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Introduction

On February 21, 2003 a physician from southern China checked into the
Metropole Hotel in Hong Kong. He previously treated patients suffering from
a typical pneumonia that later was renamed as Severe Acute Respiratory
Syndrome (SARS). Several days later he died from the same disease.

Other guests of this hotel contracted the same disease and carried it with
them to their homelands. Half of the 8,100 documented cases of SARS were
traced back to the Metropole Hotel. The physician who brought the virus to
Hong Kong became an example of a super-spreader.

From the perspective of Network Science, super-spreaders are considered as
hubs.
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Super-spreaders

Figure: Five SARS patients spread out the disease to 144 individuals in Singapore
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The diversity of spreading phenomena

PHENOMENA AGENT NETWORK

Venereal Disease Pathogens Sexual Network

Rumor Spreading Information, Memes Communication Network

Diffusion of Innovations Ideas, Knowledge Communication Network

Computer Viruses Malwares, Digital
viruses

Internet

Mobile Phone Virus Mobile Viruses Social Network/Proximity
Network

Bedbugs Parasitic Insects Hotel - Traveler Network

Malaria Plasmodium Mosquito - Human network
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Epidemic Modeling

How to model the spread of pathogens?
Epidemiology has developed a framework that relies on two fundamental
hypotheses:

Compartmentalization
Each individual can be in one of three states or compartments: Susceptible
(S), Infectious (I) and Recovered (R).

Homogeneous Mixing
Each individual has the same chance of coming into contact with an infected
individual.
There is no need of knowing the precise network topology on which a pathogen
spreads.

We will explore the dynamics of three most used epidemic models: SI, SIS
and SIR models.
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Susceptible-Infected (SI) Model (I)

N individuals, S(t) number of susceptible individuals, I(t) number of
infected individuals at time t. It is S(0) = N, I(0) = 0.

We assume that each individual has 〈k〉 contacts.

We denote with β the likelihood the pathogen transmits from an infected to
a susceptible individual at unit time.
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Susceptible-Infected (SI) Model (II)

Assume I(0) = 1. How many individuals will be infected at time t ?

An infected individual comes into contact with 〈k〉S(t)/N susceptible
individuals in unit time where each one transmits the pathogen with rate β.

The average number of new infections dI(t) during a timeframe dt is

dI(t) = β〈k〉S(t)I(t)
N

dt

Let s(t) = S(t)/N and i(t) = I(t)/N . We will denote these variables by s
and i respectively. Re-writing the above equation:

di = β〈k〉i(1− i)dt

Let i0 = i(t = 0). The fraction of infected nodes increases in time as

i =
i0e

β〈k〉t

1− i0 + i0eβ〈k〉t
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Susceptible-Infected (SI) Model (III)

at the beginning there are many susceptible people so spreading is
exponential.
with time, the spreading slows until all people are infected.
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Susceptible-Infected-Susceptible (SIS) Model (I)

The infected individuals recover at a fixed rate µ, becoming susceptible again.

The equation describing the dynamics of this model is

di = (β〈k〉i(1− i)− µi)dt

where µ is the recovery rate and the µi term captures the rate at which the
population recovers from the disease.
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Susceptible-Infected-Susceptible (SIS) Model (II)

The fraction of infected nodes increases in time as

i = (1− µ

β〈k〉
)

Ce(β〈k〉−µ)t

1 + Ce(β〈k〉−µ)t

where the initial condition i0 = i(t = 0) gives C = i0
1−i0− µ

β〈k〉
.

At any moment only a finite fraction of the population is infected.

The above equation predicts two outcomes in the SIS model:

Endemic State (µ < β〈k〉)
The number of newly infected individuals equals the number of individuals
who recover from the disease. Hence the infected fraction of the population
does not change with time ( di

dt
= 0).

i(∞) = 1− µ

β〈k〉

Disease-free State (µ > β〈k〉)
The number of infected individuals decreases exponentially with time. Hence
with time the pathogen disappears from the population.

Prof. Sotiris Nikoletseas Probabilistic Methods for Complex Networks DDCDM M.Sc., Patras 2020 - 2021 10 / 47



Susceptible-Infected-Susceptible (SIS) Model (III)
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Susceptible-Infected-Susceptible (SIS) Model (IV)

The SIS model predicts that some pathogens will persist in the population
while others die out shortly.

To determine the outcome of an epidemic in this model, we define the
characteristic time τ of a pathogen as

τ =
1

β〈k〉 − µ

that is the inverse of the speed of the pathogen spreading.

We denote with R0 the basic reproductive number that represents the
average number of susceptible individuals infected by an infected individual in
a fully susceptible population.

R0 =
β〈k〉
µ
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Basic Reproductive Number R0 (I)

τ =
1

µ(R0 − 1)

If R0 > 1, then τ > 0. Each infected individual infects more than one healthy
individual. The epidemic is in the endemic state.

If R0 < 1, then τ < 0. Each infected individual infects less than one
additional individual. The epidemic is in the disease-free state.

The higher the R0 number of a pathogen, the faster is its spreading process
in the population.
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Basic Reproductive Number R0 (II)

DISEASE TRANSMISSION Ro

Measles Airborne 12-18

Pertussis Airborne droplet 12-17

Diptheria Saliva 6-7

Smallpox Social contact 5-7

Polio Fecal-oral route 5-7

Rubella Airborne droplet 5-7

Mumps Airborne droplet 4-7

HIV/AIDS Sexual contact 2-5

SARS Airborne droplet 2-5

Influenza (1918 strain) Airborne droplet 2-3

Note: R0 (COVID 19) ' 2.9.
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Susceptible-Infected-Recovered (SIR) Model (I)

For many pathogens, like most strains of influenza, individuals develop
immunity after they recover from the infection.

These individuals cannot be infected from the pathogen they recovered from,
nor can they infect others.

The fraction of infected individuals in the SIR model is given by the following
equation:

di = (β〈k〉i(1− r − i)− µi)dt

where r is the fraction of the recovered individual that are removed from the
susceptible population.
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Susceptible-Infected-Recovered (SIR) Model (II)

Figure: The time dependent behavior of s, i and r in the SIR model.
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Comparison of the three epidemic models

Figure: The time dependent behavior of the fraction of infected individuals, i, in the SI,
SIS and SIR models.
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Network Epidemics

Epidemic modeling relies on the homogeneous mixing hypothesis and it also
assumes that each individual has comparable number of contacts, 〈k〉.
Both assumptions are false. Pathogens spread on complex contact networks
as infected individuals transmit the pathogen only to the individuals they
come into contact with.

These contact networks are often scale-free, hence 〈k〉 is not sufficient to
characterize their topology. Therefore, we need to explore the effects of
network structure on epidemic spreading.

The three basic epidemic models were extended by Romualdo
Pastor-Satorras and Alessandro Vespignani in 2001 to incorporate the
topological characteristics of the underlying contact network a pathogen
spreads on.
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Degree Block Approximation

Individuals with more links are more likely to be in contact with an infected
individual. Thus, they are more likely to be infected.

The degree of each node must be considered as an implicit variable in the
mathematical formalism of the model.

This is achieved by degree block approximation. It assumes that nodes
(individuals) with the same degree, k, behave similarly.

Therefore, the fraction of infected nodes Ik with degree k among all Nk
degree-k nodes in the network is ik = Ik/Nk.

The total fraction of infected nodes, i, is the sum of all infected degree-k
nodes:

i =

∑
k Ik
N

=

∑
k pk ·N · ik

N
=
∑
k

pkik
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Network Epidemics - SI model (I)

In the SI model, τSI is the characteristic time of the spread of the pathogen

τSI =
〈k〉

β(〈k2〉 − 〈k〉)

Then, the fraction of infected degree-k nodes is

ik = i0

(
1 +

k(〈k〉 − 1)

〈k2〉 − 〈k〉

(
et/τ

SI−1
))

Finally, the total fraction of infected nodes is calculated by integrating over
all the kmax degrees

i =

∫ kmax

0

ikpkdk
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Network Epidemics - SI model (II)

Figure: Fraction of infected nodes in the SI Model. At any time the fraction of high
degree nodes that are infected is higher than the fraction of low degree nodes.
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Network Epidemics - SI model (III)

The characteristic time

τSI =
〈k〉

β(〈k2〉 − 〈k〉)

depends not only 〈k〉 but also on the network’s heterogeneity 〈k2〉.
Random Network For a random network 〈k2〉 = 〈k〉(〈k〉+ 1).
Hence, τSI is finite and greater than zero

τSIER =
1

β〈k〉

The same behavior is predicted for scale-free networks with γ ≥ 3.

Scale-free Networks with γ ≤ 3 As N →∞, 〈k2〉 → ∞.
Hence, τSI → 0, meaning that the spread of a pathogen is instantaneous.
Hubs play a significant role in the spreading of a pathogen. Once they are
infected, they become super-spreaders.

Generally, in inhomogenous networks where 〈k2〉 > 〈k〉(〈k〉+ 1), τSI is
reduced and spreading is fast.
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Network Epidemics - SIS model

The characteristic time for the spread of a pathogen is estimated as

τSIS =
〈k〉

β〈k2〉 − µ〈k〉

We observe that ik decays exponentially when the recovery rate µ has a
sufficiently large value. However, this condition also depends on the
heterogeneity of the network through 〈k2〉.
Therefore, in order to predict if a pathogen persists in the population, a
metric called spreading rate is defined as λ = β

µ .

The spreading rate λ depends only on the biological characteristics of the
pathogen, µ and β.
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Epidemic Threshold - SIS model (I)

A pathogen persists in the population only if its characteristic time τ is
non-negative.

Random Network

τSISER =
1

β(〈k〉+ 1)− µ
> 0

This implies that

λ >
1

〈k〉+ 1

Hence, the pathogen spreads in a random network only if its spreading rate is
above the epidemic threshold

λc =
1

〈k〉+ 1

As λc is always nonzero, a pathogen will disappear from the population when
λ < λc.
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Epidemic Threshold - SIS model (II)

Scale-free Network

τSIS =
〈k〉

β〈k2〉 − µ〈k〉
> 0

This implies that

λc =
〈k〉
〈k2〉

For large networks (N →∞), 〈k2〉 → ∞. Hence, λc → 0 (vanishing
epidemic threshold).

This means that even pathogens with small spreading rate λ can persist in
the population. This is a consequence of hubs’ ability to transmit a pathogen
to a large number of other nodes, once they get infected.
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Epidemic Threshold - SIS model (III)

Figure: The fraction of infected individuals i(λ) = i(t→∞) in the endemic state of the
SIS model.
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Network Epidemics - SIR model

The characteristic time for the spread of a pathogen is estimated as

τSIR =
〈k〉

β(〈k2〉 − 〈k〉(β + µ))

Hence, the epidemic threshold is

λc =
〈k〉

〈k2〉 − 〈k〉
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Contact Networks - Diseases (I)

Sexually Transmitted Diseases

The HIV virus spreads through the contact network that captures who had
sexual relationship with whom.
A survey of the sexual habits of the Swedish population revealed the
scale-free nature of the sexual network.
Hence, the sexual network enhances the spreading of HIV virus as it lowers
both τ and λc.

Airborne Diseases

Airborne diseases, like influenza, SARS and H1N1, spread on the contact
network that captures the set of individuals a person comes into physical
proximity.
The structure of this network is explored at two levels: the global travel
network and local contact patterns.
The air transportation network plays a significant role in modeling the spread
of pathogens worldwide.
Also, many airborne pathogens spread through the location network that its
scale-free nature enhances the spreading process.
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Contact Networks - Diseases (II)

Figure: The degree distribution of the air transportation network is well approximated by
a power-law.
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Contact Networks - Digital Viruses

Computer Viruses

Many computer viruses spread as email attachments through the email
network which is scale-free.
Other viruses exploit various communication protocols spreading through the
scale-free internet network.

Mobile Viruses

Bluetooth and MMS technologies are two ways for the spreading of mobile
phone viruses.
Both location network and mobile communications network, respectively,
are scale-free with high 〈k2〉.
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Beyond the degree distribution

The degree distribution is not enough to capture all the characteristics of real
networks.

Real complex networks have a number of properties: contact burstiness,
communities, weighted or temporal networks.

Such characteristics should be taken into account when predicting the
spreading of a pathogen in the underlying network.
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Temporal Networks

Most interactions between nodes in social networks are infrequent and they
have a finite duration.

Figure: Temporal Network: There is a temporal path from A to D. Hence, a
pathogen cannot spread from D to A. Aggregated Network: The pathogen can
reach all individuals independent of its starting point; This fallacy is the result of
disregarding the temporal dimension.
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Bursty Contact Patterns

The epidemic models assume that the timing of interactions between two
individuals are random following a Poisson distribution.

However, in most social networks, e.g., email and mobile communications
networks, the inter-event times between consecutive contacts follow a power
law distribution (periods of frequent interactions but also very long gaps).

Bursty contact patterns alter the dynamics of the spreading process of the
pathogen by increasing the characteristic time τ . Thus, the spread is
slower and decay takes more time.
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Communities

Nodes in the same community interact repeatedly leading to tie strengths
between them. When an individual gets infected, it will pass the pathogen to
individuals that spends more time with with high probability.

Figure: In a control network where all link weights are equal the pathogen spreads
more quickly than in a real network. The reduced speed observed in the real
network indicates that the pathogen is trapped within communities (yet the virus
spreads very fast and widely within each community).
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Immunization

Immunization strategies are guided by an important prediction of the
traditional epidemic models: If a pathogen’s spreading rate λ is reduced
under its critical threshold λc, the virus naturally dies out.

However, in scale-free networks with the vanishing epidemic threshold,
immunization strategies can not move λ under λc.

Therefore, immunization strategies must consider the underlying network
topology a pathogen spreads to effectively counter the impact of the
vanishing epidemic threshold.
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Random Immunization

A randomly selected g fraction of individuals are immunized.

Assuming that the pathogen follows the SIS model, the effective degree of a
susceptible node changes from 〈k〉 to 〈k〉(1− g).
Consequently, the spreading rate λ decreases to λ′ = λ(1− g)
Random Networks The fraction of the immunized individuals that at least is
needed to push λ under λc is

gc = 1− µ

β

1

〈k〉+ 1

Heterogenous Networks For a pathogen spreading on a network with high
〈k2〉, the immunization threshold is

gc = 1− µ

β

〈k〉
〈k2〉

For a scale-free network with γ < 3, gc → 1. In other words, we need to
immunize virtually all nodes to stop the epidemic.
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Vaccination Strategies in Scale-Free Networks (I)

A way to eradicate the transmission of a pathogen in scale-free networks is to
increase the epidemic threshold.
This can be achieved by reducing the heterogeneity 〈k2〉 of the underlying
network, i.e., by immunizing the hubs whose degree exceeds a degree
threshold k′max.
If we immunize all nodes with degrees k > k′max, the λc changes to

λ′c ≈
γ − 2

3− γ
k2−γmin

(k′max)
γ−3
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Vaccination Strategies in Scale-Free Networks (II)

Figure: By immunizing the hubs, we are fragmenting the contact network, making more
difficult for the pathogen to reach the nodes in other components.
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Random vs Selective Immunization

Figure: The critical immunization threshold gc in function of the degree exponent γ of
the contact network on which the pathogen spreads following the SIS model.
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How to halt an epidemic?

Some of the most common interventions safety officials should rely on
include:

Transmission-Reducing Interventions, such as face masks, gloves, hand
washing and condoms
Contact-Reducing Interventions, such as quarantine patients and closing
down frequently visited public spaces
Vaccinations, Nevertheless, there have not been developed effective vaccines
for all known pathogens.
Epidemic prediction tools are required for the effectiveness of these
interventions.
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Epidemic Prediction

Real-Time Forecast
The first successful real time pandemic forecast based on network science
relied on the Global Epidemic and Mobility (GLEAM) computational model.

Figure: The flowchart of the GLEAM computational model for predicting the real-time
spread of pathogens.
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Peak Time of an Epidemic

Figure: The observed and predicted peak time estimated by GLEAM for the H1N1 virus
in several countries. Peak time is the week when most individuals are infected.
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Travel Reduction

Figure: The impact of travel
reduction on the arrival time of
the H1N1 virus from Mexico to
various countries, compared
with the reference scenario of
no travel reduction. The
percentages show the degree
of travel reduction
implemented around the world.
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Effective Distance

It is obvious that geographic locations that are nearby to an infected region
are more likely to get infected.

Today, with airline travel, geographic distance has lost its relevance for
epidemic phenomena.

Effective distance derived by the mobility network is proposed instead to
view the spread of an epidemic and it is defined as

dij = (1− ln pij) ≥ 0

where pij represents the fraction of individuals that travel from node i to j
and dij 6= dji

The arrival time Tα of a pathogen depends on the effective distance deff as

Tα =
deff (P )

Veff (β,R0, γ, ε)

where Veff is the effective speed of the pathogen.
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Arrival Time (I)

Figure: The arrival time of H1N1 appears to be random if plotted in function of the
physical distance, but it correlates strongly with the effective distance
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Arrival Time (II)

The arrival time of the pathogen to a location is difficult to be measured at
the beginning of an epidemic outbreak as the epidemiological parameters of
the pathogen are not known.

Yet, the relative arrival time from a node i to nodes j and l is independent
from the epidemiological parameters

Tα(j/i)

Tα(l/i)
=
deff (j/i)

deff (l/i)

Therefore, the mobility patterns which are unique and model-independent are
sufficient to predict the spread of an epidemic.

Recent advances in data collection and network epidemics have offered the
capability to predict the real-time spread of a pathogen.
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