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Interactions

ATIOKEVTPWLEVOC
YrnioAoylopoc &
Movtehomoilnon
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Global

Local Rules
Behavior

Kwvotavtivog ToiyAag, Av. KaBnyntng
Feedback BaciAng Owudmoulog, Y. AtSAKTopaC



ATTOKEVTPWEVOC
YroAoywouog &
MovteAomonon

YrievBuvoc pabnuatoc: ToixAoag Kwvotavtivoc
e-mail: ktsichlas@ceid.upatras.gr
lototornoc: https://eclass.upatras.gr/courses/CEID1220/
TnA: 2610-996908
[padeio: 1°¢opodog, p. 4

Ertikoupko Epyo: Y. Awbaktopac Owponouloc BaoiAelog
email: thomopul@ceid.upatras.gr
[padeio: Epyaotnplo ML@Cloud, 2°¢ Opodoc
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https://eclass.upatras.gr/courses/CEID1220/
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2XETLKA LE TO pabnua...

* Qpec Npadeiou: Onotednmote (oteiAte email ko
Kavovi{ouue)

e email: ktsichlas@upatras.er

e AlkTUOKOC Tomoc MaBrjpatoc:
https://eclass.upatras.gr/courses/CEID1220/

* https://eclass.upatras.gr/courses/CEID1227/ (YAA)

* Qpec MaBnpuartoc:
e Tetaptn (10:00-12:00 ©) 12:00-13:00 (D) — AiBouvoa E2
* Epyaotnplo: Oa kavoviotei — EE’ Alootaocswc (zoom)

* Tpomocg E¢€taonc: Epyaoieg


mailto:ktsichlas@upatras.gr
https://eclass.upatras.gr/courses/CEID1220/
https://eclass.upatras.gr/courses/CEID1227/
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Karmotlec 2UpBoUAEC

e AlakOte pe EpWTAOELS (edw -’
Kal av Eepelyw!!!)

* NapakoAouvBnote TIC SLAAEEELC
(eATtilw va €xouv AAKa — Ba
xoBeite SladpopeTIKA)

* Av bev kataAaBaivete katl
e\ate oto ypadeio pou (lowg

, , Kwvoupevo xept: O€Aete katL va
10 KataAdBoupe poadi) HEVO Xep

TElTE 0€ OXEON UE QUTA TTIOU Aéw
TP

* DouAeyte T NETLOGO 21aBepo xepL: Epwtnon f oxoAo

VEVIKNG dpuong

7



Karmotlec 2UpBoUAEC
(loxyvawv emtt COVID)

AlakoPte e epwTAOELS (LEPLKEG
dopeg Eedpevyw)

NoapakoAouOnote TIc SLAAEEELC
(eATtilw va €xouv TAAKa)

AUoTe aoknoeLg (ag eivat Non
AUHEVEC)

Av dev kataAofaivete kAt otelAte
gva email ko eite oag to e€nyw N
kavoviloupe eva skype (lowc to
kKataAdfoupe padll)

@€AETE KATL VAL TIELTE OE
OXE0N HE aUTA TIou Aéw Twpa

Epwtnon r oXOALo YEVLKNG
$uong

8



H rtio AvokoAn Epwtnon:
[otl va MNapw auto to Mabnua;

JUvolo n
7,56
8,47 ' -
o7 Katavepnpévog (m.x., clusters) ka * MpokAnaon
0,90 QTTOKEVTPWHUEVOC (TT.X., o Exel MAdka
10,61 blockchains) unmtoAoylopoc :
11,03 : * Edappoyeg;;;;
e e navtou. "
191'5345 * Quotkd aA\& koL TeEXVNTA -
708 TTOAUTIAOKOL CUOTHOTO (oKL e AUGKOAO;
- HUPHNYKLWY — Opaoa e Aev umtapyxel BLBAlo
9,67 : :
/ ouUVEPYA{OLLEVWV POUTTIOT).
12,77 ! / [ ] E' 1 ) 1 .
g ZXESLOLGI’] _ AVOL?\UOF] lvat r] Tpltn Xpovia movu yivetal kot Oa to aAAaéw
’ QPKETA
9,54 ;o : , , ,
ooz latlexetmiaka © o Agv £xw BPEL KATL AVTLOTOLXO KAl OTO
2,21 eEWTEPLKO...

1316 )° : ' ’
la Tov faduo: o KdatL 8ev pou apéoel o€ auTh T

Stadpavela...



When | Started...

Construct



After | Started...

Understand



Way After | Started...

Explain



Content

Interesting
Phenomena




© + O — Aev Ba ta KaTtapeEPW OAQ...

EBSopada

Oewpia (2 wpec + 1 wpa ppovtiotiiplo onov xpetaletat) — Ao {wong
Introduction

lI

Construct
Distributed Computing: Maximal Independent Set

Self-Stabilization
Population Protocols
Decentralized Computing: Blockchain
Decentralized Consensus

Understand
Discrete Time Averaging Systems

Opinion Dynamics (De Groot — HK models)

[EEY
o

Lotka-Volterra Population Dynamics

[
[T

3
N

Kuramoto Coupled Oscillators

12-13 Cellular Automata



Epyaotnpto — NETLOGO

EBSopada Epyoaotrplo — E€ amootAoswe — ATOMLKEC/OUABIKEC ALOKAOELG
Intro to NETLOGO (1)
Intro to NETLOGO (2)

What is Agent based Modeling? A Simple Model

_ Creating Agent-Based Models. Predator-Prey Model in NETLOGO.

_ The components of ABM: Agents, Environments, Interactions, Observers
“ Analysis of ABM. Virus Propagation (network or spatial). Behaviorspace.
7 Verification, Validation and Replication — Voter Models. Flocking Models.

Epyaoieg yia Qoutntég

Maximal Independent Set (MIS) in NETLOGO
Self-Stabilization Algorithm in NETLOGO
Extensions to existing ABM Models in NETLOGO
Opinion Dynamics in NETLOGO
Predator-Prey Models in NETLOGO
Various Crazy Exercises...

Theoretical Exercises



Input graph Vertex state 1 Messages 1

Full Project e
.\\\\‘e)rtexlstajez/essagesz
For this year (and the previous): [

Pregel (think-like-a-vertex paradigm): a data flow paradigm and system
for large-scale graph processing

Pregel is essentially a message-passing interface constrained to the
edges of a graph. The idea is to “think like a vertex” - algorithms within
the Pregel framework are algorithms in which the computation of state

for a given node depends only on the states of its neighbors.



1" Xpovia: Atlohoynon amo Qottntec (21-22)

2XOAL0 1: ZnNUELWOoELC — Oev elval KAAO TTOU UTTAPXEL TOOO TTOAU SladopeTIK UAN Kal tapa
TtoAAEC BLBALoypadLkeC nyEC. MaAlota Evac dottntnc SNAwoe OTL To padnua Atav
nepLocotepo oculNtnonc ko dev eixe doun.

Artavtnon: To pabnua eival petamtuytokou erumedou. Aev €yve cadEC auTto amo TtTnv apxn. Oa
YlVEL OpWC auTh TN HEPQ.

2¥OAL0 2: Onwodnmnote NETLOGO avaAuTikd

Artavtnon: Oa yivel mpoomnaBela va aAAdéel n Soun tou epyaoctnpiou

2¥OALo 3: Mpoooxn ot AoKNOELC. HTav TTOAU amaltnTKEC.

Artavtnon: Oa aAlagel n Soun Twv ACKNCEWV

2XOAL0 4: Xpnon aAAwv BLBALoONKwvV yLa mpoypappatiopo (m.x., MESA).

Artavtnon: Xpelaletal mpoetoLlpacia ko Xxpovo mou Ba enevduBel og Bepata UANG petoc. H
NETLOGO eniong mpoodEpeL eva GLALKO teplBaAAov yia to padnua.



2" Xpovia: AtloAoynon amo Qottntec (22-23)

2¥0ALo 1: H dte€aywyn kat n kataypadn twv dpovtiotnpiwv yia tnv Netlogo eivor moAv
KOAN KoL CUVEPBOAE ONUAVTLKA O0TNV EKLAONON TNG

2¥0ALo 2: Aev uTtapxel EekaBapn UAN Kot CUYKPOLULOL TO OTIOLO OMWC Elvoll AOYLKO, EHOCOV
TO HAONnua adopd apKeTA VEEC TEXVOAOYLEC AANA BEwpw TTWC UTTAPXOUV CUYKPOUOTO TOL
ormoia Ba pmopouvoav va ripota®ouv. Emtiong, 6edopevou to otL To pHabnua dev
SLOAOKETOL APKETA XPOVLIOL HEV EXEL CUYKEKPLUEVN SO WC TIPOC TNV UAN Tou
dtdaoketal. Qotoo0, yiveTtal LEYAAN KOl LKOVOTIOLNTLKA MPOCTIAOELO OTTO TOV
dtdaokovta kat aéileL n mpoonaBela amo KATTOLOV TToU ToV EVOLAPEPEL TO AVTLKELUEVO.

ATtavtnon: Agv UTTAPYXOUV CXETIKA cuyypappata oo tov Eudoéo. Alvw avaAuTlkoTotn
UAN tO000 armno nAektpovika BLBAla 6co kot amo dnpoolevoelc. H Soun tou mpaypatt
LETOBAAAETOL CUVEXWC KaL ElvaL PEVOTA AOYW TNC TIEPLEPYELAC TOU HLOACKOVTA.



Some
General
Remarks...




Data vs Models

The Enc

of Theory: The Data Deluge Makes the Scientific

Method

Obsolete (2008)

“.T
"Corre

nere is now a better way. Petabytes allow us to say:

ation is enough." We can stop looking for models. We

can analyze the data without hypotheses about what it might
show. We can throw the numbers into the biggest computing
clusters the world has ever seen and let statistical algorithms

find patterns where science cannot...”


https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/

Data vs Models

To Build Truly Intelligent Machines, Teach Them Cause
and Effect (2018)

“..But as Pearl sees it, the field of Al got mired in probabilistic
associations. These days, headlines tout the latest
breakthroughs in machine learning and neural networks. We
read about computers that can master ancient games and drive
cars. Pearl is underwhelmed. As he sees it, the state of the art in
artificial intelligence today is merely a souped-up version of
what machines could already do a generation ago: find hidden

~ regularities in a large set of data. “All the impressive
achievements of deep learning amount to just curve fitting,” he
said recently...”



https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
https://www.quantamagazine.org/artificial-intelligence-learns-to-learn-entirely-on-its-own-20171018/

Distributed vs Decentralized Simply

Location vs Control
e Using Word in your PC (centralized: Microsoft) (non-distributed: PC)

e Using Open Office in your PC (decentralized) (non-distributed:PC)

* Cloud service provider for storage (centralized: the provider)
(distributed)

e Bitcoin (decentralized: cannot be altered by any entity) (distributed:
runs as a P2P system)



Distributed vs Decentralized

For example, consider the system of
transportation of a city and many agents trying

to go from some initial location to a destination.

Let efficiency in this case mean the average
time for an agent to reach the destination. In
the “centralized” solution, a central authority
can tell each agent which path to take in order
to minimize the average travel time. In the
“decentralized” version, each agent chooses its
own path.

The Price of Anarchy measures the ratio
between average travel time in the two cases.
But this is another relative course.

Centralized

Distributed

Decentralized



Designing a Decentralized Social Network

decentralized

non-distributed distributed

Was Interesting
(e.g., Facebook)

¢centralized



Complicated vs Complex Systems



http://evgiz.net/article/2019/02/20/
https://www.uppertriad.org/Special/Animation-3.html

Looking at
the Future

| mean the future lectures ...

THAT OR &%

EVERITHING B
IS CONNA =i
BE ACOKRY &',

ONE OF THOSE

e ENWERJORACIE



Construct

Graph Coloring...



Coloring Graphs

Definition: A graph if a color has been assigned to each
vertex in such a way that adjacent vertices have different colors.

Definition: The of a graph is the smallest number of colors
with which it can be colored.

In the example above, the chromatic number is 4.



%
cenvolized vews %

>4
M O d e | S disrrdbuted View

PN model, LOCAL and CONGEST

Av B€AETE TILO TUTILKA KoL O peyaAutepo BaBoc Ba mpeMeL val MAPETE TO HAdnua
«Katavepunuevo ZUCTAUOTO» — TO TIPOTELWVW aVETILGUAOKTAL...

ESw Ba ANcoOUpE HOVO OTO €TtiedO EKELVO TTOU pOC XPELALETAL VLA VAL
KOLTOLVOI| OOUE O,TL AKOAOUDOEL...



Basics — Communication
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Port-Numbering Model (PN Model)

e - 9
@ 9




Distributed Algorithms

. re 9
@ Q)

Assumptions

1.

All nodes are identical and run the same algorithm/protocol
(heterogenous???)

The node knows its own degree (radio networks???)
No unique identifiers of nodes (???)

Each node has a local state (if not additional local knowledge then initial
state based only on degree)



Distributed Computation
% S |
N
i W

Computation in synchronous rounds
1. Construct outgoing messages in parallel

2



Distributed Computation
% S |
N o S T
i W

Computation in synchronous rounds
1. Construct outgoing messages in parallel
2. Send messages in parallel
3. Update state based on incoming messages and previous state in parallel
4. Repeat forever

2



Termination of Computation

. o 9
\1 2/ \2 1/
il +

Some of the states are stopping states
* A node in a stopping state will not change its state again

When all nodes have reached a stopping state:
* The set of all stopping states will be the output of the algorithm



Complexity Measures

Time = Number of Rounds

Message Complexity = How Many Messages
(number or in bits)?

Internal computation is usually considered to be free since it is faster
than communication???



The Distributed Algorithm

Choose initial
states of nodes

INit
Send
ncoming messages. Rece ive

Distributed
Algorithm




Challenges

Locality (symmetry breaking)
1. IDs
2. Randomization

Congestion (bandwidth limitation)

1. Small messages in each round
2. Usually O(logn) bits




The LOCAL Model (Linial, FOCS ‘87)

PN model + n nodes with unique identifiers from {1,2, ..., poly(n)}

Initially each node knows:

 ItsID and IDs of its neighbors
 Estimate on global parameters:
e.g., number of nodes, max-degree, etc.

Synchronous rounds:

1. Each node/computer does some internal computation
2. Send a message to each neighbor (possibly unbounded)
3. Receive message from each neighbor

Unbounded internal computation & message size




The LOCAL Model

Trivial upper bound:
O(Diam(G)) rounds

7-Round Algorithm:
 Each node computes its output as a function of the initial state of its r-neighborhood




Challenges in the LOCAL Model

Symmetry Breaking / Local Coordination

— —(\
O\ y \
O O B \
u v embes
() @ Yor
Ol |
() @ e /'
S e,
7

* Neighboring / nearby nodes need to output different values
* e.g., different colors, at most one can be in an MIS, etc.

* Nodes need to decide in parallel

Key Challenge: locally coordinate among nearby nodes

randomization naturally helps (e.g., choose color at random)

Slide by Fabian Kuhn



The CONGEST Model (Peleg ‘90)

 n nodes with unique identifiers (LOCAL)

Initially each node knows:

 Its ID and IDs of its neighbors
 Estimate on global parameters:
e.g., number of nodes, max-degree, etc.

Synchronous rounds:
1. Each node/computer does some internal computation

2. Send a message to each neighbor .
3. Receive message from each neighbor O(logn) bits

Unbounded internal computation & message size O (log n)




Deterministic vs Randomized Model

Init : The initial state is a random variable
Receive : The state at time t is a random variable

Send : Deterministic
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Let’s Look At Oriented Cycles First

16

131 Assume 256 colors (0-255)

‘qzss' Nodes that have the largest color

among their neighbors can pick a
color from the set {0,1,2}.

\ Iterate.



Let’s Look At Oriented Cycles First

16
131 Assume 256 colors (0-255)
/Q/ ° Nodes that have the largest color
among their neighbors can pick a
color from the set {0,1,2}.
0 ?}8
4 '\ J

lterate.
\O/
9



Let’s Look At Oriented Cycles First

16

Assume 256 colors (0-255)

Nodes that have the largest color
among their neighbors can pick a
color from the set {0,1,2}.

lterate.



Let’s Look At Oriented Cycles First

Assume 256 colors (0-255)

Nodes that have the largest color
among their neighbors can pick a
color from the set {0,1,2}.

lterate.

Complexity?



Greedy Color Reduction

Assume we start with a graph G = (V, E') with x colors

We will reduce them to
y =max{x —1,A+ 1}

A is the maximum degree of the graph



Similar Idea to the Cycle

Repeat forever:

1. Send message c to all neighbors //cisthe
current color of the node

2. Receive messages from all neighbors. Let
M be the set of all messages

3. Ifcé&{0,1,..,A}and ¢ > max{M} then
C « min{{O,l, e, A} — M}

A node that has its color changed is a local maxima w.r.t.
color and it is active, otherwise passive.




Similar Idea to the Cycle

Repeat forever:

1. Send message c to all neighbors //cisthe
current color of the node

2. Receive messages from all neighbors. Let
M be the set of all messages

3. Ifcé&{0,1,..,A}and ¢ > max{M} then
C « min{{O,l, e, A} — M}

A node that has its color changed is a local maxima w.r.t.
color and it is active, otherwise passive.




Analysis
* The active nodes form an independent set

* No need to know the number of colors x or the maximum degree A.

* Repetitively apply greedy color reduction. This ends when no active
node exists — the algorithm must change accordingly to take into
account stopping conditions

* Time complexity: O(x — A)



/]

Linial’s Lower
Bound for
Deterministic
Coloring

PODC 2014



https://arxiv.org/abs/1402.2552
https://arxiv.org/search/cs?searchtype=author&query=Laurinharju%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Laurinharju%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Suomela%2C+J

Directed n-cycles

e Deterministic algorithms

* LOCAL model

* Nodes with unique IDs in {1,2, ..., n}
* Colors from set {1,2,3}

* Orientation only for additional help to the algorithm. Messages
can be sent both ways.

Linial’s Lower Bound: A deterministic distributed coloring algorithms requires
log* n

at least — 1 communication rounds for a directed n-cycle.



— LOCAL model
Very.Simple and very efficient...

Deterministic O (A + log® n) vs Randomized O(logn)



Guarantees

Monte Carlo:
* Guaranteed running time
* Probabilistic output quality

Las Vegas:
* Probabilistic running time
* Guaranteed output quality

Success with high probability (w.h.p.)



Simple Idea

1. Every node tries to pick a random free color

2. Stop if successful

Very simple but the analysis is not so simple...



Still Simple...

1. Nodes are active with probability%

2. Every active node tries to pick a random free color
3. Stop if successful

Correctness is self-evident.
Why does it stop fast with high probability?



Analysis

Lemma: A node that is still running, will stop in this round
with probability = 0.25.

Corollary: The node is still running after 7" rounds with
probability < 0.75".

Corollary: All nodes will stop after O(log ) rounds w.h.p..




References

1. J. Laurinharju and J. Suomela. Linial’s Lower Bound Made Easy. In
PODC’14.

2. J. Hirvonen and J. Suomela. Distributed Algorithms 2020.



https://arxiv.org/abs/1402.2552
https://jukkasuomela.fi/da2020/da2020.pdf

We have already done it for the randomized
algorithm...

Explain




A Traditional studies B Computational thinking

Biology Computer science Biology Computer science

Microarray

o — HAx] /:_’1‘,‘ ~107]
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" ALGORITHM
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Low complexity
Feed-forward Feedback stochastic
Human brain neuronal network mechanism sfficient

Nature — Algorithms

Image taken from http://www.algorithmsinnature.org/

Nature < Algorithms

An Example


http://www.algorithmsinnature.org/

-inding Shortest Paths (not only!) with
Physarum Polycephalum

If a maze is covered with slime
mold and there are two food
sources on it, then the slime
mold retracts to the shortest
path between these two
locations on the maze.

Picture taken from “A Mathematical Model for Adaptive
Transport Network in Path Finding by True Slime Mold”.



A Descriptive Mathematical Model

Network of capacities x,(t) and lengths [, for an edge e.

The current flow between the two food sources on an edge
eisq,(x(t),):

M@\

q(x(t),1)=0.5
x(t + 1) increases



How do you Compute q(x,1)?

Thomson’s Principle (physics):

The unit value flow between two nodes sy and s in a
network, is distributed on its edges such that the total
energy is minimized

min g’ Rq
such that Ag = b



The Proof of the Natural Algorithm

1. An equilibrium point of the dynamical system is a path

2. Find an appropriate upper bound V on the energy (max flow — min
cut theorem)

3. Prove that V is non-negative and decreasing (Lyapunov function) —
thus it converges to a path by (1)

4. Prove that it converges to the shortest path



Rule-based Physarum Dynamics?
Either:

* One has to somehow incorporate Thomson’s principle in the local rule

* This means that one has to look at how this principle emerges from
local rules... (it has been done to some extent)

OR

* Completely change the model



Virus Propagation on Static Networks
(Dynamics on the Network)

Epidemiological Models
Susceptible — Infected — Susceptible (SIS)

o o

A




Virus Propagation on Static Networks
(Dynamics on the Network)

Epidemiological Models
Susceptible — Infected — Susceptible (SIS)

o’ ©
| A

Some Questions:
e When does the virus flood the network?
 What if you have multiple profiles?

 What if you have many interacting
viruses?

e QOther epidemic models?




Virus Propagation on Dynamic Networks???

What are the questions to be asked?

 How does the network(s) change?
e Assumptions?

* When does a virus flood the network?
* Interacting Viruses?

* Profiles?

e Other epidemic models?

Unanswered or
— partially answered




Understand




Craig Reynolds and “Boids”

Craig Reynolds is a computer graphics
researcher, who revolutionised animation in
games and movies with his classic paper :

Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributec
Behavioral Model, in Computer Graphics, 21(4):25-34.

The story Is:

* Reynold’s solved the problem by trying a very simple approach,
which was inspired by a sensible view of how animals actually do it.



The Problem

3

>
>

| 3
| 4
|

We would like these to move like a realistic flock of birds.
(The heading of each one is suggested by where 1t’s pointing)
But how? Perhaps in the next timestep, they should all move the same

small distance? They should all change their velocity in some way?




A Simple Perceptual System

The green boid can see a certain amount
ahead, and is also aware of any
flockmates within limits on

either side. =

Two parameters, angle and distance,
define the system. So, this boid will only
be influenced by those others it can sense
according to these parameters. Picture is from Reynold’s boids page.



Rule 1: Separation

At each iteration, a boid
makes an adjustment to its
velocity according to the
following rule:

Avoid getting too close to
local (the ones it is aware of)
flockmates.



Rule 2: Alignment

At each iteration, a boid
makes an adjustment to match
Its velocity to the average of
that of its local flockmates.



Rule 3: Cohesion

At each iteration, a boid
makes an adjustment to its
velocity towards the
centroid of its flockmates.



It’s not Quite as Simple as that to get
Realistic Behaviour

. Appropriate definition of the perceptive range. (What happens if it
IS too high or too low?)

. Appropriate combination of the three rules. Opposing forces may
cancel out.

Note that the cohesion rule is interesting — it leads to “bifurcating”
around obstacles — a follow-the-leader approach to flocking would
not achieve that.

. The simple rules also realistically lead to “flash expansion” if
started too close together.



Declarative vs Rule-based Control for Flocking
Dynamics

* Reynold’s model is a mechanistic (operational) model. The
desired flocking behavior emerges from the rules.

* A declarative (descriptive) model attains the desired
flocking behavior by explicitly setting it as a goal in a cost
function

e Cost function: cohesion term + separation term

* Model Predictive Control is used to define the respective
controllers



Emergence The WhO/E is Greater than the Sum of its parts pppp

* Complexity

https://social-biz.org/2014/02/10/complex-behavior-emerges-from-simple-rules/

* Different Time/Space—Scales

https://www.quantamagazine.org/evolution-runs-faster-on-short-timescales-20170314/

e Unexpected Behavior

Star Trek Beyond

https://en.wikipedia.org/wiki/Flock_(birds)



https://social-biz.org/2014/02/10/complex-behavior-emerges-from-simple-rules/
https://www.quantamagazine.org/evolution-runs-faster-on-short-timescales-20170314/
https://en.wikipedia.org/wiki/Flock_(birds)

Emergent Algorithm

An emergent algorithm implements a set of

simple building block behaviors that when combined
exhibit more complex (not complicated necessarily)
behaviors.

An emergent algorithm may have the following
characteristics:

1. it achieves predictable global effects

2. it does not require global visibility

3. it does not assume any kind of centralized control
4. itis self-stabilizing



https://en.wikipedia.org/w/index.php?title=Global_effect&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Global_visibility&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Centralized_control&action=edit&redlink=1
https://en.wikipedia.org/wiki/Self-stabilization

Emergence in CS

1. Distributed algorithms (simple rules like averaging and plurality)

2. Nature-inspired methods (e.g., ant colony systems and genetic
algorithms)

3. Artificial neural networks (iterative coarse-graining)

4. Cellular Automata



NETLOGO

| prefer experiments to analysis...

More with V. Thomopoulos...




Various Models

* Flocking

* Flocking in 3D

e Particle
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