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Real Networks

@ Networks can be abstracted by nodes connected by links

o Networks emerge in technology (Internet, WWW), society (transportation
networks, electricity networks, social networks), biology (cells, proteins)

@ Many real networks are neither purely regular nor purely random

@ They exhibit complex topological features, with properties like:

e small-world (short path lengths among any two nodes)
o hubs (power-law degree distributions)
e high clustering of nodes
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Networks (graphs)

@ a network (or graph) is a set of nodes (vertices) connected by links (edges).

Figure: A graph
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Networks (graphs): Basic Definitions

degree of a node: The number of its connections (adjacent nodes).
regular graph: all nodes have same degree.

simple graph: no multiple links among any two nodes, neither any loops of
length 1 (nodes connected to themselves).

multigraph: a graph with multiple links or self-loops.

path: a sequence of adjacent nodes and links with no repeated nodes.
cycle (or loop): a closed path where only the start and end nodes coincide.
tree: a connected graph without loops (trees are simpler to analyse).

network size: the number of nodes V. Also, let L the number of links. In
trees, itis L = N — 1.
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Networks (graphs): Abstraction (I)

Networks represent a wide variety of structures in complex systems comprised of
entities (nodes) and their relations (modelled by edges):

@ edges representing tangible, physical links, such as cables, roads, electricity
supply, neural networks.

@ edges representing physical interactions, such as biological interactions of
proteins.

@ edges representing etheral, intangible connections irrespective of the physical
layer, such as relations of pages in the web or in a network of airports.
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Networks (graphs): Abstraction (II)

@ edges representing geographic closeness, such as among countries in a map,
sensors in an loT deployment, cells connected in tissues.

@ edges representing social connections, such as friendship, collaboration,
common interests etc.

@ edges representing conceptual linking, such as in dictionaries and citation
networks.
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Networks (graphs): An airline network

@

@
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Networks (graphs): A city network

Figure: An urban street network
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Networks (graphs): A conceptual network
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Figure: Relational network of concepts in network theory
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Examples of graphs (1)

@ a complete graph: all nodes connected to each other = L = (];7)

@ a star: a “central” node to which all rest nodes are linked = maximum
separation among nodes is 2 (it is the most compact tree).

@ comb and brush graphs.

N

Figure: Examples of different graphs

4

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks TAA MAE, Patras 2020 - 2021



Examples of graphs (1)

@ (g, g)-cage graphs: a regular graph with minimum number of links such that
degrees are q and a given length g of the shortest cycle. e.g. the Petersen
graph is a (3,5)-cage graph.

@ hypergraph: generalized graphs where links (edges) are subsets of nodes (a
graph is a hypergraph where all edges have cardinality 2).

Figure: The Petersen graph

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks TAA MAE, Patras 2020 - 2021 11 /32



Examples of graphs (llI)

@ a Cayley tree: a regular tree with a central node (root) and a boundary with
a finite fraction of dead end nodes (leaves).

@ a Bethe lattice: an extended, infinite Cayley tree without a boundary and any
dead ends = all nodes in a Bethe lattice are equivalent, there is no central
node.

@ bipartite graphs: nodes partitioned in two sets with links only among different
parts (e.g. networks of nodes-authors and nodes-papers modeling scientific
co-authorship).

Cayley tree and Bethe lattice Bipartite graph
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test path length

o distance /;; : the length (number of links) of the shortest path between nodes
7 and j
@ Two notions of node separation:
o mean internode distance £ : the average of the ¢;; distances over all (i, ) node
pairs (for which ¢;; < 00)
o diameter £p : the maximum of the various ¢;; (i.e., the maximum internode
distance)
@ the dependence of £ or £ on network size N is characteristic in different
network types:
e in “compact” networks, £(N) grows slower with N

e in “looser” structure (like lattices) the growth of (V) is fast
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Lattices vs Trees (I)

@ in finite lattices, the size dependence ¢(N) is power-law:
ZN Nl/d,

where d is the dimension of the lattice (an integer). B
e.g. in a regular finite lattice of dimension 2, it is obviously £ ~ /N (= N'/?)

In other words, such networks are “large worlds” with large distances, e.g.
when N = 10'2 then £ ~ 106.
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Lattices vs Trees (1)

@ in contrast, trees are “small” worlds: consider the g-regular Bethe lattice and
Cayley tree. Let b = ¢ — 1 the “branching” constant. Then, the number of
nodes n = n(¢) within distance ¢ from the root is:

n=14+q+qgh+qgb®>+. +qb ' =

bt —1
b—1

=14+ql+b+b*+ ..+ =14¢q

In N
Inb’
which grows much slower than the power-law in lattices. As an example, if a

Cayley tree has 10'2 nodes of degree 5, then £ ~ 10, which is dramatically
smaller than in the lattice case.

ne~bt =0~
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Milgram's experiment - six degrees of separation (1)

@ the small-world phenomenon first observed in a social network of
acquaintances by the social psychologist Stanley Milgram (1967).

@ question: how many intermediate social links separate two randomly chosen,
remotely located individuals?

@ experiment: choose a random person in Omaha, Nebraska and a random
person in Boston. The Omaha person should either send a letter to the
Boston person, or to another person who may know the Boston person and
so on. Repeat this for a very large number of Omaha-Boston person-pairs.
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Milgram's experiment - six degrees of separation (Il)

@ counter-intuitive finding: an essential number of letters made it to the target,
after passing on average only 5.5 intermediate persons
="six degrees of separation”

Omaha ——= Boston

Figure: How Stanley Milgram scanned a net of acquaintances in the US. Notice that
some chains of acquaintances were broken off

Prof. Sotiris Nikoletseas Probabilistic Methods in Complex Networks TAA MAE, Patras 2020 - 2021 17 / 32



Directed networks

@ they include directed connections
@ example: networks of citations in scientific papers

e nodes: papers
o links: directed from a paper to papers cited by the first paper (which was
published later in time)

Figure: Network of citations in scientific papers
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Random networks (1)

@ a random network is not a single graph, but a statistical ensemble (a
probability distribution) of graphs. This ensemble is created via a random
experiment and each member of the resulting ensemble has a certain
statistical weight (probability).

e example: the G,,, random graph ("Gilbert” model)

o n labelled nodes (i = 1,2, ..., n)
e each link exists with some probability p, independently for the various links

p(-p? p21-p
2 2
i \ 1%
p(1-p)? p2I-p
2 2 2 2
) - AN A
l. .3 1 ] 1 L 1 3
(1-p)? p(1-p)? p21-p p3

Figure: The Gilbert model of a random graph (the G, , model) for n=3
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Random networks (I1)

e random geometric graphs (G, r)

o throw randomly, uniformly n points in [0, 1]%.
e connect any two points by a link iff their Euclidean distance is at most R

(motivation: sensor networks)
e random neighbor graphs (G,, i)

o throw randomly, uniformly n points in [0, 1],
e connect each node to each k nearest neighbors.

(motivation: power control in wireless networks)

e random intersection graphs (G, ., )
e n nodes and m labels
e each node randomly, independently chooses labels with probability p.
o two nodes are linked iff they share at least one label.
(motivation: social networks, frequency assignment, cryptography in wireless
networks)
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Degree distribution (1)

o the degree distribution P(q) is the probability that a randomly chosen node
in a random network has degree ¢:

where (N(q)) is the average number of nodes of degree ¢ in the network,
where averaging is taken over the whole statistical ensemble.

o Clearly N =3 (N(q)).

@ Empirically, in a single graph g of the ensemble, we observe the number

Ny (q) of nodes of degree g. The ratio P,(q) = NQT(Q) is also usually called

degree distribution and in the infinite network limit, it coincides with P(g).
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Degree distribution (II)

@ the degree distribution is the simplest statistic of a random network, however
in many cases the insight it offers is very informative.

o all parts of the degree distribution (including the low- and high-degree parts)
are important.

@ particularly, the decay rate of the degree distribution is very characteristic:
e in Gy, random graphs, degree distribution decays quite fast:

P(q) ~ l' (for large q)
q!

and practically there are no strongly connected hubs
e in contrast, in several real world networks (like the Internet, cellular nets)
degree distributions decay much slower, and hubs of essential role occur

P(q) ~q " (for large q)

where «y constant = power-law decay rate
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Degree distribution (II1)

Most common degree distributions in complex networks:

@ Poisson distribution: in random networks of n nodes and independent edge
probability p, it is:

-1
Pr{deg(u) =k} = <n L >pk(1 —p)" 17k (binomial)
which for large n (and mean degree np = k constant) tends to the Poisson
distribution:
Tk . —Fk
E!
(which becomes the normal distribution for large k)

Pr{deg(u) =k} —
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Degree distribution (V)

@ exponential distribution: in emerging networks starting with a single node
and nodes added one at a time attaching themselves randomly to existing
nodes (thus, the newer the node the lower its expected degree is):

Pr{deg(u) =k} =A- et

@ power-law distribution, in a network where new nodes added attach
themselves preferentially to nodes with high degree it is:

Pr{deg(v) =k} =B -k
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Degree distribution (V)
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Figure: Common examples of degree distributions found in complex networks
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The scale-free property

@ This power-law degree distribution is also called scale-free and networks with
such scale-free degrees are called scale free networks.

@ The “scale-free” notion actually implies the absence of a typical node degree
in the network; the network includes several strong hubs, in contrast to the
rather regular structure of random networks.

@ Strictly, the term “scale-free” refers to the fact that a power-law distribution
q~" has the following property:
a re-scaling of the degree ¢ by a constant ¢ to ¢q (¢ — ¢q) only has a
constant multiplicate effect to (cq)™ = ¢~ 7 - ¢~ 7. This makes few nodes of
very high degree quite probable, in contrast to random networks where strong
hubs are highly improbable.
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Clustering (1)

@ It is about how the nearest neighbors of a node are interconnected, so it is a
non-local characteristic, going one step further than degree.

@ The clustering coefficient of a node is the probability that two nearest
neighbors of it are neighbors themselves. Thus, if node j has g; nearest
neighbors (degree ¢;) and there are t; connections among these ¢; neighbors
then the clustering coefficient of j is:

L
Cj = ———=
q;(q; —1)/2
since there are (%) potential connections. This is the Watt-Strogatz
clustering coefficient.
@ When all neighbors are connected to each other, then c¢; = 1.
@ When there are no connections among them, then ¢; = 0.
@ Most real networks have strong clustering.
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Clustering (I1)

@ Actually, clustering relates to the presence of many triangles in a network;
such a feature generally results from high transitivity e.g. in a social network
if Bob and Phil are both friends of Joe then they may probably meet and
become friends to each other, forming a triangle.

@ In this respect, note that t; equals the number of triangles (loops of length
3) attached to a node.
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Clustering (111)

@ The average clustering coefficient in a fixed network of n nodes is:

1
=13

J

ol

@ The expected clustering coefficient of a node of degree q in a random

network is:
() = {¢;(q))

i.e. we take the average over all nodes of degree ¢.

@ The mean clustering coefficient of the whole network is:
c=> P(g)e(q)
q

where P(q) the degree distribution.
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The Newman Clustering coefficient (I)

@ It is another way to quantify global clustering in a network (also called

transitivity index). It is

3-1

C = —

|Po|”
where ¢ the total number of triangles and | Pz| the total number of paths of
length 2 in the network (the latter counts all potential three-way
relationships, i.e. the number of all connected triples of a node and two of its
nearest neighbors).
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The Newman Clustering coefficient (II)

@ In general, the Watts-Strogatz coefficient focuses on local clustering while
the Newman coefficient focuses on how the network is clustered as a whole.
In real world networks, the two indices often correlate well:
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Figure: Correlation between Watts-Strogatz (C') and Newman (C) clustering coefficients
for 20 real-world networks
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Course Themes

Introduction (networks, small worlds, scale-free property, clustering)
Classical random graphs (loops, diameter, connectivity)

Small worlds, scale-free networks, generating networks of arbitrary degree
Random Networks | - The method of positive probability

Random Networks Il - Linearity of Expectation

The Second Moment Method

Randomized Algorithms

How the scale-free property emerges: preferential attachment

Spreading phenomena/how epidemics emerge
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