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A. Small Worlds (1)

@ The small world phenomenon: if you choose any two individuals anywhere on
Earth, you will find a path of at most six acquaintances between them.

@ In other words, surprisingly, even individuals on opposite sides of the globe
can be connected to each other via a few acquaintances.

@ This phenomenon is also known as “six degrees of separation”.

Figure: Six degrees of separation
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Small Worlds (I1)

@ In formal terms, this phenomenon implies that the distance between two
randomly chosen nodes in a network is short.

@ But what does short mean? And how can we explain this phenomenon?

o Consider a random network with average degree (K). Then, a node has on
average (K) nodes at distance d = 1, {K)? nodes at distance d = 2, and so

on, and (K)? nodes at distance d.
Summing up, the expected number of nodes at distance d is:

)
N(d) = (K)—1
e Solving for (K)dmas ~ N yields

In N

for the diameter of a random network.
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Small Worlds (111)

@ As a matter of fact, for most networks the above formula offers a better
approximation to the average distance between two randomly chosen nodes
(d), rather than to d,,4. (because d,,,. is often dominated by a few extreme
paths, while (d) is the average over all node pairs, a process that suppresses
the fluctuations).

@ Then the usual definition of the small world property is:

In N
() =1

where (d) is the average internode distance.
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Small Worlds (1V)

Network N L & > dmax INN/Inck>
Internet 192,244 609,066 6.34 6.98 26 6.58
WWw 325,729 1,497,134 4.60 1.27 93 8.31
Power Grid 4,941 6,504 2.67 18.99 46 8.66
Mobile-Phone Calls 36,595 91,826 2.51 172 39 11.42
Email 57,194 103,731 1.81 5.88 18 18.4
Science Collaboration 23,133 93,437 8.08 5.36 15 4.81
Actor Network 702,388 29,397,908 83.71 3.91 14 3.04
Citation Network 449,673 4,707,958 1043 121 42 5.55
E. Coli Metabolism 1,039 5,802 5.58 2.98 8 4.04
Protein Interactions 2,018 2,930 2.90 5.61 14 7.4

Figure: Six Degrees of Separation table

@ The last column shows that the formula achieves in most cases a reasonable
approximation to the measured distance (d).

@ Yet the agreement is not perfect and we will see how to adjust it for many
real networks.
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Small Worlds (V)

@ This formula basically shows that by small world we basically mean that the
average path length depends logarithmically on the network size; it is
proportional to In IV, rather than N or some power of V.

@ Also, the denser the network (large (K)), the smaller the distance is.
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Note: In lattices, the above branching argument does not work, so distances are
bigger (a power of N).
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The diameter of the WWW

@ In 1999, Albert, Jeong and Barabasi suggested that the diameter of the Web

IS:
(d) ~0.35+0.89In N,

where N the number of WWW nodes. At that time, that yielded

(d) ~ 18.69, in other words 19 clicks sufficed to reach a randomly chosen
WWW node (19 degrees of separation). In 2016, this increased to (d) ~ 25,
in view of the dynamic expansion of the Web.
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The first empirical study of the small world property

@ In 1967 social psychologist Stanley Milgram designed an experiment to
measure distances in social networks of acquaintances. A target person was
chosen at random in Boston. A large enough (N = 64) number of randomly
selected persons in Omaha, Nebraska were asked to send a letter either to the
target person (if they knew him), or to a personal acquaintance more likely to
know the target.

o Eventually, 64 of the 296 letters made it, with an average number of 5.2
social links (forwarding the letter) needed; thus, the "six degrees of
separation” term.

@ Facebook in 2011 reported an average of 4.74 links among its 721 million
users (connected by 68 billion friendship links at that time).
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Six degrees of separation
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Figure: Six Degrees? From Milgram to Facebook
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The Watts-Strogatz small world model (1)

@ In 1998, Watts and Strogatz proposed an extension of the random network
model motivated by two observations:
o small world property: in both real and random networks, average node
distance is logarithmic on N, rather than polynomial, as in regular lattices.
e high clustering: in real networks the average clustering coefficient is much
higher than in random networks.

@ Their model (called the small-world model) interpolates between a regular
lattice (which has high clustering but lacks small-world property) and a
random network (which is small-world but has low clustering).

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks TAA MAE, Patras 2020 - 2021 10 / 41



The Watts-Strogatz small world model (I1)
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Figure: The Watts-Strogatz Model
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The Watts-Strogatz small world model (I11)

@ we start from a ring of nodes, each node connected to their immediate and
next neighbors (a regular lattice), so the average clustering coefficient is
(c) = 1/2 (quite high).

@ with probability p, each link is rewired to a randomly chosen node. For small
p, the clustering remains high, but the random long-range links can
drastically decrease the distance between the nodes.

o for the extreme p = 1, all links have been rewired, so the network turns into a
random one.

@ we remark a rapid drop in d(p) with p, leading to the emergence of the
small-world property; however, during this drop, clustering (C(p)) remains
high, as desired. Overall, when 0.001 < p < 0.1 there is both small world and
high clustering! So, only little randomness suffices!
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B. Deeper into the scale-free property (I)

@ The WWW is a network whose nodes are documents and whose links are the
URLs allowing us to move with a click from one web document to another.
Its estimated size exceeds 1 trillion documents (N ~ 10'2).

@ The first "map” of the WWW was obtained in 1998 by Hawoong Jeong; he
mapped the nt.edu domain (University of Notre Dame, Canada) of 300.000
documents and 1.5 million links.

@ The purpose of the map was to compare the Web graph to the random
network model; at that time, people believed that WWW could be well
approximated by a random network (since each document reflects
personal /professional interests of its creator, the links to documents might
point to randomly chosen documents).
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Deeper into the scale-free property (II)

@ Nodes with > 50 links are shown in red, nodes with > 500 links in purple.

@ The map reveals a few highly connected nodes (" hubs”), which in a random
network are effectively forbidden!

@ Actually, such hubs are not unique in the WWW, but appear in most real
networks. They represent a deeper organizing principle, which we call the
scale-free property.
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Power Laws and Scale-free Networks

o If the WWW were to be a random net, its degrees would follow a Poisson
distribution. However, it actually follows a power law distribution:

pr ~ K77

(px the probability that a random node has degree K, and v is a constant
degree exponent). Thus

Inpg ~ —yIn K
and on a log-log scale the data points form a straight line of slope 7 (i.e.
In pgx depends linearly on In K).

a. b.
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@ Since WWW is directed, we have two distributions (with corresponding
exponent Yin, Yout- Also, the green line shows the Poisson distribution).
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The 80/20 Rule

@ A similar phenomenon was identified by the economist Vilfredo Pareto in the
19th century; he noticed that a few wealthy individuals earned most of the
money, while the majority of people earned small amounts; roughly 80% of all
money is earned by only 20% of the population.

@ The 80/20 rule emerges in many areas:

e 80% of profits are produced by only 20% of employees
e 80% of citations go to only 38% of scientists
e 80% of links in Hollywood are connected to only 30% of actors

@ This 80/20 phenomenon identified by Pareto is actually the first known
report of a power-law distribution.
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scale-free property

@ The above empirical results for the WWW demonstrate the existence of
networks whose degree distribution is quite different from the Poisson
distribution characterizing random networks. We will call such networs
scale-free networks.

@ Definition: A scale-free network is a network whose degree distribution
follows a power law.
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Discrete formalism

@ For K =0, 1, 2... the probability px that a node has exactly K links is:
px =CK™"

@ The constant C is determined by the normalization condition

oS
> pr =1
K=1

which yields
1 1

Ty K )

where ((7) is the Riemann-zeta function. Thus, the power law distribution is:

C

K_’Y
PE="c)

(for simplicity we omitted the case k = 0 for which the formula diverges).
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Continuous formalism

@ In analytic calculations we often assume that degrees can have any positive
real value. In this case, the power law becomes: p(K) = CK~7
Using the normalization condition:

/ T (KK =1

Kmin
we get
1
e — _ “/fl
and finally

p(K) = (y = DE ) K7

mn
where K,,,;, the smallest degree for which the power law holds. Obviously,
the meaning of discrete py formalism (the probability that a node has
exactly k links) does not make sense. Instead, only the integral of p(K) has a
physical meaning. f;:f p(K)dK is the probability that a random node has
degree between K7 and Ks.
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Hubs in scale-free networks

In the above figure:

Q

@
@
Q@

linear plot, (K) =11

same curves as in (a), but on a log-log plot

a random network with (K) =3, N = 50 = most nodes similar degree

k~ (K)

a scale-free network with (K) =3, N = 50 = few hubs and numerous small
degree nodes
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The tails of the degree distribution

The main difference between random and scale-free networks comes in the tails of
the degree distribution:

o for small K, a scale-free net has a large number of small-degree nodes, most
of which are absent in random networks

o for K around the mean degree (K) there is an excess of nodes with degree
K ~ (K) in random networks.

o for large K, the probability of high-degree nodes (hubs) in scale-free networks
is several orders of magnitude higher than in random networks.
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Largest Hub (1)

@ All real networks are finite, even when they are huge, such as in the case of
the WWW or social networks (N ~ 7 x 10° nodes). Other networks are
relatively small, such as the genetic network in a human cell (around 20,000
genes).

@ Natural question: how does the network size affect the size of its hubs? To
answer this, we calculate the maximum degree K, of the degree

distribution pg. It represents the expected size of the largest hub in the
network.
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The Largest Hub (II)

@ To simplify calculations, let us start with the exponential distribution
p(K) = Ce ™
For a network with minimum degree K,,;, we get:

o0
/ p(K)dK =1
Kmin
which yields C = Aermin
o To calculate K4, we assume that in a network of N nodes we expect at

most one node in the (K42, 00) range. So, for the probability of having a
node of degree > K4z it is

N/ K)dK =1

Kmaz

which yields Kyop = Kppin + 25
@ As In N is a very slow function of the network size N, the maximum degree is
not significantly different than the minimum degree.

@ For a Poisson distribution, things are quite similar (actually the dependence
of Kmax on N is even slower).
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Largest Hub (11I)

@ In contrast, for a scale-free network, it is:

_1
Kmaz = Km’i’nN’Y_l

i.e. the dependence of K,,,, on N is polynomial, thus the biggest hub can
have size orders of magnitude larger than the smallest node K,,;,, and also,
the larger the network size N, the larger the degree of its biggest hub.

@ As an example, in the WWW sample, an exponential distribution would imply
K =~ 14, while assuming a scale-free property would imply
Kpazr >~ 95,000

00 E SCALE-FREE
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ut the term “scale-free”

@ To better understand this term, we need to address the moments of the
degree distribution. The n—th moment is the mean of the n-th power of the
degree random variable:

0 [e%s}
(KM= K'pg~ [ K'p(K)dK
Kmin Kmin
@ In particular, the first moments are of special importance:

e n = 1: the first moment is the average degree

e n = 2: the second moment is related to the variance as follows:
2 2 2
ok = (K7) — (K)

where o (the square root of the variance) is the standard deviation.
e n = 3: the third moment determines skewness, telling us how symmetric px is
around the mean (K).
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ut the term “scale-free” (II)

@ For a scale-free network, the n-th moment is:

K. — n—y+1
max Kn ~y+1 _ K s
Konin n—vy+1

@ Since K,,;, is typically fixed, the degree of the longest hub, K., increases
with the network size. For large networks, we thus need take K., — o0 and
the moment (K™) depends on the interplay of n and ~.

o if n —y+1>0 then (K") goes to infinity as Kpqez — 00, therefore all
moments larger than v — 1 diverge.
o if n —y+1 <1 then (K") goes to zero , therefore all moments n <~y —1 are

finite.
@ But for many scale-free networks, the degree exponent -y is between 2 and 3,
therefore the first moment (K) is finite, but the second and higher moments
(K?) and (K?) go to infinity as N — oo
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t the term “scale-free” (llI)

@ This divergence of the higher moments helps us understand the origin of the
"scale-free” term. Indeed, the degrees in the normal distribution (and thus in
a great variety of distributions) concentrate in a range

KZ(K):EO’K

o In random networks with Poisson degrees 02 = (K) thus ox = (K)'/2,
which is much smaller than (K), hence the degrees lie in the range
K = (K) + (K)'/2. In other words, nodes in random networks have
comparable degree close to the average degree (K), thus the average degree
(K) serves as the "scale” of the network.

@ In contrast, scale-free networks lack a scale, since the first moment of degree
K is finite, yet the second moment is infinite, thus the fluctuation of degrees
around their average can be arbitrarily large. Hence networks with v < 3 do
not have a meaningful internal scale, so we can call them "scale-free”.
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About the term “scale-free” (IV)

e Strictly speaking, (K?2) diverges only in the N — oo limit. Yet the divergence
is relevant for finite networks as well.

Network I L T R A Yo  Your ¥
Internet 192,244 609,066 6.34 - - 2401 - - 3.42%
www 325,729 1,497,134 460 15460 4824 - 2.00 231

Power Grid 4,941 6,504 2.67 - - 10.3 - - Exp
Mobile-Phone Calls 36,595 91.826 2.51 12.0 17 = 4.69* 5.01*

Email 57,194 103,731 181 947 1639 - 3.43* 203"
Science Collaboration 23,133 93,437 8.08 - - 1782 - - 3.35*
Actor Network 702,388 29,397,908 8371 - = 473587 - = 2.12%
Citation Network 449,673 4,689,479 1043 971.5 198.8 = 3.03*  4.00%

E.Coli Metabolism 1,039 5,802 5.58 5357 396.7 - 243 290"

Protein Interactions 2,018 2,930 2.90 - - 323 - - 2.89*-

@ For most of these real networks, o is significantly larger than (K), thus
allowing large variations in node degrees. The only exceptions are the power
grid (which is not scale-free) and the phone-calls net (which is scale-free but
has a large v, so it can be well approximated by a random network).
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About the term “scale free” (V)
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@ The standard deviations of these real networks are also depicted in the above

figure. The green line corresponds to o = (K)'/? (the standard deviation
of a random network)

@ For all networks (except power grid and phone-calls) the standard deviation is
much larger than what it should be in a random network.
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C. Ultra-Small-World property

@ Important question: do hubs affect the small-world property? The answer is
yes; distances in scale-free networks are smaller than the distances observed
in an equivalent random network.

@ The dependence of average distance (d) on the system size N and the degree
exponent 7y is:

e constant, v = 2

e InlInN ,2<~v<3
)

]

(d) ~

In N _
by @7 =3

InN,v>3

i.e. there are four scaling regimes which correspond to a characteristic impact to
the average path length.
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Four regimes

We now discuss each one out of the four regimes.

@ Anomalous regime (y = 2). According to the formula
Kma:c = szn . Nﬁ

for v = 2 the size of the biggest hub is linear in N, almost all nodes are
connected to the same central hub, thus they are very close to each other
and the path lengths do not depend on N.

@ Ultra-small-world (2 < v < 3): The average path length increases as Inln N,
which is significantly smaller than In V in random networks. This is due to
the hubs that radically reduce path lengths by connecting with each other a
large number of small degree nodes. As an example, for the world’s social
network (N ~ 7% 10%), the random network model would give In N = 22.66
while the fact that it is scale-free gives the actual average path length of
Inln N = 3.12 only.
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Four regimes (I1)

o Critical point (v = 3). The second moment of degrees does not diverge any
longer and the In NV dependence of random networks returns; however, a
double logarithmic correction Inln IV occurs, shrinking the distances
compared to random nets.

@ Small world (y > 3). In this regime, (K?) is finite and the average path
length exhibits similar small-world properties as for random networks. This is
because, although hubs continue to be present, for v > 3 their size and
number do not suffice to drastically reduce path lengths.
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We are always close to the hubs

e F. Kavinthy (1929) claimed, counterintuitively, that "it is always easier to
find someone who knows a famous person than some insignificant person”.
This is particularly the case in scale-free networks:

127
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QANDOM NETWORK
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target

@ The figure shows the distance ((d¢arget)) of @ node with degree K ~ (K)
from a target node with degree Kiqrget. We remark that:
e in scale-free nets we are closer to the hubs of high degree
e path lengths are visibly longer in random networks
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The role of the degree exponent
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The role of the degree exponent (I1)

o Note that when v < 2 then K4, = Km,-nNﬁ would lead to K4, bigger
than N! This is not possible without self-loops / multiple links, so such
degree distributions do not correspond to real networks! In other words, there
exist no scale-free networks for v < 2 (anomalous regime).

o for v > 3, the probability px ~ K7 for nodes of degree K is small for big
K, so hubs are small and not so many. Thus, the scale-free network is hard to
distinguish from a random network (as an example, path lengths are
logarithmic in the network size).

@ Summarizing, the most interesting regime is 2 < v < 3, when scale-free nets
become ultra-small. Interestingly, many important real networks, such as the
WWW and protein interaction networks, are in this regime!
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D. Generating networks with arbitrary degree distribution

@ Random networks generated by the Erdés—Rényi model have a Poisson
degree distribution.

@ However, the degree distributions of real networks significantly deviate from a
Poisson form.

@ Important question: Can we improve random networks so that their degree
distribution becomes closer to the one of real networks?

o We will present 2 frequently used methods.
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a. Configuration Model

@ It creates random networks with a pre-defined degree sequence. This is done
via making sure that each node has a pre-defined degree K; but otherwise
the network is wired randomly.

k=3 k=2 k=2 k=1

REEREX
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Configuration Model (1)

The configuration model algorithm includes the following steps:

@ Degree Sequence: Assign a degree to each node, represented as stubs or
half-links. We obviously must start with an even number of stubs. Note that
the degree sequence is either generated from a pre-selected px distribution or
by the fixed degrees of a real network. Also note that, if L is the number of
network links, then the sum of degrees (stubs) is 2L.

@ Network Assembly: Randomly select a stub pair and connect the two stubs.
Then, randomly choose another pair from the remaining 2L — 2 stubs and
connect the two stubs, and so on, until all stubs are paired up.
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Configuration Model (lIII)

o Note 1: The probability of having a link between nodes of degree K; and K;

IS:
KiK;

YT aL-1
Indeed, a stub of node i can connect to 2L — 1 stubs, among which K are

attached to node j, so that the probability that a particular i-stub is connected
to node j is % and node i has K stubs (attempts to connect to node j).

@ Note 2: The obtained network may contain self-loops and multi-links. Yet,
their number remains negligible, as the number of connection choices
increases with N.

@ Note 3: The network obtained is inherently random and this simplifies
analytic calculations.
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b. Degree-Preserving Randomization

@ This is another method of obtaining a random rewiring of an original
scale-free network, which however remains scale-free and preserves degrees.

@ We randomly select two sources (S1, S2) and two targets (73, 7%) such that
initially there is a S; — T link and a Sy — T5 link. We then swap the two
links, creating an S; — T» link and an Sy — T} link. The swap leaves the
degrees unchanged, yet random rewiring is introduced. This procedure is
repeated until we rewire each link at least once.

2. Full Randomization Original Network b. Degree-Preserving Randomization
o [ ] 1@
s@—@ [ S 5@ @s

oo [ S o o
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A final note

The exact power-law form is rarely seen in real systems. Instead, the scale-free
property tells us that we must distinguish two rather different classes of networks.

@ Exponentially bounded networks: their degree distributions decreases
exponentially or faster for high K, so we lack significant degree variations
(since (K?) is smaller than(K)). Examples of such px include the Poisson,
Gaussian, or exponential distributions. Erdos—Rényi, Watts-Strogatz models
are the best known models in this class. Real networks include highway
networks and the power grid.

o Fat-tailed networks: their degrees have a power law in the high-K region, and
(K?) is much larger than (K), resulting in considerable degree variations and
big hubs. Scale-free nets with a power-law degree distribution offer the
best-known example.Real networks include the WWW, the Internet, protein
interaction networks, social networks.
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