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The Probabilistic Method - major applications (Ι)

A powerful tool used in many applications in different topics:
I) Study of random graph models (Gn,p, Gn,R, Gn,k etc) which are:

typical instances for average case analysis of graph algorithms and
abstract models of modern networks (sensor networks, social networks etc.)

Note. Time efficiency of an algorithm: best case, worst case, average case.
Average case analysis requires random inputs (an input distribution).
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The Probabilistic Method - major applications (ΙΙ)

II) Design and analysis of randomized algorithms:
evolution based on random choices (not deterministic decisions based on
the input)
solutions provided a) either are always correct but their running time is a
random variable (Las Vegas algorithms) b) or may be erroneous but are
correct w.h.p. (Monte Carlo algorithms)
trade-off performance (faster, simpler than deterministic algorithms) with
very small, controlled error probability.
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The core of the method

The Probabilistic Method
uses simple techniques

the Basic Method
Linearity of Expectation

as well as complex ones
the Local Lemma
Martingales
Markov Chains

but there is a common, underlying concept:

The core of the method
Non-constructive proof of existence of combinatorial structures that have certain
desired properties.
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The Basic Method (method of positive probability)

Construct (by using abstract random experiments) an appropriate probability
sample space of combinatorial structures (thus, the sample points correspond
to the combinatorial structures whose existence we try to prove).
Prove that the probability of the desired property in this space is positive (i.e.
non-zero).

⇓
There is at least one point in the space with the desired property.

⇓
There is at least one combinatorial structure with the desired property.
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Characteristics of the P.M.

comprehensible, pretty short proofs
simple (basic knowledge of Probabilistic Theory, Graph Theory,
Combinatorics suffices)
elegant

qualitative ideas, subtle notions
not lengthy, mechanical operations

still very powerful (use to resolve extremely difficult problems)
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Examples in this lecture

(i) Monochromatic arithmetic progressions (Van der Waerden property)
(ii) Ramsey Numbers
(iii) Tournaments
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(I) Van der Waerden property

Definition 1
W (k) is the smallest natural number n, such that for any two-coloring of the
numbers 1, 2, ..., n there is a monochromatic arithmetic progression of k terms.

Theorem 1
W (k) > 2

k
2
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Proof of Theorem 1 (1/3)

We construct a probability space by two-coloring the numbers 1, 2, ..., n at
random, equiprobably for the two colors and independently for every number.
Clearly, the sample points of this space are random two-colorings of the n
numbers.
Let S be any fixed arithmetic progression of k terms.
Define the event MS := {S is monochromatic}.

i.e, all terms of S must have the same color.
Compute the probability Pr[MS ].

every term is colored red (or blue) with probability 1/2
all k terms are red-colored (or blue-colored) with probability ( 1

2
)k

Pr[MS ] =

(
1

2

)k

+

(
1

2

)k

= 21−k
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Proof of Theorem 1 (2/3)

Define the event M := {∃ at least one monochromatic arithmetic progression
of k terms } ⇒ M =

⋃
|S|=k MS .

An arithmetic progression of k terms is defined uniquely by its two first terms
⇒ There are at most

(
n
2

)
arithmetic progressions ⇒ #(S : |S| = k) ≤

(
n
2

)
Using Boole’s inequality we can compute Pr[M ]

Pr[M ] = Pr

 ⋃
|S|=k

MS

 ≤
∑
|S|=k

Pr[MS ] ≤
(
n

2

)
21−k
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Proof of Theorem 1 (3/3)

We easily get:

Pr[M ] <
n2

2
21−k =

n2

2k

If n < 2
k
2 then Pr[M ] < 1 ⇒ Pr[M ] > 0.

Hence, there is a two-coloring without a monochromatic arithmetic
progression of k terms when n < 2

k
2 .

Thus, W (k) > 2
k
2 .
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(II) Ramsey Numbers

Definition 2
The Ramsey number R(k, l) is the smallest integer n such that in any
two-coloring of the edges of the complete graph on n vertices Kn by red and blue
colors, either there is a red Kk or there is a blue Kl.

Difficulty of computation:
Ramsey (1930) proved that R(k, l) is finite
Greenwood and Gleason (1955) computed R(3, 3) = 6 and R(4, 4) = 18

since then there is no notable progress - R(4, 5) is still unknown
Erdös suggested that R(6, 6) is too difficult to be computed
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Ramsey Numbers

Definition 3
R(k, k): diagonal Ramsey number (a monochromatic Kk is required).

Theorem 2 (Erdös, 1947)

If
(
n
k

)
21−(

k
2) < 1 then R(k, k) > n.
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Proof of Theorem 2 (1/3)

Construct a probability sample space by two-coloring at random, equiprobably
(for the two colors) and independently (for the edges) every edge of Kn.
Let S be any fixed set of k vertices and consider the edges induced.
Define the event MS := {S is monochromatic}.

i.e. all
(
k
2

)
edges in S have the same color.

Compute the probability Pr[MS ].
every edge is colored red (or blue) with 1/2 probability

Pr[MS ] =

(
1

2

)(k2)
+

(
1

2

)(k2)
= 21−(

k
2)
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Proof of Theorem 2 (2/3)

Define the event M := {∃ at least one monochromatic set of k vertices}.
Hence, M =

⋃
|S|=k MS .

Using Boole’s inequality we can compute the Pr[M ]

Pr[M ] ≤
∑
|S|=k

Pr[MS ] =

(
n

k

)
21−(

k
2)
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Proof of Theorem 2 (3/3)

If Pr[M ] < 1 ⇒ Pr[M ] > 0

⇒ if
(
n
k

)
21−(

k
2) < 1 then there is a point in the sample space without M ⇒

there is a monochromatic Kk.
Hence, it must be R(k, k) > n.
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Lower Bound of Ramsey Numbers

We proved that if
(
n
k

)
21−(

k
2) < 1 then R(k, k) > n

If
(
n
k

)
21−(

k
2) ∼ 1 then we can find the best possible lower bound for R(k, k)

(with this derivation).
By using Stirling’s formula and binomial approximation we obtain:

nk

k!
· 21−

(k
2

)
∼ nk

√
2πk

(
k
e

)k · 2− k2

2 ∼ 1

⇒ nk ∼
√
2πk ·

(
k

e

)k

· 2 k2

2

⇒ R(k, k) > n ∼ k

e
√
2
2

k
2
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(III) Tournaments

Definition 4
A tournament Tn is a complete directed graph on n vertices i.e., for every pair
(i, j), there is either an edge from i to j or from j to i, but not both.

Why do we call these graphs tournaments?
Each vertex corresponds to a team playing at some tournament.
The directed edge (i, j) means that team i wins team j.
all teams play against each other.
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The Sk Property

Definition 5
A tournament Tn is said to have property Sk if for any set of k vertices in the
tournament, there is some vertex that has a directed edge to each of those k
vertices.

Theorem 3 (Erdös, 1963)

∀k, ∃ a tournament Tn that has the property Sk.
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Proof of Theorem 3 (1/2)

Construct a probability sample space with points random tournaments by
choosing the direction of each edge at random, equiprobably for the two
directions and independently for every edge.
Let S be any fixed set of k teams and define the event MS := {@ a team
that wins all teams in S}.
For any team, the probability to win all teams in S is ( 12 )

k.
Hence, the probability of not winning at least one of them is 1− ( 12 )

k.
The probability that this is happening for all n− k teams that don’t belong
in S is:

Pr[MS ] =

(
1−

(
1

2

)k
)n−k
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Proof of Theorem 3 (2/2)

Define the event M := {∃ a set S of k teams such that @ a team u : u 6∈ S
that wins all teams in S}.
M =

⋃
S MS

Using Boole’s inequality we can compute Pr[M ]

Pr[M ] ≤
∑

S,|S|=k

Pr[MS ] =

(
n

k

)(
1−

(
1

2

)k
)n−k

If
(
n
k

) (
1−

(
1
2

)k)n−k

< 1 then Pr[M ] < 1 ⇒ Pr[M ] > 0.

Hence, there is a tournament with property Sk.
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