

Lecture 5: Random Networks II - Linearity of Expectation

Prof. Sotiris Nikoletseas

*University of Patras
and CTI*

*ΤΔΑ ΜΔΕ, Patras
2020 - 2021*

Summary of previous lecture

- Common, underlying concept of all techniques: **“Non-constructive proof of existence of combinatorial structures that have certain desired properties.”**
- Method of “positive probability”:
 - Construct (by using abstract random experiments) an appropriate probability sample space of combinatorial structures (points \leftrightarrow structures).
 - Prove that the probability of the desired property in this space is positive (i.e. non-zero). \Rightarrow There is at least one combinatorial structure (since there is at least one point) with the desired property.

Summary of this lecture

- ➊ Non-existence proofs using the *Markov Inequality*
- ➋ Proofs of existence using the *Linearity of Expectation method*

(I) Markov Inequality

Theorem 1

Let X be a non-negative random variable. Then:

$$\forall t > 0 : \Pr\{X \geq t\} \leq \frac{E[X]}{t}$$

Proof:

$$\begin{aligned} E[X] &= \sum_x x \Pr\{X = x\} \geq \sum_{x \geq t} x \Pr\{X = x\} \\ &\geq \sum_{x \geq t} t \Pr\{X = x\} = t \sum_{x \geq t} \Pr\{X = x\} = t \cdot \Pr\{X \geq t\} \\ &\Rightarrow E[X] \geq t \cdot \Pr\{X \geq t\} \\ &\Rightarrow \Pr\{X \geq t\} \leq \frac{E[X]}{t} \end{aligned}$$

□

(I) Markov Inequality Application

It is actually a (weak) concentration inequality:

$$\Pr \left\{ X \geq 2 \cdot E[X] \right\} \leq \frac{1}{2}$$

$$\Pr \left\{ X \geq 3 \cdot E[X] \right\} \leq \frac{1}{3}$$

⋮

$$\Pr \left\{ X \geq k \cdot E[X] \right\} \leq \frac{1}{k}$$

A Basic Theorem

Theorem 2

Let X be a non-negative integer random variable. Then

$$\text{if } E[X] \rightarrow 0 \text{ then } \Pr\{X = 0\} \rightarrow 1$$

Proof:

Using Markov's inequality for $t=1$ we have that:

$$\Pr\{X \geq 1\} \leq E[X]$$

If $E[X] \rightarrow 0$ then $\Pr\{X = 0\} \rightarrow 1$.

□

Non-Existence Proof

Methodology

1. Construct (by using abstract random experiments) an appropriate probability sample space of combinatorial structures.
2. Define the random variable X that corresponds to the number of structures with the desired property.
3. a. Express X as a sum of indicator variables $X = X_1 + X_2 + \dots + X_n$ where

$$X_i = \begin{cases} 1 & \text{the desired property holds} \\ 0 & \text{otherwise} \end{cases}$$

3. b. Calculate $E[X]$ using linearity of expectation.
c. Prove that $E[X] \rightarrow 0$ when $n \rightarrow \infty$
4. Conclude by using theorem 2 that w.h.p. the r.v. X is limited to 0. Hence, almost certainly there is no structure with the desired property.

Random Graph

Definition 1 (Random Graph)

A random graph is obtained by starting with a set of n isolated vertices and adding successive edges between them at random. In the $G_{n,p}$ model every possible edge occurs independently with probability $0 < p < 1$.

Example - Dominating Set

Definition 2 (Dominating Set)

Given an undirected graph $G = (V, E)$, a dominating set is a subset $S \subseteq V$ of its nodes such that for all nodes $v \in V$, either $v \in S$ or a neighbor u of v is in S .

Remark: The problem of finding a minimum dominating set is NP-hard. We will here address it by employing randomness.

We will show that smaller than logarithmic-size dominating sets do not exist (w.h.p.) in dense random graphs.

Theorem 3

For any $k < \ln n$: $\Pr\{\exists \text{d.s. of size } k \text{ in } G_{n, \frac{1}{2}}\} \rightarrow 0$

Proof of theorem 3 (1/2)

1. Let G be a graph generated using $G_{n, \frac{1}{2}}$ and S be any fixed set of k vertices of G .
2. Define r.v. X that corresponds to the number of dominating sets of size k .
3. a. $X = \sum_{S, |S|=k} X_S$ where X_S are indicator variables

$$X_S = \begin{cases} 1 & S \text{ is d.s.} \\ 0 & \text{otherwise} \end{cases}$$

3. b. Calculate $E[X]$: Using linearity of expectation:

$$E[X] = E \left[\sum_{S, |S|=k} X_S \right] = \sum_{S, |S|=k} E[X_S]$$

- Calculate expectation of indicator variable X_S :

$$E[X_S] = 1 \cdot \Pr\{S \text{ is d.s.}\} + 0 \cdot \Pr\{S \text{ is not d.s.}\}$$

$$\Rightarrow E[X_S] = \Pr\{S \text{ is d.s.}\}$$

Proof of theorem 3 (2/2)

- assume a vertex $v \notin$ d.s.: $\Pr\{\nexists(v, u) : u \in S\} = (\frac{1}{2})^k$
 $\Rightarrow \Pr\{\exists(v, u) : u \in S\} = 1 - (\frac{1}{2})^k$
 $\Rightarrow \Pr\{\forall v \text{ out of } S, \exists(v, u) : u \in S\} = (1 - \frac{1}{2^k})^{n-k}$
 $\Rightarrow E[X_S] = \Pr\{S \text{ is d.s.}\} = (1 - \frac{1}{2^k})^{n-k}$

So,

$$E[X] = \sum_{S, |S|=k} E[X_S] = \binom{n}{k} \left(1 - \frac{1}{2^k}\right)^{n-k}$$

- It holds that $\binom{n}{k} \leq n^k$ and $(1 - \frac{1}{2^k})^{n-k} < e^{-\frac{n-k}{2^k}}$

$$\Rightarrow E[X] \leq n^k e^{-\frac{n-k}{2^k}} \leq e^{\frac{k}{2^k}} \left(e^{k \ln n - \frac{n}{2^k}}\right)$$

If $k \ln n - \frac{n}{2^k} \rightarrow -\infty$ then $E[X] \rightarrow 0$,

So, if $k < \ln n \Rightarrow E[X] \rightarrow 0$

- Using theorem 2 we prove that almost certainly there are no dominating sets of size $k < \ln n$

(II) Linearity of Expectation Method

Basic methodology(1/2)

- 1 Construct (by using abstract random experiments) an appropriate probability sample space of combinatorial structures.
- 2 Define a random variable X that corresponds to the desired quantitative characteristics (e.g. the number or the size of the structures).
- 3 Express X as a sum of random indicator variables: $X = X_1 + X_2 + \cdots + X_n$ where

$$X_i = \begin{cases} 1 & \text{the desired property holds} \\ 0 & \text{otherwise} \end{cases}$$

- 4 Calculate $E[X_i] = \Pr\{X_i = 1\}$.

(II) Linearity of Expectation Method

Basic methodology(2/2)

5. Linearity of Expectation:

$$E[X] = E\left(\sum_i X_i\right) = \sum_i E[X_i]$$

even when X_i are dependent.

6. Obvious observation:

- a random variable gets at least one value $\leq E[X]$ and at least one value $\geq E[X]$.

Proof by contradiction:

$$\mu = E[X] = \sum_x x \cdot f(x) > \sum_x \mu \cdot f(x) = \mu \sum_x f(x) = \mu$$

- $\Rightarrow \exists$ at least one point (a structure) in the sample space for which $X \geq E[X]$ and at least one point (a structure) for which $X \leq E[X]$

(II) Linearity of Expectation Method

method's capabilities and limitations

- estimation of expectation suffices.
 - technically easy (indicator random variable \Leftrightarrow probability of property)
 - linearity does not require stochastic independence (generic method)
- is associated with first moment Markov inequality:

$$\Pr\{X \geq t\} \leq \frac{E[X]}{t} \Leftrightarrow \Pr\{X \geq t \cdot E[X]\} \leq \frac{1}{t}$$

- for more powerful results:
 - inequalities with higher moments e.g. Chebyshev's inequality :

$$\Pr\{|X - \mu| \geq \lambda\sigma\} \leq \frac{1}{\lambda^2}$$

- technical difficulties: linearity of variance generally requires stochastic independence (less generic methods)

Example - Tournament with many Hamiltonian Cycles (1/2)

Theorem 4 (Szele, 1943)

For every positive integer n , there exists a tournament on n vertices with at least $(n - 1)!2^{-(n-1)}$ Hamiltonian cycles.

Proof:

- 1 We construct a probability sample space with points corresponding to random tournaments by choosing the direction of each edge at random, equiprobably for the two directions and independently for every edge.
- 2 We define the r.v. X that corresponds to the number of Hamiltonian Cycles.
- 3 Let σ be a permutation of the vertices of the tournament. We have that $X = \sum_{\sigma} X_{\sigma}$ where:

$$X_{\sigma} = \begin{cases} 1 & \sigma \text{ leads to a Hamiltonian Cycle} \\ 0 & \text{otherwise} \end{cases}$$

Example - Tournament with many Hamiltonian Cycles (2/2)

- 4. A permutation σ leads to a Hamiltonian Cycle only if all edges have the same direction.

$$E[X_\sigma] = \Pr\{X_\sigma = 1\} = \left(\frac{1}{2}\right)^n + \left(\frac{1}{2}\right)^n = 2 \left(\frac{1}{2}\right)^n = 2^{-(n-1)}$$

- 5. By linearity of Expectation $E[X] = E(\sum_\sigma X_\sigma) = \sum_\sigma E[X_\sigma]$
There are $\frac{n!}{n} = (n-1)!$ permutations of n vertices that create different cycles. So, we have that:

$$E[X] = (n-1)! 2^{-(n-1)}$$

- 6. Thus, there must exist at least one tournament on n vertices which has at least $(n-1)! \cdot 2^{-(n-1)}$ Hamiltonian cycles.

□

Example - Bipartite Subgraphs

Definition 3 (Bipartite Graph)

A bipartite graph is a graph whose vertices can be divided into two disjoint sets V_1 and V_2 such that every edge connects a vertex in V_1 to one in V_2 .

Theorem 5

Every graph $G=(V,E)$ has a bipartite subgraph with at least $\frac{|E|}{2}$ edges.

Proof of theorem 5

- 1 We construct a random sample space by choosing for every vertex in which set (V_1 or V_2) it belongs at random, equiprobably for the two sets and independently for each vertex. Thus, the points are random “bipartitions” of V .
- 2 We define the r.v. X that corresponds to the number of “crossing” edges (joining vertices in different parts).
- 3 Let g be an edge. We have that $X = \sum_{g \in E(G)} X_g$ where:

$$X_g = \begin{cases} 1 & g \text{ is crossing} \\ 0 & \text{otherwise} \end{cases}$$

- 4 $E[X_g] = \Pr\{X_g = 1\} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = 2 \cdot \frac{1}{4} = \frac{1}{2}$
- 5 By linearity of Expectation
$$E[X] = E\left(\sum_{g \in E(G)} X_g\right) = \sum_{g \in E(G)} E[X_g] = |E| \cdot \frac{1}{2}$$
- 6 Thus, there must exist a bipartite subgraph which has at least $\frac{|E|}{2}$ edges.

