
Probabilistic Methods for Complex Networks

Lecture 7: “Randomized Algorithms”

Prof. Sotiris Nikoletseas

University of Patras
and CTI

ΥΔΑ ΜΔΕ, Patras
2020 - 2021

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 1 / 32

1. Randomized Algorithms - Introduction

Randomized is an algorithm whose evolution depends on random choices, in
contrast to deterministic algorithms which decide how to evolve based on
their input only.
Two types of randomized algorithms:

Las Vegas: always correct output, running time is a random variable.

Monte Carlo: they may produce wrong output (but the error probability can be
made appropriately small, actually negligible).

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 2 / 32

Advantages of randomized algorithms

Because they decide randomly, they are simple, much simpler than
corresponding deterministic algorithms which have to evaluate some
(potentially complex) function of the input and accordingly evolve.
They are usually very fast, much faster than their deterministic counterparts,
since they actually introduce a trade-off between efficiency and correctness;
this trade-off can be appropriately adjusted and yield a small error probability
(even zero in the limit)

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 3 / 32

Basic paradigms for randomized algorithms (I)

Despite their rich diversity and wide applicability, their success is actually based on
the use of some key underlying paradigms, techniques and principles, such as:

a. Foiling an adversary:
lower bounds for deterministic algorithms (d.a.) are actually derived by
adversarial selection of hard input on which they behave poorly.
for each d.a. such adversarial inputs differ.
a randomized algorithm (r.a.) can be viewed as probability distribution on
deterministic algorithms
thus, an adversary may pick hard input that foils one (or few) deterministic
algorithms, but it is highly improbable to foil all (or most) of then; so, it can
not “trap” a randomized algorithm into bad performance.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 4 / 32

Basic paradigms for randomized algorithms (II)

b. Random sampling:
the r.a. performs random choices
this correspond to “randomly sampling” the input
a random sample quite often is representative of the entire (potentially very
large) input space
thus, the simplicity of the random choice does not hurt correctness much

c. Random re-ordering:
A deterministic algorithm usually behaves poorly on few pathological inputs.
A recurrent idea (mainly in data structures): first randomly re-order the input
(this is unlikely to produce the bad input); then apply a standard algorithm.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 5 / 32

Basic paradigms for randomized algorithms (III)

d. Load balancing.
Especially in problems of antagonistic sharing of limited resources (such as
communication links), a random “spreading” of the global work load tends to
produce more or less even load distribution to the resources avoiding
bottleneck effects as well as under-utilization of some resources

e. Symmetry breaking.
In distributed computing in particular, randomization can be used to
distributively, locally make a collection of autonomous processors reach a
global consensus (e.g. select a leader, break a deadlock etc.)

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 6 / 32

Basic paradigms for randomized algorithms (IV)

f. Probabilistic existence proofs.
The probabilistic method proves in a non-constructive way (i.e. without
finding them) the existence of combinatorial structures with some desired
property, by showing positive (i.e. non-zero) probability of the property in an
appropriate probability space. Similarly, we can prove (without finding one)
existence of an efficient algorithm for solving some problem.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 7 / 32

2. The Min Cut Monte Carlo Algorithm - cut definition

Let G = (V,E) an undirected graph with n = |V | vertices and m = |E| edges.
Definition. A cut in G is a partition of the vertices of V into two (disjoint)
sets S and V \S where the edges of the cut are:

(S, V \S) = {uv|u ∈ S, v ∈ V \S, uv ∈ E}
where S 6= ∅ and V \S 6= ∅. We call the number of edges in the (S, V \S)
cut the size of the cut.
Example. A cut of size 3, |S| = 5, |V \S| = 4:

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 8 / 32

The minimum cut problem

We are interested in the problem of computing the minimum cut, that is the
cut in the graph whose cardinality (number of edges) is minimum. In other
words, find S ⊆ V such that the cut (S, V \S) is as small as possible, and
neither S nor V \S are empty.
Complexity. The fastest known deterministic algorithm takes
O
(
n2 ·m · log n2

m

)
time which for dense graphs is O(n3).

We will here present the fastest known minimum cut algorithm (by Karger)
which is randomized (Monte Carlo) and takes O(m log3 n) time, i.e.
O(n2 log3 n) time, with high probability (i.e. with probability tending to 1 as
some independent parameter tends to ∞).

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 9 / 32

Probability preliminaries

Let X,Y random variables.
Definition. The conditional probability of X given Y is:
Pr{X = x|Y = y} = Pr{X=x∩Y=y}

Pr{Y=y}

Important equivalent.
Pr{X = x ∩ Y = y} = Pr{X = x|Y = y} · Pr{Y = y}
Definition. We call r.v. X,Y stochastically independent iff
∀x, y Pr{X = x|Y = y} = Pr{X = x}

Equivalently, Pr{X = x ∩ Y = y} = Pr{X = x} · Pr{Y = y}
Similarly, two events E1, E2 are independent iff

Pr{E1 ∩ E2} = Pr{E1} · Pr{E2}
In general, Pr{E1 ∩ E2} = Pr{E1} · Pr{E2|E1} and,
by induction,
Pr{∩ni=1Ei} = Pr{E1} · Pr{E2|E1} · Pr{E3|E1E2} · · ·Pr{En|E1E2 · · ·En−1}

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 10 / 32

Karger’s Algorithm - edge contraction

The basic operation of the algorithm is called edge contraction, i.e. we take an
edge e = xy and merge its two vertices into a single vertex. The resulting graph is
called G/xy.

Note 1: We remove any resulting self-loops.

Note 2: The resulting graph is no longer a “simple” graph since it has “parallel”
edges (i.e. more than one edges joining two vertices). In other words, edge
contractions lead to multi-graphs.

Note 3: We present multi-graphs as simple graphs with multiplicities on the edges.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 11 / 32

Example of edge contractions

Note: In the initial graph G: deg(x) = 3, deg(y) = 5
In the contracted graph G/xy :deg{x, y} = deg(x) + deg(y), where self-loops
contribute 2 in the degree. If we do not count self-loops:
deg{x, y} = deg(x) + deg(y)− 2

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 12 / 32

Features of the edge contraction operation

The edge contraction operation obviously takes O(n) time, where n is the
number of vertices. It is actually done by merging the adjacency lists of the
two contracted vertices, and then fixing the adjacency list of the vertices
connected to the contracted vertices.
Note: The cut is now computed counting multiplicities, i.e., if an edge is in
the cut, and it has weight (multiplicity) w, then we add w to the total weight
of the cut.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 13 / 32

Edge contraction - important property

Note: The size of the minimum cut in G/xy is at least as large as the minimum
cut in G.
This is so because any cut in G/xy has a corresponding cut of same cardinality in
G.

but, as said, deg{x, y} = deg{x}+ deg{y}. Note: the opposite is
not necessarily true because of cuts like this one, for which the degrees do not add.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 14 / 32

Main idea of Karger’s algorithm

Remark: Because of the property in the previous slide
the minimum cut can not decrease with the edge contractions!

Basic idea: Repeatedly, pick an edge and contract it, shrinking the graph all the
time until only 2 vertices remain. The multiplicity of the edge joining these last 2
vertices is an upper bound on the minimum cut in the original graph.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 15 / 32

Example of repetitive edge contractions

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 16 / 32

When the final cut is not minimum

we showed that
min cut original ≤ min cut contracted

if we do not contract any edge of the minimum cut then equality holds and
the output is correct.
the output may be wrong when we contract an edge of the minimum cut.
it may be correct if we contact an edge of a minimum cut but there are more
than one minimum cuts and at least one survives contractions.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 17 / 32

Cutting the Gordian Knot with randomness

we showed that if we do not contract a minimum cut edge then the output is
correct
but, from an algorithmic design point of view, this argument is circular, since
we do not know yet the minimum cut.
we solve the Gordian Knot via randomness, picking the next edge for
contraction randomly, and hoping to, appropriately, bound the error
probability.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 18 / 32

The pseudo code of the algorithm

Algorithm MINCUT (G)
G0 ← G
i = 0
while Gi has more than two vertices do

Pick randomly an edge ei from Gi

Gi+1 ← Gi/ei
i← i+ 1

Let (S, V/S) the cut in the original graph
corresponding to the single edge in Gi

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 19 / 32

Estimating the error probability

Lemma 1
If a graph of n vertices has a minimum cut of size K, then |E(G)| ≥ Kn

2 .

Proof: Obviously each vertex has degree at least K (otherwise
the vertex itself would lead to a cut smaller than K)

⇒
∑

v∈V (G)

deg(v) ≥ nK

But
∑

v∈V (G)

deg(v) = 2 · |E(G)|, thus |E(G)| ≥ nK
2 �

Lemma 2
If we pick a random edge, then the probability that it belongs to the minimum cut
is at most 2

n .

Proof: Let e the random edge picked. Then
Pr{e in the minimum cut} = K

|E(G)| ≤
K
Kn
2

= 2
n �

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 20 / 32

Time complexity and correctness

Remark: MINCUT runs in O(n2) time, since it performs n− 2 contractions taking
time O(n) each.

Lemma 3
MINCUT outputs correctly the minimum cut with probability at least 2

n(n−1) .

Proof: Before the i−th contraction (1 ≤ i ≤ n− 2) the graph
has n− i+ 1 vertices. Let Ei the probability that the edge
contracted at the i−th repetition is not in the minimum cut.
Then Pr{Ei|E1, . . . , Ei−1} ≥ 1− 2

n−i+1

Thus Pr{correct output} = Pr{
⋂n−2

i=1 Ei} =
= Pr{E1}Pr{E2|E1} · · ·Pr{En−2|E1 · · · En−3} ≥
≥ (1− 2

n)(1−
2

n−1)(1−
2

n−2) · · · (1−
2
3) =

= n−2
n

n−3
n−1

n−4
n−2 · · ·

2
4
1
3 = 2

n(n−1) �

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 21 / 32

Probability amplification

Informal concept: Amplification is the process of running a random experiment
again and again until the property we want happens with
appropriately good probability.

A repetitive algorithm. Let MINCUTREP the algorithm that runs MINCUT
n(n− 1) times and returns the minimum of all cuts computed in all those
(independent) executions of MINCUT.

Lemma 4
The probability of MINCUTREP failing to return a minimum cut is less than 0.14.

Proof: The probability of failure is less than(
1− 2

n(n−1)

)n(n−1)

≤ e−2 < 0.14

(since all n(n− 1) repetitions of MINCUT must fail) �

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 22 / 32

More amplification

Theorem 1
The minimum cut can be computed in O(n4 log n) time, with high probability of
correct output.

Proof: Similarly to Lemma 4, the error probability after n(n− 1) log n repetitions
of MINCUT is less than:(

1− 2
n(n−1)

)n(n−1) logn

≤ e−2 logn = n−2

⇒ Pr{correct output} ≥ 1− n−2 → 1 as n→∞

The complexity is O(n2 log n) times O(n2) i.e. O(n4 log n)

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 23 / 32

Towards a faster algorithm

Questions: − Can we design a more complicated yet faster algorithm?
− Why does MINCUTREP need many repetitions?

Remark: The probability of success in the first l iterations is:
Pr{E1 · · · El} ≥ (1− 2

n)(1−
2

n−1)(1−
2

n−2) · · · (1−
2

n−l+1) =

= n−2
n · n−3

n−1 ·
n−4
n−2 · · ·

n−l−1
n−l+1 = (n−l)(n−l−1)

n(n−1)

At the start (when l is small) this probability is large but it deteriorates very
quickly when l gets larger and the graph smaller.
Idea: As the graph gets smaller, the error probability (of contracting a minimum
cut edge) increases. So, we will run the algorithm more times when the graph is
smaller.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 24 / 32

A size-dependent contraction process

We will thus use the following new version of repetitive contraction operations
which depend on the graph size.

CONTRACT (G, t)
begin

while |V (G)| > t do
Pick a random edge e of the graph
G← G/e

return G
end

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 25 / 32

The new (recursive) algorithm FASTCUT

FASTCUT (G = (V,E))
G a multi graph

begin
n← |V (G)|
if n ≤ 6 then

compute minimum cut of G
via brute force and return it

t←
⌈
1 + n√

2

⌉
H1 ← CONTRACT (G, t)
H2 ← CONTRACT (G, t)
X1 ← FASTCUT (H1)
X2 ← FASTCUT (H2)
return minimum cut of X1 and X2

end

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 26 / 32

Intuitive explanation of how FASTCUT works

H1 (and H2) repetitively contract the graph as long as it is still quite large
Since CONTRACT (G, t) is randomized, H1 and H2 may lead to different
results and we want two independent execution series for redundance.
When the graph becomes small, we recursively run the FASTCUT algorithm,
to ensure an appropriately large number of contractions.
When the graph has less than 6 vertices we calculate the minimum cut
by brute force.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 27 / 32

Time complexity of FASTCUT

Lemma 5
FASTCUT takes O(n2 log n) time, where n = |V (G)|

Proof: The CONTRACT operation obviously takes O(n2) time and FASTCUT
calls CONTRACT twice, needing O(n2) time.
Then, two recursive calls follow, on the resulting H1, H2 graphs.
Let T (n) the running time of FASTCUT. Then

T (n) = O(n2) + 2T
(

n√
2

)
The solution of this recurrency is T (n) = O(n2 log n). �

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 28 / 32

Correctness (I)

Lemma 6
The probability that CONTRACT (G, n√

2
) had not contracted cut a minimum cut

edge is at least 1
2 .

Proof: CONTRACT (G, t) performs n− t contractions. As in the remark of slide
24, the probability of not contracting a min cut edge is

(n−l)(n−l−1)
n(n−1) where l = n− t

i.e., t(t−1)
n(n−1) =

⌈
1+ n√

2

⌉(⌈
1+ n√

2

⌉
−1

)
n(n−1) ≥ 1

2 �

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 29 / 32

Correctness (II)

Theorem 2
FASTCUT finds the minimum cut with probability larger than c

logn , where c
constant large enough.

Proof: Let P (n) the probability that FASTCUT finds the correct cut size on a
graph with n vertices.
The probability that the algorithm succeeds in the first call on H1 is the
probability that CONTRACT does not hit a min cut edge (by Lemma 6, this is
≥ 1

2) times the success probability of the recursive call; thus, it is

1

2
P

(
n√
2

)
.
The failure probability that both H1 and H2 fail is ≤

[
1− 1

2P (n√
2
)
]2

. Thus the
algorithm succeeds with probability at least:

P (n) ≥ 1−
[
1− 1

2P (n√
2
)
]2

,

whose solution is P (n) ≥ c
logn , where c is constant. �

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 30 / 32

Conclusions for FASTCUT

Theorem 3
Running FASTCUT c log2 n times guarantees finding the minimum cut correctly
with probability at least 1− 1

n2 (c a constant large enough).

Proof: Pr{FASTCUTfails} ≤
(
1− c

logn

)c log2 n

≤ e−c2logn = n−c2

⇒ Pr{FASTCUT succeeds} ≥ 1− n−2

(via choosing c appropriately). �

Note: The total time FASTCUT takes is O(n2 log n) times
c · log2 n, i.e. O(n2 log3 n).

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 31 / 32

Comparison of MINCUTREP, FASTCUT

MINCUTREP takes O(n2) time to succeed with probability ≥ 2
n2 and its

amplification needs O(n4 log n) time to succeed with probability → 1.

FASTCUT takes more time [O(n2 log n), i.e. more repetitions] but succeeds
with larger probability ≥ 1

logn and its amplification needs O(n2 log3 n) time
to succeed with probability → 1.

In particular, FASTCUT takes O(n2) time at the start (via CONTRACT,
when the graph is large) and O(n2 log n) time later on at the recursive calls
when the graph is smaller.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 32 / 32

