Avtıбтоíxıoŋ Eıкóvшv

Image alignment

- Two broad approaches:
- Direct (pixel-based) alignment
- Search for alignment where most pixels agree
- Feature-based alignment
- Search for alignment where extracted features agree
- Can be verified using pixel-based alignment

Alignment as fitting

- Alignment: fitting a model to a transformation between pairs of features (matches) in two images

Find transformation T that minimizes

$$
\sum_{i} \operatorname{residual}\left(T\left(x_{i}\right), x_{i}^{\prime}\right)
$$

Feature-based alignment outline

Feature-based alignment outline

- Extract features

Feature-based alignment outline

- Extract features
- Compute matches

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

- Extract features
- Compute matches
- Loop:
- Hypothesize transformation T (small group of matches that are related by T)
- Verify transformation (search for other matches consistent with T)

2D transformation models

- Similarity (translation, scale, rotation)
- Affine
- Projective $\square \Rightarrow \square$ (homography)

Fitting an affine transformation

- Assume we know the correspondences, how do we get the transformation?

What if we don't know the correspondences?

What if we don't know the correspondences?

$\stackrel{?}{=}$

feature
descriptor

- Need to compare feature descriptors patches surrounding interest points

Feature descriptors

- Assuming the patches are already normalized (i.e., the local effect of the geometric transformation is factored out), how do we compute their similarity?
- Want invariance to intensity changes, noise, perceptually insignificant changes of the pixel pattern

Feature descriptors

- Simplest descriptor: vector of raw intensity values
- How to compare two such vectors?
- Sum of squared differences (SSD)

$$
\operatorname{SSD}(u, v)=\sum_{i}\left(u_{i}-v_{i}\right)^{2}
$$

Not invariant to intensity change
Normalized correlation
$\rho(u, v)=\frac{\sum_{i}\left(u_{i}-\bar{u}\right)\left(v_{i}-\bar{v}\right)}{\sqrt{\left(\sum_{\text {(}}^{j}\left(u_{j}-\bar{u}\right)^{2}\right)\left(\sum_{j}^{j}\left(v_{j}-\bar{v}\right)^{2}\right)}}$

Feature matching

- Generating putative matches: for each patch in one image, find a short list of patches in the other image that could match it based solely on appearance

Feature matching

- Generating putative matches: for each patch in one image, find a short list of patches in the other image that could match it based solely on appearance
- Exhaustive search
- For each feature in one image, compute the distance to all features in the other image and find the "closest" ones (threshold or fixed number of top matches)
- Fast approximate nearest neighbor search
- Hierarchical spatial data structures (kd-trees, vocabulary trees)
- Hashing

Dealing with outliers

- The set of putative matches contains a very high percentage of outliers
- Heuristics for feature-space outlier rejection
- Geometric fitting strategies:
- RANSAC
- Incremental alignment
- Hough transform
- Hashing

Strategy 1: RANSAC

- RANSAC loop:

1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, recompute least-squares estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

Problem with RANSAC

- In many practical situations, the percentage of outliers (incorrect putative matches) is often very high (90\% or above)
- Alternative strategy: restrict search space by using strong locality constraints on seed groups and inliers
- Incremental alignment

Strategy 2: Incremental alignment

- Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood
S. Lazebnik, C. Schmid and J. Ponce,

Strategy 2: Incremental alignment

- Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood

Strategy 2: Incremental alignment

- Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood

Strategy 2: Incremental alignment

- Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood

Strategy 2: Incremental alignment

- Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood

Odilon Redon, Cyclops, 1914

Recovery of 3D structure

- We will focus on perspective and motion
- We need multi-view geometry because recovery of structure from one image is inherently ambiguous

Visual cues

- Shading

Merle Norman Cosmetics, Los Angeles

Visual cues

- Focus

From The Art of Photography, Canon

Visual cues

- Perspective

Visual cues

- Motion

Recovery of 3D structure

- We will focus on perspective and motion
- We need multi-view geometry because recovery of structure from one image is inherently ambiguous

Recovery of 3D structure

Pinhole camera model

$$
(X, Y, Z) \mapsto(f X / Z, f Y / Z)
$$

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

$\mathrm{x}=\mathrm{PX}$

Pinhole camera model

$$
\begin{gathered}
\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & \\
& f & \\
& & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & 0 \\
& 1 & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \\
\mathrm{x}=\mathrm{PX}
\end{gathered} \quad \mathrm{P}=\operatorname{diag}(f, f, \mathrm{l})[\mathrm{I} \mid 0] .0
$$

Camera coordinate system

- Principal axis: line from the camera center perpendicular to the image plane
- Normalized (camera) coordinate system: camera center is at the origin and the principal axis is the z-axis
- Principal point (p): point where principal axis intersects the image plane (origin of normalized coordinate system)

Principal point offset

principal point: $\left(p_{x}, p_{y}\right)$

- Camera coordinate system: origin is at the prinicipal point
- Image coordinate system: origin is in the corner

Principal point offset

principal point: $\left(p_{x}, p_{y}\right)$

$$
(X, Y, Z) \mapsto\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)
$$

Principal point offset

Pixel coordinates

Pixel size: $\frac{1}{m_{x}} \times \frac{1}{m_{y}}$

- m_{x} pixels per meter in horizontal direction, m_{y} pixels per meter in vertical direction

Camera parameters

- Intrinsic parameters
- Principal point coordinates
- Focal length
- Pixel magnification factors $\quad K=$
- Skew (non-rectangular pixels)
- Radial distortion

Camera parameters

- Intrinsic parameters
- Principal point coordinates
- Focal length
- Pixel magnification factors
- Skew (non-rectangular pixels)
- Radial distortion
- Extrinsic parameters
- Rotation and translation relative to world coordinate system

Camera calibration

- Given n points with known 3D coordinates X_{i} and known image projections x_{i}, estimate the camera parameters

Camera calibration

$$
\begin{gathered}
\lambda \mathrm{x}_{i}=\mathrm{PX}_{i} \quad \lambda\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{P}_{1}^{T} \\
\mathrm{P}_{2}^{T} \\
\mathrm{P}_{3}^{T}
\end{array}\right] \mathrm{X}_{i} \quad \mathrm{x}_{i} \times \mathrm{PX}_{i}=0 \\
{\left[\begin{array}{ccc}
0 & -\mathrm{X}_{i}^{T} & y_{i} \mathrm{X}_{i}^{T} \\
\mathrm{X}_{i}^{T} & 0 & -x_{i} \mathrm{X}_{i}^{T} \\
-y_{i} \mathrm{X}_{i}^{T} & x_{i} \mathrm{X}_{i}^{T} & 0
\end{array}\right]\left(\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{P}_{2} \\
\mathrm{P}_{3}
\end{array}\right)=0}
\end{gathered}
$$

Two linearly independent equations

Camera calibration

$$
\left[\begin{array}{ccc}
0^{T} & \mathrm{X}_{1}^{T} & -y_{1} \mathrm{X}_{1}^{T} \\
\mathrm{X}_{1}^{T} & 0^{T} & -x_{1} \mathrm{X}_{1}^{T} \\
\cdots & \cdots & \cdots \\
0^{T} & \mathrm{X}_{n}^{T} & -y_{n} \mathrm{X}_{n}^{T} \\
\mathrm{X}_{n}^{T} & 0^{T} & -x_{n} \mathrm{X}_{n}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{P}_{2} \\
\mathrm{P}_{3}
\end{array}\right)=0
$$

- P has 11 degrees of freedom (12 parameters, but scale is arbitrary)
- 6 correspondences needed for a minimal solution
- Homogeneous least squares

Epipolar geometry

- Baseline - line connecting the two camera centers
- Epipolar Plane - plane containing baseline (1D family)
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
= vanishing points of camera motion direction
- Epipolar Lines - intersections of epipolar plane with inteqn planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Example: Forward motion

Epipole has same coordinates in both images.
Points move along lines radiating from e: "Focus of expansion"

Epipolar constraint

- Potential matches for x have to lie on the corresponding epipolar line l '.
- Potential matches for x ' have to lie on the corresponding epipolar line I.

Epipolar constraint example

Epipolar constraint: Calibrated case

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera

Epipolar constraint: Calibrated case

Camera matrix: [I|0]
$\boldsymbol{X}=(u, v, w, 1)^{T}$
$\boldsymbol{x}=(u, v, w)^{T}$

Camera matrix: [$\boldsymbol{R}^{T} \mid-\boldsymbol{R}^{T} \boldsymbol{t}$]
Vector \boldsymbol{x} ' in second coord.
system has coordinates $\boldsymbol{R} \boldsymbol{x}$,
in the first one

The vectors $\boldsymbol{x}, \boldsymbol{t}$, and $\boldsymbol{R} \boldsymbol{x}$ ' are coplanar

Epipolar constraint: Calibrated case

Essential Matrix (Longuet-Higgins, 1981)

The vectors $\boldsymbol{x}, \boldsymbol{t}$, and $\boldsymbol{R} \boldsymbol{x}$ ' are coplanar

Epipolar constraint: Calibrated case

- $E x^{\prime}$ is the epipolar line associated with $x^{\prime}\left(I=E x^{\prime}\right)$
- $E^{\top} X$ is the epipolar line associated with x ($\left.l^{\prime}=E^{\top} x\right)$
- $E e^{\prime}=0$ and $E^{\top} e=0$
- E is singular (rank two)
- E has five degrees of freedom

Epipolar constraint: Uncalibrated case

- The calibration matrices K and K^{\prime} of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:
$\hat{x}^{T} E \hat{x}^{\prime}=0 \quad x=K \hat{x}, \quad x^{\prime}=K^{\prime} \hat{x}^{\prime}$

Epipolar constraint: Uncalibrated case

$\hat{x}^{T} E \hat{x}^{\prime}=0 \Longleftrightarrow x^{T} F x^{\prime}=0$ with $F=K^{-T} E K^{\prime-1}$

$$
\begin{aligned}
x & =K \hat{x} \\
x^{\prime} & =K^{\prime} \hat{x}^{\prime}
\end{aligned}
$$

Fundamental Matrix (Faugeras and Luong, 1992)

Epipolar constraint: Uncalibrated case

$\hat{x}^{T} E \hat{x}^{\prime}=0 \quad x^{T} F x^{\prime}=0$ with $F=K^{-T} E K^{\prime-1}$

- $F x^{\prime}$ is the epipolar line associated with $x^{\prime}\left(I=F x^{\prime}\right)$
- $F^{\top} X$ is the epipolar line associated with $x\left(l^{\prime}=F^{\top} x\right)$
- $F e^{\prime}=0$ and $F^{\top} e=0$
- F is singular (rank two)
- F has seven degrees of freedom

The eight-point algorithm

$$
\begin{gathered}
\boldsymbol{x}=(u, v, 1)^{T}, \quad \boldsymbol{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{T} \\
(u, v, 1)\left(\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right)\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0
\end{gathered}
$$

$\left(\begin{array}{llllllll}u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} \\ u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} \\ u_{3} u_{3}^{\prime} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} \\ u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} \\ u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} \\ u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} \\ u_{7} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} \\ u_{8} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime}\end{array}\right)\left(\begin{array}{l}F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32}\end{array}\right)=-\left(\begin{array}{c}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right) \quad \square$

Minimize:

$$
\sum_{\left(1, x_{1}(x, x)^{2}\right.}
$$

under the constraint

The eight-point algorithm

- Meaning of error $\sum_{i=1}^{N}\left(x_{i}^{T} F x_{i}^{\prime}\right)^{2}$:
- Nonlinear approach: minimize

$$
\sum_{i=1}^{N}\left[\mathrm{~d}^{2}\left(x_{i}, F x_{i}^{\prime}\right)+\mathrm{d}^{2}\left(x_{i}^{\prime}, F^{T} x_{i}\right)\right]
$$

Problem with eight-point algorithm

$$
\left(\begin{array}{llllllll}
u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} \\
u_{3} u_{3}^{\prime} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} \\
u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} \\
u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} \\
u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} \\
u_{7} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} \\
u_{8} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime}
\end{array}\right)\left(\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32}
\end{array}\right)=-\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

 $\varepsilon \sigma \omega т \varepsilon \rho ı к \omega ́ v ~ п т а р а \mu \varepsilon ́ т \rho \omega V ~ к а \mu \varepsilon \rho \omega ́ v ~$ Орıбиоі́ - Іठıо́тптяऽ$$
\begin{gathered}
\boldsymbol{X}=(u, v, w, 1)^{T} \\
\boldsymbol{x}=(u, v, w)^{T} \\
\mathrm{C}=[\mathrm{I} \mid 0] \\
\mathrm{C}^{\prime}=\left[\boldsymbol{R}^{T} \mid-\boldsymbol{R}^{T} \boldsymbol{t}\right] \\
\boldsymbol{x}=P X \\
\mathrm{P}=\mathrm{KC}
\end{gathered}
$$

$$
x^{T} F x^{\prime}=0 \quad \text { with } \quad F=K^{-T} E K^{\prime-1}
$$

$$
E=\left[t_{\times}\right] R \Rightarrow F=K^{-T}\left[t_{\times}\right] R K^{\prime-1}
$$

$$
\left.f \begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

Ектíнпбп F: Motion segmentation

For each independent motion in the sequence, there exists a corresponding F-matrix, F_{i}, which fulfills the epipolar constraint

$$
\mathbf{x}_{1}^{T} \mathbf{F}_{i} \mathbf{x}_{2}=0
$$

- F-matrix estimation for consecutive keyframes RANSAC \rightarrow labeling of background and independent moving objects

EUSIPCO 2006

Ектíرпбך Өє́бךऽ бтоv тоІбठıव́бтато Xúpo

Oрıбиоі́ - Ібוо́тптеऽ

$$
\begin{gathered}
\boldsymbol{X}=(u, v, w, 1)^{T} \\
\boldsymbol{x}=(u, v, w)^{T} \\
\mathrm{C}=[\mathrm{I} \mid 0] \\
\mathrm{C}^{\prime}=\left[\boldsymbol{R}^{T} \mid-\boldsymbol{R}^{T} t\right] \\
x=P X \\
\mathrm{P}=\mathrm{KC}
\end{gathered}
$$

$$
x=P X
$$

$$
x^{\prime}=P^{\prime} X
$$

$$
\mathrm{P}=\mathrm{KC}
$$

$$
\mathrm{P}^{\prime}=\mathrm{K}^{\prime} \mathrm{C}^{\prime}
$$

Emíגuan:

$$
x^{\prime}=P^{\prime} X
$$

