	setup	is	otherwise	complete.
end	completes	the	definition	of	the	“setup”	procedure.

When	you’re	done	typing,	switch	to	the	Interface	tab	and	press	the	setup	button	you	made	before.	You	will	see	the	turtles	scattered
around	the	world:

Press	setup	a	couple	more	times,	and	see	how	the	arrangement	of	turtles	is	different	each	time.	Note	that	some	turtles	may	be	right	on
top	of	each	other.

Think	a	bit	about	what	you	needed	to	do	to	make	this	happen.	You	needed	to	make	a	button	in	the	interface	and	make	a	procedure	that
the	button	uses.	The	button	only	worked	once	you	completed	both	of	these	separate	steps.	In	the	remainder	of	this	tutorial,	you	will	often
have	to	complete	two	or	more	similar	steps	to	add	another	feature	to	the	model.	If	something	doesn’t	appear	to	work	after	you	completed
what	you	thought	is	the	final	step	for	that	new	feature,	continue	to	read	ahead	to	see	if	there	is	still	more	to	do.	After	reading	ahead	for	a
couple	of	paragraphs,	you	should	then	go back	over	the	directions	to	see	if	there	is	any	step	you	might	have	missed.

Switching	to	tick-based	view	updates

Now	that	we’re	using	the	tick	counter	(with	reset-ticks),	we	should	tell	NetLogo	that	it	only	needs	to	update	the	view	once	per	tick,
instead	of	continuously	updating	it.

Find	the	view	updates	menu.	It’s	above	the	view	and	by	default	says	“continuous”.
Choose	“on	ticks”	instead.

This	makes	your	model	run	faster	and	ensures	a	consistent	appearance (since	the	updates	will	happen	at	consistent	times).	See	the
Programming	Guide	for	a	fuller	discussion	of	view	updates.

Making	the	go	button

Now	make	a	button	called	“go”.	Follow	the	same	steps	you	used	to	make	the	setup	button,	except:

For	Commands	enter	go instead	of	setup.
Check	the	“Forever”	checkbox	in	the	edit	dialog.
Check	the	“Disable	until	ticks	start”	checkbox	too.

The	“Forever”	checkbox	makes	the	button	stay	down	once	pressed,	so	its	commands	run	over	and	over	again,	not	just	once.

The	“Disable	until	ticks	start”	prevents	you	from	pressing	go	before	setup.

Then	add	a	go	procedure	to	the	Code	tab:

to go
 move-turtles
 tick
end

tick	is	a	primitive	that	advances	the	tick	counter	by	one	tick.

But	what	is	move-turtles?	Is	it	a	primitive	(in	other	words,	built-in	to	NetLogo)?	No,	it’s	another	procedure	that	you’re	about	to	add.	So	far,
you	have	introduced	two	procedures	that	you	added	yourself:	setup	and	go.

Add	the	move-turtles	procedure	after	the	goprocedure:

to go
 move-turtles

 tick
end

to move-turtles
 ask turtles [
 right random 360
 forward 1
]
end

Note	there	are	no	spaces	around	the	hyphen	in	move-turtles.	In	Tutorial	#2	we	used	red - 2,	with	spaces,	in	order	to	subtract	two
numbers,	but	here	we	want	move-turtles,	without	spaces.	The	“-”	combines	“move”	and	“turtles”	into	a	single	name.

Here	is	what	each	command	in	the	move-turtles	procedure	does:

ask turtles [...]	says	that	each	turtle	should	run	the	commands	in	the	brackets.
right random 360	is	another	command	that	uses	a	reporter.	First,	each	turtle	picks	a	random	whole	number	between	0	and	359.
(random	doesn’t	include	the number	you	give	it	as	a	possible	result.)	Then	the	turtle	turns	right	this	number	of	degrees.
forward 1	makes	the	turtle	move	forward	one	step.

Why	couldn’t	we	have	just	written	all	of	these	commands	in	go	instead	of	in	a	separate	procedure?	We	could	have,	but	during	the	course
of	building	your	project,	it’s	likely	that	you’ll	add	many	other	parts.	We’d	like	to	keep	go	as	simple	as	possible,	so	that	it	is	easy	to
understand.	Eventually,	it	will	include	many	other	things	you	want	to	have	happen	as	the	model	runs,	such	as	calculating	something	or
plotting	the	results.	Each	of	these	things	to	do	will	have	its	own	procedure	and	each	procedure	will	have	its	own	unique	name.

The	‘go’	button	you	made	in	the	Interface	tab	is	a	forever	button,	meaning	that	it	will	continually	run	its	commands	until you	shut	it	off	(by
clicking	on	it	again).	After	you	have	pressed	‘setup’	once,	to	create	the	turtles,	press	the	‘go’	button.	Watch	what	happens.	Turn	it	off,	and
you’ll	see	that	all	the	turtles	stop	in	their	tracks.

Note	that	if	a	turtle	moves	off	the	edge	of	the	world,	it	“wraps”,	that	is,	it	appears	on	the	other	side.	(This	is	the	default	behavior.	It	can	be
changed;	see	the	Topology	section	of	the	Programming	Guide	for	more	information.)

Experimenting	with	commands

We	suggest	you	start	experimenting	with	other	turtle	commands.

Type	commands	into	the	Command	Center	(like	turtles> set color red),	or	add	commands	to	setup,	go, or	move-turtles.

Note	that	when	you	enter	commands	in	the	Command	Center,	you	must	choose	turtles>,	patches>,	links>,	or	observer>	in	the	popup
menu	on	the	left,	depending	on	which	agents	are	going	to	run	the	commands.	It’s	just	like	using	ask turtles	or	ask patches,	but	saves
typing.	You	can	also	use	the	tab	key	to	switch	agent	types,	which	you	might	find	more	convenient	than	using	the	menu.

You	might	try	typing	turtles>	pen-down	into	the	Command	Center	and	then	pressing	the	go	button.

Also,	inside	the	move-turtles	procedure	you	can	try	changing	right random 360	to	right random 45.

Play	around.	It’s	easy	and	the	results	are	immediate	and	visible	–	one	of	NetLogo’s	many	strengths.

When	you	feel	you’ve	done	enough	experimenting	for	now,	you’re	ready	to	continue	improving	the	model	you	are	building.

Patches	and	variables

Now	we’ve	got	100	turtles	aimlessly	moving	around,	completely	unaware	of	anything	else	around	them.	Let’s	make	things	a	little	more
interesting	by	giving	these	turtles	a	nice	background	against	which	to	move.

Go	back	to	the	setup	procedure.	We	can	rewrite	it	as	follows:

to setup
 clear-all
 setup-patches
 setup-turtles
 reset-ticks
end

The	new	definition	of	setup	refers	to	two	new	procedures.	To	define	setup-patches,	add	this:

to setup-patches
 ask patches [set pcolor green]
end

The	setup-patches	procedure	sets	the	color	of	every	patch	to	green	to	start	with.	(A	turtle’s	color	variable	is	color;	a	patch’s
is	pcolor.)

The	only	part	remaining	in	our	new	‘setup’	that	is	still	undefined	is	setup-turtles.

Add	this	procedure	too:

to setup-turtles
 create-turtles 100
 ask turtles [setxy random-xcor random-ycor]
end

Did	you	notice	that	the	new	setup-turtles	procedure	has	most	of	the	same	commands	as	the	old	setup	procedure?

Switch	back	to	the	Interface	tab.
Press	the	setup	button.

Voila!	A	lush	NetLogo	landscape	complete	with	turtles	and	green	patches	appears:

After	seeing	the	new	setup	procedure	work	a	few	times,	you	may	find	it	helpful	to	read	through	the	procedure	definitions	again.

Turtle	variables

So	we	have	some	turtles	running	around	on	a	landscape,	but	they	aren’t	doing	anything	with	it.	Let’s	add	some	interaction	between	the
turtles	and	the	patches.

We’ll	make	the	turtles	eat	“grass”	(the	green	patches),	reproduce,	and	die.	The	grass	will	gradually	grow	back	after	it	is	eaten.

We’ll	need	a	way	of	controlling	when	a	turtle	reproduces	and	dies.	We’ll	determine	that	by	keeping	track	of	how	much	“energy”	each	turtle
has.	To	do	that	we	need	to	add	a	new	turtle variable.

You’ve	already	seen	built-in	turtle	variables	like	color.	To	make	a	new	turtle	variable,	we	add	a	turtles-own	declaration	at	the	top	of	the
Code	tab,	before	all	the	procedures.	Call	it	energy:

turtles-own [energy]

to go
 move-turtles
 eat-grass
 tick
end

Let’s	use	this	newly	defined	variable	(energy)	to	allow	the	turtles	to	eat.

Switch	to	the	Code	tab.
Rewrite	the	go	procedure	as	follows:

to go
 move-turtles
 eat-grass
 tick
end

Add	a	new	eat-grass	procedure:

to eat-grass
 ask turtles [
 if pcolor = green [
 set pcolor black
 set energy energy + 10
]
]
end

We	are	using	the	if	command	for	the	first	time.	Look	at	the	code	carefully.	Each	turtle,	when	it	runs	these	commands,	compares	the
value	of	the	patch	color	it	is	on	(pcolor)	to	the	value	for	green.	(A	turtle	has	direct	access	to	the	variables	of	the	patch	it	is	standing	on.)	If

the	patch	color	is	green,	the	comparison	reports	true,	and	only	then	will	the	turtle	run	the	commands	inside	the	brackets	(otherwise	it
skips	them).	The	commands	make	the	turtle	change	the	patch	color	to	black	and	increase	its	own	energy	by	10.	The	patch	turns	black	to
signify	that	the	grass	at	that	spot	has	been	eaten.	And	the	turtle	is	given	more	energy,	from	having	just	eaten.

Next,	let’s	make	the	movement	of	turtles	use	up	some	of	the	turtle’s	energy.

Rewrite	move-turtles	as	follows:

to move-turtles
 ask turtles [
 right random 360
 forward 1
 set energy energy - 1
]
end

As	each	turtle	wanders,	it	will	lose	one	unit	of	energy	at	each	step.

Switch	to	the	Interface	tab	now	and	press	the	setup	button	and	the	go	button.

You’ll	see	the	patches	turn	black	as	turtles	travel	over	them.

Monitors

Next	you	will	create	two	monitors	in	the	Interface	tab	with	the	toolbar.	(You	make	them	just	like	buttons	and	sliders,	using	the	Add	icon	on
the	toolbar.)	Let’s	make	the	first	monitor	now.

Create	a	monitor	by	clicking	the	Add	icon	on	the	toolbar,	selecting	Monitor	next	to	it,	and	clicking	on	an	open	spot	in
the	Interface.

A	dialog	box	will	appear.

In	the	dialog	type:	count turtles	(see	image	below).
Press	the	OK	button	to	close	the	dialog.

turtles	is	an	“agentset”,	the	set	of	all	turtles.	count	tells	us	how	many	agents	are	in	that	set.

Let’s	make	the	second	monitor	now:

Create	a	monitor	by	clicking	the	Add	icon	on	the	toolbar,	selecting	Monitor	next	to	it,	and	clicking	on	an	open	spot	in
the	Interface.

A	dialog	box	will	appear.

In	the	Reporter	section	of	the	dialog	box	type:	count patches with [pcolor = green] 	(see	image	below).
In	the	Display	name	section	of	the	dialog	box	type:	green patches
Press	the	OK	button	to	close	the	dialog	box.

Here	we’re	using	count	again	to	see	how	many	agents	are	in	an	agentset.	patches	is	the	set	of	all	the	patches,	but	we	don’t	just	want	to
know	how	many	patches	there	are	total,	we	want	to	know	how	many	of	them	are	green.	That’s	what	with	does;	it	makes	a	smaller
agentset	of	just	those	agents	for	whom	the	condition	in	the	brackets	is	true.	The	condition	is	pcolor = green,	so	that	gives	us	just	the
green	patches.

Now	we	have	two	monitors	that	will	report	how	many	turtles	and	green	patches	we	have,	to	help	us	track	what’s	going	on	in	our	model.
As	the	model	runs,	the	numbers	in	the	monitors	will	automatically	change.

Use	the	setup	and	go	buttons	and	watch	the	numbers	in	the	monitors	change.

Switches	and	labels

The	turtles	aren’t	just	turning	the	patches	black.	They’re	also	gaining	and	losing	energy.	As	the	model	runs,	try	using a	turtle	monitor	to
watch	one	turtle’s	energy	go	up and	down.

It	would	be	nicer	if	we	could	see	every	turtle’s	energy	all	the	time.	We	will	now	do	exactly	that,	and	add	a	switch	so	we	can	turn	the	extra
visual information on and off.

Click	on	the	Add	icon	on	the	toolbar	(in	the	Interface	tab).
Select	Switch	from	the	menu	next	to	Add.
Click	on	an	open	spot	in	the	interface.

A	dialog	will	appear.

Into	the	Global	variable	field,	type	show-energy?	Don’t	forget	to	include	the	question	mark	in	the	name.	(See	image
below.)

Now	go	back	to	the	‘go’	procedure	using	the	Code	tab	with	the	Toolbar.
Rewrite	the	eat-grass	procedure	as	follows:

to eat-grass
 ask turtles [
 if pcolor = green [
 set pcolor black
 set energy energy + 10
]
 ifelse show-energy?
 [set label energy]
 [set label ""]
]
end

The	eat-grass	procedure	introduces	the	ifelse	command.	Look	at	the	code	carefully.	Each	turtle,	when	it	runs	these	new	commands,
checks	the	value	of	show-energy?	(determined	by	the	switch).	If	the	switch	is	on,	comparison	is	true	and	the	turtle	will	run	the	commands
inside	the	first	set	of	brackets.	In	this	case,	it	assigns	the	value	for	the	energy	to	the	label	of	the	turtle.	If	the	comparison	is	false	(the
switch	is	off)	then	the turtle	runs	the	commands	inside	the	second	set	of	brackets.	In	this	case,	it	removes	the	text	labels	(by	setting	the
label	of	the	turtle	to	be	nothing).

(In	NetLogo,	a	piece	of	text	is	called	a	“string”,	short	for	string	of	characters.	A	string	is	a	sequence	of	letters	or	other	characters,	written
between	double	quotes.	Here	we	have	two	double	quotes	right	next	to	each	other,	with	nothing	in	between	them.	That’s	an	empty	string.
If	a	turtle’s	label	is	an	empty	string,	no	text	is	attached	to	the	turtle.)

Test	this	in	the	Interface	tab,	by	running	the	model	(using	the	setup	and	go	buttons)	switching	the	show-energy?
switch	back	and	forth.

When	the	switch	is	on,	you’ll	see	the	energy	of	each	turtle	go	up	each	time	it	eats	grass.	You’ll	also	see	its energy	going	down	whenever
it	moves.

More	procedures

Now	our	turtles	are	eating.	Let’s	make	them	reproduce	and	die,	too.	And	let’s	make	the	grass	grow	back.	We’ll	add	all	three	of	these	of
these	behaviors	now,	by	making	three	separate	procedures,	one	for	each	behavior.

Go	to	the	Code	tab.
Rewrite	the	go	procedure	as	follows:

to go
 move-turtles
 eat-grass
 reproduce
 check-death
 regrow-grass
 tick
end

Add	the	procedures	for	reproduce,	check-death,	and	regrow-grass	as	shown	below:

to reproduce
 ask turtles [
 if energy > 50 [
 set energy energy - 50
 hatch 1 [set energy 50]
]
]
end

to check-death
 ask turtles [
 if energy <= 0 [die]
]
end

to regrow-grass
 ask patches [
 if random 100 < 3 [set pcolor green]
]
end

Each	of	these	procedures	uses	the	if	command.	Each	turtle,	when	it	runs	check-death	it	will	check	to	see	if	its	energy	is	less	or	equal	to
0.	If	this	is	true,	then	the	turtle	is	told	to	die	(die	is	a	NetLogo	primitive).

When	each	turtle	runs	reproduce,	it	checks	the	value	of	the	turtle’s	energy	variable.	If	it	is	greater	than	50,	then	the	turtle	runs	the
commands	inside	the	first	set	of	brackets.	In	this	case,	it	decreases	the	turtle’s	energy	by	50,	then	‘hatches’	a	new	turtle	with	an	energy	of
50.	The	hatch	command	is	a	NetLogo	primitive	which	looks	like	this:	hatch	number	[commands].	This	turtle	creates	number	new	turtles,
each	identical	to	its	parent,	and	asks	the	new	turtle(s)	that	have	been	hatched	to	run	commands.	You	can	use	the	commands	to	give	the
new	turtles	different	colors,	headings,	or	whatever.	In	our	case	we	run	one	command.	We	set	the	energy	for	the	newly	hatched	turtle	to
be	50.

When	each	patch	runs	regrow-grass	it	will	check	to	see	if	a	random	integer	from	0	to	99	is	less	than	3.	If	so,	the	patch	color	is	set	to
green.	This	will	happen	3%	of	the	time	(on	average)	for	each	patch,	since	there	are	three	numbers	(0,	1,	and	2)	out	of	100	possible	that
are	less	than	3.

Switch	to	the	Interface	tab	now	and	press	the	setup	and	go	buttons.

You	should	see	some	interesting	behavior	in	your	model	now.	Some	turtles	die	off,	some	new	turtles	are created	(hatched),	and	some
grass	grows	back.	This	is	exactly	what	we	set	out	to	do.

If	you	continue	to	watch	your	monitors	in	your	model,	you	will	see	that	the	count	turtles	and	green	patches	monitors	both	fluctuate.	Is
this	pattern	of	fluctuation	predictable?	Is	there	a	relationship	between	the	variables?

It’d	be	nice	if	we	had	a	easier	way	to	track	the	changes	in	the	model	behavior	over	time.	NetLogo	allows	us	to	plot	data	as	we	go	along.
That	will	be	our	next	step.

Plotting

To	make	plotting	work,	we’ll	need	to	create	a	plot	in	the	Interface	tab	and	put	some	commands	inside	it.

The	commands	we	put	in	the	plots	will	run	automatically	when	our	setup	procedure	calls	reset-ticks	and	when	our	go	procedure	calls
tick.

Create	a	plot	by	clicking	the	Add	icon	on	the	toolbar,	selecting	Plot	next	to	it,	and	clicking	on	an	open	spot	in	the
Interface.
Set	its	Name	to	“Totals”	(see	image	below)
Set	the	X axis	label	to	“time”
Set	the	Y axis	label	to	“totals”
Change	the	name	of	the	“default”	pen	to	“turtles”.
Enter	plot count turtles	under	Pen	Update	Commands.
Press	the	“Add	Pen”	button.
Change	the	name	of	the	new	pen	to	“grass”.
Enter	plot count patches with [pcolor = green] 	under	Pen	Update	Commands.

When	you’re	done,	the	dialog	should	look	like	this:

Press	OK	in	the	Plot	dialog	to	finish	editing.

Note	that	when	you	create	the	plot	you	can	also	set	the	minimum	and	maximum	values	on	the	X and	Y	axes.	You’ll	want	to	leave	the
“Auto	Scale”	checkbox	checked,	so	that	if	anything	you	plot	exceeds	the	minimum	and	maximum	values	for	the	axes,	the	axes	will
automatically	grow	so	you	can	see	all	the	data.

Note	that	we	used	the	plot	command	to	add	the	next	point	to	a	plot.	This	command	moves	the	current	plot	pen	to	the	point	that	has	an	X
coordinate	equal	to	1	greater	than	the	previously	plotted	X	coordinate	and	a	Y	coordinate	equal	to	the	value	given	in	the	plot	command
(in	the	first	case,	the	number	of	turtles,	and	in	the	second	case,	the	number	of	green	patches).	As	the	pens	move	they	each	draw	a	line.

Setup	and	run	the	model	again.

You	can	now	watch	the plot	being	drawn	as	the	model	is	running.	Your	plot	should	have	the	general	shape	of	the	one	below,	though	your
plot	might	not	look	exactly	the	same.

Remember	that	we	left	“Auto	Scale?”	on.	This	allows	the	plot	to	readjust	itself	when	it	runs	out	of	room.

If	you	forget	which	pen	is	which,	you	can	edit	the	plot	and	check	the	“Show	legend?”	checkbox.

You	might	try	running	the	model	several	times	to	see	what	aspects	of	the	plot	are	the	same	and	which	are	different	from	run	to	run.

Tick	counter

To	make	comparisons	between	plots	from	one	model	run	and	another,	it	is	often	useful	to	do	the	comparison	for	the	same	length	of
model	run.	Learning	how	to	stop	or	start	an	action	at	a	specific	time	can	help	make	this	happen	by	stopping	the	model	at	the	same	point
each	model	run.	Keeping	track	of	how	many	times	the	go	procedure	is	run	is	a	useful	way	to	cue	these	actions.	That’s	what	the	tick
counter	does.

You’re	already	using	the	tick	counter	in	your	model,	with	the	reset-ticks	and	tick	commands,	which	also	trigger	plotting.

You	can	also	use	the	tick	counter	for	other	things,	such	as	to	set	a	limit	on	the	total	length	of	a	run.

Change	the	go	procedure:

to go

 if ticks >= 500 [stop]
 move-turtles
 eat-grass
 check-death
 reproduce
 regrow-grass
 tick
end

Now	setup	and	run	the	model.

The	graph	and	model	won’t	keep	running	forever.	They	should	stop	automatically	when	the	tick	counter	in	the	Interface	tab’s	toolbar
reaches	500.

The	tick	command	advances	the	tick	counter	by	1.	ticks	is	a	reporter	which	reports	the	current	value	of	the	tick	counter.	reset-ticks,	in
your	setup	procedure,	takes	care	of	restarting	the	tick	counter	at	0	when	a	new	run	is	set	up	and	ready	to begin.

Some	more	details

First,	instead	of	always	using	100	turtles,	you	can	have	a	varying	number	of	turtles.

Create	a	slider	named	“number”:	click	the	Add	icon	on	the	toolbar,	select	Slider	next	to	it,	and	click	on	an	open	spot	in
the	interface.
Try	changing	the	minimum	and	maximum	values	in	the	slider.
Then	inside	of	setup-turtles,	instead	of	create-turtles 100	you	can	type:

to setup-turtles
 create-turtles number [setxy random-xcor random-ycor]
end

Test	this	change	and	compare	how	having	more	or	fewer	turtles	initially	affect	the	plots	over	time.

Second,	wouldn’t	it	be	nice	to	adjust	the	energy	the	turtles	gain	and	lose	as	they	eat	grass	and	reproduce?

Make	a	slider	called	energy-from-grass.
Make	another	slider	called	birth-energy.
Then,	inside	of	eat-grass,	make	this	change:

to eat-grass
 ask turtles [
 if pcolor = green [
 set pcolor black
 set energy (energy + energy-from-grass)
]
 ifelse show-energy?
 [set label energy]
 [set label ""]
]
end

And,	inside	of	reproduce,	make	this	change:

to reproduce
 ask turtles [
 if energy > birth-energy [
 set energy energy - birth-energy
 hatch 1 [set energy birth-energy]
]
]
end

Finally,	what	other	slider	could	you	add	to	vary	how	often	grass	grows	back?	Are	there	rules	you	can	add	to	the	movement	of	the	turtles
or	to	the	newly	hatched	turtles	that	happen	only	at	certain	times?	Try	writing	them.

What’s	next?

So	now	you	have	a	simple	model	of	an	ecosystem.	Patches	grow	grass.	Turtles	wander,	eat the	grass,	reproduce,	and	die.

You	have	created	an	interface	containing	buttons,	sliders,	switches,	monitors,	and	a	plot.	You’ve	even	written	a	series	of	procedures	to
give	the	turtles	something	to	do.

That’s	where	this	tutorial	leaves	off.

If	you’d	like	to	look	at	some	more	documentation	about	NetLogo,	the	Interface	Guide	section	of	the	manual	walks	you through	every
element	of	the	NetLogo	interface	in	order	and	explains	its	function.	For	a	detailed	description	and	specifics	about	writing	procedures,
refer	to	the	Programming	Guide.	All	of	the	primitives	are	listed	and	described	in	the	NetLogo	Dictionary.

Also,	you	can	continue	experimenting	with	and	expanding	this	model	if	you’d	like,	experimenting	with	different	variables	and	behaviors	for
the	agents.

Alternatively,	you	may	want	to	revisit	the	first	model	in	the	tutorial,	Wolf	Sheep	Predation.	This	is	the	model	you	used	in	Tutorial #1.	In
the	Wolf	Sheep	Predation	model,	you	saw	sheep	move	around,	consume	resources	that	are	replenished	occasionally	(grass),	reproduce
under	certain	conditions,	and	die	if	they	ran	out	of	resources.	But	that	model	had	another	type	of creature	moving	around	–	wolves.	The
addition	of	wolves	requires	some	additional	procedures	and	some	new	primitives.	Wolves	and	sheep	are	two	different	“breeds”	of	turtle.
To	see	how	to	use	breeds,	study	Wolf	Sheep	Predation.

Alternatively,	you	can	look	at	other	models	(including	the	many	models	in	the	Code	Examples	section	of	the	Models	Library)	or	even	go
ahead	and	build	your	own	model.	You	don’t	even	have	to	model	anything.	It	can	be	interesting	just	to	watch	patches	and	turtles	forming
patterns,	to	try	to	create	a	game	to	play,	or	whatever.

Hopefully	you	have	learned	some	things,	both	in	terms	of	the	NetLogo	language	and	about	how	to	go	about	building	a	model.	The	entire
set	of	procedures	that	was	created	above	is	shown	below.

Appendix:	Complete	code

The	complete	model	is	also	available	in	NetLogo’s	Models	Library,	in	the	Code	Examples	section.	It’s	called	“Tutorial	3”.

Notice	that	this	listing	is	full	of	“comments”,	which	begin	with	semicolons.	Comments	let	you	mix	an	explanation	the	code	right	in	with	the
code	itself.	You	might	use	comments	to	help	others	understand	your	model,	or	you	might	use	them	as	notes	to	yourself.

In	the	Code	tab,	comments	are	gray,	so	your	eyes	can	pick	them	out	easily.

turtles-own [energy] ;; for keeping track of when the turtle is ready
 ;; to reproduce and when it will die

to setup
 clear-all
 setup-patches
 setup-turtles
 reset-ticks
end

to setup-patches
 ask patches [set pcolor green]
end

to setup-turtles
 create-turtles number ;; uses the value of the number slider to create turtles
 ask turtles [setxy random-xcor random-ycor]
end

to go
 if ticks >= 500 [stop] ;; stop after 500 ticks
 move-turtles
 eat-grass
 check-death
 reproduce
 regrow-grass
 tick ;; increase the tick counter by 1 each time through
end

to move-turtles
 ask turtles [
 right random 360
 forward 1
 set energy energy - 1 ;; when the turtle moves it looses one unit of energy
]
end

to eat-grass
 ask turtles [
 if pcolor = green [
 set pcolor black
 ;; the value of energy-from-grass slider is added to energy
 set energy energy + energy-from-grass
]
 ifelse show-energy?
 [set label energy] ;; the label is set to be the value of the energy
 [set label ""] ;; the label is set to an empty text value

]
end

to reproduce
 ask turtles [
 if energy > birth-energy [
 set energy energy - birth-energy ;; take away birth-energy to give birth
 hatch 1 [set energy birth-energy] ;; give this birth-energy to the offspring
]
]
end

to check-death
 ask turtles [
 if energy <= 0 [die] ;; removes the turtle if it has no energy left
]
end

to regrow-grass
 ask patches [;; 3 out of 100 times, the patch color is set to green
 if random 100 < 3 [set pcolor green]
]
end

