

Lecture 4: Random Networks I - The method of positive probability

Prof. Sotiris Nikoletseas

*University of Patras
and CTI*

*ΤΔΑ ΜΔΕ, Patras
2020 - 2021*

The Probabilistic Method - major applications (I)

A powerful tool used in many applications in different topics:

I) Study of random graph models ($G_{n,p}$, $G_{n,R}$, $G_{n,k}$ etc) which are:

- typical instances for average case analysis of graph algorithms and
- abstract models of modern networks (sensor networks, social networks etc.)

Note. Time efficiency of an algorithm: best case, worst case, average case.
Average case analysis requires random inputs (an input distribution).

II) Design and analysis of randomized algorithms:

- evolution based on random choices (not deterministic decisions based on the input)
- solutions provided a) either are always correct but their running time is a random variable (Las Vegas algorithms) b) or may be erroneous but are correct w.h.p. (Monte Carlo algorithms)
- trade-off performance (faster, simpler than deterministic algorithms) with very small, controlled error probability.

The core of the method

The Probabilistic Method

- uses simple techniques
 - the Basic Method
 - Linearity of Expectation
- as well as complex ones
 - the Local Lemma
 - Martingales
 - Markov Chains

but there is a common, underlying concept:

The core of the method

Non-constructive proof of existence of combinatorial structures that have certain desired properties.

The Basic Method (method of positive probability)

- Construct (by using abstract random experiments) an appropriate probability sample space of combinatorial structures (thus, the sample points correspond to the combinatorial structures whose existence we try to prove).
- Prove that the probability of the desired property in this space is positive (i.e. non-zero).

There is at least one point in the space with the desired property.

There is at least one combinatorial structure with the desired property.

Characteristics of the P.M.

- comprehensible, pretty short proofs
- simple (basic knowledge of Probabilistic Theory, Graph Theory, Combinatorics suffices)
- elegant
 - qualitative ideas, subtle notions
 - not lengthy, mechanical operations
- still very powerful (use to resolve extremely difficult problems)

Examples in this lecture

- ① Monochromatic arithmetic progressions (Van der Waerden property)
- ④ Ramsey Numbers
- ⑩ Tournaments

(I) Van der Waerden property

Definition 1

$W(k)$ is the smallest natural number n , such that for any two-coloring of the numbers $1, 2, \dots, n$ there is a monochromatic arithmetic progression of k terms.

Theorem 1

$$W(k) > 2^{\frac{k}{2}}$$

Proof of Theorem 1 (1/3)

- We construct a probability space by two-coloring the numbers $1, 2, \dots, n$ at random, equiprobably for the two colors and independently for every number. Clearly, the sample points of this space are random two-colorings of the n numbers.
- Let S be any fixed arithmetic progression of k terms.
- Define the event $M_S := \{S \text{ is monochromatic}\}$.
 - i.e, all terms of S must have the same color.
- Compute the probability $\Pr[M_S]$.
 - every term is colored red (or blue) with probability $1/2$
 - all k terms are red-colored (or blue-colored) with probability $(\frac{1}{2})^k$

$$\Pr[M_S] = \left(\frac{1}{2}\right)^k + \left(\frac{1}{2}\right)^k = 2^{1-k}$$

Proof of Theorem 1 (2/3)

- Define the event $M := \{\exists \text{ at least one monochromatic arithmetic progression of } k \text{ terms } \} \Rightarrow M = \bigcup_{|S|=k} M_S.$
- An arithmetic progression of k terms is defined uniquely by its two first terms \Rightarrow There are at most $\binom{n}{2}$ arithmetic progressions $\Rightarrow \#(S : |S| = k) \leq \binom{n}{2}$
- Using Boole's inequality we can compute $\Pr[M]$

$$\Pr[M] = \Pr \left\{ \bigcup_{|S|=k} M_S \right\} \leq \sum_{|S|=k} \Pr[M_S] \leq \binom{n}{2} 2^{1-k}$$

Proof of Theorem 1 (3/3)

- We easily get:

$$\Pr[M] < \frac{n^2}{2} 2^{1-k} = \frac{n^2}{2^k}$$

- If $n < 2^{\frac{k}{2}}$ then $\Pr[M] < 1 \Rightarrow \Pr[\overline{M}] > 0$.
- Hence, there is a two-coloring without a monochromatic arithmetic progression of k terms when $n < 2^{\frac{k}{2}}$.
- Thus, $W(k) > 2^{\frac{k}{2}}$.

(II) Ramsey Numbers

Definition 2

The Ramsey number $R(k, l)$ is the smallest integer n such that in any two-coloring of the edges of the complete graph on n vertices K_n by red and blue colors, either there is a red K_k or there is a blue K_l .

Difficulty of computation:

- Ramsey (1930) proved that $R(k, l)$ is finite
- Greenwood and Gleason (1955) computed $R(3, 3) = 6$ and $R(4, 4) = 18$
- since then there is no notable progress - $R(4, 5)$ is still unknown
- Erdős suggested that $R(6, 6)$ is too difficult to be computed

Ramsey Numbers

Definition 3

$R(k, k)$: diagonal Ramsey number (a monochromatic K_k is required).

Theorem 2 (Erdős, 1947)

If $\binom{n}{k} 2^{1 - \binom{k}{2}} < 1$ then $R(k, k) > n$.

Proof of Theorem 2 (1/3)

- Construct a probability sample space by two-coloring at random, equiprobably (for the two colors) and independently (for the edges) every edge of K_n .
- Let S be any fixed set of k vertices and consider the edges induced.
- Define the event $M_S := \{S \text{ is monochromatic}\}.$
 - i.e. all $\binom{k}{2}$ edges in S have the same color.
- Compute the probability $\Pr[M_S].$
 - every edge is colored red (or blue) with 1/2 probability

$$\Pr[M_S] = \left(\frac{1}{2}\right)^{\binom{k}{2}} + \left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{1-\binom{k}{2}}$$

Proof of Theorem 2 (2/3)

- Define the event $M := \{\exists \text{ at least one monochromatic set of } k \text{ vertices}\}.$
- Hence, $M = \bigcup_{|S|=k} M_S.$
- Using Boole's inequality we can compute the $\Pr[M]$

$$\Pr[M] \leq \sum_{|S|=k} \Pr[M_S] = \binom{n}{k} 2^{1-\binom{k}{2}}$$

Proof of Theorem 2 (3/3)

- If $\Pr[M] < 1 \Rightarrow \Pr[\overline{M}] > 0$
 \Rightarrow if $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ then there is a point in the sample space without $M \Rightarrow$ there is a monochromatic K_k .
- Hence, it must be $R(k, k) > n$.

□

Lower Bound of Ramsey Numbers

- We proved that if $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ then $R(k, k) > n$
- If $\binom{n}{k} 2^{1-\binom{k}{2}} \sim 1$ then we can find the best possible lower bound for $R(k, k)$ (with this derivation).
- By using Stirling's formula and binomial approximation we obtain:

$$\frac{n^k}{k!} \cdot 2^{1-\binom{k}{2}} \sim \frac{n^k}{\sqrt{2\pi k} \left(\frac{k}{e}\right)^k} \cdot 2^{-\frac{k^2}{2}} \sim 1$$

$$\Rightarrow n^k \sim \sqrt{2\pi k} \cdot \left(\frac{k}{e}\right)^k \cdot 2^{\frac{k^2}{2}}$$

$$\Rightarrow R(k, k) > n \sim \frac{k}{e\sqrt{2}} 2^{\frac{k}{2}}$$

(III) Tournaments

Definition 4

A **tournament** T_n is a complete directed graph on n vertices i.e., for every pair (i, j) , there is either an edge from i to j or from j to i , but not both.

Why do we call these graphs tournaments?

- Each vertex corresponds to a team playing at some tournament.
- The directed edge (i, j) means that team i wins team j .
- all teams play against each other.

The S_k Property

Definition 5

A tournament T_n is said to have **property S_k** if for any set of k vertices in the tournament, there is some vertex that has a directed edge to each of those k vertices.

Theorem 3 (Erdős, 1963)

$\forall k, \exists$ a tournament T_n that has the property S_k .

Proof of Theorem 3 (1/2)

- Construct a probability sample space with points random tournaments by choosing the direction of each edge at random, equiprobably for the two directions and independently for every edge.
- Let S be any fixed set of k teams and define the event $M_S := \{\text{# a team that wins all teams in } S\}$.
- For any team, the probability to win all teams in S is $(\frac{1}{2})^k$.
- Hence, the probability of not winning at least one of them is $1 - (\frac{1}{2})^k$.
- The probability that this is happening for all $n - k$ teams that don't belong in S is:

$$\Pr[M_S] = \left(1 - \left(\frac{1}{2}\right)^k\right)^{n-k}$$

Proof of Theorem 3 (2/2)

- Define the event $M := \{\exists \text{ a set } S \text{ of } k \text{ teams such that } \nexists \text{ a team } u : u \notin S \text{ that wins all teams in } S\}$.
- $M = \bigcup_S M_S$
- Using Boole's inequality we can compute $\Pr[M]$

$$\Pr[M] \leq \sum_{S, |S|=k} \Pr[M_S] = \binom{n}{k} \left(1 - \left(\frac{1}{2}\right)^k\right)^{n-k}$$

- If $\binom{n}{k} \left(1 - \left(\frac{1}{2}\right)^k\right)^{n-k} < 1$ then $\Pr[M] < 1 \Rightarrow \Pr[\overline{M}] > 0$.
- Hence, there is a tournament with property S_k .