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A. Small Worlds (I)

The small world phenomenon: if you choose any two individuals anywhere on
Earth, you will find a path of at most six acquaintances between them.

In other words, surprisingly, even individuals on opposite sides of the globe
can be connected to each other via a few acquaintances.

This phenomenon is also known as “six degrees of separation”.

Figure: Six degrees of separation
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Small Worlds (II)

In formal terms, this phenomenon implies that the distance between two
randomly chosen nodes in a network is short.

But what does short mean? And how can we explain this phenomenon?

Consider a random network with average degree 〈K〉. Then, a node has on
average 〈K〉 nodes at distance d = 1, 〈K〉2 nodes at distance d = 2, and so
on, and 〈K〉d nodes at distance d.
Summing up, the expected number of nodes at distance d is:

N(d) ' 〈K〉
d+1 − 1

〈K〉 − 1

Solving for 〈K〉dmax ' N yields

dmax '
lnN

ln〈K〉

for the diameter of a random network.
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Small Worlds (III)

As a matter of fact, for most networks the above formula offers a better
approximation to the average distance between two randomly chosen nodes
〈d〉, rather than to dmax (because dmax is often dominated by a few extreme
paths, while 〈d〉 is the average over all node pairs, a process that suppresses
the fluctuations).

Then the usual definition of the small world property is:

〈d〉 ' lnN

ln〈K〉

where 〈d〉 is the average internode distance.
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Small Worlds (IV)

Figure: Six Degrees of Separation table

The last column shows that the formula achieves in most cases a reasonable
approximation to the measured distance 〈d〉.
Yet the agreement is not perfect and we will see how to adjust it for many
real networks.
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Small Worlds (V)

This formula basically shows that by small world we basically mean that the
average path length depends logarithmically on the network size; it is
proportional to lnN , rather than N or some power of N .

Also, the denser the network (large 〈K〉), the smaller the distance is.

Note: In lattices, the above branching argument does not work, so distances are
bigger (a power of N).
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The diameter of the WWW

In 1999, Albert, Jeong and Barabasi suggested that the diameter of the Web
is:

〈d〉 ' 0.35 + 0.89 lnN,

where N the number of WWW nodes. At that time, that yielded
〈d〉 ' 18.69, in other words 19 clicks sufficed to reach a randomly chosen
WWW node (19 degrees of separation). In 2016, this increased to 〈d〉 ' 25,
in view of the dynamic expansion of the Web.
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The first empirical study of the small world property

In 1967 social psychologist Stanley Milgram designed an experiment to
measure distances in social networks of acquaintances. A target person was
chosen at random in Boston. A large enough (N = 64) number of randomly
selected persons in Omaha, Nebraska were asked to send a letter either to the
target person (if they knew him), or to a personal acquaintance more likely to
know the target.

Eventually, 64 of the 296 letters made it, with an average number of 5.2
social links (forwarding the letter) needed; thus, the ”six degrees of
separation” term.

Facebook in 2011 reported an average of 4.74 links among its 721 million
users (connected by 68 billion friendship links at that time).
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Six degrees of separation

Figure: Six Degrees? From Milgram to Facebook
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The Watts-Strogatz small world model (I)

In 1998, Watts and Strogatz proposed an extension of the random network
model motivated by two observations:

small world property: in both real and random networks, average node
distance is logarithmic on N, rather than polynomial, as in regular lattices.
high clustering: in real networks the average clustering coefficient is much
higher than in random networks.

Their model (called the small-world model) interpolates between a regular
lattice (which has high clustering but lacks small-world property) and a
random network (which is small-world but has low clustering).
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The Watts-Strogatz small world model (II)

Figure: The Watts-Strogatz Model
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The Watts-Strogatz small world model (III)

we start from a ring of nodes, each node connected to their immediate and
next neighbors (a regular lattice), so the average clustering coefficient is
〈c〉 = 1/2 (quite high).

with probability p, each link is rewired to a randomly chosen node. For small
p, the clustering remains high, but the random long-range links can
drastically decrease the distance between the nodes.

for the extreme p = 1, all links have been rewired, so the network turns into a
random one.

we remark a rapid drop in d(p) with p, leading to the emergence of the
small-world property; however, during this drop, clustering 〈C(p)〉 remains
high, as desired. Overall, when 0.001 < p < 0.1 there is both small world and
high clustering! So, only little randomness suffices!
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B. Deeper into the scale-free property (I)

The WWW is a network whose nodes are documents and whose links are the
URLs allowing us to move with a click from one web document to another.
Its estimated size exceeds 1 trillion documents (N ' 1012).

The first ”map” of the WWW was obtained in 1998 by Hawoong Jeong; he
mapped the nt.edu domain (University of Notre Dame, Canada) of 300.000
documents and 1.5 million links.

The purpose of the map was to compare the Web graph to the random
network model; at that time, people believed that WWW could be well
approximated by a random network (since each document reflects
personal/professional interests of its creator, the links to documents might
point to randomly chosen documents).
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Deeper into the scale-free property (II)

Nodes with > 50 links are shown in red, nodes with > 500 links in purple.

The map reveals a few highly connected nodes (”hubs”), which in a random
network are effectively forbidden!

Actually, such hubs are not unique in the WWW, but appear in most real
networks. They represent a deeper organizing principle, which we call the
scale-free property.
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Power Laws and Scale-free Networks

If the WWW were to be a random net, its degrees would follow a Poisson
distribution. However, it actually follows a power law distribution:

pK ∼ K−γ

(pK the probability that a random node has degree K, and γ is a constant
degree exponent). Thus

ln pK ∼ −γ lnK
and on a log-log scale the data points form a straight line of slope γ (i.e.
ln pK depends linearly on lnK).

Since WWW is directed, we have two distributions (with corresponding
exponent γin, γout. Also, the green line shows the Poisson distribution).
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The 80/20 Rule

A similar phenomenon was identified by the economist Vilfredo Pareto in the
19th century; he noticed that a few wealthy individuals earned most of the
money, while the majority of people earned small amounts; roughly 80% of all
money is earned by only 20% of the population.

The 80/20 rule emerges in many areas:

80% of profits are produced by only 20% of employees
80% of citations go to only 38% of scientists
80% of links in Hollywood are connected to only 30% of actors

This 80/20 phenomenon identified by Pareto is actually the first known
report of a power-law distribution.
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The scale-free property

The above empirical results for the WWW demonstrate the existence of
networks whose degree distribution is quite different from the Poisson
distribution characterizing random networks. We will call such networs
scale-free networks.

Definition: A scale-free network is a network whose degree distribution
follows a power law.
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Discrete formalism

For K = 0, 1, 2... the probability pK that a node has exactly K links is:

pK = CK−γ

The constant C is determined by the normalization condition

∞∑
K=1

pK = 1

which yields

C =
1∑∞

K=1K
−γ =

1

ζ(γ)

where ζ(γ) is the Riemann-zeta function. Thus, the power law distribution is:

pK =
K−γ

ζ(γ)

(for simplicity we omitted the case k = 0 for which the formula diverges).
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Continuous formalism

In analytic calculations we often assume that degrees can have any positive
real value. In this case, the power law becomes: p(K) = CK−γ

Using the normalization condition:∫ ∞
Kmin

p(K)dK = 1

we get

C =
1∫∞

Kmin
K−γdK

= (γ − 1)Kγ−1
min

and finally
p(K) = (γ − 1)Kγ−1

minK
−γ

where Kmin the smallest degree for which the power law holds. Obviously,
the meaning of discrete pK formalism (the probability that a node has
exactly k links) does not make sense. Instead, only the integral of p(K) has a

physical meaning.
∫K2

K1
p(K)dK is the probability that a random node has

degree between K1 and K2.
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Hubs in scale-free networks

In the above figure:
(a) linear plot, 〈K〉 = 11
(b) same curves as in (a), but on a log-log plot
(c) a random network with 〈K〉 = 3, N = 50⇒ most nodes similar degree

k ' 〈K〉
(d) a scale-free network with 〈K〉 = 3, N = 50⇒ few hubs and numerous small

degree nodes
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The tails of the degree distribution

The main difference between random and scale-free networks comes in the tails of
the degree distribution:

for small K, a scale-free net has a large number of small-degree nodes, most
of which are absent in random networks

for K around the mean degree 〈K〉 there is an excess of nodes with degree
K ' 〈K〉 in random networks.

for large K, the probability of high-degree nodes (hubs) in scale-free networks
is several orders of magnitude higher than in random networks.
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The Largest Hub (I)

All real networks are finite, even when they are huge, such as in the case of
the WWW or social networks (N ' 7 ∗ 109 nodes). Other networks are
relatively small, such as the genetic network in a human cell (around 20,000
genes).

Natural question: how does the network size affect the size of its hubs? To
answer this, we calculate the maximum degree Kmax of the degree
distribution pK . It represents the expected size of the largest hub in the
network.
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The Largest Hub (II)

To simplify calculations, let us start with the exponential distribution
p(K) = Ce−λK

For a network with minimum degree Kmin we get:∫ ∞
Kmin

p(K)dK = 1

which yields C = λeλKmin

To calculate Kmax we assume that in a network of N nodes we expect at
most one node in the (Kmax,∞) range. So, for the probability of having a
node of degree ≥ Kmax it is

N

∫ ∞
Kmax

p(K)dK = 1

which yields Kmax = Kmin + lnN
λ

As lnN is a very slow function of the network size N, the maximum degree is
not significantly different than the minimum degree.

For a Poisson distribution, things are quite similar (actually the dependence
of Kmax on N is even slower).
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The Largest Hub (III)

In contrast, for a scale-free network, it is:

Kmax = KminN
1

γ−1

i.e. the dependence of Kmax on N is polynomial, thus the biggest hub can
have size orders of magnitude larger than the smallest node Kmin, and also,
the larger the network size N, the larger the degree of its biggest hub.

As an example, in the WWW sample, an exponential distribution would imply
Kmax ' 14, while assuming a scale-free property would imply
Kmax ' 95, 000

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 24 / 41



About the term “scale-free”

To better understand this term, we need to address the moments of the
degree distribution. The n−th moment is the mean of the n-th power of the
degree random variable:

〈Kn〉 =
∞∑

Kmin

KnpK '
∫ ∞
Kmin

Knp(K)dK

In particular, the first moments are of special importance:

n = 1: the first moment is the average degree
n = 2: the second moment is related to the variance as follows:

σ2
K = 〈K2〉 − 〈K〉2

where σK (the square root of the variance) is the standard deviation.
n = 3: the third moment determines skewness, telling us how symmetric pK is
around the mean 〈K〉.
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About the term “scale-free” (ΙΙ)

For a scale-free network, the n-th moment is:

〈Kn〉 =
∫ Kmax

Kmin

Knp(K)dK = C
Kn−γ+1
max −Kn−γ+1

min

n− γ + 1

Since Kmin is typically fixed, the degree of the longest hub, Kmax, increases
with the network size. For large networks, we thus need take Kmax →∞ and
the moment 〈Kn〉 depends on the interplay of n and γ.

if n− γ + 1 > 0 then 〈Kn〉 goes to infinity as Kmax →∞, therefore all
moments larger than γ − 1 diverge.
if n− γ + 1 ≤ 1 then 〈Kn〉 goes to zero , therefore all moments n ≤ γ − 1 are
finite.

But for many scale-free networks, the degree exponent γ is between 2 and 3,
therefore the first moment 〈K〉 is finite, but the second and higher moments
〈K2〉 and 〈K3〉 go to infinity as N →∞
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About the term “scale-free” (ΙΙΙ)

This divergence of the higher moments helps us understand the origin of the
”scale-free” term. Indeed, the degrees in the normal distribution (and thus in
a great variety of distributions) concentrate in a range

K = 〈K〉 ± σK

In random networks with Poisson degrees σ2
K = 〈K〉 thus σK = 〈K〉1/2,

which is much smaller than 〈K〉, hence the degrees lie in the range
K = 〈K〉 ± 〈K〉1/2. In other words, nodes in random networks have
comparable degree close to the average degree 〈K〉, thus the average degree
〈K〉 serves as the ”scale” of the network.

In contrast, scale-free networks lack a scale, since the first moment of degree
K is finite, yet the second moment is infinite, thus the fluctuation of degrees
around their average can be arbitrarily large. Hence networks with γ < 3 do
not have a meaningful internal scale, so we can call them ”scale-free”.
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About the term “scale-free” (ΙV)

Strictly speaking, 〈K2〉 diverges only in the N →∞ limit. Yet the divergence
is relevant for finite networks as well.

For most of these real networks, σ is significantly larger than 〈K〉, thus
allowing large variations in node degrees. The only exceptions are the power
grid (which is not scale-free) and the phone-calls net (which is scale-free but
has a large γ, so it can be well approximated by a random network).
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About the term “scale free” (V)

The standard deviations of these real networks are also depicted in the above
figure. The green line corresponds to σK = 〈K〉1/2 (the standard deviation
of a random network)

For all networks (except power grid and phone-calls) the standard deviation is
much larger than what it should be in a random network.
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C. Ultra-Small-World property

Important question: do hubs affect the small-world property? The answer is
yes; distances in scale-free networks are smaller than the distances observed
in an equivalent random network.

The dependence of average distance 〈d〉 on the system size N and the degree
exponent γ is:

〈d〉 ∼


constant, γ = 2
ln lnN , 2 < γ < 3
lnN

ln lnN
, γ = 3

lnN , γ > 3

i.e. there are four scaling regimes which correspond to a characteristic impact to
the average path length.
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Four regimes

We now discuss each one out of the four regimes.

Anomalous regime (γ = 2). According to the formula

Kmax = Kmin ·N
1

γ−1

for γ = 2 the size of the biggest hub is linear in N, almost all nodes are
connected to the same central hub, thus they are very close to each other
and the path lengths do not depend on N.

Ultra-small-world (2 < γ < 3): The average path length increases as ln lnN ,
which is significantly smaller than lnN in random networks. This is due to
the hubs that radically reduce path lengths by connecting with each other a
large number of small degree nodes. As an example, for the world’s social
network (N ' 7 ∗ 109), the random network model would give lnN = 22.66
while the fact that it is scale-free gives the actual average path length of
ln lnN = 3.12 only.
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Four regimes (II)

Critical point (γ = 3). The second moment of degrees does not diverge any
longer and the lnN dependence of random networks returns; however, a
double logarithmic correction ln lnN occurs, shrinking the distances
compared to random nets.

Small world (γ > 3). In this regime, 〈K2〉 is finite and the average path
length exhibits similar small-world properties as for random networks. This is
because, although hubs continue to be present, for γ > 3 their size and
number do not suffice to drastically reduce path lengths.
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We are always close to the hubs

F. Kavinthy (1929) claimed, counterintuitively, that ”it is always easier to
find someone who knows a famous person than some insignificant person”.
This is particularly the case in scale-free networks:

The figure shows the distance (〈dtarget〉) of a node with degree K ' 〈K〉
from a target node with degree Ktarget. We remark that:

in scale-free nets we are closer to the hubs of high degree
path lengths are visibly longer in random networks

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 33 / 41



The role of the degree exponent
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The role of the degree exponent (II)

Note that when γ < 2 then Kmax = KminN
1

γ−1 would lead to Kmax bigger
than N ! This is not possible without self-loops / multiple links, so such
degree distributions do not correspond to real networks! In other words, there
exist no scale-free networks for γ < 2 (anomalous regime).

for γ > 3 , the probability pK ∼ K−γ for nodes of degree K is small for big
K, so hubs are small and not so many. Thus, the scale-free network is hard to
distinguish from a random network (as an example, path lengths are
logarithmic in the network size).

Summarizing, the most interesting regime is 2 < γ < 3 , when scale-free nets
become ultra-small. Interestingly, many important real networks, such as the
WWW and protein interaction networks, are in this regime!

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 35 / 41



D. Generating networks with arbitrary degree distribution

Random networks generated by the Erdős–Rényi model have a Poisson
degree distribution.

However, the degree distributions of real networks significantly deviate from a
Poisson form.

Important question: Can we improve random networks so that their degree
distribution becomes closer to the one of real networks?

We will present 2 frequently used methods.
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a. Configuration Model

It creates random networks with a pre-defined degree sequence. This is done
via making sure that each node has a pre-defined degree Ki but otherwise
the network is wired randomly.
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Configuration Model (II)

The configuration model algorithm includes the following steps:

Degree Sequence: Assign a degree to each node, represented as stubs or
half-links. We obviously must start with an even number of stubs. Note that
the degree sequence is either generated from a pre-selected pK distribution or
by the fixed degrees of a real network. Also note that, if L is the number of
network links, then the sum of degrees (stubs) is 2L.

Network Assembly: Randomly select a stub pair and connect the two stubs.
Then, randomly choose another pair from the remaining 2L− 2 stubs and
connect the two stubs, and so on, until all stubs are paired up.
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Configuration Model (III)

Note 1: The probability of having a link between nodes of degree Ki and Kj

is:

Pij =
KiKj

2L− 1

Indeed, a stub of node i can connect to 2L− 1 stubs, among which Kj are
attached to node j, so that the probability that a particular i-stub is connected
to node j is

Kj
2L−1 , and node i has Ki stubs (attempts to connect to node j).

Note 2: The obtained network may contain self-loops and multi-links. Yet,
their number remains negligible, as the number of connection choices
increases with N.

Note 3: The network obtained is inherently random and this simplifies
analytic calculations.
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b. Degree-Preserving Randomization

This is another method of obtaining a random rewiring of an original
scale-free network, which however remains scale-free and preserves degrees.

We randomly select two sources (S1, S2) and two targets (T1, T2) such that
initially there is a S1 − T1 link and a S2 − T2 link. We then swap the two
links, creating an S1 − T2 link and an S2 − T1 link. The swap leaves the
degrees unchanged, yet random rewiring is introduced. This procedure is
repeated until we rewire each link at least once.
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A final note

The exact power-law form is rarely seen in real systems. Instead, the scale-free
property tells us that we must distinguish two rather different classes of networks.

Exponentially bounded networks: their degree distributions decreases
exponentially or faster for high K, so we lack significant degree variations
(since 〈K2〉 is smaller than〈K〉). Examples of such pK include the Poisson,
Gaussian, or exponential distributions. Erdős–Rényi, Watts-Strogatz models
are the best known models in this class. Real networks include highway
networks and the power grid.

Fat-tailed networks: their degrees have a power law in the high-K region, and
〈K2〉 is much larger than 〈K〉, resulting in considerable degree variations and
big hubs. Scale-free nets with a power-law degree distribution offer the
best-known example.Real networks include the WWW, the Internet, protein
interaction networks, social networks.
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