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In this lecture

We give an insight into the simplest, most studied random networks: the
classical random graphs
Two basic models:

GN,p: a probability space (statistical ensemble) of networks with N nodes and
probability p that any two nodes are linked, independently for the various links.
GN,L: a probability space whose points are all possible labelled graphs of N
nodes and L links (all such graphs having equal probability).

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 2 / 32



An example of a GN,p graph

Figure: The GN,p space, for N=3. All graphs in each column are isomorphic, that is they
can be transformed into each other by simply relabelling their nodes.
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An example of a GN,L graph

Figure: The GN,L space, for N=3 and L=1.
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On the equivalence of the two models

When N → ∞ and the network is sparse, the two models are equivalent1,
taking

p =
L(
N
2

)
Indeed, note that the number of links in GN,p follows the binomial
distribution B(

(
N
2

)
, p), so the average number of links is

(
N
2

)
· p

The degree distribution of GN,p is clearly:

P (q) =

(
N − 1

q

)
· pq(1− p)N−1−q

(the probability that a random node has degree q)
The mean degree of a node is 〈q〉 = p(N − 1)

1Note: the multiple connections and loops in large GN,L do not harm the equivalence, since
in large, sparse graphs there are only very few of them.
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The notion of uncorrelated networks

When N → ∞ and the mean degree 〈q〉 is finite (i.e., when p → constant
N )

then the binomial distribution converges to the Poisson and we get:

P (q) = e−〈q〉 · 〈q〉
q

q!

Because of the factorial in the denominator, the degrees decay very fast (in
contrast to real networks where degrees decay much slower).
Most importantly, the degrees of various nodes are statistically independent
of each other; this applies even to connected nodes! (the only restriction is
the fixed mean degree of each node).
Such networks are called uncorrelated networks, and we will address this
notion in the following lectures in detail.
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Loops (cycles) in classical random graphs (I)

We will see that large, sparse random graphs have few loops.
Indeed, recall that the clustering coefficient of a node is the probability that
two neighbors of the node are themselves neighbors. In the GN,p case this is:

C = p =
〈q〉

N − 1
' 〈q〉

N
,

where 〈q〉 the mean degree.
So, in infinite, sparse GN,p the clustering coefficient approaches zero, and
clustering has only a finite effect.
As an example, imagine a random network with 105 nodes where the mean
number of neighbors of a node is 10, so the clustering coefficient would be
c ' 10−4, which is much smaller than in real networks (such as in the
Internet).
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Loops (cycles) in classical random graphs (II)

Recall that

C = 3 · #loops of length 3 in the network
#connected triples of nodes = 3 · N3

T
,

where the denominator is clearly

T =

N∑
i=1

(
qi
2

)
=

N∑
i=1

qi(qi − 1)

2
=

N∑
i=1

q2i
2

−
N∑
i=1

qi
2
,

where qi the degree of node i. If 〈 〉 represents average, then we easily get that:

T =
N(〈q2〉 − 〈q〉)

2
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Loops (cycles) in classical random graphs (III)
But for Poisson distributions it is 〈q2〉 = 〈q〉2 + 〈q〉,
because

V ar(q) = E(q2)− E2(q)

= 〈q2〉 − 〈q〉2

= E(q) = 〈q〉

so:
T = N · 〈q〉

2

2

and finally

N3 =
C · T
3

=
〈q〉 ·N 〈q〉2

2

N · 3

=
〈q〉3

6
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Loops (cycles) in classical random graphs (IV)

This shows that in sparse random graphs the number of triangles does not
depend on its size; this number is finite even if these graphs are infinite.
Similarly, the number of loops of length L is

NL ' 〈q〉L

2L
,

provided L is smaller than lnN (the network diameter).
In other words, any finite neighborhood almost certainly does not contain any
loops; such networks are locally tree-like.
However, there are plenty of long loops of length exceeding lnNL ∼ N if
L >> lnN . Obviously, such long loops do not spoil the local tree-like
character.
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Cliques in random graphs

Cliques are fully connected subgraphs e.g. a triangle is a 3-clique.
Since there are so few loops in such networks, the 3-cliques are the maximum
possible cliques and the bigger cliques in sparse classical random graphs are
almost entirely absent.
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Random Regular Graphs

A similar random network is the random regular graph: all vertices of this
graph have equal degrees.
It is the probability space of all possible graphs with N vertices of degree q
all, each such graph realized with equal probability.
The number of loops of length L is, similar to the GN,p case:

NL ' (q − 1)L

2L
,

so these networks also have a locally tree-like structure.
An infinite random regular graph approaches the Bethe lattice with the same
degree.
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The Diameter of random graphs (I)

Diameter: maximum shortest path length
We will exploit the local tree-like character of random networks (we start
with a random tree).
Let b̄ the mean (expected) branching of a node (b̄ = q̄ − 1, where q̄ the
expected degree of the node).
Then, by similar arguments as in the Bethe lattice/Cayley tree case, we have
that the number zn of the n−th nearest neighbors of a node grows as b̄n.
So the number of network nodes Sn which are not further than distance n
from a given node is b̄n.
Taking, roughly, b̄¯̀∼ N, where ¯̀ the mean internode distance, yields:

¯̀' lnN

ln b̄
,

for large N .
This result is actually valid for all uncorrelated networks.
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The Diameter of random graphs (II)

In random q-regular graph b = q − 1 so we get

¯̀' lnN

ln(q − 1)
,

To obtain the diameter of the GN,p random graph, we need to evaluate its
average branching.
Let the node degrees be q = 0, 1, 2, .... Let N(q) the number of nodes of
degree q.
For a random node, the degree distribution is:

P (q) =
N(q)

N
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The Diameter of random graphs (III)

Now let us focus on the degree distribution of nodes, who are
end nodes of a randomly chosen link.

Figure: End nodes of a randomly chosen link in a network have different statistics of
connections from the degree distribution of this network.

Interestingly, we will show that the degree distribution of such end nodes
is different to the degree distribution of a random node (which is not
necessarily an end node)!

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 15 / 32



The Diameter of random graphs (IV)

Clearly
∑

q N(q) = N. Also,
∑

q q ·N(q) = N〈q〉, where 〈q〉 the mean
degree.
Let us randomly choose a link and then randomly one of its end nodes. The
probability of this end node having degree q is

q ·N(q)

N〈q〉
,

since the number of all (“directed”) links in the network is N〈q〉 and the
“directed” links adjacent to q-degree node is clearly N(q) · q

Thus, the degree distribution of a q-degree end node is

q

〈q〉
· N(q)

N
=

q · P (q)

〈q〉
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The Diameter of random graphs (V)

So we have proven that: in a random network with degree distribution P (q),
the degree distribution of an end node of a randomly chosen link, is not P (q)
but

q · P (q)

〈q〉
In other words, the connections of end nodes of links are organized in a
different way from those of randomly chosen nodes!
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The Diameter of random graphs (VI)

Now, the average degree of an end node of a randomly chosen link is:∑
q

q · Pr{degree = q} =
∑
q

q · q · P (q)

〈q〉
=

1

〈q〉
∑
q

q2 · P (q) =
〈q2〉
〈q〉

,

which is greater than the mean degree 〈q〉 of random nodes.
So, the mean branching is:

b̄ =
〈q2〉
〈q〉

− 1

But for the Poisson distribution it is 〈q2〉 = 〈q〉2 + 〈q〉, so:

b̄ = 〈q〉

And the final famous diameter formula is:

` ∼ lnN

ln〈q〉
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The birth of a giant component (I)

In the above derivation of the diameter we assumed the graph is connected.
However, when the mean degree is low (e.g. 〈q〉 close to 0), the graph is
actually disconnected, consisting of several, different connected components.
Interestingly, when 〈q〉 exceeds 1, the graph includes a single ”giant”
component: a large connected component with ε ·N nodes (ε > 0 constant,
N the total number of nodes). Also, numerous much smaller components are
included.
On the other hand, if 〈q〉 < 1 a giant component is absent and there are only
plenty of small components.

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks ΥΔΑ ΜΔΕ, Patras 2020 - 2021 19 / 32



The birth of a giant component (II)
The emergence of the giant component (when the mean degree 〈q〉 surpasses
1) happens without a jump; its birth is a continuous phase transition where
〈q〉 = 1 is the critical point.
Note that this transition happens when the network is still quite sparse
(〈q〉 << N and the number of links is linear in the number of network
nodes). Actually, the giant component relative size becomes almost 99%
already when 〈q〉 = 5.
Near the birth point, the relative size is s ' 2(〈q〉 − 1), e.g. when 〈q〉 = 1.01
then S = 0.02 = 2% (in other words 0.02 ·N nodes belong to the giant
component).

Figure: The relative size of a giant connected component in a classical random graph
versus the mean degree of its nodes. Near the birth point, s ' 2(〈q〉 − 1).
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Smaller components

What about the connected components, beyond the giant one?
Actually, away from the birth point, the biggest non-giant component, the
second biggest, the third etc., all have sizes of the order of lnN (much
smaller than the giant one) and their number grows with N .
Let us now move to the critical point, where a giant component is still
absent. At this point, the biggest connected component, the second/third
biggest and so on, all of these components are of the order of N2/3, a size
much smaller than N (the network size) but much bigger than lnN . This is
due to the fact that, away from the critical point, the distribution of
connected component size has a rapid exponential decay; in contrast, exactly
at the critical point, the size distribution of component decays slowly as a
power law:

P (s) ∼ s−5/2
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The transition regime

Figure: The evolution of connectivity
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The supercritical regime

It has the most relevance to real systems. It takes place when

p > 1/N, (〈k〉 > 1)

where 〈k〉 the average degree.
It contains numerous isolated components coexisting with the giant
component. These smaller components are trees, while the giant component
contains loops and cycles.
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The connected regime

For sufficient large p (p > lnN
N ) we have 〈k〉 > lnN and the giant

component “absorbs” all nodes and components, and the network becomes
connected. Note that the network is still sparse (> N lnN links).
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Rough estimation of the giant component birth

Let u = 1− NG

N the fraction of nodes not in the giant component GC (NG :
the giant component size)
Let i a node not in GC and j another node. Then, either a) node i is not
connected to node j (the probability for this is 1− p) or b) i is connected to
j but j /∈ GC ; this happens with probability p · u. The total probability that i
is not connected to GC is

(1− p+ p · u)N−1

As u is the fraction of nodes not in the GC , taking p = 〈k〉
N−1 then solving

u = (1− p+ pu)N−1 gives lnu ' −〈k〉(1− u)
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Rough estimation of the giant component birth

Taking exponential of both sides leads to u = e−〈k〉(1−u)

Taking S the fraction of nodes in the G, it is S = NG

N , so S = 1− u and
S = 1− e−〈k〉·S

This formula provides the size S of the GC as a function of 〈k〉. Although
looking simple, it does not have a closed solution, so we can “solve” it
graphically
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Rough estimation of the fully connected regime

the probability that a randomly selected node does not have a link to the
giant component is:

(1− p)NG ' (1− p)N ,

where NG the giant component size (in this regime NG ' N). The expected
number of such isolated nodes is:

IN = N(1− p)N ' N · e−Np

Let us examine when only one (1) node is disconnected from giant
component:

IN = 1 ⇒ N · e−Np = 1 ⇒ p =
lnN

N
,

which yields 〈k〉 = lnN
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Why real networks are not Poisson?

How big are the differences between node degrees? Can high-degree nodes
coexist with small-degree nodes?
Recall that the degree distribution in random networks is approximately
Poisson:

Pk = e−〈k〉 · 〈k〉
k

k!

Form Stirling’s approximation: k! ∼ [
√
2πk](ke )

k, we get:

Pk =
e−〈k〉
√
2πk

·
(
e · 〈k〉
k

)k

For degree k > e · 〈k〉, the parenthesis term is smaller than 1, and both this
term amd 1/

√
k decrease rapidly with k increasing. Thus, the chance of hubs

(nodes of high degree) decreases very fast (faster than exponentially).
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Why real networks are not Poisson?

The figure below shows the degree distribution of three real networks,
together with the corresponding Poisson fit:

The figure shows the significant deviations, since the Poisson model
underestimates both the number of high-degree nodes (hubs) as well as the
number of low degree nodes.
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Most real networks are supercritical

As the figure below shows, most real networks are not connected:
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Most real networks are supercritical

As a matter of a fact, most of them are at the supercritical regime:
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Random graph evolution

In Erdös - Renyi Gn,p random graphs, certain properties exhibit a threshold
behavior, in the sense that they appear quite suddenly, for a small change of
independent parameter (the link probability p) around a critical value pc.
Actually, when p < pc then the probability of Gn,p having this property tends
to 0 (as N → ∞), while p > pc implies that the probability of the property
tends to 1 as N → ∞ (in other words, either no graph or all graphs in Gn,p

probability space have the property)!

Figure: Evolution of a Random Graph
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