
Αντιστοίχιση Εικόνων

Image alignment

• Two broad approaches:
– Direct (pixel-based) alignment

• Search for alignment where most pixels agree
– Feature-based alignment

• Search for alignment where extracted features agree
• Can be verified using pixel-based alignment

Alignment as fitting

• Alignment: fitting a model to a transformation
between pairs of features (matches) in two
images

 
i

ii xxT)),((residual

Find transformation T
that minimizesT

xi

xi
'

Feature-based alignment outline

Feature-based alignment outline

• Extract features

Feature-based alignment outline

• Extract features
• Compute matches

Feature-based alignment outline

• Extract features
• Compute putative matches
• Loop:

– Hypothesize transformation T (small group of
putative matches that are related by T)

Feature-based alignment outline

• Extract features
• Compute putative matches
• Loop:

– Hypothesize transformation T (small group of
putative matches that are related by T)

– Verify transformation (search for other matches
consistent with T)

Feature-based alignment outline

• Extract features
• Compute matches
• Loop:

– Hypothesize transformation T (small group of
matches that are related by T)

– Verify transformation (search for other matches
consistent with T)

2D transformation models

• Similarity
(translation,
scale, rotation)

• Affine

• Projective
(homography)

Fitting an affine transformation
• Assume we know the correspondences, how

do we get the transformation?

),(ii yx 

),(ii yx





































2

1

43

21

t

t

y

x

mm

mm

y

x

i

i

i

i












































































i

i

ii

ii

y

x

t

t

m

m

m

m

yx

yx

2

1

4

3

2

1

1000

0100

What if we don’t know the
correspondences?

?

What if we don’t know the
correspondences?

• Need to compare feature descriptors of local
patches surrounding interest points

() ()=
?

feature
descriptor

feature
descriptor

?

Feature descriptors

• Assuming the patches are already normalized (i.e., the local
effect of the geometric transformation is factored out), how
do we compute their similarity?

• Want invariance to intensity changes, noise, perceptually
insignificant changes of the pixel pattern

• Simplest descriptor: vector of raw intensity values
• How to compare two such vectors?

– Sum of squared differences (SSD)

Not invariant to intensity change
Normalized correlation

Invariant to affine intensity change

Feature descriptors

  
i

ii vuvu 2),SSD(



























j
j

j
j

i ii

vvuu

vvuu
vu

22)()(

))((
),(

Feature matching

?

• Generating putative matches: for each patch in one image,
find a short list of patches in the other image that could
match it based solely on appearance

Feature matching

• Generating putative matches: for each patch
in one image, find a short list of patches in
the other image that could match it based
solely on appearance
– Exhaustive search

• For each feature in one image, compute the distance
to all features in the other image and find the “closest”
ones (threshold or fixed number of top matches)

– Fast approximate nearest neighbor search
• Hierarchical spatial data structures (kd-trees,

vocabulary trees)
• Hashing

Dealing with outliers

• The set of putative matches contains a very
high percentage of outliers

• Heuristics for feature-space outlier rejection
• Geometric fitting strategies:

– RANSAC
– Incremental alignment
– Hough transform
– Hashing

Strategy 1: RANSAC
• RANSAC loop:
1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-

compute least-squares estimate of
transformation on all of the inliers

• Keep the transformation with the largest
number of inliers

RANSAC example: Translation

Putative matches

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select translation with the most inliers

Problem with RANSAC

• In many practical situations, the percentage
of outliers (incorrect putative matches) is
often very high (90% or above)

• Alternative strategy: restrict search space by
using strong locality constraints on seed
groups and inliers
– Incremental alignment

Strategy 2: Incremental alignment

• Take advantage of strong locality
constraints: only pick close-by matches to
start with, and gradually add more matches
in the same neighborhood

S. Lazebnik, C. Schmid and J. Ponce,
“Semi-local affine parts for object recognition,” BMVC 2004.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/bmvc04.pdf

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only pick

close-by matches to start with, and gradually add more
matches in the same neighborhood

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only

pick close-by matches to start with, and gradually
add more matches in the same neighborhood

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only

pick close-by matches to start with, and gradually
add more matches in the same neighborhood

A

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only

pick close-by matches to start with, and gradually
add more matches in the same neighborhood

Γεωμετρική ανακατασκευή χώρου

Odilon Redon, Cyclops, 1914

Recovery of 3D structure

• We will focus on perspective and motion
• We need multi-view geometry because

recovery of structure from one image is
inherently ambiguous

x

X?
X?

X?

• Shading

Visual cues

Merle Norman Cosmetics, Los Angeles

Slide credit: S. Seitz

Visual cues

From The Art of Photography, Canon

• Focus

Slide credit: S. Seitz

Visual cues

• Perspective

Slide credit: S. Seitz

Visual cues

• Motion

Slide credit: S. Seitz

Recovery of 3D structure
• We will focus on perspective and motion
• We need multi-view geometry because

recovery of structure from one image is
inherently ambiguous

Recovery of 3D structure

)/,/(),,(ZYfZXfZYX 






































































1
01

0

0

1

Z

Y

X

f

f

Z

Yf

Xf

Z

Y

X



Pinhole camera model

PXx 




































































1
01

01

01

1
Z

Y

X

f

f

Z

Yf

Xf

PXx   0|I)1,,(diagP ff

Pinhole camera model

Camera coordinate system

• Principal axis: line from the camera center perpendicular
to the image plane

• Normalized (camera) coordinate system: camera center
is at the origin and the principal axis is the z-axis

• Principal point (p): point where principal axis intersects the
image plane (origin of normalized coordinate system)

Principal point offset

• Camera coordinate system: origin is at the
prinicipal point

• Image coordinate system: origin is in the corner

principal point:),(yx pp

)/,/(),,(yx pZYfpZXfZYX 








































































1
01

0

0

1

Z

Y

X

pf

pf

Z

pZYf

pZXf

Z

Y

X

y

x

y

x



Principal point offset

principal point:),(yx pp






































































1
01

01

01

1
Z

Y

X

pf

pf

Z

ZpYf

ZpXf

y

x

y

x

Principal point offset


















1
y

x

pf

pf

K calibration matrix  0|IKP 

principal point:),(yx pp



















































111
yy

xx

y

x

y

x

pf

pf

m

m

K 


Pixel coordinates

• mx pixels per meter in horizontal direction,
my pixels per meter in vertical direction

Pixel size:
yx mm

11


pixels/m m pixels

Camera parameters
• Intrinsic parameters

– Principal point coordinates
– Focal length
– Pixel magnification factors
– Skew (non-rectangular pixels)
– Radial distortion



















































111
yy

xx

y

x

y

x

pf

pf

m

m

K 


Camera parameters
• Intrinsic parameters

– Principal point coordinates
– Focal length
– Pixel magnification factors
– Skew (non-rectangular pixels)
– Radial distortion

• Extrinsic parameters
– Rotation and translation relative to world

coordinate system

Camera calibration

• Given n points with known 3D coordinates Xi
and known image projections xi, estimate the
camera parameters

? P

Xi

xi

ii PXx 

Camera calibration

0PXx  iii
T

T

T

i

i

y

x

X

P

P

P

1 3

2

1



































0

P

P

P

0XX

X0X

XX0

3

2

1







































T
ii

T
ii

T
ii

T
i

T
ii

T
i

xy

x

y

Two linearly independent equations

Camera calibration

0

P

P

P

X0X

XX0

X0X

XX0

3

2

1111

111














































T
nn

TT
n

T
nn

T
n

T

TTT

TTT

x

y

x

y



• P has 11 degrees of freedom (12 parameters, but
scale is arbitrary)

• 6 correspondences needed for a minimal solution
• Homogeneous least squares

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles
= intersections of baseline with image planes
= projections of the other camera center
= vanishing points of camera motion direction

• Epipolar Lines - intersections of epipolar plane with image
 planes (always come in corresponding pairs)

• Baseline – line connecting the two camera centers

Epipolar geometry
X

x x’

Example: Converging cameras

Example: Motion parallel to image
plane

e

e’

Example: Forward motion

Epipole has same coordinates in
both images.
Points move along lines radiating
from e: “Focus of expansion”

• Potential matches for x have to lie on the corresponding
epipolar line l’.

• Potential matches for x’ have to lie on the corresponding
epipolar line l.

Epipolar constraint

x x’

X

x’

X

x’

X

Epipolar constraint example

X

x x’

Epipolar constraint: Calibrated
case

• Assume that the intrinsic and extrinsic parameters of the cameras
are known

• We can multiply the projection matrix of each camera (and the
image points) by the inverse of the calibration matrix to get
normalized image coordinates

• We can also set the global coordinate system to the coordinate
system of the first camera

X

x x’

Epipolar constraint: Calibrated
case

Camera matrix: [I|0]
X = (u, v, w, 1)T

x = (u, v, w)T

Camera matrix: [RT | –RTt]
Vector x’ in second coord.
system has coordinates Rx’
in the first one

R

t

The vectors x, t, and Rx’ are coplanar

= RX’ + t

Essential Matrix
(Longuet-Higgins, 1981)

Epipolar constraint: Calibrated
case

0)]([ xRtx RtExExT][with0 

X

x x’

The vectors x, t, and Rx’ are coplanar

X

x x’

Epipolar constraint: Calibrated
case

• E x’ is the epipolar line associated with x’ (l = E x’)
• ETx is the epipolar line associated with x (l’ = ETx)
• E e’ = 0 and ETe = 0
• E is singular (rank two)
• E has five degrees of freedom

0)]([ xRtx RtExExT][with0 

Epipolar constraint: Uncalibrated
case

• The calibration matrices K and K’ of the two
cameras are unknown

• We can write the epipolar constraint in terms
of unknown normalized coordinates:

X

x x’

0ˆˆ xExT xKxxKx  ˆ,ˆ

Epipolar constraint: Uncalibrated
case

X

x x’

Fundamental Matrix
(Faugeras and Luong, 1992)

0ˆˆ xExT

xKx

xKx




ˆ

ˆ

1with0   KEKFxFx TT

Epipolar constraint: Uncalibrated
case

0ˆˆ xExT 1with0   KEKFxFx TT

• F x’ is the epipolar line associated with x’ (l = F x’)
• FTx is the epipolar line associated with x (l’ = FTx)
• F e’ = 0 and FTe = 0
• F is singular (rank two)
• F has seven degrees of freedom

X

x x’

The eight-point algorithm
x = (u, v, 1)T, x’ = (u’, v’, 1)T

Minimize:

under the constraint
|F|2 = 1

2

1

)(i

N

i

T
i xFx 



The eight-point algorithm

• Meaning of error

• Nonlinear approach: minimize

:)(2

1
i

N

i

T
i xFx 



 



N

i
i

T
iii xFxxFx

1

22),(d),(d

Problem with eight-point algorithm

Ιδιες κάμερες:

1with0   KEKFxFx TT

C = [I|0]

C’= [RT | –RTt]

P KC

x PX


1 1

x x

y y

m f p

K m f p

   
       
      

1[] []TE t R F K t RK 
    

X = (u, v, w, 1)T

x = (u, v, w)T

Εκτίμηση Εξωτερικών και
εσωτερικών παραμέτρων καμερών

Ορισμοί - Ιδιότητες

1[]TF K t RK 


EUSIPCO 2006

6
6

Εκτίμηση F: Motion segmentation

• F-matrix estimation for
consecutive keyframes
RANSAC  labeling of
background and independent
moving objects

021 xFx i
T

For each independent motion in
the sequence, there exists a
corresponding F-matrix, Fi, which

fulfills the epipolar constraint

Επίλυση:

C = [I|0]

C’= [RT | –RTt]

P KC

x PX


X = (u, v, w, 1)T

x = (u, v, w)T

Εκτίμηση Θέσης στον τρισδιάστατο
χώρο

Ορισμοί - Ιδιότητες

P KC

x PX


' '

P' K'C'

x P X


' '

x PX

x P X




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

