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Image alignment

* Two broad approaches.

— Direct (pixel-based) alignment
* Search for alignment where most pixels agree
— Feature-based alignment
« Search for alignment where extracted features agree

 Can be verified using pixel-based alignment -
P
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Alignment as fitting

* Alignment: fitting a model to a transformation
between pairs of features (matches) in two
Images

X:
' & v Find transformation T
O T ' that minimizes
O —p O o
o o > residual(T'(x,),x))
O O
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eature-based alignment outline
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Feature-based alignment outline
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Extract features



Feature-based alignment outline
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* Extract features
 Compute matches



Feature-based alignment outline

"

Extract featu res

Compute putative matches
Loop:
Hypothesize transformation T (small group of

putative matches that are related by T)
2%



Feature-based alignment outline
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. Extract features
 Compute putative matches

* Loop:

Hypothesize transformation T (small group of
putative matches that are related by T)

— Verify transformation (search for other m
consistent with T)



Feature-based alignment outline
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. Extract features
 Compute matches

* Loop:

Hypothesize transformation T (small group of
matches that are related by T)

— Verify transformation (search for other m
consistent with T)



2D transformation models

* Similarity
(translation, | IE>. ] E>’

scale, rotation)

. Affine .- ’
* Projective _ R -

(homography)

e



Fitting an affine transformation

* Assume we know the correspondences, how
do we get the transformation”?

(X, ;) i
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What if we don’t know the
correspondences?




What if we don’t know the
correspondences?
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feature feature
descriptor descriptor

* Need to compare feature descriptors o%
patches surrounding interest points




Feature descriptors

* Assuming the patches are already normalized (i.e., the local
effect of the geometric transformation is factored out), how
do we compute their similarity?

* Want invariance to intensity changes, noise, perceptually
insignificant changes of the pixel pattern




Feature descriptors

* Simplest descriptor: vector of raw intensity values

* How to compare two such vectors?
— Sum of squared differences (SSD)

SSD(u,v) = Z (ul. -V )2

Not invariant to intensity change
Normalized correlation

Zi (ui - ’/_l)(vi - ‘7)

p(u,v) = JEZ @ _u)zjgz (v, —\7)2]

Invariant td affine Intensity’c a]nge
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Feature matching

* Generating putative matches: for each patch in one image,

find a short list of patches in the other image that could

match it based solely on appearance




Feature matching

* Generating putative matches: for each patch
In one image, find a short list of patches in
the other image that could match it based

solely on appearance

— Exhaustive search
* For each feature in one image, compute the distance
to all features in the other image and find the “closest”
ones (threshold or fixed number of top matches)

— Fast approximate nearest neighbor search
 Hierarchical spatial data structures (kd-trees,

vocabulary trees) >
/@\%

* Hashing S
=



Dealing with outliers

* The set of putative matches contains a very
high percentage of outliers
* Heuristics for feature-space outlier rejection

* Geometric fitting strategies:
— RANSAC
— Incremental alignment
— Hough transform
— Hashing

c 4
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Strategy 1: RANSAC

RANSAC loop:

Randomly select a seed group of matches
Compute transformation from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-
compute least-squares estimate of
transformation on all of the inliers

Keep the transformation with the largest
number of inliers












Problem with RANSAC

* In many practical situations, the percentage
of outliers (incorrect putative matches) is
often very high (90% or above)

* Alternative strategy: restrict search space by
using strong locality constraints on seed

groups and inliers
— Incremental alignment



Strategy 2: Incremental alignment

* Take advantage of strong locality
constraints: only pick close-by matches to

start with, and gradually add more matches
In the same neighborhood

S
/%
S. Lazebnik, C. Schmid and J. Ponce, %
BMVC 2004


http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/bmvc04.pdf

Strategy 2: Incremental alignment

* Take advantage of strong locality constraints: only pick
close-by matches to start with, and gradually add more
matches in the same neighborhood




Strategy 2: Incremental alignment

* Take advantage of strong locality constraints: only
pick close-by matches to start with, and gradually
add more matches in the same nel




Strategy 2: Incremental alignment

* Take advantage of strong locality constraints: only
pick close-by matches to start with, and gradually
add more matches In the Sams nelghborhood
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Strategy 2: Incremental alignment

Take advantage of strong locality constraints: only
pick close-by matches to start with, and gradually
add more matches in the same nelghborhood
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Odilon Redon, Cyclops, 1914



Recovery of 3D structure

* We will focus on perspective and motion

* We need multi-view geometry because
recovery of structure from one image is
iInherently ambiguous

X?

\ /X?.ﬁ/7
/‘x
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Visual cues

* Shading

Merle Norman Cosmetics, Los Angeles

=

Slide credit: S. Seitz



Visual cues
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* Focus
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From The Art of Photography, Canon
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Slide credit: S. Seitz




Visual cues

* Perspective

[ NATIONALGEQGRAPHIC COM & 2003 National Geographic Society. All rights reserved.

Slide credit: S. Seitz



Visual cues

Motion

Slide credit: S. Seitz



Recovery of 3D structure

* We will focus on perspective and motion

* We need multi-view geometry because
recovery of structure from one image is
inherently ambiguous
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Recovery of 3D structure
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Pinhole camera model

A \
(X,Y,Z)H(fX/Z,fY/Z)
(X)) - (X))
Y /fX\ 0 Y
7 1 0 >
.4 /) L 55558
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Pinhole camera model
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Camera coordinate system
‘Y

X

* Principal axis: line from the camera center perpendicular
to the image plane

* Normalized (camera) coordinate system: camera center
IS at the origin and the principal axis is the z-axis

* Principal point (p): point where principal axis intersects the
image plane (origin of normalized coordinate system)

c 4



Principal point offset

T }L'.'ﬂl'l'l

¥ pe ————
Xcam

principal point: (px,py)

* Camera coordinate system: origin is at the

prinicipal point

* Image coordinate system: origin is in the corner

e



Principal point offset

T }L'.'ﬂl'l'l

L be S principal point: (px, py)

Xcam

(X,.Y,.2)>(fX/Z+p,fY/Z+p,)

_ (X))
(fX+Zp,\ | f D, O(Y

= fY+Zp, |= f p, 0 p
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Principal point offset

T }L'.'ﬂl'l'l

5o I po———» principal point: (px, py)
Fﬂ cam

[

T . X))

(fX+2p) |f  p! J.

fY+2p, |= /b, 1 0 p
. Z ) | 1| 1 0] |
_ _ \ "/
/ P,

f b, calibration matrix P — K[I | 0 e
| 55



Pixel coordinates

X

* m, pixels per meter in horizontal direction,

m, pixels per meter in vertical direction

pixels/m

/

/

Py

P,y
1

(04

X

(04

Y

B,
P,

I e

pixels %



Camera parameters

* |Intrinsic parameters
— Principal point coordinates

— Focal length m, f p,
— Pixel magnification factors k= m, /b,
— Skew (non-rectangular pixels) | 1] 1

— Radial distortion

radial distortion linear image

Q correction

=

<

—_ R ®




Camera parameters

* Intrinsic parameters
— Principal point coordinates
— Focal length
— Pixel magnification factors

— Skew (non-rectangular pixels)
— Radial distortion

* Extrinsic parameters
— Rotation and translation relative to world
coordinate system



Camera calibration

* Given n points with known 3D coordinates X;
and known image projections x;, estimate the
camera parameters




Camera calibration

P’
2x, = PX, Ay |=| T [x, x, xPX =0
1] [P
_ . =
0 -X;  yX (P

X! 0 —-xX ||[P,[=0
L iniT xin'T 0 (P

Two linearly independent equations

e



Camera calibration

X

OT
XT

n

* P has 11 degrees of freedom (12 parameters, but

scale is arbitrary)

* 6 correspondences needed for a minimal solution

0" X| -»X{

0" —xX/
X, -»X,
0" —-xX )

* Homogeneous least squares

\Ps}
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Epipolar geometry

- Baseline — line connecting the two camera centers
* Epipolar Plane — plane containing baseline (1D family)

* Epipoles

= intersections of baseline with image planes
= projections of the other camera center

= vanishing points of camera motion direction

* Epipolar Lines - intersections of epipolar plane with m@

planes (always come in corresponding pairs)



Example: Converging cameras




Example: Motion parallel to image
plane

infinity




Example: Forward motion

e

Epipole has same coordinates in
both images.

Points move along lines radiating
from e: “Focus of expansion”

e




Epipolar consftraint

* Potential matches for x have to lie on the corresponding
epipolar line I’.

* Potential matches for x” have to lie on the corresponding s,»v\

epipolar line /. %



Epipolar constraint example




Epipolar constraint: Calibrated
case

X

O

* Assume that the intrinsic and extrinsic parameters of the cameras
are known

* We can multiply the projection matrix of each camera (and the
image points) by the inverse of the calibration matrix to get
normalized image coordinates

* We can also set the global coordinate system to the coordinatS»

system of the first camera %



Epipolar constraint: Calibrated
case

X =RX’+1

Camera matrix: [1|0] Camera matrix: [R”| —R1]
X=(wu,v,w, I Vector x’ in second coord.
x=(u, v, w)’ system has coordinates Rx’

in the first one

The vectors x, ¢, and Rx’ are coplanar



Epipolar constraint: Calibrated
case

G.’

x-[tx(Rx")]=0 :> xTEx'=O- with E=[¢ ]R

&

Essential Matrix

(Longuet-Higgins, 19
55
The vectors x, ¢, and Rx’ are coplanar




Epipolar constraint: Calibrated
case

O 0’

v [tx(R¥)]=0 B2 xEx'=0 with E=[r]R

E x’ is the epipolar line associated with x’ (/ = E x’)
ETx is the epipolar line associated with x (I’ = E7x)
Ee’'=0 and ETe =0
E is singular (rank two)

»
E has five degrees of freedom %?@



Epipolar consftraint: Uncalibrated
case

: e e ™,

* The calibrationﬁ matrices K a--nd K’ of the two

cameras are unknown
* \We can write the epipolar constraint in terms
of unknown normalized coordinates:

TEX=0 x=Kx, x'=K%X% %{@»



Epipolar constraint: Uncalibrated

case

G.’

'Ex'=0 mm) x'Fx'=0 with F=K EK'""

1

Fundamental Matrix
(Faugeras and Luong, 19
/




cpipolar constraint: Uncalibrated
case

¥ Ex'=0 mm) x'Fx'=0 with F=K TEK'""

* Fx’ is the epipolar line associated with x’ (/ = F X’)

* Fx is the epipolar line associated with x (I" = F'x)
* Fe’=0 and Fe=0

s»_[
* Fis singular (rank two) %
* F has seven degrees of freedom



The eight-point algorithm
x=w,v, D, x’=w’, v, 1)’

Fin Fia Fis u' Fy
1|
(“’" Y 1) Fn Fn Py v =0 ‘ (u..u..’,uif,u,im.’,mf, v,u v )| Foa | =0

Fy1 Fy Fy )\ 1 Fos
Fi
F
\ F33/
(ujuy wvy up ViU vvy Up Uy (1) Minimize:

Ugll, Uglh Uy Vgl Vgl Vg Ui
I ! I I

Usuh UV, Uy Usuhy Uy U3 Uy

UgUy Uy Uy UgUy VqUy Uy U

N
2 (X Fx))’
i=1

”-5”{5 H‘ﬂ”fﬁ Us 11511{5 UsUr  Us ufﬁ

)
! ! ! ! ! .
Uglly Uglg Ug Uglly Ugly Vg Ug under the constraint
UL UV Uy VUL VUL U7 ub

.

I
|
e e e e i

~_

\ugug UsVy Ug Usly UgUg Ug Ug




The eight-point algorithm
* Meaning of error i(xiTin’)zz

* Nonlinear approach: minimize

i[dz(xi,in’)+d2(xlf,FTxl.)]
=1

c 4



Problem with eight-point algorithm

(uyuy wpvy wp v, vivy vpowp vl [ Fip) (1)
Ugllhy Ul Uy Volly Vgl Vg Uy Uy || Flo 1
Usus UV Uz Usuh Usvs vz uy v || Fig 1
Ugy  UgUy Wy gy vgUy Uy uy Uy || Fay | 1
usuf usvh us vsuh vsvh vs uh oL || Fa| |1
Uglly Ul Ug Ugly Uglg Us Ug Vg || Fag 1
urus  uTvh  up vpuh wvpun vp un vh || Fy 1

\ugug ugvg Ug Uglg UgUg Uy Ug Vg) \ Fi3a) \ 1)

&



Exkriunon ESwrepikwyv Kai
EOWTEPIKWV TTAPAUETPWYV KAUEL WYV

Opiouoi - 1610TNTEC

X=(u,v,w, 1)
x = (u, v, w)’

= [1/0]
C'= [R"| -R'f]

x=PX
P=KC

/

Fx -0 with F=K '"EK'"
=[t.JR=F=K "[t. JRK""

1d1£C KAUEPES:

F=K'[t]RK"

Py

Py
1

c 4



For each independent motion in
the sequence, there exists a
corresponding F-matrix, F, which

fulfills the epipolar constraint

I’ _
x; F;x5, =0

* F-matrix estimation for
consecutive keyframes
RANSAC =» labeling of
background and independent
moving objects

EUSIPCO 2006




Exkriunon ©song¢ orov 1picdIAocTATO

Xwpo

Opiouoi - 1610TNTEC
X=(u, v, w, 1)f x=PX x'=P'X
x=(u, v, w)l
C =[1/0] P =KC P'=K'C"
C’= [RT| —R'f]

= x =PX

P=KC EmiAuon:

x'=P'X

c 4
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