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Summary of this lecture

The Second Moment

The Variance of a random variable
The Chebyshev Inequality

The Second Moment method
Covariance

Alternative techniques of estimation of the variance of a sum of indicator
variables.

© ©66 66

Example - Cliques of size 4 in random graphs.
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Variance

Variance:

@ is the most vital statistic of a r.v. beyond expectation.
o is defined as Var[X] = E |(X — E[X])

@ properties:
o Var(X) = E[X?] — E*[X]
o Var(cX) = c*Var(X), c constant
o X,Y independent = Var[X + Y] = Var[X] + Var[Y]

Standard deviation:

o =+/Var[X] = Var[X] = o2
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Chebyshev Inequality

Theorem 1 (Chebyshev Inequality)

Let X be a random variable with expected value pi. Then for any t > 0:

Var[X]
12

Pr{lX —pul >4 <

Proof:
Pr|X — p > 8] = Pr [(X — p)* > ¢

. E[(X-w?) _ Verlx

Markov t2 t2
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Chebyshev Inequality

Alternative Proof:

Var[X]=E [(X — p)?] = Z(x —u)?Pr{X =z}

> 3 (- w)?Pr{X = a}
|z—p|>t
> Z t?Pr{X =z}
|w—p|>t

= Z Pr{X =2} = *Pr{|X — pu| >t}
|z—p|>t

Var[X]

> Pe{lX —pl > 1} < =0
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Chebyshev Inequality - application

2

if t = o then Pr[|X — p| > o] < Z =1 (trivial bound)
2

o
if t = 20 then Pr[|X — p| > 20] < (2“0)2 1

if t = ko then Pr[|X — p| > ko] < (,gf)z x5

In other words, this inequality bounds the concentration of a random variable
around its mean.
A small variance implies high concentration.
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The Second Moment Method

For any random variable X it holds that:

if E[X] — oo and Var[X] = o(E?|X]) then Pr{X =0} - 0

Proof: Since
>
X — B[X]| > E[X] = { X >2FE[X] or

X <0
B . B Var[X]
Pr{X =0} < Pr{|X — E[X]| = E[X]} i E?X]
if % — 0 Var[X] = o(E?*[X]) then Pr{X =0}—00

So, we need to estimate the variance. Actually, we need to properly bound it in
terms of the mean.
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Covariance

Covariance
Let X and Y be random variables. Then

Cov(X,Y) = E[XY] — E[X] - E[Y]

Remark:
@ Covariance is a measure of association between two random variables.
e Cov(X,X) = Var[X]
e if X, Y are independent r.v. then Cov(X,Y) =0
o |Cov(X,Y)| 1T = stochastic dependence of X, Y 1
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Covariance

Variance - Covariance

Consider a sum of n random variables X = X1 + Xo + --- + X,,. It holds that:

Var[X] = Z Cov(X;, X;)

1<ij<n

Remark: The sum is over ordered pairs, i.e. we take both Cov(X;, X;) and
OOU(XJ‘,XZ‘).
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Proof of theorem 3

The proof is by induction on n.
We show the case n = 2:

Z Cov(X;, X;) = Cov(X1,X1) + Cov(Xy, Xo)+
+Cov(Xa, X1) + Cov(Xs, Xo) =
E[X?] — E*[X1] + E[X1X3] — E[X1]E[X2] + E[X2X1] — E[X2)E[X1]+
+E[X3] - E*[Xo] =
= E[X{] + B[X3] + 2E[X1 Xo] — (E?[X1] + E*[Xo] + 2E[X1]E[Xs)]) =
= E[X?+ X2 42X, X:] — (B[X1] + E[X2))?
=E[(X1 + X2)’] - B> [(X1 + X2)] =
= Var[X; + X2
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Covariance

An upper bound of the sum of indicator r.v.

Let X; 1 < i <mn be indicator random variables.

_J 1 Di
XZ_{O 1_pi

Let X be their sum: X = X1+ Xo + -+ X,,.
It holds that:
Var[X] < E[X]+ )  Cov(X;, X))
1<i#j<n

Proof:
Var[X] = Z1§z‘,j§n Cov(Xi, X;)

Cov(X;, X;) = E[X;X;] — E[X;]E[X;] = E [(X;)*] — E°[X;] = Var[X]]
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Covariance

Proof of theorem 4

Var[X;] = (1—p)* pi+ (0—p;)* - (1 = p;) = pi(1 — pi) < p; = E[X]]

Var[X] = Y Cov(Xi, Xi)+ > Cov(Xi, X;)

1<i<n 1<i#j<n

= Z Var[Xi]-i- Z COU(XZ'7XJ)

1<i<n 1<i#j<n

< Y EXi]+ > Cou(X, X;)

1<i<n 1<i#j<n

=EX]+ Y Cov(X; X))
1<i#j<n
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Bounding the Variance

@ Suppose that X = X; + X5 + --- + X,, where X is the indicator r.v. for
event A;.

@ For indices i,j we define the operator ~ and write ¢ ~ j if ¢ # j and the
events A; and A; are not independent. (non-trivial dependence)

@ We define
A=) Pr{A;AA;}

i~
The sum is over ordered pairs.
Cov(Xi, X;) = E[X;X;| — E[X;]E[X;] < E[X;X;] = Pr{4; A A;}

= Var[X] < E[X]+ A
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The Basic Theorem

If E[X] — oo and A = o(E?[X]) then Pr{X =0} — 0

Proof:

Pr{X =0} <
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A variation ()

Symmetric events:
Events A; and A; are symmetric if and only if

@ In other words, the conditional probability of a pair of events is independent
of the “order” of conditioning.

@ Symmetry applies in almost all graphotheoretical properties because of
symmetry of corresponding subgraphs which are set of vertices (i.e. the
conditioning affects the intersection and depends on its size).
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A variation (II)

We define
A* = E PI‘{AJ|AZ}
jri

Lemma: A = A* . F[X]

Proof:
A=Y P4 A A} = 3 PH{A P4
_ Z Pr{A;} ZPr{Alei}

= A" Pr{4;}

= A=A" E[X]
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The basic theorem of the variation

Change of previous theorem’s condition:
A = o(E*[X])
& A* - B[X] = o B*[X])

& A* = o(E[X))

Theorem 6
If E[X] — oo and A* = o(E[X]) then Pr{X =0} — 0
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Threshold functions in G}, , random graphs

Definition 1

Do = Po(n) is a threshold of property A iff
e p>>p, = Pr{G, , has the property A } — 1
@ p << p, = Pr{G,,, has the property A } — 0

Typical thresholds:

@ giant component:
€ > 0 constant)

£ (c constant) (a connected component with € - n vertices,

@ connectivity: Cl"%
@ hamiltonicity: Clo% (a cycle of length n)
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Example

Existence of complete subgraph of size 4 in Gn,p

Let A be the property of existence of Ky cliques in Gy, ;.
The threshold function for A is p,(n) = n=2/3.

Proof:
@ Let S be any fixed set of 4 vertices.
@ Define r.v. X that counts the number of cliques of size 4.

e X =>4 |5|=4 X where Xg is an indicator variable:

1 S is clique
Xs = { 0 otherwise

L E[Xs] = pG
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Proof of theorem 7

@ By Linearity of expectation

EX|=E| > Xs|= Y, E[XS]Z<Z)P6~H4P6

5,|51=4 5,|5|=4

o E[X]=n"pl <<1ep<<n?/3
o If p<<n™?/®* = E[X] — 0 = non-existence w.h.p.
o Also, clearly p >> n~%/3 = E[X] — oo.
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Proof of theorem 7

o All the X are symmetric and so, these values p >> n~2/3 must satisfy
A* = o(E[X]) where A" =37, Pr{A;|A;}. The event A; is defined as
“the set S; is a clique of size 4"

@ j ~ i means that A;, A; are not independent and i # j

e Here, A; ~ A, if and only if A; and A; have common edges (but less than
four edges).

e So, Aj ~ A; if and only if |Sz ﬂSjl = 2 or 3.
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Proof of theorem 7

Q |SinsS;|=2
o There is only 1 common edge = Pr{A4;|A;} =p°
o There are (3)(";*) = O(n?) different ways to choose the set S; such that
|Si N S;| = 2.
Q@ |S;nS;|=3
o There are 3 common edges so Pr{A4;|A4;} = p*
o There are (3)("]*) = O(n) different ways to choose the set S; such that

|SiﬂSj‘ = 3.

At= > Pr{4A) = D Pr{4;|A}+ D Pr{4;A}

2§|SlﬂSJ‘S3 ‘SLQSJ|:2 \S,OSJ|:3

~n2p° 4 np?
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Proof of theorem 7

When p = n=2/3 we have:
A* 2,5 3 1 1
o + np - 150
E(X) nipb ni n

So, indeed, for that value of p we have:
A" = o(E[X])

and a K exists w.h.p.

@ This, obviously holds for larger p values too, because of monotonicity.
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