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e Probabilistic Method - major applications ()

A powerful tool used in many applications in different topics:

I) Study of random graph models (G, ,, Gn.r, Gn i €tc) which are:
@ typical instances for average case analysis of graph algorithms and

@ abstract models of modern networks (sensor networks, social networks etc.)

Note. Time efficiency of an algorithm: best case, worst case, average case.
Average case analysis requires random inputs (an input distribution).
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e Probabilistic Method - major applications (Il)

II) Design and analysis of randomized algorithms:

@ evolution based on random choices (not deterministic decisions based on
the input)

@ solutions provided a) either are always correct but their running time is a
random variable (Las Vegas algorithms) b) or may be erroneous but are
correct w.h.p. (Monte Carlo algorithms)

@ trade-off performance (faster, simpler than deterministic algorithms) with
very small, controlled error probability.
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The Probabilistic Method
@ uses simple techniques

o the Basic Method
o Linearity of Expectation

@ as well as complex ones

o the Local Lemma
o Martingales
o Markov Chains

but there is a common, underlying concept:

The core of the method

Non-constructive proof of existence of combinatorial structures that have certain
desired properties.
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e Basic Method (method of positive probability)

o Construct (by using abstract random experiments) an appropriate probability
sample space of combinatorial structures (thus, the sample points correspond
to the combinatorial structures whose existence we try to prove).

@ Prove that the probability of the desired property in this space is positive (i.e.

non-zero).
I

There is at least one point in the space with the desired property.
\

There is at least one combinatorial structure with the desired property.
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Characteristics of the P.M.

@ comprehensible, pretty short proofs

@ simple (basic knowledge of Probabilistic Theory, Graph Theory,
Combinatorics suffices)
@ elegant
e qualitative ideas, subtle notions
e not lengthy, mechanical operations

o still very powerful (use to resolve extremely difficult problems)
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Examples in this lecture

@ Monochromatic arithmetic progressions (Van der Waerden property)
@ Ramsey Numbers
@ Tournaments
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(1) Van der Waerden property

W (k) is the smallest natural number n, such that for any two-coloring of the
numbers 1,2, ..., n there is a monochromatic arithmetic progression of k£ terms.

W

W(k) > 22
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Proof of Theorem 1 (1/3)

@ We construct a probability space by two-coloring the numbers 1,2, ...,n at
random, equiprobably for the two colors and independently for every number.

Clearly, the sample points of this space are random two-colorings of the n
numbers.

o Let S be any fixed arithmetic progression of k terms.
@ Define the event Mg := {.S is monochromatic}.

o i.e, all terms of S must have the same color.
o Compute the probability Pr[Mg].

e every term is colored red (or blue) with probability 1/2
o all k terms are red-colored (or blue-colored) with probability (%)*

Pr[Ms] = <;)k + <;)k =ik
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Proof of Theorem 1 (2/3)

@ Define the event M := {3 at least one monochromatic arithmetic progression
of k terms } = M =g =), Ms.

@ An arithmetic progression of k terms is defined uniquely by its two first terms
= There are at most (}) arithmetic progressions = #(S : [S| = k) < ()

o Using Boole's inequality we can compute Pr[M]

Pr(M]=Pr{ | ) Mgy < ) Pr[Mg] < (Z)Ql_k

|S|=k |S|=k
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Proof of Theorem 1 (3/3)

@ We easily get:

o If n. < 2% then Pr[M] < 1 = Pr[M] > 0.

@ Hence, there is a two-coloring without a monochromatic arithmetic
. k
progression of k terms when n < 2z.

o Thus, W (k) > 2.
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(1) Ramsey Numbers

Definition 2

The Ramsey number R(k, 1) is the smallest integer n such that in any
two-coloring of the edges of the complete graph on n vertices K,, by red and blue
colors, either there is a red K}, or there is a blue Kj.

Difficulty of computation:
o Ramsey (1930) proved that R(k,!) is finite
o Greenwood and Gleason (1955) computed R(3,3) = 6 and R(4,4) = 18
@ since then there is no notable progress - R(4,5) is still unknown
o Erdds suggested that R(6,6) is too difficult to be computed
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Ramsey Numbers

Definition 3

R(k, k): diagonal Ramsey number (a monochromatic K is required).

Theorem 2 (Erdés, 1947)

If (2)21=(5) < 1 then R(k, k) > n.
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Proof of Theorem 2 (1/3)

o Construct a probability sample space by two-coloring at random, equiprobably
(for the two colors) and independently (for the edges) every edge of K.

@ Let S be any fixed set of k vertices and consider the edges induced.
o Define the event Mg := {S is monochromatic}.

o ie. all (’;) edges in S have the same color.
o Compute the probability Pr[Mg].

o every edge is colored red (or blue) with 1/2 probability

i <;)c;) . <;)c;) a0
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Proof of Theorem 2 (2/3)

@ Define the event M := {3 at least one monochromatic set of k vertices}.
o Hence, M =g Ms.

e Using Boole's inequality we can compute the Pr[M]

P} < 3 Pl = ()2

|S|=k
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Proof of Theorem 2 (3/3)

o If Pr{M] <1=Pr[M]>0
= if (2)21_(}5) < 1 then there is a point in the sample space without M =

there is a monochromatic Kj.
@ Hence, it must be R(k,k) > n.
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Lower Bound of Ramsey Numbers

o We proved that if (2)21’(5) < 1 then R(k, k) >n

o If (2)21*(3) ~ 1 then we can find the best possible lower bound for R(k, k)
(with this derivation).

@ By using Stirling’s formula and binomial approximation we obtain:

k k
S B ) I A S <

~1
g Ve ()
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Definition 4
A tournament T,, is a complete directed graph on n vertices i.e., for every pair
(4,7), there is either an edge from i to j or from j to ¢, but not both.

Why do we call these graphs tournaments?
@ Each vertex corresponds to a team playing at some tournament.
@ The directed edge (4,j) means that team i wins team j.

@ all teams play against each other.
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The Sy Property

Definition 5
A tournament T, is said to have property Sy if for any set of k vertices in the
tournament, there is some vertex that has a directed edge to each of those k

vertices.

Theorem 3 (Erdés, 1963)

Vk,d a tournament T,, that has the property S.

TAA MAE, Patras 2020 - 2021 19 /21

Probabilistic Methods in Complex Networks

Prof. Sotiris Nikoletseas



Proof of Theorem 3 (1/2)

@ Construct a probability sample space with points random tournaments by
choosing the direction of each edge at random, equiprobably for the two
directions and independently for every edge.

o Let S be any fixed set of k teams and define the event Mg := {3 a team

that wins all teams in S}.
e For any team, the probability to win all teams in S is (3)".
@ Hence, the probability of not winning at least one of them is 1 — (3)*.

@ The probability that this is happening for all n — k teams that don't belong

in S is:
Pr[M] = (1 - (;)k> o
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Proof of Theorem 3 (2/2)

Define the event M := {3 a set S of k teams such that #l a team u:u & S
that wins all teams in S}.

M =Jg Mg

Using Boole's inequality we can compute Pr[M]

Pr[M] < S%:_kpr[Ms] - (Z) (1 - <;)k> n—

i () (1~ (%)’“)"_k < 1 then Pr[M] < 1 = Pr[M] > 0.

Hence, there is a tournament with property Sj.
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