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Image alignment

• Two broad approaches:
– Direct (pixel-based) alignment

• Search for alignment where most pixels agree
– Feature-based alignment

• Search for alignment where extracted features agree
• Can be verified using pixel-based alignment



Alignment as fitting

• Alignment: fitting a model to a transformation 
between pairs of features (matches) in two 
images
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Feature-based alignment outline
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– Hypothesize transformation T (small group of 
putative matches that are related by T)
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Feature-based alignment outline

• Extract features
• Compute matches
• Loop:

– Hypothesize transformation T (small group of 
matches that are related by T)

– Verify transformation (search for other matches 
consistent with T)



2D transformation models

• Similarity
(translation, 
scale, rotation)

• Affine

• Projective
(homography)



Fitting an affine transformation
• Assume we know the correspondences, how 

do we get the transformation?
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What if we don’t know the 
correspondences?

?



What if we don’t know the 
correspondences?

• Need to compare feature descriptors of local 
patches surrounding interest points
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Feature descriptors

• Assuming the patches are already normalized (i.e., the local 
effect of the geometric transformation is factored out), how 
do we compute their similarity?

• Want invariance to intensity changes, noise, perceptually 
insignificant changes of the pixel pattern



• Simplest descriptor: vector of raw intensity values
• How to compare two such vectors?

– Sum of squared differences (SSD)

Not invariant to intensity change
Normalized correlation

Invariant to affine intensity change

Feature descriptors
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Feature matching

?

• Generating putative matches: for each patch in one image, 
find a short list of patches in the other image that could 
match it based solely on appearance



Feature matching

• Generating putative matches: for each patch 
in one image, find a short list of patches in 
the other image that could match it based 
solely on appearance
– Exhaustive search

• For each feature in one image, compute the distance 
to all features in the other image and find the “closest” 
ones (threshold or fixed number of top matches)

– Fast approximate nearest neighbor search
• Hierarchical spatial data structures (kd-trees, 

vocabulary trees)
• Hashing



Dealing with outliers

• The set of putative matches contains a very 
high percentage of outliers

• Heuristics for feature-space outlier rejection 
• Geometric fitting strategies:

– RANSAC
– Incremental alignment
– Hough transform
– Hashing



Strategy 1: RANSAC
• RANSAC loop:
1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation 
4. If the number of inliers is sufficiently large, re-

compute least-squares estimate of 
transformation on all of the inliers

• Keep the transformation with the largest 
number of inliers



RANSAC example: Translation

Putative matches



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select translation with the most inliers



Problem with RANSAC

• In many practical situations, the percentage 
of outliers (incorrect putative matches) is 
often very high (90% or above)

• Alternative strategy: restrict search space by 
using strong locality constraints on seed 
groups and inliers
– Incremental alignment



Strategy 2: Incremental alignment

• Take advantage of strong locality 
constraints: only pick close-by matches to 
start with, and gradually add more matches 
in the same neighborhood

S. Lazebnik, C. Schmid and J. Ponce, 
“Semi-local affine parts for object recognition,” BMVC 2004.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/bmvc04.pdf
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close-by matches to start with, and gradually add more 
matches in the same neighborhood
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Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only 

pick close-by matches to start with, and gradually 
add more matches in the same neighborhood



A

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only 

pick close-by matches to start with, and gradually 
add more matches in the same neighborhood



Γεωμετρική ανακατασκευή  χώρου

Odilon Redon, Cyclops, 1914



Recovery of 3D structure

• We will focus on perspective and motion
• We need multi-view geometry because 

recovery of structure from one image is 
inherently ambiguous

x
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• Shading

Visual cues

Merle Norman Cosmetics, Los Angeles

Slide credit: S. Seitz



Visual cues

From The Art of Photography, Canon

• Focus

Slide credit: S. Seitz



Visual cues

• Perspective

Slide credit: S. Seitz



Visual cues

• Motion

Slide credit: S. Seitz



Recovery of 3D structure
• We will focus on perspective and motion
• We need multi-view geometry because 

recovery of structure from one image is 
inherently ambiguous



Recovery of 3D structure
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Camera coordinate system

• Principal axis: line from the camera center perpendicular 
to the image plane

• Normalized (camera) coordinate system: camera center 
is at the origin and the principal axis is the z-axis

• Principal point (p): point where principal axis intersects the 
image plane (origin of normalized coordinate system)



Principal point offset

• Camera coordinate system: origin is at the 
prinicipal point

• Image coordinate system: origin is in the corner

principal point: ),( yx pp
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Camera parameters
• Intrinsic parameters

– Principal point coordinates
– Focal length
– Pixel magnification factors
– Skew (non-rectangular pixels)
– Radial distortion
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Camera parameters
• Intrinsic parameters

– Principal point coordinates
– Focal length
– Pixel magnification factors
– Skew (non-rectangular pixels)
– Radial distortion

• Extrinsic parameters
– Rotation and translation relative to world 

coordinate system



Camera calibration

• Given n points with known 3D coordinates Xi 
and known image projections xi, estimate the 
camera parameters

? P

Xi

xi
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Camera calibration
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Camera calibration
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• P has 11 degrees of freedom (12 parameters, but 
scale is arbitrary)

• 6 correspondences needed for a minimal solution
• Homogeneous least squares



• Epipolar Plane – plane containing baseline (1D family)

• Epipoles 
= intersections of baseline with image planes 
= projections of the other camera center
= vanishing points of camera motion direction

• Epipolar Lines - intersections of epipolar plane with image
  planes (always come in corresponding pairs)

• Baseline – line connecting the two camera centers

Epipolar geometry
X

x x’



Example: Converging cameras



Example: Motion parallel to image 
plane



e

e’

Example: Forward motion

Epipole has same coordinates in 
both images.
Points move along lines radiating 
from e: “Focus of expansion”



•  Potential matches for x have to lie on the corresponding 
epipolar line l’.

•  Potential matches for x’ have to lie on the corresponding 
epipolar line l.

Epipolar constraint

x x’

X

x’

X

x’

X



Epipolar constraint example



X

x x’

Epipolar constraint: Calibrated 
case

• Assume that the intrinsic and extrinsic parameters of the cameras 
are known

• We can multiply the projection matrix of each camera (and the 
image points) by the inverse of the calibration matrix to get 
normalized image coordinates

• We can also set the global coordinate system to the coordinate 
system of the first camera



X

x x’

Epipolar constraint: Calibrated 
case

Camera matrix: [I|0]
X = (u, v, w, 1)T

x = (u, v, w)T

Camera matrix: [RT | –RTt]
Vector x’ in second coord. 
system has coordinates Rx’ 
in the first one

R

t

The vectors x, t, and Rx’ are coplanar 

= RX’ + t



Essential Matrix
(Longuet-Higgins, 1981)

Epipolar constraint: Calibrated 
case

0)]([  xRtx RtExExT ][with0 

X

x x’

The vectors x, t, and Rx’ are coplanar 



X

x x’

Epipolar constraint: Calibrated 
case

• E x’  is the epipolar line associated with x’ (l = E x’)
• ETx  is the epipolar line associated with x (l’ = ETx)
• E e’ = 0   and   ETe = 0
• E is singular (rank two)
• E has five degrees of freedom 

0)]([  xRtx RtExExT ][with0 



Epipolar constraint: Uncalibrated 
case

• The calibration matrices K and K’ of the two 
cameras are unknown

• We can write the epipolar constraint in terms 
of unknown normalized coordinates:

X

x x’

0ˆˆ xExT xKxxKx  ˆ,ˆ



Epipolar constraint: Uncalibrated 
case

X

x x’

Fundamental Matrix
(Faugeras and Luong, 1992)

0ˆˆ xExT

xKx

xKx




ˆ

ˆ

1with0   KEKFxFx TT



Epipolar constraint: Uncalibrated 
case

0ˆˆ xExT 1with0   KEKFxFx TT

• F x’  is the epipolar line associated with x’ (l = F x’)
• FTx  is the epipolar line associated with x (l’ = FTx)
• F e’ = 0   and   FTe = 0
• F is singular (rank two)
• F has seven degrees of freedom

X

x x’



The eight-point algorithm
x = (u, v, 1)T,   x’ = (u’, v’, 1)T

Minimize:

under the constraint
|F|2 = 1
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The eight-point algorithm

• Meaning of error

• Nonlinear approach: minimize
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Problem with eight-point algorithm



Ιδιες κάμερες:

1with0   KEKFxFx TT

C = [I|0]

C’= [RT | –RTt]

P KC

x PX


1 1

x x

y y

m f p

K m f p
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1[ ] [ ]TE t R F K t RK 
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X = (u, v, w, 1)T

x = (u, v, w)T

Εκτίμηση Εξωτερικών και 
εσωτερικών παραμέτρων καμερών

Ορισμοί - Ιδιότητες

1[ ]TF K t RK 
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EUSIPCO 2006

6
6

Εκτίμηση F: Motion segmentation

• F-matrix estimation for 
consecutive keyframes 
RANSAC  labeling of 
background and independent 
moving objects

021 xFx i
T

For each independent motion in 
the sequence, there exists a 
corresponding F-matrix, Fi, which 

fulfills the epipolar constraint



Επίλυση:

C = [I|0]

C’= [RT | –RTt]

P KC

x PX


X = (u, v, w, 1)T

x = (u, v, w)T

Εκτίμηση Θέσης στον τρισδιάστατο 
χώρο

Ορισμοί - Ιδιότητες

P KC

x PX


' '
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