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Preface to the Hardcover Edition

As its title suggests, this book investigates reasoning about knowledge, in particular,
reasoning about the knowledge of agents who reason about the world and each other’s
knowledge. This is the type of reasoning one often sees in puzzles or Sherlock Holmes
mysteries, where we might have reasoning such as this:

If Alice knew that Bob knew that Charlie was wearing a red shirt,
then Alice would have known that Bob would have known that Charlie
couldn’t have been in the pantry at midnight. But Alice didn’t know
this . ..

As we shall see, this type of reasoning is also important in a surprising number of
other contexts. Researchers in a wide variety of disciplines, from philosophy to
economics to cryptography, have all found that issues involving agents reasoning
about other agents’ knowledge are of great relevance to them. We attempt to provide
here a framework for understanding and analyzing reasoning about knowledge that
is intuitive, mathematically well founded, useful in practice, and widely applicable.

The book is almost completely self-contained. We do expect the reader to be
familiar with propositional logic; a nodding acquaintance with distributed systems
may be helpful to appreciate some of our examples, but it is not essential. Our hope
is that the book will be accessible to readers from a number of different disciplines,
including computer science, artificial intelligence, philosophy, and game theory.
While proofs of important theorems are included, the non-mathematically-oriented
reader should be able to skip them, while still following the main thrust of the book.

We have tried to make the book modular, so that, whenever possible, separate
chapters can be read independently. At the end of Chapter 1 there is a brief overview
of the book and a table of dependencies. Much of this material was taught a number
of times by the second author in one-quarter courses at Stanford University and
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by the third author in one-semester courses at the Weizmann Institute of Science.
Suggestions for subsets of material that can be covered can also be found at the end
of Chapter 1.

Many of the details that are not covered in the main part of the text of each
chapter are relegated to the exercises. As well, the exercises cover material somewhat
tangential—but still of interest!—to the main thrust of the chapter. We recommend
that the reader at least look over all the exercises in each chapter. Far better, of
course, would be to do them all (or at least a reasonable subset). Problems that are
somewhat more difficult are marked with *, and even more difficult problems are
marked with .

Each chapter ends with a section of notes. These notes provide references to
the material covered in each chapter (as well as the theorems that are stated but not
proved) and, occasionally, more details on some points not covered in the chapter.
The references appearing in the notes are to the latest version of the material we could
find. In many cases, earlier versions appeared in conference proceedings. The dates
of the references that appear in the notes therefore do not provide a chronological
account of the contributions to the field. While we attempt to provide reasonably
extensive coverage of the literature in these notes, the field is too large for our coverage
to be complete. We apologize for the inadvertent omission of relevant references.

The book concludes with a bibliography, a symbol index, and an index.

Many people helped us in many ways in the preparation of this book, and we are
thankful to all of them. Daphne Koller deserves a very special note of thanks. She
did a superb job of proofreading the almost-final draft of the book. Besides catching
many typographical errors, she gave us numerous suggestions on improving the pre-
sentation in every chapter. We are very grateful to her. We would also like to thank
Johan van Benthem, Adam Grove, Vassos Hadzilacos, Lane Hemaspaandra and the
students of CS 487 at the University of Rochester, Wil Janssen, Hector Levesque,
Murray Mazer, Ron van der Meyden, Jan Pachl, Karen Rudie, Ambuj Singh, Elias
Thijsse, Mark Tuttle, and Lenore Zuck, for their useful comments and criticisms;
Johan van Benthem, Brian Chellas, David Makinson, and Krister Segerberg for their
help in tracking down the history of modal logic; and T. C. Chen and Brian Coan for
pointing out the quotations at the beginning of Chapters 2 and 3, respectively. Finally,
the second and third authors would like to thank the students of CS 356 (at Stanford
in the years 1984-1989, 1991-1992, and 1994), CS 24228 (at Toronto in 1990) and
the course on Knowledge Theory (at the Weizmann Institute of Science in the years
1987-1995), who kept finding typographical errors and suggesting improvements to
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the text (and wondering if the book would ever be completed), especially Gidi Avra-
hami, Ronen Brafman, Ed Brink, Alex Bronstein, Isis Caulder, Steve Cummings,
John DiMarco, Kathleen Fisher, Steve Friedland, Tom Henzinger, David Karger,
Steve Ketchpel, Orit Kislev, Christine Knight, Ronny Kohavi, Rick Kunin, Sherry
Listgarten, Carlos Mendioroz, Andres Modet, Shahid Mujtaba, Gal Nachum, Leo
Novik, Raymond Pang, Barney Pell, Sonne Preminger, Derek Proudian, Omer Rein-
gold, Tselly Regev, Gil Roth, Steve Souder, Limor Tirosh-Pundak-Mintz, Maurits
van der Veen, Orli Waarts, Scott Walker, and Liz Wolf.

Finally, we wish to thank the institutions that supported this work for many years;
the work of the first, second, and fourth authors was done at the IBM Almaden Re-
search Center, and the work of the third author was done at the Weizmann Institute
of Science, and while on sabbatical at the Oxford University Computing Labora-
tory. The work of the third author was supported in part by a Sir Charles Clore
Post-Doctoral Fellowship, by an Alon Fellowship, and by a Helen and Milton A.
Kimmelman Career Development Chair.



Preface to the Paperback Edition

Relatively few changes have been made for this edition of the book. For the most part,
this involved correcting typos and minor errors and updating references. Perhaps the
most significant change involved moving material from Chapter 7 on a notion called
“nonexcluding contexts” back to Chapter 5, and reworking it. This material is now
used in Chapter 6 to refine the analysis of the interaction between common knowledge
and agreement protocols.

The effect of teaching a number of classes using the hardcover edition of the
book can be seen in this edition. The second author would like to thank the students
of CS 676 (at Cornell in the years 1996, 1998, and 2000) for their comments and
suggestions, especially Wei Chen, Francis Chu, David Kempe, Yoram Minsky, Nat
Miller, and Suman Ganguli. The third author would like to thank the students of the
course “Knowledge and Games in Distributed Systems” (at the Technion EE dept.
in the years 1998, 2000, and 2002) for their comments and suggestions, especially
Tomer Koll, Liane Levin, and Alex Sprintson. We would also like to thank Jelle
Gerbrandy for pointing a minor bug in Chapter 3, and Rohit Parikh for pointing out
minor bugs in Chapters 1 and 2.

The second and third authors changed institutions between the hardcover and
paperback editions. The fourth author moved shortly before the hardcover edition
appeared. The second author is now at Cornell University, the third author is at the
Technion, and the fourth author is at Rice University. We would like to thank these
institutions for their support of the work on the paperback edition.



Chapter 1

Introduction and Overview

An investment in knowledge pays the best interest.
Benjamin Franklin, Poor Richard’s Almanac, c. 1750

Epistemology, the study of knowledge, has a long and honorable tradition in philos-
ophy, starting with the early Greek philosophers. Questions such as “What do we
know?” “What can be known?” and “What does it mean to say that someone knows
something?” have been much discussed in the philosophical literature. The idea of a
formal logical analysis of reasoning about knowledge is somewhat more recent, but
goes back at least to von Wright’s work in the early 1950’s. The first book-length
treatment of epistemic logic—the logic of knowledge—is Hintikka’s seminal work
Knowledge and Belief, which appeared in 1962. The 1960’s saw a flourishing of
interest in this area in the philosophy community. The major interest was in try-
ing to capture the inherent properties of knowledge. Axioms for knowledge were
suggested, attacked, and defended.

More recently, researchers in such diverse fields as economics, linguistics, Al
(artificial intelligence), and theoretical computer science have become interested in
reasoning about knowledge. While, of course, some of the issues that concerned the
philosophers have been of interest to these researchers as well, the focus of attention
has shifted. For one thing, there are pragmatic concerns about the relationship
between knowledge and action. What does a robot need to know in order to open a
safe, and how does it know whether it knows enough to open it? At what point does
an economic agent know enough to stop gathering information and make a decision?
When should a database answer “I don’t know” to a query? There are also concerns
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about the complexity of computing knowledge, a notion we can now quantify better
thanks to advances in theoretical computer science. Finally, and perhaps of most
interest to us here, is the emphasis on considering situations involving the knowledge
of a group of agents, rather than that of just a single agent.

When trying to understand and analyze the properties of knowledge, philosophers
tended to consider only the single-agent case. But the heart of any analysis of a
conversation, a bargaining session, or a protocol run by processes in a distributed
system is the interaction between agents. The focus of this book is on understanding
the process of reasoning about knowledge in a group and using this understanding
to help us analyze complicated systems. Although the reader will not go far wrong
if he or she thinks of a “group” as being a group of people, it is useful to allow a
more general notion of “group,” as we shall see in our applications. Our agents may
be negotiators in a bargaining situation, communicating robots, or even components
such as wires or message buffers in a complicated computer system. It may seem
strange to think of wires as agents who know facts; however, as we shall see, it is
useful to ascribe knowledge even to wires.

An agent in a group must take into account not only facts that are true about
the world, but also the knowledge of other agents in the group. For example, in a
bargaining situation, the seller of a car must consider what the potential buyer knows
about the car’s value. The buyer must also consider what the seller knows about
what the buyer knows about the car’s value, and so on. Such reasoning can get rather
convoluted. Most people quickly lose the thread of such nested sentences as “Dean
doesn’t know whether Nixon knows that Dean knows that Nixon knows that McCord
burgled O’Brien’s office at Watergate.” But this is precisely the type of reasoning
that is needed when analyzing the knowledge of agents in a group.

A number of states of knowledge arise naturally in a multi-agent situation that do
not arise in the one-agent case. We are often interested in situations in which everyone
in the group knows a fact. For example, a society certainly wants all drivers to know
that a red light means “stop” and a green light means “go.” Suppose we assume that
every driver in the society knows this fact and follows the rules. Will a driver then
feel safe? The answer is no, unless she also knows that everyone else knows and is
following the rules. For otherwise, a driver may consider it possible that, although
she knows the rules, some other driver does not, and that driver may run a red light.

Even the state of knowledge in which everyone knows that everyone knows is
not enough for a number of applications. In some cases we also need to consider the
state in which simultaneously everyone knows a fact ¢, everyone knows that everyone
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knows ¢, everyone knows that everyone knows that everyone knows ¢, and so on.
In this case we say that the group has common knowledge of ¢. This key notion was
first studied by the philosopher David Lewis in the context of conventions. Lewis
pointed out that in order for something to be a convention, it must in fact be common
knowledge among the members of a group. (For example, the convention that green
means “go” and red means “stop” is presumably common knowledge among the
drivers in our society.) John McCarthy, in the context of studying common-sense
reasoning, characterized common knowledge as what “any fool” knows; “any fool”
knows what is commonly known by all members of a society.

Common knowledge also arises in discourse understanding. Suppose that Ann
asks Bob “What did you think of the movie?” referring to a showing of Monkey
Business they have just seen. Not only must Ann and Bob both know that “the
movie” refers to Monkey Business, but Ann must know that Bob knows (so that
she can be sure that Bob will give a reasonable answer to her question), Bob must
know that Ann knows that Bob knows (so that Bob knows that Ann will respond
appropriately to his answer), and so on. In fact, by a closer analysis of this situation,
it can be shown that there must be common knowledge of what movie is meant in
order for Bob to answer the question appropriately.

Finally, common knowledge also turns out to be a prerequisite for achieving
agreement. This is precisely what makes it such a crucial notion in the analysis of
interacting groups of agents.

At the other end of the spectrum from common knowledge is distributed knowl-
edge. A group has distributed knowledge of a fact ¢ if the knowledge of ¢ is
distributed among its members, so that by pooling their knowledge together the
members of the group can deduce ¢, even though it may be the case that no member
of the group individually knows ¢. For example, if Alice knows that Bob is in love
with either Carol or Susan, and Charlie knows that Bob is not in love with Carol,
then together Alice and Charlie have distributed knowledge of the fact that Bob is in
love with Susan, although neither Alice nor Charlie individually has this knowledge.
While common knowledge can be viewed as what “any fool” knows, distributed
knowledge can be viewed as what a “wise man”—one who has complete knowledge
of what each member of the group knows—would know.

Common knowledge and distributed knowledge are useful tools in helping us
understand and analyze complicated situations involving groups of agents. The
puzzle described in the next section gives us one example.
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1.1 The “Muddy Children” Puzzle

Reasoning about the knowledge of a group can involve subtle distinctions between
a number of states of knowledge. A good example of the subtleties that can arise is
given by the “muddy children” puzzle, which is a variant of the well known “wise
men” or “cheating wives” puzzles.

Imagine n children playing together. The mother of these children has
told them that if they get dirty there will be severe consequences. So,
of course, each child wants to keep clean, but each would love to see
the others get dirty. Now it happens during their play that some of the
children, say k of them, get mud on their foreheads. Each can see the
mud on others but not on his own forehead. So, of course, no one says a
thing. Along comes the father, who says, “At least one of you has mud
on your forehead,” thus expressing a fact known to each of them before
he spoke (if k > 1). The father then asks the following question, over
and over: “Does any of you know whether you have mud on your own
forehead?” Assuming that all the children are perceptive, intelligent,
truthful, and that they answer simultaneously, what will happen?

There is a “proof™ that the first k — 1 times he asks the question,
they will all say “No,” but then the k™ time the children with muddy
foreheads will all answer “Yes.”

The “proof™ is by induction on k. For k = 1 the result is obvious:
the one child with a muddy forehead sees that no one else is muddy.
Since he knows that there is at least one child with a muddy forehead,
he concludes that he must be the one. Now suppose k = 2. So there
are just two muddy children, a and b. Each answers “No” the first time,
because of the mud on the other. But, when b says “No,” a realizes that
he must be muddy, for otherwise b would have known the mud was on
his forehead and answered “Yes” the first time. Thus a answers “Yes”
the second time. But b goes through the same reasoning. Now suppose
k = 3; so there are three muddy children, a, b, c. Child a argues as
follows. Assume that I do not have mud on my forehead. Then, by the
k = 2 case, both b and ¢ will answer “Yes” the second time. When they
do not, he realizes that the assumption was false, that he is muddy, and
so will answer “Yes” on the third question. Similarly for b and c.

The argument in the general case proceeds along identical lines.
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Let us denote the fact “at least one child has a muddy forehead” by p. Notice
that if k > 1, that is, more than one child has a muddy forehead, then every child
can see at least one muddy forehead, and the children initially all know p. Thus, it
would seem that the father does not provide the children with any new information,
and so he should not need to tell them that p holds when & > 1. But this is false!
In fact, as we now show, if the father does not announce p, the muddy children are
never able to conclude that their foreheads are muddy.

Here is a sketch of the proof: We prove by induction on ¢ that, no matter what
the situation is, that is, no matter how many children have a muddy forehead, all
the children answer “No” to the father’s first ¢ questions. Clearly, no matter which
children have mud on their foreheads, all the children answer “No” to the father’s
first question, since a child cannot tell apart a situation where he has mud on his
forehead from one that is identical in all respects except that he does not have a
muddy forehead. The inductive step is similar: By the inductive hypothesis, the
children answer “No” to the father’s first ¢ questions. Thus, when the father asks his
question for the (g + 1) time, child i still cannot tell apart a situation where he has
mud on his forehead from one that is identical in all respects except that he does not
have a muddy forehead, since by the induction hypothesis, the children will answer
“No” to the father’s first ¢ questions whether or not child i has a muddy forehead.
Thus, again, he does not know whether his own forehead is muddy.

So, by announcing something that the children all know, the father somehow
manages to give the children useful information! How can this be? Exactly what
is the role of the father’s statement? Of course, the father’s statement did enable
us to do the base case of the induction in the proof, but this does not seem to be
a terribly satisfactory answer. It certainly does not explain what information the
children gained as a result of the father’s statement.

We can answer these questions by using the notion of common knowledge de-
scribed in the previous section. Let us consider the case of two muddy children in
more detail. It is certainly true that before the father speaks, everyone knows p. But
itis not the case that everyone knows that everyone knows p. If Alice and Bob are the
only children with muddy foreheads, then before the father speaks, Alice considers
it possible that she does not have mud on her forehead, in which case Bob does not
see anyone with a muddy forehead and so does not know p. After the father speaks,
Alice does know that Bob knows p. After Bob answers “No” to the father’s first
question, Alice uses her knowledge of the fact that Bob knows p to deduce that her
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own forehead is muddy. (Note that if Bob did not know p, then Bob would have said
“No” the first time even if Alice’s forehead were clean.)

We have just seen that if there are only two muddy children, then it is not the case
that everyone knows that everyone knows p before the father speaks. However, if
there are three muddy children, then it is the case that everyone knows that everyone
knows p before the father speaks. If Alice, Bob, and Charlie have muddy foreheads,
then Alice knows that Bob can see Charlie’s muddy forehead, Bob knows that Charlie
can see Alice’s muddy forehead, etc. Itis not the case, however, that everyone knows
that everyone knows that everyone knows p before the father speaks. In general, if we
let EX p represent the fact that everyone knows that everyone knows . . . (k times) p,
and let Cp represent the fact that p is common knowledge, then we leave it to the
reader to check that if exactly k children have muddy foreheads, then EX~! p holds
before the father speaks, but EX p does not. It turns out that when there are k muddy
children, E* p suffices to ensure that the children with muddy foreheads will be able
to figure it out, while EX~!p does not. The father’s statement actually converts the
children’s state of knowledge from EX~1p to Cp. With this extra knowledge, they
can deduce whether their foreheads are muddy.

The careful reader will have noticed that we made a number of implicit assump-
tions in the preceding discussion over and above the assumption made in the story
that “the children are perceptive, intelligent, and truthful.” Suppose again that Alice
and Bob are the only children with muddy foreheads. It is crucial that both Alice
and Bob know that the children are intelligent, perceptive, and truthful. For example,
if Alice does not know that Bob is telling the truth when he answers “No” to the
father’s first question, then she cannot answer “Yes” to the second question (even if
Bob is in fact telling the truth). Similarly, Bob must know that Alice is telling the
truth. Besides its being known that each child is intelligent, perceptive, and truthful,
we must also assume that each child knows that the others can see, that they all hear
the father, that the father is truthful, and that the children can do all the deductions
necessary to answer the father’s questions.

Actually, even stronger assumptions need to be made. If there are k children
with muddy foreheads, it must be the case that everyone knows that everyone knows
...(k — 1 times) that the children all have the appropriate attributes (they are per-
ceptive, intelligent, all hear the father, etc.). For example, if there are three muddy
children and Alice considers it possible that Bob considers it possible that Charlie
might not have heard the father’s statement, then she cannot say “Yes” to the fa-
ther’s third question (even if Charlie in fact did hear the father’s statement and Bob
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knows this). In fact, it seems reasonable to assume that all these attributes are com-
mon knowledge, and, indeed, this assumption seems to be made by most people on
hearing the story.

To summarize, it seems that the role of the father’s statement was to give the
children common knowledge of p (the fact that at least one child has a muddy
forehead), but the reasoning done by the children assumes that a great deal of common
knowledge already existed in the group. How does this common knowledge arise?
Even if we ignore the problem of how facts like ““all the children can see” and “all
the children are truthful” become common knowledge, there is still the issue of how
the father’s statement makes p common knowledge.

Note that it is not quite correct to say that p becomes common knowledge because
all the children hear the father. Suppose that the father had taken each child aside
individually (without the others noticing) and said “At least one of you has mud on
your forehead.” The children would probably have thought it a bit strange for him
to be telling them a fact that they already knew. It is easy to see that p would not
become common knowledge in this setting.

Given this example, one might think that the common knowledge arose because
all the children knew that they all heard the father. Even this is not enough. To see
this, suppose the children do not trust each other, and each child has secretly placed
a miniature microphone on all the other children. (Imagine that the children spent
the previous summer at a CIA training camp.) Again the father takes each child
aside individually and says “At least one of you has a muddy forehead.” In this case,
thanks to the hidden microphones, all the children know that each child has heard
the father, but they still do not have common knowledge.

A little more reflection might convince the reader that the common knowledge
arose here because of the public nature of the father’s announcement. Roughly speak-
ing, the father’s public announcement of p puts the children in a special situation,
one with the property that all the children know both that p is true and that they
are in this situation. We shall show that under such circumstances p is common
knowledge. Note that the common knowledge does not arise because the children
somehow deduce each of the facts EXp one by one. (If this were the case, then
arguably it would take an infinite amount of time to attain common knowledge.)
Rather, the common knowledge arises all at once, as a result of the children being in
such a special situation. We return to this point in later chapters.
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1.2 An Overview of the Book

The preceding discussion should convince the reader that the subtleties of reasoning
about knowledge demand a careful formal analysis. In Chapter 2, we introduce a
simple, yet quite powerful, formal semantic model for knowledge, and a language for
reasoning about knowledge. The basic idea underlying the model is that of possible
worlds. The intuition is that if an agent does not have complete knowledge about
the world, she will consider a number of worlds possible. These are her candidates
for the way the world actually is. The agent is said to know a fact ¢ if ¢ holds at all
the worlds that the agent considers to be possible. Using this semantic model allows
us to clarify many of the subtleties of the muddy children puzzle in quite an elegant
way. The analysis shows how the children’s state of knowledge changes with each
response to the father’s questions, and why, if there are £ muddy children altogether,
it is only after the children hear the answer to the (k — 1) question that the ones
with muddy foreheads can deduce this fact.

We should emphasize here that we do not feel that the semantic model we present
in the next chapter is the unique “right” model of knowledge. We spend some time
discussing the properties of knowledge in this model. A number of philosophers have
presented cogent arguments showing that some of these properties are “wrong.” Our
concerns in this book are more pragmatic than those of the philosophers. We do not
believe that there is a “right” model of knowledge. Different notions of knowledge
are appropriate for different applications. The model we present in the next chapter is
appropriate for analyzing the muddy children puzzle and for many other applications,
even if it is not appropriate for every application. One of our goals in this book is to
show how the properties of “knowledge” vary with the application.

In Chapter 3, we give a complete characterization of the properties of knowledge
in the possible-worlds model. We describe two approaches to this characterization.
The first approach is proof-theoretic: we show that all the properties of knowledge
can be formally proved from the properties discussed in Chapter 2. The second
approach is algorithmic: we study algorithms that can determine whether a given
property holds under our definition of knowledge, and consider the computational
complexity of doing this.

One of the major applications we have in mind is using knowledge to analyze
multi-agent systems, be they systems of interacting agents or systems of computers in
anetwork. In Chapter 4 we show how we can use our semantic model for knowledge
to ascribe knowledge to agents in a multi-agent system. The reason that we use the
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word “ascribe” here is that the notion of knowledge we use in the context of multi-
agent systems can be viewed as an external notion of knowledge. There is no notion
of the agent computing his knowledge, and no requirement that the agent be able to
answer questions based on his knowledge. While this may seem to be an unusual
way of defining knowledge, we shall argue that it does capture one common usage
of the word “know.” Moreover, we give examples that show its utility in analyzing
multi-agent systems.

In Chapter 5 we extend the model of Chapter 4 to consider actions, protocols,
and programs. This allows us to analyze more carefully how changes come about in
multi-agent systems. We also define the notion of a specification and consider what
it means for a protocol or program to satisfy a specification.

In Chapter 6 we show how useful a knowledge-based analysis of systems can be.
Our focus in this chapter is common knowledge, and we show how fundamental it
is in various contexts. In particular, we show that it is a prerequisite for agreement
and simultaneous coordinated action.

In Chapter 7 we extend our notions of programs to consider knowledge-based
programs, which allow explicit tests for knowledge. Knowledge-based programs
can be viewed as giving us a high-level language in which to program or specify
a system. We give a number of examples showing the usefulness of thinking and
programming at the knowledge level.

In Chapter 8 we consider the properties of knowledge and time, focusing on how
knowledge evolves over time in multi-agent systems. We show that small changes
in the assumptions we make about the interactions between knowledge and time in
a system can have quite subtle and powerful effects on the properties of knowledge.

As we show in Chapter 2, one property that seems to be an inherent part of
the possible-worlds model of knowledge is that agents are logically omniscient.
Roughly speaking, this means they know all tautologies and all logical consequences
of their knowledge. In the case of the muddy children puzzle we explicitly make
the assumption that each child can do all the reasoning required to solve the puzzle.
While this property may be reasonable for some applications, it certainly is not
reasonable in general. After all, we cannot really hope to build logically omniscient
robots. In Chapter 9 we describe several approaches for constructing abstract models
that do not have the logical omniscience property.

As we have already discussed, our notion of knowledge in multi-agent systems
is best understood as an external one, ascribed by, say, the system designer to the
agents. We do not assume that the agents compute their knowledge in any way, nor
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Figure 1.1 Dependency diagram
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do we assume that they can necessarily answer questions based on their knowledge.
In a number of applications that we are interested in, agents need to act on their
knowledge. In such applications, external knowledge is insufficient; an agent that
has to act on her knowledge has to be able to compute this knowledge. The topic of
knowledge and computation is the subject of Chapter 10.

In Chapter 11, we return to the topic of common knowledge. We suggested in
the previous section that common knowledge arose in the muddy children puzzle
because of the public nature of the father’s announcement. In many practical set-
tings such a public announcement, whose contents are understood simultaneously
by many agents, is impossible to achieve. We show that, in a precise sense, common
knowledge cannot be attained in these settings. This puts us in a somewhat para-
doxical situation, in that we claim both that common knowledge is a prerequisite for
agreement and coordinated action and that it cannot be attained. We examine this
paradox in Chapter 11 and suggest two possible resolutions. The first makes use
of the observation that if we model time at a sufficiently coarse level of granularity,
then we often can and do attain common knowledge. The question then becomes
when and whether it is appropriate to model time in this way. The second involves
considering close approximations of common knowledge that are often attainable,
and suffice for our purposes.

Although a considerable amount of the material in this book is based on previ-
ously published work, a number of elements are new. These include much of the
material in Chapters 5, 7, 10, and some of Chapter 11. Specifically, the notions of
contexts and programs in Chapter 5, and of knowledge-based programs and their
implementation in Chapter 7, are new. Moreover, they play a significant role in the
way we model and analyze knowledge and action in multi-agent systems.

We have tried as much as possible to write the book in a modular way, so that
material in the later chapters can be read without having to read all the preceding
chapters. Figure 1.1 describes the dependencies between chapters. An arrow from
one chapter to another indicates that it is necessary to read (at least part of) the first
chapter in order to understand (at least part of) the second. We have labeled the
arrow if it is not necessary to read all of the first chapter to understand all of the
second. For example, the label 9.1 — 10, 9.3.3 — 10.3 on the arrow from Chapter 9
to Chapter 10 indicates that the only sections in Chapter 9 on which Chapter 10
depends are 9.1 and 9.3.3 and, moreover, the only section in Chapter 10 that depends
on Section 9.3.3 is Section 10.3. Similarly, the label 5 — 11.4 on the arrow from
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Chapter 5 to Chapter 11 indicates that Section 11.4 is the only section in Chapter 11
that depends on Chapter 5, but it depends on the whole chapter.

Certain material can be skipped without losing a broad overview of the area. In
particular, this is the case for Sections 3.3, 3.4, 4.5, 6.7, and 7.7. The second author
covered a substantial portion of the remaining material (moving at quite a rapid pace)
in a one-quarter course at Stanford University. A course designed to focus on the
application of our approach to distributed systems could cover Chapters 1, 2, 4, 5,
6, 7, 10, and 11. Each chapter ends with exercises and bibliographic notes; these
could be useful in a course based on this book. As we mentioned in the preface, we
strongly recommend that the reader at least look over the exercises.

Exercises

1.1 The aces and eights game is a simple game that involves some sophisticated
reasoning about knowledge. It is played with a deck consisting of just four aces and
four eights. There are three players. Six cards are dealt out, two to each player. The
remaining two cards are left face down. Without looking at the cards, each of the
players raises them up to his or her forehead, so that the other two players can see
them but he or she cannot. Then all of the players take turns trying to determine
which cards they’re holding (they do not have to name the suits). If a player does not
know which cards he or she is holding, the player must say so. Suppose that Alice,
Bob, and you are playing the game. Of course, it is common knowledge that none
of you would ever lie, and that you are all perfect reasoners.

(a) In the first game, Alice, who goes first, holds two aces, and Bob, who goes
second, holds two eights. Both Alice and Bob say that they cannot determine
what cards they are holding. What cards are you holding? (Hint: consider
what would have happened if you held two aces or two eights.)

(b) In the second game, you go first. Alice, who goes second, holds two eights.
Bob, who goes third, holds an ace and an eight. No one is able to determine
what he or she holds at his or her first turn. What do you hold? (Hint: by
using part (a), consider what would have happened if you held two aces.)

(c) In the third game, you go second. Alice, who goes first, holds an ace and an
eight. Bob, who goes third, also holds an ace and an eight. No one is able to
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determine what he or she holds at his or her first turn; Alice cannot determine
her cards at her second turn either. What do you hold?

* 1.2 Show that in the aces and eights game of Exercise 1.1, someone will always be
able to determine what cards he or she holds. Then show that there exists a situation
where only one of the players will be able to determine what cards he or she holds,
and the other two will never be able to determine what cards they hold, no matter
how many rounds are played.

1.3 The wise men puzzle is a well-known variant of the muddy children puzzle.
The standard version of the story goes as follows: There are three wise men. It is
common knowledge that there are three red hats and two white hats. The king puts
a hat on the head of each of the three wise men, and asks them (sequentially) if they
know the color of the hat on their head. The first wise man says that he does not
know; the second wise man says that he does not know; then the third wise man says
that he knows.

(a) What color is the third wise man’s hat?

(b) We have implicitly assumed in the story that the wise men can all see. Suppose
we assume instead that the third wise man is blind and that it is common
knowledge that the first two wise men can see. Can the third wise man still
figure out the color of his hat?

Notes

The idea of a formal logical analysis of reasoning about knowledge seems to have first
been raised by von Wright [1951]. As we mentioned in the text, Hintikka [1962] gave
the first book-length treatment of epistemic logic. Lenzen [1978] gives an overview
of the work in epistemic logic done in the 1960’s and 1970’s. He brings out the
arguments for and against various axioms of knowledge. The most famous of these
arguments is due to Gettier [1963], who argued against the classical interpretation
of knowledge as true, justified belief; his work inspired many others. Gettier’s
arguments and some of the subsequent papers are discussed in detail by Lenzen
[1978]. For recent reviews of the subject, see the works by Halpern [1986, 1987,
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1995], by Meyer, van der Hoek, and Vreeswijk [1991a, 1991b] (see also [Meyer and
Hoek 1995]), by Moses [1992], and by Parikh [1990].

As we mentioned, the original work on common knowledge was done by Lewis
[1969] in the context of studying conventions. Although McCarthy’s notion of what
“any fool” knows goes back to roughly 1970, it first appears in a published paper in
[McCarthy, Sato, Hayashi, and Igarishi 1979]. The notion of knowledge and common
knowledge has also been of great interest to economists and game theorists, ever since
the seminal paper by Aumann [1976]. Knowledge and common knowledge were first
applied to multi-agent systems by Halpern and Moses [1990] and by Lehmann [1984].
The need for common knowledge in understanding a statement such as “What did
you think of the movie?” is discussed by Clark and Marshall [1981]; a dissenting
view is offered by Perrault and Cohen [1981]. Clark and Marshall also present an
example of nested knowledge based on the Watergate scandal, mentioning Dean
and Nixon. The notion of distributed knowledge was discussed first, in an informal
way, by Hayek [1945], and then, in a more formal way, by Hilpinen [1977]. It was
rediscovered and popularized by Halpern and Moses [1990]. They initially called
it implicit knowledge, and the term “distributed knowledge” was suggested by Jan
Pachl.

The muddy children puzzle is a variant of the “unfaithful wives” puzzle discussed
by Littlewood [1953] and Gamow and Stern [1958]. Gardner [1984] also presents a
variant of the puzzle, and a number of variants of the puzzle are discussed by Moses,
Dolev, and Halpern [1986]. The version given here is taken almost verbatim from
[Barwise 1981]. The aces and eights game in Exercise 1.1 is taken from [Carver
1989]. Another related puzzle is the so-called “Conway paradox”, which was first
discussed by Conway, Paterson, and Moscow [1977], and later by Gardner [1977].
It was analyzed in an epistemic framework by van Emde Boas, Groenendijk, and
Stokhof [1980]. An extension of this puzzle was considered by Parikh [1992].
The wise men puzzle discussed in Exercise 1.3 seems to have been first discussed
formally by McCarthy [1978], although it is undoubtedly much older. The well-
known surprise test paradox, also known as the surprise examination paradox, the
hangman’s paradox, or the unexpected hanging paradox, is quite different from the
wise men puzzle, but it too can be analyzed in terms of knowledge. Binkley [1968]
does an analysis that explicitly uses knowledge; Chow [1998] gives a more up-to-date
discussion. Halpern and Moses [1986] give a slightly different logic-based analysis,
as well as pointers to the literature.



Chapter 2
A Model for Knowledge

Chuangtse and Hueitse had strolled onto the bridge over the Hao, when
the former observed, “See how the small fish are darting about! That
is the happiness of the fish.” “You are not a fish yourself,” said Hueitse.
“How can you know the happiness of the fish?” “And you not being I,”
retorted Chuangtse, “how can you know that I do not know?”

Chuangtse, c. 300 B.C.

2.1 The Possible-Worlds Model

As we said in Chapter 1, our framework for modeling knowledge is based on possible
worlds. The intuitive idea behind the possible-worlds model is that besides the true
state of affairs, there are a number of other possible states of affairs or “worlds”.
Given his current information, an agent may not be able to tell which of a number
of possible worlds describes the actual state of affairs. An agent is then said to
know a fact ¢ if ¢ is true at all the worlds he considers possible (given his current
information). For example, agent 1 may be walking on the streets in San Francisco
on a sunny day but may have no information at all about the weather in London.
Thus, in all the worlds that the agent considers possible, it is sunny in San Francisco.
(We are implicitly assuming here that the agent does not consider it possible that
he is hallucinating and in fact it is raining heavily in San Francisco.) On the other
hand, since the agent has no information about the weather in London, there are
worlds he considers possible in which it is sunny in London, and others in which
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it is raining in London. Thus, this agent knows that it is sunny in San Francisco,
but he does not know whether it is sunny in London. Intuitively, the fewer worlds
an agent considers possible, the less his uncertainty, and the more he knows. If the
agent acquires additional information—such as hearing from a reliable source that
it is currently sunny in London—then he would no longer consider possible any of
the worlds in which it is raining in London.

In a situation such as a poker game, these possible worlds have a concrete inter-
pretation: they are simply all the possible ways the cards could have been distributed
among the players. Initially, a player may consider possible all deals consistent with
the cards in her hand. Players may acquire additional information in the course of
the play of the game that allows them to eliminate some of the worlds they consider
possible. Even if Alice does not know originally that Bob holds the ace of spades,
at some point Alice might come to know it, if the additional information she obtains
allows her to eliminate all the worlds (distributions of cards among players) where
Bob does not hold the ace of spades.

Another example is provided by the muddy children puzzle we discussed in
the previous chapter. Suppose that Alice sees that Bob and Charlie have muddy
foreheads and that all the other children do not have muddy foreheads. This allows
her to eliminate all but two worlds: one in which she, Bob, and Charlie have muddy
foreheads, and no other child does, and one in which Bob and Charlie are the only
children with muddy foreheads. In all (i.e., both) of the worlds that Alice considers
possible, Bob and Charlie have muddy foreheads and all the children except Bob,
Charlie, and herself have clean foreheads. Alice’s only uncertainty is regarding her
own forehead; this uncertainty is reflected in the set of worlds she considers possible.
As we shall see in Section 2.3, upon hearing the children’s replies to the father’s first
two questions, Alice will be able to eliminate one of these two possible worlds and
will know whether or not her own forehead is muddy.

To make these ideas precise, we first need a language that allows us to express
notions of knowledge in a straightforward way. As we have already seen, English is
not a particularly good language in which to carry out complicated reasoning about
knowledge. Instead we use the language of modal logic.

Suppose that we have a group consisting of n agents, creatively named 1, ..., n.
For simplicity, we assume that these agents wish to reason about a world that can be
described in terms of a nonempty set ® of primitive propositions, typically labeled
p.P'.q,q , ... These primitive propositions stand for basic facts about the world
such as “it is sunny in San Francisco” or “Alice has mud on her forehead”. To
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express a statement like “Bob knows that it is sunny in San Francisco”, we augment
the language by modal operators K1, ..., K, (one for each agent). A statement like
K¢ is then read “agent 1 knows ¢”.

Technically, a language is just a set of formulas. We can now describe the set
of formulas of interest to us. We start with the primitive propositions in @, and
form more complicated formulas by closing off under negation, conjunction, and the
modal operators K, ..., K,. Thus, if ¢ and i are formulas, then so are —¢, (p A V),
and K;p, fori = 1, ..., n. For the sake of readability, we omit the parentheses in
formulas such as (¢ A ¥) whenever it does not lead to confusion. We also use
standard abbreviations from propositional logic, such as ¢ V ¢ for =(—¢p A =),
¢ = Y for —¢p vV ¢, and ¢ & ¥ for (¢ = V) A (Y = ¢). We take true to be an
abbreviation for some fixed propositional tautology such as p v —p, and take false
to be an abbreviation for —rrue.

We can express quite complicated statements in a straightforward way using this
language. For example, the formula

KiKrp A—=KyK1Kyp

says that agent 1 knows that agent 2 knows p, but agent 2 does not know that agent 1
knows that agent 2 knows p.

We view possibility as the dual of knowledge. Thus, agent 1 considers ¢ possible
exactly if he does not know —¢. This situation can be described by the formula
—K1—¢p. A statement like “Dean doesn’t know whether ¢ says that Dean considers
both ¢ and —¢ possible. Let’s reconsider the sentence from the previous chapter:
“Dean doesn’t know whether Nixon knows that Dean knows that Nixon knows that
McCord burgled O’Brien’s office at Watergate”. If we take Dean to be agent 1,
Nixon to be agent 2, and p to be the statement “McCord burgled O’Brien’s office at
Watergate”, then this sentence can be captured as

—K1—(K2K1K>p) AN =K 1—=(—=K2K1K3p).

Now that we have described the syntax of our language (that is, the set of well-
formed formulas), we need semantics, that is, a formal model that we can use to
determine whether a given formula is true or false. One approach to defining se-
mantics is, as we suggested above, in terms of possible worlds, which we formalize
in terms of (Kripke) structures. (In later chapters we consider other approaches to
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giving semantics to formulas.) A Kripke structure M for n agents over @ is a tuple
(S,m, Ky, ...,Ky), where S is a nonempty set of states or possible worlds,  is an
interpretation which associates with each state in S a truth assignment to the primi-
tive propositions in ® (i.e., w(s) : & — {true, false} for each state s € S), and K;
is a binary relation on S, that is, a set of pairs of elements of S.

The truth assignment 7 (s) tells us whether p is true or false in state s. Thus, if
p denotes the fact “It is raining in San Francisco”, then 7w (s)(p) = true captures
the situation in which it is raining in San Francisco in state s of structure M. The
binary relation K; is intended to capture the possibility relation according to agent i:
(s,t) € K; if agent i considers world ¢ possible, given his information in world s.
We think of [C; as a possibility relation, since it defines what worlds agent i considers
possible in any given world. Throughout most of the book (in particular, in this
chapter), we further require that K; be an equivalence relation on S. An equivalence
relation I on S is a binary relation that is (a) reflexive, which means that for all
s € S, we have (s,s) € K, (b) symmetric, which means that for all s, € §, we
have (s,t) € K if and only if (¢, s) € K, and (c) transitive, which means that for
all s,t,u € S, we have that if (s,¢) € K and (¢, u) € K, then (s, u) € K. We take
KC; to be an equivalence relation since we want to capture the intuition that agent i
considers ¢ possible in world s if in both s and ¢ agent i has the same information
about the world, that is, the two worlds are indistinguishable to the agent. Making K;
an equivalence relation seems natural, and turns out to be the appropriate choice for
many applications. For example, as we shall see in the next section, it is appropriate
in analyzing the muddy children puzzle, while in Chapters 4 and 6 we show that it
is appropriate for many multi-agent systems applications. We could equally well,
however, consider possibility relations with other properties (for example, reflexive
and transitive, but not symmetric), as we in fact do in Chapter 3.

We now define what it means for a formula to be true at a given world in a structure.
Note that truth depends on the world as well as the structure. It is quite possible that
a formula is true in one world and false in another. For example, in one world agent
1 may know it is sunny in San Francisco, while in another he may not. To capture
this, we define the notion (M, s5) = ¢, which can be read as “¢ is true at (M, s)” or
“@ holds at (M, s)” or “(M, s) satisfies ¢”. We define the = relation by induction
on the structure of ¢.  That is, we start with the simplest formulas—primitive
propositions—and work our way up to more complicated formulas ¢, assuming that
= has been defined for all the subformulas of ¢.
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The w component of the structure gives us the information we need to deal with
the base case, where ¢ is a primitive proposition:

(M, s) = p (for a primitive proposition p € ®) iff w(s)(p) = true.

For conjunctions and negations, we follow the standard treatment from proposi-
tional logic; a conjunction ¥ A ¥ is true exactly if both of the conjuncts v and v’
are true, while a negated formula — is true exactly if ¢ is not true:

(M, s) By AY'iff (M, s) =y and (M, 5) E Y’
(M, 5) = =y iff (M, 5) ¥ .

Note that the clause for negation guarantees that the logic is two-valued. For every
formula v, we have either (M, s) &= ¢ or (M, s) = —, but not both.

Finally, we have to deal with formulas of the form K;,. Here we try to capture
the intuition that agent i knows v in world s of structure M exactly if ¥ is true at all
worlds that i considers possible in s. Formally, we have

(M, s) = Ky iff (M, t) = for all ¢ such that (s, 1) € K;.

These definitions are perhaps best illustrated by a simple example. One of the
advantages of a Kripke structure is that it can be viewed as a labeled graph, that
is, a set of labeled nodes connected by directed, labeled edges. The nodes are the
states of S; the label of state s € S describes which primitive propositions are true
and false at s. We label edges by sets of agents; the label on the edge from s to ¢
includes i if (s, t) € K;. For example, suppose that ® = {p} and n = 2, so that our
language has one primitive proposition p and there are two agents. Further suppose
that M = (S, &, K1, K2), where S = {s, t, u}, p is true at states s and u, but false
at ¢t (so that w(s)(p) = m(u)(p) = true and 7 (¢)(p) = false), agent 1 cannot
distinguish s from ¢ (so that K1 = {(s, ), (s, ), (¢, 5), (¢, 1), (4, u)}), and agent 2
cannot distinguish s from u (so that K = {(s, s), (s, u), (¢, 1), (u, s), (u, u)}). This
situation can be captured by the graph in Figure 2.1. Note how the graph captures
our assumptions about the /C; relations. In particular, we have a self-loop at each
edge labeled by both 1 and 2 because the relations K1 and K5 are reflexive, and the
edges have an arrow in each direction because K| and K are symmetric.

If we view p as standing for “it is sunny in San Francisco”, then in state s it is
sunny in San Francisco but agent 1 does not know it, since in state s he considers both
s and ¢ possible. (We remark that we used the phrase “agent 1 cannot distinguish s
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Figure 2.1 A simple Kripke structure

from 7. Of course, agent 1 realizes perfectly well that s and ¢ are different worlds.
After all, it is raining in San Francisco in s, but not in . What we really intend
here is perhaps more accurately described by something like “agent 1’s information
is insufficient to enable him to distinguish whether the actual world is s or . We
continue to use the word “indistinguishable” in the somewhat looser sense throughout
the book.) On the other hand, agent 2 does know in state s that it is sunny, since in
both worlds that agent 2 considers possible at s (namely, s and u), the formula p is
true. In state ¢, agent 2 also knows the true situation, namely, that it is not sunny. It
follows that in state s agent 1 knows that agent 2 knows whether or not it is sunny in
San Francisco: in both worlds agent 1 considers possible in state s, namely, s and ¢,
agent 2 knows what the weather in San Francisco is. Thus, although agent 1 does not
know the true situation at s, he does know that agent 2 knows the true situation. (And
s0, assuming that agent 2 were reliable, agent 1 knows that he could find out the true
situation by asking agent 2.) By way of contrast, although in state s agent 2 knows
that it is sunny in San Francisco, she does not know that agent 1 does not know this
fact. (In one world that agent 2 considers possible, namely u, agent 1 does know
that it is sunny, while in another world agent 2 considers possible, namely s, agent
1 does not know this fact.) All of this relatively complicated English discussion can
be summarized in one mathematical statement:

M,s) EpAN—KipANKopANKi(KrpV Ky—p) AN=Kr—Kip.

Note that in both s and u, the primitive proposition p (the only primitive propo-
sition in our language) gets the same truth value. One might think, therefore, that s
and u are the same, and that perhaps one of them can be eliminated. This is not true!
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A state is not completely characterized by the truth values that the primitive propo-
sitions get there. The possibility relation is also crucial. For example, in world s,
agent 1 considers 7 possible, while in # he does not. As a consequence, agent 1 does
not know p in s, while in u he does.

We now consider a slightly more complicated example, which might provide a
little more motivation for making the XC;’s equivalence relations. Suppose that we
have a deck consisting of three cards labeled A, B, and C. Agents 1 and 2 each get
one of these cards; the third card is left face down. A possible world is characterized
by describing the cards held by each agent. For example, in the world (A, B), agent 1
holds card A and agent 2 holds card B (while card C is face down). There are clearly
six possible worlds: (A, B), (A, C), (B, A), (B, C), (C, A), and (C, B). Moreover,
it is clear that in a world such as (A, B), agent 1 thinks two worlds are possible:
(A, B) itself and (A, C). Agent 1 knows that he has card A, but considers it possible
that agent 2 could hold either card B or card C. Similarly, in world (A, B), agent
2 also considers two worlds: (A, B) and (C, B). In general, in a world (x, y),
agent 1 considers (x, y) and (x, z) possible, while agent 2 considers (x, y) and (z, y)
possible, where z is different from both x and y.

From this description, we can easily construct the X; and X, relations. It is easy
to check that they are indeed equivalence relations, as required by the definitions.
This is because an agent’s possibility relation is determined by the information he
has, namely, the card he is holding. This is an important general phenomenon: in
any situation where an agent’s possibility relation is determined by his information
(and, as we shall see, there are many such situations), the possibility relations are
equivalence relations.

The structure in this example with the three cards is described in Figure 2.2,
where, since the relations are equivalence relations, we omit the self loops and the
arrows on edges for simplicity. (As we have observed, if there is an edge from state s
to state ¢, there is bound to be an edge from ¢ to s as well by symmetry.)

This example points out the need for having worlds that an agent does not consider
possible included in the structure. For example, in the world (A, B), agent 1 knows
that the world (B, C) cannot be the case. (After all, agent 1 knows perfectly well
that his own card is an A.) Nevertheless, because agent 1 considers it possible that
agent 2 considers it possible that (B, C) is the case, we must include (B, C) in the
structure. This is captured in the structure by the fact that there is no edge from
(A, B) to (B, C) labeled 1, but there is an edge labeled 1 to (A, C), from which
there is an edge labeled 2 to (B, C).
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(C,A) (A, C)

Figure 2.2 The Kripke structure describing a simple card game

We still have not discussed the language to be used in this example. Since we are
interested in reasoning about the cards held by agents 1 and 2, it seems reasonable
to have primitive propositions of the form 1A, 2A, 2B, and so on, which are to
be interpreted as “agent 1 holds card A”, “agent 2 holds card A”, “agent 2 holds
card B”, and so on. Given this interpretation, we define 7 in the obvious way,
and let M, be the Kripke structure describing this card game. Then, for example,
we have (M., (A, B)) = 1A A 2B. We leave it to the reader to check that we
also have (M., (A, B)) = K1(2B v 2C), which expresses the fact that if agent 1
holds an A, then she knows that agent 2 holds either B or C. Similarly, we have
(M., (A, B)) = K1—K>(1A): agent 1 knows that agent 2 does not know that agent 1
holds an A.

This example shows that our semantics does capture some of the intuitions we
naturally associate with the word “knowledge”. Nevertheless, this is far from a com-
plete justification for our definitions, in particular, for our reading of the formula K; ¢
as “agent i knows ¢”. The question arises as to what would constitute a reasonable
justification. We ultimately offer two justifications, which we hope the reader will
find somewhat satisfactory. The first is by further examples, showing that our defi-
nitions correspond to reasonable usages of the word “know”. One such example is
given in Section 2.3, where we analyze the muddy children puzzle and show that the
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formula K;¢ does capture our intuition regarding what child i knows. The second
justification can be found in Section 2.4, where we consider some of the properties of
this notion of knowledge and show that they are consistent with the properties that the
knowledge of a perfect reasoner with perfect introspection might have. Of course,
this does not imply that there do not exist other reasonable notions of knowledge.
Some of these are considered in later chapters.

We have also restricted attention here to propositional modal logic. We do not
have first-order quantification, so that we cannot easily say, for example, that Alice
knows the governors of all states. Such a statement would require universal and
existential quantification. Roughly speaking, we could express it as Vx (State(x) =
Iy(K aziceGovernor(x, y)): for all states x, there exists y such that Alice knows
that the governor of x is y. We restrict to propositional modal logic throughout most
of this book because it is sufficiently powerful to capture most of the situations we
shall be interested in, while allowing us to avoid some of the complexities that arise
in the first-order case. We briefly consider the first-order case in Section 3.7.

2.2 Adding Common Knowledge and Distributed Knowledge

The language introduced in the previous section does not allow us to express the no-
tions of common knowledge and distributed knowledge that we discussed in Chap-
ter 1. To express these notions, we augment the language with the modal operators
Eg (“everyone in the group G knows”), C (“it is common knowledge among the
agents in G”), and D¢ (“it is distributed knowledge among the agents in G”) for
every nonempty subset G of {1, ..., n}, so that if ¢ is a formula, then so are Ege,
Cce, and Dgo. We often omit the subscript G when G is the set of all agents. In
this augmented language we can make statements like K3—Cy; 2)p (“agent 3 knows
that p is not common knowledge among agents 1 and 2”) and Dg A =Cq (“q is
distributed knowledge, but it is not common knowledge”).

We can easily extend the definition of truth to handle common knowledge and
distributed knowledge in a structure M. Since Eg¢ is true exactly if everyone in the
group G knows ¢, we have

(M, s) = Egopiff (M,s) = K;pforalli € G.

The formula Cge is true if everyone in G knows ¢, everyone in G knows that

everyone in G knows ¢, etc. Let Eg(p be an abbreviation for ¢, and let E ](‘;H(p be
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an abbreviation for Eg E /(‘;(p. In particular, E é(p is an abbreviation for Eg¢. Then
we have
(M, s) = Cgoiff (M,s) = ESpfork=1,2,...

Our definition of common knowledge has an interesting graph-theoretical inter-
pretation, which turns out to be useful in many of our applications. Define a state ¢
to be G-reachable from state s in k steps (k > 1) if there exist states sq, S1, ..., Sk
such that so = s, sy = ¢ and for all j with 0 < j < k — 1, there exists i € G such
that (sj, sj+1) € K;. We say ¢ is G-reachable from s if t is G-reachable from s in
k steps for some k > 1. Thus, ¢ is G-reachable from s exactly if there is a path in
the graph from s to r whose edges are labeled by members of G. In the particular
case where G is the set of all agents, we say simply that ¢ is reachable from s. Thus,
t is reachable from s exactly if s and ¢ are in the same connected component of the
graph.

Lemma 2.2.1

(a) (M,s) = E’é(p if and only if (M, t) |= ¢ for all t that are G-reachable from
s in k steps.

(b) (M, s) = Cgypifandonlyif(M,t) = ¢ forallt that are G-reachable from s.

Proof Part (a) follows from a straightforward induction on k, while part (b) is
immediate from part (a). Notice that this result holds even if the K;’s are arbitrary
binary relations; we do not need to assume that they are equivalence relations. I

A group G has distributed knowledge of ¢ if the “combined” knowledge of the
members of G implies ¢. How can we capture the idea of combining knowledge in
our framework? In the Kripke structure in Figure 2.1, in state s agent 1 considers
both s and ¢ possible but does not consider u possible, while agent 2 considers s and
u possible, but not r. Someone who could combine the knowledge of agents 1 and 2
would know that only s was possible: agent 1 has enough knowledge to eliminate
u, and agent 2 has enough knowledge to eliminate ¢. In general, we combine the
knowledge of the agents in group G by eliminating all worlds that some agent in G
considers impossible. Technically, this is accomplished by intersecting the sets of
worlds that each of the agents in the group considers possible. Thus we define

(M, s) = Dgo iff (M, t) |= ¢ for all ¢ such that (s, ) € NjegK;.
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Returning to our card game example, let G = {1, 2}; thus, G is the group
consisting of the two players in the game. Then it is easy to check (using
Lemma 2.2.1) that (M., (A, B)) = Cg(1A v 1B Vv 1C): it is common knowl-
edge that agent 1 holds one of the cards A, B, and C. Perhaps more interesting is
(M., (A, B)) = Cg(1B = (2A v 20C)): it is common knowledge that if agent 1
holds card B, then agent 2 holds either card A or card C. More generally, it can be
shown that any fact about the game that can be expressed in terms of the propositions
in our language is common knowledge.

What about distributed knowledge? We leave it to the reader to check that, for
example, we have (M., (A, B)) = Dg(1A A 2B). If the agents could pool their
knowledge together, they would know that in world (A, B), agent 1 holds card A
and agent 2 holds card B.

Again, this example does not provide complete justification for our definitions.
But it should at least convince the reader that they are plausible. We examine the
properties of common knowledge and distributed knowledge in more detail in Sec-
tion 2.4.

2.3 The Muddy Children Revisited

In our analysis we shall assume that it is common knowledge that the father is truthful,
that all the children can and do hear the father, that all the children can and do see
which of the other children besides themselves have muddy foreheads, that none
of the children can see his own forehead, and that all the children are truthful and
(extremely) intelligent.

First consider the situation before the father speaks. Suppose that there are n
children altogether. As before, we number them 1, ..., n. Some of the children have
muddy foreheads, while the rest do not. We can describe a possible situation by an
n-tuple of 0’s and 1’s of the form (x1, ..., x,), where x; = 1 if child i has a muddy
forehead, and x; = 0 otherwise. Thus, if n = 3, then a tuple of the form (1, 0, 1)
would say that precisely child 1 and child 3 have muddy foreheads. Suppose that
the actual situation is described by this tuple. What situations does child 1 consider
possible before the father speaks? Since child 1 can see the foreheads of all the
children besides himself, his only doubt is about whether he has mud on his own
forehead. Thus child 1 considers two situations possible, namely, (1, 0, 1) (the actual
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situation) and (0, 0, 1). Similarly, child 2 considers two situations possible: (1, 0, 1)
and (1, 1, 1). Note that in general, child i has the same information in two possible
worlds exactly if they agree in all components except possibly the i component.

We can capture the general situation by a Kripke structure M consisting of 2"
states, one for each of the possible n-tuples. We must first decide what propositions
we should include in our language. Since we want to reason about whether or not a
given child’s forehead is muddy, we take ® = {p1, ..., pn, p}, where, intuitively, p;
stands for “child i has a muddy forehead”, while p stands for “at least one child has
a muddy forehead”. Thus, we define 7 so that (M, (x1, ..., x,)) &= p; if and only if
x; = 1,and (M, (x1, ..., x,)) = pifandonly if x; = I for some j. Of course, p is
equivalent to p1 V...V py, soits truth value can be determined from the truth value
of the other primitive propositions. There is nothing to prevent us from choosing a
language where the primitive propositions are not independent. Since it is convenient
to add a primitive proposition (namely p) describing the father’s statement, we do
so. Finally, we must define the ; relations. Since child i considers a world possible
if it agrees in all components except possibly the i component, we take (s, 1) € K;
exactly if s and ¢ agree in all components except possibly the i component. Notice
that this definition makes K; an equivalence relation. This completes the description
of M.

While this Kripke structure may seem quite complicated, it actually has an elegant
graphical representation. Suppose that we ignore self-loops and the labeling on the
edges for the moment. Then we have a structure with 2" nodes, each described by an
n-tuple of 0’s and 1°s, such that two nodes are joined by an edge exactly if they differ
in one component. The reader with a good imagination will see that this defines an
n-dimensional cube. The case n = 3 is illustrated in Figure 2.3 (where again we
omit self-loops and the arrows on edges).

Intuitively, each child knows which of the other children have muddy fore-
heads. This intuition is borne out in our formal definition of knowledge. For
example, it is easy to see that when the actual situation is (1,0, 1), we have
(M, (1,0,1)) = K1—p2, since when the actual situation is (1, 0, 1), child 2 does
not have a muddy forehead in both worlds that child 1 considers possible. Similarly,
we have (M, (1,0, 1)) = Kp3: child 1 knows that child 3’s forehead is muddy.
However, (M, (1,0, 1)) &= =K1 p1. Child 1 does not know that his own forehead is
muddy, since in the other world he considers possible—(0,0,1)—his forehead is not
muddy. In fact, it is common knowledge that every child knows whether every other
child’s forehead is muddy or not. Thus, for example, a formula like py = K p»,
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(1,1, 1)
(1,0, 1) 0,1, 1)
3
(1,0,0) 0, 1,0)
1 2
(0,0, 0)

Figure 2.3 The Kripke structure for the muddy children puzzle with n = 3

which says that if child 2’s forehead is muddy then child 1 knows it, is common
knowledge. We leave it to the reader to check that C(p2» = K| p2) is true at every
state, as is C(—py = K1—p2).

In the world (1,0,1), in which there are two muddy children, every child knows
that at least one child has a muddy forehead even before the father speaks. And sure
enough, we have (M, (1,0, 1)) &= Ep. It follows, however, from Lemma 2.2.1 that
M, (1,0, 1)) = —|E2p, since p is not true at the world (0, 0, 0) that is reachable in
two steps from (1, 0, 1). The reader can easily check that in the general case, if we
have n children of whom k have muddy foreheads (so that the situation is described
by an n-tuple exactly k of whose components are 1’s), then EX~! p is true, but EX p is
not, since each world (tuple) reachable in k — 1 steps has at least one 1 (and so there
is at least one child with a muddy forehead), but the tuple (0, ..., 0) is reachable in
k steps.
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Before we go on, the reader should note that there are a number of assumptions
implicit in our representation. The fact that we have chosen to represent a world as an
n-tuple in this way is legitimate if we can assume that all the information necessary
for our reasoning already exists in such tuples. If there were some doubt as to whether
child 1 was able to see, then we would have to include this information in the state
description as well. Note also that the assumption that it is common knowledge that
all the children can see is what justifies the choice of edges. For example, if n = 3
and if it were common knowledge that child 1 is blind, then, for example, in the
situation (1, 1, 1), child 1 would also consider (1, 0, 0) possible. He would not know
that child 2’s forehead is muddy (see Exercises 2.1 and 2.2).

In general, when we choose to model a given situation, we have to put into the
model everything that is relevant. One obvious reason that a fact may be “irrelevant”
is because it does not pertain to the situation we are analyzing. Thus, for example,
whether child 1 is a boy or a girl is not part of the description of the possible world.
Another cause of irrelevance is that a fact may be common knowledge. If it is
common knowledge that all the children can see, then there is no point in adding this
information to the description of a possible world. It is true at all the possible worlds
in the picture, so we do not gain anything extra by mentioning it. Thus, common
knowledge can help to simplify our description of a situation.

We remark that throughout the preceding discussion we have used the term
“common knowledge” in two slightly different, although related, senses. The first
is the technical sense, where a formula ¢ in our language is common knowledge at
a state s if it is true at all states reachable from s. The second is a somewhat more
informal sense, where we say a fact (not necessarily expressible in our language) is
common knowledge if it is true at all the situations (states) in the structure. When we
say it is common knowledge that at least one child has mud on his or her forehead,
then we are using common knowledge in the first sense, since this corresponds to the
formula Cp. When we say that it is common knowledge that no child is blind, we
are using it in the second sense, since we do not have a formula ¢ in the language that
says that no child is blind. There is an obvious relationship between the two senses
of the term. For example, if we enrich our language so that it does have a formula ¢
saying “no child is blind”, then Cq actually would hold at every state in the Kripke
structure. Throughout this book, we continue to speak of common knowledge in
both senses of the term, and we hope that the reader can disambiguate if necessary.

Returning to our analysis of the puzzle, consider what happens after the father
speaks. The father says p, which, as we have just observed, is already known to all
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the children if there are two or more children with muddy foreheads. Nevertheless,
the state of knowledge changes, even if all the children already know p. Going back
to our example with n = 3, in the world (1, 0, 1) child 1 considers the situation
(0,0, 1) possible. In that world, child 3 considers (0, 0, 0) possible. Thus, in the
world (1, 0, 1), before the father speaks, although everyone knows that at least one
child has a muddy forehead, child 1 thinks it possible that child 3 thinks it possible
that none of the children has a muddy forehead. After the father speaks, it becomes
common knowledge that at least one child has a muddy forehead. (This, of course,
depends on our assumption that it is common knowledge that all the children can and
do hear the father.) We can represent the change in the group’s state of knowledge
graphically (in the general case) by simply removing the point (0, 0, ..., 0) from the
cube, getting a “truncated” cube. (More accurately, what happens is that the node
(0,0, ...,0) remains, but all the edges between (0, 0, ..., 0) and nodes with exactly
one 1 disappear, since it is common knowledge that even if only one child has a
muddy forehead, after the father speaks that child will not consider it possible that
no one has a muddy forehead.) The situation is illustrated in Figure 2.4.

(1,1, 1)
(1,0,1) 0,1, 1)
3
(1,0, 0) ! 2 0, 1,0)
0,0, 1)

Figure 2.4 The Kripke structure after the father speaks

We next show that each time the children respond to the father’s question with
a “No”, the group’s state of knowledge changes and the cube is further truncated.
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Consider what happens after the children respond “No” to the father’s first question.
We claim that now all the nodes with exactly one 1 can be eliminated. (More
accurately, the edges to these nodes from nodes with exactly two 1°s all disappear
from the graph.) Nodes with one or fewer 1’s are no longer reachable from nodes with
two or more 1’s. The reasoning parallels that done in the “proof” given in the story. If
the actual situation were described by, say, the tuple (1, O, ..., 0), then child 1 would
initially consider two situations possible: (1,0, ...,0)and (0,0, ..., 0). Since once
the father speaks it is common knowledge that (0, O, . . ., 0) is not possible, he would
then know that the situation is described by (1,0, ..., 0), and thus would know
that his own forehead is muddy. Once everyone answers “No” to the father’s first
question, it is common knowledge that the situation cannot be (1,0, ..., 0). (Note
that here we must use the assumption that it is common knowledge that everyone is
intelligent and truthful, and so can do the reasoning required to show (1,0, ..., 0) is
not possible.) Similar reasoning allows us to eliminate every situation with exactly
one 1. Thus, after all the children have answered “No” to the father’s first question,
it is common knowledge that at least rwo children have muddy foreheads.

Further arguments in the same spirit can be used to show that after the children
answer “No” k times, we can eliminate all the nodes with at most k 1’s (or, more
accurately, disconnect these nodes from the rest of the graph). We thus have a
sequence of Kripke structures, describing the children’s knowledge at every step in
the process. Essentially, what is going on is that if, in some node s, it becomes
common knowledge that a node ¢ is impossible, then for every node u reachable
from s, the edge from u to ¢ (if there is one) is eliminated. (This situation is even
easier to describe once we add time to the picture. We return to this point in Chapter 7;
see in particular Section 7.2.)

After k rounds of questioning, it is common knowledge that at least k + 1 children
have mud on their foreheads. If the true situation is described by a tuple with exactly
k+1 1s, then before the father asks the question for the (k 4 1) time, those children
with muddy foreheads will know the exact situation, and in particular will know their
foreheads are muddy, and consequently will answer “Yes”. Note that they could not
answer “Yes” any earlier, since up to this point each child with a muddy forehead
considers it possible that he or she does not have a muddy forehead.

There is actually a subtle point that should be brought out here. Roughly speak-
ing, according to the way we are modeling “knowledge” in this context, a child
“knows” a fact if the fact follows from his or her current information. But we could
certainly imagine that if one of the children were not particularly bright, then he
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might not be able to figure out that he “knew” that his forehead was muddy, even
though in principle he had enough information to do so. To answer “Yes” to the
father’s question, it really is not enough for it to follow from the child’s information
whether the child has a muddy forehead. The child must actually be aware of the
consequences of his information—that is, in some sense, the child must be able to
compute that he has this knowledge—in order to act on it. Our definition implicitly
assumes that (it is common knowledge that) all reasoners are logically omniscient,
that is, that they are smart enough to compute all the consequences of the information
that they have, and that this logical omniscience is common knowledge.

Now consider the situation in which the father does not initially say p. We claim
that in this case the children’s state of knowledge never changes, no matter how many
times the father asks questions. Itcan always be described by the n-dimensional cube.
We have already argued that before the father speaks the situation is described by the
n-dimensional cube. When the father asks for the first time “Does any of you know
whether you have mud on your own forehead?”, clearly all the children say “No”,
no matter what the actual situation is, since in every situation each child considers
possible a situation in which he does not have mud on his forehead. Since it is
common knowledge before the father asks his question that the answer will be “No”,
no information is gained from this answer, so the situation still can be represented
by the n-dimensional cube. Now a straightforward induction on m shows that it is
common knowledge that the father’s m™ question is also answered “No” (since at
the point when the father asks this question, no matter what the situation is, each
child will consider possible another situation in which he does not have a muddy
forehead), and the state of knowledge after the father asks the m™ question is still
described by the cube.

This concludes our analysis of the muddy children puzzle.

2.4 The Properties of Knowledge

In the first part of this chapter we described a language with modal operators such
as K; and defined a notion of truth that, in particular, determines whether a formula
such as K¢ is true at a particular world. We suggested that K;¢ should be read
as “agent i knows ¢”. But is this a reasonable way of reading this formula? Does
our semantics—that is, Kripke structures together with the definition of truth that we
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gave—really capture the properties of knowledge in a reasonable way? How can we
even answer this question?

We can attempt to answer the question by examining what the properties of
knowledge are under our interpretation. One way of characterizing the properties
of our interpretation of knowledge is by characterizing the formulas that are always
true. More formally, given a structure M = (S, 7, Ky, ..., K;), we say that ¢ is
valid in M, and write M = ¢, if (M, s) |= ¢ for every state s in S, and we say that
@ is satisfiable in M if (M, s) = ¢ for some state s in S. We say that ¢ is valid, and
write = @, if ¢ is valid in all structures, and that ¢ is satisfiable if it is satisfiable in
some structure. It is easy to check that a formula ¢ is valid (resp. valid in M) if and
only if —¢ is not satisfiable (resp. not satisfiable in M).

We now list a number of valid properties of our definition of knowledge and
provide a formal proof of their validity. We then discuss how reasonable these
properties are. As before, we assume throughout this section that the possibility
relations K; are equivalence relations.

One important property of our definition of knowledge is that each agent knows
all the logical consequences of his knowledge. If an agent knows ¢ and knows that
¢ implies ¥, then both ¢ and ¢ = 1 are true at all worlds he considers possible.
Thus ¥ must be true at all worlds that the agent considers possible, so he must also
know . It follows that

= (Kip AKi(p = V) = Kiy.

This axiom is called the Distribution Axiom since it allows us to distribute the K;
operator over implication. It seems to suggest that our agents are quite powerful
reasoners.

Further evidence that our definition of knowledge assumes rather powerful agents
comes from the fact that agents know all the formulas that are valid in a given structure.
If ¢ is true at all the possible worlds of structure M, then ¢ must be true at all the
worlds that an agent considers possible in any given world in M, so it must be the case
that K;¢ is true at all possible worlds of M. More formally, we have the following
Knowledge Generalization Rule

For all structures M, if M = ¢ then M = K;¢.

Note that from this we can deduce that if ¢ is valid, then so is K;¢. This rule is
very different from the formula ¢ = K;¢, which says that if ¢ is true, then agent i



2.4 The Properties of Knowledge 33

knows it. An agent does not necessarily know all things that are true. (For example,
in the case of the muddy children, it may be true that child 1 has a muddy forehead,
but he does not necessarily know this.) However, agents do know all valid formulas.
Intuitively, these are the formulas that are necessarily true, as opposed to the formulas
that just happen to be true at a given world.

Although an agent may not know facts that are true, it is the case that if he knows
a fact, then it is true. More formally, we have

= Kip = ¢.

This property, occasionally called the Knowledge Axiom or the Truth Axiom (for
knowledge), has been taken by philosophers to be the major one distinguishing
knowledge from belief. Although you may have false beliefs, you cannot know
something that is false. This property follows because the actual world is always
one of the worlds that an agent considers possible. If K;¢ holds at a particular world
(M, s), then ¢ is true at all worlds that i considers possible, so in particular it is true
at (M, s).

The last two properties we consider say that agents can do introspection regarding
their knowledge. They know what they know and what they do not know:

F Kigp = KiKiy,
= —Kip = Ki—Kigp.

The first of these properties is typically called the Positive Introspection Axiom, while
the second is called the Negative Introspection Axiom.

The following theorem provides us with formal assurance that all the properties
just discussed hold for our definition of knowledge.

Theorem 2.4.1 For all formulas ¢ and r, all structures M where each possibility
relation K; is an equivalence relation, and all agentsi =1, ..., n,

(a) M = (Kip ANKi(lp = V) = Ki,
(b) if M |= ¢ then M = Ko,

(c) M E Kip = o,

(d) M E Kip = KiKigp,

(e) M =—-K;p = Ki—K;p.
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Proof

(a) If (M, s) = Kip A Ki(p = ), then for all states ¢ such that (s, 1) € K;, we
have both that (M, t) = ¢ and (M, t) = ¢ = . By the definition of =, we
have that (M, t) =  for all such ¢, and therefore (M, s) = K; .

(b) If M = ¢, then (M, t) = ¢ for all states ¢ in M. In particular, for any fixed
state s in M, it follows that (M, t) = ¢ for all ¢ such that (s, ) € K;. Thus,
(M, s) = K;p for all states s in M, and hence M = K;¢.

(c) If (M, s) &= Ko, then for all ¢ such that (s,7) € K;, we have (M, 1) &= ¢.
Since K; is reflexive, it follows that (s, s) € K;, so in particular (M, s) = ¢.

(d) Suppose that (M, s) = K;¢. Consider any ¢ such that (s, ) € K; and any
u such that (¢, u) € K;. Since K; is transitive, we have (s, u) € K;. Since
(M, s) = K;o,itfollows that (M, u) = ¢. Thus, forallz suchthat (s, t) € K;,
we have (M, t) = K;@. It now follows that (M, s) = K; K;¢.

(e) Supposethat (M, s) = —K;¢. Thenforsome u with (s, u) € K;, we musthave
(M, u) = —¢. Suppose that ¢ is such that (s, ) € K;. Since K; is symmetric,
(t,s) € K;, and since K; is transitive, we must also have (¢, u) € K;. Thus it
follows that (M, t) = —K;@. Since this is true for all ¢ such that (s, ) € K;,
we obtain (M, s) = K;—K;p. 1

The collection of properties that we have considered so far—the Distribution
Axiom, the Knowledge Axiom, Positive and Negative Introspection Axioms, and
the Knowledge Generalization Rule—has been studied in some depth in the litera-
ture. For historical reasons, these properties are sometimes called the S5 properties.
(Actually, S5 is an axiom system. We give a more formal definition of it in the next
chapter.) How reasonable are these properties? The proof of Theorem 2.4.1 shows
that, in a precise sense, the validity of the Knowledge Axiom follows from the fact
that /; is reflexive, the validity of the Positive Introspection Axiom follows from
the fact that /C; is transitive, and the validity of the Negative Introspection Axiom
follows from the fact that IC; is symmetric and transitive. While taking /C; to be an
equivalence relation seems reasonable for many applications we have in mind, one
can certainly imagine other possibilities. As we show in Chapter 3, by modifying the
properties of the K; relations, we can get notions of knowledge that have different
properties.
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Two properties that seem forced on us by the possible-worlds approach itself are
the Distribution Axiom and the Knowledge Generalization Rule. No matter how we
modify the K; relations, these properties hold. (This is proved formally in the next
chapter.) These properties may be reasonable if we identify “agenti knows ¢’ with “p
follows from agent i’s information”, as we implicitly did when modeling the muddy
children puzzle. To the extent that we think of knowledge as something acquired by
agents through some reasoning process, these properties suggest that we must think
in terms of agents who can do perfect reasoning. While this may be a reasonable
idealization in certain circumstances (and is an assumption that is explicitly made in
the description of the muddy children puzzle), it is clearly not so reasonable in many
contexts. In Chapters 9 and 10 we discuss how the possible-worlds model can be
modified to accommodate imperfect, “non-ideal” reasoners.

The reader might wonder at this point if there are other important properties
of our definition of knowledge that we have not yet mentioned. While, of course, a
number of additional properties follow from the basic S5 properties defined above, in
aprecise sense the S5 properties completely characterize our definition of knowledge,
at least as far as the K; operators are concerned. This point is discussed in detail in
Chapter 3.

We now turn our attention to the properties of the operators Eg, Cg, and Dg.
Since Egg is true exactly if every agent in G knows ¢, we have

= Ecp & )\ Kig.
ieG

Recall that we said common knowledge could be viewed as what “any fool”
knows. Not surprisingly, it turns out that common knowledge has all the properties
of knowledge; axioms analogous to the Knowledge Axiom, Distribution Axiom, Pos-
itive Introspection Axiom, and Negative Introspection Axiom all hold for common
knowledge (see Exercise 2.8). In addition, it is easy to see that common knowledge
among a group of agents implies common knowledge among any of its subgroups,
that is, Cgp = Cgro if G O G’ (again, see Exercise 2.8). It turns out that all these
properties follow from two other properties, two properties that in a precise sense
capture the essence of common knowledge. We discuss these properties next.

Recall from Chapter 1 that the children in the muddy children puzzle acquire
common knowledge of the fact p (that at least one child has a muddy forehead) be-
cause the father’s announcement puts them in a situation where all the children know
both that p is true and that they are in this situation. This observation is generalized
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in the following Fixed-Point Axiom, which says that ¢ is common knowledge among
the group G if and only if all the members of G know that ¢ is true and is common
knowledge:

ECcp & Ec(p A Cgo).

Thus, the Fixed-Point Axiom says that Cg¢ can be viewed as a fixed point of the
function f(x) = Eg(¢ A x), which maps a formula x to the formula Eg (¢ A x).
(We shall see a formalization of this intuition in Section 11.5.)

The second property of interest gives us a way of deducing that common knowl-
edge holds in a structure.

For all structures M, if M = ¢ = Eg( Ap),then M = ¢ = Cg.

This rule is often called the Induction Ruleinference rule!RC1 (Induction Rule) The
proof that it holds shows why: the antecedent gives us the essential ingredient for
proving, by induction on k, that ¢ = EX (i A @) is valid for all k.

We now prove formally that these properties do indeed hold for the operators Eg
and Cg.

Theorem 2.4.2 For all formulas ¢ and , all structures M, and all nonempty
GC{l,...,n}k

(a) M = Egp & Nicg Kio,
(b) M = Cgo < Eg(p A Cgo),
(c) ifM =9 = Eg( Ap)then M |= ¢ = Cg.

Proof Part (a) follows immediately from the semantics of Eg. To prove the other
parts, we use the characterization of common knowledge provided by Lemma 2.2.1,
namely, that (M, s) = Cge iff (M, t) = ¢ for all states ¢ that are G-reachable from
s. We remark for future reference that the proof we are about to give does not make
use of the fact that the /C;’s are equivalence relations; it goes through without change
even if the ;s are arbitrary binary relations.

For part (b), suppose that (M,s) = Cge. Thus (M,t) = ¢ for all states
t that are G-reachable from s. In particular, if ¥ is G-reachable from s in one
step, then (M, u) = ¢ and (M,t) = ¢ for all ¢ that are G-reachable from u.
Thus (M, u) = ¢ A Cgo for all u that are G-reachable from s in one step, so
(M, s) = Eg(e A Cge). For the converse, suppose that (M, s) = Eg(¢ A Cgo).
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Suppose that ¢ is G-reachable from s and s’ is the first node after s on a path from
s to t whose edges are labeled by members of G. Since (M, s) = Eg(¢ A Cge),
it follows that (M, s”) = ¢ A Cgo. Either s’ = ¢ or t is reachable from s’. In the
former case, (M, ) = ¢ since (M, s') = ¢, while in the latter case, (M, 1) = ¢
using Lemma 2.2.1 and the fact that (M, s") = Cge. Since (M, t) |= ¢ for all  that
are G-reachable from s, it follows that (M, s) = Cgo.

Finally, for part (c), suppose that M |= ¢ = Eg(¥ A @) and (M, s) = ¢. We
show by induction on k that for all k we have (M, t) = ¢ A ¢ for all ¢ that are G-
reachable from s in k steps. Suppose that ¢ is G-reachable from s in one step. Since
M E ¢ = Eg(¥ Ap),wehave (M, s) = Eg(¥ A @). Since t is G-reachable from
s in one step, by Lemma 2.2.1, we have (M, t) = ¥ A ¢ as desired. If k = k' + 1,
then there is some ¢’ that is G-reachable from s in k’ steps such that ¢ is G-reachable
from ¢’ in one step. By the induction hypothesis, we have (M, ') = ¥ A ¢. Now
the same argument as in the base case shows that (M, t) = ¥ A ¢. This completes
the inductive proof. Since (M, t) = ¢ for all states ¢ that are G-reachable from s, it
follows that (M, s) = Cgy. 1

Finally, we consider distributed knowledge. We mentioned in Chapter 1 that
distributed knowledge can be viewed as what a “wise man” would know. So it
should not be surprising that distributed knowledge also satisfies all the properties of
knowledge. Distributed knowledge has two other properties that we briefly mention
here. Clearly, distributed knowledge of a group of size one is the same as knowledge,
so we have:

= D & Kip.

The larger the subgroup, the greater the distributed knowledge of that subgroup:
= Dy = Dgoif G C G

The proof that all these properties of distributed knowledge are indeed valid is
similar in spirit to the proof of Theorem 2.4.1, so we leave it to the reader (Exer-
cise 2.10). We also show in Chapter 3 that these properties of common knowledge
and distributed knowledge in a precise sense completely characterize all the relevant
properties of these notions.
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2.5 An Event-Based Approach

The approach to modeling knowledge presented in Section 2.1 has two components.
It uses Kripke structures as a mathematical model for situations involving many
agents, and it uses a logical language to make assertions about such situations. This
language is based on a set of primitive propositions and is closed under logical oper-
ators. Thus, knowledge is expressed syntactically, by modal operators on formulas.
We call this the logic-based approach. 1t is the approach that traditionally has been
taken in philosophy, mathematical logic, and Al.

In this section, we describe an alternate approach to modeling knowledge, one
that is typically used in the work on knowledge in game theory and mathematical
economics. We call this the event-based approach. 1t differs from the logic-based
approach in two respects. First, rather than using Kripke structures as the underlying
mathematical model, the event-based approach uses closely related structures that
we call Aumann structures. Second, and more important, in the spirit of probability
theory, the event-based approach focuses on events, which are sets of possible worlds,
and dispenses completely with logical formulas. Knowledge here is expressed as an
operator on events. We now review the event-based approach and discuss its close
relationship to the logic-based approach.

As in the logic-based approach of Section 2.1, we start out with a universe S of
states. An event is a set e C § of states. We can talk, for example, about the event
of its raining in London, which corresponds to the set of states where it is raining in
London. We say that event e holds at state s if s € e. Thus, if ey, is the event of its
raining in London, then e;, holds at state s precisely if s is one of the states where it
is raining in London. The conjunction of two events is given by their intersection.
For example, the event of its raining in London and being sunny in San Francisco is
the intersection of ey with the event of its being sunny in San Francisco. Similarly,
the negation of an event is given by the complement (with respect to S).

As we have mentioned, Aumann structures are used to provide a formal model
for the event-based approach. Aumann structures are like Kripke structures, with
two differences: The first is that there is no analogue to the r function, since in the
event-based approach, there are no primitive propositions. The second difference is
that, rather than using a binary relation C; to define what worlds agent i considers
possible, in Aumann structures there is a partition P; of S for each agent i. (A
partition of a set S is aset {Sy, ..., S} of subsets of § such that the S;’s are disjoint
and such that the union of the §;’s is the set S.) If P; = {Sy, ..., S;}, then the sets
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S; are called the cells of the partition P;, or the information sets of agent i. The
intuition is that if S; is an information set of agent i, and if s € S;, then the set
of states that agent i considers possible (which corresponds to the information of
agent i) is precisely S;.

Formally, an Aumann structure A is a tuple (S, Py, ..., Py), where S is the
set of states of the world and P; is a partition of S for every agent i. We denote
by P;(s) the cell of the partition P; in which s appears. Since P; is a partition,
follows that for every agent i and every pair s, t € S of states, either P;(s) = P; ()
or Pi(s) N P;i(t) = ¥. Intuitively, when s, ¢ are in the same information set of
agent i, then in state s agent i considers the state ¢ possible. As we have already
remarked, unlike a Kripke structure, in an Aumann structure there is no function
7 that associates with each state in S a truth assignment to primitive propositions.
(Using terminology we introduce in the next chapter, this means that an Aumann
structure is really a frame.)

How do we define knowledge in the event-based approach? Since the objects
of interest in this approach are events, it should not be surprising that knowledge is
defined in terms of events. Formally, given an Aumann structure (S, Py, ..., Py),
we define knowledge operators K; : 25 23, fori =1,...,n, as follows:

Ki(e) = {s € S|Pi(s) S e};

K; (e) is called the event of i knowing e. Here 25 is the set of all subsets of S. (Note
that we use sans serif font for the knowledge operator K;, in contrast to the italic
font that we use for the modal operator K;, and the script font we use for the binary
relation C;.) Itis easy to see that K; (¢) is the union of the information sets of agent i
that are contained in e. The intuition is that agent i knows e at state s if e holds at
every state that agent i considers possible at state s (namely, at all states of P;(s)).
Thus, agent i knows that no matter what the actual state is, the event e holds there.

The event of everyone in a group G knowing e is captured by an operator
Eg : 25 — 25 defined as follows:

Eg(e) = [ ] Ki(e).

ieG

We can iterate the E operator, defining E%;(e) = Eg(e) and EkG+1 (e) = Eg(E’E; (e))
for k > 1. Common knowledge of an event e among the agents in a group G, denoted
Cc (e), is the event of the players all knowing e, all knowing that all know it, and so
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on ad infinitum. Formally, we define
o0
Cgle) = [ Eg (o).
k=1

Finally, distributed knowledge of an event e among the agents in a group G,
denoted D¢ (e), is defined by

Dg(e) ={s € S| ([ Pi(s)) S e}.

ieG

Intuitively, event e is distributed knowledge if e holds at all of the states that remain
possible once we combine the information available to all of the agents.

Given two partitions P and P’ of a set S, the partition P is said to be finer than P’
(and P’ to be coarser than P) if P(s) € P’(s) holds for all s € S. Intuitively, if
partition P is finer than partition P’, then the information sets given by P give at least
as much information as the information sets given by P’ (since considering fewer
states possible corresponds to having more information). The meet of partitions P
and P’, denoted P M P/, is the finest partition that is coarser than P and P’; the join
of P and P’, denoted P LI P, is the coarsest partition finer than P and P’. In the next
proposition, we make use of the meet and the join to give nice characterizations of
common knowledge and distributed knowledge.

Proposition 2.5.1 Let A = (S, Py, ..., Py) be an Aumann structure, let G C
{1,...,n} be a group of agents, and let e  S. Then

(a) s € Cg(e) iff MieGPi)(s) S e.
(b) s € Dg(e) iff (WieGPi)(s) S e.

Proof See Exercise 2.15. 11

It follows that the meet of the agents’ partitions characterizes their common
knowledge, and the join of the agents’ partitions characterizes their distributed knowl-
edge. Notice that Proposition 2.5.1(a) implies that verifying whether an event e is
common knowledge at a given state s can be done by one simple check of inclusion
between two well-defined sets; it is unnecessary to use the definition of common
knowledge, which involves an infinitary intersection.
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There is a close connection between the logic-based approach and the event-
based approach, which we now formalize. There is a natural one-to-one correspon-
dence between partitions on S and equivalence relations on S. Given a partition
P of S, the corresponding equivalence relation R is defined by (s,s’) € R iff
P(s) = P(s’). Similarly, given an equivalence relation R on S, the correspond-
ing partition {S7, ..., S} of S is obtained by making each equivalence class of R
into a cell S; of the partition; that is, two states s, ¢ are in the same cell of the partition
precisely if (s, f) € R. Itis thus easy to convert back and forth between the partition
viewpoint and the equivalence relations viewpoint (see Exercise 2.16).

Assume now that we are given a Kripke structure M = (S, 7, Ky, ..., Ky),
where each K; is an equivalence relation. We define the corresponding Aumann
structure AM = (S, Py, ..., P,) (with the same set S of states) by taking P; to be
the partition corresponding to the equivalence relation ;. We want to show that
M and AM have the same “semantics”. The semantics in M is defined in terms of
formulas. The intension of a formula ¢ in structure M, denoted <pM , is the set of
states of M at which ¢ holds, that is, goM = {s| (M, s) = ¢}. The semantics in AM
is defined in terms of events. For each primitive proposition p, define eﬁ’f to be the
event that p is true; that is, eg’l = {s|(M,s) = p}. We can now define an event
evy () for each formula ¢ by induction on the structure of ¢:

o evy(p) =e¢)

o evy (Y1 AYn) =evy (Y1) Nevy(Y2)
o evy(—=¥) =S —evu(¥)

o evy(Ki¥) =Ki(evy (¥))

o evy(Cg¥) = Cglevu(¥))

e evy (Dgy) =Dg(evy(¥))

Intuitively, ev () is the event that ¢ holds. The following proposition shows that
this intuition is correct, that is, that the formula ¢ holds at state s of the Kripke
structure M iff evjs(¢) holds at state s of the Aumann structure AM,

Proposition 2.5.2 Let M be a Kripke structure where each possibility relation K; is
an equivalence relation, and let AM be the corresponding Aumann structure. Then
for every formula ¢, we have evy(¢) = oM.
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Proof See Exercise 2.17. 11

We have just shown how to go from a Kripke structure to a corresponding Aumann
structure. What about the other direction? Let A = (S, Py, ..., P,) be an Aumann
structure. We want to define a corresponding Kripke structure (S, 7, Ky, ..., Kp)
(with the same set S of states). Defining the £;’s is no problem: we simply take
KC; to be the equivalence relation corresponding to the partition P;. What about the
set @ of primitive propositions and the function 7 that associates with each state in
S a truth assignment to primitive propositions? Although an Aumann structure does
not presuppose the existence of a set of primitive propositions, in concrete examples
there typically are names for basic events of interest, such as “Alice wins the game”
or “the deal is struck”. These names can be viewed as primitive propositions. It is
also usually clear at which states these named events hold; this gives us the function
7. To formalize this, assume that we are given not only the Aumann structure A
but also an arbitrary set ® of primitive propositions and an arbitrary function 7 that
associates with each state in S a truth assignment to primitive propositions in .
We can now easily construct a Kripke structure M4~ which corresponds to A and
n. A =(S,Pi...,Pn), then MA"T = (S, 7,Ky,...,Kn), where K; is the
partition corresponding to P;, fori = 1,...,n. It is straightforward to show that
the Aumann structure corresponding to M4 is A (see Exercise 2.18). Thus, by
Proposition 2.5.2, the intensions of formulas in M“™ and the events corresponding
to these formulas in A coincide.

Proposition 2.5.2 and the preceding discussion establish the close connection
between the logic-based and event-based approaches that we claimed previously.

Exercises

2.1 Suppose thatitis common knowledge that all the children in the muddy children
puzzle are blind. What would the graphical representation be of the Kripke structure
describing the situation before the father speaks? What about after the father speaks?

* 2.2 Consider the following variant of the muddy children puzzle. Suppose that it is
common knowledge that all the children except possibly child 1 are paying attention
when the father speaks. Moreover, suppose that the children have played this game
with the father before, and it is common knowledge that when he speaks he says
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either “At least one of you has mud on your forehead” or a vacuous statement such
as “My, this field is muddy”. (Thus it is common knowledge that even if child 1 did
not hear the father, he knows that the father made one of those statements.)

(a) Describe the situation (i.e., the Kripke structure) after the father’s statement.
(Hint: each possible world can be characterized by an (n 4 2)-tuple, where n
is the total number of children.) Draw the Kripke structure for the case n = 2.

(b) Canthe children figure out whether or not they are muddy? (Hint: firstconsider
the case where child 1 is not muddy, then consider the case where he is muddy
and hears the father, and finally consider the case where he is muddy and does
not hear the father.)

(c) Can the children figure out whether or not they are muddy if the father says at
the beginning “Two or more of you have mud on your forehead”?

2.3 (Yetanother variant of the muddy children puzzle:) Suppose that the father says
“Child number 1 has mud on his forehead” instead of saying “At least one of you has
mud on your forehead”. However, it should not be too hard to convince yourself that
now the children (other than child 1) cannot deduce whether they have mud on their
foreheads. Explain why this should be so (i.e., why the children cannot solve the
puzzle in a situation where they apparently have more information). This example
shows that another assumption inherent in the puzzle is that all relevant information
has been stated in the puzzle, and in particular, that the father said no more than “At
least one of you has mud on your forehead”.

* 2.4 (A formalization of the aces and eights game from Exercise 1.1:)

(a) What are the possible worlds for this puzzle if the suit of the card matters?
How many possible worlds are there?

(b) Now suppose that we ignore the suit (so, for example, we do not distinguish
a hand with the ace of clubs and the ace of hearts from a hand with the ace
of spades and the ace of hearts). How many possible worlds are there in this
case? Since the suit does not matter in the puzzle, we still get an adequate
representation for the puzzle if we ignore it. Since there are so many fewer
possible worlds to consider in this case, it is certainly a worthwhile thing to
do.
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(c) Draw the Kripke structure describing the puzzle.

(d) Consider the situation described in part (a) of Exercise 1.1. Which edges dis-
appear from the structure when you hear that Alice and Bob cannot determine
what cards they have?

(e) Now consider the situation described in part (b) of Exercise 1.1 and show
which edges disappear from the structure.

* 2.5 (A formalization of the wise men puzzle from Exercise 1.3:)

(a) Consider the first version of the puzzle (as described in part (a) of Exercise 1.3).
Draw the Kripke structure describing the initial situation. How does the struc-
ture change after the first wise man says that he does not know the color of the
hat on his head? How does it change after the second wise man says that he
does not know?

(b) How does the initial Kripke structure change if the third wise man is blind?

2.6 Show that G-reachability is an equivalence relation if the X’; relations are re-
flexive and symmetric.

2.7 Show that if # is G-reachable from s, then (M, s) = Cgo iff (M, t) = Cgo,
provided that the K; relation is reflexive and symmetric.

2.8 Show that the following properties of common knowledge are all valid, using
semantic arguments as in Theorems 2.4.1 and 2.4.2:

(@) (Cgp ANCglp = ¥)) = Ca¥,
(b) Cep = ¢,

(©) Cop = CsCqoy,

(d) =Cgp = Cc—Cgo,

(e) Cgp = Cqrpif G 2 G'.

As is shown in Exercise 3.11, these properties are actually provable from the prop-
erties of knowledge and common knowledge described in this chapter.
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2.9 Show thatif M = ¢ = ¢, then
(@ M= Kip = Kiy,
(b) M =Cgp = CgV¥.
2.10 Show that the following properties of distributed knowledge are all valid:
(@) (Dgy A Dg(p = V1)) = DGV,
(b) Doy = ¢,
(¢) DGy = DG Dgy,
(d) =Dy = Dg—Dgo,
(e) Diyy < Kio,

(f) Dgyp = Do eif G C G'.

2.11 Prove using semantic arguments that knowledge and common knowledge dis-
tribute over conjunction; that is, prove that the following properties are valid:

(@) Ki(p AY) & (Kip AKiYr),
(b) Colp AY) & (Coep A Co¥).

It can also be shown that these properties follow from the properties described for
knowledge and common knowledge in the text (Exercise 3.31).

2.12 Prove that the following formulas are valid:
(@) E ¢ = Ki~Kip,
(b) E—¢ = K;, ...K; =K, ... K; ¢ for any sequence iy, ..., i} of agents,
(©) =—-Ki—=Kip & Kip.

These formulas are also provable from the S5 properties we discussed; see Exer-
cise 3.14.
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213 Let A = (S, Py, ..., Py) be an Aumann structure and let G C {1, ...,n}. If
s and ¢ are states, we say that ¢ is G-reachable from s in A if t is reachable from s
in a Kripke structure M A, corresponding to A. Prove thatt € (M;egPi)(s) iff ¢ is
G-reachable from s.

214 Let A = (S,P1,...,P,) be an Aumann structure and let G C {1, ..., n}.
Prove that t € (U;egP;)(s) iff for every agent i we have t € P; (s).

2.15 Prove Proposition 2.5.1. (Hint: you may either prove this directly, or use
Exercises 2.13 and 2.14.)

2.16 Show that the correspondence we have given between partitions and equiva-
lence relations and the correspondence defined in the other direction are inverses.
That is, show that R is the equivalence relation that we obtain from a partition P iff
P is the partition that we obtain from the equivalence relation R.

2.17 Let M be a Kripke structure where each possibility relation K; is an equivalence
relation, and let A be the corresponding Aumann structure.

(a) Prove that

(1) s € Kij(ev(e)) holds in A iff (M, 5) = K¢,
(i) s € Dg(ev(p)) holds in A iff (M, s) &= Dgo,
(iii) s € Cg(ev(p)) holds in A iff (M, s) = Cge.

(b) Use part (a) to prove Proposition 2.5.2.

2.18 Show that the Aumann structure corresponding to the Kripke structure M4-™
is A.

Notes

Modal logic was discussed by several authors in ancient times, notably by Aristo-
tle in De Interpretatione and Prior Analytics, and by medieval logicians, but like
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most work before the modern period, it was nonsymbolic and not particularly sys-
tematic in approach. The first symbolic and systematic approach to the subject
appears to be the work of Lewis beginning in 1912 and culminating in the book
Symbolic Logic with Langford [1959]. Carnap [1946, 1947] suggested using possi-
ble worlds to assign semantics to modalities. Possible-worlds semantics was further
developed independently by several researchers, including Bayart [1958], Hintikka
[1957, 1961], Kanger [1957b], Kripke [1959], Meredith [1956], Montague [1960],
and Prior [1962] (who attributed the idea to P. T. Geach), reaching its current form
(as presented here) with Kripke [1963a]. Many of these authors also observed that
by varying the properties of the X; relations, we can obtain different properties of
knowledge.

The initial work on modal logic considered only the modalities of possibility
and necessity. As we mentioned in the bibliographic notes of Chapter 1, the idea of
capturing the semantics of knowledge in this way is due to Hintikka, who also first
observed the properties of knowledge discussed in Section 2.4.

The analysis of the muddy children puzzle in terms of Kripke structures is due to
Halpern and Vardi [1991]. Aumann structures were defined by Aumann [1976]. Au-
mann defines common knowledge in terms of the meet; in particular, the observation
made in Proposition 2.5.1(a) is due to Aumann. A related approach, also defining
knowledge as an operator on events, is studied by Orlowska [1989]. Yet another
approach, pursued in [Brandenburger and Dekel 1993; Emde Boas, Groenendijk,
and Stokhof 1980; Fagin, Geanakoplos, Halpern, and Vardi 1999; Fagin, Halpern,
and Vardi 1991; Fagin and Vardi 1985; Heifetz and Samet 1999; Mertens and Zamir
1985], models knowledge directly, rather than in terms of possible worlds. The key
idea there is the construction of an infinite hierarchy of knowledge levels. The rela-
tion between that approach and the possible-world approach is discussed in [Fagin,
Halpern, and Vardi 1991].
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Completeness and Complexity

There are four sorts of men:

He who knows not and knows not he knows not: he is a fool—shun him,
He who knows not and knows he knows not: he is simple—teach him;
He who knows and knows not he knows: he is asleep—wake him;

He who knows and knows he knows: he is wise—follow him.

Arabian proverb

In Chapter 2 we discussed the properties of knowledge (as well as of common knowl-
edge and distributed knowledge). We attempted to characterize these properties in
terms of valid formulas. All we did, however, was to list some valid properties. It
is quite conceivable that there are additional properties of knowledge that are not
consequences of the properties listed in Chapter 2. In this chapter, we give a com-
plete characterization of the properties of knowledge. We describe two approaches
to this characterization. The first approach is proof-theoretic: we show that all the
properties of knowledge can be formally proved from the properties listed in Chap-
ter 2. The second approach is algorithmic: we study algorithms that recognize the
valid properties of knowledge. We also consider the computational complexity of
recognizing valid properties of knowledge. Doing so will give us some insight into
what makes reasoning about knowledge difficult.

When analyzing the properties of knowledge, it is useful to consider a somewhat
more general framework than that of the previous chapter. Rather than restrict atten-
tion to the case where the possibility relations (the &C;’s) are equivalence relations,
we consider other binary relations as well. Although our examples show that taking
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the K;’s to be equivalence relations is reasonably well-motivated, particularly when
what an agent considers possible is determined by his information, there are certainly
other choices possible. The real question is what we mean by “in world s, agent i
considers world ¢ possible.”

Let us now consider an example where reflexivity might not hold. We can easily
imagine an agent who refuses to consider certain situations possible, even when they
are not ruled out by his information. Thus, Fred might refuse to consider it possible
that his son Harry is taking illegal drugs, even if Harry is. Fred might claim to “know”
that Harry is drug-free, since in all worlds Fred considers possible, Harry is indeed
drug-free. In that case, Fred’s possibility relation would not be reflexive; in world s
where Harry is taking drugs, Fred would not consider world s possible. To see why
symmetry might not hold, consider poor Fred again. Suppose that in world s, Fred’s
wife Harriet is out visiting her friend Alice and told Fred that she would be visiting
Alice. Fred, however, has forgotten what Harriet said. Without reflecting on it too
much, Fred considers the world ¢ possible, where Harriet said that she was visiting
her brother Bob. Now, in fact, if Harriet had told Fred that she was visiting Bob,
Fred would have remembered that fact, since Harriet had just had a fight with Bob
the week before. Thus, in world 7, Fred would not consider world s possible, since
in world ¢, Fred would remember that Harriet said she was visiting Bob, rather than
Alice. Perhaps with some introspection, Fred might realize that ¢ is not possible,
because in ¢t he would have remembered what Harriet said. But people do not always
do such introspection.

By investigating the properties of knowledge in a more general framework, as we
do here, we can see how these properties depend on the assumptions we make about
the possibility relations K;. In addition, we obtain general proof techniques, which
in particular enable us to characterize in a precise sense the complexity of enable us
to characterize in a precise sense the complexity of reasoning about knowledge.

This chapter is somewhat more technical than the previous ones; we have high-
lighted the major ideas in the text, and have left many of the details to the exercises.
A reader interested just in the results may want to skip many of the proofs. However,
we strongly encourage the reader who wants to gain a deeper appreciation of the
techniques of modal logic to work through these exercises.
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3.1 Completeness Results

As we said before, we begin by considering arbitrary Kripke structures, without
the assumption that the possibility relations K; are equivalence relations. Before
we go on, we need to define some additional notation. Let £,(®) be the set of
formulas that can be built up starting from the primitive propositions in @, using
conjunction, negation, and the modal operators Ky, ..., K;,. Let EnD (®) (resp.,
E,f (®)) be the language that results when we allow in addition the modal operators
D¢ (resp., operators Eg and Cg), where G is a nonempty subset of {1,...,n}. In
addition, we consider the language /j,f D (@), where formulas are formed using all
the operators Cg, Dg, and Eg. Let M, (®) be the class of all Kripke structures
for n agents over ® (with no restrictions on the K; relations). Later we consider
various subclasses of M,,(®), obtained by restricting the K; relations appropriately.
For example, we consider /\/l,’ft (®), the Kripke structures where the K; relation is
reflexive, symmetric, and transitive (i.e., an equivalence relation); these are precisely
the structures discussed in the previous chapter. For notational convenience, we take
the set ® of primitive propositions to be fixed from now on and suppress it from the
notation, writing £, instead of £, (®), M,, instead of M,,(®), and so on.

If A is a set, define |A| to be the cardinality of A (i.e., the number of elements
in A). We define |¢|, the length of a formula ¢ € EgD , to be the number of symbols
that occur in ¢; for example, |p A E{1 2yp| = 9. In general, the length of a formula
of the form Cgyr, Eg{¥, or Dg¥r is 2 + 2 |G| + ||, since we count the elements
in G as distinct symbols, as well as the commas and set braces in G. We also define
what it means for ¥ to be a subformula of ¢. Informally, ¥ is a subformula of ¢ if it
is a formula that is a substring of ¢. The formal definition proceeds by induction on
the structure of ¢: v is a subformula of ¢ € £, if either (a) ¥ = ¢ (so that ¢ and ¢
are syntactically identical), (b) ¢ is of the form —¢’, K;¢', Cg¢’, Dg¢’, or Eg¢’,
and v is a subformula of ¢’, or (c) ¢ is of the form ¢’ A ¢” and  is a subformula
of either ¢’ or ¢”. Let Sub(p) be the set of all subformulas of ¢. We leave it to the
reader to check that |Sub(¢)| < |¢|; that is, the length of ¢ is an upper bound on the
number of subformulas of ¢ (Exercise 3.1).

Although we have now dropped the restriction that the K;’s be equivalence rela-
tions, the definition of what it means for a formula ¢ in ﬁ,‘f D (or any of its sublan-
guages) to be true at a state s in the Kripke structure M € M, remains the same,
as do the notions of validity and satisfiability. Thus, for example, (M, s) = K;¢
(i.e., agent i knows ¢ at state s in M) exactly if ¢ is true at all the states ¢ such that
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(s,t) € K;. We say that ¢ is valid with respect to M,,, and write M,, = ¢, if ¢
is valid in all the structures in M,,. More generally, if M is some subclass of M,,,
we say that ¢ is valid with respect to M, and write M = g, if ¢ is valid in all the
structures in M. Similarly, we say that ¢ is satisfiable with respect to M if ¢ is
satisfied in some structure in M.

We are interested in characterizing the properties of knowledge in Kripke struc-
tures in terms of the formulas that are valid in Kripke structures. Note that we should
expect fewer formulas to be valid than were valid in the Kripke structures consid-
ered in the previous chapter, for we have now dropped the restriction that the ;’s
are equivalence relations. The class M*" of structures is a proper subclass of M,,.
Therefore, a formula that is valid with respect to M, is certainly valid with respect
to the more restricted class M. As we shall see, the converse does not hold.

We start by considering the language £,; we deal with common knowledge
and distributed knowledge later on. We observed in the previous chapter that the
Distribution Axiom and the Knowledge Generalization Rule hold no matter how we
modify the /C; relations. Thus, the following theorem should not come as a great
surprise.

Theorem 3.1.1 For all formulas ¢,V € L,, structures M € M,, and agents
i=1,...,n,

(a) if ¢ is an instance of a propositional tautology, then M, = ¢,
(b) ifM =pand M =9 =  then M =,

(c) My = (Kip AKilp = V) = K,

(d) if M = ¢ then M = K.

Proof Parts (a) and (b) follow immediately from the fact that the interpretation of
A and — in the definition of = is the same as in propositional logic. The proofs of
part (c) and (d) are identical to the proofs of parts (a) and (b) of Theorem 2.4.1. I

We now show that, in a precise sense, these properties completely characterize
the formulas of £, that are valid with respect to M,,. To do so, we have to consider
the notion of provability. An axiom system AX consists of a collection of axioms
and inference rules. An axiom is a formula, and an inference rule has the form “from
1, ..., @ infer ¢,” where ¢1, ..., ¢, ¥ are formulas. We are actually interested
in (substitution) instances of axioms and inference rules (so we are really thinking
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of axioms and inference rules as schemes). For example, the formula K1q vV —=Kq
is an instance of the propositional tautology p Vv —p, obtained by substituting K¢
for p. A proof in AX consists of a sequence of formulas, each of which is either
an instance of an axiom in AX or follows by an application of an inference rule. (If
“from ¢, ..., ¢ infer ¥ is an instance of an inference rule, and if the formulas
@1, ..., ¢r have appeared earlier in the proof, then we say that v follows by an
application of an inference rule.) A proof is said to be a proof of the formula ¢ if
the last formula in the proof is ¢. We say ¢ is provable in AX, and write AX F ¢,
if there is a proof of ¢ in AX.

Consider the following axiom system K;,, which consists of the two axioms and
two inference rules given below:

Al. All tautologies of propositional calculus

A2. (Kip AKi(p = ¥)) = Kiy,i =1,...,n (Distribution Axiom)
R1. From ¢ and ¢ = 1 infer ¢ (modus ponens)

R2. From ¢ infer K;¢,i =1, ...,n (Knowledge Generalization)

Recall that we are actually interested in instances of axioms and inference rules. For
example,

(Ki(p~Ag) ANKi1((p Ag) = —Kor)) = K1—Kor

is a substitution instance of the Distribution Axiom.

As atypical example of the use of K;,, consider the following proof of the formula
Ki(p A gq) = K;p. We give the axiom used or the inference rule applied and the
lines it was applied to in parentheses at the end of each step:

1. (pAg)=p (Al)
2. Ki((p~ng)= p) (1,R2)
3. (KilpAng) ANKi((pAg) = p)) = Kip (A2)

4. (Ki(pAg) ANKi((pANg) = p)) = Kip)
= (Ki((pAgq) = p) = (Ki(p Aq) = Kip))
(A1, since this is an instance of the propositional tautology
((p1 A p2) = p3) = (p2 = (p1 = p3)))
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5. Killpng) = p) = (Ki(pAg) = Kip) (3,4RI])
6. Ki(pAhng)= Kip (2,5R1])

This proof already shows how tedious the proof of even simple formulas can be.
Typically we tend to combine several steps when writing up a proof, especially those
that involve only propositional reasoning (A1 and R1).

The reader familiar with formal proofs in propositional or first-order logic should
be warned that one technique that works in these cases, namely, the use of the de-
duction theorem, does not work for K,. To explain the deduction theorem, we
need one more definition. We generalize the notion of provability by defining ¢
to be provable from r in the axiom system AX, written AX, ¢ F ¢, if there is a
sequence of steps ending with ¢, each of which is either an instance of an axiom
of AX, ¢ itself, or follows from previous steps by an application of an inference
rule of AX. The deduction theorem is said to hold for AX if AX, ¥ F ¢ implies
AX ¥ = ¢. Although the deduction theorem holds for the standard axiomatiza-
tions of propositional logic and first-order logic, it does not hold for K,,. To see this,
observe that for any formula ¢, by an easy application of Knowledge Generalization
(R2) we have K,;, ¢ - K;¢. However, we do not in general have K,, - ¢ = K;g: it
is certainly not the case in general that if ¢ is true, then agent i knows ¢. It turns out
that the Knowledge Generalization Rule is essentially the cause of the failure of the
deduction theorem for K,,. This issue is discussed in greater detail in Exercises 3.8
and 3.29.

We return now to our main goal, that of proving that K,, characterizes the set of
formulas that are valid with respect to M;,. An axiom system A X is said to be sound
for alanguage £ with respect to a class M of structures if every formula in £ provable
in AX is valid with respect to M. The system A X is complete for £ with respect to M
if every formula in £ that is valid with respect to M is provable in AX. We think of
AX as characterizing the class M if it provides a sound and complete axiomatization
of that class; notationally, this amounts to saying that for all formulas ¢, we have
AX F ¢ if and only if M = ¢. Soundness and completeness provide a tight
connection between the syntactic notion of provability and the semantic notion of
validity.

We plan to show that K, provides a sound and complete axiomatization for £,
with respect to M,,. We need one more round of definitions in order to do this.
Given an axiom system AX, we say a formula ¢ is AX-consistent if —¢ is not
provable in AX. A finite set {¢y, ..., ¢} of formulas is A X-consistent exactly if the
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conjuction @1 A. .. A @ of its members is A X-consistent. As is standard, we take the
empty conjunction to be the formula rue, so the empty set is A X-consistent exactly
if true is AX-consistent. An infinite set of formulas is A X-consistent exactly if all
of its finite subsets are A X-consistent. Recall that a language is a set of formulas.
A set F of formulas is a maximal AX-consistent set with respect to a language £
if (1) it is A X-consistent, and (2) for all ¢ in £ but not in F, the set F U {¢} is not
A X-consistent.

Lemma 3.1.2 Suppose that the language L consists of a countable set of formulas
and is closed with respect to propositional connectives (so that if ¢ and \r are in the
language, then so are ¢ AN and —¢). In a consistent axiom system AX that includes
every instance of Al and R1 for the language L, every AX-consistent set F C L can
be extended to a maximal A X-consistent set with respect to L. In addition, if F is a
maximal AX-consistent set, then it satisfies the following properties:

(a) for every formula ¢ € L, exactly one of ¢ and —¢ isin F,
(b) oAy e Fiffoe Fandyr € F,
(c) if o and ¢ = 1 are both in F, then { is in F,

(d) if ¢ is provable in AX, then ¢ € F.

Proof Let F bean A X-consistent subset of formulasin £. To show that F' can be ex-
tended to a maximal A X -consistent set, we first construct a sequence Fy, Fy, Fa, ...
of AX-consistent sets as follows. Because L is a countable language, let ¥, ¥, . ..
be an enumeration of the formulas in £. Let Fp = F, and inductively construct
the rest of the sequence by taking F; 1 = F; U {11} if this set is A X-consistent
and otherwise by taking F;; = F;. It is easy to see that each set in the sequence
Fy, F1, ...1s AX-consistent, and that this is a nondecreasing sequence of sets. Let
F = U2 F;. Each finite subset of F must be contained in F; for some j, and
thus must be AX-consistent (since F; is AX-consistent). It follows that F itself is
AX-consistent. We claim that in fact F is a maximal A X-consistent set. For suppose
Y € Land ¢ ¢ F. Since ¥ is a formula in £, it must appear in our enumeration, say
as Y. If Fy, U {yr;} were A X-consistent, then our construction would guarantee that
Y € Fry1, and hence that 3 € F. Because ¢y = ¢ ¢ F, it follows that Fi U {y}
is not A X-consistent. Hence F U {i/} is also not A X-consistent. It follows that F is
a maximal A X-consistent set.
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To see that maximal A X-consistent sets have all the properties we claimed,
let F be a maximal AX-consistent set. If ¢ € £, we now show that one of
F U {p} and F U {—¢} is AX-consistent. For assume to the contrary that nei-
ther of them is A X-consistent. It is not hard to see that F U {¢ VvV —¢} is then also
not A X-consistent (Exercise 3.2). So F is not AX-consistent, because ¢ V —¢ is a
propositional tautology. This gives a contradiction. If FU{p}is A X-consistent, then
we must have ¢ € F since F is a maximal A X-consistent set. Similarly, if F'U {—¢}
is AX-consistent then —¢ € F. Thus, one of ¢ or —¢ is in F. It is clear that we
cannot have both ¢ and —¢ in F, for otherwise F would not be A X-consistent. This
proves (a).

Part (a) is enough to let us prove all the other properties we claimed. For example,
if o A € F,then we must have ¢ € F, for otherwise, as we just showed, we would
have —¢p € F, and F would not be A X-consistent. Similarly, we must have ¢ € F.
Conversely, if ¢ and i are both in F, we must have ¢ A ¢ € F, for otherwise we
would have =(p A ) € F, and, again, F would not be A X-consistent. We leave
the proof that F has properties (c) and (d) to the reader (Exercise 3.3). 1

We can now prove that K, is sound and complete.

Theorem 3.1.3 K, is a sound and complete axiomatization with respect to M,, for
formulas in the language L,,.

Proof Using Theorem 3.1.1, itis straightforward to prove by induction on the length
of a proof of ¢ that if ¢ is provable in K,,, then ¢ is valid with respect to M,, (see
Exercise 3.4). It follows that K,, is sound with respect to M,,.

To prove completeness, we must show that every formula in £, that is valid with
respect to M, is provable in K;,. It suffices to prove that

Every K;,-consistent formula in £, is satisfiable with respect to M,,. ()

For suppose we can prove (x), and ¢ is a valid formula in £,. If ¢ is not provable in
K, then neither is —=—¢, so, by definition, —¢ is K, -consistent. It follows from ()
that —¢ is satisfiable with respect to M,,, contradicting the validity of ¢ with respect
to M,,.

We prove (x) using a general technique that works for a wide variety of modal
logics. We construct a special structure M€ € M, called the canonical structure
for K,. M€ has a state sy corresponding to every maximal K;-consistent set V.
Then we show
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(M€, sy) e iff o€ V. (%)

That is, we show that a formula is true at a state sy exactly if it is one of the formulas
in V. Note that () suffices to prove (x), for by Lemma 3.1.2, if ¢ is K;,-consistent,
then ¢ is contained in some maximal K, -consistent set V. From (xx) it follows that
(M€, sy) = ¢, and so ¢ is satisfiable in M€. Therefore, ¢ is satisfiable with respect
to M,,, as desired.

We proceed as follows. Givenaset V of formulas, define V/K; = {¢ | Kip € V}.
For example, if V = {K1p, K2 K19, K1K3p Aq, K1K3q},then V/K| = {p, K3q}.
Let M€ = (S, m, Ky, ..., K,), where

S = {sy |V is a maximal K,,-consistent set}
true ifpeV
(sv)(p) = { false ifp ¢V

Ki = {Gsv,sw)|V/K; € W}

We now show that for all s, € § we have (M€, sy) = ¢ iff ¢ € V. We proceed
by induction on the structure of formulas. More precisely, assuming that the claim
holds for all subformulas of ¢, we also show that it holds for ¢.

If ¢ is a primitive proposition p, this is immediate from the definition of 7 (sy ).
The cases where ¢ is a conjunction or a negation are simple and left to the reader (Ex-
ercise 3.5). Assume that ¢ is of the form K;y and that ¢ € V. Then ¢ € V/K;
and, by definition of K;, if (sy, sw) € K;, then ¥ € W. Thus, using the induction
hypothesis, (M€, sw) =  for all W such that (sy, sw) € K;. By the definition of
=, it follows that (M€, sy) = K.

For the other direction, assume (M€, sy) = K;y. It follows that the set
(V/K;)U{—=y}isnot K, -consistent. For suppose otherwise. Then, by Lemma 3.1.2,
it would have a maximal K,,-consistent extension W and, by construction, we would
have (sy, sw) € K;. By the induction hypothesis we have (M€, sw) = —, and so
(M€, sy) = —K;¥, contradicting our original assumption. Since (V/K;) U {—}
is not K;,-consistent, there must be some finite subset, say {¢1, ..., ¢k, ¥}, which
is not K;,-consistent. Thus, by propositional reasoning (Exercise 3.6), we have

KiFor= (@@= (..= (= v)...)).

By R2, we have

KiFKi(pr= (@@= (..=@=V)..)).
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By induction on &, together with axiom A2 and propositional reasoning, we can show
(Exercise 3.7)

KiFKilpr=(@=(C..=>@W=>v%)...)
= (Kip1 = (Kipp = (... = (Kigr = Kiy) .. ).

Now from R1, we get

Ky F Kipr = (Kig2 = (... = (Kigk = Kip) ...)).
By part (d) of Lemma 3.1.2, it follows that

Kipr = (Kigp = (... = (Kigrk = Ki¥)...)) € V.

Because ¢1, ..., 9r € V/K;, we must have K;¢1, ..., Kipr € V. By part (c) of
Lemma 3.1.2, applied repeatedly, it follows that K;¢ € V, as desired. 1

We have thus shown that K;, completely characterizes the formulas in £, that are
valid with respect to M,,, where there are no restrictions on the X; relations. What
happens if we restrict the ; relations? In Chapter 2, we observed that we do get
extra properties if we take the K; relations to be reflexive, symmetric, and transitive.
These properties are the following:

A3. Kip= ¢, i=1,...,n (Knowledge Axiom)
Ad4. Kip = K;K;jp, i=1,...,n (Positive Introspection Axiom)

AS5. —K;¢o = Ki—K;p, i=1,...,n (Negative Introspection Axiom)

We remarked earlier that axiom A3 has been taken by philosophers to capture
the difference between knowledge and belief. From this point of view, the man we
spoke of at the beginning of the chapter who “knew” his son was drug-free should
really be said to believe his son was drug-free, but not to know it. If we want to model
such a notion of belief, then (at least according to some philosophers) we ought to
drop A3, but add an axiom that says that an agent does not believe false:

A6. —K;(false), i=1,...,n (Consistency Axiom)
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It is easy to see that A6 is provable from A3, Al, and R1 (see Exercise 3.9).

Historically, axiom A2 has been called K, A3 has been called T, A4 has been
called 4, AS has been called 5, and A6 has been called D. We get different modal
logics by considering various subsets of these axioms. These logics have typically
been named after the significant axioms they use. For example, in the case of one
agent, the system with axioms and rules A1, A2, R1, and R2 has been called K, since
its most significant axiom is K. Similarly, the axiom system KD45 is the result of
combining the axioms K, D, 4, and 5§ with A1, R1, and R2, and KT4 is the result of
combining the axioms K, T, and 4 with A1, R1, and R2. Some of the axiom systems
are commonly called by other names as well. The K is quite often omitted, so that
KT becomes T, KD becomes D, and so on; KT4 has traditionally been called S4 and
KT45 has been called S5. (The axioms K, T, 4, and 5, together with rule R2, are
what we called the S5 properties in Chapter 2.) We stick with the traditional names
here for those logics that have them, since they are in common usage, except that
we use the subscript n to emphasize the fact that we are considering systems with
n agents rather than only one agent. Thus, for example, we speak of the logics Tj,
or S5,. We occasionally omit the subscript if n = 1, in line with more traditional
notation.

Philosophers have spent years arguing which of these axioms, if any, best captures
the knowledge of an agent. We do not believe that there is one “true” notion of
knowledge; rather, the appropriate notion depends on the application. As we said
in Chapter 2, for many of our applications the axioms of S5 seem most appropriate
(although philosophers have argued quite vociferously against them, particularly
axiom AS5). Rather than justify these axioms further, we focus here on the relationship
between these axioms and the properties of the K; relation, and on the effect of this
relationship on the difficulty of reasoning about knowledge. (Some references on the
issue of justification of the axioms can be found in the bibliographic notes at the end of
the chapter.) Since we do not have the space to do an exhaustive study of all the logics
that can be formed by considering all possible subsets of the axioms, we focus on some
representative cases here, namely K,,, T, S4,,, S5,,, and KD45,,. These provide a
sample of the logics that have been considered in the literature and demonstrate some
of the flexibility of this general approach to modeling knowledge. K, is the minimal
system, and it enables us to study what happens when there are in some sense as few
restrictions as possible on the K; operator, given our possible-worlds framework.
The minimal extension of K,, that requires that what is known is necessarily true is
the system T,. Researchers who have accepted the arguments against A5 but have
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otherwise been happy with the axioms of S5, have tended to focus on S4,,. On
the other hand, researchers who were willing to accept the introspective properties
embodied by A4 and AS, but wanted to consider belief rather than knowledge, have
tended to consider KD45 or K45. For definiteness, we focus on KD45 here, but all
our results for KD45 carry over with very little change to K45.

Theorem 3.1.3 implies that the formulas provable in K,, are precisely those that
are valid with respect to M,,. We want to connect the remaining axioms with various
restrictions on the possibility relations K;. We have already considered one possi-
ble restriction on the ; relations (namely, that they be reflexive, symmetric, and
transitive). We now consider others. We say that a binary relation XC on a set S is
Euclidean if, for all s, t, u € S, whenever (s, t) € K and (s, u) € K, then (¢, u) € K;
we say that K is serial if, for all s € S, there is some ¢ such that (s, t) € K.

Some of the relationships between various conditions we can place on binary
relations are captured in the following lemma, whose proof is left to the reader
(Exercise 3.12).

Lemma 3.1.4
(a) If K is reflexive and Euclidean, then K is symmetric and transitive.
(b) If K is symmetric and transitive, then K is Euclidean.
(c) The following are equivalent:

(i) K is reflexive, symmetric, and transitive.
(ii) K is symmetric, transitive, and serial.

(iii) K is reflexive and Euclidean.

Let M, (resp., M'; M!S'; M¢) be the class of all structures for n agents
where the possibility relations are reflexive (resp., reflexive and transitive; reflexive,
symmetric, and transitive; Euclidean, serial, and transitive). As we observed earlier,
since an equivalence relation is one that is reflexive, symmetric, and transitive, M Z”
is precisely the class of structures we considered in Chapter 2.

The next theorem shows a close connection between various combinations of
axioms, on the one hand, and various restrictions on the possibility relations ;,
on the other hand. For example, axiom A3 (the Knowledge Axiom K;¢ = ¢)
corresponds to reflexivity of ;. To demonstrate one part of this correspondence,
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we now show that axiom A3 is valid in all structures in M),. If s is a world in a
structure M € M, , then agent i must consider s to be one of his possible worlds in s.
Thus, if agent i knows ¢ in s, then ¢ must be true in s; that is, (M, s) &= K;j¢ = ¢.
Therefore, T), is sound with respect to M). We might hope that, conversely, every
structure that satisfies all instances of axiom A3 is in M),. Unfortunately, this is not
the case (we return to this point a little later). Nevertheless, as we shall see in the
proof of the next theorem, axiom A3 forces the possibility relations in the canonical
structure to be reflexive. As we shall see, this is sufficient to prove that T,, is complete
with respect to M.

Theorem 3.1.5 For formulas in the language L,,:
(a) Ty is a sound and complete axiomatization with respect to M,,,

(b) S4, is a sound and complete axiomatization with respect to M,

rst

(c) S5, is a sound and complete axiomatization with respect to M,

(d) KD45,, is a sound and complete axiomatization with respect to Mf,lt.

Proof We first consider part (a). We already showed that T;, is sound with respect
to M!,. For completeness, we need to show that every T, -consistent formula is satisfi-
able in some structure in M;,. This is done exactly as in the proof of Theorem 3.1.3.
We define a canonical structure M€ for T, each of whose states corresponds to a
maximal T,,-consistent set V of formulas. The K; relations are defined as in the
proof of Theorem 3.1.3, namely, (sy, sw) € K; in M€ exactly if V/K; C W, where
V/Ki = {¢| Kip € V}. A proof identical to that of Theorem 3.1.3 can now be
used to show that ¢ € V iff (M€, sy) &= ¢, for all maximal T,-consistent sets V.
Furthermore, it is easy to see that every maximal T,-consistent set V contains every
instance of axiom A3. Therefore, all instances of axiom A3 are true at sy . It follows
immediately that V/K; € V. So by definition of K;, it follows that (sy, sy) € K;.
So K; is indeed reflexive, and hence M¢ € M),. Assume now that ¢ is a T,,-consistent
formula. As in the proof of Theorem 3.1.3, it follows that ¢ is satisfiable in M.
Since, as we just showed, M € M), it follows that ¢ is satisfiable in some structure
in M), as desired. This completes the proof of part (a).

To prove part (b), we show that just as axiom A3 corresponds to reflexivity,
similarly axiom A4 corresponds to transitivity. It is easy to see that A4 is valid in
all structures where the possibility relation is transitive. Moreover, A4 forces the
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possibility relations in the canonical structure to be transitive. To see this, suppose
that (sy, sw), (sw, sx) € K; and that all instances of A4 are true at sy. Then if
Kip € V, by A4 we have K;K;¢p € V, and, by the construction of M¢, we have
Kip € Wand ¢ € X. Thus, V/K; C X and (sy, sx) € K;, as desired. That means
that in the canonical structure for S4,,, the possibility relation is both reflexive and
transitive, so the canonical structure is in M!!. The proof is now very similar to that
of part (a).

The proof of parts (c) and (d) go in the same way. Here the key correspondences
are that axiom A5 corresponds to a Euclidean possibility relation and axiom A6
corresponds to a serial relation (Exercise 3.13). 11

We say that a structure M is a model of K,, if every formula provable in K, is
valid in M. We can similarly say that a structure is a model of T, S4,, S5,, and
KD45,. The soundness part of Theorem 3.1.5 shows that every structure in M),
(resp., M7, M1 M) is a model of T, (resp., S4,, S5,, KD45,). We might be
tempted to conjecture that the converse also holds, so that, for example, if a structure
is a model of S5,, then it is in M/, This is not quite true, as the following example
shows. Suppose that n = 1 and ® = {p}, and let M be the structure consisting of
two states s and ¢, such that w(s)(p) = 7w (¢)(p) = true and K1 = {(s, 1), (¢, 1)}, as
shown in Figure 3.1.

Figure 3.1 A model of S5; that is not in M

The structure M is not in Mﬁ let alone ./\/l?’, but it is easy to see that it is a
model of S51 and a fortiori amodel of S4| and T (Exercise 3.15). Nevertheless, the
intuition behind the conjecture is almost correct. In fact, it is correct in two senses.
If s is a state in a Kripke structure M, and s’ is a state in a Kripke structure M’, then
we say that (M, s) and (M’, s") are equivalent, and write (M, s) = (M’, s'), if they
satisfy exactly the same formulas in the language £,. That is, (M, s) = (M’, s') if,
for all formulas ¢ € L,, we have (M, s) = ¢ if and only if (M’, s') = ¢. One sense
in which the previous conjecture is correct is that every model M of T, (resp., S4,,
S5, KD45,) can effectively be converted to a structure M’ in M, (resp., MIT, M5!,
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Mlet) with the same state space, such that (M, s) = (M’, s) for every state s (see
Exercise 3.16).

The second sense in which the conjecture is correct involves the notion of a frame.
We define a frame for n agents to be atuple (S, K1, ..., K,), where S is a set of states
and K1, ..., I, are binary relations on S. Thus, a frame is like a Kripke structure
without the function 7r. Notice that the Aumann structures defined in Section 2.5 can
be viewed as frames. We say that the Kripke structure (S, 7, K1, ..., Ky) is based
on the frame (S, K1, ..., K;). A formula ¢ is valid in frame F if it is valid in every
Kripke structure based on F. It turns out that if we look at the level of frames rather
than at the level of structures, then we get what can be viewed as a partial converse to
Theorem 3.1.5. For example, the IC;’s in a frame F' are reflexive if and only if every
instance of the Knowledge Axiom A3 is valid in F. This suggests that the axioms
are tied more closely to frames than they are to structures. Although we have shown
that, for example, we can find a structure that is a model of S5,, but is not in M;St (or
even M), this is not the case at the level of frames. If a frame is a model of S5,,
then it must be in 7*'. Conversely, if a frame is in 7*, then it is a model of S5,,.
See Exercise 3.17 for more details.

The previous results show the connection between various restrictions on the
K; relations and properties of knowledge. In particular, we have shown that A3
corresponds to reflexive possibility relations, A4 to transitive possibility relations,
A5 to Euclidean possibility relations, and A6 to serial possibility relations.

Up to now we have not considered symmetric relations. It is not hard to check
(using arguments similar to those used previously) that symmetry of the possibility
relations corresponds to the following axiom:

ATl. o = Ki—Ki—p, i=1,...,n

Axiom A7 can also easily be shown to be a consequence of A3 and AS, together
with propositional reasoning (Exercise 3.18). This corresponds to the observation
made in Lemma 3.1.4 that a reflexive Euclidean relation is also symmetric. Since
a reflexive Euclidean relation is also transitive, the reader may suspect that A4 is
redundant in the presence of A3 and AS. This is essentially true. It can be shown
that A4 is a consequence of Al, A2, A3, AS, R1, and R2 (see Exercise 3.19). Thus
we can obtain an axiom system equivalent to S5, by eliminating A4; indeed, by
using the observations of Lemma 3.1.4, we can obtain a number of axiomatizations
that are equivalent to S5,, (Exercise 3.20).
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The preceding discussion is summarized by Table 3.1, which describes the cor-
respondence between the axioms and the properties of the K; relations.

Axiom Property of ;
A3. Kip = ¢ reflexive

Ad. Kip = K;K;p transitive

AS. =K;¢p = K;—K;¢ | Euclidean
A6. —K;false serial

ATl. ¢ = K;—K;—¢ symmetric

Table 3.1 The correspondence between axioms and properties of K;

We conclude this section by taking a closer look at the single-agent case of S5
and KD45. The following result shows that in the case of S5 we can further restrict
our attention to structures where the possibility relation is universal; that is, in every
state, all states are considered possible. Intuitively, this means that in the case of
S5 we can talk about the set of worlds the agent considers possible; this set is the
same in every state and consists of all the worlds. Similarly, for KD45 we can
restrict attention to structures with one distinguished state, which intuitively is the
“real” world, and a set of states (which does not in general include the real world)
corresponding to the worlds that the agent thinks possible in every state.

Proposition 3.1.6

(a) Assume that M € MT‘I and s is a state of M. Then there is a structure
M' = (8, 7', K}), where K| is universal, that is, K| = {(s, 1) |s,t € §'}, and
a state s’ of M’ such that (M, s) = (M', s").

(b) Assume that M € Mfl’ and sq is a state of M. Then there is a structure
M' = ({so}US’, ', K}), where S" is nonempty and K| = {(s, 1) | s € {so}US’
andt € S}, and a state s' of M’ such that (M, sg) = (M, s").

Proof We first consider part (b). Assume that M = (S, 7, K1) € M?lt and that
so € S. LetK1(sg) = {r | (s0,t) € K1}. Since K is serial, K1 (sg) must be nonempty.
It is also easy to check that since Kp is Euclidean, we have (s,t) € K for all
s,t € K1(sp). Finally, since K is transitive, if s € Ki(sg) and (s, ¢) € K1, then



3.2 Decidability 65

t € Ki(so). Let M" = ({so} U K1(s0), 7', K}), where " is the restriction of
to {sg} U K1(sg), and /C/l = {(s,t)|s € {so} UK1(so) andt € K1(s9)}. By the
previous observations, IC/1 is the restriction of &y to {sg} U K1 (sg). Note that IC/1 is
serial (because K1(sg) is nonempty), Euclidean, and transitive. A straightforward
induction on the structure of formulas now shows that for all s € {sg} U K{(sg) and
all formulas ¢ € £, we have (M, s) = ¢ iff (M’, s) = ¢. We leave details to the
reader (Exercise 3.21).

For part (a), we proceed in the same way, except that we start with a structure
M e ./\/l{“. Using the fact that K is now reflexive, it is easy to show that the
relation K} we construct is universal. The rest of the proof proceeds as before. I

It follows from Proposition 3.1.6 that we can assume without loss of generality
that models of S5 have a particularly simple form, namely (S, 7), where we do not
mention the k| relation but simply assume that (s, t) € Ky foralls, t € S. Similarly,
we can take models of KD45 to have the form (sq, S, 7), where, as already discussed,
the intuition is that sg is the “real” world, and S is the set of worlds that the agent
considers possible. As we shall see, this simple representation of models for S5 and
KD45 has important implications when it comes to the difficulty of deciding whether
a formula is provable in S5 or KD45.

There is a similar simple representation for models of K45 (Exercise 3.22).
We cannot in general get such simple representations for the other logics we have
considered, nor can we get them even for S5,, or KD45,, if n > 1, that is, if we have
two or more agents in the picture. For more information on the single-agent case of
S5, see Exercise 3.23.

3.2 Decidability

In the preceding section we showed that the set of valid formulas of M,, is indeed
characterized by K;,, and that the valid formulas of various interesting subclasses
of M,, are characterized by other systems, such as T, S4,, and S5,. Our results,
however, were not constructive; they gave no indication of how to tell whether a
given formula was indeed provable (and thus also valid in the appropriate class of
structures).

In this section, we present results showing that the question of whether a formula
is valid is decidable; that is, there is an algorithm that, given as input a formula ¢,
will decide whether ¢ is valid. (It is beyond the scope of this book to give a formal
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definition of decidability; references are provided in the notes at the end of the
chapter.) An algorithm that recognizes valid formulas can be viewed as another
characterization of the properties of knowledge, one that is complementary to the
characterization in terms of a sound and complete axiom system.

A situation in which recognizing valid formulas is useful is where we have an
agent whose information is characterized by a collection of formulas whose con-
junction is ¢. If the agent wants to know whether a formula ¢ follows from the
information he has, then he has to check whether ¢ =  is valid. An example of
this type of situation is if we take the agent to be a knowledge base. A knowledge
base can draw conclusions about the state of the world based on the logical conse-
quences of the information it has been told. (See Sections 4.4.1, 7.3, and 9.3.3 for
further discussion of knowledge bases.)

A formula ¢ is valid in a certain class of Kripke structures if it is true in all
states in all structures of that class. Thus, before examining the algorithmic aspects
of validity, we consider the algorithmic aspects of truth. We refer to the problem
of deciding if a formula is true in a given state of a given Kripke structure as the
model-checking problem.

There is no general procedure for doing model checking in an infinite Kripke
structure. Indeed, it is not even possible to represent arbitrary infinite structures
effectively. On the other hand, in finite Kripke structures, model checking is relatively
straightforward. Given a finite Kripke structure M = (S, w, Ky, ..., K,), define
|| M|, the size of M, to be the sum of the number of states in S and the number of
pairs in KC;, fori = 1, ..., n. In the following proposition (and in later results), we
use the notation O(f), read “order of f” or “(big) O of f” for a function f. This
denotes some function g such that for each argument a, we have g(a) < cf(a) for
some constant ¢ independent of a. Thus, for example, when we say that the running
time of an algorithm is O (||M|| x |¢]), this means that there is some constant c,
independent of the structure M and the formula ¢, such that for all structures M and
formulas ¢ the time to check if ¢ is satisfied in M is at most ¢ x ||M]| x |¢].

Proposition 3.2.1 There is an algorithm that, given a structure M, a state s of M,
and a formula ¢ € L,, determines, in time O(||M|| x |¢|), whether (M, s) = ¢.

Proof Let ¢, ..., ¢, be the subformulas of ¢, listed in order of length, with ties
broken arbitrarily. Thus we have ¢, = ¢, and if ¢; is a subformula of ¢;, theni < j.
There are at most |¢| subformulas of ¢ (Exercise 3.1), so we must have m < |¢p|.
An easy induction on k shows that we can label each state s in M with ¢; or —g;,
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for j = 1,...,k, depending on whether or not ¢; is true at s, in time O (k||M]]).
The only nontrivial case is if g1 is of the form K;¢;, where j < k+ 1. We label a
state s with K;¢; iff each state ¢ such that (s, 7) € K; is labeled with ¢;. Assuming
inductively that each state has already been labeled with ¢; or —¢j;, this step can
clearly be carried out in time O(||M]]), as desired. 1

Observe that this result holds independent of the number of agents. It continues
to hold if we restrict attention to particular classes of structures, such as M’ or M*'.
The result can be easily extended to get a polynomial-time model-checking algo-
rithm even if we have distributed knowledge or common knowledge in the language
(Exercise 3.24). Finally, note that the algorithm can be easily modified to check
whether ¢ holds at a particular state s in M.

It should be noted that Proposition 3.2.1 implicitly assumes a “reasonable” rep-
resentation for Kripke structures. In particular, it assumes that, given a state s and a
primitive proposition p, we can determine in constant time whether 7 (s) assigns to p
the truth value true or the truth value false. Such an assumption is not always appro-
priate. If s corresponds to a position in a chess game and p corresponds to “white can
win from this position,” then 7 (s)(p) may be quite difficult to compute. Similarly,
Proposition 3.2.1 requires some assumption on the time to “traverse” the edges of
the Kripke structure; for example, it is sufficient to assume that given a state s where
there are m edges (s,t) € K;, we can find in time O (m) all the states ¢ such that
(s, 1) € K;. These assumptions are fairly natural if we think of Kripke structures as
labeled graphs, and we can read off the K; relations and the states where the primi-
tive propositions are true from the diagram describing the graph. Whenever we use
a Kripke structure to model a specific situation, however, then we must reexamine
these assumptions. In the case of the Kripke structure for the muddy children puzzle
described in Chapter 2, it is easy to tell if a proposition p; is true at a given state, and
it is easy to compute the K; relations from the descriptions of the states; in general,
it may not be. We return to this issue in Chapter 10.

We now turn our attention to the problem of checking whether a given formula
is provable. We start with K,,. Our first step is to show that if a formula is K-
consistent, not only is it satisfiable in some structure (in particular, the canonical
structure constructed in the proof of Theorem 3.1.3), but in fact it is also satisfiable
in a finite structure (which the canonical structure is certainly not!). The proof is
actually just a slight variant of the proof of Theorem 3.1.3. The idea is that rather
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than considering maximal K,-consistent subsets of £, when trying to construct a
structure satisfying a formula ¢, we restrict attention to sets of subformulas of ¢.

Theorem 3.2.2 If ¢ € L, is K,,-consistent, then ¢ is satisfiable in an M,, structure
with at most 2! states.

Proof Let Sub™ (¢) consist of all the subformulas of ¢ and their negations, that
is, Sub™(p) = Sub(p) U {—y | € Sub(¢)}. Let Con(gp) be the set of maximal
K,,-consistent subsets of Sub™ (). A proof almost identical to that of Lemma 3.1.2
can be used to show that every K, -consistent subset of Sub™ (¢) can be extended
to an element of Con(¢). Moreover, a member of Con(¢) contains either ¥ or =y
for every formula ¥ € Sub(gp) (but not both, for otherwise it would not be K-
consistent). So the cardinality of Con(g) is at most 215ub(@) which is at most 2/¢!,
since [Sub(p)| < |gl.

We now construct a structure My, = (Sy, 7, Ky, ..., ;). The construction is
essentially that of Theorem 3.1.3, except that we take S, = {sv | V € Con(¢)}. We
can now show thatif V e Con(¢), then for all y € Sub™ (¢) we have My, sv) = ¢
iff Y € V. The proof is identical to that of Theorem 3.1.3, and so is omitted here. i

From Theorem 3.2.2, we can get an effective (although not particularly effi-
cient) procedure for checking if a formula ¢ is K, -consistent (or equivalently, by
Theorem 3.1.3, satisfiable with respect to M,,). We simply construct every Kripke
structure with 2/¢! states. (The number of such structures is finite, albeit very large.)
We then check if ¢ is true at some state of one of these structures. The latter check
is done using the model-checking algorithm of Proposition 3.2.1. If ¢ is true at
some state in one of these structures, then clearly ¢ is satisfiable with respect to M,,.
Conversely, if ¢ is satisfiable with respect to M,,, then by Theorem 3.2.2 it must be
satisfiable in one of these structures.

As a consequence, we can now show that the validity problem for M, (or equiv-
alently, by Theorem 3.1.3, the provability problem for K;,) is decidable.

Corollary 3.2.3 The validity problem for M,, and the provability problem for K,
are decidable.

Proof Since ¢ is provable in K, iff —¢ is not K,-consistent, we can simply check
(using the aforementioned procedure) if —¢ is K, -consistent. il

Note that by Corollary 3.2.3 we have a way of checking whether a formula is provable
in K, without deriving a single proof using the axiom system! (Actually, with some
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additional effort we can extend the ideas in the proof of Theorem 3.2.2 so that if a
formula is provable in K,,, then we can effectively find a proof of it; see Exercise 3.25
for details.)

We can extend the arguments of Theorem 3.2.2 to the other logics we have been
considering.

Theorem 3.2.4 If ¢ is T)- (resp., S4,,-, S5,,-, KD45,,-) consistent, then ¢ is satisfi-
able in a structure in M, (resp., M'T, MS', M) with at most 2\ states.

Proof The proof in the case of Tj, is identical to that of Theorem 3.2.2, except
that we consider maximal T,-consistent subsets of Sub™ (¢) rather than maximal
K, -consistent subsets of Sub™ (). Note that in the case of T}, the axiom K;¢ = ¢
guarantees that V/K; C V, so we get reflexivity of X; even if we restrict attention
to subsets of Sub™ (¢).

The obvious modification of the proof of Theorem 3.2.2 does not work for S4,,,
since the K; relations may not be transitive if we define (sy, sw) € K; iff V/K; € W.
For example, if ¢ is the formula K p, then the maximal S4,-consistent subsets of
Sub™ (¢) are V| = {K1p, p}, Vo = {—=Kp, p}, and V3 = {—=Kp, =p}. Note that
Vi/K1 € Voand Vo /Ky € V3,but Vi /K1 € V3. Although Vi /K| C V>, intuitively
it should be clear that we do not want to have (sv,, sy,) € K1. Thereasonis thatevery
maximal S4,-consistent extension of V| contains K1 K p; in such an extension, no
S4,-consistent extension of V, would be considered possible.

In the case of S4,,, we deal with this problem as follows: We repeat the con-
struction of Theorem 3.2.2, except that we take K; tobe {(sy, sw) | V/K; € W/K;}.
Clearly this definition guarantees that K; is transitive. For S5,,, we take ’; to consist
of {(sy,sw)|V/K; = W/K;}. This guarantees that K; is an equivalence relation.
In the case of S4, and S5,,, the axiom K;¢ = ¢ guarantees that if V/K; € W/K;,
then V/K; € W, which we make use of in the proof. For KD45, we do not have
this axiom, so we take K; to consist of {(sy,sw)|V/K; = W/K;, V/K; € W}.
We leave it to the reader to check that with this definition, K; is Euclidean, transitive,
and serial. The proof in all cases now continues along the lines of Theorem 3.1.3;
we leave details to the reader (Exercise 3.26).

Just as in the case of K,;, we can use this result to give us an effective technique
for deciding whether a formula is provable in T,, (resp., S4,,, S5,, KD45,,).
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Corollary 3.2.5 The validity problem for M!, (resp., M, M', M) and the
provability problem for T,, (resp., S4,, S5,, KD45,,) are decidable.

It turns out that in fact there are more efficient ways of checking whether a formula
is provable than those suggested by the results we have just proved; we discuss this
issue later in the chapter.

3.3 Incorporating Common Knowledge

‘We now turn our attention to axiomatizing the operators Eg and Cg. The operator Cg
is “infinitary” in thatit is defined as an infinite conjunction. This might suggest that we
will not be able to characterize it with a finite set of axioms. Somewhat surprisingly,
this turns out to be false. The axioms for common knowledge provided in Chapter 2
are complete, as we now show. This suggests that the characterization of common
knowledge as a fixed point is somehow more fundamental than its characterization
as an infinite conjunction. We return to this point in Chapter 11.

Let Knc (resp., T,f , S4S, SS,?, KD45,§) consist of all the axioms of K, (resp., Ty,
S4,, S5,, KD45,,) together with the following two axioms and inference rule taken
from Chapter 2:

Cl. Ege ¢ Nieg Kip
C2. Cgop = Eg(pANCgo)
RC1. From ¢ = Eg (¥ A ¢) infer ¢ = Cg¥r (Induction Rule)

As the following result shows, C1, C2, and RC1 completely characterize common
knowledge.

Theorem 3.3.1 For formulas in the language E,f :
(a) K,f is a sound and complete axiomatization with respect to M,
(b) TS is a sound and complete axiomatization with respect to M,

(c) S4€ is a sound and complete axiomatization with respect to M,

rst

(d) SSS is a sound and complete axiomatization with respect to M,

(¢) KD45E is a sound and complete axiomatization with respect to M,
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Proof We consider the case of K,f here. We can get all the other cases by modifying
the proof just as we modified the proof of Theorem 3.1.3 to prove Theorem 3.1.5.

The validity of axioms C1 and C2 with respect to M}*, and the fact that RC1
preserves valid formulas with respect to M/, was shown in Theorem 2.4.2. Although
that proof was done in the context of M/, as we remarked in the proof, the proof
did not make use of the fact that the possibility relations were reflexive, symmetric,
and transitive, and therefore it goes through without change even if we drop this
assumption. So soundness follows.

For completeness, we proceed as in the proof of Theorem 3.1.3 to show that
if ¢ is Kf -consistent, then ¢ is satisfiable in some structure in M,,. For technical
reasons that are explained below, we need to restrict to finite structures as is done in
Theorem 3.2.2.

We define Subc (@) to consist of all subformulas of ¢ together with the formulas
Ec(Yy ACg¥), v A Cgr, and K;(y A Cgyr) for each subformula Cgyr of ¢ and
i € G, and the formulas K; v for each subformula Egyr of ¢ and i € G. We define
SubJCr(gp) to consist of all the formulas in Subc(¢) and their negations, and define
Conc(p) to consist of all maximal Kf -consistent subsets of SubJCr (p). Let My, =
(Sg, m, K1, ..., Ky), where S, consists of {sy |V € Conc(p)}, m(sy)(p) = true
iff p e V,and K; = {(sy,sw) | V/K; € W}, i =1,...n. Clearly S, is finite; in
fact, it is not hard to show that |S¢| < 2l¢l (see Exercise 3.27).

We again want to show that for every formula ¢’ € SubJCr (¢), we have
(Mg, sv) | ¢ iff ¢' € V. We proceed by induction on the structure of formu-
las. The argument in the case that ¢’ is a primitive proposition, a conjunction, a
negation, or of the form K;v is essentially identical to that used in Theorem 3.1.3;
we do not repeat it here.

Suppose that ¢’ is of the form Egvy. Assume that ¢’ € V. Since V is a
maximal Kf -consistent subset of SubJCr (¢), and since SulfCL (¢) includes (by defi-
nition) all formulas K;y for i € G, by C1 we get that K;y € V foralli € G.
So by the induction hypothesis, (M, sy) = K;y for each i € G. Therefore,
(My, sy) = Eg¥. We have shown that if Egy € V, then (M, sy) = Egy. The
proof of the converse is very similar.

Finally, we must consider the case that ¢’ is of the form Cg . That is, we need
to prove that Cgyy € V iff (Mg, sy) = Cgy. We begin with the “only if” direction.
If Ccy¥ € V, we show by induction on k that if sy is G-reachable from sy in k
steps, then both ¢ and Cg v are in W. For k = 1, observe that axiom C2 and the fact
that V € Conc(¢) together imply that Eg (¢ A Cg¥) € V. Now our construction
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guarantees that if sy is G-reachable from sy in one step (so that (sy, sw) € K; for
some i € G), we have (W A Cgy) € W. Since W € Conc(p), it follows that
both i and Cgy are in W. Now assume that the claim holds for k; we prove it
for k + 1. If sy is G-reachable from sy in k + 1 steps, then there exists W’ such
that sy is G-reachable from sy in k steps, and sy is reachable from sy in one
step. By the induction hypothesis, both ¥ and Cgy are in W’. The argument for
the base case now shows that both Cgyr and v are in W. Our argument shows that,
in particular, v € W for all W such that sy is G-reachable from sy. By our main
induction hypothesis, (M, sw) = v for all sy that are G-reachable from sy . Thus,
(Mg, sv) = Cgr.

The proof of the converse, thatif (M, sy) = Cg¥ then Cgy € V,is the hardest
part of the proof. Assume that (M, sy) = Cgv¥. We can describe each state sy of
My, by the conjunction of the formulas in W. This conjunction, which we denote by
@w, is a formula in ES, since W is a finite set. Here we make crucial use of the fact
that we restrict to formulas in Subg (¢), a finite set, rather than consider maximal
K¢ -consistent subsets of £, which would have been the straightforward analogue to
the proof of Theorem 3.1.3. Let W = {W € Conc(¢) | (My, sw) = Cg¥}. Define
ow to be /e ew. Thus, ¢y is the disjunction of the description of all of the
states sy where Cg Y holds, and can be thought of as the formula that characterizes
these states. Since the set WV is finite, it follows that ¢y, is a formula in ,C,f . The key
step in the proof is to make use of the Induction Rule (RC1), where ¢y plays the
role of ¢. In Exercise 3.28, we prove that

KE Fow = Ec(¥ A ow). G.1)
Therefore, by the Induction Rule, we obtain
Ky Fow = Cov.
Since V € W, we have KS F oy = ¢, so
KS kv = Co. (3.2)

It follows that Cgyr € V, as desired. For if Cqy ¢ V, then =Cgy¥ € V, and it is
easy to see that this, together with (3.2), would imply that V is not Kf -consistent, a
contradiction. I

Notice that our proof shows that if a formula ¢ is satisfiable at all, it is satisfiable
in a finite structure (in fact, with at most 2/¢! states.) Thus, using the techniques of
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the previous section, we again get that the validity problem for Kf (resp., Tnc , S4g,
S5¢, KD45¢) is decidable.

3.4 Incorporating Distributed Knowledge

The last operator we would like to axiomatize is Dg. The major new properties of
distributed knowledge were discussed in Chapter 2:

Dl. Do & Kip, i=1,...,n
D2. Dgy = Dgoif G C G’

In addition, the D¢ operator has all the properties of the knowledge operator. What
these are depends on the system we consider. Thus, for example, in all cases A2
applies to Dg, so that the following axiom is valid:

(Do A Dg(¢ = ¥)) = Dg.

If in addition we take the X; relations to be reflexive, so that knowledge satisfies A3,
then so does distributed knowledge; that is, we get in addition the axiom Dg¢ = ¢.
Similar remarks hold for A4 and AS. This, however, is not the case for A6; it is easy
to see that even if the X; relations are serial, their intersection may be empty. Let K,ll)
(resp., TP, S4D S5D) KD45P) be the system that results from adding axioms D1,
D2 to K, (resp., T, S4,, S5,, KD45,,), and assuming that all of the other axioms
apply to the modal operators Dg (except for A6 in the case of KD45,? ) as well as
K;. Thus, for example, S4,? includes the axiom Dg¢ = Dg Dgo.

Theorem 3.4.1 For formulas in the language ,C,?
(a) K,? is a sound and complete axiomatization with respect to M,,
(b) T,? is a sound and complete axiomatization with respect to M,
(c) S4P is a sound and complete axiomatization with respect to M,

rst

(d) SS,? is a sound and complete axiomatization with respect to M},

(¢) KD45P is a sound and complete axiomatization with respect to M<".
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Proof The proof of soundness is straightforward (see Exercise 2.10). Although
the basic ideas of the completeness proof are similar to those we have encountered
before, the details are somewhat technical. We just sketch the main ideas here,
leaving the details to the exercises. We consider only the case of K2 here.

We start with a canonical structure constructed just as in the proof of Theo-
rem 3.1.3, treating the distributed knowledge operators D¢ exactly like the K; oper-
ators. That is, for each maximal KnD -consistent set V, we define the set V /D in the
obvious way and define binary relations g on S via (sy, sw) € Kgiff V/Dg C W.
From axiom D1 it follows that Ky;; (the binary relation derived using D¢, where G
is the singleton set {i}) is equal to K; (the binary relation derived using K;). It can
be shown that K C ();cc Ki; however, in general, equality does not hold. By
making multiple copies of states in the canonical structure that are in [);c K; and
not in g, it is possible to construct a structure at which the same formulas are true
in corresponding states, and in which ();.; K; and K¢ coincide. This gives us the
desired structure. (See Exercise 3.30 for further details.) |l

We have considered axiom systems for the languages LS and ﬁ,? . It is not too
hard to show that we can get sound and complete axiomatizations for the language
ES D which has modal operators for common knowledge and distributed knowledge,
by combining the axioms for common knowledge and distributed knowledge. It can
also be shown that the validity problem is decidable. There are no interesting new
ideas involved in doing this, so we shall not carry out that exercise here.

3.5 The Complexity of the Validity Problem

In earlier sections, we have shown that the validity problem for the various logics
we have been considering is decidable. In this section, we examine the issue more
carefully. In particular, we attempt to completely characterize the inherent difficulty
of deciding validity for all the logics we consider. This will give us some insight
into which features of a logic make deciding validity difficult. We characterize the
“inherent difficulty” of a problem in terms of computational complexity. We briefly
review the necessary notions here.

Formally, we view everything in terms of the difficulty of determining member-
ship in a set. Thus, the validity problem is viewed as the problem of determining
whether a given formula ¢ is an element of the set of formulas valid with respect to a
class of structures. The difficulty of determining set membership is usually measured
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by the amount of time and/or space (memory) required to do this, as a function of
the input size. Since the inputs we consider in this section are formulas, we will
typically be interested in the difficulty of determining whether a formula ¢ is valid
or satisfiable as a function of |¢|.

We are usually most interested in deterministic computations, where at any point
in a computation, the next step of the computation is uniquely determined. However,
thinking in terms of nondeterministic computations—ones where the program may
“guess” which of a finite number of steps to take—has been very helpful in classifying
the intrinsic difficulty of a number of problems. A deterministic algorithm must
conclude by either accepting the input (intuitively, saying “Yes, the formula that is
the input is valid”) or rejecting the input (intuitively, saying “No, the formula that is
the input is not valid”’). A nondeterministic algorithm is said to accept an input if it
accepts for some appropriate sequence of guesses.

The complexity classes we are most concerned with here are P, NP, PSPACE, EX-
PTIME, and NEXPTIME: those sets such that determining whether a given element x
is a member of the set can be done in deterministic polynomial time, nondeterminis-
tic polynomial time, deterministic polynomial space, deterministic exponential time
(where exponential in n means in time 29" for some constant ), and nondetermin-
istic exponential time, respectively (as a function of the size of x). It is not hard to
show that P € NP C PSPACE C EXPTIME C NEXPTIME. It is also known that
P # EXPTIME and that NP # NEXPTIME. While it is conjectured that all the
other inclusions are strict, proving this remains elusive. The P = NP problem is
currently considered the most important open problem in the field of computational
complexity. Interestingly, it is known that nondeterminism does not add any power
at the level of polynomial space: nondeterministic polynomial space is equivalent to
deterministic polynomial space.

Given a complexity class C, the class co-C consists of all of the sets whose
complement is a member of C. Notice that if we have a deterministic algorithm A
for deciding membership in a set A, then it is easy to convert it to an algorithm A’
for deciding membership in the complement of A that runs in the same space and/or
time bounds: A’ accepts an input x iff A rejects. It follows that C = co-C must
hold for every deterministic complexity class C, in particular, for P, PSPACE and
EXPTIME. This is not necessarily the case for a nondeterministic algorithm. There
is no obvious way to construct an algorithm A’ that will accept an element of the
complement of A by an appropriate sequence of guesses. Thus, in particular, it is not
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known whether NP = co-NP. Clearly, if P = NP, then it would immediately follow
that NP = co-NP, but it is conjectured that in fact NP # co-NP.

Roughly speaking, a set A is said to be hard with respect to a complexity class C
(e.g., NP-hard, PSPACE-hard, etc.) if every set in C can be efficiently reduced to A;
that is, for every set B in C, an algorithm deciding membership in B can be easily
obtained from an algorithm for deciding membership in A. A set is complete with
respect to a complexity class C, or C-complete if it is both in C and C-hard.

The problem of determining whether a formula of propositional logic is satisfiable
(i.e., the problem of determining whether a given propositional formula is in the set of
satisfiable propositional formulas) is NP-complete. In particular, this means that if
we could find a polynomial-time algorithm for deciding satisfiability for propositional
logic, we would also have polynomial-time algorithms for all other NP problems.
This is considered highly unlikely.

What about the complexity of determining validity? Notice that satisfiability
and validity are complementary problems. A formula ¢ is valid exactly if —¢ is
not satisfiable. Thus, if the satisfiability problem for a logic is complete for some
complexity class C, then the validity problem must be complete for co-C. In particular,
this means that the validity problem for propositional logic is co-NP-complete.

The complexity of the satisfiability and validity problem for numerous logics
other than propositional logic has been studied. It is remarkable how many of these
problems can be completely characterized in terms of the complexity classes dis-
cussed here. In particular, this is true for the logics we consider here. (We remark
that when we speak of a logic, we typically mean an axiom system together with
a corresponding class of structures. We usually refer to a logic by the name of the
axiom system. Thus, when we speak of “the satisfiability problem for (the logic)
S4,,” we mean the problem of determining if a formula ¢ € £, is satisfiable with
respect to M/ or, equivalently, the problem of determining if ¢ is S4,-consistent.)
The situation is summarized in Table 3.2. The results in the table are stated in terms
of the satisfiability problem. Since ¢ is valid iff —¢ is not satisfiable, a solution to
the validity problem quickly leads to a solution to the satisfiability problem, and vice
versa. In particular, in those cases where the satisfiability problem is PSPACE- or
EXPTIME-complete, the validity problem has the same complexity as the satisfi-
ability problem. In the cases where the satisfiability problem is NP-complete, the
validity problem is co-NP-complete.

As can be seen from the table, without common knowledge in the language,
the satisfiability problem is in general PSPACE-complete. In the case of S4,, for
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S51,KD45; | Ky, Ty, S4y,n > 1; | K, TS, n > 1,
S5,,KD45,,n > 2 | S4¢, S5, KD45¢, n > 2

NP-complete | PSPACE-complete | EXPTIME-complete

Table 3.2 The complexity of the satisfiability problem for logics of knowledge

example, this means that there is an algorithm for deciding whether a formula is
satisfiable with respect to M%' (or, equivalently, whether it is S4,-consistent) that
runs in polynomial space, and every PSPACE problem can be efficiently reduced to
the satisfiability problem for S4,. The only exception to the PSPACE result is in the
case of S5 and KD45 (for only one agent), where the satisfiability problem is NP-
complete. This says that in the case of S5 and KD45, going from one agent to many
agents increases the complexity of the logic (provided that PSPACE # NP). Adding
common knowledge causes a further increase in complexity, to EXPTIME-complete.

We remark that we do not mention languages involving distributed knowledge
in our table. This is because adding distributed knowledge to the language does not
affect the complexity. Thus, for example, the complexity of the satisfiability problem
for S5, is the same as that for SS,? . We also do not mention the single-agent case
for S4€, S5€, and KD45€, because in these cases common knowledge reduces to
knowledge.

In the next section, we prove NP-completeness for S5 and KD45 in detail. The
proofs for the PSPACE upper and lower bounds are quite technical and are beyond
the scope of this book. (See the notes for references.) We remark that our lower
bounds suggest that we cannot hope for automatic theorem provers for these logics
that are guaranteed to work well (in the sense of providing the right answer quickly)
for all inputs.

Itis interesting to compare the results mentioned in the table with those proved in
Section 3.2. The results there give us a nondeterministic exponential time algorithm
for deciding satisfiability: given a formula ¢, we simply guess an exponential-sized
structure satisfying ¢ (if ¢ is satisfiable, then there must be such a structure by
the results of Section 3.2) and then verify (using the model-checking algorithm)
that the structure indeed satisfies ¢. Since the structure is exponential-sized, the
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model-checking can be done in exponential time. The algorithm is in nondetermin-
istic exponential time because of the guess made at the beginning. Because, as we
mentioned earlier, it is strongly suspected that exponential time, and hence nonde-
terministic exponential time, is worse than polynomial space, this suggests that the
algorithm of Section 3.2 is not optimal.

3.6 NP-Completeness Results for S5 and KD45

In this section, we focus on the single-agent case of S5,, and KD45,,, namely S5 and
KD45. 1t is clear that the satisfiability problem for S5 and KD45 must be at least
NP-hard, since it is at least as hard as the satisfiability problem for propositional
logic. It is somewhat surprising that reasoning about knowledge in this case does
not add any further complexity. We start with S5 here.

Theorem 3.6.1 The satisfiability problem for S5 is NP-complete (and thus the va-
lidity problem for S5 is co-NP-complete).

The key step in the proof of Theorem 3.6.1 lies in showing that satisfiable S5
formulas can be satisfied in structures with very few states.

Proposition 3.6.2 An S5 formula ¢ is satisfiable if and only if it is satisfiable in a
structure in M with at most |g| states.

Proof Suppose that (M, s) = ¢. By Proposition 3.1.6, we can assume without
loss of generality that M = (S, m, K1), where K is a universal relation, so that
(t,t') € Ky forall t,¢' € S. Let F be the set of subformulas of ¢ of the form
K1y for which (M,s) = —Ky; that is, F is the set of subformulas of ¢ that
have the form K|y and are false at the state s. For each formula K{y € F,
there must be a state sy, € S such that (M, sy) = —y. Let M' = (S, 7', K)),
where (a) S’ = {s} U {sy | € F}, (b) n’ is the restriction of 7 to §’, and (c)
Ky =A{@ t)|t,t' € §'}. Since |F| < |Sub(p)| < ||, it follows that |S'| < |¢|.
We now show that for all states s’ € S” and for all subformulas ¥ of ¢ (including
o itself), (M, s") = ¢ iff (M', s") = . As usual, we proceed by induction on the
structure of ¥. The only nontrivial case is when v is of the form K;v'. Suppose
that s" € §’. If (M,s’) = K v/, then (M, 1) = ' forall t € S, so, in particular,
(M,t) &= ¢ forall r € S’. By the induction hypothesis, (M’,1) = v for all
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t eS8, so(M' s") = Kiy'. Forthe converse, suppose that (M, s”) = K{v/'. Then
(M, t) = =y’ for some ¢t € S. Because K is the universal relation, it follows
that (s,¢) € K, so (M,s) = —K;jvy’. But then it follows that K1¢' € F, and
(M, sy) = —¥'. By construction, sy € §’, and by the induction hypothesis, we
also have (M’, sy/) = —y'. Because (s', sy/) € K|, we have (M',s") = =K1/,
and so (M',s") = K1y’ as desired. This concludes the proof that (M, s") & ¢
iff (M’,s’) = y for all subformulas ¥ of ¢ and all s’ € S’. Since s € S’ and
(M, s) = ¢ by assumption, we also have (M’, s) = ¢. I

Proof of Theorem 3.6.1 As we have already mentioned, S5 satisfiability is clearly
NP-hard. We now give an NP algorithm for deciding S5 satisfiability. Intuitively,
given a formula ¢, we simply guess a structure M € M”*" with a universal possibility
relation and at most |¢| states, and verify that ¢ is satisfied in M. More formally,
we proceed as follows. Given a formula ¢, where |¢| = m, we nondeterministically
guess a structure M = (S, w, K1), where S is a set of k < m states, (s,t) € K for
all s, € S, and for all s € S and all primitive propositions p not appearing in ¢,
we have 7 (s)(p) = false. (Note that the only “guessing” that enters here is the
choice of k and the truth values 7 (s)(q) that the primitive propositions ¢ appearing
in ¢ have in the k states of S.) Since at most m primitive propositions appear in ¢,
guessing such a structure can be done in nondeterministic time 0(m2) (i.e., at most
cm? steps for some constant c). Next, we check whether ¢ is satisfied at some state
s € S. By Proposition 3.2.1, this can be done deterministically in time O (m>). By
Proposition 3.6.2, if ¢ is satisfiable, it must be satisfiable in one of the structures of
the kind we guessed. (Of course, if ¢ is not satisfiable, no guess will be right.) Thus,
we have a nondeterministic O (m?>) algorithm for deciding if ¢ is satisfiable. i

We can prove essentially the same results for KD45 as for S5. Using Proposi-
tion 3.1.6, we can show the following:

Proposition 3.6.3 A KD45 formula ¢ is satisfiable iff it is satisfiable in a structure
in M‘f[’ with at most || states.

Proof See Exercise 3.34. 11

Using Proposition 3.6.3 just as we used Proposition 3.2.1, we can now prove the
following theorem:

Theorem 3.6.4 The satisfiability problem for KD45 is NP-complete (and thus the
validity problem for KD45 is co-NP-complete).
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Proof See Exercise 3.34. 11

We remark that results similar to Proposition 3.6.3 and Theorem 3.6.4 can also
be proved for K45 (Exercise 3.35).

3.7 The First-Order Logic of Knowledge

So far, we have considered only propositional modal logic. That is, the formulas
we have allowed contain only primitive propositions, together with propositional
connectives such as A and —, and modal operators such as K; and C. First-order logic
has greater expressive power than propositional logic. It allows us to reason about
individuals in a domain and properties that they have. Among other things, first-order
logic allows us to express properties that all individuals have and that some individuals
have, by using a universal quantifier (V, or “for all”’) and an existential quantifier (3,
or “there exists”). For example, we can say that Pete is the governor of California
using a formula such as Governor(California, Pete). To say that every state has a
governor, we might write the first-order formula Vx (State(x) = JyGovernor(x, y)):
for all states x, there exists y such that the governor of x is y. First-order logic is,
in a precise sense, expressive enough to capture all of propositional modal logic
(see Exercise 3.37). By combining the quantifiers of first-order logic and the modal
operators of propositional modal logic, we get a yet more expressive logic, first-order
modal logic. For example, neither in first-order logic nor in propositional modal logic
can we say that Alice knows that California has a governor. We can, however, say
this in first-order modal logic with the formula

KaliceyGovernor(California, y).

There are some subtleties involved in combining first-order quantifiers with
modal operators. We briefly discuss them in this section, to give the reader a feeling
for the issues that arise.

Despite its additional power, we make relatively little use of first-order modal
logic in the rest of the book, both because most of the examples that we discuss can
be expressed using propositional modal logic and because most of the issues that we
are interested in already arise in the propositional case. Nevertheless, the first-order
case may well be important for more complex applications.
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3.7.1 First-Order Logic

In this section we briefly review first-order logic. The reader familiar with first-order
logic may still want to skim this section to get acquainted with our notation.

In propositional logic, we start with a set @ of primitive propositions. In first-
order logic, we start with a set 7 of relation symbols, function symbols, and constant
symbols. Each relation symbol and function symbol has some arity, which intuitively
corresponds to the number of arguments it takes. If the arity is &, then we refer to the
symbol as k-ary. In our earlier example, the relation symbol Governor has arity 2:
that is, Governor(x, y) has two arguments, x and y. A function symbol Gov, where
intuitively Gov(x) = y means that the governor of state x is person y, has arity 1,
since it takes only one argument, namely x. We refer to the set of relation symbols,
function symbols, and constant symbols as the vocabulary.

We assume an infinite supply of variables, which we usually write as x and y,
possibly along with subscripts. Constant symbols and variables are both used to
denote individuals in the domain. We can also form more complicated terms denoting
individuals by using function symbols. Formally, the set of ferms is formed by starting
with variables and constant symbols, and closing off under function application, so
that if f is a k-ary function symbol, and if 7, .. ., # are terms, then f(t1, ..., t) is
a term. We need terms to define formulas. An atomic formula is either of the form
P(t1,...,t), where P is a k-ary relation symbol and 71, . .., #; are terms, or of the
form t; = t,, where #; and #, are terms. As in propositional logic, if ¢ and ¥ are
formulas, then so are —¢ and ¢ A ¥ . In addition, we can form new formulas using
quantifiers. If ¢ is a formula and x is a variable, then Jx¢ is also a formula. We use
the same abbreviations as we did in the propositional case. For example, ¢1 V ¢3 is
an abbreviation for —(—¢; A —¢3). Furthermore, we write Vx¢ as an abbreviation
for —=3x—g.

We give semantics to first-order formulas using relational structures. Roughly
speaking, a relational structure consists of a domain of individuals and a way of as-
sociating with each of the elements of the vocabulary corresponding entities over the
domain. Thus, a constant symbol is associated with an element of the domain, a func-
tion symbol is associated with a function on the domain, and so on. More precisely,
fix a vocabulary 7. A relational T -structure (which we sometimes simply call a re-
lational structure or just a structure) .4 consists of a nonempty set, denoted dom (.A),
called the domain, an assignment of a k-ary relation P* C dom (A)¥ to each k-ary re-
lation symbol P of 7, an assignment of a k-ary function f* : dom (A)k — dom(A)
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to each k-ary function symbol f of 7, and an assignment of a member ¢ of the
domain to each constant symbol c. We refer to P as the interpretation of P in A,
and similarly for function symbols and constant symbols.

As an example, suppose that 7 consists of one binary relation symbol E. In that
case, a 7 -structure is simply a graph. (Recall that a graph consists of a set of nodes,
some of which are connected by edges.) The domain is the set of nodes of the graph,
and the interpretation of E is the edge relation of the graph, so that there is an edge
from a to a exactly if (a1, ay) € E*.

Notice that a relational structure does not provide an interpretation of the vari-
ables. Technically, it turns out to be convenient to have a separate function that does
this. A valuation V on a structure A is a function from variables to elements of
dom(A). Recall that we suggested that terms are intended to represent members of
the domain of a structure .A. Given a structure .4 and a valuation V on A, we can
inductively extend V in a straightforward way to a function, denoted V- (although
we frequently omit the superscript .4 when it is clear from context), that maps terms
to elements of dom(A), as follows. Define VA(c) = ¢ for each constant sym-
bol ¢, and then extend the definition by induction on the structure of terms, by taking
VA, m) = fAVA@D, ... VA®)).

With these definitions in hand, we can now define what it means for a formula to be
true in a relational structure. Before we give the formal definition, we consider a few
examples. Let 7all be a unary relation symbol, and let President be a constant symbol.
What does it mean for Tall(President) to be true in the structure A? If we think of the
domain of A as consisting of people, then the interpretation Tall* of the Tall relation
can be thought of intuitively as the set of all tall people in the domain. Assume that
President” = Bill, so that, intuitively, the president is Bill. Then Tall(President) is
true in the structure A precisely if Bill is in the relation Tall*, that is, intuitively, if Bill
is tall. How should we deal with quantification? In particular, what should it mean
for IxTall(x) to be true in the structure A? Intuitively, this formula is true when there
exists a tall person in the domain of .A. Formally, 3x7all(x) is true in the structure .A
precisely if the relation Tall* is nonempty. Similarly, Vx7all(x) is true in the struc-
ture A precisely if the relation Tall** contains every member of the domain of A, that
is, if everyone is tall. As afinal example, consider the formula Governor(c, x), where
c is a constant symbol and x is a variable. It does not make sense to ask whether or
not the formula Governor(c, x) is true in a structure .A without knowing what value x
takes on. Here we make use of valuations, which assign to each variable a member
of the domain of the structure. Thus, rather than ask whether Governor(c, x) is
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true in a structure A, we instead ask whether Governor(c, x) is true in a structure A
under a given valuation V. Assume that c* = California and V (x) = Pete, so that
c takes the value California in the structure 4 and x takes the value Pete under V.
Then we say that Governor(c, x) is true in the structure A under the valuation V
precisely if (V(c), V(x)) = (c¢*, Pete) = (California, Pete) € Governor*. Intu-
itively, Governor(c, x) is true in the structure .4 under the valuation V iff Pete is the
governor of California according to the structure .A.

We now give the formal semantics. Fix a relational structure 4. For each
valuation V on A and formula ¢, we define what it means for ¢ to be true in A
under the valuation V, written (A, V) = ¢. If V is a valuation, x is a variable, and
a € dom(A), then let V[x/a] be the valuation V' such that V'(y) = V(y) for every
variable y except x, and V'(x) = a. Thus, V[x/a] agrees with V, except possibly
on x, and it assigns the value a to x.

(A, V) &= P(t1,..., 1), where P is a k-ary relation symbol and 1, ..., f; are
terms, iff (V(t1), ..., V(tx)) € PA

(A, V) = (t1 = 1), where 11 and 1, are terms, iff V(1) = V (fp)
(A V) E—eiff (A4, V) F e

AV)Ee A@piff (A, V) E¢rand (A, V) = ¢

(A, V) E 3xgiff (A, V[x/a]) & ¢ for some a € dom(A).

Recall that Vx¢ is taken to be an abbreviation for —3x—g. It is easy to see that
(A, V) EVxgiff (4, Vx/a]) = ¢ for every a € dom(A) (Exercise 3.38).

To decide whether the formula Tall(President) is true in the structure .4 under
the valuation V, the role of V is irrelevant. That is, (A, V) = Tall(President) iff
(A, V') = Tall(President), where V and V' are arbitrary valuations. A similar
comment applies to the formula Ix7all(x). However, this is not the case for the
formula Governor(c, x), where c is a constant symbol and x is a variable. There
may be valuations V and V' such that (A4, V) & Governor(c, x) but (A, V')
Governor(c, x), so that V (x) is the governor of California, but V/(x) is not.

To understand better what is going on here, we need some definitions. Roughly
speaking, we say that an occurrence of a variable x in ¢ is bound by the quantifier
Vx in a formula such as Vx¢ or by 3x in 3x¢, and that an occurrence of a variable
in a formula is free if it is not bound. (A formal definition of what it means for an
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occurrence of a variable to be free is given in Exercise 3.39.) A formula in which no
occurrences of variables are free is called a sentence. Observe that x is free in the
formula Governor(c, x), but no variables are free in the the formulas Tall(President)
and dxTall(x), so the latter two formulas are sentences. It is not hard to show that
the valuation does not affect the truth of a sentence. That is, if ¢ is a sentence,
and V and V' are valuations on the structure A, then (A4, V) E ¢ iff (4, V') E ¢
(Exercise 3.39). In other words, a sentence is true or false in a structure, independent
of the valuation used.

3.7.2  First-Order Modal Logic

Just as the syntax of propositional modal logic is obtained from that of propositional
logic by adding the modal operators K;, we get the syntax of first-order modal logic
from that of first-order logic by adding the modal operators K;. Thus, we define the
language of first-order modal logic by taking the definition we gave for first-order
formulas and also closing off under the modal operators K1, ..., K, so that if ¢ is
a first-order modal formula, then so is K;¢. For example, Vx(K{Red(x)) is a first-
order modal formula, which intuitively says that for every x, agent 1 knows that x
is red.

The semantics of first-order modal logic uses relational Kripke structures. In
a (propositional) Kripke structure, each world is associated with a truth assignment
to the primitive propositions via the function 7. In a relational Kripke structure,
the 7 function associates with each world a relational structure. Formally, we de-
fine a relational Kripke structure for n agents over a vocabulary 7 to be a tuple
(S, m, Kq,...,Ky,), where S is a set of states, m associates with each state in S a 7 -
structure (i.e., w(s) is a 7 -structure for each state s € §), and K; is a binary relation
on S.

The semantics of first-order modal logic is, for the most part, the result of com-
bining the semantics of first-order logic and the semantics of modal logic in a straight-
forward way. But there are a few subtleties, as we shall see. We begin with some
examples. Just as in the propositional case, we would like a formula K;¢ to be true
at a state s of a relational Kripke structure M = (S, =, K1, ..., K,) precisely if ¢
is true at every state ¢ such that (s, ) € K;. As an example, let ¢ be the formula
Tall(President). In some states ¢ of the relational Kripke structure the president
might be Bill (that is, President™® = Bill), and in some states ¢ the president might
be George. We would like the formula K; Tall(President) to be true if the president is
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tall in every world that agent i considers possible, even if the president is a different
person in different worlds. It is quite possible for agent i to know that the president
is tall without knowing exactly who the president is.

What about the formula K;Tall(x), where x is a variable? Since x is a variable,
we need a valuation to decide whether this formula is true at a given state. Assume
that V(x) = Bill. For K;Tall(x) to be true, we want Bill to be tall in every world
that agent i considers possible. But now there is a problem: although Bill may be a
member of the domain of the relational structure 7 (s), it is possible that Bill is not
a member of the domain of 7 (¢) for some state # that agent i considers possible at
state s. To get around this problem, we restrict attention for now to common-domain
Kripke structures, that is, relational Kripke structures where the domain is the same
at every state. We discuss the implications of this restriction in more detail later.

Under the restriction to common-domain structures, defining truth of for-
mulas becomes quite straightforward. Fix a relational Kripke structure M =
(S, m, Ky, ..., Ky,), where the states have common domain U. A valuation V on M
is a function that assigns to each variable a member of U. This means that V (x) is
independent of the state, although the interpretation of, say, a constant ¢ does depend
on the state. As we shall see, this lets us identify the same individual in the domain
at different states and plays an important role in the expressive power of first-order
modal logic. For a state s of M, a valuation V on M, and a formula ¢, we define
what it means for ¢ to be true at the state s of M under the valuation V, written
(M, s, V) E ¢. Most of the definitions are just as in the first-order case, where the
role of A is played by m (s). For example,

(M,s,V) = P(t1,...,t), where P is a k-ary relation symbol and 71, ..., t; are
terms, iff (V*® (1)), ..., VTE) (1)) € PTG,

In the case of formulas K;¢, the definition is just as in the propositional case in
Chapter 2:

M,s, V) E Kipiff (M, t, V) = ¢ for every t such that (s, 1) € K;.

As we said earlier, first-order modal logic is significantly more expressive than
either first-order logic or propositional modal logic. One important example of its
extra expressive power is that it allows us to distinguish between “knowing that” and
“knowing who.” For example, the formula K 4;;..3x (x = President) says that Alice
knows that someone is the president. This formula is valid (since 3x (x = President)
is valid). In particular, the formula is true even in a world where Alice does not
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know whether Bill or George is the president; she may consider one world possible
where Bill is the president, and consider another world possible where George is the
president. Thus, although Alice knows that there is a president, she may not know
exactly who the president is. To say that Alice knows who the president is, we would
write 3x K 4jic.(x = President). Because a valuation is independent of the state, it is
easy to see that this formula says that there is one particular person who is president
in every world that Alice considers possible. Notice that the fact that the valuation is
independent of the state is crucial in allowing us to distinguish “knowing that” from
“knowing who.”

3.7.3 Assumptions on Domains

We restricted attention in the previous section to common-domain Kripke structures.
This means that although we allow the interpretations of relation symbols, of function
symbols, and of constant symbols to vary from state to state in a given relational
Kripke structure, we do not allow the domains to vary. Essentially, this assumption
says that the domain is common knowledge. This assumption is quite reasonable in
many applications. When analyzing a card game, players typically have common
knowledge about which cards are in the deck. Nevertheless, there are certainly
applications where the domain is not common knowledge. For example, although
there are no unicorns in this world, we might like to imagine possible worlds where
unicorns exist. On a more practical level, if our agent is a knowledge base reasoning
about the employees in a company, then the agent may not know exactly how many
employees the company has.

As we saw earlier, this assumption of a common domain arose in response to a
technical problem, that of making sense of the truth value of a formula where a free
variable appears in the scope of a modal operator, such as in the formula K; Tall(x).
Without the common-domain assumption, to decide if K;Tall(x) is true at a state s
under a valuation V where V (x) = Bill, we have to consider the truth of 7all(x) at
a state t where Bill may not be in the domain. It is not clear what the truth value of
K;Tall(x) should be in this case.

We can solve this problem by making a somewhat weaker assumption than the
common-domain assumption. It suffices to assume that if world ¢ is considered
possible in world s, then the domain corresponding to s is a subset of the domain
corresponding to #. Formally, this assumption says that if M = (S, 7, K1, ..., Ky)
is a relational Kripke structure and (s, t) € K;, then dom(w(s)) < dom(m(t)).
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Informally, this assumption says that every object that exists in a world s also exists in
every world considered possible at s. We call this the domain-inclusion assumption.

While the domain-inclusion assumption lets us deal with more cases than the
common-domain assumption, and does avoid the technical problems discussed
above, it certainly does not handle all problems. For one thing, an agent cannot
consider possible a world with fewer domain elements. This means that if we take
the KC;’s to be equivalence relations, as we have claimed that we want to do for many
applications, or even just Euclidean relations, then the domain-inclusion assumption
implies that in all worlds considered possible from a given world the domains must
be the same. Thus, with the additional assumption that the relation is Euclidean, we
cannot model in this framework the examples that we mentioned earlier involving
unicorns or employees in a company.

Many solutions have been proposed for how to give a semantics without any
assumptions whatsoever about relationships between domains of worlds within a
relational Kripke structure. Nevertheless, it is fair to say that no solution has been
universally accepted. Each proposed solution suffers from various problems. One
proposed solution and a problem from which it suffers are discussed in Exercise 3.40.

3.7.4 Properties of Knowledge in Relational Kripke Structures

We now consider the properties of knowledge in relational Kripke structures. Just
as before, we do this in terms of the formulas that are valid in relational Kripke
structures. In the first-order case, we say that a formula is valid if it is true at every
state of every relational Kripke structure under every valuation. To simplify the
discussion, we assume a common domain.

In the propositional case, we saw that a sound and complete axiomatization could
be obtained by considering all tautologies of propositional logic, together with some
specific axioms about knowledge. It is easy to see that all the axioms of K,, are
still valid in relational Kripke structures (Exercise 3.41). It is also intuitively clear
that these axioms are not complete. We clearly need some axioms for first-order
reasoning.

We might hope that we can get a complete axiomatization by adding all (substitu-
tion instances of) valid first-order formulas. Unfortunately, this results in an unsound
system. There are two specific axioms of first-order logic that cause problems.

To state them we need a little notation. Suppose that ¢ (x) is a first-order formula
in which some occurrences of x are free. Let ¢, t{, and 1, be terms, and let ¢(¢) be
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the result of substituting ¢ for all free occurrences of x. Assume for simplicity that
no variable occurring in ¢, ¢, or t, is quantified in ¢ (so that, for example, for every
variable y in ¢ there is no subformula of ¢ of the form Jy1/; without this assumption,
we may have inadvertent binding of the y in # by Jy). Consider the following two
axioms:

() = Ixp((x) (3.3)
(t1 = 1) = (p(t1) & (12)) (3.4)

It is easy to see that both of these axioms are valid in relational structures (Ex-
ercise 3.42). For the first one, if ¢(¢) is true, then there is certainly some
value we can assign to x that makes ¢(x) true, namely, the interpretation of z.
Axiom (3.4) just says that “equals can be replaced by equals.” As an exam-
ple, taking ¢(x) to be Governor(California, x), we have that ((x; = x3) =
(Governor(California, x1)) < Governor(California, x3)) is valid. Although these
axioms are valid in relational Kripke structures if ¢(x) is a first-order formula, we
now show that neither axiom is valid if we allow ¢ to be an arbitrary modal formula.

We start with the first axiom. Let ¢(x) be the modal formula K;(7all(x)) and
let t be President. With this substitution, the axiom becomes

K;(Tall(President)) = 3x K; (Tall(x)). 3.5

As we noted earlier, the left-hand side of (3.5) is true if, intuitively, the president is
tall in every world that agent i considers possible, even if the president is a different
person in different worlds. The right-hand side of (3.5) is, however, false if there is
no one person who is tall in every possible world. Since it is possible simultaneously
for the left-hand side of (3.5) to be true and the right-hand side to be false, it follows
that (3.5) is not valid.

What is going on is that the valuation is independent of the state, and hence
under a given valuation, a variable x is a rigid designator, that is, it denotes the
same domain element in every state. On the other hand, a constant symbol such as
President can denote different domain elements in distinct states. It is easy to see
that (3.3) is valid if we restrict the term ¢ to being a variable. More generally, we can
show that (3.3) is valid if 7 is a rigid designator (Exercise 3.42).

To see that the second axiom is not valid in relational Kripke structures, let ¢ be
K;(t; = x). Then the axiom becomes

(h=n)= (Ki(t1 =1) & K;(t1 =1n)).
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It is easy to see that K; (1 = #1) is valid, so the axiom reduces to

(H =1n) = Ki(t =1n). (3.6)

There is a famous example from the philosophical literature that shows that this is
not valid. Because of its brightness, the planet Venus is called the morning star (at
sunrise, when it appears in the east), and it is also called the evening star (at sunset,
when it appears in the west). Ancient astronomers referred to the morning star as
Phosphorus, and the evening star as Hesperus, and were unaware that Phosphorus
and Hesperus were one and the same. Let the constant symbol Phosphorus play the
role of #1 in (3.6), let the constant symbol Hesperus play the role of ¢, and let agent i
be an ancient astronomer. Then (3.6) is falsified: although Hesperus and Phosphorus
are equal in the real world, the astronomer does not know this.

Notice that, again, the problem here arises because #; and #; may not be rigid
designators. If we restrict attention to terms that are rigid designators, and, in partic-
ular, to variables, then (3.4) is valid in all relational Kripke structures (Exercise 3.42).
It follows that the following special case of (3.6), called Knowledge of Equality, is
valid:

(x1 =x2) = K;i(x1 = x2). (3.7

We remark that (3.3) and (3.4) are the only axioms of first-order logic that are
not valid in relational Kripke structures. More precisely, there is a complete ax-
iomatization of first-order logic that includes (3.3) and (3.4) as axioms such that all
substitution instances of all axioms besides (3.3) and (3.4) are valid in relational
Kripke structures.

Suppose that we restrict (3.3) and (3.4) so that if ¢ is a modal formula (that is, it
has occurrences of K; operators), then the terms ¢, ¢1, and t, must be variables; we
henceforth call these the restricted versions of (3.3) and (3.4). Note that the restricted
versions of (3.3) and (3.4) are valid in relational Kripke structures. We might hope
that by taking (substitution instances of) the axioms of first-order logic, using only
the restricted versions of (3.3) and (3.4), together with the axioms and inference
rules of K,;, we would have a sound and complete axiomatization for knowledge in
first-order relational structures. The resulting system is sound, but it is not complete;
there are two additional axioms we must add.

One new axiom arises because of the interaction between the first-order quanti-
fier V and the modal operator K;, which can be thought of as a “knowledge quantifier.”
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Consider the following formula, sometimes called the Barcan formula:
Vxi...Vxp Kip = KiVxy...Vxpo.

It is fairly easy to see that the Barcan formula is valid (Exercise 3.43). Its validity,
however, depends crucially on the common-domain assumption.  For example,
consider a relational Kripke structure whose common domain consists of precisely
three elements, ai, az, and a3. Assume that Alice knows that a; is red, that a, is red,
and that a3 is red. Then, for all x, Alice knows that x is red; that is, Vx (K sRed(x))
holds. From the Barcan formula it follows that Alice knows that for every x, x is red;
that is, K4 (VYxRed(x)) holds. Without the common-domain assumption, we might
argue intuitively that Alice does not know that every object is red, since Alice might
consider it possible that there is a fourth object a4 that is blue. In the presence of the
common-domain assumption, Alice knows that a1, ap, and a3 are the only domain
elements, so this argument cannot be applied. On the other hand, the Barcan formula
is not valid under the domain-inclusion assumption that we discussed earlier, where
there really can be a fourth (non-red) object a4 in another world (Exercise 3.44).

The second new axiom arises because of the interaction between the K; operator
and equality. This axiom, which is analogous to Knowledge of Equality (3.7), is
called Knowledge of Inequality:

(x1 # x2) = Ki(x1 # x2). (3.8)

Like Knowledge of Equality, this axiom is valid (Exercise 3.45). Unlike Knowledge
of Equality, this axiom does not follow from the other axioms.

It turns out that no further new axioms beyond the Barcan formula and Knowledge
of Inequality are needed to get a sound and complete axiomatization for the first-
order theory of knowledge. Such an axiomatization (for structures with n agents) is
obtained by combining

(a) the axiom system K,

(b) the axiom system for first-order logic referred to previously, except that we
use the restricted versions of (3.3) and (3.4),

(c) the Barcan formula, and

(d) Knowledge of Inequality.
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Notice that if we do not allow function or constant symbols in the vocabulary, then
the only terms are variables, which are rigid designators. In this case, all substitution
instances of axioms (3.3) and (3.4) are valid (in fact, the restricted versions of (3.3)
and (3.4) are identical to the unrestricted versions), so we can simplify the statement
of (b) above.

We have already seen that for Kripke structures (S, 7, Ky, ..., K;), additional
properties of the K; relations give us additional axioms for knowledge. Not surpris-
ingly, the same is true for relational Kripke structures. For example, if each K; is an
equivalence relation, then we can modify the sound and complete axiomatizations
we just described by replacing the axiom system K,, by the axiom system S5,. It
is interesting that in this case we do not need to include the Barcan formula or the
Knowledge of Inequality axiom, since they turn out to be consequences of the axioms
of first-order logic, along with S5,, (see Exercises 3.43 and 3.45).

Exercises

3.1 Show that |Sub(¢)| < |¢|.

3.2 Show that if neither F' U {¢} nor F U {—¢} is AX-consistent, then neither is
FU{p Vv —g}.

3.3 Prove that a maximal A X-consistent set has properties (c) and (d), as claimed
in the statement of Lemma 3.1.2.

3.4 Prove that K,, is sound for M,,, using Theorem 3.1.1.

3.5 In the proof of Theorem 3.1.3, prove that (M€, sy) = ¢ iff ¢ € V, in the case
that ¢ is a conjunction or a negation.

3.6 Show thatif {¢q, ..., ¢, =} is not K, -consistent, then
KnFor=@=((..=@=>v%)..)).

3.7 Prove, using induction on k together with axiom A2 and propositional reasoning,
that
KypFKi(pr = (@=(..=@=>v%)...)

= (Kip1 = (Kipp = (... = (Kigr = Kiy) .. ).
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* 3.8 Let K/, be the variant of K,, consisting of one inference rule, modus ponens
(R1), and the following two axioms:

Al'. K, ... K; ¢, where ¢ is an instance of a tautology of propositional calcu-
lus, k > 0, and iy, ..., i} are arbitrary (not necessarily distinct) agents in
{1,...,n},

A2 K ...K;[(KipAKi(p = ¥)) = K;iy],i =1,...,n, where,again, k > 0
and iy, ..., iy are arbitrary (not necessarily distinct) agents in {1, ..., n}.

Thus, A1’ and A2’ look just like Al and A2, except that a string of knowledge
operators has been appended to the beginning of each formula. If we take k = 0 in
each of A1’ and A2’, we get back Al and A2.

Show that K,, is equivalent to K;l; that is, show that a formula ¢ is provable in
K, iff it is provable in K/,. Then show that the deduction theorem holds for K/,. Find
similar (equivalent) variants of T,, S4,, S5,, and KD45,, for which the deduction
theorem holds.

This shows that it is essentially R2—Knowledge Generalization—that causes
the deduction theorem to fail for the logics that we have been considering.

3.9 Show that A6 is provable from A3, Al, and R1.

3.10 In this exercise, we consider when an agent can know both ¢ and —¢, or both ¢
and the fact that he does not know ¢.

(a) Show that K1¢ A K1—¢ is consistent with K,, by constructing a Kripke structure
that satisfies, for example, K1p A K{—p.

(b) Show that K, + {A6} F —(K;jp A Ki—¢). (You may assume that
K, F Ki(p AY¥) & (Kip A Kif); you are asked to prove this in Exer-
cise 3.31(a).) Show as a consequence that AX F —(K;p A K;—¢p) if AX is
any one of T, S4,,, S5,,, or KD45,,.

(c) Show that AX - —K; (¢ A —=K;@) although ¢ A =K, ¢ is consistent with AX,
where AX is any of T, S4,,, S5,,, or KD45,,. Thus, although it is consistent in
each of these logics for ¢ to be true but agent i not to know it, it is impossible
for i to know this fact.

*3.11 Give syntactic proofs of the following properties of common knowledge:
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(@) K¢ F (Cgp ACglp = ¥)) = Ca¥,
(b) Ty F Cgp = ¢,
(© Kf F Cce = CcCge (note that the analogous axiom A4 is not needed),

(d) S5¢ + ~Cg9 = C6—Cgy (hint: show S5¢ + —Cge & K;—~Cgy for all
i €G),

(e) S4f t/ —=Cgep = Cc—Cgey (hint: show that =Cgep A =Cg—Cge is satisfi-
able in some structure in M’"),

() K§ FCep = Cgropif G2 G

3.12 Prove Lemma 3.1.4.

3.13 In this exercise, we focus on the connection between axiom systems and pos-
sibility relations.

(a) Show that axiom A4 is valid in all structures in which the possibility relation
is transitive.

(b) Show that axiom AS is valid in all structures in which the possibility relation
is Euclidean.

(c) Show that axiom A5 forces the possibility relation in the canonical structure to
be Euclidean; specifically, show that if all instances of A5 are true at a state sy
in the canonical structure and (sy, sw), (sv,sx) € K;, then (sw, sx) € K;.

(d) Show that axiom A6 is valid in all structures in which the possibility relation
is serial.

(e) Show that axiom A6 forces the possibility relation in the canonical structure
to be serial; in particular, show that if all instances of A6 are true at a state sy,
then there must be some state sy such that (sy, sw) € K;.

* 3.14 In this exercise, we show that the formulas proved valid in Exercise 2.12 are
provable in S5,,. Give syntactic proofs of the following properties:

(@) S5, - —¢ = K;—=K;p,
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(b) S5, F—¢ = K;,...K;,—K;, ... K; ¢ for any sequence iy, ..., iy of agents,
(©) S5, F —Ki—Kip & Kip.

(Hint: for part (b), use part (a), induction, the Knowledge Generalization Rule, and
the Distribution Axiom.)

3.15 Prove that the structure M in Figure 3.1 is a model of S5;. (Hint: show that
there is a Kripke structure M’ with a single state s’ such that for every formula

@ € L1({p)) we have (M, s) k= ¢ iff (M, 1) = ¢ iff (M, 5') = ¢.)

3.16 In this exercise, we show that there is a construction that converts a model M of
T, (resp., S4,, S5, KD45,) to a model M’ in M’ (resp., M!, M5!, MEIM) that in a
precise sense is equivalent to M. Given a Kripke structure M = (S, 7, K1, ..., Ky),
let M" = (S, 7, Ky, ..., K}), where K7 is the reflexive closure of K;; that is, K} =
K U{(s,s)|s € S}. Similarly, let M (resp., M, M¢") be the structure obtained
from M by replacing the KC; relations by their reflexive, transitive closures (resp.,
reflexive, symmetric and transitive closures; Euclidean and transitive closures). Note
that we have M rather than M€ , since it does not make sense to take the serial
closure.
Prove the following:

(a) M" € M); and if M is a model of T,, then (M, s) = (M", s) for all states s
in M.

(b) M™ € M!T; and if M is a model of S4,,, then (M, s) = (M", s) for all states s
in M.
(c) M™" € M™'; and if M is a model of S5,, then (M,s) = (M, s) for all

n
states s in M.

(d) If M is a model of KD45,, then so is M¢'; moreover, in this case, M* € M/
and (M,s) = (M, s) for all states s in M. Note that this case is slightly
different from the previous cases, since it is not necessarily true in general that
M ¢ Mell

bl

3.17 Let F, be the class of all Kripke frames. Just as for structures, we can consider

subclasses of F, such as F/, F, F/5! and F¢. We say that a frame F is a model
of T, (resp., S4,, S5, KD45,) if every structure based on F is a model of T, (resp.,
S4,, S5,, KD45,). Prove the following:
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(a) Fisamodel of T, iff F € F,,
(b) F is amodel of S4,, iff F € F!,
(c) Fisamodel of S5, iff F € F1¥,

(d) F is a model of KD45, iff F e F2.

3.18 In this exercise, we take a closer look at axiom A7.

(a) Show that axiom A7 is provable from the system consisting of Al, A3, AS,
and R1.

(b) Show that axiom A7 forces the possibility relation in the canonical structure
to be symmetric.

*3.19 Show that A4 is provable from the system consisting of Al, A2, A3, A5, R1,
and R2. (Hint: use Exercise 3.18 to show that K;¢ = K;—K;—K;¢ is provable, and
use A5 and propositional reasoning to show that = K;—K; ¢ = K; ¢ is also provable.)

3.20 Prove, using Lemma 3.1.4 and the techniques of Theorem 3.1.5, that the fol-
lowing axiom systems are equivalent (i.e., precisely the same formulas are provable
in all of these systems):

(@) S5p,
(b) the system consisting of {A1,A2,A4,A6,A7,R1,R2},
(c) the system consisting of {A1,A2,A3,A5,R1,R2},
(d) the system consisting of {A1,A2,A3,A4,A7,R1,R2}.
(Note that this exercise gives us an indirect proof of the preceding exercise.)
3.21 Fill in the missing details in the proof of Proposition 3.1.6. In particular, show

that the relation K| defined in the the proof of part (b) has the properties claimed for
it, and show that (M, s) = (M’, s) for all states s € {so} U/C’1 (sp) and all formulas 1.

3.22 Show that an analogue to Proposition 3.1.6(b) holds for K45. (Hint: the only
difference is that we can now take the set S to be empty.)
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* 3.23 The depth of a formula is the depth of nesting of the K; operators in the
formula. Formally, we define depth by induction on structure of formulas. We define
depth(p) = 0 for a primitive proposition p, depth(—¢) = depth(p), depth(p A) =
max(depth(p), depth(i)), and depth(K;p) = depth(p) + 1.

(a) Show that for every formula ¢ € £; we can effectively find a formula ¢’ of
depth 1 such that S5 + ¢ < ¢'. That is, for every formula in £; we can
effectively find an equivalent formula that is a Boolean combination of propo-
sitional formulas and formulas of the form K1y, where i is propositional.
(Hint: use the fact that K(¢1 vV K1¢2) < (K191 V K1¢2) is valid in M)

(b) Show that for every formula in £; of the form K¢ we can effectively find
an equivalent formula that is a Boolean combination of formulas of the form
K1y, where ¢ is propositional.

3.24 Extend Proposition 3.2.1 to deal with formulas in the language KSD. (We
remark that once we have common knowledge in the language, the algorithm will
no longer run in time O (||M|| X |¢]), but will still run in time polynomial in || M ||
and |¢p].)

*% 3.25 In this exercise, we sketch the details of how to construct effectively the proof
of a valid formula. (By “construct effectively,” we mean that there is an algorithm that
takes as input a formula ¢ and gives as output a proof of ¢, if ¢ is valid, and halts, say
with the output “not valid,” if ¢ is not valid.) We work with K,, here, but the proof
can be easily modified to deal with all the other logics we have been considering.
Using the notation of Theorem 3.2.2, let Sub™ (¢) consist of all the subformulas of ¢
and their negations. Let V consist of all subsets V of Sub™ (¢) such that (a) ¥ € V
iff = ¢ V for each subformula vy of ¢ and (b) v A ¥' € Viff ¥,y € V.
Let MO = (80,79, k9, ..., K9), where §° = {sy |V € V}and #°, K0, ..., KO
are constructed as in the proof of Theorem 3.1.3. We construct inductively, for
k=0,1,2,..., asequence of structures MK = (S", 7k, ICk, R IC,’;). Suppose that
we have already constructed M*. Let S¥*! consist of those states sy € S¥ such that
if there is a formula of the form —K;y € V, then there is a state sy € Sk such
that (sy, sw) € KX and =y € W. Let 7¥+1, ICll‘H, ..., K1 be the restrictions of
7k, ICk, AU IC’l‘ to S¥*1. Note that this construction is effective. Moreover, since
159 < 2l and S¥*! C S¥, there must be some point, say ko, such that SK0+1 = ko,
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(a) Prove that ¢ is satisfiable iff for some state sy € Sko we have ¢ € V. (Note
that this gives us another proof that if ¢ is satisfiable, it is satisfiable in a finite
structure.)

(b) Let ¢y be the conjunction of all the formulas in the set V. Prove that if
sy € (Sk — Sk+l), then K, = —¢y; moreover, show that the proof of —¢y
can be effectively constructed. (Hint: show by induction on k that K, +
Vs, esk v, and that the proof of \/; ¢« ¢v can be constructed effectively.)

(c) Note that if ¢ is valid, then if we apply the previous construction to —¢,
eventually we eliminate every state sy such that =¢ € V. Use this observation
and parts (a) and (b) to show that we can effectively construct a proof of ¢.

3.26 Complete the details of the proof of Theorem 3.2.4.

3.27 In the proof of Theorem 3.3.1, show that |S,| < 21¢l. (Hint: recall that
|ICopl =2+ 2|G| + |¢l.)

* 3.28 In this exercise, we fill in some of the details of the proof of Claim 3.1 in the
proof of Theorem 3.3.1. Assume that (M, sy) = Cgy. Let W be as in the proof
of Theorem 3.3.1. We wish to prove that

KS F o = Ec(¥ A gw).

(a) Prove thatifi € G and W € W, then K,f F ¢ow = K;¥. (Hint: assume
that W/K; = {¢1, ..., ¢x}. Use an argument like that in the proof of Theo-
rem 3.1.3, where W here plays the role that V plays there, and use the fact that
(My, sw) = K;y, to show that

KS F Kipr = (Kigy = (.. = (Kigr = Ki)...).
Now use the fact that K;¢; € W, for j =1,...,k.)

(b) Define W to be Conc(¢) — W. Show that if i € G, W € W, and
W' € W, then K¢ + oy = K;—¢y. (Hint: by definition of W, show that
My, sw) = Cgyr and (Mg, sy) = Cgy. Conclude that sy is not G-
reachable from sy and, in particular, (sw, sw’) & K;. By definition of K;,
conclude that W/K; & W', so there is a formula v/ such that K;¢' € W
and ' ¢ W’. Since ¥’ ¢ W/, show that K¢ + ¢/ = —¢ys. From
this, show K¢ F K;y/' = K;—@y. Since K;¥/' € W, conclude that
KS = ow = Kimpw:.)
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(c) Conclude from parts (a) and (b) that

KwawiKz(w/\( A\ _‘(PW/)>~

W'ew
(d) Prove that
KS F oy o ( A ﬁ(pw,),
W'ew
(Hint: first show that K¢ Vwecone(p) W)
(e) Use parts (c) and (d) to show that Knc Fow = Ki(¥ A ow).

(f) Conclude from part (e) that K”C Fow = Eg(¥ A ow).

*3.29 This exercise provides a weak form of the deduction theorem for languages
with common knowledge. Let G = {1,...,n}. Show that if Kf, ¢ F 1, then
K¢ + Cgp = Cgy. Observe that similar results hold for TS, $4¢, S5€, and
KD45¢.

*3.30 In this exercise, we fill in some details of the proof of Theorem 3.4.1.
(a) Show that g € ;g Ki-
(b) Construct an example where Kg # (;icg Ki-

(c) Show that the canonical structure (or any other structure for that matter)
can be unwound to get a structure whose graph looks like a tree, in such
a way that the same formulas are true in corresponding states. (More for-
mally, given a structure M = (S, m, K1, ..., Ky), there is another structure
M =S, IC/I, ..., K}) and a function f : S’ — S such that (i) the graph
of M’ looks like a tree, in that for all states s’, ¢ in M’, there is at most one
path from s” to ', and no path from s’ back to itself, (ii) if (s, ) € K, then
(f(s), f(t)) € K;, (iii) #'(s") = 7w (f(s")), and (iv) f is onto, so that for all
s € Sthereexistss’ € S’ suchthat f(s") = s. Moreover, we have (M', s') = ¢
iff (M, f(s")) |= ¢ for all states s € S’ and all formulas ¢ € £D.)

(d) Show that we can unwind the canonical structure in such a way as to get a
structure M’ where K¢ = ;e Ki-



Exercises 99

3.31 Prove from the axioms that knowledge distributes over conjunctions. That is,
give syntactic proofs of the following:

(@) K, F Kij(p Ap) < (Kijp A Kiy) (hint: use the observation that ¢ = (¥ =
(¢ A ) is a propositional tautology),

(b) K¢ - EG(p AY) & (Ego A EGY),
(©) KEFCo(p AY) & (Coo A Ca¥r),

(d) KP + Dg(p AY) & (Dgo A Dg).

3.32 In Chapter 2, we said that distributed knowledge could be viewed as the knowl-
edge the agents would have by pooling their individual knowledge together. This
suggests the following inference rule:

RDI1. From (Y1 A ... A Yy) = ¢ infer (K; Y1 A ... A Kj¥k) = Dgo, for
G ={i,..., i}

Intuitively, RD1 says that if 1 = /1 A ... A 1 implies @, and if each of the agents
in G knows a “part” of ¥ (in particular, agent i; knows v;), then together they have
distributed knowledge of v/, and thus distributed knowledge of ¢.

(a) Prove that RD1 preserves validity with respect to M,,.

(b) Show that RD1 is derivable from axiom A2 (with D¢ substituted for K;), D1,
and D2, using propositional reasoning. (Hint: you will also need the results
of Exercise 3.31.)

3.33 We say that ¢ is a pure knowledge formula if ¢ is a Boolean combination of
formulas of the form K; (that is, it is formed from formulas of the form K; 1 using
A, =, and V). For example, Kop VvV (K1—K3p A —Ky—p) is a pure knowledge
formula, but p A =K p is not. Show that if ¢ is a pure knowledge formula, then
KP ¢ = Dgo.

3.34 Fill in the details of the proofs of Proposition 3.6.3 and Theorem 3.6.4.

3.35 Prove analogues to Proposition 3.6.3 and Theorem 3.6.4 for K45. (Hint: use
Exercise 3.22.)
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*3.36 Show that K¢ is S4-consistent iff Kj¢ is S5-consistent. Conclude that the
satisfiability problem for S4 for formulas of the form K¢ is NP-complete (although
the general satisfiability problem for S4 is PSPACE-complete).

* 3.37 In this exercise, we show that first-order logic is, in a precise sense, expressive
enough to capture propositional modal logic (without common knowledge). Given a
set @ of primitive propositions, let the vocabulary ®* consist of a unary predicate P
corresponding to each primitive proposition p in @, as well as binary predicates
Ry, ..., R,, one for each agent. We now define a translation from formulas in
L (®) to first-order formulas over ®*, so that for every formula ¢ € £, (®) there is
a corresponding first-order formula ¢* with one free variable x:

e p* = P(x) for a primitive proposition p
o (—p)* =—(¢")
e (WAY) =¢*AYT

e (Kip)* =Vy(Ri(x,y) = ¢*(y)), where y is a new variable not appearing in
@* and ¢*(y) is the result of replacing all occurrences of x in ¢* by y.

Next, we provide a mapping from a Kripke structure M = (S, 7, K1, ..., K,) €
M, (®) to arelational ®*-structure M*. The domain of M* is S. For each primitive
proposition p € ®, we let pMT — {s € S|7(s)(p) = true}, and let RIM* =K.

(a) Showthat (M, s) = ¢iff (M*, V) = ¢*(x), where V (x) = s. Intuitively, this
says that ¢* is true of exactly the domain elements corresponding to states s
for which (M, s) = ¢.

(b) Show that ¢ is valid with respect to M, (®) iff Vx¢™*(x) is a valid first-order
formula. (Hint: use the fact that the mapping from structures in M, (®P) to
relational ®*-structures is invertible.)

(c) Show how to modify this construction to capture validity with respect to struc-
tures in M, (resp., M7, M5, M),

Given this translation, we might wonder why we should consider propositional modal
logic at all. There are four main reasons for this. First, the syntax of modal logic
allows us to more directly capture the types of statements regarding knowledge
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that we typically want to make. Second, the semantics of modal logic in terms
of possible-worlds structures better represents our intuitions (and, as we shall see,
directly corresponds to a standard representation of a system, one of our major
application areas). Third, the translation fails for common knowledge. (That is,
there is no first-order formula corresponding to common knowledge. This follows
from the fact that transitive closure cannot be expressed in first-order logic.) Finally,
by moving to first-order logic, we lose the nice complexity properties that we have
for propositional modal logic. First-order logic is undecidable; there is no algorithm
that can effectively decide whether a first-order formula is valid.

3.38 Show that (A4, V) = Vxo iff (A, V[x/a]) = ¢ for every a € dom(A).

3.39 Inductively define what it means for an occurrence of a variable x to be free
in a formula as follows:

e if ¢ is an atomic formula (P (¢, ..., fx) orf; = fp), then every occurrence of x
in ¢ is free,

e an occurrence of x is free in —¢ iff the corresponding occurrence of x is free
in ¢,
e an occurrence of x is free in ¢ A ¢ iff the corresponding occurrence of x in

@1 or ¢ is free,

e an occurrence of x is free in yg iff the corresponding occurrence of x is free
in ¢ and x is different from y.

A sentence is a formula in which no occurrences of variables are free.

(a) Show that if ¢ is a formula, and V and V’ are valuations that agree on all of
the variables that are free in ¢, then (A, V) = ¢ iff (A, V') = ¢.

(b) Show that if ¢ is a sentence, and V and V' are valuations on the structure A,
then (A, V) E ¢ iff (4, V') = ¢.

3.40 In this exercise, we consider a semantics without any assumptions whatsoever
about relationships between domains of worlds within a relational Kripke structure.
For simplicity, we assume that there are no function symbols. Given a relational
Kripke structure M, we now take a valuation V on M to be a mapping from variables



102 Chapter 3 Completeness and Complexity

to the union of the domains at the states of M. Then, as we saw, to define what
it means for a formula such as K;7Tall(x) to hold at a state s of a relational Kripke
structure M under a valuation V such that V (x) = Bill, we may have to decide if
Tall(x) is true at a state ¢ such that Bill is not in the domain of the relational structure
7 (t). One solution to this problem is to note that if Bill is not in the domain of
7(t), then certainly Bill € Tall™ () Therefore, we define a new semantics where we
simply say (M, t, V) & Tall(x) if V (x) is not in the domain of 7 (¢). Similarly, we
say (M,t,V) = x = yif V(x) or V(y) is not in the domain of 7 (¢). Further, we
modify our standard semantics by saying (M, s, V) = Ixe iff (M, s, V[x/al) E ¢
for some a € dom(m(s)). Although this semantics has some attractive features, it
has its problems, as we now show.

The universal closure of a formula ¢ is the formula Vxi...Vxzp, where
X1, ..., X are all of the variables that occur free in ¢. In first-order logic, it is
easy to see that a formula is valid if and only if its universal closure is valid. The next
two parts of the exercise, however, show that this is not the case for the semantics of
this exercise.

(a) Show that Vx(x = x) is valid under the semantics of this exercise.
(b) Show that x = x is not valid under the semantics of this exercise.

The fact that x = x is not valid in this semantics is certainly undesirable. Of course,
the formula x = x is not a sentence. The next part of this exercise gives an example
of a sentence that is not valid in this logic, which we might hope would be valid,
namely, the universal closure of the Knowledge of Equality axiom.

(c¢) Show that the formula Vx K; (x = x) is not valid.

The failure of formulas such as those in (b) and (c) to be valid have led most re-
searchers to reject this semantics as a general solution.

We might hope to solve this problem by redefining (M, ¢, V) = (x = y) iff
V(x) = V(y), irrespective of whether x or y is in domain of 7 (#). While this change
“solves” the problems of (b) and (c), other problems remain.

(d) Show that under this redefinition, neither y(x = y) nor Vx K;dy(x = y) is
valid.

The problems that arise in part (d) are due to the fact that Ix¢ is true at s if ¢ holds
for some a in dom (7t (s)). We could solve this problem by taking Jx¢ to hold if ¢



Exercises 103

holds for any a in the union of the domains at all states. This indeed solves all the
problems we have raised but effectively puts us back in the common-domain setting.
The semantics is now equivalent to that which would be obtained by taking the same
domain at all states, namely, the union of all the domains.

3.41 Show that K,, is sound for relational Kripke structures with n agents. Show
that if each X; is an equivalence relation, then S5,, is sound.

3.42 In this exercise, we consider when axioms (3.3) and (3.4) from Section 3.7.4
are valid.

(a) Show that both axioms are valid with respect to relational structures.

(b) We say that a constant, function, or relation symbol is a rigid designator if it
takes on the same value in every state. We say that a term is a rigid designator
if all the constant and function symbols that appear in it are rigid designators.
Show that both axioms are valid with respect to relational Kripke structures
if ¢, 11, and #, are rigid designators.

We remark that in certain applications it may be useful to designate some of the
symbols as rigid designators, while others are allowed to vary. For example, we may
want the interpretation of constants such as 0 and 1 and of functions such as + and x
to be independent of the state.

* 3.43 In this exercise, we consider the Barcan formula.
(a) Show that the Barcan formula is valid.

(b) Show that this axiom is a consequence of the axioms and rules of S5, together
with the axioms and rules of first-order logic. (Hint: first-order logic has
analogues to the Distribution Axiom A2 and the Knowledge Generalization
Rule R2 for universal quantification: (Vx¢ A Vx(p = ¥)) = Vxi is an
axiom, and “from ¢ infer Vx¢” is an inference rule. In addition, there is the
following axiom:

¢ = Vxg if ¢ has no free occurrences of x.
Using these, the restricted version of (3.3), and the axioms of S5,,, prove

—K;=Vx1... VX Kip = Vx1 ... Vxpo.
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Then show that, using the axioms and rules of S5,,, from —K; =y = ¥ we
can prove Y1 = K;y».)

3.44 Show that under the domain-inclusion assumption
(a) the Barcan formula is not valid,

(b) the converse of the Barcan formula, namely
KiVxi...Vxrp = Vx1... VX K0,
is valid,

(c) if the K; relations are equivalence relations, then the Barcan formula is valid.

3.45 In this exercise, we consider the Knowledge of Inequality axiom.
(a) Show that the Knowledge of Inequality axiom (3.8) is valid.

(b) Show that this axiom is a consequence of the axioms and rules of S5,, together
with the axioms and rules of first-order logic. (Hint: show that K;(¢ =
Kip) = Ki(—¢ = K;—¢) is valid in S5,,, and hence provable in S5,,. Now
take ¢ to be x| = x», and apply Knowledge of Equality.)

Notes

A discussion of different varieties of modal logic can be found in some of the stan-
dard texts in the area, such as [Hughes and Cresswell 1996], [Chellas 1980], and
[Blackburn, de Rijke, and Venema 2001]. The historical names S4 and S5 are due to
Lewis, and are discussed in his book with Langford [1959]. The names K and T are
due to Lemmon [1977], as is the idea of naming the logic for the significant axioms
used. Arguments for using logics weaker than S5 in game theory can be found in,
for example, [Samet 1987] and [Geanakoplos 1989].

The treatment of completeness and complexity issues in this chapter largely
follows that of [Halpern and Moses 1992]. The technique for proving completeness
using canonical structures seems to have been worked out independently by Makinson
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[1966], Kaplan [1966], and Lemmon and/or Scott [Lemmon 1977]. An algebraic
approach to the semantics of modal logic is described by Lemmon [1977]. Frames
were introduced by Lemmon and Scott [Lemmon 1977], who called them “world
systems.” The term “frame” is due to Segerberg [1968]. The idea of using frames
to characterize axiom systems (as in Exercise 3.17) is well known in modal logic; it
appears, for example, in [Goldblatt 1992] and [Hughes and Cresswell 1984].

Although we restrict our attention in this book to languages £ with a countable
set of formulas, this is not really necessary. For example, we make this restriction in
Lemma 3.1.2 only to simplify the proof. Indeed, Lemma 3.1.2 is a standard result in
the model-theoretic literature and is known as Lindenbaum’s Theorem [Chang and
Keisler 1990, Proposition 1.3.11].

As we mentioned in the notes to Chapter 1, Lenzen’s overview article [1978]
has a good discussion and review of philosophers’ arguments for and against various
axioms of knowledge. In the next chapter we present our model of knowledge in
multi-agent systems for which S5, is an appropriate axiomatization. Other axiom
systems for knowledge have been used in various contexts. Moore [1985] uses S4 in
his theory of knowledge and action. Since the knowledge represented in a knowledge
base is typically not required to be true, axiom A3 has been thought inappropriate
for these applications; thus KD45 is considered, for example, by Levesque [1984a].
KD45 has also been considered, for example, by Fagin and Halpern [1988a] and
by Levesque [1984b], to be an appropriate logic for characterizing the beliefs of an
agent, who might believe things that in fact turn out to be false.

There has been a great deal of interest recently in having a system with modal
operators for knowledge and belief where, typically, the belief operator satisfies the
axioms of KD45 and the knowledge operator satisfies the axioms of S5. The focus has
been on the interaction between these operators (for example, if agent i believes ¢,
does she know that she believes ¢?) and on defining belief in terms of knowledge.
Further details can be found in [Friedman and Halpern 1997], [Kraus and Lehmann
1988], [Moses and Shoham 1993], and [Voorbraak 1992].

The formula K; (¢ A—K;¢) discussed in part (c) of Exercise 3.10 has been called a
“pragmatically paradoxical formula.” It was first introduced by Moore (see [Hintikka
1962]).

Axioms for common knowledge appear in [Lehmann 1984], [Milgrom 1981],
and [McCarthy, Sato, Hayashi, and Igarishi 1979]. (In these papers, only the modal
operator C, referring to common knowledge of all the agents in the system, was used,
rather than the indexed modal operator Cg.) The essential ideas for extending the
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canonical structure technique to languages including common knowledge are due
to Kozen and Parikh [1981], who proved completeness results for the logic PDL
(Propositional Dynamic Logic) in this way. The idea for proving completeness for
the language including distributed knowledge is due to Halpern and Moses [1992];
a formal completeness proof (as in Exercise 3.30) can be found in [Fagin, Halpern,
and Vardi 1992a] and [Hoek and Meyer 1992].

An excellent introduction to complexity theory is given by Hopcroft and Ullman
[1979]. The fact that satisfiability for propositional logic is NP-complete was proved
by Cook [1971], who in fact introduced the notions of NP and NP-completeness.
Ladner [1977] proved that the satisfiability problem for S5 is NP-complete, and that
satisfiability for the logics K, T, and S4 is PSPACE-complete. The results in the
multi-agent case are from [Halpern and Moses 1992]. The exponential time results
for logics involving common knowledge are based on similar results for PDL. The
lower bound for PDL is due to Fischer and Ladner [1979]; the matching upper bound
is due to Pratt [1979]. Details of the proofs of the complexity results not included
here can be found in [Halpern and Moses 1992]. A general framework for studying
the complexity of modal logics is described by Vardi [1989]. For a recent overview
of the complexity of modal logics, see [Blackburn, de Rijke, and Venema 2001].

An excellent introduction to first-order logic is [Enderton 1972]; this book also
provides a nice discussion of issues of decidability and undecidability. The transla-
tion from modal logic to first-order logic (Exercise 3.37) is another notion that seems
to have been developed independently by a number of people. The first treatment
of these ideas in print seems to be due to van Benthem [1974]; details and further
discussion can be found in his book [1985]. The distinction between “knowing that”
and “knowing who” is related to an old and somewhat murky distinction between
knowledge de dicto (literally, “knowledge of words”) and knowledge de re (literally,
“knowledge of things”). Plantinga [1974] discusses these terms in more detail.

The example of the morning star and the evening star is due to Frege [1892],
and its implications for first-order modal logic were first discussed by Quine [1947].
The idea of dealing with the morning-star paradox by restricting substitutions so that
they are not allowed within the scope of knowledge operators K; is due to Kanger
[1957a], and the idea of using rigid designators is due to Kaplan [1969].

The Barcan formula (or actually, a formula equivalent to it) was introduced by
Barcan [1946]. Prior [1956] showed that the Barcan formula is a consequence of
the axioms of first-order logic, along with S5; see [Hughes and Cresswell 1968,
page 145] for a proof. Prior [1957] also made an early objection to it. Kripke
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[1963b] introduced structures equivalent to relational Kripke structures, but where
the domains of distinct worlds can be unrelated, and so the Barcan formula is violated.
He gave a completeness proof for a first-order modal logic in the S5 case [1959].
Barcan [1947] showed the validity of the Knowledge of Equality axiom.

Detailed discussions of first-order modal logic, along with completeness proofs,
appear in Hughes and Cresswell’s book [1968] and Garson’s article [1984]. Much
of the information we have given about first-order modal logic (including biblio-
graphic references) is from Hughes and Cresswell’s book. They, along with Garson,
discuss and prove sound and complete axiomatizations under a variety of assump-
tions, including cases where formulas involving equality are not allowed. Garson
discusses in detail a number of ways of dealing with what is called the problem of
“quantifying-in”: how to give semantics to a formula such as 3x K; (P (x)) without
the common domain assumption.

An axiomatization of first-order logic that includes (3.3) and a slightly stronger
version of (3.4) appear in [Enderton 1972]. This stronger version says that if ¢’ is the
result of replacing some occurrences of #1 in ¢(#1) by 1, then (1] = 1) = (p(#]) <
¢(12)). It is not hard to show that in the presence of the other axioms, this stronger
version is implied by our (3.4). We remark that in [Enderton 1972], the Rule of
Universal Generalization (“from ¢ infer Vx¢”) is not used. Instead, all axioms are
viewed as universally quantified. We do assume this rule here. (Alternatively, we
would have to universally quantify all the free variables in the axioms of K, or S5,,.)



Chapter 4
Knowledge in Multi-Agent Systems

The following four propositions, which appear to the author to be inca-
pable of formal proof, are presented as Fundamental Postulates upon
which the entire superstructure of General Systemantics . . . is based . . .

1. EVERYTHING IS A SYSTEM.
2. EVERYTHING IS PART OF A LARGER SYSTEM.

3. THE UNIVERSE IS INFINITELY SYSTEMATIZABLE, BOTH UP-
WARD (LARGER SYSTEMS) AND DOWNWARD (SMALLER
SYSTEMS).

4. ALL SYSTEMS ARE INFINITELY COMPLEX. (The illusion of
simplicity comes from focusing attention on one or a few vari-
ables.)

John Gall, Systemantics, 1975

4.1 Runs and Systems

In this chapter we consider one of the major application areas of reasoning about
knowledge: multi-agent systems. We subscribe to the spirit of the quote above:
in this book, we view any collection of interacting agents as a multi-agent system.
For example, we shall view the children (and the father) in the muddy children
puzzle as agents in a multi-agent system. We also want to be able to model a game
such as poker as a multi-agent system. A distributed system consisting of processes
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in a computer network running a particular protocol forms another example of a
multi-agent system. Although we typically call the entities in a multi-agent system
“agents,” we occasionally refer to them as “players” (particularly in the context of
game-theoretic examples) and “processes” or “sites” (particularly in the context of
distributed systems examples).

A good case can be made that, as suggested in the quote at the beginning of
the chapter, systems are extremely complex. It is hard enough to reason about the
behavior of one agent. If we have a system of interacting agents, things get much
worse. Consider, for example, the muddy children puzzle. If we attempt to model the
system in full detail, we would have to include all that happened to each of the children
throughout their lives, a detailed description of their visual and auditory systems and
how they operate, details of the weather, etc.; the list is potentially endless. All of
these factors could, in principle, influence the behavior of the children.

The first step in dealing with the complexity is also suggested by the quote: we
focus attention on only a few of the details, and hope that these cover everything that
is relevant to our analysis. The second step consists of finding good ways to think
about a situation in order to minimize its complexity. Our goal in this chapter (and
in much of the rest of the book) is to show that reasoning about systems in terms of
knowledge can be very helpful in this regard. To do that, we need a formal model
of multi-agent systems. We want a framework that is general enough to allow us to
capture all the important features of multi-agent systems, without getting too bogged
down in details.

One key assumption we make is that if we look at the system at any point in time,
each of the agents is in some state. We refer to this as the agent’s local state, in order
to distinguish it from a global state, which we define shortly. We assume that an
agent’s local state encapsulates all the information to which the agent has access. In
our abstract framework, we do not make any additional assumptions about the state.
In the case of the muddy children, the state of a child might encode what the child
has seen and heard, that is, which of the other children have muddy foreheads and
which do not, the father’s initial statement, and the responses of each of the children
to the father’s questions so far. If we are modeling a poker game, a player’s state
might consist of the cards he currently holds, the bets made by the other players, any
other cards he has seen, and any information he may have about the strategies of the
other players (for example, Bob may know that Alice likes to bluff, while Charlie
tends to bet conservatively).
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As this example already indicates, representing the states of the agents can be
highly nontrivial. The first problem is deciding what to include in the state. Certainly
if the system is made up of interacting people, then it becomes a rather difficult
problem to decide where to draw the line. In the poker example, should we include
the fact that Bob had an unhappy childhood as part of his state? If so, how do we
capture this? Once we have solved the problem of what to include in the state, we
then have to decide how to represent what we do include. If we decide that Bob’s
childhood is relevant, how do we describe the relevant features of his childhood
in a reasonable way? In our abstract framework we sidestep these difficulties, and
simply assume that at each point in time, each agent in the system is in some unique
state. Of course, we do have to confront these difficulties when dealing with concrete
examples. These problems tend to be somewhat easier to solve when dealing with
processes in a distributed system rather than people, but, as we shall soon see, even
in this simpler setting there can be difficult choices to make.

Once we think in terms of each agent having a state, it is but a short step to think
of the whole system as being in some state. The first thought might be to make
the system’s state be a tuple of the form (sq, ..., s,), where s; is agent i’s state.
But, in general, more than just the local states of the agents may be relevant when
analyzing a system. If we are analyzing a message-passing system where processes
send messages back and forth along communication lines, we might want to know
about messages that are in transit or about whether a communication line is up or
down. If we are considering a system of sensors observing some terrain, we might
need to include features of the terrain in a description of the state of the system.

Motivated by these observations, we conceptually divide a system into two
components: the agents and the environment, where we view the environment as
“everything else that is relevant.” In many ways the environment can be viewed
as just another agent, though it typically plays a special role in our analyses. We
define a global state of a system with n agents to be an (n + 1)-tuple of the form
(Se, S1, ..., 5n), Where s, is the state of the environment and s; is the local state of
agenti.

A given system can be modeled in many ways. How we divide the system into
agents and environment depends on the system being analyzed. In a message-passing
system, we can view a message buffer, which stores messages not yet delivered,
either as a process (i.e., an agent), and have its state encode which messages have
been sent and not yet delivered, or as part of the environment. Similarly, we can
view a communication line as an agent whose local state might describe (among
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other things) whether or not it is up, or we can have the status of the communication
lines be part of the environment.

A global state describes the system at a given point in time. But a system is not
a static entity; it constantly changes. Since we are mainly interested in how systems
change over time, we need to build time into our model. We define a run to be a
function from time to global states. Intuitively, a run is a complete description of
how the system’s global state evolves over time. In this book, we take time to range
over the natural numbers. Thus, the initial global state of the system in a possible
execution r is r(0), the next global state is r(1), and so on.

Our assumption that time ranges over the natural numbers seems to be quite
a strong one. In particular, it means that time steps are discrete and that time is
infinite. We have made this choice mainly for definiteness, but also because it seems
appropriate for many of our applications. Most of our results and comments hold
with little or no change if we assume instead that time is continuous (and ranges
over, say, the real numbers or the nonnegative real numbers), or if we assume that
time is finite. Although we typically think of time as being continuous, assuming
that time is discrete is quite natural. Computers proceed in discrete time steps, after
all. Even when analyzing situations involving human agents, we can often usefully
imagine that the relevant actions are performed at discrete time instances, as in the
case of the muddy children puzzle. Allowing time to be infinite makes it easier to
model situations where there is no a priori time bound on how long the system will
run. The muddy children puzzle again provides an example of this phenomenon,
since when we start to analyze the puzzle, it is not clear how many steps it will take
the children to figure out whether they have mud on their forehead; indeed, in some
variants of the puzzle, they never figure it out. And if we do want to model a system
that runs for a bounded number of steps, we can typically capture this by assuming
that the system remains in the same global state after it has stopped.

We assume that time is measured on some clock external to the system. We do
not assume that agents in the system necessarily have access to this clock; at time m
measured on the external clock, agent i need not know it is time m. If an agent does
know the time, then this information would be encoded in his local state (we return
to this issue later). This external clock need not measure “real time.” For example,
in the case of the muddy children puzzle, there could be one “tick” of the clock for
every round of questions by the father and every round of answers to the father’s
question. If we are analyzing a poker game, there could be one tick of the clock each
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time someone bets or discards. In general, we model the external clock in whatever
way makes it easiest for us to analyze the system.

A system can have many possible runs, since the system’s global state can evolve
in many possible ways: there are a number of possible initial states and many things
that could happen from each initial global state. For example, in a poker game, the
initial global states could describe the possible deals of the hand, with player i’s
local state s; describing the cards held initially by player i. For each fixed deal of the
cards, there may still be many possible betting (and discarding) sequences, and thus
many runs. In a message-passing system, a particular message may or may not be
lost, so again, even with a fixed initial global state, there are many possible runs. To
capture this, we formally define a system to be a nonempty set of runs. Notice how
this definition abstracts our intuitive view of a system as a collection of interacting
agents. Instead of trying to model the system directly, our definition models the
possible behaviors of the system. The requirement that the set of runs be nonempty
captures the intuition that the system we are modeling has some behaviors. Our
approach lets us use the same formal model to describe systems of great diversity;
a computer system and a poker game are modeled similarly. Throughout the book
we will use the term sysfem in two ways: as the “real-life” collection of interacting
agents or as a set of runs. Our precise intention should be clear from the context.

In more detail, we proceed as follows. Let L, be a set of possible states for the
environment and let L; be a set of possible local states for agent i, fori =1, ..., n.
We take G = L, x L1 x --- x L, to be the set of global states. A run over G is a
function from the time domain—the natural numbers in our case—to G. Thus, a run
over G can be identified with a sequence of global states in G. We refer to a pair (r, m)
consisting of a run r and time m as a point. If r(m) = (s, s1, ..., ) is the global
state at the point (r, m), we define r.(m) = s, and r;(m) = s;, fori = 1,...,n;
thus, r; (m) is agent i’s local state at the point (r, m). A round takes place between
two time points. We define round m in run r to take place between time m — 1 and
time m. It is often convenient for us to view an agent as performing an action during
a round. (We discuss actions in detail in Chapter 5.) A system R over G is a set of
runs over G. We say that (r, m) is a point in system R if r € R. In practice, the
appropriate set of runs will be chosen by the system designer or the person analyzing
the system, both of whom presumably have a model of what this set should be.

The following simple example describes a scenario that we call the bit-
transmission problem, and to which we shall often return in this chapter as well
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as in Chapters 5 and 7, should give the reader a better feeling for some of these
definitions.

Example 4.1.1 Imagine we have two processes, say a sender S and a receiver R,
that communicate over a communication line. The sender starts with one bit (either O
or 1) that it wants to communicate to the receiver. Unfortunately, the communication
line is faulty, and it may lose messages in either direction in any given round. That
is, there is no guarantee that a message sent by either S or R will be received. For
simplicity, we assume that a message is either received in the same round that it is
sent, or lost altogether. (Since in this example a message may be received in the
same round it is sent, we are implicitly assuming that rounds are long enough for a
message to be sent and delivered.) We assume that this type of message loss is the
only possible faulty behavior in the system. Because of the uncertainty regarding
possible message loss, S sends the bit to R in every round, until S receives a message
from R acknowledging receipt of the bit. We call this message from R an ack
message. R starts sending the ack message in the round after it receives the bit. To
allow S to stop sending the bit, R continues to send the ack repeatedly from then on.

This informal description gives what we call a protocol for S and R: itis a
specification of what they do at each step. (We discuss protocols in much greater
detail in Chapter 5.) The protocol dictates that S must continue sending the bit to R
until S receives the ack message; roughly speaking, this is because before it receives
the ack message, S does not know whether R received the bit. On the other hand, in
this protocol R never knows for certain that S actually received its acknowledgment.
Note the usage of the word “know” in the two previous sentences. This, of course, is
not an accident. One of our main claims is that this type of protocol is best thought
of in terms of knowledge.

Returning to the protocol, note that R does know perfectly well that S stops
sending messages after it receives an ack message. But even if R does not receive
messages from S for a while, from R’s point of view this is not necessarily because S
received an ack message from R; it could be because the messages that S sent were
lost in the communication channel. We could have S send an ack-ack message—an
acknowledgment to the acknowledgment—so that R could stop sending the acknowl-
edgment once it receive an ack-ack message from S. But this only pushes the problem
up one level: S will not be able to safely stop sending ack-ack messages, since S has
no way of knowing that R has received an ack-ack message. As we show later in this
chapter (Theorem 4.5.4) this type of uncertainty is inherent in systems such as the
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one we have just described, where communication is not guaranteed. For now, we
focus on the protocol that we described, where R continues to send ack messages in
every round, and S stops as soon as it receives one of them.

The situation that we have just described informally can be formalized as a
system. To describe the set of runs that make up this system, we must make a number
of choices regarding how to model the local states of S, R, and the environment. It
seems reasonable to assume that the value of the bit should be part of S’s local state,
and it should be part of R’s local state as soon as R receives a message from S with
the value. Should we include in S’s state the number of times that S has sent the bit
or the number of times that S receives an ack message from R? Similarly, should we
include in R’s state the number of times R has sent the ack message or the number
of times R has received the bit from S? Perhaps we should include in the local state
a representation of the protocol being used? Our choice is to have the local states
of § and R include very little information; essentially, just enough to allow us to
carry out our analysis. On the other hand, as we shall see in Example 4.2.1, it is
useful to have the environment’s state record the events taking place in the system.
Thus, we take Lg, the possible local states of S, to be {0, 1, (0, ack), (1, ack)},
where, intuitively, S’s local state is k if its initial bit is k& and it has not received
an ack message from R, while S’s local state is (k, ack) if its initial bit is £ and
it has received an ack message from R, for k = 0, 1. Similarly, L = {A,0, 1},
where A denotes the local state where R has received no messages from S, and k
denotes the local state where R received the message k from S, for k = 0, 1. The
environment’s local state is used to record the history of events taking place in the
system. At each round, either (a) S sends the bit to R and R does nothing, (b) S
does nothing and R sends an ack to S, or (c) both S and R send messages. We
denote these three possibilities by (sendbit, A), (A, sendack), (sendbit, sendack)
respectively. Thus, we let the environment’s state be a sequence of elements from
the set {(sendbit, A), (A, sendack), (sendbit, sendack)}. Here the m™ member of
the sequence describes the actions of the sender and receiver in round m.

There are many possible runs in this system, but these runs must all satisfy certain
constraints. Initially, the system must start in a global state where nothing has been
recorded in the environment’s state, neither S nor R has received any messages, and
S has an initial bit of either O or 1. Thus, the initial global state of every run in the
system has the form ({), k, 1), where () is the empty sequence and k is either O or 1.
In addition, consecutive global states  (m) = (s, ss, sg) and r(m+1) = (s, 5§, s)
in a run r are related by the following conditions:



116 Chapter 4 Knowledge in Multi-Agent Systems

o If sg = A, then 5§ = s5, 5, = s, - (sendbit, A) (where s, - (sendbit, A) is
the result of appending (sendbit, A) to the sequence s,.), and either s, = A
or s}e = sg. (Before R receives a message, it sends no messages; as a result,
S receives no message, so it continues to send the bit and its state does not
change. R may or may not receive the message sent by S in round m + 1.)

o If s = sg = k, then s = k, s, = s, - (sendbit, sendack), and either
s¢ = kor sg = (k,ack). (After R has received S’s bit, it starts sending
acknowledgments, and its state undergoes no further changes. S continues to
send the bit, and it may or may not receive the acknowledgment sent by R in
round m + 1.)

e if sg = (k, ack), then (a) 5, = s¢ - (A, sendack), (b) s¢ = s, and (c) s = sg.
(Once S has received R’s acknowledgment, S stops sending the bit and R
continues to send acknowledgments. The local states of S and R do not
change any more.)

We take the system R” describing the bit-transmission problem to consist of all the
runs meeting the constraints just described. il

Example 4.1.1 shows how many choices have to be made in describing a system,
even in simple cases. The example also suggests that the process of describing all the
runs in a system of interest can be rather tedious. As we said before, getting a good
representation of a system can be difficult. The process is far more of an art than a
science. We shall return to this point in Chapter 5, where we extend the framework
to deal with protocols and programs. This will give us a relatively straightforward
way of describing systems in many applications of interest.

4.2 Incorporating Knowledge

We already saw in our discussion of the bit-transmission problem (Example 4.1.1)
that we were making statements such as “R does not know for certain that S received
its acknowledgment.” A central thesis of this book is that we often want to think
of an agent’s actions as depending on her knowledge. Indeed, our framework has
been designed so that knowledge can be incorporated in a straightforward way. The
basic idea is that a statement such as “R does not know ¢” means that, as far as R
is concerned, the system could be at a point where ¢ does not hold. The way we
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capture that “as far as R is concerned, the system could be at a point where ¢ does
not hold” is closely related to the notion of possible worlds in Kripke structures.
We think of R’s knowledge as being determined by its local state, so that R cannot
distinguish between two points of the system in which it has the same local state,
and it can distinguish points in which its local state differs. We now formalize these
ideas.

As we shall see, a system can be viewed as a Kripke structure except that we have
no function 7 telling us how to assign truth values to the primitive propositions. (In
the terminology of Section 3.1, a system can be viewed as a frame.) To view a system
as a Kripke structure, we assume that we have a set ® of primitive propositions, which
we can think of as describing basic facts about the system. In the context of distributed
systems, these might be such facts as “the value of the variable x is 0,” “process 1’s
initial input was 17,” “process 3 sends the message w in round 5 of this run,” or “the
system is deadlocked.” (For simplicity, we are assuming that we can describe the
basic properties of the system adequately using propositional logic; the extension of
the framework to use first-order logic is straightforward.) An interpreted system T
consists of a pair (R, ), where R is a system over a set G of global states and 7 is
an interpretation for the propositions in @ over G, which assigns truth values to the
primitive propositions at the global states. Thus, for every p € ® and state s € G,
we have 7 (s)(p) € {true, false}. Of course, = induces also an interpretation over
the points of R; simply take w(r, m) to be w(r(m)). Notice that ® and 7 are not
intrinsic to the system R. They constitute additional structure on top of R that we,
as outside observers, add for our convenience, to help us analyze or understand the
system better. We refer to the points and states of the system R as points and states,
respectively, of the interpreted system Z. That is, we say that the point (r, m) is in
the interpreted system Z = (R, ) if r € R, and similarly, we say that Z is a system
over state space G if R is.

To define knowledge in interpreted systems, we associate with an interpreted
systemZ = (R, ) a Kripke structure M7 = (S, 7, K1, ..., K,) in a straightforward
way: We simply take S to consist of the points in Z, and take Ky, .. ., IC; to be some
binary relations on S. Note that there is no possibility relation £, for the environment;
this is because we are not usually interested in what the environment knows. For
the possibility relation IC; we choose a specific relation, which we now describe. If
s = (Se, 51, ...,8) and s’ = (s, 51, ..., s;,) are two global states in R, then we say
that s and s’ are indistinguishable to agent i, and write s ~; s’, if i has the same state
inboth s and s, thatis, if s; = s/. We can extend the indistinguishability relation ~; to
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points: we say that two points (r, m) and (r', m’) are indistinguishable to i, and write
(r,m) ~; (r',m"), if r(m) ~; r'(m’) (or, equivalently, if r;(m) = r/(m")). Clearly
~; is an equivalence relation on points. When we speak of knowledge in interpreted
systems, we assume that the ; relation in M7 is defined by ~;. Intuitively, agent i
considers a state s’ possible in a state s if s and s’ are indistinguishable to agent i.
Thus, the agents’ knowledge is completely determined by their local states.

Recall from Chapter 3 that we denote by £,(®P) the set of formulas obtained
by starting with the primitive propositions in ®, and closing off under conjunction,
negation, and the modal operators K1, ..., K,, and that we usually omit the & when
it is clear from context, writing just £,. Similarly, we denote by E,?, £P, and ESD
the languages that result by adding, respectively, the modal operators for common
knowledge, distributed knowledge, and both common and distributed knowledge.
We can now define what it means for a formula ¢ € ,C,fD to be true at a point (r, m)
in an interpreted system Z by applying the definitions of Chapter 2 to the related
Kripke structure M7z. Thus, we say that (Z,r, m) = ¢ exactly if (Mz,s) = ¢,
where s = (r, m). For example, we have

Z,r,m) = p (for p € @) iff w(r, m)(p) = true, and
(Z,r,m) = K;@iff (Z,r',m’) = ¢ for all (+', m’) such that (r, m) ~; (+', m’).

The obvious definition of = for formulas involving common knowledge and dis-
tributed knowledge are left to the reader.

Since 7 is a function on global states, the truth of a primitive proposition ¢
at a point (r, m) depends only on the global state r(m). This seems like a natural
assumption; the global state is meant to capture everything that is relevant about the
current situation. Quite often, in fact, the truth of a primitive proposition g of interest
depends, not on the whole global state, but only on the component of some particular
agent. For example, the truth of a statement such as “process 2 received process 1’s
message” might depend only on process 2’s state. In that case, we expect 7 to respect
the locality of g, that is, if s, s" € G, and s ~; ', then 7 (s)(q) = 7 (s')(q).

We can also imagine statements that depend on more than just the global state.
Consider, for example, a statement such as “eventually (at some later point in the run)
the variable x is set to 5.” There could well be two points (r, m) and (r’, m’) with the
same global state, such that this statement is true at (r, m) and false at (r’, m’). Thus,
such a temporal statement cannot be represented by a primitive proposition in our
framework. Indeed, it cannot be represented by any formula in our language; it is
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easy to see that, for every formula ¢ € £SP, if r(m) = r'(m’), then (Z, r, m) k= g iff
(Z,r',m") = ¢ (Exercise 4.1). While we could deal with this problem by allowing
the truth of a primitive proposition to depend on the point, and not just the global
state, the more appropriate way to express such temporal statements is to add modal
operators for time into the language. We do this in Section 4.3.

In analogy to our previous definitions, we say that ¢ is valid in the interpreted
systemZ and write Z |= o, if (Z, r, m) = ¢ for all points (r, m) in Z. For a class C of
interpreted systems, we say that a formula ¢ is valid in C, and write C |= ¢, ifZ = ¢
for every interpreted system Z € C.

We now have a concrete interpretation for knowledge in multi-agent systems. As
we said in Chapter 1, this interpretation of knowledge is an external one, ascribed
to the agents by someone reasoning about the system. We do not assume that the
agents compute their knowledge in any way, or that they can necessarily answer
questions based on their knowledge. Note that this notion of knowledge satisfies all
the S5 properties as described in Chapter 2, since ~; is an equivalence relation. In
particular, the Distribution Axiom and the Rule of Knowledge Generalization both
hold: agents know all logical consequences of their knowledge, and they know all
valid formulas. As we observed in Section 2.4, these properties hold in every Kripke
structure. In particular, they would hold no matter how we defined the K; relation
in Mz.

Recall that we allow the agents in our system to be processes in a distributed
system. It may seem strange to view such inanimate agents as possessing knowledge
and, in fact, as being “logically omniscient.” Nevertheless, our usage of the word
“knowledge” is consistent with at least one way it is used in practice. For example,
when someone analyzing a distributed protocol says “process 2 does not know that
process 3 is faulty at the end of round 5 in run r,” what is often meant is that there is
a point at which process 3 is faulty, which is indistinguishable to process 2 from the
point (r, 5).

We shall see many examples throughout the book where this notion of knowl-
edge is useful for analyzing multi-agent systems. There are certainly applications,
however, for which the externally ascribed knowledge is inappropriate. For example,
later in this chapter we consider an example involving knowledge bases, where it may
be more appropriate to consider the knowledge base’s beliefs, rather than its knowl-
edge. As we shall see, by using a slightly different K; relation instead of ~;, we do
get a reasonable notion of belief. Of course, we still have logical omniscience. We
explore techniques for dealing with logical omniscience in later chapters of the book.
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For now we content ourselves with showing how the external notion of knowledge
can be applied to better analyze multi-agent systems.

Example 4.2.1 Consider the bit-transmission problem (Example 4.1.1) again. We
can take @ here to consist of six primitive propositions: bit = 0, bit = 1, recbit,
recack, sentbit, and sentack , representing the assertions that the value of §’s initial
bit is 0, the value of S’s initial bit is 1, R has received S’s message, S has received
R’s acknowledgment, S has just sent a message, and R has just sent a message,
respectively. The appropriate interpreted system is 7 = (R, 7%"), where R
consists of the set of runs described in Example 4.1.1, and 7% is such that

° (Ibt, r,m) = bit = k exactly if rg(m) is either k or (k, ack), fork =0, 1,

(@, r, m) &= rechit if rr(m) # A,

(Ibt, r,m) = recack if r¢(m) = (0, ack) or rs(m) = (1, ack),

(Ib’,r, m) = sentbit if the last tuple in r.(m) is either (sendbit, A) or
(sendbit, sendack), and

(2%, r,m) = sentack if the last tuple in r.(m) is either (A, sendack) or
(sendbit, sendack).

Note that the truth value of all these primitive propositions is completely determined
by the global state, since we assumed the environment’s state records the events
taking place in the system. In fact, it is easy to see that bit = 0, bit = 1, and recack
are local to S—they depend only on S’s local state—whereas recbit is local to R.
For the remainder of our discussion in this example, we need only the primitive
propositions bit = 0 and bit = 1; however, the other primitive propositions will be
useful later. Just as the way we choose to model the local states in the system depends
on the analysis we plan to carry out, so too does the choice of primitive propositions.

Intuitively, after R receives S’s bit, then R knows the value of the bit. And indeed,
it is easy to check that if (r, m) is a point such that rg (m) = k, for k £ XA (so that R
has received S’s bit by that point), then (Z, r, m) = Kg(bit = k). This is because at
all other points (r’, m’), if rr(m) = rj (m’), then S must have initial bit k at (+', m’).
Similarly, when S receives R’s ack message, then S knows that R knows the initial
bit. More formally, if rg(m) = (k, ack), then (Z, r, m) = KsKg(bit = k). Itis easy
to see that, in this setting, if S stops sending messages to R before S knows that R



4.3 Incorporating Time 121

knows the value of the bit, that is, before either KsK g (bit = 0) or KsKg(bit = 1)
holds, then it is possible that R will never receive the bit. Although we do not provide
a formal proof of this fact here, this observation already suggests the power of the
knowledge-based approach. It allows us to relate actions, such as sending a message
or receiving a message, to states of knowledge, and then use the states of knowledge
as a guide to what actions should be performed. We investigate these issues in greater
detail in the next few chapters. I

4.3 Incorporating Time

As it stands, our language is not expressive enough to handle conveniently the full
complexity of even the simple situation of Example 4.1.1. For example, we might
well want to make statements like “the receiver eventually knows the sender’s initial
bit.” As we have already observed, we cannot express such temporal statements in
our language.

To be able to make temporal statements, we extend our language by adding
temporal operators, which are new modal operators for talking about time. We focus
attention here on four temporal operators: O (“always”), its dual < (“eventually”),
O (“next time”), and U (“until”). Intuitively, Og is true if ¢ is true now and at all
later points; Cg is true if ¢ is true at some point in the future; Qg is true if ¢ is
true at the next step; and ¢ Uy is true if ¢ is true until ¢ is true. More formally, in
interpreted systems, we have

(Z,r,m) =0¢ iff (Z,r,m') =g forallm’ > m,
(Z,r,m) =<9 iff (Z,r,m’) = ¢ for some m’ > m,
Z,r,m)= Q¢ iff @, r,m+1) ¢, and
(Z,r,m) EUy iff (Z,r,m') =y for some m" > m and
(Z,r,m") =g forallm” withm <m” <m’.

Note that our interpretation of (O¢ as “@p holds at the next step” makes sense
because our notion of time is discrete. All the other temporal operators make perfect
sense even for continuous notions of time. It is easy to check that C¢ is equivalent
to true Ugp, while g is equivalent to =O—¢ (see Exercise 4.2); thus, we can take
(O and U as our basic temporal operators, and define < and O in terms of U.

We define a temporal formula to be one whose only modal operators are temporal
operators. A knowledge formula is one whose only modal operators are the epistemic
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operators K1, ..., K,, Cg, and Dg. Thus, a knowledge formula is a formula in the
language £5P. We saw earlier that if two points (r, m) and (', m’) in an interpreted
system Z have the same global state, then they agree on all knowledge formulas;
that is, if r(m) = r'(m’), then (Z,r,m) = @ iff (Z,r’,m’) = ¢, for all formulas
@€ LSD . Once we add time to the language, this is no longer true. For example, it
is easy to construct an interpreted system Z and two points (r, m) and (r',m’) in Z
such that r(m) = r’(m’), but (Z, r,m) = Op and (Z, ', m") = —=<p (Exercise 4.3).
On the other hand, the truth of a temporal formula depends only on the run, not on
the system. That is, if ¢ is a temporal formula, then the truth of ¢ at a point (r, m)
in an interpreted system Z = (R, ) does not depend on R at all, but only on 7, so
we can write (rr, r, m) = ¢). We say that r satisfies ¢ if (T, r, 0) = ¢ holds.

In general, temporal operators are used for reasoning about events that hap-
pen along a single run. For example, in the bit-transmission problem, the formula
O(recbit = <recack) says that if at some point along a run the receiver receives
the bit sent by the sender, then at some point in the future the sender will receive
the acknowledgment sent by the receiver. By combining temporal and knowledge
operators, we can make assertions about the evolution of knowledge in the system.
For example, we mentioned earlier that in the context of the bit-transmission problem
we may want to make statements such as “the receiver eventually knows the sender’s
initial bit.” This statement can now be expressed by the formula

O(Kpr(bit =0) v Kgr(bit = 1)).

Once we have temporal operators, there are a number of important notions that
we can express. We have already seen the usefulness of < and 0. We briefly mention
two other useful notions here, obtained by combining < and O:

e The formula Oy is true if ¢ occurs infinitely often; thatis, (Z, r, m) E OO
exactly if the set {m’ | (Z, r, m") = ¢} is infinite (Exercise 4.4).

e The formula ©O¢ is true if ¢ is true almost everywhere; that is,
(Z,r,m) = <0g if for some m’ and all m” > m’, we have (Z,r, m") = ¢.

The temporal operators that we have defined can talk about events that happen only
in the present or future, not events that happen in the past. While these suffice for
many of our applications, we could certainly add temporal operators for reasoning
about the past, for example, an analogue to < that says “at some time in the past.”
We have not done so here simply to avoid introducing a plethora of new notation.
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4.4 Examples of Systems

At the beginning of this chapter we said that in this book, we view any collection
of interacting agents as a multi-agent system. In this section, we give examples
of systems that arise in a number of different contexts, and show how they can be
modeled in a straightforward way in our framework. In addition, we show how a
number of standard assumptions that are made can be expressed in our framework.

4.4.1 Knowledge Bases

Informally, we can view a knowledge base (KB for short) as a system that is told
facts about an external world, and is asked queries about that world. The standard
approach in the Al community to modeling a KB is just to identify it with a formula,
or set of formulas, that can informally be thought of as describing what the KB
knows. When the KB is asked a query v, it computes (using some computational
procedure) whether ¥ follows from the information it has been given.

In this section, we model the KB in our framework. As we shall see, this gives us
a number of advantages. For one thing, we describe assumptions about how the KB
obtains its knowledge. For another, we can relate what the KB is told to what is true
in the world. The first step in modeling the KB in our framework is to decide who
the agents are and what the role of the environment is. The KB is clearly an agent
in the system. In addition, we choose to have another agent called the Teller; this is
the agent that rells the KB facts about the external world. We use the environment
to model the external world. It is possible to use the environment to also model the
Teller, but, as we shall see later on, our approach offers certain advantages. We want
to view the environment’s state as providing a complete description of (the relevant
features of) the external world, the local state of the KB as describing the information
that the KB has about the external world, and the local state of the Teller as describing
the information that the Teller has about the external world and about the KB. This
allows us to distinguish what is true (as modeled by the environment’s state) from
what is known to the Teller (as modeled by the Teller’s state) and from what the KB
is told (as modeled by the KB’s state).

That still gives us quite a bit of freedom in deciding how to model the global
states. If we can describe all the relevant features of the external world by using a
set @ of primitive propositions, then we can take the environment to be just a truth
assignment to the primitive propositions in ®. If, instead, we need to use first-order
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information to describe the world, then we can take the environment to be a relational
structure, as discussed in Section 3.7.

What about the KB’s local state? We want it to represent all the relevant infor-
mation that the KB has learned. One option is to take the local state to consist of
the sequence of facts that the KB has been told and queries that it has been asked.
If we assume that the sequence of queries does not carry any information about the
external world, then we can simplify this representation by including in the local
state only the sequence of facts that the KB has been told, and ignoring the queries.
This is in fact what we do.

Finally, the Teller’s state has to describe the Teller’s information about the ex-
ternal world and about the KB. Note that the Teller has complete information about
the KB, since the Teller is the sole source for the KB’s information. Thus, the Teller’s
local state contains a description of its information about external world as well as
the sequence of facts that the KB has been told.

What does the KB know after it has been told some fact ¢? Assuming that what
it has been told is true, it may seem reasonable to say that the KB knows ¢. This
is clearly false, however, if the external world can change. It might well be the
case that ¢ was true when the KB was told it, and is no longer true afterwards. For
definiteness, we assume that the external world is stable. As we shall see, even with
this assumption, if ¢ can include facts about the KB’s knowledge, then ¢ may be
true when the KB is told it, but not afterwards.

To get a feeling for some of the issues involved, we focus first on modeling a fairly
simple concrete situation (where, in particular, it cannot happen that a formula ¢ is
true when the KB is told it, but becomes false later). We consider later what happens
when we weaken these assumptions. We assume that

1. the external world can be described propositionally, using the propositions in
a finite set @,

2. the external world is stable, so that the truth values of the primitive propositions
describing the world do not change over time,

3. the Teller has complete information about the external world,

4. the KB is told facts only about the external world, and not facts about its own
knowledge, and these facts are expressed as propositional formulas,

5. everything the KB is told is true, and
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6. there is no a priori initial knowledge about the external world, or about what
the KB will be told.

The first assumption tells us that we can represent the environment’s state as
a truth assignment « to the primitive propositions in ®. The second assumption
tells us that in each run r, the environment’s state r.(m) is independent of m; the
environment’s state does not change over time. The third assumption tells us that the
Teller’s state includes the truth assignment «, which describes the external world.
Given that we are representing the KB’s local state as a sequence of facts that it has
been told, the fourth assumption tells us that this local state has the form (¢, . .., @),
k > 0, where ¢1, ..., ¢ are propositional formulas. We assume that the Teller’s
local state has a similar form, and consists of the truth assignment that describes
the real world, together with the sequence of facts it has told the KB. Thus, we
take the Teller’s local state to be of the form («, {(¢1, ..., ¢x)), where « is a truth
assignment and ¢j, ..., @ are propositional formulas. Since the Teller’s state is
simply the pair consisting of the environment’s state and the KB’s state, we do not
represent it explicitly, but rather denote a global state by (e, {(¢1, ..., @k), -). The
fifth assumption tells us that everything the KB is told is true. This means that in a
global state of the form («, (@1, ..., ¢k), -), each of ¢y, ..., ¢x must be true under
truth assignment «. The part of the sixth assumption that says that there is no initial
knowledge of the world is captured by assuming that the initial state of every run
has the form (o, (), -), and that for every truth assignment «’, there is some run with
initial global state (a’, (), -). We capture the second half of the sixth assumption—
that there is no knowledge about what information will be given—by not putting any
further restrictions on the set of possible runs. We discuss this in more detail later.

To summarize, we claim our assumptions are captured by the interpreted system
T = (Rkb , nkb), where R¥? consists of all runs r such that for some sequence
@1, @2, . . . of propositional formulas and for some truth assignment o, we have

KB1. »(0) = («a, (), -)
KB2. ifr(m) = (o, (91, ..., @k), -), then

(a) either r(m + 1) =r(m), orr(m + 1) = (a, (@1, ..., @k Pk+1), )
(b) @1 A ... A @ is true under truth assignment «, and

(c) ¥ (r, m) = «, that is, 7% is defined so that the truth assignment at
(r, m) is given by the environment’s state.
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Our assumption that R consists of all runs that satisfy KB1 and KB2 also captures the
assumption that there is no knowledge about what information will be given. This is
perhaps best understood by example. There may be a priori knowledge that, if p is
true, then this is the first thing the KB will be told. This places a restriction on the set
of possible runs, eliminating runs with global states of the form («, {(¢1, ..., @), -)
such that k > 1 and p is true under the truth assignment o, but ¢; # p. It is easy to
construct other examples of how what information is given or the order in which it
is given might impart knowledge beyond the facts themselves. By allowing all runs
consistent with KB1 and KB2 in R, we are saying that there is no such knowledge.

Having defined the system Z?, we can now see how the KB answers queries.
Suppose that at a point (r, m) the KB is asked a query v, where 1 is a propositional
formula. Since the KB does not have direct access to the environment’s state,
should be interpreted not as a question about the external world, but rather as a
question about the KB’s knowledge of the external world. Thus, the KB should
answer “Yes” exactly if T, r,m) = K kB holds (taking Kgp to denote “the KB
knows”), “No” exactly if (Ikb ,r,m) = Kgp—y holds, and “I don’t know” otherwise.

It turns out that the KB essentially knows precisely the conjunction of what it
has been told. Suppose that the KB is in local state (¢1, ..., k). We can view the
formula x = @1 A ... A @ as a summary of its knowledge about the world; the KB
knows only what follows from this. This could be interpreted in two ways: the KB
could answer “Yes” exactly if ¢ is a consequence of «, or if Kxp is a consequence
of Kgpk. As the following result shows, these two interpretations are equivalent.

Recall from Chapter 3 that M consists of all Kripke structures where the K;
relations are equivalence classes, and we write M?*" |= ¢ if ¢ is valid in all Kripke
structures in M.

Proposition 4.4.1 Suppose that rxgg(m) = (@1, ..., k). Letk = @1 A... A @i and
let Yr be a propositional formula. The following are equivalent:

(a) (Z*,r,m) = Kkp.
(b) k = ¥ is a propositional tautology.
(c) MIP = Kkpk = Kgp.

Proof First, it can be shown that if ¥ and  are arbitrary propositional formulas,
then k = V is a propositional tautology iff M”*" = K;k = K;{ (see Exercise 4.5).
This yields the equivalence of (b) and (c).
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We now show that (b) implies (a). Assume that x = i is a propositional tau-
tology. If (r,m) ~gp (r',m’), then r'(m’) = (&, (@1, ..., @), ) for some o’
Since everything that the KB is told is true, « is true under the truth assign-
ment o, so we must have (Z¥, 7, m’) {= k. Since M'* =k = 1, it follows
that (Z¥, ', m’) = ¥, and thus (Z¥, r, m) = Kgpy.

Finally, we show that (a) implies (b). Assume that (b) fails, that is, « = ¥ is not
a propositional tautology. This means that there must be a truth assignment o’ under
which the formula ¥ A = is true. Since R consists of all runs satisfying properties
KB1 and KB2, it is easy to show that there must be a point (', m’) in R such that
r'(m') = (@, (@1, ..., ), ). Since (I, ', m") = =, and (r, m) ~kp (r',m’),
it follows that (ZX, r, m) = Kgpr. So (a) fails. I

Thus, Proposition 4.4.1 shows that under our assumptions, we can model the KB
in the standard Al manner: as a formula. Moreover, in order to answer a query, the
KB must compute what follows from the formula that represents its knowledge.

Proposition 4.4.1 characterizes how the KB answers propositional queries. How
should the KB handle non-propositional queries such as (p = Kgpp) (“if p is the
case, then the KB knows it”’)? Here also we want the KB to answer “Yes” to a query ¢
exactly if (Ikb, r,m) = Kgpp, “No” exactly if (Ikb, r,m) = Kgp—¢ holds, and “I
don’t know” otherwise. When does the formula Kxp(p = Kkpp) hold? It is not
hard to show that this formula is equivalent to Kgpp VvV Kxp—p, so the answer to this
query already follows from Proposition 4.4.1: the answer is “Yes” if either p follows
from what the KB has been told, or —p does, and “I don’t know” otherwise. Note
that it is not possible here for the answer to be “No”, since if ¢ is (p = Kgpp), then
Kxp—¢ is equivalent to the formula Kgp(p A —Kgpp), which is inconsistent with
S5 (Exercise 3.10).

We are mainly interested in what can be said about formulas that involve only the
KB’s knowledge, because we view the Teller as being in the background here. We
define a KB-formula to be one in which the only modal operator is Kgp; a KB-query
is a query which is a KB-formula. For every KB-formula of the form Kxp¢ we can
effectively find an equivalent formula that is a Boolean combination of formulas of
the form Kgpyr, where ¢ is propositional (Exercise 3.23). It follows that the way
that the KB responds to KB-queries can already be determined from how it responds
to propositional queries. The reason is as follows. To decide on its answer to the
query ¢, we must determine whether Kxpe holds and whether Kgp—¢ holds. As
we just noted, we can effectively find a formula equivalent to Kxpg that is a Boolean
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combination of formulas of the form Kxp, where i is propositional, and similarly
for Kxkp—¢. We then need only evaluate formulas of the form Kxpyr, where
is propositional. Thus, using Proposition 4.4.1, we can compute how the KB will
answer KB-queries from the conjunction of the formulas that the KB has been told
(Exercise 4.6).

There is another way of characterizing how the KB will answer KB-queries.
Given a propositional formula ¢, let S consist of all truth assignments « such that ¢ is
true under truth assignment «. Let M¥ = (S, w, Kgp) be the Kripke structure such
that (o) = o and Kgp is the universal relation (so that for all «, 8 € S¥, we have
(o, B) € Kgp). In a sense, we can think of M? as a maximal model of ¢, since all
truth assignments consistent with ¢ appear in M¥. As the following result shows,
if k is the conjunction of the formulas that the KB has been told, then for an arbitrary
formula i, the KB knows i exactly if Kxpi holds in the maximal model for «.
Intuitively, if the KB was told «, then all that the KB knows is k. The maximal
model for « is the model that captures the fact that « is all that the KB knows.

Proposition 4.4.2 Suppose that rxg(m) = (@1, ..., @) and k = @1 A ... A @f.
Then for all KB-formulas r, we have % rom) =y iff (M*,r.(m)) &= .

Proof See Exercise 4.7. 11

In particular, Proposition 4.4.2 shows that the KB can answer a KB-query i by evalu-
ating whether (M*, r.(m)) = Kgpyr. Notice that the truth of Kgpy in (M*, r.(m))
is independent of r.(m). Thus, we can still view « as a representation of the KB’s
knowledge. We remark that the ideas in this proposition can be extended to handle ar-
bitrary non-propositional queries as well, rather than just KB-queries (Exercise 4.10).

Our discussion so far illustrates that it is possible to model a standard type of
knowledge base within our framework. But what do we gain by doing so? For
one thing, it makes explicit the assumptions underlying the standard representation.
In addition, we can talk about what the KB knows regarding its knowledge, as
shown in Proposition 4.4.2. Beyond that, as we now show, it allows us to capture
in a straightforward way some variants of these assumptions. The flexibility of the
model makes it easier to deal with issues that arise when we modify the assumptions.

We begin by considering situations where there is some prior knowledge about
what information will be given. As we observed earlier, the fact that we consider all
runs in which KB1 and KB?2 are true captures the assumption that no such knowledge
is available. But, in practice, there may well be default assumptions that are encoded
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in the conventions by which information is imparted. We earlier gave an example of
a situation where there is a convention that if p is true, then the KB will be told p first.
Such a convention is easy to model in our framework: it simply entails a restriction
on the set of runs in the system. Namely, the restriction is that for every point (r, m)
in the system where r(m) = («, (@1, ..., @), -) for some k > 1, we have ¢1 = p
precisely when p is true under «. Recall that the order in which the KB is given
information is part of its local state. In a precise sense, therefore, the KB knows what
this order is. In particular, it is straightforward to show that if there is a convention
that the KB will be told p firstif it is is true, then the KB either knows p or knows —p
once it has been told at least one fact (Exercise 4.8).

In a similar fashion, it is easy to capture the situation where there is some a
priori knowledge about the world, by modifying the set of runs in Z* appropriately.
Suppose, for example, that it is known that the primitive proposition p must be true.
In this case, we consider only runs » such that r,(0) = « for some truth assignment «
that makes p true. An analogue to Proposition 4.4.1 holds: now the KB will know
everything that follows from p and the facts that it has been told (see Exercise 4.9).

Next, let us consider the situation where the Teller does not have complete infor-
mation about the world (though it still has complete information about the KB). We
model this by including in the Teller’s state a nonempty set 7 of truth assignments.
Intuitively, 7 is the set of possible external worlds that the Teller considers possible.
The set 7 replaces the single truth assignment that described the actual external world.
Since we are focusing on knowledge here, we require that « € 7'; this means that the
true external world is one of the Teller’s possibilities. The Teller’s state also includes
the sequence of facts that the KB has been told. To avoid redundancy, we denote the
Teller’s state by (7, -). Global states now have the form («, (@1, ..., @), (7, -)).
We still require that everything the KB is told be true; this means that the Teller
should tell ¢ to the KB only if ¢ is true in all the truth assignments in 7. It is easy
to see that this means that the Teller says ¢ only if K7¢ holds (taking K7 to denote
“the Teller knows”). Not surprisingly, Propositions 4.4.1 and 4.4.2 continue to hold
in this setting, with essentially no change in proof.

We remark that once we allow the Teller to have incomplete information, it
becomes more interesting to consider situations with several Tellers. This is the
situation that is perhaps most realistic. In practice, there may be several sources of
information for the KB. In fact, in this situation the distinction between the Tellers
and the KB blurs, and each agent may be viewed as both a Teller and a KB. We
discuss this setting further in Section 7.3.
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Up to now we have assumed that the actual world is one of the worlds in 7, the
set of worlds that the Teller considers possible. It is but a short step to allow the
Teller to have false beliefs, which amounts to allowing 7 not to include the actual
world. We would still require that the Teller tell ¢ to the KB only if ¢ is true in all
the truth assignments in 7. This means that the Teller only believes ¢ to be the case;
its beliefs may be wrong. We can best capture this situation by using a possibility
relation other than ~gp, one that corresponds to belief rather than knowledge; we
leave the details to Exercise 4.11.

We have been assuming that the KB is told only propositional facts. Things
get somewhat more complicated if the KB is given information that is not purely
propositional. For example, suppose the KB is told p = Kgpp. This says that
if p is true, then the KB knows it. Such information can be quite useful, assuming
that the KB can actually check what it knows and does not know. In this case, the
KB can check if it knows p; if it does not, it can then conclude that p is false. As
this example shows, once we allow the KB to be given information that relates its
knowledge to the external world, then it may be able to use its introspective abilities
to draw conclusions about the external world.

If the KB is told non-propositional facts, then we can no longer represent the
KB’s knowledge simply by the conjunction of facts that it has been told. In fact, in
the non-propositional case, the KB may be told a fact that was true when it was told,
but does not remain true once the KB is told it. For example, suppose the primitive
proposition p is true of the external world, and the KB has not been given any initial
information. In this situation, the formula p A —=Kgpp is certainly true. But after
the KB is told this, then it is certainly not the case that the KB knows p A =Kgpp;
indeed, as we noted earlier, Kxp(p A —=Kgp p) is inconsistent with S5. Nevertheless,
the KB certainly learns something as a result of being told this fact: it learns that p
is true. As aresult, Kgp p should hold after the KB is told p A =Kgpp.

Using our framework, we can still describe the system that results when we allow
the KB to be told facts that include statements about its knowledge. As before, we
take the KB’s local state to consist of a sequence of formulas, except that we now
allow the formulas to be modal formulas, which can talk about the KB’s knowledge,
not just propositional formulas. The only difficulty arises in restricting to runs in
which the KB is told only true formulas. Because we are now interested in formulas
that involve knowledge, it is not clear that we can decide whether a given formula is
true without having the whole system in hand. But our problem is to construct the
system in the first place! Doing this appropriately requires a little more machinery,
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which we present in Chapter 7. We thus defer further discussion of this issue until
then.

4.4.2 Game Trees

The goal of game theory is to understand games and how they should be played.
To a game theorist, a game is an abstraction of a situation where players interact by
making “moves.” Based on the moves made by the players, there is an outcome, or
payoff, to the game. It should be clear that standard games such as poker, chess,
and bridge are games in this sense. For example, the “moves” in bridge consist of
bidding and playing the cards. There are rules for computing how many points each
side gets at the end of a hand of bridge; this is the payoff. The game theorists’ notion
of game, however, encompasses far more than what we commonly think of as games.
Standard economic interactions such as trading and bargaining can also be viewed
as games, where players make moves and receive payoffs.

Games with several moves in sequence are typically described by means of a
game tree. A typical game tree is given in Figure 4.1. In the game G, there are
two players, 1 and 2, who move alternately. Player 1 moves first, and has a choice
of taking action a; or a. This is indicated by labeling the root of the tree with a 1,
and labeling the two edges coming out of the root with a; and aj respectively. After
player 1 moves, it is player 2’s turn. In this game, we assume that player 2 knows
the move made by player 1 before she moves. At each of the nodes labeled with a 2,
player 2 can choose between taking action by or by. (In general, player 2’s set of
possible actions after player 1 takes the action a; may be different from player 2’s
set of possible actions after player 1 takes the action a;.) After these moves have
been made, the players receive a payoff. The leaves of the tree are labeled with the
payoffs. In the game G, if player 1 takes action a; and player 2 takes action by,
then player 1 gets a payoff of 3, while player 2 gets a payoff of 4 (denoted by the
pair (3, 4) labeling this leaf of the tree). A play of the game corresponds to a path in
the game tree, that is, it is a complete sequence of moves by the players from start to
finish.

It should be clear that, at least in principle, chess could also be described by a
game tree. The nodes represent board positions, and the leaves of the tree represent
positions where the game has ended. If we suppose that all games are played to the
end (so no one either resigns or offers a draw), then the moves at each node are the
legal chess moves in that position. There are only three possible outcomes: a win
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G4

(=3.2)

(1,1

1,2)

Figure 4.1 A game tree for G|

for White (player 1), a win for Black (player 2), or a draw. The plays in this game
tree correspond to the possible (complete) games of chess.

The game represented in Figure 4.1 is called a game of perfect information;
intuitively, every event relevant to the game takes place in public. A player knows
all the moves that have been made before she moves. Chess is another example of a
game with perfect information. By way of contrast, bridge and poker are not games
of perfect information.

One of the key issues studied by game theorists is how the information available
to the players when they move affects the outcome of the game. In particular, game
theorists are quite interested in games where agents do not have perfect information.
Consider, for example, the game tree for the game G, depicted in Figure 4.2. It is
identical to the game tree in Figure 4.1, except that the two nodes where player 2
moves are enclosed by an oval. This oval is meant to indicate that the two nodes
are indistinguishable to player 2, or, as game theorists would say (see Section 2.5),
they are in the same information set. This means that when player 2 makes her move
in this game, she does not know whether player 1 chose action a; or az. (Recall
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that in the first game we assumed that when player 2 made her move, she did know
which action player 1 had chosen.) In general, game theorists use the information
set to represent the information that a player has at a given point in the game. It
is assumed that a player always knows when it is her turn to move, so that there
cannot be two nodes in player i’s information set, such that player i is supposed to
move at one of the nodes and not at the other. (In fact, game theorists are typically
interested in player i’s information sets only at nodes where it is player i’s turn to
move.) Moreover, it is assumed that player i has the same choices of actions at all
the nodes in her information set. It does not make sense for a player to be able to
perform different actions at nodes that she cannot distinguish. As we can see from
Figure 4.2, the set of actions from which player 2 must choose is identical at the two
nodes where she moves. In contrast to game G, where the set of possible moves
did not have to be identical, here they do.

G4
1

VA

aj
(=3.2)

2 (1,1)

1

by

;

1,2)

Figure 4.2 A game tree for G,

Games in the sense of game theorists are certainly systems in our sense of the
word. Not surprisingly, it is straightforward to model the two games we have de-
scribed as systems according to our formal definition.
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Consider the first game, G . Perhaps the most obvious way of modeling it as a
system is to have each play correspond to a run. Since we assume that G| is a game
of perfect information, what happens at each move must be reflected in the players’
states. Each player’s initial state in this game has the form (), representing the fact
that nothing has yet happened. After player 1’s move, we assume that both players’
local states encode the move that player 1 has made; thus, the local state has the form
(a;j), for i = 1, 2. Finally, after player 2’s move, we assume that both players’ states
include player 2’s move, and the payoff. We can ignore the environment’s state here;
we presume that the players’ local states include all the information of interest to us.
Thus, we take the environment’s state to be A. (We remark that in a more general
setting, game theorists view “nature,” or the environment, as another player in the
game. In this case it may be appropriate to have a more complicated environment
state.) Call the resulting system R .

Notice that as we have described R, both players have identical local states at
all points. This is the formal counterpart to our assumption that G is a game of
perfect information. It is straightforward to show that the moves that have taken
place, as well as the payoffs received by the players, are common knowledge once
they take place (Exercise 4.12). In games of perfect information there is very little
uncertainty, which leads to such a simple model. We remark that even in games of
perfect information such as this one, the players usually follow particular strategies,
which are not necessarily common knowledge. Defining strategies and capturing
them in the model will be one of the subjects treated in Chapter 5.

What system does G, correspond to? Again, we assume that there is a run for
each play of the game, and the player’s initial states have the form (). Just asin Ry,
we can also assume that player 1’s local state after his move includes the move that he
has made. We do not, however, want player 2’s local state to include this information.
The key difference between G and G is that player 2 does not know what player 1’s
move is after he has made it. Nevertheless, player 2’s state must encode the fact that
player 1 has moved. Player 2’s state must be different before player 1 moves and
after player 1 moves, for otherwise she would not know that it is her turn to move.
For definiteness, we assume that immediately after player 1’s move, player 2’s state
has the form (move); essentially, the move is just an indication that it is player 2’s
move. We assume that both players’ states after player 2’s move include the move,
and the payoff. This gives us the system R.

It is not hard to see that in the system R, player 2 is guaranteed to discover after
she moves what player 1’s move was. Indeed, we now have the machinery to formally
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prove that at time 2, player 2 knows what move player 1 chose (Exercise 4.13). This,
of course, depends on the fact that we are assuming that the players are notified
after the second move what the final payoffs are. It should be obvious at this point
that we can capture a situation in which players are not informed about the payoffs
immediately, or perhaps that each player is informed of her or his own payoff and
not the other’s. All we need to do is modify what goes into a player’s local state.

The systems R and R, correspond to the games G1 and G, described by the
game trees in Figures 4.1 and 4.2 in that each play of the game is captured by one
of the runs, and every run captures a possible play of the game. Of course, these
systems are not the only possible representations of these games. For example,
we could have just as well have used the information sets of the agents as local
states. In the next chapter, we consider another possible representation, one that
contains more information, namely, a representation of the strategy being used by the
players.

4.4.3 Synchronous Systems

A standard assumption in many systems is that agents have access to a shared clock,
or that actions take place in rounds or steps, and agents know what round it is at all
times. Put another way, it is implicitly assumed that the time is common knowledge,
so that all the agents are running in synchrony. This assumption has already arisen
in some of the systems we have considered. In particular, we implicitly made this
assumption in our presentation of the muddy children puzzle and of the two games G |
and G, of Section 4.4.2. Indeed, although synchrony is not a necessary assumption
when modeling games, it is often assumed by game theorists. When linguists analyze
a conversation, it is also typically assumed (albeit implicitly) that the agents share
a clock or that the conversation proceeds in structured steps. In computer science,
many protocols are designed so that they proceed in rounds (where no agent starts
round m + 1 before all agents finish round m).

How can we capture synchrony in our framework? Since an agent’s knowledge is
determined by his local state, his knowledge of the time must be encoded somehow
in the local state. This global clock need not measure “real time.” Formally, R
is a synchronous system if for all agents i and points (r, m) and (r', m’) in R, if
(r,m) ~; (r',m’), then m = m’. This captures our intuition that in a synchronous
system, each agent i knows what time it is; at all points that i considers possible
at the point (r, m), the time (on the system’s shared clock) is m. In particular, this
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means that i can distinguish points in the present from points in the future; i has a
different local state at every point (r, m) in a run r. We say that an interpreted system
Z = (R, m) is synchronous if R is synchronous.

It is easy to see that the systems R| and R, corresponding to the games G
and G, discussed in Section 4.4.2 are indeed synchronous in the sense of our formal
definition (Exercise 4.14). Intuitively, it should also be clear that the muddy children
puzzle should be modeled as a synchronous system, since each time the father asks
a question or the children answer can be viewed as starting a new “round.” As we
shall see in Chapter 7, the system that we use to model the muddy children puzzle
is indeed synchronous. On the other hand, the system Z*? that we use to model the
knowledge base is not synchronous. Synchrony was not a major issue in that case.
We could, of course, make it synchronous, either by adding a clock to the KB’s and
Teller’s local states, or assuming that the Teller tells the KB a new formula at every
step (so that the number of formulas in the KB’s and Teller’s local states encodes the
time).

4.4.4 Perfect Recall

According to our definition of knowledge in a system, an agent’s knowledge is
determined by his local state. We might expect that, over time, an agent’s local state
might “grow” to reflect the new knowledge he acquires, while still keeping track of
all the old information he had. We do not require this in our definition. It is quite
possible according to our definition that information encoded in r; (m)—i’s local
state at time m in run r—no longer appears in 7; (m + 1). Intuitively, this means that
agent i has lost or “forgotten” this information. There are often scenarios of interest
where we want to model the fact that certain information is discarded. In practice,
for example, an agent may simply not have enough memory capacity to remember
everything he has learned.

While we view the ability to model such forgetting as a feature of our framework,
there are many instances where it is natural to model agents as if they do not forget,
that is, they have perfect recall. Perfect recall is sufficiently common in applications
to warrant a definition and to be studied as a separate property of systems.

Perfect recall means, intuitively, that an agent’s local state encodes everything
that has happened (from that agent’s point of view) thus far in the run. Among
other things, this means that the agent’s state at time m + 1 contains at least as
much information as his state at time m. Put another way, an agent with perfect
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recall should, essentially, be able to reconstruct his complete local history. In the
case of synchronous systems, since an agent’s local state changes with every tick
of the external clock, agent i’s having perfect recall would imply that the sequence
(ri(0), ..., ri(m)) mustbeencodedinr; (m+1). In systems that are not synchronous,
however, agents are not necessarily affected by the passage of time on the external
clock. Roughly speaking, an agent can sense that something has happened only when
there is a change in his local state. This motivates the following definitions.

Let agent i’s local-state sequence at the point (r, m) be the sequence of local
states she has gone through in run r up to time m, without consecutive repetitions.
Thus, if from time O through time 4 in run r agent i has gone through the sequence
(s;, Si, slf , 8, si) of local states, where s; # slf , then her local-state sequence at (r, 4)
is (s;, slf , 8i). Process i’s local-state sequence at a point (r, m) essentially describes
what has happened in the run up to time m, from i’s point of view.

Intuitively, an agent has perfect recall if her current local state encodes her whole
local-state sequence. More formally, we say that agent i has perfect recall in system R
if at all points (r, m) and (v, m’) in R, if (r, m) ~; (r', m’), then agent i has the same
local-state sequence at both (r, m) and (r’, m’). Thus, agent i has perfect recall if she
“remembers” her local-state sequence at all times. In a system with perfect recall,
ri(m) encodes i’s local-state sequence in that, at all points where i’s local state is
ri(m), she has the same local-state sequence. Notice that the systems R and R;
that we used to model the games G| and G, assume perfect recall, since the players
keep track of all the moves that they make (Exercise 4.15). In fact, perfect recall is a
standard assumption made by game theorists. It also holds in Z*?, our representation
of knowledge bases (Exercise 4.16). As we shall see, perfect recall is an assumption
made, either explicitly or implicitly, in a number of other contexts as well.

One might expect that in a system Z where agents have perfect recall, if an agent
knows a fact ¢ at a point (7, m), then she will know ¢ at all points in the future, that is,
we might expect that 7 = K;¢ = OK;@. This is not quite true. One problem arises
with statements talking about the situation “now.” For example, if ¢ is the statement
“it is currently time 0,” then at time 0, an agent i may know ¢ (say, if she has access to
a clock) but agent i will certainly not always know that it is time 0! Another problem
comes from knowledge about ignorance. Suppose that ¢ is the formula =K p. Then
it is not hard to construct a system where agents have perfect recall such that agent 1
initially does not know p, but she later learns p. Thus, we have —K p, and hence
K1—K1p, holding at time 0, but we certainly do not have K;—K1 p holding at all
times in the future, since, by assumption, eventually K p holds (see Exercise 4.17).
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So, knowledge about ignorance does not necessarily persist in the presence of perfect
recall. Nevertheless, the intuition that in systems where agents have perfect recall,
once an agent knows ¢, then she never forgets g, is essentially correct. Namely, it is
true for all stable formulas, where a stable formula is one that, once true, remains true
(see Exercises 4.18 and 4.19 for more details; we return to this issue in Section 8.2).

How reasonable is the assumption of perfect recall? This, of course, depends on
the application we have in mind, and on the model we choose. It is easy to see that
perfect recall requires every agent to have a number of local states at least as large as
the number of distinct local-state sequences she can have in the system. In systems
where agents change state rather infrequently, this may not be too unreasonable. On
the other hand, if we consider systems where there are frequent state changes, or
look at systems over long stretches of time, then perfect recall may require a rather
large (possibly infinite) number of states. This typically makes perfect recall an
unreasonable assumption over long periods of time, although it is often a convenient
idealization, and may be quite reasonable over short time periods.

The simple protocol considered in Example 4.1.1 is one in which the sender and
receiver undergo very few state changes. In the system that models the protocol, the
states of S and R do not reflect every separate sending or receipt of a message. The
states change only when a message is first received. According to our definitions,
both § and R have perfect recall in this case, despite the fact that neither S nor R
remember how many times they have received or sent messages. The point is that S
and R recall everything that was ever encoded in their states.

Often it is not clear until after the fact what information is relevant to an analysis.
Frequently, a simple way to avoid deciding what to include in the state is simply to
have the state record all events that the agent is involved in, and assume that agents
have perfect recall. If we can gain a reasonable understanding of the system under
the assumption of perfect recall, we can then consider to what extent forgetting can
be allowed without invalidating our analysis.

4.4.5 Message-Passing Systems

In many situations, particularly when analyzing protocols run by processes in a
distributed system, we want to focus on the communication aspects of the system.
We capture this in the notion of a message-passing system, where the most significant
actions are sending and receiving messages. In message-passing systems, we view
a process’s local state as containing information about its initial state, the messages



4.4 Examples of Systems 139

that it has sent and received, and what internal actions it has taken. Because we
are interested only in the communication aspects of the system, the details of the
internal actions are not relevant here. The internal actions can include such things
as changing the value of a variable or reading or writing a value.

More formally, suppose we fix a set X; of initial states for process i, a set
INT; of internal actions for i, and a set MSG of messages. Then a history for
process i (over X;, INT;, and MSG) is a sequence whose first element is in %;,
and whose later elements consist of nonempty sets with elements of the form
send(u, j, i), receive(u, j,i),orint(a, i), where u € MSG and a € INT;. We think
of send(u, j, i) as representing the event “message w is sent to j by i”; similarly,
receive(L, j, 1) represents the event “message u is received from j by i”; finally,
int(a, i) represents the event “internal action a is performed by i.” The details of X;
and INT; are not relevant here. Intuitively, i’s history at (r, m) consists of i’s initial
state, followed by the sequence describing i’s actions up to time m. Thus, at the
point (r, 0), process i’s history consists only of its initial state. If, for example, in
round m > 0 of run r, process i performs the action of sending process j the mes-
sage u and also performs some internal action a, then i’s history at the point (r, m)
is the result of appending the set {send(u, j, i), int(a, i)} to its history at (r, m — 1).
Similarly, if i’s only action in round m is that of receiving the message u’ from j,
then its history at (r, m) is the result of appending {receive(u’, j, i)} to its history at
(r, m). If i performs no actions in round m, then its history at (r, m) is the same as its
history at (r, m — 1). (Notice that we are distinguishing performing no action from
performing some kind of null action to indicate that time has passed; a null action
would be modeled as an internal action.)

In message-passing systems, we speak of send(u, j, i), receive(u, j, i), and
int(a, i) as events. We say that an event occurs in round m + 1 of run r if it appears
in some process’s history in (r, m 4 1), but not in any process’s history in (r, m).
Although, strictly speaking, r; (m) is a sequence of sets of events, we often identify it
with the set consisting of the union of all the events in all the sets in the sequence. We
talk of an event being in r; (m) if it is in this set. This notion of event can be viewed
as a special case of the notion of events that was discussed in Section 2.5, where an
event was simply taken to be a set of possible worlds. Here we can associate with an
event e the set of all points (r, m) where e occurs in round m of run r. For example,
we can identify the event send(u, j, i) with the set of points (i.e., possible worlds)
where process i sends message (L to j.
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In a message-passing system, the process’s local state at any point is its history.
Of course, if A is the history of process i at the point (r, m), then we want it to be the
case that & describes what happened in » up to time m from i’s point of view. To do
this, we need to impose some consistency conditions on global states. In particular,
we want to ensure that message histories grow (or at least do not shrink) over time,
and that every message received in round m corresponds to a message that was sent
at round m or earlier. Given sets X; of initial states and INT; of internal actions
for processes 1, ..., n, and a set MSG of messages, we define a message-passing
system (over X1, ..., Xy, INT1, ...,INT,, and MSG) to be a system such that for
each point (r, m), the following constraints are satisfied:

MP1. r;(m) is a history over %;, INT;, and MSG,

MP2. for every event receive(u, j, i) in r;(m) there exists a corresponding event
send(j, i, j)inr;j(m), and

MP3. r;(0) is a sequence of length one (intuitively consisting of process i’s initial
state) and r; (m + 1) is either identical to r; (m) or the result of appending a
set of events to r; (m).

MP1 says that a process’s local state is its history, MP2 guarantees that every message
received at round m corresponds to one that was sent at round m or earlier, and MP3
guarantees that histories do not shrink. We have ignored the environment’s state
up to now. This is with good reason; the details of the environment’s state are not
relevant in this chapter, so we suppress them. The environment’s state will become
more important when we consider protocols in Chapters 5 and 7. We remark that
by making each process’s local state be its history, we ensure that processes have
perfect recall in message-passing systems (see Exercise 4.22). In practice, we may
want to add further requirements. For example, a reliable message-passing system is
one where communication is guaranteed: every message sent is eventually received.
Formally, a reliable message-passing system R is one that satisfies conditions MP1—
MP3 as well as the following additional condition:

MP4. for all processes i, j, and all points (r, m) in R, if send(u, j, i) is in r; (m),
then there exists an m’ > m such that receive(, i, j) is in rj(m’).

We can easily impose further requirements on message-passing systems, such as
a requirement that messages arrive in the order in which they are sent. We can force
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the system to be synchronous by assuming that r; (m) # r;(m + 1) for all i. This
forces i to take some action at every step; i can then compute the time by looking at
the length of its local history. Other requirements that we can impose on a system
are discussed in Exercise 4.23. The key point is that the model is flexible enough to
let us capture a wide range of assumptions quite easily.

4.4.6 Asynchronous Message-Passing Systems

In synchronous systems (it is common knowledge that) processes know exactly what
time it is. Although the assumption of synchrony is widespread, it is by no means
universal. While synchrony essentially implies that all processes share a global
clock, in many computer science applications it is inappropriate to assume a global
clock. Indeed, there may be very little information about time; we may not have
any idea (or not be prepared to make any assumptions) about the relative speed of
processes. For example, if a process becomes overloaded with work (and this may
happen in an unpredictable fashion), the process may suddenly slow down relative
to other processes. Similarly, we may not have upper bounds on message delivery
times. To abstract this type of situation, and to understand the role of synchrony,
computer scientists study systems that in some sense are as far away from being
synchronous as possible. To minimize synchrony assumptions, one assumes that
processes may work at arbitrary rates relative to each other and that there is no bound
on message delivery times. We consider such asynchrony in this section, in the
context of message-passing systems.

To capture these assumptions formally, we proceed much as in the previous
section. As before, we assume that each process’s local state consists of its history.
As was the case in the bit-transmission problem, we use the environment’s state to
record the events that have taken place thus far, and the relative order in which they
occur. The exact form of the environment’s state plays only a minor role in this
chapter, so we defer a detailed definition of the environment’s state to Chapter 5. We
also make the two following simplifying assumptions:

e We assume that at each step, at most one event takes place for each process.
This means that we now take a history to be a sequence starting with an initial
state, and followed by events (we blur here the distinction between an event e
and the singleton set {e} containing the event ¢), rather than sets of events.
This is a reasonable assumption if we model time at a sufficiently fine level of
granularity.
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e We assume that all the events in a given process’s history are distinct. Our
motivation for this is that we want to consider occurrences of events and their
temporal relationship. It makes the exposition much easier if we do not have to
distinguish different occurrences of the same event in a given run. In particular,
this assumption has the effect that a process can never perform the same action
twice in a given run, since if the internal action a is performed by process i both
in round m and in round m’ of run r, where m < m’, then the event int(a, i)
would appear twice in process i’s history at (r, m’). (If we want to consider
systems where a process can perform the same internal action more than once,
we could simply change our representation of the internal event a so that it is
a triple int(k, a, i), where the first component k denotes the k" occurrence of
the internal event a performed by process i. Similar techniques could be used
to deal with the possibility of i receiving the same message from j or sending
the same message to j a number of times.)

In a message-passing system, a process knows at least what is in its history. It
may well know more. For example, in a system where it is common knowledge
that all processes perform an action at every step, a process can certainly deduce
information about progress made by other processes from the amount of progress
it has made. It may also be able to reach conclusions based on knowledge of other
processes’ protocols. For example, if process 1 receives an acknowledgment from
process 2, then process 1 may know that process 2 must have received its message,
because process 1 knows process 2’s protocol. We want to eliminate additional
knowledge that arises from synchrony, but allow the additional knowledge that arises
from knowledge of protocols. To do this, roughly speaking, we require that a system
consist of all runs compatible with a given protocol that satisfy MP1, MP2, and MP3.
We proceed as follows.

Define a set V of histories to be prefix closed if whenever # is a history in V, then
every prefix of / other than the empty sequence is alsoin V. Let Vq, ..., Vj, be sets
of prefix-closed histories for processes 1, ..., n respectively. Intuitively, V; consists
of all histories that process i could have that are consistent with its protocol. Thus,
if process i’s protocol requires i to send an acknowledgment to process j only after
receiving a message from process j, then in all histories & € V;, if process i sends an
acknowledgment to process j in &, then i must have received a message from j in 4.
Define R(Vq, ..., Vy) to consist of all runs satisfying MP1, MP2, and MP3 such that
all of process i’s local states are in V;. We define an asynchronous message-passing
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system (or a.m.p. system, for short) to be one of the form R(Vy, ..., V,) for some
choice of prefix-closed Vi, ..., V.

We can also consider asynchronous systems in which communication is reliable,
which is captured by the fact that all runs satisfy MP4 in addition to MP1-3. Given
sets of prefix-closed histories V1, ..., V,, we define the corresponding asynchronous
reliable message-passing system (or a.r.m.p. system, for short) to be the set of all
runs satisfying all four conditions MP1-4, such that all of process i’s local states are
in Vi, fori = 1,...,n. We remark that an a.m.p. system in which communication
takes place can never be an a.r.m.p. system. Intuitively, this is because in an a.m.p.
system we must allow for the possibility that a message will never be received,
whereas in an a.r.m.p. system this situation is impossible. To see this, suppose that
R(Vy, ..., V,) is an a.m.p. system that includes a run r such that i sends j the
message u in round m of r. Then there mustbe arunr’in R(Vy, ..., V,) that agrees
with r up to the beginning of round m, process i still sends u to j in round m of r’,
but j never receives u (Exercise 4.26). Because u is never received in 1/, it follows
that R(Vq, ..., V) isnotan a.r.m.p. system. In the rest of this section, we focus on
a.m.p. systems.

The fact that a.m.p. systems consist of all runs satisfying MP1-3 for some choice
of Vi, ..., V, allows us to show that for every run r € R, a number of runs related
to r must also be in R. For example, suppose that r € R and r! is the run in
which, intuitively, all events in r are stretched out by a factor of two. Thus, in rl
all processes start in the same initial state as in », no events occur in odd rounds of
run r!, and, for all m, the same events occur in round 2m of run r! as in round m
of run r (so that for all times m, we have r'!2m) = r!Q@m + 1) = r(m)). Itis
easy to check that r! satisfies conditions MP1-3 (since r does), so ! must also be
in R. Similarly, any run that is like » except that there are arbitrarily long “silent
intervals” between the events of r is also in R. This shows that in a precise sense
time is meaningless in a.m.p. systems (Exercise 4.24).

As we now show, an a.m.p. system is asynchronous in a strong sense: the only
information a process has about the ordering of events is what follows from the order
in its own history, together with the fact that a message must be sent before it is
received. To make this precise, we define a notion of potential causality between
events. This is intended to capture the intuition that event e might have caused
event ¢'; in particular, this means that e necessarily occurred no later than e’. For
events e and ¢’ in a run r, we write e - ¢’ if either
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1. €' is a receive event and e is the corresponding send event,

2. for some process i, events e and ¢’ are both in i’s history at some point (r, m)
and either e = ¢’ or e precedes €’ (i.e., comes earlier in the history), or

3. for some event ¢” we have ¢ *> ¢” and ¢” > €.

Notice that condition (3) here guarantees that we have the transitive closure of con-
ditions (1) and (2). These three properties together say that the only way that e could
have affected ¢’ is if either ¢ = €’ or there is a sequence ey, ..., ¢; of events such
that e = ey, ¢’ = e, and for each consecutive pair ey, ¢+ 1, either e, and ej1| are
in the history of the same process, with ej, preceding e;,+1, or e, is a send and e, 1
is the corresponding receive. Note that > is an anti-symmetric relation; we cannot
have both e > ¢’ and ¢’ %> e (which means that e is a potential cause of ¢’ and ¢’
is a potential cause of ) unless e = ¢’. It is worth pointing out, however, that this
would not be the case if we allowed an event to occur more than once in a history.

The following result makes precise the degree to which an a.m.p. is asynchronous.
It says that the potential causality relation - is the closest we can come in an a.m.p.
system to defining a notion of ordering of events. That is, even if the processes could
combine all their knowledge, they could not deduce any more about the ordering of
events in run r than is implied by the > relation. For the following proposition,
we assume that for each pair of events e and e’, we have a proposition Prec(e, ¢’)
in ®. We say that the interpretation of Prec(e, ¢’) in the interpreted a.m.p. system
T = (R, m) is standard if 7 (r (m))(Prec(e, €')) = true exactly if events e and ¢’
both occur by round m of run r, and e occurs no later than ¢’ in r. (Note that our
assumption that the environment keeps track of the events that have occurred means
that 7r is well defined.)

Proposition 4.4.3 Let G be the group of all processes, let R be an a.m.p. system,
and assume that the interpretation of Prec(e, ') in T = (R, ) is standard. Then
(Z,r,m) = Dg(Prec(e,€')) iff e and €' have both occurred by round m of r and

e e,

Proof See Exercise 4.25.1

Since potential causality captures the information that the agents have about the
ordering of events, a set of pairwise incomparable events in this ordering can, for
all the agents know, be simultaneous. This gives rise to a notion of a consistent cut,
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which is further discussed in Exercise 4.28. As we shall see in the next section, there
are even closer connections between the potential causality ordering and knowledge.

4.5 Knowledge Gain in A.M.P. Systems

Given that the only interaction between the processes in an a.m.p. system is through
sending and receiving messages, it is perhaps not surprising that there is a close
relationship between knowledge and communication in an a.m.p. system. By better
understanding this relationship, we shall be able to prove bounds on the number of
messages required to gain certain levels of knowledge, and hence on the amount of
communication required to achieve certain goals. As we shall see, the relationship
between knowledge and communication is mediated by the causality relationship
L described in Section 4.4.6. Roughly speaking, the only way for process i to
gain knowledge about process j is to receive a message. Although this message
does not have to come directly from process j, it should be the last in a chain of
messages, the first of which was sent by j. The chain may, however, pass through
a number of other processes before it reaches i. This observation motivates the next
definition.

Suppose that iy, ..., iy is a sequence of processes, with repetitions allowed, r
isarun, and m < m’. We say that (i1, ..., i) is a process chain in (r,m..m’)
if there exist events eq, ..., e, in run r such that event ¢ occurs at or after round
m + 1 in run r, event ¢; occurs at or before round m’, event ¢; is in process i;’s
history for j = 1,...,k, and e; = --- 5 ¢;. For example, suppose that, in
run r, process 1 sends the message i to process 2 in round 1, process 2 receives i in
round 2, process 2 sends the message .’ to process 1 inround 3, and p is received by
process 1 in round 3. Then (1, 2, 2, 1) is a process chainin (r, 0..3) (asis (1, 2, 1)).
We say that (i1, ..., ix) is a process chain in r if it is a process chain in (r, m .. m’)
for some m < m’.

This example suggests that process chains are intimately linked to the sending
and receiving of messages. Itis easy to see thatif (1, 2, 1) is a process chain in run
corresponding to events e, e, and e3 that occur in rounds m1, my, and m3 respec-
tively, then there must have been a message sent by process 1 between rounds m
and m, inclusive (that is, at or after round m, and at or before round m,) and a
message sent by process 2 between rounds m» and m3 inclusive. More generally, we
have the following lemma.
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Lemma 4.5.1 Suppose that (i1, ...,i) is a process chain in (r,m..m’), with
ij # ijy1 for1 < j < k — 1. Then there must be a sequence of messages
U1, ..., Mk—1 Sent in r such that wy is sent by i1 at or after round m + 1, and

w;j is sent by i; strictly after pj_y is sent by i; i for 1 < j < k — 1. In particular, at
least k — 1 messages must be sent in run r between rounds m + 1 and m’ inclusive.

Proof See Exercise 4.27. 11

Note that it is not necessarily the case that 1 is sent by i; to ij 1. There may be
a sequence of messages i 1, ..., uj such that u; 1 = w; is sent by i; and w;; is
received by 74 1.

The next definition is the key to relating knowledge and communication. If
i1,...,I is a sequence of processes, we write (r,m) ~;, ;. (r',m’), and say
that (+/, m’) is (i1, ..., ix)-reachable from (r, m), if there exist points (rg, mg), ...,
(rk, my) such that (r,m) = (ro,mo), (r',m’") = (ri, mg), and (rj—1,mj_1) ~i;
(rj,mj) for j = 1,...,k. Thus (r,m) ~;, i (r',m’) if at the point (r, m) pro-
cess i1 considers it possible that i, considers it possible . . . that iy considers it possible
that (r’, m’) is the current point. (Despite the notation, ~;, ;. is not in general an
equivalence relation if £ > 1.) The following lemma tells us that for every run r and
for all times m, m’, either (r, m') is (i1, . .., ix)-reachable from (r, m) or (i1, ..., ig)
is a process chain in (r, m .. m’). Putting this together with Lemma 4.5.1, this says
that message transmission is essentially the only mechanism that blocks reachability.

Lemma 4.5.2 Let R be an a.m.p. system, let r be a run in R, and let m < m'. For
all k > 1 and all sequences iy, ..., iy of processes, either (r,m) ~;, i (1, m’) or
(i1, ...,1) is a process chain in (r,m .. m').

Proof We proceed by induction on k. If k = 1 and (i{) is not a process chain in
(r, m .. m"), then it must be the case that no events occur in process i1’s history in r
between rounds m + 1 and m’ inclusive. It follows that (r, m) ~i, (r, m’), as desired.

Suppose that k > 1 and (i1, ..., ig) is not a process chain in (r, m ..m’). Let e*
be the last event in i;’s history at the point (r, m"). We now define a new run r’.
Intuitively, ” consists of all the events that occurred in r up to and including round m,
together with all events that occurred in r after round m that potentially caused e*.
The run r’ agrees with r up to time m (so that r'(m”) = r(m”) for 0 < m” < m).
For m < m” < m’ and each process i, we define r/(m") to be the sequence that
results from appending to ri/ (m) (in the order they occurred) all events e in r; (i) that
occurred between rounds m + 1 and m” (inclusive) such that e -~ ¢*. Finally, we



4.5 Knowledge Gain in A.M.P. Systems 147

take ' (m"") = r’(m’) form” > m’, that is, no event takes place in r’ after time m’. It
is easy to check that r/(m"") is a prefix (not necessarily strict) of r; (m"") for allm” > 0,
because if ¢’ occurs in r; (m”’) before e and e > €*, then we also have ¢’ 5> e*. Itis
now not hard to show that (1) r’ € R (that is, that r’ satisfies the conditions MP1-3
in definition of message-passing systems), (2) (r',m’) ~;, (r,m’), 3) (r,m) ~;,
(r',m), and (4) (i1, ..., ir—1) is not a process chain in (v, m .. m’") (Exercise 4.29).
From (4) and the induction hypothesis it follows that (', m) ~;, i, (',m’).
Applying (2) and (3) we now immediately get that (r, m) ~;,,_;, (r,m’), as desired.
|

,,,,,

The two conditions in Lemma 4.5.2 are not mutually exclusive. It is possible to
construct a run r such that, for example, (1, 2) is a process chain in (,0..4) and
(r,0) ~1.2 (r,4) (Exercise 4.30).

Lemma4.5.2 allows us to relate message passing to knowledge in a.m.p. systems.
One direct consequence is stated in the following theorem, which essentially says
that processes can gain or lose knowledge only by sending and receiving messages.

Theorem 4.5.3 Let r be a run in an interpreted a.m.p. system I, and assume that
/
m<m'.

(a) If (Z,r,m) = =K ¢ and (Z,r,m") = K, ...K; @, then (iy,...,i1) is a
process chain in (r,m .. m').

(b) If ZT,r,m) = Ki,...Kj,¢ and (Z,r,m’') = —K; ¢, then (i1, ..., i) is a
process chain in (r,m..m').

Proof We prove (b) here; the proof of (a) is similar. Suppose, in order to ob-
tain a contradiction, that (iy, ..., i) is not a process chain in (r,m..m’). By
Lemma 4.5.2, we have (r,m) ~;, i (r,m’). Thus, by definition, there exist
points (rg, mg), ..., (rr, my) such that (r, m) = (ro, mg), (r, m') = (ry, my), and
for j = 1,...,k we have (rj_1,m;_1) ~i; (rj,mj). We can now show, by a
straightforward induction on j, that (Z, rj, m;) = Kij ...Kypforj=1,...,k In
particular, it follows that (Z, r, m’) = K i ¢» a contradiction. 1

Part (a) of Theorem 4.5.3 seems quite intuitive: it says that knowledge gain
can occur only as the result of receiving messages. Part (b), however, may at first
glance seem somewhat counterintuitive. It says that knowledge loss can occur only
as the result of sending messages. How can processes lose knowledge by sending
messages? To see how this can happen, suppose that process 1 sends process 2 a
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message saying “Hello,” and that this is the first message sent from process 1 to
process 2. Before process 1 sends the message, 1 knows that 2 has not received any
messages from it. After it sends the messages, it loses this knowledge.

More deeply nested knowledge can be lost as well. Consider the following
(somewhat contrived) example. Imagine a database system where at most one process
at a time may have control of the database. (Intuitively, a process having control may
update the database. We do not want more than one process trying to update the
database at a time.) If no process has control, we say that the system is freely
available. Control of our database is handled as follows. Intuitively, when a process
has control, it puts a lock on the database, so no other process can access it. If only
one process has a lock on the database, it can either release the database, so that it
becomes freely available, or pass control on to a second process. That process can
either return control to the first process, or pass control on to a third process, and
so on. In general, a process either returns control to the process that passed control to
it (intuitively, releasing its lock), or passes control on to a new process (after putting
a lock on all the other locks already in place, and passing the information about all
the existing locks to the new process). Since we are considering a.m.p. systems, this
passing on of control is done by sending messages. Let ¢ be the fact “the database
is not freely available.” Suppose that we have a situation where originally process 1
took control of the database, passed control on to process 2, who then passed control
on to process 3. At that point we have K3K>K¢. Process 3 releases control by
sending a message to process 2. Immediately after process 3 sends the message, we
have —=K3K>K1¢. The reason is that because we are in an asynchronous system,
process 3 has no way of knowing how much time has passed, so for all process 3
knows, process 2 got its message and released control to process 1, who then made
the system freely available. In fact, K2 K¢ continues to hold until process 2 gets
process 3’s message and then sends a message to process 1 releasing control. The
point is that in an asynchronous system, without getting further messages, process 3
has no way of knowing exactly when or whether this happens. Again, knowledge is
lost as the result of sending messages.

There is another way that processes can lose knowledge by sending messages.
It is possible that the knowledge they lose is knowledge about lack of knowledge;
in this case part (b) of Theorem 4.5.3 can really be understood as a special case
of part (a). For example, consider a formula p that intuitively says “the value of
variable x is 0,” where x is a variable local to process 3 (so that it can only be
affected by 3’s internal actions). Suppose that (Z,r, 0) = —p, so that at time 0
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in run r, variable x does not have value 0. By the results of Exercise 2.12, we
know that (Z, r, 0) = K1 K>— KK p. (The intuitive argument for this is as follows:
Clearly — K p holds, since process 1 cannot know a false fact. Thanks to negative
introspection, we have also have K;—K p. By similar reasoning, from =K p, we
can deduce both =K, K| p and K2—K, K7 p. But because process 1 knows =K p,
process 1 also knows K»—K» K p, thatis, K1 K»— K7 K1 p holds.) Now take ¢ to be
the formula =K, K1 p. We have just shown that (Z, r, 0) = K1 Ky¢. Suppose that
at some later time, say at the point (r, 6), process 2 knows that process 1 knows p,
that is, we have (Z, r, 6) = K, K1 p. By definition of ¢, we have (Z, r, 6) &= —g.
Therefore, we also have (Z,r, 6) = —K»g, since process 2 cannot know a false
fact. Thus the knowledge loss—from K1 K¢ at time 0 to = K¢ at time 6—is just a
knowledge gain in disguise—from — K| p attime O to K> K1 p at time 6. Whether we
apply part (a) or part (b) of the theorem, it follows that there must be a process chain
(1,2)in (r, 0..6). The same sequence of messages causes the knowledge gain and
the knowledge loss.

One consequence of Theorem 4.5.3 is that common knowledge can be neither
gained nor lost in a.m.p. systems.

Theorem 4.5.4 Suppose that T is an interpreted a.m.p. system, r isaruninZ, and G
is a group of processes with |G| > 2. Then for all formulas ¢ and all times m > 0,
we have (Z,r,m) = Cg¥ iff (Z,1,0) | Cgy.

Proof Suppose that (Z,r,m) & Cg¥ and (Z,r,0) = —Cgy¥. Suppose
that exactly / messages are sent between rounds 1 and m inclusive. Since
(Z,r,0) E —=CgV, there must be some sequence iy, ..., i; of pairwise distinct
processes in G such that (Z,r,0) = —K;, ... K;¥. Leti and j be distinct pro-
cesses in G such that j # i;. (Such processes must exist since |G| > 2.) Since
(Z,r,m) = Cg¥, it follows that (Z, r,m) = (K;K;)'K, ... Ki, ¥, where we de-
fine (K; K j)l Y’ for any formula ¥’ inductively in the obvious way. By part (a)
of Theorem 4.5.3, where the role of ¢ is played by K;, , ... K1y, it follows that
(i, j,i...,Jj,i)isaprocess chainin (r, 0..m), where there are [ occurrences of j, i
in this chain. By Lemma 4.5.1, at least 2/ messages must be sent in round r between
rounds 1 and m. But this contradicts our assumption that exactly / messages are sent.
Thus, common knowledge cannot be gained. The proof that common knowledge
cannot be lost proceeds along identical lines, using part (b) of Theorem 4.5.3. Il

As we shall see in Chapter 6, the fact that common knowledge cannot be gained or
lost in a.m.p. systems has important consequences for the possibility of coordinating
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actions in a.m.p. systems. We remark that Theorem 4.5.3, and hence Theorem 4.5.4,
hold with almost no change in proof for a.r.m.p. systems as well (Exercise 4.32). This
shows that reliability considerations do not play an important role in these results. It
is the fact that there is no bound on message delivery time, rather than the question
of whether the message will be delivered, that is crucial here.

Using Theorem 4.5.3, we can also prove a number of lower bounds on the number
of messages required to solve certain problems. Consider the problem of mutual
exclusion. Intuitively, the situation here is that from time to time a process tries to
access some shared resource that may be accessed by only one process at a time.
(For example, the process may try to change the value of a shared variable.) We say
that the process is in its critical section when it has access to the shared resource. We
say that R is a system with mutual exclusion if in every run of R, no two processes
are simultaneously in their critical sections.

If R is a system with mutual exclusion and r is arun in R in which iy, i3, ..., ik
(with i; # ij41 for 1 < j < k) enter their critical section in sequence, then
(i1,12,...,1k) is a process chain in r. For suppose that i; enters its critical sec-
tion at time m; in r, for j = 1, ..., k. For each process i, let cs; be a primitive
proposition denoting that i is in its critical section. Formally, we consider the in-
terpreted system Z = (R, ), where 7w makes cs; true at exactly those global states
where process i is in its critical section. From the assumption that R is a system
with mutual exclusion, it follows that cs; = —cs; is valid in Z if i # j. Moreover,
because the truth of cs; is determined by i’s local state, we must have that both
csi = K;(cs;) and —cs; = K;(—cs;) are valid in Z. Since we have assumed that
process i; enters its critical section at time m; in r, we have (Z,r,mj) = cs;;. It
follows from the previous observations and the S5 properties of our definition of
knowledge that for j =1, ...,k — 1, we have

,r, Mj) = Kij Kij+1_'csij+1 and

(I, r, mj+l) ': _'Kij+1_'csij+1

(Exercise 4.34). Thus, by Theorem 4.5.3(b), (ij,ij4+1) is a process chain in
(r,mj..mjy1). It immediately follows that (iy, i2, ..., i) is a process chain in r.
By Lemma 4.5.1, the existence of this process chain in r implies that at least k — 1
messages are sent in r. This gives us a lower bound on the number of messages
required for mutual exclusion: for k processes to enter their critical sections, at least
k — 1 messages are required.
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Exercises

4.1 Show that for all formulas ¢ € ESD and all interpreted systems Z, if (r, m)
and (', m’) are points in Z such that r(m) = r’(m’), then (Z,r,m) & ¢ iff
(Is r/v m/) |: go

4.2 Prove that (Z,r,m) E ¢ iff (Z,r,m) = trueUg, and (Z,r,m) = Og iff
Z,r,m) =~

4.3 Construct an interpreted system Z and two points (r, m) and (+', m’) in Z such
that r(m) = r'(m’), but (Z, r, m) = Op and (Z, r', m’) = =Cp.

4.4 Show that (Z, r, m) = OO exactly if the set {m’ | (Z, r, m") = ¢} is infinite.

4.5 In this exercise, we fill in some of the missing details in the proof of Propo-
sition 4.4.1 (among other things). Recall from Chapter 3 that M, consists of all
Kripke structures with no constraints on the X; relations, while M,’f’ consists of all
Kripke structures where the ;s are equivalence relations. We write M,, = ¢ (resp.,
M= @) if @ is valid in all Kripke structures in M,, (resp., in M*).

(a) Show that for arbitrary formulas ¢ and v, we have M, = ¢ = v iff
My = Kip = K.

(b) Show that for propositional formulas ¢ and ¥, we have M = ¢ =  iff
MP = Kip = K. Moreover, show that MM = ¢ = ¢ iff ¢ = Y isa
propositional tautology.

(c) Show that for arbitrary formulas ¢ and ¥, we have M’ = ¢ = ¢ im-
plies M*" = K;¢ = K;, but that there exist formulas ¢ and v such that
MBS = Kip = Ky, but M b= ¢ = .

4.6 Show how to use Proposition 4.4.1 and Exercise 3.23 to compute how the KB
can answer KB-queries from the conjunction of the formulas that the KB has been
told.

4.7 Prove Proposition 4.4.2.
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4.8 Suppose that there is a default rule saying that if p is true, then it is the first fact
the KB is told. Show how Z® can be modified to take this into account, and prove
that for the appropriate modification, if rxg(m) = (¢1, ..., @) for some k > 1 and

@1 # p , then (Z¥, r, m) = Kxp—p.

4.9 Suppose that the KB has a priori knowledge that the propositional formula ¢
holds. Show how Z* can be modified to take this into account, and show that the
analogue of Proposition 4.4.1 holds: the KB will know everything that follows from
what it has been told and ¢.

*4.10 Suppose thatrgp(m) = (@1, ..., @), andletk = @1 A ... A . By extending
the ideas of Proposition 4.4.2, show how we can construct a Kripke structure (M*)™*
which has an accessibility relation corresponding to the Teller’s knowledge, as well
as one corresponding to the KB’s knowledge, such that for all formulas 1, we have

T, r,m) = ¥ ff (MS)F, re(m)) = .

4.11 In this exercise, we consider the implications of allowing the the Teller to have

false beliefs. Suppose that, as before, the Teller’s state includes the set 7~ of worlds
that it considers possible, but we allow the real world not to be in 7. We require,
however, that 7 be nonempty and that the Teller tells the KB ¢ only if ¢ is true in
all the truth assignments in 7. Rather than use the ~7 relation to define the Teller’s
knowledge in the Kripke structure associated with the system Z*?, suppose we use
the relation K7 defined by (r(m), r'(m’)) € Kr if (1) rr(m) = rj(m’) and (2) if
r'm’y = (o, {1, ..., 01), (T, (g1, ..., k), thena € T. (Note that the real world
o is no longer part of the Teller’s local state.) That is, the only worlds that the Teller
considers possible are ones corresponding to its beliefs as captured by 7.

(a) Show that if we define knowledge using the K7 relation instead of ~r, and
the Teller tells ¢ to the KB at the point (r, m), then (Z* r,m) = K TQ.

(b) Show that if we define knowledge using the K7 relation, then the Teller’s
knowledge satisfies all the S5 properties except the Knowledge Axiom
Kip = ¢. Instead, the Teller’s knowledge satisfies the property —Kr (false)
(and thus is characterized by the axiom system KD45 of Chapter 3). This gives
us a natural way of defining belief in this context.

(c) Suppose that the KB believes that everything it is told is true. Since the Teller
also believes that everything it says is true, we can capture this by using the
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relation Kgp defined by (r(m), r'(m’)) € Kgp if (1) rkp(m) = rgg(m’) and
Q) if r'(m") = (a, (@1, ..., @), (T, (@1, ..., k), then @ € 7. Notice that
the second condition guarantees that at all points the KB considers possible,
the Teller’s beliefs are correct, so that everything the KB is told is true. Show
that if we use Kgp to define the KB’s knowledge, then Kgp also satisfies the
axioms of KD45.

(d) Show that analogues to Propositions 4.4.1 and 4.4.2 hold in this context as
well.

4.12 This exercise deals with the game G| of Section 4.4.2. Let ® consist of
primitive propositions of the form act; (a) foreacha € {ay, a, by, bo}andi € {1, 2}.
LetZ; = (R1, m) be an interpreted system corresponding to the game G 1, where R |
is as described in the text and 7 gives the following interpretation to the primitive
propositions: m(r, m)(act;(a)) = true exactly if i has taken action a in the global
state r (m). Prove that for all runs » € R and actions a we have

(@ (Zy,r, 1) Eacti(@ & C(acti(a)),
(b) (Z1,r,2) E acty(a) & Clacty(a)).

This shows that, in this game, players’ moves are common knowledge once they take
place.

4.13 This exercise deals with the game G, of Section 4.4.2. Let ® and & be defined

as in Exercise 4.12, and let Z, = (R, ) be an interpreted system corresponding to
the game G, where R is as described in the text. Prove that for every run r € R»
and actions a € {aj,az} and b € {by, by} we have:

(@) (Zz,r, 1) E —Ka(act(a)),
(b) (I2,1,2) = acti(a) & Kz(acti(a)),
(©) (In,r,2) = (acti(a) A acty(b)) & C(acti(a) A acty(b)).

Although, as part (a) shows, the moves of player 1 are not known to player 2 when she
moves (as shown in Exercise 4.12, this is in contrast to the situation in the game G1),
part (c) shows that all the moves made by both players are common knowledge at
the end of every play.
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4.14 Show that, according to our formal definitions, the systems R| and R repre-
senting the games G| and G, of Section 4.4.2 are synchronous.

4.15 Show that both players have perfect recall in the systems R and R; repre-
senting the games G and G, of Section 4.4.2.

4.16 Show that in the system 7% representing a knowledge base, the agents have
perfect recall.

4.17 Show that knowledge of ignorance does not necessarily persist in systems
where agents have perfect recall. In particular, construct an interpreted system 7
where agents have perfect recall and a run r in Z such that (Z,r,0) = —Kp and
Z,r,m) = K;pform > 0.

4.18 A formula ¢ is said to be stable (with respect to the interpreted system T) if
once ¢ is true it remains true, that is, if we have Z = ¢ = Og. Assume that ¢
and ¢, are stable.

(a) Show that ¢ A @2 and @1 V ¢ are stable.

(b) If, in addition, 7 is a system where agents have perfect recall, show that K; ¢
and Cg o) are stable. Thus, in a system where agents have perfect recall, if an
agent knows a stable formula at some point, then he knows it from then on.

(c) Show that if we assume in addition that the system is synchronous, then Dg ¢
is stable.

* 4,19 This exercise considers whether the stability of formulas is preserved by the
knowledge and distributed knowledge operators.

(a) Show by example that there is an interpreted system where agents have perfect
recall and there is a stable formula g1 where Dg ¢ is not stable. This contrasts
with the situation in Exercise 4.18(c), where we also assume that the system
is synchronous.

(b) Show by example that K¢, is not necessarily stable (even in synchronous
systems where agents have perfect recall) if ¢; is not stable.
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4.20 Let R be a system in which agents have perfect recall.

(a) Show thatif r € R and r;(m) = r;(m’), then r; (m) = r;(m”) for all m" with
m<m"<m'.

(b) We say that agent i considers run r’ possible at the point (r, m) if (r, m) ~;
(r', m") for some m’. Show that the set of runs that an agent considers possible
in R does not increase over time; that is, show that if »r € R and m’ > m,
then the set of runs agent i considers possible at (r, m’) is a subset of the set
of runs i considers possible at (r, m).

4.21 Consider a synchronous message-passing system with two processes, where
process 1 sends process 2 a message w1 in round 1 and a message w, in round
2. Process 2 does nothing. Describe L1 and Ly and the set of runs in each of the
following situations:

(a) messages are received in the same round that they are sent,

(b) messages are either received in the same round that they are sent or not received
at all,

(c) messages are guaranteed to be received eventually (but there is no upper bound
on message delivery time).

4.22 Show that processes have perfect recall in message-passing systems.

4.23 Show how the following requirements can be imposed on message-passing
systems:

(a) arequirement that agents take some action at least once every k steps,

(b) arequirement that messages arrive within k rounds.

4.24 In this exercise, we show that a.m.p. systems are closed under certain opera-
tions. Suppose that R is an a.m.p. system.

(a) Show that R is closed under single-state stuttering; that is, if r € R, then, for
allm and k, thereisarunr, , € R where the mth state of r is repeated k times.
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More precisely, if » € R, let r, , be the run such that

r(m’) ifm' <m
ry(m) =1 r(m) ifm<m <m+k
rim—k)y ifm >m-+k.

Show that r, . € R.

(b) Show that R is closed under limits. More precisely, show that if » is a run all
of whose prefixes are prefixes of runs in R (that is, for all m, there exists a run
rm € R such that r(m’) = r,,(m’) for all m’ < m), thenr € R.

(c) This part of the exercise generalizes part (a). A function f : N — N is called
a stuttering function if, intuitively, f is a monotone nondecreasing function
that increases by increments of at most 1 at a time. More formally, f is a
stuttering function if f(0) = 0 and f(m + 1) satisfies f(m) < f(m + 1) <
f(m) 4+ 1for all m > 0. For example, a stuttering function might have range
00111223444455 . ... Given a run r, we say that r’ is a stuttered version of r
if, for some stuttering function f, we have r'(m) = r(f(m)) for all m > 0.
Prove that R is closed under stuttering. Namely, show that if » € R and r’ is
a stuttered version of r, then r’ € R. (This can be shown directly, or shown
by using part (a), part (b), and induction.)

Note that it immediately follows from part (c) that if r is in R, then so is the
run 7! described in Section 4.4.6 in which ! (2m) = r!(2m + 1) = r(m), so that all
events in r are stretched out by a factor of two. Similarly, any run in which there are
arbitrarily long “silent intervals” between the events of r is also in R.

* 4,25 Part (a) of this exercise, like the previous exercise, involves showing that if a
given run r is in an a.m.p. system, then so are a number of variants of r. This turns
out to be the key step in proving Proposition 4.4.3.

(a) Assume that r is a run in an a.m.p. system R, that e is an event, and that k
is a positive integer. Let r’ be a run defined intuitively as follows: For every
event ¢’ occurring in r, if e - ¢/, then ¢’ occurs k rounds later in 7’ than in r,
and otherwise ¢’ occurs in 7’ in the same round as in . More formally, let i be
an agent. If there is no event ¢’ and time m; where e > ¢’ and ¢’ is in r; (m;),
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then let rl.’ (m) = r;(m) for every m. Otherwise, let m; be minimal such that
there is an event ¢’ where ¢ > ¢’ and ¢’ is in r; (m;). Then define

ri(m) ifm < m;
riim) =19 ri(mi — 1) ifm; <m <m; +k
rim—k) ifm;+k=<m.

Show that ' is a run in R.

(b) Prove Proposition 4.4.3. (Hint: showing that if ¢ > ¢’ and e and ¢’ have
occurred by time m, then (Z, r, m) = DgPrec(e, €') is straightforward. For
the converse, if it is not the case that e > €', use part (a) and Exercise 4.24(a)
tofindarunrs’ € R and atime m’ such that (r, m) ~; (', m’) for all processes i
and (Z,r', m’) |= —=Prec(e, €').)

4.26 Let R be an a.m.p. system and let  be a run in R such that i sends j the
message ¢ in round m of r. Show that there must be a run r" in R that agrees with r
up to the beginning of round m, where process i still sends & to j in round m of r’,
but where j never receives w in r’. (Hint: use Exercises 4.24 and 4.25(a).)

4.27 Prove Lemma 4.5.1.

* 4.28 Define a consistent cut of arunr € R to be a tuple (sq, ..., s,) of local states
such that (a) there exist mq, ..., m, such that r;(m;) = s;, fori =1, ..., n (so that
each of these local states appears at some point in run r) and (b) there exists a run
r’ € R and a time m such that r/(m) = s;, fori = 1,...,n (so that there exists a
run where all the local states in the consistent cut occur simultaneously). Thus, a
consistent cut is essentially one that could have occurred as a global state at some
point in the system. Show that (sq, ..., s,) is a consistent cut of a run r in an a.m.p.
system R iff (a) there exist mq, ..., my such that r;(m;) = s;, fori =1,...,n and
(b) these states are closed downwards with respect to > that is, if e = ¢/, and €’ is
an event in the local state s; of some process i (this makes sense in an a.m.p. system
since the local states are essentially sequences of events), then e is an event in the
local state s; of some (possibly different) process ;.

* 4,29 Fill in the details of the proof of Lemma 4.5.2. In particular, show that r’
satisfies the four conditions stated near the end of Lemma 4.5.2.
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4.30 Show that there is a run r in an a.m.p. system R such (1, 2) is a process chain
in (r,0..4) and (r,0) ~12 (. 4).

4.31 This exercise presents a variant of Theorem 4.5.3. Let r be a run in an inter-
preted a.m.p. system Z and let m < m’.

(a) Show that if (Z,r,m) &= —K; K, ¢ and (Z,r, m') = Ki ... Ki,Ki 9,
then (ixy1, ik, ..., 1) is a process chain in (r, m .. m’).

(b) Show that if (Z,r,m) = K;, ... Ky K; ¢ and (Z,r,m’) = —K; K, ¢,
then (i1, ..., ig, ix+1) is a process chain in (r, m ..m’).

4.32 Show that Theorems 4.5.3 and 4.5.4 hold for a.r.m.p. systems.

4.33 This exercise considers an alternative proof of Theorem 4.5.4. Show that if R

is an a.m.p. system and G is a group of processes with |G| > 2, then for all points
(r, m) in R, we have that (r, 0) is G-reachable from (r, m). Use this observation,
together with the fact that the same formulas are common knowledge among G at
two states one of which is G-reachable from the other (Exercise 2.7), to provide an
alternative proof of Theorem 4.5.4.

4.34 Prove the claim in the discussion of mutual exclusion in Section 4.5; that is,
forj=1,...,k—1,prove

(@ (Z,r,mj) = Ki; K, —csig s

(b) (Z,r,mjy1) E —Kij,,—esij,,-

Notes

The first person to talk in terms of ascribing mental qualities such as knowledge and
belief to machines was McCarthy [1979]. Newell [1982] also talks about analyzing
systems at the “knowledge level,” although not quite in the way we do here. The
general framework presented here for ascribing knowledge in multi-agent systems
originated with Halpern and Moses [1990], Moses [1986], and Rosenschein [1985].
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Slight variants of this framework were also introduced by Fischer and Immerman
[1986], Halpern and Fagin [1989], Parikh and Ramanujam [1985], and Rosenschein
and Kaelbling [1986]. Our presentation here is based on that of [Halpern and Fagin
1989], where the reader is referred for more details and further discussion. (We
remark that Halpern and Fagin allowed 7 to depend on the point, not just the global
state.) Many other approaches to modeling distributed systems have been described
in the literature. Some of the better-known approaches include those of Hoare [1985],
Lamport [1986], Lynch and Fischer [1981], Lynch and Tuttle [1989] (see also [Lynch
1997]), Milner [1980], and Pratt [1985].

We have made a number of significant assumptions in the way we have chosen to
model multi-agent systems. We have already discussed to some extent the implica-
tions of having time range over the natural numbers. One implication that we did not
discuss is that it assumes that time is linear —there is a unique next step—rather than
“branching,” where there may be several possible next steps. This choice between
linear time and branching time has been discussed in the philosophical literature
in some detail (see, for example, [Thomason 1984]); its implications for computer
science have been discussed by Clarke, Emerson, and Sistla [1986], Emerson and
Halpern [1986], Halpern and Vardi [1989], Lamport [1980, 1985], Pnueli [1985],
and Vardi [2001], among others. In our setting we could have chosen time to be
branching, inducing computation trees, rather than linear, inducing runs.

Temporal logic was developed by Prior [1957], who used a branching-time set-
ting, and then imported to computer science by Pnueli [1977], in a linear-time set-
ting, and by Ben-Ari, Manna, and Pnueli [1981] and Clarke and Emerson [1981],
in a branching-time setting. In the branching-time setting, there are many possible
choices of branching temporal operators; this is studied, for example, by Emerson
and Halpern [1985, 1986]. See [Halpern and Vardi 1989] for a discussion of how
branching time operators can be used in the runs and systems framework.) Many other
temporal operators besides the ones we have used here are possible. In particular,
all the operators we have used here involve the future; we could also have past-time
operators, as is done, for example, by Lichtenstein, Pnueli, and Zuck [1985]. An
excellent introduction to temporal logic can be found in [Manna and Pnueli 1992].

Another assumption we have made regarding time is that it is discrete and ranges
over the natural numbers. Our framework changes very little if we allow continuous
time. Knowledge-based analyses in models in which time is assumed to be continu-
ous, ranging over the real numbers, are presented in Brafman, Latombe, Moses, and
Shoham [1997] and in Moses and Bloom [1994].
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Besides our assumptions about time, we have assumed that it makes sense to
talk about the global state of the system, and that the set of agents is fixed and their
names (1, ..., n) are commonly known. While these assumptions can be relaxed,
doing so adds a number of complexities. Lamport [1985] and Pratt [1982] present
some arguments against the existence of global states. Moses and Roth (see [Roth
1989]) and Grove and Halpern [1993] generalize the framework presented here so
that it can deal with the case where the set of agents is not fixed and is not common
knowledge.

Our examples of systems were taken from a number of different sources. The
notion of a knowledge base that is told facts about the world and is asked queries
was first formalized by Levesque [1984a]. Halpern and Vardi [1991] were the first to
model knowledge bases using our notion of system. Making sense out of “all the KB
knows is k”” can be quite difficult, although it is straightforward if « is a propositional
formula, as was the case in Proposition 4.4.2. See [Halpern 1997b], [Halpern
and Moses 1984], [Halpern and Lakemeyer 2001], [Levesque 1990], [Parikh 1991],
[Stark 1981], and [Vardi 1985] for further discussion of this issue.

Merritt and Taubenfeld [1991] consider a type of system we have not discussed
here: a shared-memory system. As the name suggests, in such a system, all pro-
cesses have access to a shared memory. Merritt and Taubenfeld present a model
for knowledge in shared-memory systems and show how a number of well-known
results regarding such systems can be generalized by using statements involving the
difficulty of attaining particular states of knowledge in this setting. Parikh and Kra-
sucki [1992] define the notion of a level of knowledge as a set of formulas of the
form K; K ... that are satisfied at a given point. They study the attainable levels
of knowledge under various assumptions regarding the synchrony or asynchrony of
the system.

The notion of game tree is standard in the economics literature. We have provided
only a cursory discussion of game trees here. For more details, and a far more detailed
introduction to ideas of game theory, see, for example, [Fudenberg and Tirole 1991],
[Osborne and Rubinstein 1994], or [Rasmusen 1989]. The two games discussed here
are slight variations of ones considered by Rasmusen [1989]. Halpern [1997a] has
argued that, while game trees are a useful representation of games, the information
sets in game trees do not always capture the agents’ knowledge appropriately, since
there may be more to a state of the world than just what the current node in the
game tree is. The runs and systems framework introduced here has the necessary
expressive power to avoid these problems.
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The formal definition of synchronous systems and of systems where agents have
perfect recall is taken from [Halpern and Vardi 1989]. For a discussion of perfect
recall in the context of game theory, see [Fudenberg and Tirole 1991]. Our definition
of perfectrecall is actually not quite the same as that used in game theory; see [Halpern
1997a] for a discussion of the differences. Our discussion of a.m.p. systems is based
on the work of Chandy and Misra [1986] (although their definitions have been slightly
modified to fit our framework, and our presentation follows closely that of Halpern
[1987]).

Lemma 4.5.2 and Theorem 4.5.3 are due to Chandy and Misra [1986], as well
as the application to the mutual exclusion problem. Extensions to Theorem 4.5.3
were proved by Hadzilacos [1987] and Mazer [1990]. Lamport [1978] discusses
the = causality relation. The fact that common knowledge cannot be gained (or
lost) in many multi-agent systems was first shown by Halpern and Moses [1990]; the
observation that, in particular, this is so in a.m.p. systems (Theorem 4.5.4) is due to
Chandy and Misra [1986]. Hadzilacos [1987] considers a number of requirements
that we might impose on a.m.p. systems, and examines the properties of knowledge
that arise as a result of imposing these requirements.

The notion of a consistent cut described in Exercise 4.28 was introduced by
Lamport [1978]. People who feel that global states are inappropriate often consider
consistent cuts to be a more reasonable alternative. Panangaden and Taylor [1992]
present a definition of knowledge with respect to consistent cuts rather than points.
Exercise 4.19(a) shows what can be viewed as an undesirable property of distributed
knowledge: We can have a stable formula ¢ for which Dg¢ is not stable. Moses
and Bloom [1994] define an alternative notion they call inherent knowledge, which
they argue is more appropriate than distributed knowledge in systems that are not
synchronous. They use this notion to study real-time systems, where they generalize
Proposition 4.4.3 and use the more general version to discuss clock synchronization.



Chapter 5

Protocols and Programs

Think globally, act locally.
René Dubos

In our discussion of runs in Chapter 4 we avoided consideration of where the runs
came from. Starting in some initial global state, what causes the system to change
state? Intuitively, it is clear that this change occurs as a result of actions performed
by the agents and the environment. Furthermore, the agents typically perform their
actions deliberately, according to some protocol, which is often represented as a
program. The study of protocols and programs is the subject of this chapter.

5.1 Actions

We already saw several examples of actions taken by agents in multi-agent systems.
For example, in message-passing systems (Section 4.4.5), the actions include sending
and receiving messages (and possibly some unspecified internal actions). In the
games G| and G, of Section 4.4.2, the actions were ay, ap, by, and by. In general,
we assume that for each agent i there is a set ACT; of actions that can be performed
by i. For example, in a distributed system, an action send(x, j, i)—intuitively, this
action corresponds to i sending j the value of variable x—might be in ACT; if x is
a local variable of i. On the other hand, if x is not a local variable of i, then it would
usually be inappropriate to include send(x, j, i) in ACT;.

In keeping with our policy of viewing the environment as an agent (albeit one
whose state of knowledge is not of interest), we allow the environment to perform
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actions from a set ACT.. In message-passing systems, it is perhaps best to view
message delivery as an action performed by the environment. If we consider a
system of sensors observing a terrain, we may want to view a thunderstorm as an
action performed by the environment. For both the agents and the environment, we
allow for the possibility of a special null action A, which corresponds to the agents
or the environment performing no action.

Knowing which action was performed by a particular agent is typically not
enough to determine how the global state of the system changes. Actions performed
simultaneously by different agents in a system may interact. If two agents simulta-
neously pull on opposite sides of a door, the outcome may not be easily computed as
a function of the outcomes of the individual actions when performed in isolation. If
two processes try simultaneously to write a value into a register, it is again not clear
what will happen. To deal with potential interaction between actions, we consider
Jjoint actions. A joint action is a tuple of the form (a., aj, ..., a,), where a, is an
action performed by the environment and a; is an action performed by agent i.

How do joint actions cause the system to change state? We would like to asso-
ciate with each joint action (a., ay, ..., a,) a global state transformer T, where a
global state transformer is simply a function mapping global states to global states,
that is, 7 : G — G. Joint actions cause the system to change state via the asso-
ciated global state transformers; if the system is in global state s when the action
(2, at, ..., ay) is being performed, then the system changes its state to 7 (s). Thus,
whenever we discuss actions we will also have a mapping t that associates with
each joint action (a., ai, ..., a,), a global state transformer 7 (a., ay, ..., a,). The
mapping t is called the transition function. Note that our definition requires that
7(ae, a1, ..., a,)(Se, S1, ..., Sy) be defined for each joint action (a, ay, ..., a)
and each global state (s, s1, ..., s,). In practice, not all joint actions and all global
states are going to be of interest when we analyze a multi-agent system, since certain
combinations of actions or certain combinations of local states will never actually
arise. In such cases, we can let 7(a,, ay, ..., a,)(Se, 51, ..., Sy) be defined arbi-
trarily. Typically, we define t(A, ..., A) to be the no-op transformer ¢, where
ey 81,y ly) = (Lo, 81, ..., Lp).

Example 5.1.1 Let us return to the bit-transmission problem (Example 4.1.1). Re-
call that the sender S either sends its bit or does nothing. Thus, we can take ACT s,
the set of S’s actions, to be {sendbit, A}. Similarly, the set ACT g is {sendack, A}.
The environment determines whether a message is delivered or lost. Recall that we
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assumed that each message is either received in the same round that it is sent, or else
is lost. Thus, we view the environment as nondeterministically performing one of the
four actions of the form (a, b), where a is either delivers(current) or A g, while b is
either deliverg (current) or Ag. For example, if the environment performs an action
of the form (Ag, deliverg (current)), then R receives whatever message S sends in
that round, if there is one, but S does not receive any message, and if R did send
a message in that round, then that message is lost. It is easy to describe formally
the effect of each joint action on the global state so as to capture the intuitions just
described. We leave the details to the reader (Exercise 5.1). i

Example 5.1.2 In the previous example, the environment could either deliver the
message currently being sent by either S or R, or it could lose it altogether. In the
asynchronous message-passing systems considered in Section 4.4.6, the environment
has a wider repertoire of possible behaviors. For example, the environment can
decide to deliver a message an arbitrary number of rounds after it has been sent. It is
also useful to think of the environment in an a.m.p. system as doing more than just
deciding when messages will be delivered. Recall that in a.m.p. systems we make
no assumptions on the relative speeds of processes. This means that there may be
arbitrarily long intervals between actions taken by processes. One way to capture
this assumption is to allow the environment to decide when the process is allowed to
take an action.

More formally, in an a.m.p. system we assume that ACT . consists of actions a,
of the form (a1, ..., ac,), where a,; is either deliver; (current, j), deliver; (u, j),
go;, or nogo;. (The reader should note that i, j, and w are parameters, where i and j
range over processes, and p ranges over messages, whereas current is a dummy
parameter.) Intuitively, deliver; (current, j) has the same effect as deliver g (current)
in Example 5.1.1: any message sent by j to i in that round is received; deliver; (i, j)
means that i will receive the message u previously sent by j; go, means that process i
is allowed to perform an action (either an internal action or sending a message);
finally, nogo; means that i will neither receive a message nor perform an action.
The set ACT; of possible actions for process i consists of send actions of the form
send(u, j) and all the internal actions in INT;.

Recall that in Chapter 4 we took the state of each process in an a.m.p. system to
be its history, and said that the environment’s state records the events that have taken
place, but we did not describe the environment’s state in detail. Now that we have
formally defined what actions can be performed in a.m.p. systems, we can take the
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environment’s state to be the sequence of joint actions performed thus far. Recall that
a history is a sequence whose first element is an initial state and whose later elements
consist of nonempty sets with events of the form send(u, j, i), receive(u, j, i),
or int(a, i), where u is a message and a is an internal action. We say that the
event send (i, j, i) corresponds to the action send(u, j) by process i, and the event
int(a, i) corresponds to the internal action a by process i. The transition function t
simply updates the processes’ and the environment’s local states to reflect the actions

performed. Suppose that 7(a., ay, ..., a,)(Se, 51, ..., 8,) = (5., 8], ...,5,), and
a, = (@1, ..., ). Then (s,,s],...,s,) must satisfy the following constraints,
fori=1,...,n:

e s, is the result of appending (a,, ai, ..., a,) to S,

e if a,; = go; and a; is an internal action or a send action send(u, j), then slf is
the result of appending the event corresponding to a; to the history s;,

o if a,; = deliver;(current, j), a,j = go;, and a; is send(u, i), then s; is the
result of appending receive(u, j, i) to s;,

e if a,; = deliver; (i, j), then slf is the result of appending receive(u, j, i) to s;,
e in all other cases, s = ;.

Notice how the actions in a joint tuple interact. For example, unless a,; = go;, the
effect of a; is nullified; and in order for a message sent by j to i to be received by i
in the current round, we must have both a,; = go; and a,; = deliver;(current, j).
We chose message delivery to be completely under the control of the environment.
We could instead assume that when the environment chooses to deliver a message
from i to j, it puts it into a buffer (which is a component of its local state). In this
case, i would receive a message only if it actually performed a receive action. We
have chosen the simpler way of modeling message delivery, since it suffices for our
examples. I

These examples should make it clear how much freedom we have in choosing
how to model a system. The effect of a joint action will, of course, be very dependent
on our choice. For example, in the bit-transmission problem, we chose to record in
the local state of S only whether or not S has received an ack message, and not how
many ack messages S receives; the delivery of an ack message may have no effect
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on S’s state. If we had chosen instead to keep track of the number of messages S
received, then every message delivery would have caused a change in S’s state.
Ideally, we choose a model that is rich enough to capture all the relevant details, but
one that makes it easy to represent state transitions. As Example 5.1.2 shows, by
representing a process’s state in an a.m.p. system as its history, modeling the effect
of a joint action becomes quite straightforward.

5.2 Protocols and Contexts

Agents usually perform actions according to some protocol, which is a rule for
selecting actions. In Example 4.1.1, the receiver’s protocol involves sending an ack
message after it has received a bit from the sender.

Intuitively, a protocol for agent i is a description of what actions agent i may take,
as a function of her local state. We formally define a protocol P; for agent i to be a
function from the set L; of agent i’s local states to nonempty sets of actions in ACT ;.
The fact that we consider a set of possible actions allows us to capture the possible
nondeterminism of the protocol. Of course, at a given step of the protocol, only one
of these actions is actually performed; the choice of action is nondeterministic. A
deterministic protocol is one that maps states to actions, that is, it prescribes a unique
action for each local state. Formally, P; is deterministic if |P;(s;)| = 1 for each
local state s; € L;. We remark that if P; is deterministic, then we typically write
P;(s;) = a rather than P;(s;) = {a}. If we had wanted to consider probabilistic
protocols (which we do not here, because it would only complicate the exposition),
we would need to put a probability distribution on the set of actions that an agent can
perform at a given state. This would then generate a probability space on the set of
possible runs of the protocol.

Just as it is useful to view the environment as performing an action, it is also
useful to view the environment as running a protocol. We define a protocol for the
environment to be a function from L, to nonempty subsets of ACT,. For example,
in a message-passing system, we can use the environment’s protocol to capture the
possibility that messages are lost or that messages may be delivered out of order. If
all the agents and the environment follow deterministic protocols, then there is only
one run of the protocol for each initial global state. In most of our examples, the
agents follow deterministic protocols, but the environment does not.



168 Chapter 5 Protocols and Programs

While our notion of protocol is quite general, there is a crucial restriction: a
protocol is a function on local states, rather than a function on global states. This
captures our intuition that all the information that the agent has is encoded in his local
state. Thus, what an agent does can depend only on his local state, and not on the
whole global state. Our definition of protocol is so general that we allow protocols
that are arbitrary functions on local states, including ones that cannot be computed.
Of course, in practice we are typically interested in computable protocols. These
are protocols that are computable functions, that is, protocols for which there is an
algorithm that takes a local state as input and returns the set of actions prescribed by
the protocol in that state. (A full formalization of this notion is beyond the scope of
this book; see the notes at the end of the chapter.)

Processes do not run their protocols in isolation; it is the combination of the
protocols run by all agents that causes the system to behave in a particular way. We
define a joint protocol P to be a tuple (Py, ..., P,) consisting of protocols P;, for
each of the agents i = 1, ..., n. Note that while we did include the environment’s
action in a joint action, we do not include the environment’s protocol in a joint
protocol. This is because of the environment’s special role; we usually design and
analyze the agents’ protocols, taking the environment’s protocol as a given. In fact,
when designing multi-agent systems, the environment is often seen as an adversary
who may be trying to cause the system to behave in some undesirable way. In other
words, the joint protocol P and the environment protocol P, can be viewed as the
strategies of opposing players.

The joint protocol P and the environment’s protocol prescribe the behavior of all
“participants” in the system and therefore, intuitively, should determine the complete
behavior of the system. On closer inspection, the protocols describe only the actions
taken by the agents and the environment. To determine the behavior of the system,
we also need to know the “context” in which the joint protocol is executed. What
does such a context consist of? Clearly, the environment’s protocol P, should be
part of the context, since it determines the environment’s contribution to the joint
actions. In addition, the context should include the transition function 7, because it
is T that describes the results of the joint actions. Furthermore, the context should
contain the set Gy of initial global states, because this describes the possible states of
the system when execution of the protocol begins. These components of the context
provide us with a way of describing the environment’s behavior at any single step of
an execution.
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There are times when it is useful to consider more global constraints on the
environment’s behavior, ones that are not easily captured by P,, 7, and Gyg. To
illustrate this point, recall from Example 5.1.2 that in an a.m.p. system, we allow the
environment to take actions of the form (a., ..., a,;), where a,; is one of nogo;,
go;, deliver; (current, j), or deliver; (w, j). In an a.m.p. system, we can think of the
environment’s protocol as prescribing a nondeterministic choice among these actions
at every step, subject to the requirement that a message is delivered only if it has
been sent earlier, but not yet delivered. (See Example 5.2.4 for further discussion of
this issue.)

Now suppose that we consider an a.r.m.p. system, where all message delivery is
taken to be reliable. Note that this does not restrict the environment’s actions in any
given round; the environment can always postpone message delivery to a later round.
The most straightforward way to model an a.r.m.p. is to leave the environment’s
protocol unchanged, and place an additional restriction on the acceptable behaviors
of the environment. Namely, we require that all messages sent must eventually be
delivered by the environment.

There are a number of ways that we could capture such a restriction on the envi-
ronment’s behavior. Perhaps the simplest is to specify an admissibility condition W
on runs that tells us which runs are “acceptable.” Formally, W is a set of runs; r € W
if r satisfies the condition V. Notice that while the environment’s protocol can be
thought of as describing a restriction on the environment’s behavior at any given
point in time, the reliable delivery of messages is a restriction on the environment’s
“global” behavior, namely, on the acceptable infinite behaviors of the environment.
Indeed, often the admissibility condition W can be characterized by a temporal for-
mula, and the runs in W are those that satisfy this formula. For example, to specify
reliable message-passing systems, we could use the admissibility condition Rel =
{r | all messages sent in r are eventually received}. Let send(u, j, i) be a proposi-
tion that is interpreted to mean “message u is sent to j by i and let receive(t, i, j)
be a proposition that is interpreted to mean “message u is received from i by j.”
Then a run r is in Rel precisely if O(send(u, j, i) = <receive(u, i, j)) holds at
(r, 0) (and thus at every point in r) for each message w and processes i, j. Another
admissibility condition of interest is Fair, where a run is in Fair exactly if every
message that is repeatedly sent in the run is eventually delivered. Thus, a run is in
Fair if it satisfies the formula (O Csentbit = Orecbit) A (OCsentack = Orecack).
Yet another condition that arises frequently is True, the condition consisting of all
runs; this is the appropriate condition to use if we view all runs as “good.”
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Formally, we define a context y to be a tuple (P,, Go, T, ¥), where P, : L, —
24CTe _ (@} is a protocol for the environment, Gy is a nonempty subset of G, 7 is
a transition function, and W is an admissibility condition on runs. (Notice that by
including 7 in the context, we are also implicitly including the sets L., L1, ..., L,
of local states as well as the sets ACT ., ACTj, ...,ACT, of actions, since the set
of joint actions is the domain of t and the set of global states is the domain of the
transition functions yielded by T. To minimize notation, we do not explicitly mention
the state sets and action sets in the context. We shall, however, refer to these sets and
tothesetG = L, x L1 X - - - X L, of global states as if they were part of the context.)
It is only in a context that a joint protocol describes the behavior of a system. As we
shall see later on, the combination of a context y and a joint protocol P for the agents
uniquely determines a set of runs, which we shall think of as the system representing
the execution of the joint protocol P in the context y.

Contexts provide us with a formal way to capture our assumptions about the
systems under consideration. We give two examples of how this can be done here;
many others appear in the next few chapters.

Example 5.2.1 In the bit-transmission problem (Example 4.1.1) and in a.m.p. sys-
tems (Example 5.1.2), we assumed that the environment keeps track of the sequence
of joint actions that were performed. We can formalize this in terms of contexts. We
say that (P,, Go, T, W) is a recording context if

1. the environment’s state is of the form (..., &, ...), where # is a sequence of
joint actions,

2. in all global states in Gy, the sequence 4 of joint actions in the environment’s
stateis the empty sequence ( ) (so that no actions have been performed initially),

and
3. ift(ac, at, ..., an)(Se, S1, ..., 8n) = (s, 57, ..., s;,), then the sequence A’ of
joint actions that appears in s, is the result of appending (a., ai, ..., a,) to

the corresponding sequence & of s,.

For another example, consider message-passing systems, as discussed in Sec-
tion 4.4.5. Fix a set X; of initial states for process i, a set INT; of internal actions for
process i, and a set MSG of messages. A context (P,, Go, T, V) is a message-passing
context (over X;, INT;, and MSG, fori = 1,...,n)if
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1. processi’s actions are sets whose elements are either in /NT; or have the form
send(u, j) for u € MSG,

2. process i’s local states are histories,

3. for every global state (se, 1, ...,8,) € Go, we have that s; € ¥; fori =
1,...,n,and
4. if t(ac,ar, ..., an)(Se, S15 ..., 8n) = (55,587, ...,5,), then either s/ = s; or

5] is the result of appending to s; the set consisting of the events corresponding
to the actions in a;, perhaps together with some receive events that correspond
to messages that were sent earlier to i by some process j. Intuitively, the
state s; is the result of appending to s; the additional events that occurred from
process i’s point of view in the most recent round. These consist of the actions
performed by i, together with the messages received by i. We allow s/ = s;
to accommodate the possibility that the environment performs a nogo; action,
as in Example 5.1.2.

Notice that we have placed no restrictions on P,, W, or the form of the environment’s
local states here, although in practice we often take message-passing contexts to be
recording contexts as well. (In particular, as we shall see in Example 5.2.4, this is
the case for contexts that capture a.m.p. systems.) I

In many cases we have a particular collection @ of primitive propositions and a
particular interpretation r for @ over G in mind when we define a context. Just as
we went from systems to interpreted systems, we can go from contexts to interpreted
contexts; an interpreted context is a pair (y, ;) consisting of a context y and an
interpretation 7. (We do not explicitly include @ here, just as we did not in the case
of interpreted systems and Kripke structures.)

We have already observed that when describing a system, we often have some
flexibility in our choice of global states. We also have flexibility in describing the
other components of a context. We typically think of Gy as describing the initial
conditions, while t and P, describe the system’s local behavior, and W describes all
other relevant aspects of the environment’s behavior. To describe the behavior of the
system we have to decide what the actions performed by the environment are (this
is part of P,) and how these actions interact with the actions of the agents (this is
described by 7).
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There is often more than one way in which this can be done. For example,
we chose earlier to model message delivery by an explicit deliver action by the
environment rather than as the direct result of a send action by the agents. Although
we motivated the admissibility condition W by the need to be able to capture global
aspects of the environment’s behavior, we have put no constraints on W. As a result,
it is possible (although not advisable) to place much of the burden of determining the
initial conditions and local behavior of the environment on the choice of W. Thus,
for example, we could do away with Gy altogether, and have W consist only of runs
whose initial state is in Gy.

In a “reasonable” context, we expect the components to be orthogonal. In par-
ticular, we expect P, to specify local aspects of the environment’s protocol and ¥ to
capture the more global properties of the environment’s behavior over time (such as
“all messages are eventually delivered”). We shortly suggest a condition intended to
capture this notion of reasonableness.

Intuitively, a protocol generates runs when it executes in a particular context.
We say that a run r is consistent with a joint protocol P = (P1, ..., P,) in context
y = (Pe, Go, T, W) if

1. r(0) € Gy (so r(0) is a legal initial state),

2. for al m > 0, if r(m) = (s¢,51,--.,5,), then there is a joint action
(@¢,at1,...,a,) € Py(s.) X Pi(s1) X --+ x Py(sy) such that r(m + 1) =
(8¢, a1, ..., a)(r(m)) (sor(m + 1) is the result of transforming r(m) by a
joint action that could have been performed from r (m) according to P and P,),
and

3. r € W (so that, intuitively, r is admissible according to W).

Thus, r is consistent with P in context y if r is a possible behavior of the system
under the actions prescribed by P in y. We say that r is weakly consistent with P in
context y if it satisfies the first two of the three conditions required for consistency,
but is not necessarily in W. Intuitively, this means that r is consistent with the step-
by-step behavior of P in context y. Note that while we are always guaranteed to
have runs that are weakly consistent with P in y, it is possible that there is no run r
that is consistent with P in y. This happens precisely if there is no run in W that is
weakly consistent with P in y. In such a case we say that P is inconsistent with y;
otherwise, P is consistent with y. For example, all joint protocols are inconsistent
with a context y in which W contains no run whose initial state is in Gy.
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Intuitively, a situation where the joint protocol is inconsistent with the context
is an indication of bad modeling. It indicates that the admissibility condition W is
“unreasonable.” The condition W is “reasonable” if it does not rule out prefixes that
are weakly consistent with any protocol P in context y. Formally, we say that a
context y = (P, Go, T, V) is nonexcluding if, for every protocol P and all times m,
if run r is weakly consistent with P in the context y and p is the prefix of r through
time m, then there is a run ' with prefix p that is consistent with P in y. (In
particular, this means that r’ € W.) It is almost immediate from the definition that
every protocol is consistent with a nonexcluding context. Thus, using nonexcluding
contexts guarantees that we avoid anomalies like inconsistent protocols.

Nonexcluding contexts arise quite naturally. For one thing, a context y =
(P,, Go, T, W) is guaranteed to be nonexcluding if W is True. More generally, in
many contexts of interest, the admissibility condition constrains only the “limit” be-
havior of the run. This is the case, for example, with the conditions Rel and Fair
in message-passing contexts. In such cases, it is often not hard to show that the
context under consideration is nonexcluding. Just having an admissibility condition
like Fair or Rel is not enough, however, to guarantee that a context is nonexcluding
(see Exercise 5.2). The property of being nonexcluding is a property of the context
y = (Pe, Go, T, V) as a whole and not a property of W by itself. Nevertheless, while
it is easy enough to construct contexts that are not nonexcluding, in almost all of our
examples, the contexts are in fact nonexcluding.

We say that a system R (resp., an interpreted system Z = (R, 7)) iS consistent
with a protocol P in context y (resp., interpreted context (y, m)) ifeveryrunr € R
is consistent with P in y. Because systems are nonempty sets of runs, this requires
that P be consistent with y. Typically, there will be many systems consistent with
a protocol in a given context. However, when we think of running a protocol in a
given context, we usually have in mind the system where all possible behaviors of
the protocol are represented. We define R™ (P, y) to be the system consisting of all
runs consistent with P in context y, and call it the system representing protocol P in
context y. Similarly, we say that '’ (P, y, w) = (R™P(P, y), ) is the interpreted
system representing P in interpreted context (y, ). Notice that R is consistent
with Piny ift R € R’ (P, y), so that R’ (P, y) is the maximal system consistent
with P in y.

While we are mainly interested in the (interpreted) system representing P in a
given (interpreted) context, there is a good reason to look at other systems consistent
with P in that context as well. We may start out considering one context y, and then
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be interested in what happens if we restrict y in some way. For example, we may
wish to restrict attention to a particular set of initial states, or may wish to see what
happens if we limit the behavior of the environment. The following definitions make
precise the idea of “restricting” a context . We say that the environment protocol
P] is a restriction of P,, written P, T P, if P)(se) < Pe(se) holds for every
local state s, € L,. We say that a context y’ = (P, G, 7, W) is a subcontext of
Y = (Pe, Go, T, W), denoted by y' C y,if (a) P, E P, (b) Gy € Go,and (c) ¥’ C V.
Similarly, we say that an interpreted context (y’, 7r) is a subcontext of (y, &) if y’ is
a subcontext of . As the following lemma shows, the systems consistent with P in
context y are precisely those that represent P in some subcontext of y.

Lemma 5.2.2 R is consistent with P in context y if and only if R represents P in
some subcontext y' C y.

Proof If R represents P in the subcontext ¥y’ = y, then it is easy to see that
every run of R must be consistent with P in context y. Thus, R is consistent
with P in context y. Conversely, suppose that R is consistent with P in context
y = (P, Go, T, V). Let yr = (P., Go, T, R). Since R must be a subset of W, it
follows that ¥z C y. Itis easy to see that R represents P in yg. il

Example 5.2.3 The sender and receiver can also be viewed as following protocols
in the bit-transmission problem. Recall from Example 4.1.1 that the sender S is in
one of four states—O0, 1, (0, ack), or (1, ack)—and its possible actions are sendbit
and A. Its protocol Pé” is quite straightforward to describe:

o PY(0) = PY(1) = sendbit
o P2(0,ack) = P2'(1, ack) = A.

This is a formalization of the informal description that we gave in Chapter 4; the
sender sends its bit to the receiver until it receives an acknowledgment, at which
point it stops sending (and does nothing).

Recall that the receiver R is in one of three states—A, 0, or 1—and its possible
actions are sendack and A. The receiver’s protocol Plgt is

o PX(M) = A
e P2I(0) = P5(1) = sendack.

We now need to describe a context for the joint protocol P¥ = (P&, pPhl).
Recall that the environment’s state is a sequence that records the events taking place
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in the system, and the environment’s four actions are of the form (a, b), where a is
either deliverg(current) or Ag, while b is either deliverg (current) or Ag. We view
the environment as following the nondeterministic protocol Peb’ , according to which,
at every state, it nondeterministically chooses to perform one of these four actions.
The set Gy of initial states is the cross product {()} x {0, 1} x {A}; that is, initially
the environment’s and the receiver’s states record nothing, and the sender’s state
records the input bit. The context capturing the situation described in Example 4.1.1
is yb’ = (Pf’ , Go, T, True), where the definition of T was left as an exercise to
the reader (Exercise 5.1). Moreover, the system RP" described in Example 4.1.1 is
precisely R (PP, ).

When analyzing the protocol of Example 4.1.1, we may want to restrict our
analysis to the situation in which the system’s communication channel is fair in the
sense that every message sent infinitely often is eventually delivered. In our case
this would imply that R eventually does receive S’s bit, and S eventually receives
an ack message sent by R. One motivation for restricting to runs that are fair in this
sense comes from the following observation: if we assume that there is a positive
probability of atleast o« > 0 of a given message being delivered in any given round (if
there is a message that can be delivered), and that these probabilities are independent
from round to round, then the set of runs that are fair in this sense has probability
one. To capture this, we use the admissibility condition Fair defined earlier. Let yé’fir
be the context that results from replacing True in ' by Fair. It is easy to check that
)(f%r is nonexcluding (Exercise 5.3). The system R/%" that represents P?' in a fair

setting is then R"P (P?*, ny’l-r). |

Example 5.2.4 We now consider how an a.m.p. system R(V1, ..., V;) can be cap-
tured by contexts and protocols. Since a.m.p. systems are message-passing systems,
we would expect an a.m.p. system to result from running a protocol in a message-
passing context that, without loss of generality, is also a recording context (as defined
in Example 5.2.1). What other constraints on contexts are needed to capture a.m.p.
systems?

Fori =1, ..., n, define X; to be the set of first elements of histories in V;, and
let Go = {()} x £; x --- x ¥,. Consider the context y“™ = (P, Gy, t, True),
where the agents’ actions, the environment’s action, and the transition function 7 are
defined as in Example 5.1.2, and the environment’s protocol Py simply nondeter-
ministically chooses one of the environment’s actions at every point, subject to the
condition that deliver; (i, j) can be chosen only if the message  was sent earlier by j
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toi, and not yet received. (Note that the environment can determine this by looking at
its state, since its state records the sequence of actions that have been performed thus
far.) It is not hard to show that every system of the form R"? (P, y“"P) is an a.m.p.
system (Exercise 5.4). MP1 and MP3 follow from the definition of Gy and from
the fact that y " is a message-passing context; MP2 follows from fact Py never
delivers a message unless it was sente earlier. Finally, the nondeterminism of P;""
guarantees the desired asynchrony; for example, it allows arbitrary stuttering.

Does every a.m.p. system have this form? To make this precise, first note that
we can view the sets V7 ..., V, as defining protocols Pq, ..., P,. The idea is that
P; (h) consists of all allowable actions according to the set V;. To formalize this idea,
if h € V; and a € ACT;, denote by & - a the history that results from appending to &
the event a corresponding to the action a. Define P;(h) = {a € ACT; |h -a € V;}.

Let P (Vy, ..., V) be the joint protocol (Py, ..., P,), thatis, PP (Vy, ..., V;)
is the joint protocol that corresponds to the sets Vi, ..., V, of histories.
While systems of the form R™P (PP (Vy, ..., V), y¥™) form an interesting

subclass of a.m.p. systems, not every a.m.p. system has this form. The problem is
that P, allows the environment to choose completely nondeterministically at every
step among all possible actions. Thus, it cannot capture more “targeted” behavior
on the part of the environment, including malicious and adversarial behavior. For
example, there are sets V7, ..., V, satisfying MP1-3 such that in no history of V;
does process 1 receive more than one message from process 2, no matter how many
messages process 2 actually sends. We can think of V; as encoding an environment
that blocks all messages from process 2 to process 1 after the first message. Note
that, in R(Vy, ..., V;), process 1 knows after it gets a message from process 2 that
it will not receive any further messages from process 2. Similarly, there are sets
V1, ..., V, where process 1 receives message w only after it has received u’, or
where only process 1’s odd-numbered messages are delivered.

To capture this behavior, we need to allow environment protocols other than just
PP Let P51 e an arbitrary (possibly nondeterministic) protocol for delivering
messages to i and scheduling i to take actions. The only actions the environment can
perform according to PeSChed’i are deliver; (current, j), deliver; (u, j), and go;. Of
course, deliver; (i, j) can be performed only if i was sent earlier and not delivered
yet. The protocol P’ ched:i -an be used to encode the environment’s delivery behavior
with respecttoi. For example, if process 1 receives only one message from process 2,
then P:"d-!" qoes not perform the actions deliver (i, 1) or delivers(current, 1) in
any environment state where process 1 has already received a message from process 2.
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Let Pei be a protocol that chooses nondeterministically in environment state s,
between nogo; and pichedsi(q ) and let P, be (P!,..., P, that is, P.(s,) =
(Pel (Se)s ..., P}(se)). Call an environment protocol of this form an asynchronous
environment protocol. An asynchronous context is one of the form (P, Gy, t, True),
where P, is an asynchronous environment protocol and Gy and t are as in the
definition of y“™. Since it is always possible that P!(s,) = nogo; for an asyn-
chronous environment protocol P,, asynchrony is captured by such a protocol. In-
deed, it can be shown that R(V1, ..., V,) is an a.m.p. system iff R(Vy, ..., V,) =
R"™P (PP (Vy, ..., V), y) for some asynchronous context y (Exercise 5.5).

The protocol P, is only one out of many possible asynchronous environment
protocols. Nevertheless, it captures much of what people have in mind when they
speak of purely asynchronous systems. This makes it worth trying to understand
the properties of systems of the form R"” (P, y¥"P). It turns out that they in fact

have quite an elegant characterization. Given a tuple (V1, ..., V,) of prefix-closed
sets of histories, we say that a tuple (hy,...,h,) € Vi x --- x V,, is compatible
if receive(u, j,i) € h; implies that send(u, i, j) € hj. That is, every message
that i receives from j in h; was sent by j in hj. (Vy, ..., Vy) is delivery closed if

for all compatible tuples (A1, ..., hy) € Vi X --- x V, if send(u,1, j) € hj and
receive(i, j,i) ¢ hji, then h; - receive(u, j,i) € V;. Intuitively, if (Vi,..., V) is
delivery closed, then every message that has been sent can be delivered at any instant.
It is now not hard to show that (V1, ..., V;,) is delivery closed iff R(Vy,..., V) =
RP (PP (Vy, ..., V), y¥") (Exercise 5.6).

If we want to consider a.r.m.p. systems rather than a.m.p. systems, we can
simply replace the admissibility condition True in an asychronous context y by the
condition Rel discussed earlier. We may also want to require that the environment
follows a fair schedule, in the sense that there is no run in which a process is blocked
from moving from some point on. Formally, we can capture this by the admissibility
condition FS that holds of a run if there are infinitely many go; actions, for each
process i. Thus, if we add a proposition go; that is true at a state exactly if a go;
action was performed by the environment in the preceding round, then FS can be
characterized by the formula OCgo; A ... A OCgo,,. 1

Example 5.2.5 Recall the game-theoretic framework of Section 4.4.2. There, we
described systems that model all possible plays of a game by including a run for
each path in the game tree. We did not, however, attempt to model the strategies
of the players, which are the major focus in game theory. A strategy is a function
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that tells a player which move to choose based on the player’s “current information”
about the game. (In game theory, such strategies are called pure, as opposed to mixed
strategies, which are probability distributions over pure strategies.) In our model, a
player’s current information is completely captured by his local state; thus, a strategy
for player i is simply a deterministic protocol for player i, that is, a function from
his local state to actions.

Consider the game G in Section 4.4.2. What are the possible strategies of
player 1 in this game? Because player 1 takes an action only at the first step, he
has only two possible strategies: “choose a;” and “choose a;.” We call these two
strategies o1 and o2. Player 2 has four strategies in the first game, since her choice of
action can depend on what player 1 did. These strategies can be described by the pairs
(b1, by), (b1, b2), (b, by), and (by, by). The first strategy corresponds to “choose by
no matter what.” The second strategy corresponds to “choose b if player 1 chose aj,
and choose by if player 1 chose a;.” We can similarly describe the third and fourth
strategies. Call these four strategies o1y, 012, 021, and 023. Even though there are
eight pairs of strategies (for the two players), there are only four different plays. For
example, the pair (o1, o11) and the pair (o1, 012) result in the same play: (ap, by).

Recall that the system R | that corresponds to the game G contains four runs, one
run for each path in the game tree. The local states of the players essentially consist
of sequences of moves in the game. For example, the local state of both players at
the start is the empty sequence () and their local state after player 1 chooses aj is
the sequence (aj). We would like to define protocols for the players that capture the
strategies that they follow; however, there is a difficulty. After player 1 chooses aj,
player 2’s local state is (a1). Thus, a deterministic protocol would tell player 2 to
choose either by or by. Butin Ry, player 2 chooses by in one run and b; in another.
Does this mean that player 2 is not following a deterministic protocol? No. Rather, it
means that our description of player 2’s local state is incomplete; it does not include
everything that determines her choice of action.

We now present a system R that enriches the players’ local states so that they
include not only the history of the game, but also a representation of the strategy of
the player. Thus, the set of local states of player 1 includes states such as (o7q, ()),
(o1, (a1, b1)), (02, (a2)), etc. Similarly, the set of local states of player 2 includes
states such as (011, ()), (012, (a2)), (021, (a1, b1)), etc. Again, all the relevant in-
formation in the system is captured by the players’ local states, so we can take the
environment’s state to be the constant A. There are eight initial states, corresponding
to all pairs of strategies, so Gy consists of these eight states. The actions of the players
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are aj, ap, by, by, and A; the last is the null action and the other actions have the
obvious meaning. The environment plays no role here. Its only action is A; that is,
P.(A) = A. We leave it to the reader to define the transition function 7 in this system
formally (see Exercise 5.7). The context y = (Pe, Go, T, True) describes the setting
in which this game is played.

We can now define the protocols for the players; these protocols essentially say
“choose an action according to your strategy.” The protocol P; for player 1 is as
follows:

e Pi(oj, () =a;,fori € {1,2},
e Pi(oj,h)=Aith# (), fori € {1,2}.
The protocol P, for player 2 is as follows:
o P(0ij, (ar)) =b;, fori, j € {1,2},
o P(0ij, (a2)) = bj, fori, j € {1, 2},
o Py(ojj,h) = Aif h ¢ {(a;), (a2)}, for i, j € {1,2}.

The system R consists of all runs that start from an initial state and are consistent
with the joint protocol P = (Py, P»), that is, R| = R™P(P, y).

How does the game G, of Section 4.4.2 get modeled in this more refined ap-
proach? Again, player 1 has two possible strategies, o1 and o0;. But now player 2
also has only two strategies, which we call o] and ;). Running o{, player 2 chooses
action by, and running o, she chooses by. There is no strategy corresponding to o2,
since player 2 does not know what action player 1 performed at the first step, and thus
her strategy cannot depend on this action. We can define a system R/, that models
this game and captures the players’ strategies (Exercise 5.7).

The approach to modeling game trees just discussed, where the players’ local
states contain information about what strategy the player is using, is somewhat more
complicated than that discussed in Section 4.4.2. It does, however, offer some advan-
tages. Because it captures the strategies used by the players, it enables us to reason
about what players know about each other’s strategies, an issue of critical importance
in game theory. For example, a standard assumption made in the game-theory liter-
ature is that players are rational. To make this precise, we say that a strategy o for
player i (strictly) dominates a strategy o’ if, no matter what strategy the other players
are using, player i gets at least as high a payoff using strategy o as using strategy o’,
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and there is some strategy that the other players could use whereby i gets a strictly
higher payoff by using o than by using o’. According to one notion of rationality, a
rational player never uses a strategy if there is another strategy that dominates it. For
example, in the game G, strategy o1 dominates all other strategies for player 2, so
that if player 2 were rational, then she would use o7153.

To reason formally about rationality, we introduce the propositions rational;,
for i = 1,2, where rational; holds at a point if player i’s strategy at that point is
not dominated by another strategy. For player 1 to know that player 2 is rational
means that K (rational,) holds. The players can use their knowledge of rationality
to eliminate certain strategies. For example, in the game G, if player 1 knows that
player 2 is rational, then he knows that she would use the strategy o12. With this
knowledge, o1 dominates o5 for player 1. Thus, if player 1 is rational, he would then
use o1. (Notice that if player 1 thinks player 2 is not rational, it may make sense for 1
to use o> instead, since it guarantees a better payoff in the worst case.) It follows that
if players 1 and 2 are both rational, and player 1 knows that player 2 is rational, then
their joint strategy must be (o1, o12) and the payoffis (3, 4). By way of contrast, even
if we assume that rationality is common knowledge in the game G, (an assumption
that is frequently made by game theorists), it is easy to see that neither player 1 nor
player 2 has a dominated strategy, and so no strategy for either player is eliminated
because of a rationality assumption. il

The previous examples show how we can view a context as a description of a
class of systems of interest. The context describes the setting in which a protocol
can be run, and by running distinct protocols in the same context we can generate
different systems, all of which share the characteristics of the underlying context. We
will see several examples of classes of systems described by contexts in Chapter 6.

5.3 Programs

As discussed earlier, a protocol is a function from local states to sets of actions. We
typically describe protocols by means of programs written in some programming
language. Consider the receiver R in Example 4.1.1, which starts sending an ack
message after it has received a bit from the sender S. This can be described by a
program such as “if recbit do sendack” (recall from Example 4.2.1 that recbit is a
primitive proposition that holds at points where R has received S’s message). The
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essential feature of this statement is that the program selects an action based on the
result of a test that depends solely on the local state.

We now describe a simple programming language, which is still rich enough to
describe protocols, and whose syntax emphasizes the fact that an agent performs
actions based on the result of a test that is applied to her local state. A (standard)
program for agent i is a statement of the form:

case of
if t; do a;
if 1, do ap

end case

where the #;’s are standard tests for agent i and the a;’s are actions of agent i
(i.e., aj € ACT;). (We call such programs “standard” to distinguish them from the
knowledge-based programs that we introduce in Chapter 7. We typically omit the
case statement if there is only one clause.) A standard test for agent i is simply a
propositional formula over a set ®; of primitive propositions. Intuitively, once we
know how to evaluate the tests in the program at the local states in L;, we can convert
this program to a protocol over L;: at a local state ¢, agent i nondeterministically
chooses one of the (possibly infinitely many) clauses in the case statement whose
test is true at £, and executes the corresponding action.

We want to use an interpretation 7 to tell us how to evaluate the tests. However,
not just any interpretation will do. We intend the tests in a program for agent i to
be local, that is, to depend only on agent i’s local state. It would be inappropriate
for agent i’s action to depend on the truth value of a test that i could not determine
from her local state. We say that an interpretation = on the global states in G is
compatible with a program Pg; for agent i if every proposition that appears in Pg;
is local to i in the sense described in Section 4.2; that is, if g appears in Pg;, the
states s and s” are in G, and s ~; s’, then 7w (s)(q) = 7(s")(q). If ¢ is a propositional
formula all of whose primitive propositions are local to agent i, and £ is a local
state of agent i, then we write (i, £) |= ¢ if ¢ is satisfied by the truth assignment
mw(s), where s = (s¢, 51, ..., Sp) 1S a global state such that s; = £. Because all the
primitive propositions in ¢ are local to i, it does not matter which global state s we
choose, as long as i’s local state in s is £. Given a program Pg; for agent i and an
interpretation 77 compatible with Pg;, we define a protocol that we denote Pg” by
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setting
{aj |, &) =1} i {jl@m O =1} #9

Po” (¢) =
TO=1 i )| (r. ) = 1) = 0.

Intuitively, Pg7 selects all actions from the clauses that satisfy the test, and selects
the null action A if no test is satisfied. In general, we get a nondeterministic protocol,
since more than one test may be satisfied at a given state.

Many of the definitions that we gave for protocols have natural analogues for
programs. We define a joint program to be a tuple Pg = (Pgy, ..., Pg,), where Pg;
is a program for agent i. We say that an interpretation  is compatible with Pg if 7
is compatible with each of the Pg;’s. From Pg and = we get a joint protocol Pg" =
(Pg’f ,...,Pgl). We say that an interpreted system Z = (R, ) represents (resp.,
is consistent with) a joint program Pg in the interpreted context (y, m) exactly if &
is compatible with Pg and 7 represents (resp., is consistent with) the corresponding
protocol Pg” in (y, ). We denote the interpreted system representing Pg in (y, )
by I’ (Pg, y, w). Of course, this definition only makes sense if 7 is compatible
with Pg. From now on we always assume that this is the case.

Notice that the syntactic form of our standard programs is in many ways more
restricted than that of programs in common programming languages such as C or
FORTRAN. In such languages, one typically sees constructs such as for, while,
or if...then...else. .., which do not have syntactic analogues in our formalism.
The semantics of programs containing such constructs depends on the local state
containing an implicit instruction counter, specifying the command that is about to
be executed at the current local state. Since we model the local state of a process
explicitly, it is possible to simulate these constructs in our framework by having an
explicit variable in the local state accounting for the instruction counter. The local
tests 7; used in a program can then reference this variable explicitly, and the actions a;
can include explicit assignments to this variable. Given that such simulation can be
carried out in our framework, there is no loss of generality in our definition of standard
programs.

It is easy to see that every protocol is induced by a standard program if we have a
rich enough set of primitive propositions (Exercise 5.8). Asaresult, our programming
language is actually more general than many other languages; a program may induce
a non-computable protocol. Typically, however, we are interested in programs that
induce computable protocols. In fact, standard programs usually satisfy a stronger
requirement: they have finite descriptions, and they induce deterministic protocols.
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Example 5.3.1 Let us return to the bit-transmission problem yet again. We saw
the sender S’s protocol in Example 5.2.3. The sender S can be viewed as running
the following program BT g, which uses the proposition recack that we introduced in
Example 4.2.1:

if —recack do sendbit.

(Note that if recack holds, then, according to our definitions, the action A is selected.)
Similarly, the receiver R can be viewed as running the following program BTg:

if recbit do sendack.

Let BT = (BTg, BTg). Recall that we gave an interpretation 77 in Example 4.2.1
describing how the propositions in BTg and BTy are to be interpreted. It is easy to

see that 7% is compatible with BT and that BT™ " is the joint protocol P?* described
in Example 5.2.3 (Exercise 5.9). 1

5.4 Specifications

When designing or analyzing a multi-agent system, we typically have in mind some
property that we want the system to satisfy. Very often we start with a desired
property and then design a protocol to satisfy this property. For example, in the bit-
transmission problem the desired property is that the sender communicate the bit to
the receiver. We call this desired property the specification of the system or protocol
under consideration. A specification is typically given as a description of the “good”
systems. Thus, a specification can be identified with a class of interpreted systems,
the ones that are “good.” An interpreted system Z satisfies a specification o if it is
in the class, thatis, if 7 € o.

Many specifications that arise in practice are of a special type that we call run-
based. A run-based specification is a specification that is given as a property of runs.
Quite often run-based specifications can be expressed using temporal formulas. A
system is said to satisfy a run-based specification if all its runs do. For example, a
possible specification for the bit-transmission problem is: “the receiver eventually
receives the bit from the sender, and the sender eventually stops sending the bit”; this
can be expressed as Crechit A OO—sentbit. The truth of this specification can be
decided for each run with no consideration of the system in which the run appears.

Although run-based specifications arise often in practice, there are reasonable
specifications that are not run based. For example, in the muddy children puzzle, the
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natural specification of the children’s behavior is: “a child says ‘Yes’ if he knows
whether he is muddy, and says ‘No’ otherwise.” This specification is given in terms
of the children’s knowledge, which depends on the whole system and cannot be
determined by considering individual runs in isolation. We view such a specification
as a knowledge-based specification. More generally, we call a specification that is
expressible in terms of epistemic (and possibly other) modal operators a knowledge-
based specification. Unlike run-based specifications, which specify properties of
runs, knowledge-based specifications specify properties of interpreted systems.

What should it mean for a protocol P to satisfy a specification o in an interpreted
context (y, w)? We say that P satisfies o in (y, ), or is correct with respect to o in
(y, m), precisely if the interpreted system representing P in (y, 7r) satisfies o; that
is, if I'P (P, y, w) € 0.

We are often interested in the correctness of a protocol not just with respect to
one context, but with respect to some collection I of contexts. This collection of
contexts corresponds to the various settings in which we want to run the protocol.
Typically, the contexts in I are subcontexts of a single context y, in the sense defined
in Section 5.2. This leads us to consider a stronger notion of correctness: We say P
strongly satisfies o in (y, ), or P is strongly correct with respect to o in (y, ), if,
for every subcontext y’ C y and every interpreted system Z, if Z represents P in y’,
then Z satisfies . That is, P is strongly correct with respect to o in (y, ) exactly
if P is correct with respect to o in (y’, ) for every subcontext y’ of .

There is one important case where correctness and strong correctness coincide:
when o is a run-based specification (Exercise 5.10). This follows from the fact a
system is consistent with a protocol if and only if it is a subset of the unique system
representing the protocol. In general, of course, correctness and strong correctness
do not coincide. When they do not coincide, it can be argued that strong correctness
may be too strong a notion. After all, even if we are interested in proving correctness
with respect to certain subcontexts of i, we are not interested in all subcontexts of y.
In practice, however, it is often just as easy to prove strong correctness with respect
to a context y as it is to prove correctness for a restricted set of subcontexts of y.

As before, all our definitions for protocols have natural analogues for programs.
In particular, we say that a program Pg (strongly) satisfies o in an interpreted context
(y, ) if the protocol Pg”™ (strongly) satisfies o in the interpreted context (y, 7).
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Example 5.4.1 Let o’ be the run-based specification for the bit-transmission prob-
lem described earlier: $recbit AOO—sentbit. In Example 5.3.1, we described a stan-
dard program BT = (BTg, BTg) for this problem. We also described an interpreted
context (%, ") for BT. It is easy to see that BT does not satisfy o’ in (%, 7%,
for there are runs consistent with BT™ in % in which the messages sent by S are
never received by R. As we observed earlier, however, we are often interested in
assuming that the communication channel is fair. Recall from Example 5.2.3 that
ny’ir is the result of replacing the admissibility condition True in % by Fair. Thus,

yf’;’ir differs from %" in that it ensures that communication delivery satisfies the fair-

ness condition. It is not hard to verify that BT does indeed satisfy o’ in (yf%r, 7Pt

(Exercise 5.11). Since o’ is a run-based specification, this means that BT strongly
satisfies o’ as well. It thus follows that as long as the communication channel is fair,
BT works fine.

We can also give a knowledge-based specification for the bit-transmission
problem. Let o” be the knowledge-based specification: “eventually S knows
that R knows the value of the bit, and S stops sending messages when it knows
that R knows the value of the bit.” Using our language, we can express o” as
OKsKpr(bit) A O(KsKRg(bit) = —(Osentbit). This specification is more abstract
than o/, because it does not refer to the manner in which the agents gain their knowl-
edge. It is not hard to see that BT satisfies o’ in (Vf%r’ %) (Exercise 5.11). BT,

however, does not strongly satisfy o’ in this context. To prove this, let bek’ be the
context where it is common knowledge that S’s initial value is 1, and the communi-
cation channel is fair. That is, ycbk’ is just like yfl;’l.r, except that the only initial state

is (A, 1, A). Clearly we have yﬁ(’ C V}Z'r In this context, the sender knows from the
outset that the receiver knows the value of the bit. Nevertheless, following BT, the
sender would send the bit to the receiver in the first round, and would keep sending
messages until it receives an acknowledgment. This does not conform to the require-
ment made in ¢” that if S knows that R knows the value of the bit, then S does not
send a message. It follows that BT does not satisfy o’ in (ycbkt, 7). An advantage
of o’ is that it can be satisfied without the sender having to send any message in
contexts such as (ycbk’ , ") in which the value of the initial bit is common knowledge.

Notice that the specification o” is not run-based. To tell whether O K g K g (bit)
holds, we need to consider the whole system, not just a run. Knowledge-based
specifications such as o” are quite important in practice. If a system satisfies o”,
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then we know that in a certain sense no unnecessary messages are sent; this is an
assurance we do not have if we know only that the system satisfies o’. Il

Exercises

5.1 Give a formal description of the effect of each joint action as a global state
transformer in the system corresponding to the bit-transmission problem described
in Examples 4.1.1 and 5.1.1.

5.2 Define P,, Go, and t such that neither (P,, Go, t, Fair) nor (P, Go, T, Rel) is
a nonexcluding context. (Hint: consider a variant of the context y“™ defined in
Example 5.2.4, where the environment’s protocol is such that it never performs the
action delivery (i, 2) for some message u € MSG.)

5.3 Show that )7%7 is a nonexcluding context.
5.4 Show that every system of the form R"™” (P, y“™) is an a.m.p. system.

5.5 Show that R(Vi,...,V,) is an am.p. system iff R(Vy,...,V,) =
R™P (PP (Vy, ..., V), y) for some asynchronous context y .

5.6 Show that (Vi,...,V,) is delivery closed iff R(Vi,...,V,) =
R™“P(PYP(Vy, ..., Vn), y¥"P).

5.7 This exercise fills in some details in Example 5.2.5.
(a) Define the transition function of the system R/l
(b) Give a complete description of the system R.

(c) Show that neither player 1 nor player 2 has any dominated strategies in the
game G;.

5.8 Show that every protocol P; for agent i over the local state space L; is induced by
some program Pg;. (Hint: for every local state s € L;, introduce a local proposition
of the form “state is s,” and have 7r; assign true to this proposition only in the state s.)
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5.9 This exercise discusses aspects of the bit-transmission problem. Show that
the interpretation 7% presented in Example 4.2.1 is compatible with the joint pro-

gram BT = (BTg, BTg), and that BT is the joint protocol PY = (Pé”, P};’)
described in Example 5.2.3.

5.10 Let o be a run-based specification, let P be a joint protocol, and let (y, ) be
an interpreted context. Prove that P satisfies o in (y, 7) if and only if P strongly
satisfies o in (y, ).

5.11 Using the terminology of Example 5.4.1, prove:

bt)

bl

(a) BT strongly satisfies o’ in (yf%r, T

(b) BT satisfies o in (Vfl:zi'r’ by,

Notes

A formal model of actions and protocols was introduced by Halpern and Fagin[1989].
This model is related to that of Shapley [1953], although the latter deals with a
stochastic setting in which actions are chosen probabilistically. Our model in this
chapter extends that of Halpern and Fagin by adding the notion of contexts and
programs. Halpern and Tuttle [1993] discuss how probability can be added to the
framework (and the subtleties of doing so); their work is based on Fagin and Halpern’s
formal model of knowledge and probability [1994].

The definition of nonexcluding context used here is stronger than that used in the
first edition of the book and in [Fagin, Halpern, Moses, and Vardi 1997]. Thatis, every
context that is nonexcluding according to the definition used here is nonexcluding
according to the earlier definition, but the converse is not true. Roughly speaking,
the earlier definition considered a context y = (P, Go, 7, ¥) to be nonexcluding
even if there were states in Gy that were not in any run in W, as long as, for every
protocol P, every prefix of a run weakly consistent with P in y that was also a prefix
of some run in W could be extended to a run consistent with P in . Here we have
insisted that every prefix of a run weakly consistent with P in y can be extended to a
run consistent with P in y, not just those prefixes that are also prefixes of runs in W.
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While all technical results in this book involving the nonexcluding condition remain
true with the earlier definition, the current definition seems more natural to us.

The reader interested in computability can consult the extensive study by Rogers
[1967]. It is not hard to use the standard definitions of computability to define a
notion of computable protocol.

What counts as “rational” has been extensively studied in the game-theory litera-
ture. See [Aumann 1995; Halpern 2001b; Stalnaker 1996] for some recent discussion
of rationality in the context of knowledge and common knowledge.

The idea of using knowledge to specify distributed programs was suggested by
Halpern and Moses [1990]. The first explicit use of knowledge-based specifications
for protocol design seems to be that of Afrati, Papadimitriou, and Papageorgiou
[1988]. Sanders [1991] points out a number of differences between knowledge-
based specifications and run-based specifications. Halpern [2000] discusses the
issues raised by Sanders in some detail, and gives perhaps the first explicit definition
of knowledge-based specification. The idea of a knowledge-based specification is
certainly implicit in earlier work, including that of Mazer [1991]. Katz and Tauben-
feld [1986] develop formal methods for using assertions involving knowledge in
verifying that distributed programs satisfy given specifications.

Abadi and Lamport [1991] introduced another way of characterizing run-based
specifications that is closely related to our notion of contexts and protocols. In our
notation, an Abadi-Lamport specification is a four-tuple (G, Go, N, ¥), where G is
a set of global states, Gy is a set of initial states, ¥ is an admissibility condition on
runs, and A/, the next-state relation, is a subset of G x G such that (g, g) € N for all
g € G. Roughly speaking, we can think of N as encoding all possible transitions of
the system. The condition that (g, g) € N for all g € G ensures that the system can
always “stutter.” Such stuttering can be thought of as the result of “no-op” actions
being performed by each agent in the system and by the environment (in our notation,
this amounts to a joint action of the form (A, ..., A)). The definition of A/ abstracts
away from actions and focuses instead on state transitions. An Abadi-Lamport
specification generates the system consisting of all runs r such that r(0) € Gy and
(r@@),r(i +1)) € N forall i > 0. For a related approach, see [Chandy and Misra
1988].



Chapter 6

Common Knowledge and Agreement

Agreement consists in disagreement.
M. A. L. Lucan, The Civil War,c. A.D.50
We can’t disagree forever.
J. Geanakoplos and H. Polemarchakis, 1982

The discussion in Chapters 1 and 2 shows that common knowledge plays an important
role in the muddy children puzzle. Common knowledge, however, is far more than
just a curiosity that arises in puzzles. As we show in this chapter, it is a fundamental
notion of group knowledge, one which is relevant in many applications. In particular,
we show that common knowledge is a necessary and sometimes even sufficient
condition for reaching agreement and for coordinating actions. We illustrate the role
of common knowledge by examining three well-known problems from the literature,
known as coordinated attack, agreeing to disagree, and simultaneous Byzantine
agreement.

Before we turn to specific examples, let us consider the relationship between
common knowledge and agreement. How can we capture the fact that two players,
say Alice and Bob, agree on some statement, which for simplicity we represent by
a formula ¥?7 Let agree(y) be a formula that is true at states in which the players
have agreed on 1. While we do not attempt to characterize agreement completely,
we expect that if Alice and Bob agree on iy, then each of them knows that they
have agreed on . This is a key property of agreement: in order for there to be
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agreement, every participant in the agreement must know that there is agreement.
Thus, we expect agree() = E(agree(y)) to be valid. The Induction Rule for
common knowledge tells us that if this is the case, then agree(y) = C(agree(V))
is also valid. Hence, agreement implies common knowledge.

Now suppose that Alice and Bob are trying to coordinate their actions, that
is, they want to ensure that Alice performs action a precisely when Bob performs
action b. Clearly, this involves the agents’ agreeing on when to perform the actions;
as our analysis shows, this requires common knowledge. Unlike agreement, which
we treat as an intuitive notion, coordination can be defined formally. We establish
a formal connection between coordination and common knowledge in the analysis
later in this chapter of coordinated attack and simultaneous Byzantine agreement.
(We explore the connection between coordination and common knowledge in more
detail in Chapter 11.)

As we shall see, the connection between agreement and common knowledge
provides us with a sharp tool with which to analyze agreement problems. We can
use this connection to prove impossibility results, namely, to prove that there are
no protocols for solving certain agreement problems, such as coordinated attack or
agreeing to disagree. We can also use this connection in a positive manner, as a tool
for the design of efficient protocols for reaching simultaneous Byzantine agreement.

6.1 Coordinated Attack

Communication plays an important role in facilitating coordination between agents.
How, other than by means of communication, can an agent arrange to coordinate
his actions with the actions of other agents in cases when the coordination was
not fixed in advance? It is perhaps not surprising that guaranteed coordination
may require some degree of reliability of the communication medium. Indeed,
unreliable communication renders such coordination impossible. This is particularly
well illustrated by the coordinated attack problem, a well-known problem from the
distributed systems folklore. The problem can be described informally as follows:

Two divisions of an army, each commanded by a general, are camped
on two hilltops overlooking a valley. In the valley awaits the enemy.
It is clear that if both divisions attack the enemy simultaneously they
will win the battle, while if only one division attacks it will be defeated.
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As a result, neither general will attack unless he is absolutely sure that
the other will attack with him. In particular, a general will not attack if
he receives no messages. The commanding general of the first division
wishes to coordinate a simultaneous attack (at some time the next day).
The generals can communicate only by means of messengers. Normally,
it takes a messenger one hour to get from one encampment to the other.
However, it is possible that he will get lost in the dark or, worse yet, be
captured by the enemy. Fortunately, on this particular night, everything
goes smoothly. How long will it take them to coordinate an attack?

Suppose that a messenger sent by General A reaches General B with a message
saying “attack at dawn.” Should General B attack? Although the message was in fact
delivered, General A has no way of knowing that it was delivered. A must therefore
consider it possible that B did not receive the message (in which case B would
definitely not attack). Hence A will not attack given his current state of knowledge.
Knowing this, and not willing to risk attacking alone, B cannot attack based solely
on receiving A’s message. Of course, B can try to improve matters by sending the
messenger back to A with an acknowledgment. Imagine that the messenger is again
successful and delivers the acknowledgment. When A receives this acknowledgment,
can he then attack? A here is in a similar position to the one B was in when he
received the original message. This time B does not know that the acknowledgment
was delivered. Since B knows that without receiving the acknowledgment A will
not attack, B cannot attack as long as he considers it possible that A did not receive
the acknowledgment. Hence, A cannot attack before he ensures that B knows the
acknowledgment has been delivered. At this point, A might try to improve matters by
sending the messenger back to B with an acknowledgment to the acknowledgment.
Unfortunately, similar reasoning shows that this again will not suffice. As the reader
can check, this time the problem is that A does not know that B knows that A knows
that B received A’s initial message. Indeed, it is possible to show (and will follow
from our later results) that no number of successful deliveries of acknowledgments
to acknowledgments can allow the generals to attack. Note that the problem is not
caused by what actually happens, but by the uncertainty regarding what might have
happened. In the scenario we have just considered, communication proceeds as
smoothly as we could hope—all the acknowledgments sent are received—and still
coordination is not attained.
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If we let delivered represent the fact that at least one message was delivered, it
is not too hard to show that when B gets A’s initial message, K p(delivered) holds.
Moreover, when A gets B’s acknowledgment, K 4K g(delivered) holds, when B
gets A’s acknowledgment of the acknowledgment, K p K 4 K g (delivered) holds, and
so on (Exercise 6.1). However, even if all the acknowledgments sent are received,
common knowledge of delivered never holds.

The fact that common knowledge of delivered does not hold even if all acknowl-
edgments sent are received is not an accident. As we are about to show, in any system
with unreliable communication, there can never be any common knowledge about
message delivery. Is this a problem for the generals? After all, they are interested
in coordinating an attack, not in attaining common knowledge. Unfortunately for
the generals, as we suggested earlier (and are about to prove), common knowledge
is a prerequisite for coordination, in particular, the type of coordination required in
the coordinated attack problem. Thus, coordinated attack is not possible in systems
with unreliable communication.

Our first step in proving these results is to define a class of contexts in which
it makes sense to talk about the agents’ knowledge regarding message delivery. To
make our results as general as possible, we want to assume as little as possible about
these contexts. In particular, we do not want to assume anything about the internal
actions agents can perform or the form of their local states. Also, we do not want to
assume anything about the environment’s states and actions, beyond assuming that
message delivery events can take place, and that the environment records the events
taking place in the system.

Formally, we call an interpreted context (y, ) a message-delivery context if it
satisfies the following assumptions:

e The environment and/or some of the agents have actions that we designate as
message-delivery actions; intuitively, these actions result in messages being
delivered to agents.

e yisarecording context (as defined in Example 5.2.1), so that the environment’s
state includes the sequence of joint actions that have been performed so far,
and t updates states appropriately.

e The language includes the proposition delivered. As we said earlier, we intend
delivered to be true if at least one message has been delivered, that is, if at least
one message-delivery action has been performed. Because the environment’s
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state includes the sequence of joint actions performed, it is easy to define 7 to
enforce this.

As discussed in Chapter 5, we can use a context to characterize a class of systems.
A message-delivery system is a system of the form I'’ (P, y, ), where (y, ) is
a message-delivery context and P is a protocol that can be run in context y. In a
message-delivery system, we can talk about message delivery and what the agents
know about it.

What can we say about the agents’ knowledge of delivered in a message-delivery
system? The formula delivered is necessarily false at the beginning of a run (since
no messages have been delivered by time 0). It immediately follows that delivered
cannot be common knowledge at time 0. Recall from Theorem 4.5.4 that in an
asynchronous message-passing system common knowledge cannot be gained or lost.
Thus, in an a.m.p. system the agents never attain common knowledge of delivered.
In fact, as we now show, delivered can never become common knowledge even in
synchronous systems, as long as message delivery is sufficiently unreliable.

What should it mean for message delivery to be “sufficiently unreliable”? Intu-
itively, we take this to mean that there may be unbounded message delivery, so that
it can take arbitrarily long for a message to arrive. As a consequence, the only way
an agent (other than the recipient) can find out about successful message delivery is
through the receipt of other messages. In particular, if R has unbounded message
delivery, i receives a message at a point (r, /) in R, and no agent receives a message
from i in run r between times / and m, then all the other agents will consider it
possible at time m that i has not yet received the message (since they have no reason
to believe otherwise).

We formalize the notion of unbounded message delivery as a richness condition
on the set of runs. Let R be a system such that, for an appropriately chosen 7, the
interpreted system Z = (R, 7) is a message-delivery system. Given arunr € R,
we write d (r, m) = k if exactly kK messages have been delivered in the first m rounds
of r. Clearly, we always have d(r, 0) = 0. We say that such a system R displays
umd (umd stands for unbounded message delivery) if for all points (r, m) in R with
d(r,m) > 0, there exists an agent i and a run v’ € R such that (1) for all agents
j # i and times m’ < m we have r;(m/) = rj(m’) and 2) d(r',m) < d(r,m).
Intuitively, we can think of i as the last agent to receive a message in r at or before
round m, and r’ as a run that is like r except that i does not receive this last message
by round m. Clause (1) ensures that no other agent can tell by round m that i has not



194 Chapter 6 Common Knowledge and Agreement

received this message. Because the last message to i in r is not delivered in r/, we
have d(r’, m) < d(r, m), as required by clause (2).

A number of systems of interest display umd. For example, it is easy to see that
every a.m.p. system displays umd, as does every a.r.m.p. system (Exercise 6.2). In
fact, we can make a stronger statement. We say that a context y displays umd if all
systems described by y display umd, that is, if R"” (P, y) displays umd for every
protocol P that can be run in context y. It is easy to see that every asynchronous
context (see Example 5.2.4) displays umd, as do the contexts that arise by replacing
the admissibility condition 7True in an asynchronous context by Rel or Fair. Finally,
the context implicitly characterized by the coordinated attack story also displays
umd.

The umd condition is just what we need to show that common knowledge of
message delivery is not attainable.

Theorem 6.1.1 Let 7 = (R, ) be a message-delivery system such that R displays
umd, and let G be a set of two or more agents. Then

T & —Cg(delivered).

Proof For every point (r, m) in Z, we prove that (Z, r, m) = —Cg(delivered) by
inductionond(r, m). Thecased(r, m) = Oistrivial. Letd(r, m) = k41 and assume
that the claim is true for all points (+', m") with d(r’, m") < k. Letr’ and i be the run
and agent, respectively, guaranteed to exist by the umd condition. Let j # i be an
agentin G. The umd condition guarantees thatd(r’, m) < d(r, m). By the induction
hypothesis, we have that (Z, r’, m) &= —Cg(delivered). But since rJ/- (m) = rj(m),
we have that (r/, m) is G-reachable from (r, m). Thus, by Exercise 2.7, it follows
that (Z, r, m) = —Cg(delivered), and we are done. I

Note that the form of Theorem 6.1.1 is somewhat weaker than that of Theo-
rem 4.5.4. Unlike a.m.p. systems, it is not necessarily the case in a system satisfying
umd that no common knowledge can be gained. For example, in a synchronous
system satisfying umd, at 2 o’clock it is always common knowledge that the time
is 2 o’clock. Rather, Theorem 6.1.1 essentially implies that communication in such
systems cannot make formulas common knowledge. A formula that is common
knowledge at some point must also be common knowledge at a point where no mes-
sages have been delivered. Of course, Theorem 6.1.1 is not strictly weaker than
Theorem 4.5.4, because Theorem 6.1.1 applies in a much wider class of contexts
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than Theorem 4.5.4 does. As an example of an application of this theorem, we now
use it to prove the impossibility of coordinated attack.

To be able to discuss a coordinated attack by the generals, we define an appropriate
class of contexts. An interpreted context (y, ) is ca-compatible if it is a message-
delivery context in which two of the agents are the generals A and B, and for each
i € {A, B}, one of General i’s actions is denoted attack;. We assume that General i’s
state records whether or not i has attacked. Moreover, we require that there be
propositions attacked;, for i € {A, B}. We take attacked; to be true at a point if
attack; was performed at some point in the past, that is, if attack; is recorded in
the environment’s state (recall that y is a recording context) and in i’s local state.
Implicit in this definition of attacked; is the assumption that if General i performs
attack; at the point (r, m), that is, if P;(r;(m)) = attack;, then an attack by i actually
takes place. That is, the environment cannot perform a nogo; action to block the
attack as it can do, for example, in an a.m.p. system. We take attacking; to be an
abbreviation for —attacked; N Oattacked;. Thus, attacking; is true if General i is
about to attack for the first time. Finally, we take attack to be an abbreviation for
attacking 4 A attacking g, so attack is true if both generals are about to attack. Notice
that the definition of ca-compatible contexts makes only minimal assumptions about
the form of the generals’ local states.

We can now formally capture the requirements of coordinated attack in terms
of a specification. Let the specification o“? consist of all ca-compatible interpreted
systems Z such that

1. 7 |= attacking 5 < attackingpg,
2. T = —delivered = —attack, and
3. (Z,r, m) = attack for at least one point (r, m) of Z.

The first condition captures the key requirement for coordinated attack: It says that
General A attacks at (r, m) iff General B attacks at (r, m). In particular, both generals
must attack simultaneously. The second requirement captures the statement in the
story that no attack is carried out if no messages are delivered. Finally, the third
condition prevents the trivial solution to the problem where no general ever attacks.
Notice that the first two conditions are run-based; the third, however, is not. We say
that P is a protocol for coordinated attack in a ca-compatible interpreted context
(y, m) if P satisfies 0<% in (y, ).
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We can now make precise our earlier claim that common knowledge is a prereq-
uisite for coordinated attack. We start by showing that when the generals are about to
attack for the first time, it must be common knowledge that they are about to attack
for the first time. To simplify notation, we use C rather than C4 p) to represent
common knowledge among the generals. Similarly, we use E instead of E{4 g). We
first consider the case in which the protocols the generals follow are deterministic.

Proposition 6.1.2 Let (y, w) be a ca-compatible interpreted context and let P be
a deterministic protocol. If T = 1"P (P, y, ) satisfies 0%, then

7 = attack = C (attack).

Proof We first show that 7 | attack = E(attack). Suppose that
(Z, r, m) |= attack, so that (Z, r, m) = attacking 4 A attacking g. In particular, this
means that P4 (ra(m)) = attack 4, so that A attacks inround m + 1 of r. Let (+/', m’)
be a point of R"P (P, y) that A considers possible at (r, m), so thatr4 (m) = r/y (m’).
Because Pj4 is deterministic, it follows that Py (r;‘ (m")) = Pa(ra(m)) = attacky.
Note that (Z, r, m) = attacking 4 implies that (Z, r, m) = —attacked,, so that A
has not yet attacked at the point (r, m). The context (y, ) is ca-compatible, so
General A’s local state records whether A has attacked. Since A has not attacked
yet at (r,m) and ro(m) = r/,(m"), it follows that A has not attacked yet at (+', m’).
Thus, (Z,r’,m’) &= —attackeds. Since A attacks at (', m’) and the environment
does not block attacks, (Z, r’, m’' + 1) [= attacked s. Thus, (Z, r’, m’) |= attacking 4.
Since 7 satisfies 0%, it must be the case that (Z,r’,m’) = arttackingy. Thus,
(Z,r',m’") k= attack. This means that attack holds at all points that A considers
possible at (r, m), so (Z,r,m) = K (attack). An analogous argument shows that
(Z,r,m) &= Kpg(attack). Hence, (Z,r,m) = E(attack). Because (r, m) was an
arbitrary point, Z |= attack = E (attack), as desired. By the Induction Rule, it now
follows that 7 = attack = C (attack). 11

Proposition 6.1.2 draws a formal connection between an action (attacking in this
case) and a state of knowledge (common knowledge of attack). We stress that the
generals need not be doing any reasoning for this result to hold; and even if they do
reason, they need not be aware of the notion of common knowledge. Nevertheless,
when they attack they must have common knowledge of the fact they are attacking,
according to our external definition of knowledge.

Note how the proof of Proposition 6.1.2 uses the assumption that the environment
cannot block attacks by performing a nogo; action. If it could, then Proposition 6.1.2
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would not hold. For example, consider the protocol where General A sends a message
telling B to attack at every odd-numbered round until B actually attacks; A then
attacks at every round after it has sent a message to B. B attacks when it gets a
message. To guarantee coordination, the environment performs a nogo 4 action if B
does not receive A’s message. Although the resulting system satisfies 0“4, it is not
true that A knows that B is about to attack whenever he (A) is about to attack. A does
know that if his attempt to attack is not blocked by the environment, then B will attack
as well, but A does not find out if his attempt to attack has been blocked until after
the fact. If the environment can block attacks, then attacking , = K a(attacking 4)
may not be valid.

For very similar reasons, Proposition 6.1.2 does not hold if P is anondeterministic
protocol, even if the environment does not block attacks. Consider the following
slight variant of the previous protocol. General A simply sends a message in every
round telling B to attack; after that he nondeterministically chooses in each round
whether or not to attack. Afterreceiving the message, General B nondeterministically
chooses in each round whether or not to attack. Suppose that (y, 7) is a ca-compatible
context such that y = (P, Go, 7, ¥). If the admissibility condition W does not put
any constraints on the set of acceptable runs, then it is clear that I’ (P, y, ) will
not satisfy o “¢; there will be many runs where one general attacks and the other does
not. It is possible, however, to choose W in such a way that I'? (P, y, ) satisfies
0 and R™P(P, y) displays umd (see Exercise 6.3). Because of nondeterminism,
when General A is about to attack, he does not know that he is about to attack; that is,
attacking , = K 4 (attacking ,) may not be valid. The reason that I'” (P, y, m) still
manages to satisfy o is that W here “magically” rejects all runs where the generals
do not coordinate. This cannot happen, however, if y is a “reasonable” environment,
that is, if it is nonexcluding, as defined in Section 5.2.

Proposition 6.1.3 Let (v, ) be a ca-compatible nonexcluding interpreted context
and let P be a (deterministic or nondeterministic) protocol. If T = 1"P (P, y, )
satisfies 0<%, then

7 = attack = C (attack).

Proof See Exercise 6.4. 11

Although the analysis we have just carried out will be useful when we turn
to Byzantine agreement in Section 6.3, our ultimate goal is not to show that the
generals have common knowledge that they are about to attack, but to show that
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coordinated attack is impossible if there is no upper bound on message delivery time.
Propositions 6.1.2 and 6.1.3 can be used to show that there is no deterministic protocol
for coordinated attack in contexts displaying umd and that there is no nondeterministic
protocol for coordinated attack in nonexcluding contexts displaying umd. We can
get a somewhat simpler analysis by considering the situation after the generals have
attacked, rather than the situation when they are about to attack for the first time. Let
attacked be an abbreviation for attacked s A attackedp.

Proposition 6.1.4 Let (y, w) be a ca-compatible interpreted context and let P be a
(deterministic or nondeterministic) protocol. If T = 1"P (P, y, w) satisfies c?, then

7 k= attacked = C (attacked).

Proof The proof is very similar in spirit to that of Proposition 6.1.2; the details are
left to the reader (Exercise 6.5). Note that now the assumption that the environment
does not block attacks is unnecessary. i

Now we can prove that coordinated attack is impossible. Because the successful
delivery of at least one message is a prerequisite of an attack, we obtain the following:

Corollary 6.1.5 Let (y, w) be a ca-compatible interpreted context and let P be a
(deterministic or nondeterministic) protocol. If T = 1"*P (P, y, w) satisfies 0%, then

7 & attacked = C (delivered).

Proof The second requirement of o“? is equivalent to Z = attack = delivered,
which clearly implies that 7 |= attacked = delivered. From Exercise 2.9, we
have that 7 = C(attacked) = C(delivered). The result now follows from Proposi-
tion 6.1.4. 11

Corollary 6.1.5 and Theorem 6.1.1 together imply that the generals in the coor-
dinated attack problem are never able to attack. More generally, there is no protocol
for coordinated attack in a system that displays umd.

Corollary 6.1.6 If(y, m) is a ca-compatible interpreted context such that y displays
umd, then there is no (deterministic or nondeterministic) protocol P that satisfies o ““

in (y, ).
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Because in the coordinated attack example we are talking about a context that
displays unbounded message delivery, Corollary 6.1.6 says that there is no protocol
for the coordinated attack problem in such a context! It might not be too surprising
that coordinated attack is not attainable in some runs of a protocol (in particular,
runs where the messenger gets lost and does not deliver too many messages). Corol-
lary 6.1.6, however, makes a far stronger claim: it says that an attack is never attain-
able in any run of any deterministic protocol for coordinated attack. Thus, even if
every message is delivered, coordinated attack is not possible, as long as there is the
possibility that messages will not be delivered.

The fact that coordinated attack implies common knowledge (Propositions 6.1.2
and 6.1.4) depends on our requirement that the coordinated attack must be simulta-
neous. In practice, simultaneity might be too strong a requirement. A protocol that
guarantees that the generals attack within a short time of each other may be quite
satisfactory. In a system where the generals attack within a short time of each other,
attacking does not necessarily imply common knowledge of the attack. Neverthe-
less, in Chapter 11 we use similar arguments to show that even such weaker forms
of coordination are unattainable if communication is unreliable.

6.2 Agreeing to Disagree

The analysis in the previous section demonstrated a formal connection between
agreement and common knowledge. To coordinate their attack, the generals have
to agree to attack together at a particular time, and our analysis shows that common
knowledge is a necessary and sufficient condition for such an agreement to hold.
This intimate connection between agreement and common knowledge has surprising
consequences in applications in which the players are attempting to agree to take
different actions (unlike the coordinated-attack situation in which they are attempting
to agree to take essentially the same action).

An example of such an application is trading in the stock market, where a trans-
action occurs when one side buys and the other side sells. Why do people trade?
Some trades are certainly due to the fact that people may have different utilities for
having money at a given moment: one person may need to make a big payment and
will therefore want to sell stock, while the other may have just received a large sum
of money and may wish to invest some of it in the stock market. A great deal of trade,
however, takes place for purely speculative reasons. The seller thinks the price of a
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given stock is likely to go down, while the buyer believes it will go up. Perhaps the
buyer has some information leading him to believe that the company that issued the
stock is going to do well in the next year, while the seller has information indicating
that the company might fail.

For a trade to take place, the buyer and seller have to agree to the transaction,
which means that they have to reach common knowledge that the trade takes place.
But then part of the information that the buyer has is the fact that the seller is willing to
sell and, similarly, part of the seller’s information is that the buyer is willing to buy.
How should this information affect their decisions? To take a somewhat extreme
example, say the seller is Ms. X, a top executive in the company whose stock is
being traded. “Clearly,” the intended buyer should reason, “if Ms. X is selling, then
the stock price is likely to drop. Thus, if she is willing to sell the stock for $k,
then I should not buy it for that amount.” Since the participants in the trade have
reached common knowledge when the trade takes place, they should make use of
this knowledge when making their decisions. Somewhat surprisingly, as we show in
this section, if they do use this knowledge, then the trade cannot take place! More
precisely, we show that if both sides in the trade act according to the same rules, then
the common knowledge that would arise should the trade take place prevents the trade
from taking place. Roughly speaking, the result says that players cannot “agree to
disagree”, that is, they cannot have common knowledge that they are taking different
actions, such as buying and selling. (Notice that the word “agree” plays two different
roles in the phrase “agree to disagree”; “agree” refers to common knowledge, while
“disagree” refers to reaching different decisions.)

To prove this result, we need a few definitions. As described in Chapter 5, the
actions taken by the players are prescribed by their protocols, where a protocol for
player i is a function of player i’s local state. In many applications, it is more
appropriate to view the player’s actions as depending not on her local state, but
on the set of points she considers possible. For example, suppose a player wants
to maximize some payoff that depends on the point. Since the player does not
know what the actual point is, her decision actually depends on the set of points
that she considers possible. In two different systems, she may have the same local
state, but consider a different set of points possible, and thus take different actions.
This is a phenomenon we examine more carefully in Chapter 7, when we consider
knowledge-based programs. For now, we generalize our notion of protocol in an
attempt to capture this intuition.
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Given a local state ¢ for player i in a system R, let IS; (¢, R) denote the set of
points (7, m) in R such that r;(m) = £. If T = (R, ) is an interpreted system, we
identify IS; (¢, ) with IS; (¢, R). In the terminology of Section 2.5, IS; (£, R) is the
information set of player i when in local state € in the interpreted system R. As we
said earlier, we want to view player i’s action as a function of her information set
rather than as a function of her local state. Essentially, this amounts to making a
player’s action a function of her knowledge.

To make this precise, given a set G of global states, let S be the set of points over G
(i.e., the set of points (r, m) where r is arun over G). If ACT; is the set of actions for
player i, we define a decision function for player i (over G) to be a function whose
domain consists of some subsets of S and whose range is ACT;. Thus, a decision
function prescribes an action for the subsets of § in its domain.

We have another method for prescribing actions for player i: namely, by means
of a protocol. How are decision functions and protocols related?

In a precise sense, we can view decision functions as more general than protocols.
To know what action a decision function prescribes for player i in a given local state,
we need to know what player i’s information set is. But this depends not just on
player i’s local state, but on the whole system. We may be able to associate a protocol
with a given decision function once we have a system in hand to determine what the
information sets are. Given a decision function D for playeri and a system R, we say
that a protocol P; for player i is compatible with D in R if P;(£) = D(S; (¢, R)) for
all £ € L;. (Note that this requires that the domain of D includes all the information
sets of player i in R.) It is not hard to see that every deterministic protocol is
compatible with some decision function D; that is, if P; is a deterministic protocol,
then there is a decision function D such that P; is compatible with D in all systems R
(Exercise 6.6).

As our discussion suggests, we are mainly interested in applying decision func-
tions to information sets. We have, however, allowed decision functions to be defined
on arbitrary sets of points. There are many sets of points that cannot be informa-
tion sets (in particular, any set that includes points (r, m) and (r’, m’) such that
ri(m) # ri/ (m’)). Why are we allowing decision functions to be defined on such
sets? For one thing, this makes it possible for us to talk about all players using the
same decision function, as we do in the examples we provide later in this section. In
addition, as these examples show, it is often the case that the decision function we
have in mind is most naturally thought of as a function on arbitrary sets of points.
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As we said, we are interested in situations where all players use the same decision
function. Thus, we assume for the remainder of this section that the players’ actions
are all taken from the same set ACT. We say that the joint protocol P = (Py, ..., Py)
implements the decision function D in context y if P; is compatible with D in
R™P(P,y),fori =1,...,n. Thus, if P implements D, then the actions prescribed
by both P and D agree in the system representing P.

We are now almost ready to state and prove the Agreement Theorem, a celebrated
result in game theory. What we want to show is that if two players use the same
decision function, then they cannot agree to perform different actions. To capture
this formally, we restrict attention to interpreted contexts (y, w%) for agreement.
Again, we want to put as few restrictions on such contexts as possible: just enough
so that we can talk about the actions performed by the players. We assume that

o the players’ actions are all taken from the same set ACT,
e y is arecording context,
e for each action a, there is a primitive proposition perf;(a), and

e 19 (s)(perf;(a)) is true in a state s if the action a was performed by player i,
as recorded in the environment’s state. As we did for coordinated attack, we
take act; (a) to be an abbreviation for —perf;(a) A Operf;(a). Thus, act;(a)
is true if player i is about to perform action a.

We need one more technical definition before we can state the Agreement Theo-
rem. A decision function D is said to be union consistent if it satisfies the following
condition: for every action a and for every collection 77, T», ... of pairwise dis-
joint subsets of S, if D(7j) = a for all j, then |J; 7 is in the domain of D and
D(U; Tj) = a. Intuitively, the function D is union consistent if, whenever it pre-
scribes the same action a for disjoint sets of points, it prescribes a for the union of
these sets as well. Union consistency seems fairly reasonable: intuitively, it says that
if a player performs the action a whenever she considers 7; to be the set of possible
worlds, then she should also perform a if she considers all the points in U; T; pos-
sible. Recall that we observed that any deterministic protocol can be obtained from
some decision function. In fact, it can be shown that any deterministic protocol can
be obtained from some union-consistent decision function (Exercise 6.6). We give
some examples of union-consistent decision functions after proving the theorem.
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We can now formally state the Agreement Theorem. As we did in our discussion
of coordinated attack, we use C rather than C{; 2) to represent common knowledge
among the two players.

Theorem 6.2.1 Suppose that T = 1"P(P,y, ), where P is a joint protocol
and (v, w%8) is an interpreted context for agreement. If P implements some union-
consistent decision function in context y and a and b are distinct acts in ACT, then
7 E —Cl(acti(@) A acty(b)).

Proof Suppose that P implements the union-consistent decision function D in con-
text y, and suppose, by way of contradiction, that (Z, r, m) = C(act(a) A acty(b))
for some point (r,m) in Z. We want to show that a = b. Let S’ consist of
all points that are {1, 2}-reachable from (r, m). Suppose that (+',m’) € S’ and
ri(m’)y = £. By the definition of reachability, if (+",m"”) ~1 (+',m’), then
(r",m"”) € S'. Thus, IS;(¢,Z7) € S§’. Moreover, by the definition of IS; (¢, 7),
if £ # ¢ for some ¢’ € Ly, then IS1(¢,7) NIS1(¢', 7) = . It follows that S’ is a
disjoint union of sets of the form IS (¢, 7). Since (Z, r, m) = C(act(a)), we must
have that (Z, r’, m’) = acti(a), so that P;(£) = a. The fact that P implements D
implies that D(IS{ (¢, 7)) = a. By the union consistency of D, we can now con-
clude that D(S’) = a. A completely analogous argument with respect to player 2
and action b yields that D(S") = b. Thus, a = D(S’) = b as desired. 1

Thus, if two agents use the same union-consistent decision function, that is, they act
according to the same rules, then they cannot have common knowledge that they are
taking different actions. That is, they cannot agree to disagree.

We observed earlier that every protocol for player i is compatible with some
union-consistent decision function. The crux of the Agreement Theorem is the
requirement that both players use the same union-consistent decision function. How
reasonable is this requirement? We now describe three examples of situations where
this arises.

For the first example, suppose two players each perform an action and receive
a payoff as a result of that action. Moreover, suppose that the payoff to player i
depends solely on the action that player i performs and the global state at which the
action is performed. This means that, in particular, the payoff is independent of the
action that the other player performs and both players receive the same payoff if they
perform the same action. For example, if the two players are betting on numbers in
a roulette game, and we assume that the winning number is completely determined
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by the global state, then each player’s payoff depends only on the global state (and
not on the bet made by the other player), and the players receive the same payoff if
they make the same bet.

Of course, the problem is that, in such scenarios, the players do not know what
the actual global state is, so that they do not know what their payoff will be. Suppose
that the players are both risk averse, which means that they choose the action for
which the worst-case payoff is maximal. Formally, if payoff (s, a) is the payoff for
performing action a at the global state s and S’ is a set of points, define payoff (S’, a) =
min,. s (payoff (r(m), a)). (To be precise, we should use the infimum rather than
the minimum in this expression, since a minimum over an infinite set of payoffs
may not exist.) Intuitively, payoff (S’, a) is the worst-case payoff if the action a
is performed in the set S’. For simplicity, we assume that ACT is finite and that
for all subsets S’ of points and for all distinct pairs of actions a and b, we have
payoff (S',a) # payoff (S’,b). Under these assumptions, we take D' to be the
decision function whose domain consists of all subsets of points and is defined so
that D™(S’) is the unique action a such that payoff (S, a) > payoff (S’, b) for all
b # a. (The ra in D' stands for risk averse.) Thus, according to the decision
function D", the action that is chosen in S’ is the one that maximizes the worst-case
payoff in §’. It is easy to check that D' is a union-consistent decision function
(Exercise 6.7). It follows that if the players are both risk averse in this sense, they
cannot agree to disagree. Thus, if they discuss their actions until they have common
knowledge of the actions they are about to perform, then these actions must be the
same.

In our remaining two examples, the players’ decisions are defined in terms of
probability. A thorough discussion of probability in our framework is beyond the
scope of this book. We provide a brief, somewhat informal, discussion of these
examples here; further references can be found in the notes. (These examples can
be skipped by a reader unfamiliar with probability theory.)

Suppose that we have a probability distribution Pr defined on certain subsets of S,
the set of points. If e is a fixed subset of points (in the terminology of Section 2.5, e
is an event) and ACT, the set of actions, just consists of all numbers in the interval
[0, 1], let the decision function D”" be defined on the subsets S’ such that Pr(S") > 0
(so that Pr(e | ') is defined). On these subsets, we define DP"(S’) = Pr(e | S').
Thus, DP"(S") is the conditional probability of e given §’. It is easy to show that DP"
is union consistent (Exercise 6.8). If player i is in local state £, then his estimate of
the probability of e is given by the conditional probability Pr(e | IS; (¢, R)). Thus,
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according to the Agreement Theorem, if the players have common knowledge of
their estimates of the probability of e, then these estimates must be the same.

To bring out the perhaps surprising nature of this example, suppose the players
start with the same probability distribution on the set of points and then receive
some information that causes them to revise their estimate of the probability of e,
using conditioning. They can then exchange their estimates of the probability of e.
Doing so can cause them to revise further their estimates of e, since their information
changes. Suppose that after a while they reach steady state, and no further exchanges
of their estimates can cause them to revise these estimates. It is possible to show that
in a large class of contexts, the players are in fact guaranteed to reach steady state and
to attain common knowledge of the fact that they are in steady state (see Exercise 6.9
for an example). Once this happens, their estimates are common knowledge, so
according to the Agreement Theorem, they must be the same. Thus, although the
players might have different information, they cannot agree to disagree on their
estimates of the probability of e.

For our final example, we return to the setting of the first example but, as in
the second example, we assume that we have a probability distribution on the set
of points. Rather than being risk averse, as in our first example, suppose that the
players perform the action that has the highest expected rate of return. That is, we
now define payoff’(S’, a) to be the expected payoff of the action a over the set S’
Again, we assume for simplicity that ACT is finite and for all distinct actions a
and b, we have payoff’(S’, a) # payoff’(S’, b). Under these assumptions, we define
DY" on all subsets of points by taking D“™(S’) to be the unique action a such that
payoff (S',a) > payoff(S’,b) for all b # a. (The um in D"™ stands for utility
maximizer.) It is easy to check that D*" is union consistent (Exercise 6.8). Again,
the Agreement Theorem tells us that if the players’ protocols are consistent with
D""_ then they cannot agree to disagree.

If we take the actions in the first and third examples to be buy and sell, then we
are back to the scenario with which we began this section. Thus, in this setting, the
Agreement Theorem tells us that speculative trading between players who follow the
same rules (e.g, have the same payoff function and are both risk averse in the first
example, or have the same payoff function and probability distribution and are both
utility maximizers in the third example) is impossible. This certainly seems coun-
terintuitive. There has been a lot of work in game theory on trying to understand the
implications of this result and to avoid the apparent paradox. Some of the approaches
involve limited reasoners, a topic we discuss in Chapters 9 and 10.
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6.3 Simultaneous Byzantine Agreement

In Sections 6.1 and 6.2, common knowledge served as a tool for proving impossibility
results, namely, the fact that there are no protocols solving the coordinated-attack
problem or for agreeing to disagree. We now present a case in which common
knowledge is used in a positive manner, as a tool for the design of efficient protocols.

The coordinated attack problem deals with the impact that unreliable communica-
tion has on coordination in multi-agent protocols. Another major source of difficulty
in distributed systems is the fact that processes may fail during the execution of a
protocol. This can cause particular difficulties when it comes to coordinating actions
between different sites in such a system. We do not want two sites in an airline
reservation system to sell the same seat to two different people; a bank must ensure
that every transaction made at one of its automated tellers is appropriately recorded
in its central database. Because the components of such a system do fail occasionally
for various reasons, it is important to program them in such a way that the overall
behavior of the system will not be jeopardized by the failure of a small number of
its components.

The paradigmatic problem concerning reaching agreement at different sites in a
system in the presence of failures is the Byzantine agreement problem. The Byzantine
agreement problem can be informally described as follows: We have n generals, up
to ¢ of which might be traitors. Each general initially prefers to either attack or retreat
(although they are willing to do something other than what they initially prefer). At
the end of the protocol, they must reach agreement, so that the loyal generals either
all attack or all retreat. (The traitors can do whatever they like; we have no control
over them.) Although the generals can talk to each other (over reliable channels),
there is no broadcast facility. It is not possible for a general to take a loudspeaker
and announce his vote to all the others. There is a trivial protocol satisfying these
conditions: one where the generals retreat, no matter what their initial preference. In
practice, however, this is not a satisfactory solution. A natural additional property
to demand is that if all generals initially prefer to do the same thing (either attack or
retreat), this is what they will agree to do. This condition eliminates trivial solutions
such as retreating no matter what.

If we are guaranteed that there are no traitors in the system, then reaching agree-
ment is a trivial matter. The generals all talk to each other, find out what each of
them initially prefers to do, and use some uniform rule for reaching a decision (for
example, the rule might be to attack if any general initially prefers to attack). In the
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presence of traitors, however, assuming we have no way of knowing beforehand who
the traitors are, the situation becomes considerably more complicated. What do we
do if a traitor tells one loyal general that he wants to attack and tells another that he
wants to retreat?

This problem turns out to be remarkably subtle and has been studied at length
in the literature. We focus here on one particular variant of the problem, where we
require that not only do the generals decide, but that they decide simultaneously. We
refer to this variant as the simultaneous Byzantine agreement (SBA) problem. Just
as in the case of coordinated attack, we can show that in a large class of interpreted
contexts, the requirement of simultaneity here leads to common knowledge.

We now define this class of interpreted contexts, which we call ba-compatible.
These ba-compatible contexts share many of the features of ca-compatible contexts.
Again, we want to make minimal assumptions about the processes’ (i.e., generals’)
local states and have the environment’s state record the actions performed. The main
difference is that we now want to allow the environment to specify which processes
are faulty and how they are faulty. This means that there are more possible actions
that the environment can perform. For now, we do not go into the details of what
these actions are; we defer that discussion to Section 6.5. Formally, we say that an
interpreted context (y, m) is ba-compatible if it satisfies the following assumptions:

e For each process i = 1,...,n, one of i’s actions is denoted decide; (y), for
y € 0, 1. Intuitively, this means that process i has decided on the value y. (We
can think of decide; (0) as representing a decision to retreat, while decide; (1)
represents a decision to attack.)

e The environment’s actions include ones of the form (a.1, ..., a.;). The com-
ponents a,; themselves are tuples, which describe which messages sent by
process j are delivered to process i in that round, whether or not i fails in that
round, which we capture by a fail; action, and its faulty behavior if it does fail.
We discuss later how this faulty behavior is described, since this depends on
the type of faulty behavior we allow. We say that process i fails in round k of
run r if the environment’s action at this round has a fail; component. We say
that process i is faulty in round k of run r (or at the point (r, k)) if process i
failed in some round k” < k of run r. Otherwise, we say that i is nonfaulty or
correct.
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y is a recording context. Note that this means that we can tell from the
environment’s state which processes are faulty, by seeing which fail; actions
have been performed.

Process i’s initial state is a tuple of the form (x;, ...), where x; is either 0
or 1. Intuitively, x; represents process i’s initial preference to either retreat
(0) or attack (1). We also assume that process i’s local state records whether
process i has tried to perform an action of the form decide; (y) (including times
that the action does not succeed, because the process has failed). We make no
further assumptions about the form of the processes’ local states.

The environment’s state includes the tuple (xy, ..., x;) of the processes’ initial
preferences.

The language includes the propositions decided;(y) and Ay, fori =1,...,n
and y = 0, 1. We define 7 so that (1) decided;(y) is true at a global state
if i tried to perform the action decide; (y) at some previous round (note that
since this fact is recorded in process i ’s local state, decided; () is a proposition
local to process i) and (2) Jy is true if x; = y for some process i, so that some
process initially preferred to decide on the value y. Let deciding;(y) be an
abbreviation for —decided; (y) A Odecided; (y). Finally, define deciding /()
so that it holds at (r, m) if deciding; (y) holds at (r, m) for alli € N (r, m). (In
particular, deciding \(y) is vacuously true at (r, m) if N'(r, m) = .)

A ba-compatible interpreted system is one of the form I"P (P, y, w), where P

is a protocol and (y, ) is a ba-compatible interpreted context. In a ba-compatible
interpreted system, we can talk about the processes’ initial preferences and their
decisions, so it makes sense to talk about SBA.

As mentioned earlier, we intend to focus here on simultaneous Byzantine agree-

ment (SBA). The specification o*?% of SBA is run-based. It is satisfied by all ba-
compatible interpreted systems Z such that each run r in 7 satisfies the following
four properties:

e Decision: every process i that is nonfaulty in r performs exactly one decide;

action in r.

e Agreement: the nonfaulty processes all decide on the same value. More pre-

cisely, if i is nonfaulty at (r, m) and is about to decide y at (v, m) and if j is
nonfaulty at (r, m) and is about to decide y’, then y = y’.
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e Validity: if all the processes have the same initial preference x, then all non-
faulty processes decide on the value x.

e Simultaneity: the nonfaulty processes all decide simultaneously, that is, in the
same round. More precisely, if i and j are nonfaulty at (r, m) and i is about
to decide at (r, m), then so is j.

The first clause ensures that the nonfaulty processes decide exactly once, the
second ensures that their decisions are in agreement, the third ensures the decision is
related to the initial preferences in a nontrivial way, and the fourth guarantees that the
decision is simultaneous. Notice that the third clause prevents trivial solutions such
as one in which everyone simply always decides on the value O in the first round and
halts. Indeed, the third clause ensures that for any given y € {0, 1} the processes may
decide on the value y only if at least one process had y as its initial preference. We
say that P is a protocol for SBA, or that P attains SBA, in a ba-compatible interpreted
context (y, i) if P satisfies o%ba in (y,m). Ifrisarunin I’ (P, y, ), we say that
P attains SBA in k rounds in r if (Z, r, k) = deciding ,,. (Note that this means that
a nonfaulty process i actually performs the action decide; in round k 4 1.) P attains
SBA in k rounds if P attains SBA in k rounds in all runs of I'? (P, y, 7).

It should be clear from the specifications and the descriptions of the problems
that SBA and coordinated attack are closely related. Indeed, we can reformulate
coordinated attack slightly to resemble SBA even more as follows. We can assume
that each general i has an initial preference x; regarding whether or not he would
like to attack. We could then restate the coordinated attack problem by requiring
that if both generals initially prefer to attack, then they should attack, while if both
initially prefer to retreat, they should retreat. While this version of the coordinated
attack problem is slightly different from the one we considered, we can easily prove
results analogous to Theorems 6.1.1 and Corollary 6.1.6 for it. In fact, it is easy
to show that if P is a protocol for this modified version of coordinated attack in an
interpreted context (y, ) allowing all four configurations of initial preferences, then
I'P (P, y, ) satisfies 0““ (Exercise 6.10).

Despite these similarities, there are some significant differences between SBA
and coordinated attack, at least in the contexts of most interest to us. In coordinated
attack, both generals are assumed to be reliable; the problem is with the communica-
tion links. In SBA, we are mainly interested in contexts where correct generals have
no problem communicating. Thus, we focus on contexts where communication is
reliable and immediate, so that a message is guaranteed to arrive in the same round
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in which it is sent, provided that neither the sender nor the intended recipient of the
message is faulty. The problem in these contexts is not with communication, but
with the faulty processes.

The Byzantine agreement problem is sensitive to the type of faulty behavior a
faulty process can display. The literature has concentrated on three basic failure
modes:

1. Crash failures: afaulty process behaves according to the protocol, except that
it might crash at some point, after which it sends no messages. In the round
in which a process fails, the process may perform an arbitrary subset of the
actions it is supposed to perform, according to the protocol it is following. In
particular, it may send only a subset of the messages that it is supposed to send
according to its protocol.

2. Omission failures: a faulty process behaves according to the protocol, except
that it may omit to send or receive an arbitrary set of messages in any given
round. We sometimes refer to this case as the general-omission failure mode.
Another variant of this mode in which faulty processes omit only to send
messages is called the sending-omission failure mode.

3. Byzantine failures: faulty processes may deviate from the protocol in an ar-
bitrary fashion; they may “lie,” send deceiving messages, and collude to fool
the nonfaulty processes in the most malicious ways.

In practice, crash failures occur quite regularly, as a result of mechanical and
electric failures. Omission failures are often the result of communications problems.
Finally, Byzantine failures represent the worst possible failures, where we can make
no assumption on the behavior of faulty processes. Crash failures can be viewed as
a restricted type of omission failures (a process omits to send all messages from a
certain point on), and omission failures in turn can be viewed as a restricted type
of Byzantine failures. We model these failure modes in terms of the environment’s
actions. We defer the technical details to Section 6.5.

As we said earlier, the problem of SBA has been well studied in the literature.
It is known that there are protocols that attain SBA in ¢ 4+ 1 rounds in all these
failure modes, provided that communication is reliable and immediate. (In the case
of Byzantine failures, we also have some constraints on the relationship between n,
the total number of processes in the system, and 7, the upper bound on the number
of faulty processes. There is a protocol for SBA in this case if and only if n > 3t.)



6.3 Simultaneous Byzantine Agreement 211

Moreover, there is no protocol that attains SBA in fewer than ¢ + 1 rounds. In fact,
it is known that any protocol for SBA in one of these failure modes requires at least
¢t + 1 rounds to attain SBA in runs where there are no failures at all.

It might seem surprising that, even if we consider such relatively benign failures
as crash failures, we still have to take ¢ 4 1 rounds to reach agreement in runs where
there are no faulty processes. As the following example shows, the problem here,
as in the case of coordinated attack, is not what does happen, but what might have
happened.

Example 6.3.1 Suppose that n = 3 and r = 1, and we restrict to crash failures.
Consider a run where all the processes have initial preference O and there are no
failures. By the validity requirement, this means that all the processes must decide
on the value 0. Suppose that in round 1 every process sends its initial preference
to every other process. Thus, at time 1, all the processes know that every process
initially preferred 0. Since we are considering only crash failures, all the processes
are telling the truth here. This means that all the processes know at time 1 that they
must all ultimately decide on the value 0. Why are they not able to decide on the
value 0 right away?

We can represent the situation at time 1 in a run using a 3 x 3 table, where each
column represents the information that one process has at time 1 about the initial
preferences x1, x», and x3 (see Figure 6.1). A failed process is assumed to have no
information, and we mark this by the letter X. Otherwise, an entry in the table can
be either 0, 1, or %, where we use a * in row { of column j to represent the fact
that j did not receive information about i’s initial preference x; (because process i
crashed before sending j a message). In the run we just described, the situation is
represented by a table all of whose entries are 0; this is table 77 in Figure 6.1.

Recall that the nonfaulty processes must all decide simultaneously. As we sug-
gested earlier, the problem is not with what actually happens, but with the uncertainty
about what might have happened. In particular, although in the situation depicted
by T7 process 1 received a 0 from all processes, it is possible, as far as process 1 is
concerned, that process 3 did not receive a message at all from process 2; this could
happen if 2 crashed after sending a message to 1, but before sending a message to 3;
this situation is depicted by table 7>. (Note that in 77 process 1 does not consider it
possible that process 2 told 3 that its initial preference is 1. We are not allowing lying
here; this would require Byzantine failures.) Clearly, process 1 cannot distinguish 7
from T>; it has the same local state in both situations (essentially described by the first
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1 2 3 1 2 3 1 2 3
x1 OO O x1 |0 X |0 x1 |0 X0
x 000 xp | O] X || * xp | 1] X || %
x3 101010 x3 10X |0 x3 |0 X |0

1 2 3 1 2 3
x1 |00} O0 x| |11
x| 111 x| 1|11
x3/0(]0|0 x3 |1 1]1

T4 Tho

Figure 6.1 Anexample forn =3 andz =1

column of the table). Now in the situation described by 73, process 3, which did not
get a message from process 2, considers it possible that 2’s initial preference x is 1,
and that 2 passed x» on to process 1. Thus, in the situation described by 73, process 3
considers the situation described by table 73 possible. Finally, in 73 process 1 does
not know of any failure, and considers Ty a possibility. Notice that, intuitively, our
tour from 7 to Ty involved “silencing” process 2, changing its initial preference x»,
and “reviving” the process. By applying this type of reasoning it is possible to do
the same to process 3 and then to process 1. As a result, we can construct a sequence
of tables Ty, ..., T1o such that 77 is the table all of whose entries are 0 and 7Tjq is a
table all of whose entries are 1, and for each consecutive pair of tables 77, Tj4 1, with
[ < 10, there is some process that cannot distinguish the situations described by T;
and 7741 and is correct in both of these situations (Exercise 6.11).

Now suppose that some correct process decides at time 1 on the value O in the
situation described by table 7. By the agreement and simultaneity requirements of
SBA, all the processes must decide at time 1 on the value O in this situation. Since
process 1 cannot distinguish 77 from 7>, process 1 must decide at time 1 on the
value 0 in the situation described by 7,. Again, by the agreement and simultaneity
requirements, the two processes that are correct in this case (1 and 3) must decide at
time 1 on the value 0. Similarly, we get that processes 1 and 3 decide at time 1 on
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the value O in the situation described by 73. Continuing this argument, we get that
all processes decide at time 1 on the value O in the situation described by 77¢. Butin
the situation described by T7¢, all the processes are correct and have 1 as their initial
preference. The fact that they decide on the value O in T7o contradicts the validity
requirement!

As should be clear from our discussion, simultaneity plays a crucial role here.
Our proof would not hold (nor would the claim) had we not required simultaneity.
To see why, suppose again that process 1 decides on the value O in the situation
at time 1 described by table 77. Since process 1 cannot distinguish the situation
described by 77 from that described by 7>, we know that process 1 also decides on
the value O in the latter situation. Without the requirement of simultaneity, we cannot,
however, conclude that process 3 decides on the value O in the situation described
by T, although we can conclude that process 3 will eventually decide on the value 0
in this situation. (This may, however, require further messages from process 1.)
More significantly, we cannot conclude that any process decides O in the situation
described by 73. 1

We have stated (and shall prove formally later in this chapter) that # + 1 rounds
are required to attain SBA even if there are no failures. It might seem that if we need
t + 1 rounds if there are no failures, things could only be worse if there are failures.
As we show, this is not the case. In fact, by doing a knowledge-based analysis of
SBA, we can completely characterize the number of rounds that are required to reach
agreement.

6.4 Nonrigid Sets and Common Knowledge

The validity requirement of SBA implies that if all initial preferences are 1, then
the nonfaulty processes should decide on the value 1. In particular, for a process to
decide on the value 0, the process must know that not all initial preferences are 1.
Since the only possible initial preferences are 0 and 1, this says that for a process
to decide on the value 0, the process must know that some initial preference is 0.
Of course, knowledge that some initial preference is v is not sufficient for a process
to decide on the value v. Otherwise, a process could simply always decide on its
initial preference, creating a violation of the agreement property in cases where two
processes had different initial preferences. In fact, Example 6.3.1 shows that even if
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a process knows that all of the initial preferences are 0, this is not sufficient to decide
on the value 0. What other knowledge do the processes need?

Just as SBA requires simultaneity (namely, simultaneous agreement), so too the
coordinated attack problem requires simultaneity (namely, simultaneous attacking).
Proposition 6.1.2 tells us that if the generals attack in the coordinated attack problem,
then the fact that they are both attacking must be common knowledge. It is natural
to expect SBA to similarly require attaining common knowledge. The question is,
which group of processes actually attains common knowledge? It is not the set of
all processes, since we do not place any requirements on the actions of the faulty
processes. The SBA problem specification o*? requires only that the nonfaulty
processes decide on an appropriate value. SBA therefore involves coordinating the
actions of the nonfaulty processes. Thus, we expect that the nonfaulty processes
will need to attain common knowledge. Notice, however, that the set of nonfaulty
processes is not fixed, but varies from one point of the system to another. A set whose
identity is not fixed and can depend on the point is called a nonrigid set. Formally,
given a system R, a nonrigid set S of processes in the system is a function associating
with every point of the system a subset of the processes. In other words, S(r, m) is a
(possibly different) set of processes for every point (r, m) of R. We use the formula
i € Stodenote thati isin the nonrigid set S. We take i € S to be true ata point (r, m)
ifi € S(r,m).

Nonrigid sets arise naturally in the analysis of a variety of problems. For exam-
ple, when we consider a system in which processes can join and leave the system
dynamically, the set of the processes in the system is a nonrigid set. Similarly, the
set of processes that have direct communication links to a given process in such a
system is a nonrigid set. The nonrigid set of most interest to us here is the set of
nonfaulty processes, which we denote by A. Thus, A (r, m) consists of the set of
processes that are not faulty at the point (r, m).

Before we canrelate SBA to common knowledge, we need to extend the definition
of common knowledge to nonrigid sets. How should we do this? Given a nonrigid
set S, a natural candidate would be to define Es¢ as /\;cs K;¢. According to this
definition, Es¢ would hold at a point (r, m) if all the processes in S(r, m) know ¢
at (r,m). Cs would then be defined in terms of E s as usual. Note that in a formula
suchas EsEsg, or even K; Esq, the value that the nonrigid set S takes on may vary.
For example, in evaluating the truth of K; Es¢, the value of S may be different at
different points that i considers possible.
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How can we judge whether the proposed definitions of Esg and Cs¢ are appro-
priate? One criterion that is important for our applications is whether we can prove,
as we did in the case of coordinated attack, that if the members of S have coordi-
nated their actions, then this fact is guaranteed to be common knowledge among the
members of S. Does the definition of Cs we have just given have this property? For
example, in SBA, is it necessarily the case that when a nonfaulty process decides, then
it is common knowledge among the nonfaulty processes that the nonfaulty processes
are deciding? We would expect this to be the case, by analogy with the situation for
coordinated attack (Proposition 6.1.2). As we shall show later, if a nonfaulty process
is guaranteed to know that it is nonfaulty, then there is indeed such common knowl-
edge among the nonfaulty processes. In general, however, a process does not know
whether it is faulty (at least, not in the round that it fails). The consequences of this
lack of knowledge can perhaps most easily be seen in the case of general-omission
failures. In this case, it is quite easy to construct a run in which a nonfaulty process
decides on the value 0 and yet considers it possible that the nonfaulty processes are
deciding on the value 1, exactly because it does not know whether it or the other
processes are faulty (Exercise 6.19). We now define a notion of common knowledge
that is appropriate even when the nonfaulty processes do not necessarily know that
they are nonfaulty.

Notice that while the nonfaulty process in the example in the previous paragraph
does not know that the nonfaulty processes are all deciding on the value 0, it might
know that if it is nonfaulty, then they are all deciding on the value 0. This motivates
the following definition: Given a nonrigid set S and a process i, define B¢ to be an
abbreviation for K;(i € S = ¢). Thus,

(Z,r,m) = Bf@iff (Z,r',m’) = ¢ forall (', m’) such that

ri(m) =r/(m')andi € S(', m’).

Thus, B ¢ holds if and only if i knows that if it is in S, then ¢ holds. Itis easy to check
that B satisfies the S5 properties as discussed in Chapter 2, except for the Knowledge
Axiom (B¢ = ¢). Nevertheless, the Knowledge Axiom is satisfied at points
where i is in the nonrigid set S. That is, if i € S(r, m), then (Z,r,m) &= B¢ = ¢
(see Exercise 6.12). In general, it may be better to view B;’ as a notion of belief
rather than knowledge.
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Corresponding to the nonrigid set S, we add two modal operators to the language,
Es and Cs. We define Es¢ as /\;cs Bi¢. Thus,

(Z,r,m) = Esgiff (Z,r,m) = B¢ foralli € S(r,m).

In other words, everyone in S knows ¢ at the point (r, m) exactly if every process
in S(r, m) knows that if it is in S, then ¢ holds. Notice that if S(r, m) is empty, then
by definition Es¢ holds. The notion of Cs¢ is now defined as an infinite conjunction
in terms of Ese. Defining E§+1g0 inductively as an abbreviation for EsE §(p, we
have

(Z,r,m) = Cs@iff (T,r,m) = EXgpfork =1,2,...

It is easy to see that if S is a fixed nonrigid set G, so that S(r, m) = G for all points
(r,m), then Csp = Cge (Exercise 6.13). Thus, this definition extends our original
definition of Cg¢ to nonrigid sets. Let us now reconsider the case we mentioned
earlier where a nonfaulty process is guaranteed to know that it is nonfaulty. In this
case, when S is the nonrigid set of nonfaulty processes, it is clear that if process i is
nonfaulty, then B; ¢ is equivalent to K; ¢, for every formula ¢. Therefore, results we
obtain later about common knowledge among nonfaulty processes being attained in
SBA (Theorem 6.4.2 and Corollary 6.4.4) would hold also in this case had we used
the first definition of common knowledge for nonrigid sets.

Just as with Cg, we can relate Cs to a notion of reachability. Define a point
(r', m’) to be S-reachable from a point (r, m) in k steps (k > 1) if there exist points
(rg, mo), (r1, my), ..., (ry, mg) such that (r, m) = (rg, mo), (r', m") = (rr, my) and
forall I with O <[ < k — 1, there exists i € S(r;, m;) N S(rj4+1, mi41) such that
(r;, my) ~; (rie1, myy1). We say (r/, m’) is S-reachable from (r, m) if (r', m’) is S-
reachable from (r, m) in k steps for some k > 1. Now we get the following analogue
to Lemma 2.2.1:

Lemma 6.4.1 (Z,r,m) = Cso iff (Z,r',m’) = ¢ for all points (r', m’) that are
S-reachable from (r, m).

Proof See Exercise 6.14. 11

Using Lemma 6.4.1, we can also show that Cgs satisfies many of the properties
that we showed in Chapter 2 were satisfied by the common knowledge operator Cg
(Exercise 6.14). In particular, it satisfies all the properties of S5, except possibly the
Knowledge Axiom (with K; replaced by Cs), and it also satisfies the Fixed-Point
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Axiom and Induction Rule. Moreover, if S(r, m) # @ for all points (r, m) in an
interpreted system Z, then Cgs satisfies the Knowledge Axiom in 7 as well. Finally,
Cs satisfies the following property, of which we make frequent use:

EieS= (BCsp & Csg).

It turns out to be useful to define a nonrigid version of distributed knowledge as
well as a nonrigid version of common knowledge. If S is a nonrigid set, we define
Dg as follows:

Z,r,m) = Dsp iff (@,r,m)E= Dg(G C S = ¢)for G =S5, m).

Thus, for example, D ¢ holds at the point (r, m) if the nonfaulty processes at (r, m)
have distributed knowledge of the fact that if they are nonfaulty, then ¢ holds. The
condition G C S here is analogous to i € S in the definition of B ¢. Although Ds¢
is defined in terms of D, the fact that S is a nonrigid set causes Ds and D¢ to
have quite different properties. For example, negative introspection does not hold in
general for Dg, although it does for D (Exercises 2.10 and 6.15). The differences
between Ds and Dg are investigated in Exercise 6.15.

Using Cr, we can get analogues of Propositions 6.1.2 and 6.1.3 for SBA. Just
as with coordinated attack, to get the result for nondeterministic protocols, we must
assume that the context is nonexcluding.

Theorem 6.4.2 Let (y, ) be a ba-compatible interpreted context (resp., ba-
compatible nonexcluding interpreted context) and let P be a deterministic protocol
(resp., deterministic or nondeterministic protocol). If T = 1"P(P, y, i) satisfies
o4 then T = deciding \-(y) = Cyr(deciding \/(y)).

Proof The proof of this theorem is, not surprisingly, similar to that of Proposi-
tions 6.1.2 and 6.1.3. We leave details to the reader (Exercise 6.16). 1

To simplify the discussion, for the rest of this chapter we focus on deterministic
protocols for Byzantine agreement, so that we do not have to carry around the as-
sumption that the context is nonexcluding. However, we can extend all the results
here to the case of nondeterministic protocols if we restrict to nonexcluding contexts
(which, as we have said before, seems to be a very natural assumption in practice).

Corollary 6.4.3 Let (y, ) be a ba-compatible interpreted context and let P be a
deterministic protocol. If T = P (P, y, 1) satisfies 0°*%, then T = deciding; (y) =
B C s (deciding . (y)).
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Proof Note that, by Simultaneity, we have
T = deciding;(y) = B} (deciding (y)).
The result now follows easily from Theorem 6.4.2 (Exercise 6.17).

Theorem 6.4.2 states that it is valid in a system Z satisfying o*?“ that whenever
the nonfaulty processes decide on the value y, then the fact that they are deciding
is common knowledge among the nonfaulty processes, that is, C (deciding \,(y))
holds. The theorem tells us that, just as in the case of coordinated attack, common
knowledge plays a fundamental role in SBA. Unlike coordinated attack though, in
the contexts of interest to us for SBA, common knowledge will be attainable. Our
interest lies in how long it will take to attain it.

In the coordinated attack problem we required that the generals attack only if
at least one message is delivered; as a consequence, we could prove a corollary to
Proposition 6.1.2 showing that an attack requires common knowledge of the fact that
at least one message has been delivered. In the case of SBA, the processes are not
allowed to decide on the value 1 when all initial preferences are 0. This implies that
when they decide on the value 1 it must be the case that some process has an initial
preference of 1. We thus obtain the following corollary of Theorem 6.4.2.

Corollary 6.4.4 Let (v, ) be ba-compatible and let P be a deterministic protocol.
IfT =T (P, y, n) satisfies 0P, then T |= deciding \,(y) = Cn(3y).

Note that we can also prove that C s (delivered) must hold when the processes de-
cide. But in the contexts of most interest to us here, communication is reliable and
immediate. In these contexts there is no difficulty attaining C(delivered). In fact,
if Z =T1"P(P,y, ), where P is a protocol that requires that every process send a
message in the first round and (y, 7) is a context where communication is reliable
and immediate, then C s (delivered) holds at time 1 in every run of Z.

We remark that neither Theorem 6.4.2 nor Corollary 6.4.4 would have held
in the case of general-omission failures had we used the first definition of common
knowledge for nonrigid sets (see Exercise 6.19). On the other hand, there are variants
of SBA for which the first definition is appropriate (see Exercise 6.20).

6.5 Attaining SBA

Corollary 6.4.4 shows that attaining common knowledge that some process had initial
preference y is necessary in order to decide on the value y. One of our goals here is
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to show that it is a sufficient condition as well, by describing a program that attains
SBA by deciding which of Cxr(30) or Cxr(31) holds.

Let decided; be an abbreviation of decided; (0) Vv decided; (1), so that decided; is
true if process i has made a decision. Process i’s program would have the following
form:

case of
if —decided; N BiN C(30) do decide; (0)
if —decided; N —-B;VCN(EIO) A BI.NCN(EII) do decide; (1)

The parts of the program that are not shown (the “...”) describe the actions that
should be taken in case neither BZN C(30) nor BZ-N Cxs(31) holds. We assume that
none of these actions include decide; (0) or decide; (1); thus, process i decides on a
value only in the first two lines of the program. The first two lines of the program
are not symmetric in the role of 0 and 1. Indeed, it is possible that B} Cx (30) and
B Cxr(31) could both hold; the asymmetry assures that in this case all the agents
decide on the value 0, rather than some deciding on the value 0 and some deciding
on the value 1. As it stands, this program is not a (standard) program of the form
introduced in Chapter 5; in standard programs, we do not allow tests for knowledge.
This is what we call a knowledge-based program. We discuss such programs in
detail in Chapter 7 and, in particular, present a knowledge-based program for SBA
along the lines of this program. Here we discuss this program at an intuitive level,
as motivation for what we do in the rest of this chapter.

Informally, we can argue that for a program of this form, provided that the
decision property holds (so that all nonfaulty processes do eventually decide), the
agreement, validity, and simultaneity properties must hold as well. By the properties
of BY and Cy discussed in Section 6.4, if i is nonfaulty at a point (r, m), then
(Z,r,m) = B Cx(31) = 31, and 31 clearly does not hold if no process has initial
preference 1. Hence, if all processes have initial preference 0, then the processes
cannot decide on the value 1. A similar comment applies when we reverse the roles
of 0 and 1. Therefore, if the processes do decide, then the validity property must hold.
For the simultaneity and agreement properties, suppose i and j are nonfaulty, m is
the first round of r where some nonfaulty process makes a decision, and i decides
on the value 0 at round m. According to the program, this means that B;¥ Cxr(30)
must hold. Using the properties of C s discussed in Exercise 6.14, it follows that
(Z,r,m) = BY Cn(30) = Cpr(30) and (Z, r, m) = Cx(30) = BJ.NCN(EIO). Thus,
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Jj also decides on the value 0 in round m. Similar arguments can be used to show
that if i decides on the value 1 at round m, then so does j. These informal arguments
can be completely formalized once we give precise semantics to knowledge-based
programs; we defer further discussion of this issue to Section 7.4 (see, in particular,
Theorem 7.4.1). We now turn our attention to the problem of attaining common
knowledge.

We are interested not only in finding protocols that attain SBA, but in finding
ones that attain SBA as soon as possible, in a sense to be made precise shortly.
Our discussion suggests that this reduces to finding protocols that attain common
knowledge of some initial preference as soon as possible. In this section, we focus
on the problem of how soon such common knowledge can be attained in three contexts
of interest. These are contexts where communication is reliable and immediate, and
where, in addition, processes suffer either (a) crash failures, (b) sending-omission
failures, or (c) general-omission failures. In the literature these three failure types
have been called benign, since for these failure types the processes are not “actively”
trying to disrupt the system.

We begin by defining the three contexts of interest, y<", 15" and y$°™", that
capture crash failures, sending-omission failures, and general-omission failures, re-
spectively. Actually, each of these is not a single context, but a family of contexts, one
for each pair (n, t) witht < n. The appropriate n and ¢ should always be clear from
context. We denote the set {y<", 5™, y8°"} by I'*%¢_ For fin € {cr, som, gom}, the
context yf’" has the form (Pgm, Go, T, True). Thus, these contexts differ only in the
environment’s protocol. All these contexts are recording message-passing contexts
(as defined in Example 5.2.1). In particular, this means that the processes’ local states
are histories, so that the processes have perfect recall. We assume that process i’s
initial state has the form x;, where x; represents i’s initial preference. We take the

environment’s state to be of the form ((xy, ..., x,), h), where A is the sequence of
joint actions performed thus far. The set Gy of initial global states consists of the 2"
tuples of the form (((x1, ..., Xn), (), X1, ..., Xn).

As in all message-passing contexts, the processes’ actions consist of sending
messages and internal actions; the only internal action we allow here, however, is
decide;. (We could, of course, allow other internal actions, but decide; is the only
internal action necessary for designing a protocol that attains SBA.) We assume that
the environment’s actions have the form (a.1, . . ., @.,), where a,; is either block; (Q)
or (fail;, block; (Q)), for some subset Q of processes. Intuitively, block; (Q) results
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in the processes in Q not receiving i’s messages; (fail;, block; (Q)) results in a situ-
ation where process i fails and the only processes to receive its last message before
failing are the processes notin Q. We assume that 7 is such that all messages sent by
nonfaulty processes to nonfaulty processes are delivered in the same round they are
sent. (Note that message delivery here is the result of send actions by the processes;
we do not assume that the environment performs deliver actions.) It is the environ-
ment’s protocol that captures the type of faulty behavior allowed and describes what
happens to messages sent by or to faulty processes.

All that remains is to describe the environment’s protocol in each of these three
contexts. We start with the crash-failure case. We assume that any message sent by
a nonfaulty process to a nonfaulty process is received in the same round it is sent.
That is, a,; is block() if i is nonfaulty. Thus, the only interesting thing that the en-
vironment can do is to decide which processes fail, when they fail, and the subset of
processes that receive a message from a failed process in the round that it fails. Since
we are considering crash failures, if a process fails in round m, it sends no messages in
later rounds. P;” can now be easily described: in local state s, this protocol nonde-
terministically performs an action (a.p, . . . , 8. ), Where a,; has the form block; (Q)
or (fail;, block; (Q)), with the restrictions that (1) if i has not failed yet according
to s, then the component a,; of P,(s,) is either block; (¥) or (fail;, block; (Q)), for
some arbitrary subset Q of processes, and (2) if process i has already failed according
to se, then the component a,; of P.(s.) must be block; ({1, ..., n}), and (3) the total
number of failures cannot exceed . The effect of clause (2) is to guarantee that no
process receives messages from a process after the round in which it crashes. Thus,
we are modeling crashed processes as if they continue to function, although their
attempts at communication do not succeed. We could have chosen other ways of
modeling the situation (for example, by assuming that once a process crashes, its
local state becomes a distinguish crashed state); our choice results in a smoother
transition to omission failures.

In the sending-omissions failure case, the environment’s protocol P;°" is the
same as PS", except that we modify clause (2) to allow a,; to have the form block; (Q)
after process i has failed, for any subset Q of processes. That is, some (perhaps even
all) messages sent by a process after it has suffered a sending-omission failure may
still be received.

In the general-omissions failure case, the environment’s protocol P is the
same as P;", except that now we allow a,; to have the form block; (Q) for Q # ¢
even if i has not failed, with the restriction that if i has not failed, then all the processes
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in Q must be ones that have already failed. This is how we allow the environment to
stop faulty processes from receiving messages. Thus, messages can be blocked by a
fault in either the sender or the receiver.

This completes the description of the three contexts of interest. Since all these
contexts share a common global state space, we can define a single interpretation
7%5% such that (y, 7°7¢) is ba-compatible for y e 7%,

Now that we have defined these contexts, we can formalize our discussion from
Section 6.3 stating that SBA can be attained in ¢ + 1 rounds but not any faster.

Theorem 6.5.1 There are deterministic protocols that attain SBA in t 4+ 1 rounds
in each of the contexts in T'*0¢,

Theorem 6.5.2 If P is a deterministic protocol that satisfies o*?® in a context

y € % r is a failure-free run in R (P, y), and P attains SBA in t' rounds in
runr, thent' >t 4+ 1.

As we said earlier, our main interest lies in finding protocols that attain SBA as
soon as possible in the contexts in I'*??. We wish this to be true in every run, not
just the failure-free runs. Moreover, we want to characterize how soon processes
can decide in these contexts. A knowledge-based analysis will help us do this. As
a by-product of our analysis, we provide proofs of Theorems 6.5.1 and 6.5.2 in the
case of crash failures.

We first need some means of comparing the performance of two protocols. Given
two protocols P and P’ and a context y € %, we say that a run r € R™(P, y)
and a run r’ € R™(P’,y) are corresponding runs if they have the same initial
state (i.e., r(0) = r’(0)) and for all rounds m, the environment performs the same
action at round m in r and r’. Since the environment performs the same actions
in two corresponding runs, this means that the same processes fail at the same
times in each of them. If P is a deterministic protocol and y € I'*?¢, then a
run of R™P(P, y) is completely determined by its initial state and the actions per-
formed by the environment. Thus, if P and P’ are both deterministic protocols and
r € R™ (P, y), then we can talk about the corresponding run r’ € R™P(P’, y).

Using the notion of corresponding runs, we can compare the performance of
different protocols. Assume that y € I'?* and that P and P’ are deterministic
protocols that satisfy o**? in (y, 7%%%). We say that P dominates P’ if for every
run r € R™(P, y), if the nonfaulty processes decide in round m of r, then they
decide no earlier than round m of any corresponding runr’ € R™P(P’, y). P strictly
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dominates P’ if P dominates P’ and P’ does not dominate P. A protocol is called
optimal for SBA in context y if it is not strictly dominated by any other protocol for
SBA in this context. Finally, a protocol P is called an optimum protocol for SBA
in y if P dominates all other protocols for SBA in this context.

We want to show that optimum protocols for SBA exist, and to find them. As
a first step, we define a protocol that is optimum as far as attaining knowledge and
common knowledge of certain facts of interest.

As we noted, in the knowledge-based program informally presented at the be-
ginning of this section, we did not describe what happens if neither B;¥ Cx/(30) nor
B Cx(31) holds. Intuitively, if this is the case, then process i should send the other
processes messages. But what should these messages say? As we now show, to
attain common knowledge as quickly as possible, the best thing to do is for the pro-
cesses to tell each other everything they know. We make this precise by considering
a particular protocol called the full-information protocol. The protocol for process i,
denoted FIP;, is simple: in local state £, process i performs the action sendall; (local
state). This action has the effect of sending each process other than i the message ¢
if process i’s local state is £.

We use FIP to denote the joint protocol (FIPq, ..., FIP,). Notice that FIP is
a communication protocol; the only actions are the sending of messages. Running
FIP, the processes tell each other everything they know at every step. This suggests
that processes attain knowledge about the system at least as fast running FIP as they
would with any other protocol. As we now show, this is indeed the case.

We say that formula ¢ is determined by the initial state in a ba-compatible
interpreted system Z if for every point (r, m) in Z, the truth of ¢ at (r, m) is uniquely
determined by the initial global state (0). Note that in ba-compatible interpreted
systems, the formulas 30 and 31 are determined by the initial state. We say that ¢ isa
basic formula if it is of the form K;vyr, Dy, Carif, or B4/, where v is determined
by the initial state.

We can now make precise our intuition that FIP is an optimum protocol for
attaining knowledge.

Theorem 6.5.3 Assume that y € T'*** and that ¢ is a basic formula. Also assume
that P is a deterministic protocol, T = 1P (P, y, n“b“), andZ =T°P(FIP, y, n“b“).
Let r € R™(P,y) and r' € R™P(FIP,y) be corresponding runs. Then for all
m=>0,if(T,r,m) =o@then (T,r',m) = ¢.

Proof See Exercise 6.24. 11
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Corollary 6.5.4 Ify € I'*"® and T = I'"P(FIP, y, n*%%), then for all runs r in T,
there is a time m <t + 1 such that (Z,r, m) = Cxr(30) vV Cxr(31).

Proof Fixy € %4 and let r be a run in I"*P(FIP, y, by, By Theorem 6.5.1,
there is a protocol P that attains SBA by round ¢ + 1 in context y. Let r’ be
the run corresponding to r in Z/ = I"?(P, y, w**%). Suppose that the processes
decide on the value y in round m < 7 + 1 of r’. By Corollary 6.4.4, it follows that
(T, r',m) = Cyr(3y). By Theorem 6.5.3, it follows that (Z, r, m) = Cx-(3y). 1

Corollary 6.4.4 implies that attaining common knowledge of the existence of a
particular initial preference y is a necessary condition for deciding in SBA. Corol-
lary 6.5.4 shows that in the contexts in I'**%, the processes attain this common knowl-
edge when running the full-information protocol. By Theorem 6.5.3, they in fact
attain it as soon as possible when running the full-information protocol. This sug-
gests that to design an optimum protocol for SBA, we should run a full-information
protocol, testing for common knowledge as we go, and decide as sketched in the
knowledge-based program at the beginning of this section. As we show in Sec-
tion 7.4, this approach indeed works. To apply this approach, however, we need
some means of testing, and preferably testing efficiently, when and whether the com-
mon knowledge holds.

It is not hard to see that the processes can compute when Cxr(3y) holds. Since
the number of initial global states with given values of n and ¢ is finite and there are
only finitely many patterns of faulty behavior that can occur in the first m rounds
for each fixed m, it follows that there are only finitely many distinct prefixes of runs

through time m. In fact, there are less than 22m”2+” such runs, even in the case
of general-omission failures (see Exercise 6.25). For similar reasons, for any fixed
local state, the set of points in which a process has this local state is also finite. As a
result, we can explicitly perform model checking as described in Section 3.2 to test
whether Cxr(3y) holds. In general, this operation requires an exponential amount of
computation (as a function of n). Can we do better? That is the subject of the next
section.

6.6 Attaining Common Knowledge

In this section, we focus on two major issues. First, we study when C(3y) becomes
true in runs of the full-information protocol. Second, we consider how hard it is to
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decide whether C-(3y) holds. The techniques we develop to deal with the first issue
allow us to deal with the second one as well. Our analysis focuses on the crash-failure
mode. Thus, we mainly study the interpreted system Z¢ = I"P(FIP, y<", wb4).
We start by considering two aspects of runs in the crash-failure mode that play an
important role in determining when common knowledge arises. Detailed proofs of
the technical results of Sections 6.6.1 and 6.6.2 will be given in Section 6.7.

6.6.1 Clean Rounds

A clean round is around in which no new process failure becomes distributed knowl-
edge among the nonfaulty processes. More formally, let faulty(i) be a proposition
that holds at a point (r, m) exactly if i is faulty at that point. (We remark that in the
course of this section, we shall define a number of new propositions such as faulty(i),
and extend 7% to give them meaning.) We formally define round m to be clean in
run r in an interpreted system Z if, for every process i, if (Z, r, m) = D (faulty(i))
then (Z,r,m — 1) &= D (faulty(i)). (Notice that although we are checking for the
truth of the same formula— D xr(faulty(i))—at both points, the set A" may refer to
different sets of processes at each of these points.) Clean rounds resemble, but do
not coincide with, rounds in which no processes actually fail. A round in which a
process fails may be clean, provided no process nonfaulty at the end of the round
has noticed the failure. Conversely, a round in which no failure occurs might not
be clean if a failure that occurred in the previous round is discovered for the first
time in that round. Because we are dealing with crash failures, every failure will be
discovered at most one round after it has occurred (since no messages are received
from a faulty process in the rounds subsequent to its failure).

The importance of clean rounds in the crash-failure mode stems from the fact
that whatever is distributed knowledge among the nonfaulty processes at the start of a
clean round is known by all the nonfaulty processes following the clean round. (This
will be formalized in Theorem 6.7.2.) Using this observation, we can show that once
itis common knowledge that a clean round has occurred, then any formula determined
by the initial state that is distributed knowledge is also common knowledge. Thus,
after the existence of a clean round is common knowledge, common knowledge of
many new formulas can easily be attained. This statement is formalized in the next
theorem, whose proof we defer to the next section. Let clean be a formula that is true
at (r, m) if some round m’ < m is clean in run r. Note that clean can be determined
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from the global state r(m), since we can reconstruct what has happened in the run
up to time m by looking at the environment’s state.

Theorem 6.6.1 If ¢ is a formula determined by the initial state, then
I & (Ca(clean) A Dy@) = Cpo.

Proof See Section 6.7. 11

Since there are at most 7 failures, it is easy to see that one of the first # 4+ 1 rounds
of every run must be clean. Hence it is common knowledge at time ¢ 4- 1 that a clean
round has occurred. Since one of 30 and 31 must be distributed knowledge among the
nonfaulty processes, we immediately get the following corollary to Theorem 6.6.1:

Corollary 6.6.2 Letr be a run of Z¢. Then (Z",r,t + 1) = Cyr(30) v Cpr(31).

As we showed earlier, SBA can be attained as soon as either C(30) or Cxr(31)
holds. Therefore, in the case of crash failures, it follows from Corollary 6.6.2 that
SBA can always be attained by time ¢ 4 1. This proves Theorem 6.5.1 in the case of
crash failures.

Theorem 6.6.1 suggests that in some cases C(3y) may be attainable even before
time ¢ + 1. We next consider how soon such common knowledge can occur.

6.6.2 Waste

Obviously, runs in which no failures occur are reasonably well-behaved. It may seem
natural to expect that in such runs C,r(3y) should be easy to attain, while having
many failures in a run could only make things worse. This turns out not to be the
case. For example, consider a run %% in which process 1 detects ¢ failures in the
first round. Since no further failures can occur or become distributed knowledge, the
second round of the run #%¢ must be clean. In addition, at the end of the second round
all other nonfaulty processes will know that process 1 detected ¢ failures in round 1,
since process 1 will send a message about this fact to the other processes. It is not
hard to see that it is common knowledge at (r?%¢, 2) that process 1 detected ¢ failures
in the first round (Exercise 6.29). It then follows that it is common knowledge at
(rP%4 2) that round 2 of r??? was clean. By Theorem 6.6.1, any formula determined
by the initial state that is distributed knowledge among the nonfaulty processes is
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common knowledge at (7%, 2). In particular, this is the case for at least one of 30
and 31.

Suppose that we view SBA as a game, where an adversary is trying to force the
nonfaulty processes to take as many rounds as possible before reaching agreement by
choosing the behavior of the faulty processes appropriately. It turns out that, roughly
speaking, the adversary’s best strategy is to minimize the number of failures, since this
increases the processes’ uncertainty. As the previous example shows, the adversary’s
worst strategy is to have all the faulty processes fail right at the beginning of a run.
A closer analysis shows that, in fact, if more than m failures have become distributed
knowledge by the end of round m, then from the point of view of the ability to delay
the first clean round, failures have been “wasted.” In particular, if m + k failures are
discovered by the end of round m, then there must be a clean round by time t 4+ 1 — k;
in fact, there must be a clean round between round m + 1 and round ¢ + 1 — k.
Moreover, after the clean round, all correct processes will know that at some point
the waste was at least k.

These comments motivate the following definitions: We add ¢ + 1 propositions
#Failed > k to the language, for k = 0,...,f. We interpret #Failed to be the
number of processes that have failed, so that (Z", r, m) = #Failed > k if at least k
processes have failed by the end of round m in run r. (Recall that this information is
encoded in the environment’s state.) We denote by #KnownFailed(r, m) the number
of processes whose failure is distributed knowledge among the nonfaulty processes
at the point (r, m). More formally:

#KnownFailed(r, m) =gef max{k | (Z¢, r,m) = Dy (#Failed > k)}.

(We remark that we use #Failed > k here rather than #Failed = k, since processes
do not in general know the exact number of processes that have failed, just a lower
bound on this number.) It is easy to see that the fact that process i has failed is
distributed knowledge among the nonfaulty processes at (r, m) exactly if at least one
of the nonfaulty processes knows that i has failed. Moreover, if i fails in round m
of run r, then by round m + 1 of run r all the nonfaulty processes know that i
has failed, since they do not receive messages from i in round m + 1. Note that
#KnownkFailed(r, 0) = 0, since by definition no processes have failed at time 0. We
define the difference at (r, m), denoted diff (r, m), by

diff (r, m) =ges #KnownFailed(r, m) — m.
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Finally, we define the waste (or the wastefulness) of a run r of Z¢, denoted W(r),
by
W(r) =gef maxdiff (r, m).
m>0

Since diff (r, 0) = 0, it follows that W(r) > 0.

The greater the wastefulness of a run, the sooner it becomes common knowledge
that there has been a clean round. For example, if 7?%¢ is the run described at the
beginning of this subsection, where ¢ failures are detected in round 1 by process 1,
then we have W(r?@) = ¢ — 1, and at (7%, 2) it is common knowledge among the
nonfaulty processes that round 2 must be clean. In general, it can be shown that in
every run r, by time t + 1 — W(r) it is common knowledge among the nonfaulty
processes that a clean round has occurred.

Theorem 6.6.3 Ifr is arunin I, then (Z,r,t + 1 — W(r)) = Cp(clean).

Proof This follows from Theorem 6.7.4 below and the fact that a clean round is
guaranteed to occur in » by time r + 1 — W(r). I

Theorem 6.6.3 tells us that at time ¢ + 1 — W(r) it is common knowledge among
the nonfaulty processes that a clean round has occurred. In addition, Theorem 6.6.1
tells us that if ¢ is a formula determined by the initial state, and if it is common
knowledge among the nonfaulty processes that a clean round has occurred, then
Dyg¢ = Cue holds, that is, distributed knowledge of ¢ (among the nonfaulty
processes) implies common knowledge of ¢. We conclude that Dy = Cpre
holds at time # + 1 — W(r). We record this fact in the following corollary.

Corollary 6.6.4 Let r be a run of I¢. If ¢ is a formula determined by the initial
state, then (Z",r,t +1 —W(r)) = Dy = Cpro.

Since, as before, one of 30 and 31 must be distributed knowledge among the non-
faulty processes, we obtain from Corollary 6.6.4 a strengthening of Corollary 6.6.2:

Corollary 6.6.5 Let r be an arbitrary run of . Then
T, r,t+1—=W(r)) = Ca(30) v CaAr31).

We can slightly strengthen Corollary 6.6.4 in the case that¢ = n — 1. In this case,
a slightly more subtle analysis shows that formulas determined by the initial state
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that are distributed knowledge become common knowledge at time n — 1 — W(r)
(Exercise 6.30), that is, at time ¢t — WV(r), rather than at time ¢t + 1 — W(r). This
gives us:

Corollary 6.6.6 Letr be a run of I¢" and set T = min(t, n — 2). If ¢ is determined
by the initial state, then (Z,r, T +1 —W(r)) &E Dyo = Cno.

In fact, the bound implied by Corollary 6.6.6 is tight, in that formulas that are
determined by the initial state do not become common knowledge any sooner unless
they were common knowledge to start with.

Theorem 6.6.7 Let T = min{t,n — 2}. If ¢ is a formula determined by the initial
stateandm < T + 1 — W(r), then (Z,r,m) = Cno iff T, r,0) = Crno.

Proof The claim is an immediate corollary of Lemma 6.7.7. 1

Corollary 6.6.6 and Theorem 6.6.7 show that the wastefulness of a run of FIP
uniquely determines when the existence of a particular initial preference becomes
common knowledge. In particular, in runs with waste ¢ — 1, it happens after two
rounds; in runs with waste 0, it happens after # + 1 rounds. In general, it happens
after k rounds if the waste is r + 1 — k. Since attaining common knowledge of an
initial preference is a necessary and sufficient condition for attaining SBA, this gives
us a complete characterization of the number of rounds necessary to attain SBA.

These results show that the greater the wastefulness of a run, the earlier the
processes attain common knowledge. Roughly speaking, the more processes are
known to have failed, the less a nonfaulty process’s uncertainty about what can go
wrong, and hence the easier it is to attain common knowledge. This can be viewed as
illustrating a weakness of a model that presumes (common knowledge of) an upper
bound on the number of possible failures. Consider again the run %% in which
process 1 detects ¢ failures in round 1. We have already observed that W(r?%?) =
t — 1. If some nonfaulty process in r?* has initial preference 0, then it follows
from Corollary 6.6.6 that (Z¢", rbad 2y = C,(30). As we shall see, this means that
the nonfaulty processes can decide on the value O in round 3. Anthropomorphizing
somewhat, this means that the nonfaulty processes should be thrilled if # processes fail
in the first round. Intuitively, they are taking this as proof that no further failures will
take place. In practice, of course, if ¢ processes fail in the first round, the processes
should expect more processes to fail.
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On the other hand, the assumption of (common knowledge of) an upper bound
on the number of possible failures is not so unreasonable in practice. A program
specification often requires that the program work correctly so long as the number of
failures is bounded and/or the type of failures is restricted. If the bounds/restrictions
are chosen appropriately, the runs of the resulting system should represent all but
some exceedingly unlikely behaviors of the physical system.

6.6.3 Computing Common Knowledge

As we promised earlier, we now consider how hard it is for a nonfaulty process
to test whether Car(3y) holds in a run of Z¢. At the end of Section 6.5, we dis-
cussed a model-checking algorithm that in general requires an exponential amount
of computation. We now discuss a much more efficient approach.

Our first observation is that computing whether Cxr(3y) holds in a run of FIP
is bound to take at least exponential time (as a function of n), for what seem to
be the wrong reasons. Consider a run in which there are no failures. In this case,
each process receives a message consisting of the local state of every other process in
every round. An easy argument by induction shows that the messages sent in round &
must have length at least (n — 1)¥~!. We have already observed that if there are no
failures, then Cxr(3y) does not hold until time ¢# 4 1. By this time, the processes’
local states have size at least (n — 1)!t1. If n is O(¢), then just reading a local state
will take exponential time!

We can solve this problem quite easily. Rather than send its local state at each
round, each process sends a short description of its local state. This message con-
veys the same information as sending the full local state, without being exponentially
long. The basic idea is that all a process needs to know is which processes communi-
cated with each other in previous rounds. This information can be represented quite
succinctly.

We represent the first m rounds of the run r of FIP in a context y € ' in
terms of a graph G(r, m). For each process i and time k with 0 < k < m there
is a node (i, k) in the graph. Moreover, (1) each node of the form (i, 0) is labeled
by process i’s initial state r;(0), (2) there is an edge between nodes (i, k — 1) and
(j, k) labeled “+” if j receives a message from i in round & of r, and (3) there is an
edge between nodes (i, k — 1) and (j, k) labeled “—” if j does not receive a message
from i in round k of r. If £ = r;(m), let G(£) be the subgraph of G(r, m) that
describes what i has learned about the situation thus far. That is, G(£) is identical
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to G (r, m) except that some edges are missing (because i may not know that certain
messages have or have not been received) and some nodes of the form (j, 0) may
not be labeled (because i may not know some of the initial states of other processes).
Notice that G(£) has n(m + 1) nodes and size O(mn?) (that is, at most O (mn?)
nodes and edges). Thus, for the first n rounds (which turn out to be the only rounds
of interest to us), G(£) has size at most O (n>). (See Exercise 6.26 for more details
on the graph G (r, m).) Let FIP, be the protocol according to which process i sends
the message G (£) in local state ¢, rather than the message ¢, as in FIP;. Let FIP’
denote the joint protocol (FIP, ..., FIP)). In the first n rounds of runs of FIP’',
the processes’ local states are of size O (1) (since at each step, process i sends and
receives at most n messages that have size 0(n3) each, and these are recorded in
its history), which at least allows the possibility of polynomial-time algorithms for
checking when common knowledge occurs.

It should be clear from the construction of FIP' that the processes do not lose
any information by running FIP’ rather than FIP. In particular, it is easy to show the
following theorem.

Theorem 6.6.8 Assume that y € '’ and let ¢ be a basic formula. Let r and r’
be corresponding runs of T = 1"’ (FIP, y, 709 and T = TP (FIP, Y, sbay,
respectively. Then (Z,r,m) = ¢ if and only if (T, r', m) = ¢.

Proof See Exercise 6.28. 11

As we already observed (see Exercise 6.14), if i is nonfaulty, then C,(3y) holds
iff B)C(y) holds. Thus, the problem reduces to checking when B:¥Cxr(3y)
holds. This can be easily done. First, process i computes what it knows about the
waste. That is, at the point (r, m), process i computes how many processes it knows
were faulty at the point (r, m”) for each m’ < m, by checking G (r;(m)). (Note that
at (r, m), process i may know more about the processes that were faulty at (r, m’)
for m" < m than it did at (r, m’).) It then computes its best estimate for the waste
of run r, by subtracting m’ from the number of processes it knows were faulty at
(r,m"), for all m" < m. If at the point (r, m), process i knows that the waste is at
least T + 1 —m, where T = min(t + 1,n — 2),thenm > T + 1 — W(r), and it
follows from Corollary 6.6.6 that for every value y for which process i knows Jy, it
also knows that C-(3y) holds.

For fm € {cr, som, gom}, let T/ = TP (FIP', y/™ 75b%). We thus have the
following theorem.
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Theorem 6.6.9 There is an algorithm that, given input r;(m), with m < n, decides
in time polynomial in n whether (Z¢" " rm) e BN Cn(Qy).

What happens in the case of sending-omission failures or the case of general-
omission failures? Although the details are beyond the scope of this book, it turns out
that we can perform a combinatorial analysis of the runs of 75" and 78" similar
to the analysis we have just carried out for Z¢" ", In the case of 7°" | we can again
show that there is a polynomial-time algorithm for testing common knowledge. In
the case of 78" however, the problem of testing common knowledge is NP-hard.
(Recall that complexity-theoretic notions such as NP-hardness were discussed in
Section 3.5.) The situation is summarized by the following theorem.

Theorem 6.6.10 There is an algorithm that, given input r; (im), withm < n, decides
in time polynomial in n whether (I“’m/, r,m) = BYCx3y). The corresponding

problem for the system 789" is NP-hard.

Theorem 6.6.10 shows that in the case of general-omission failures, resource-
bounded processes that are restricted to doing polynomial-time computations are
unlikely to be able compute when they have common knowledge of an initial pref-
erence. (If they could, then it would follow that P = NP, which, as we mentioned
in Section 3.5, is considered highly unlikely.) A process that did not suffer from
such resource limitations could, of course, compute when this common knowledge
arises. As we mentioned earlier, this can be done in exponential time, using the
model-checking algorithm of Section 3.2. In fact, this computation can be done in
space polynomial in n (see Exercise 6.27).

6.7 Detailed Proofs

In this section, we provide the details of some of the proofs we omitted in Section 6.6.
The results of this section are not needed elsewhere in the book.

Before beginning to prove the statements made in Section 6.6, we need a few
definitions. First, the notion of a failure pattern will play an important role in this
section. A failure pattern is a description of which processes are faulty and how
the faulty processes behave. In the case of crash failures, a failure pattern can be
represented as a set of triples of the form (i, m, Q), where i is a process, m is a round
number, and Q is a set of processes. A run r € R™P (P, y") displays the failure
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pattern f if f consists of precisely those triples (i, m, Q) such that the environment
performed the action (fail;, block; (Q)) at round m of run r.

We use X = (x1,...,x,) to denote the list of the initial preferences of the
processes. Notice that a deterministic protocol P, a failure pattern f, and a vector X
uniquely determine a run in the context ", This is the run of R (P, y") with
failure pattern f and initial preferences as determined by X. We denote the run
determined by P, f and X by P(X, f).

We start with a preliminary result about distributed knowledge, which is inter-
esting in its own right. Roughly speaking, it shows that distributed knowledge of
formulas determined by the initial state cannot be gained in the case of crash failures.
(We remark that distributed knowledge can be lost. For example, suppose thatinrunr
of a system Z, process 1 is the only process with initial preference 0, and process 1
fails in round 1 and no process receives messages from process 1. By definition, no
process is faulty at time 0, so (Z, r, 0) = Dx(30), but (Z, r, 1) = Dar(30).)

Theorem 6.7.1 Suppose thatT = I'P(P, y<", 7% and ¢ is a formula determined
by the initial state. Then T = =D ¢ = O—Dyre.

Proof Assume that (Z,r,l) = —Dx¢@. We want to show (Z, r, m) = —~ Dy for
all m > [. It clearly suffices to show (Z,r,[ + 1) = —Dr¢, since once we show
this, the desired result follows by a straightforward induction. From the semantic
definition of D¢, it follows that (Z, r’,1) = —¢ for some run r’ of T such that
N(r, 1) SN (@', 1) and r; (1) = r{(l) for all processes i € N'(r,1). Letr = P(X, f)
and r’ = P(X’, f'). Let f” be a failure pattern such that

e f”isidentical to f’ up toround ! (sothat (i, k, Q) € f'iff (i, k, Q) € f” for
k<D,

e according to f”, all of the processes in N'(r’, [) not in N'(r, [) (if any) crash
in round / 4+ 1 and none of their round / + 1 messages are delivered (so that

(i, 1+ 1,{1,...,n}) € f"fori e N(r', 1) — N(r, 1)),

e f”isidentical to f fromround !+ 1 on for processes not in N'(r’, ) — N'(r, [)
(sothat (i, k, Q) € fiff (i,k, Q) € f/fork>1+1,i ¢ N(',1) =N (r,1)).

It is easy to see that the same processes fail in f and f”; hence, no more than ¢ pro-
cesses failin f”. Letr” = P(X’, f”). Given that no more than ¢ processes failin f”/,
we immediately have that " is a run of Z. We claim that (a) (Z,r”,l + 1) &= —¢,
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ONEI+1) =N@E", 1+ 1),and () r;({+1) =r/(+1) foralli € N(r, 1+ 1).
We have (a) because r”(0) = r’(0), ¢ is determined by the initial state, and
(Z,r',]) = —¢. Property (b) follows from the construction of f”. Finally, for
property (c), notice that every process i € N (r,1) has the same local states at (7, [)
and at (r”,1), since r;(I) = r/(l), and r/(l) = r/(l). Therefore, all processes
in M (r,[) send the same messages (according to P) in round / + 1 of both runs.
Furthermore, f” is constructed in such a way that each nonfaulty process receives
messages from the same set of processes in round / + 1 of both runs. It thus follows
that (Z,r,l + 1) = =Dy, and we are done. i

We now examine the relationship between clean rounds, distributed knowledge,
and common knowledge. As we mentioned earlier, our interest in clean rounds
is motivated by the observation that many formulas that are distributed knowledge
before a clean round are known by all the nonfaulty processes after a clean round.
This observation is captured by the following theorem. (Recall that a formula ¢ is
stable in an interpreted system Z if once true, it remains true; thatis, if 7 = ¢ = Og;
see Section 4.4.4 and Exercises 4.18 and 4.19.)

Theorem 6.7.2 Suppose that ¢ is stable in T, and that (Z¢",r,m — 1) = Dyo.
If round m of run r is clean, then (Z, r, m) = E .

Proof See Exercise 6.31. 11

In the interpreted system Z¢", processes have perfect recall. As a consequence,
if ¢ is stable, so are E ¢ and Cy¢ (Exercise 6.32). Since formulas determined by
the initial state are stable, Theorem 6.7.2 implies that after a clean round all processes
know all formulas determined by the initial state that were distributed knowledge at
the beginning of the round. Furthermore, Theorem 6.7.1 implies that no additional
formulas determined by the initial state will later become known. Thus, following
a clean round, all processes will forever have identical knowledge about the initial
state. As a result, once it is common knowledge that a clean round has occurred, it
is also common knowledge that the processes have an identical view of the initial
state. These observations suffice to prove Theorem 6.6.1 from the previous section.
We repeat the statement here for convenience.

Theorem 6.6.1 [f ¢ is a formula determined by the initial state, then

I = (Cpr(clean) A Dy@) = Car.
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Proof Let ¢ be a formula determined by the initial state. Let (r,m) be a
point such that (Z", r,m) = clean A Dpr. It follows from Theorem 6.7.1 that
(Z",r, 1) = Dy foralll < m. Since (Z¢, r, m) = clean, some round [ < m of r
must be clean. Noticethat/ > 0, since round 1 takes place between times 0 and time 1.
Since (Z¢,r,l — 1) = Dy, by Theorem 6.7.2 we have that (Z¢",r,[) &= En¢.
Since ¢ is stable, so is E nr¢ (Exercise 6.32), and therefore (Z¢", r, m) = En¢. Since
I &= Exe = EnDyo (Exercise 6.33), we have that (Z, r,m) = ExDpe. It
follows that Z¢" |= (clean A D) = En Dar@. Since Cpr(clean) = EnCar(clean)
is valid by the Fixed-Point Axiom (which holds by Exercise 6.14), we have that
I = Cpr(clean) ADprg = En(Car(clean) A D), so from the Induction Rule we
get I = (Cur(clean) A Dygp) = Car(Car(clean) A D). It is easy to check that
E Cux(Ca(clean) A Dpr@) = Carep. Thus, we get T = (Cp(clean) A Darg) =
Cro, as desired. I

We next want to prove Theorem 6.6.3; thus, we want to show that by round
t 4+ 1 —W(r) of arun r, it is common knowledge that a clean round has occurred.
We need to prove some preliminary results first.

We add ¢+ 1 propositions of the form W,,,,» > k,fork = 0, ..., t to the language.
Ifk < t, wetake W, = k tobe an abbreviation for W, = K) A= Weurr = k+1);
we identify Weyr = t with Weyr > t. We use Wey to refer to the waste in
the “current” run. Thus, for example, (Z,r,1) E W = k) holds exactly if
W(r) = k. Notice that since the processes generally do not know what run they
happen to be in, their knowledge about the waste is only in terms of W,,,. We
remark that for all runs r, we have diff (r, 0) = 0 and that diff (r,]) < t — 1 for
all /. Thus, 0 < W(r) <t — 1. Moreover, since diff (r, t + 1) < 0, it follows that
at some time / between time 0 and time ¢ the difference reaches its maximum—the
wastefulness of the run—for the last time. Round 7+ 1 must be clean, since otherwise
diff (r, T+1) > diff (r, D, contradicting the choice ofI. This leads us to the following:

Lemma 6.7.3 IfW(r) > w then (Z,r,t + 1 — w) = CA-Wewrr = w).

Proof Let r be an arbitrary run of Z¢" and suppose W(r) = w’ > w. We start by
showing that (Z, r, t + 1 —w) = ExWeyrr > w). Let 7 be the largest [ satisfying
diff (r,1) = w'. By definition of 7, we have #KnownFuiled(r,1) — 1 = w'. Since
#KnownFailed (r,/l\) < t, it follows thatlAf t —w’, and hence alsol+ 1 <t+1—w.
Now observe thatround 7+ 1 of » mustindeed be clean, since diff (r, I+ 1) < diff (r, T)
Since #KnownFuiled(r,1) = I4+w’, we have that (Z¢, r, 1) = Dy (#Failed > 1+w").
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As a result, we obtain by definition of W that (Z¢, r,T) = Dy Werr > W),
Notice that the truth of W, > w’ is determined by the run, so that Wy, > w’
is a stable formula. Since round 7 + 1 of r is clean, we have by Theorem 6.7.2
that (I”,r,f—l— D) = ExWeur = w'). Since T+1<t+1—w, and since
ExWeurr > w') is stable (by Exercise 6.32, since Wy, > w’ is stable), it follows

that (Z¢", r,t +1 — w) = ExWeur = w’). Moreover, since w’ > w, we obtain

that (Z,r,t + 1 — w) E ExWeurr = w), as desired.

Let r be a run with W(r) > w and let ’ be a run such that (+', ¢ + 1 — w)
is M-reachable from (r,7 + 1 — w). (Recall that Z¢ is synchronous, so that all
points N -reachable from (r, t + 1 — w) are points at time ¢ + 1 — w.) We prove by
induction on k that if (+', # + 1 — w) is A/-reachable from (r, r + 1 — w) in k steps,
then (Z¢,7',t + 1 — w) = Weur > w. The case k = 0 is immediate, since then
r’ = r and the claim holds by assumption. Assume that the claim is true for k, and let
(r’, t+1—w) be N-reachable from (r, t + 1 — w) in k + 1 steps. Letr” be arun such
that (", t + 1 — w) is N-reachable from (r, 7+ 1 —w) in k steps and (', 1 +1 —w) is
N-reachable from (r”, t + 1 — w) in one step. By the induction hypothesis, we have
that (Z",r”,t + 1 — w) = Weurr = w. This means that W(r”) > r. Therefore,
by our previous claim, we have that (Z¢,r",t + 1 — w) &= ExWeurr > w). It
follows that (Z¢", 7', t + 1 — w) = Wewr > w. It now follows from Lemma 6.4.1
that (Z,r,t +1 —w) E CxWewrr = w). 1

We can now use Lemma 6.7.3 to prove that the precise waste of a run becomes
common knowledge at time ¢ + 1 — Wy

Theorem 6.7.4 IfW(r) = w then (Z,r,t + 1 — w) = Cx-Weurr = w).

Proof Given Lemma 6.7.3, it suffices to show that (Z¢,r,t + 1 — w) [k
Cn—Weyrr = w + 1). Assume by way of contradiction that (Z<", r, t + 1 — w) &

Cn—Weurr > w + 1). Then there is a point (', ¢ + 1 — w) that is A/-reachable
from (r,r + 1 — w) for which W(’) > w + 1. By Lemma 6.7.3 we have
T, r' t+1—w") = CarOWeurr = w+1). Since (7, t +1—w) is A -reachable from

(r',t + 1 — w), it follows that W(r) > w + 1. But this contradicts our assumption
that W(r) = w. I

We can now prove Theorem 6.6.3, which we restate.

Theorem 6.6.3 Ifr isaruninZ<, then (T, r,t + 1 — W(r)) = Cp(clean).
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Proof Assume that W(r) = w. Then there must be a clean round in r by time
t + 1 — w (Exercise 6.35). Thus, (Z,r,t + 1 —w) &= Weyr = w) = clean.
Hence, by Exercise 6.14, (Z,r,t + 1 — w) &= CxWeyrr = w) = Cpr(clean).
By Theorem 6.7.4, we know that (Z,r,t + 1 — w) &= CyWeur = w). Hence,
@, r,t +1—w) = Cp(clean), as desired. I

Finally, we prove Theorem 6.6.7, which states that formulas determined by the
initial state do not become common knowledge in a run r in Z¢ in fewer than
t + 1 —W(r) rounds unless they were common knowledge to start with. This result
follows from three basic lemmas. The first is somewhat technical. It states that
before time ¢ + 1 — W(r), a point differing from the current point only in that the
last process known to have failed never fails, is A-reachable from the current point.
To make this precise, we give the following definition: Given a failure pattern f,
the failure pattern £~ is defined to be f — {(i, k, Q)} if there is a triple of the form
(i, k, Q) in f, and to be f if i is not designated to fail according to f. Given a run
r = FIP(X, f),wedefiner ' tobe FIP(X, f~'). Finally, we say that the failure of j
is discovered at time m in a given run if time m is the first time at which j’s failure is
distributed knowledge among the nonfaulty processes. Recall that this means that m
is the first time that some nonfaulty process knows that j is faulty. We can now show

the following lemma.

Lemma 6.7.5 Letr be arun of ¢ and let T = min{t,n —2}. If W(@Fr) <T —m
and no process failure is discovered in r at a later time than process i’s failure, then
(r, m) is N'-reachable from (r ", m).

Proof For ease of exposition, we prove the claim assuming ¢ < n — 2. The case of
t = n — 11isleft as Exercise 6.36. Thus, T = ¢, and we use ¢ for T in the proof. If i
does not fail in r then r = r~*, and the claim trivially holds. So assume that i fails
in r, and let / be the round in which i’s failure is discovered in . By assumption, no
process failure is discovered in r at a later time. If / > m then for every nonfaulty
process j € N(r, m) wehave rj(m) = rj_i (m) and thus clearly (r, m) is A/-reachable

from (r—*, m). It remains to prove the result for [ < m. We do this by induction on
k=m—1.

Case k = 0 (i.e., I = m): First suppose that some process j € N(r, m) received a
message from i in round m. Then clearly j cannot distinguish (r, m) from (r=t, m),
and we are done. So suppose that no process in N (r, m) received a message from i in
round m. Let j # j’ be distinct processes such that j, j/ € A (r, m). Such processes
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exist by the assumption that 1 < n — 2. Clearly, r;(m) is independent of whether
or not j' receives a message from i in round m. Thus, (r, m) is A/-reachable from
(r', m), where r’ differs from r only in that i fails in round [ of ' (i may have failed
inround [ — 1 of r and still sent messages to all the nonfaulty processes), but j" does
receive a message from i in round m of r’. By our earlier arguments, since j’ receives
a message from i in 7/, we have that ((+') ™!, m) is N'-reachable from (+’, m). By the
transitivity of AV-reachability, it follows that ((r’ Y~%, m) is N'-reachable from (r, m).
Finally, observe that r~t = (+/)7%. Thus, it follows that (¢, m) is N -reachable
from (r, m).

Case k > 0 (i.e.,/ < m): Assume inductively that the claim holds for k — 1. Let
QO = {j1,..., jn} consist of the processes in N(r, ) to which process i’s round /
messages are blocked inrun r (i.e., Q = N(r,1) N Q' where (i, [, Q') € f(r)). We
prove our claim by induction on 4. First observe that the case 4 = 0 is vacuously true,
since if & = 0, then i’s failure is discovered only at time / + 1, which contradicts our
assumption about /. Now assume that 2z > 0 and that the claim holds for 4 — 1. Let r’
be a run that is identical to r except that i fails in round [ of " and {j, ..., ja_1}
is the set of processes to which i’s round / messages are blocked in run r’. Clearly
(r")~" = r~% and, by the induction hypothesis, (r ~*, m) is A'-reachable from (', m).
Thus, all we have to do is to show that (+’, m) is N-reachable from (r, m). We do
this by constructing two intermediate runs rj, and r;, and showing that (r’, m) is
N-reachable from (r;, m), which is A/-reachable from (rj,, m), which in turn is N/-
reachable from (r, m). The construction of r;, which involves having process jj, fail,
depends on the waste being small enough to give us enough freedom to play with
failures between rounds / 4+ 1 and m. We proceed as follows.

Let ry, be the run that is identical to r up to time /; furthermore, in rj, process jj
fails in round [ 4 1 of r,, all of the round / 4 1 messages it sends are blocked, and no
other processes fail in 7;, after round /. We claim that no more than ¢ processes fail
in ry. Since the number of processes that fail in rj, is one more than the number of
processes that fail in r, it suffices to show that at most ¢ — 1 processes fail in r. First
notice that the number of processes that fail in r is #KnownFailed(r, l), since if a
process failed at or before round / in r and its failure was not discovered by time /, then
its failure would have been discovered by time m, contradicting our assumption that
no process failure is discovered in r at a later time than i’s failure. Now, diff (r, ) <
W(r) <t —m. Thus, #KnownFailed(r,1) = diff (r, )+l <t—m+I[ =t — (m—1).
Since we are assuming that [ < m, we have #KnownFailed(r, ) < t. It now follows
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that there are no more than ¢ failures in . Since rj; has the same initial state as r
and no more than ¢ failures, it follows that ry, is a run of the system.
Clearly W(ry) < t —m, since diff (rj,, ') = diff (r,I") <t —mforalll’ <[, and

diff (ry, 1 + 1)
= #KnownFailed(rp,l +1) — (I +1)
#KnownFailed(rp, 1) +1 — (I + 1)

= diff (rn, D
< W)
< t—m.

Notice also that no process fails in ry, after round / + 1. Thus, since r = rh_ h and Jn
is the last process whose failure is discovered in 7y, by the induction hypothesis on
k — 1 (applied with respect to jj), we have that (r,, m) is N -reachable from (r, m).

Let r;, be identical to r, except that i fails in round / and does send a message to
Jjn (although i still does not send messages to ji, ..., jp—1 inround [ of r;l). Choose
Jj € N(rp,m) such that j # j,. (Again, this is possible since we are assuming
that 1 < n —2.) Clearly j cannot distinguish (rj,, m) from (rj,m), so (r;,m)
is N-reachable from (rj, m). Since r’ = r;l_”', we can now apply the induction
hypothesis for k — 1 to conclude that (', m) is A/-reachable from (r,’l, m).

Thus, we have shown that (+', m) is N -reachable from (r;l, m), which is N-
reachable from (rj,, m), which in turn is A'-reachable from (r, m). Therefore, (', m)
is M-reachable from (r, m). As we showed, this is sufficient to complete the proof. I

We can use Lemma 6.7.5 and the fact that all 2" possible initial states appear in
runs of the system, to show that before time ¢ + 1, all failure-free runs are reachable
from each other:

Lemma 6.7.6 Let T = min{t,n —2}. If m < T and both r and r' are failure-free
runs in I, then (r, m) is N'-reachable from (r', m).

Proof Letr and r’ be failure-free runs in Z¢. We want to show that (r, m) is N~
reachable from (', m). Let Q = {j1, ..., jn} be the set of processes whose initial
states in r and r’ differ. We prove by induction on 4 that (r, m) is N -reachable from
(r',m). If h = 0, then r = r’ and we are done. Let 4 > 0 and assume inductively
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that for all failure-free runs r” that differ from r’ in the initial state of no more than
h — 1 processes, (r’, m) is A/-reachable from (r”, m). Let rj be a run with the same
initial state as r, in which jj, fails in the first round with all of its round 1 messages
being blocked, and no other process fails. Clearly W(ry) = 0 < T — m. Since we

also have r; Ih — r, it follows from Lemma 6.7.5 that (r;,, m) is N -reachable from

(r, m). Clearly (rj,, m) is N -reachable from (r;l, m), where r}’Z differs from rj only in
that the initial state of jj, inrj, isasinr’. (Notice that r; is a run of the system because
all possible initial states appear in the system.) Again by Lemma 6.7.5 we have that
(r,/l, m) is N-reachable from (7, m), where the initial state of 7 is as in r;l, and 7 is
failure-free. Since 7 differs from r’ only in the initial states of 4 — 1 processes, by
the induction hypothesis we have that (r’, m) is N-reachable from (7, m) and, by
the symmetry and transitivity of A'-reachability, we have that (r, m) is A/-reachable
from (', m), as desired. 1

Notice that in the case of crash failures, Theorem 6.5.2 is a corollary of this
lemma. For we know by Corollary 6.4.4 that in order for the nonfaulty processes
to decide on the value y, it must be the case that Cx(3y) holds. But Lemma 6.7.6
implies that Cx(3y) cannot hold in a failure-free run before time ¢ 4 1, since all
failure free runs are A/-reachable from each other before this time.

The next result extends Lemma 6.7.6 to the case where there are failures. Theo-
rem 6.6.7 is a straightforward consequence of this lemma.

Lemma 6.7.7 LetT = min{t, n—2} andletr andr’ be runs of I. IfW(r) < T—m
and W(r') < T — m, then (r, m) is N'-reachable from (r', m).

Proof Suppose that r and 7’ are as in the statement of the lemma. Let r| be the
failure-free run with the same initial state as » and let 7, be the failure-free run with
the same initial state as r’. Observe that for any run r, we have W™ < W(r).
Thus, by repeated applications of Lemma 6.7.5, we have that (ry, m) is A/-reachable
from (r, m) and that (r,, m) is N/-reachable from (', m). By Lemma 6.7.6, we have
that (r1, m) is N-reachable from (rp, m). The result now follows from the symmetry
and transitivity of A/-reachability. il
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Exercises

6.1 Construct a set of runs corresponding to the coordinated attack story described

in the text. Show that in the run where all the messages are delivered, after each
acknowledgment the depth of knowledge increases by one. Thatis, show that when B
gets A’s initial message, K p(delivered) holds; when A gets B’s acknowledgment,
K 4 K p(delivered) holds; when B gets A’s acknowledgment of the acknowledgment,
KpBK s Kp(delivered) holds; and so on. Show that at no point in this run does
C (delivered) hold.

6.2 Show that a.m.p. systems display umd, as do a.r.m.p. systems.

6.3 Show that for the nondeterministic protocol P described at the end of Sec-
tion 6.1, it is possible to construct a ca-compatible interpreted context (y, ) such
that I'P (P, y, m) satisfies 0°¢ and R(P, y) displays umd.

6.4 Prove Proposition 6.1.3.
6.5 Prove Proposition 6.1.4.

6.6 Let G be a set of global states. Show that if P; is a deterministic protocol, then
there is a decision function D such that P; is compatible with D in all systems R
over G. Show, moreover, that we can take D to be union consistent.

6.7 Prove that the decision function D' is union consistent.
6.8 Prove that both DP” and D*™ are union consistent.

*6.9 This exercise describes a class of scenarios in which the players reach steady
state (in the sense mentioned in Section 6.2) and attain common knowledge of the
fact that they are in steady state.

Given a set S’ of points, define Init(S") = {r(0) | (r, m) € S’ for some m > 0}.
Thus, Init(S’) is a set of initial global states, and an initial global state s is in this
set exactly if there is a point (r, m) € S’ such that r(0) = s. We say that a decision
function D on set S depends on initial states if Init(T) = Init(U) implies that
D(T)=DU)forall T,U C S.
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Let (v, m%) be an interpreted context for agreement, such that y = (P,, Go, 7, True)
is a message-passing context in which the only actions are send actions and in
which P, reliably delivers messages in the round they are sent. Let D be a decision
function that is defined on all subsets of points and depends on initial states in y .

(a) Prove that there is a unique joint protocol P = (P;, P,) that implements D in
context y. Let 7P = TP (P, y, n®).

(b) Show that if Gy is finite, then for every run r of 7 D there exist actions a and b
such that the players eventually attain common knowledge of the fact that they
are in steady state and performing these actions. That is, show that

7P = ©CO(act| (a) A acty(b)).
Conclude that for each run r, there is a time m such that
(ZP, r,m) = Cl(acti(a) A acta(b)).

Thus, at some point in each run it is common knowledge what actions the
players stabilize on.

(c) Given arun r of 7P, let steady(r) be the smallest m for which (Z Dy om) E
CUO(acty(a) Aacta(b)). Give an optimal bound on the size of steady(r) in Z D
and prove that it is optimal. (Hint: consider the number of information sets
each player has initially.)

(d) Show that without the assumption that Gy is finite, the result of part (b) might
be false.

(e) Show that if we allow internal actions as well as send actions, the result of
part (b) might be false.

6.10 Suppose that we modify the coordinated attack problem so that it becomes
more like SBA by (a) assuming that each general initially either prefers to attack or
prefers not to attack, and (b) requiring that the generals do what they initially prefer
in every run where they have the same initial preference. Let (y, w) be a context
compatible with this scenario in which the set Gy of initial global states contains all
four configurations of initial preferences. Show that if P is a protocol that attains this
modified version of coordinated attack in (y, 7), then I'®? (P, y, ) satisfies o“¢.
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6.11 Construct the tables Ts, ..., T9 missing from Figure 6.1 in Example 6.3.1.

6.12 Let S be a nonrigid set of processes in an interpreted system Z. Prove that
B satisfies all the S5 properties as defined in Chapter 2 (with K; replaced by B/),
except for the Knowledge Axiom. Give an example where the Knowledge Axiom
fails, and prove that B satisfies the following weakening of the Knowledge Axiom:

ieS= (B¢ = ¢).

6.13 Show that if S(r, m) = G for all points (r, m) in an interpreted system Z, then
(@ ZTE Bjp & Kipfori € G,
(b) T = Esp < Ego,
(©) Tk Csp < Cgo.

6.14 This exercise considers some properties of the operator Cs.

(a) Prove Lemma 6.4.1.

(b) Prove that Cg satisfies all the S5 properties as defined in Chapter 2 (with K;
replaced by Cgs), except for the Knowledge Axiom.

(c) Show that Cgs also satisfies the analogue of the Knowledge Axiom in a sys-
tem Z such that S(r, m) # @ for all points in Z. In particular, show that our
assumption that ¢ < n implies that C » satisfies the analogue of the Knowledge
Axiom.

(d) Provethat Cg satisfies the Fixed-Point Axiom and Induction Rule of Chapter 2,
with Cg replaced by Cs and E¢ replaced by Es.

(e) Provethat =i € S = (B Csp < Cs@).

6.15 This exercise considers some properties of distributed knowledge for nonrigid
sets. Let S be a nonrigid set of processes. Prove that D satisfies all the S5 properties
as defined in Chapter 2, except the Negative Introspection Axiom (i.e., it satisfies the
axioms of the system S4,,, as defined in Chapter 3). Provide a counterexample to
negative introspection.
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6.16 Prove Theorem 6.4.2.
6.17 Fill in the details of the proof of Corollary 6.4.3.

6.18 Show that Theorem 6.4.2 does not hold in general for nondeterministic proto-
cols, by considering a context much like that used in Exercise 6.3.

6.19 Suppose that P is a deterministic protocol for SBA in the general-omission
failure mode such that Z = I"P (P, y8°™, 7509) satisfies o574,

(a) Show that there are two runs r{ and r; in Z such that

(i) in both runs, process i decides on the value 0 and has the same local state
when it decides,

(i1) inry process i is nonfaulty, while in r; it is faulty, and in , the nonfaulty
processes decide on the value 1.

(b) Use part (a) to prove that Z = (i € N A deciding-(0)) = K;deciding (0).
By way of contrast, show 7 |= (i € N' A deciding;(0)) = B;Ydeciding - (0).

Part (b) suggests that our definition of C is the appropriate one for SBA. (Hint for
part (a): choose n = 2¢, and construct runs that differ only in the identity of the
faulty processes and the blame for undelivered messages.)

** 6.20 Define uniform SBA just like SBA, but replace the agreement and simultaneity
requirements by

e Uniformity: All the processes that decide on a value (whether faulty or correct),
decide on the same value; moreover, their decision is performed in the same
round.

We denote the resulting specification for uniform SBA by *?¢. Uniformity may be
areasonable requirement in the case of sending or general-omission failures; in these
cases, we may want all the processes that actually decide (even ones that may have
omitted to send or receive a message) to decide on the same value. Given a nonrigid
set S, define (Z,r,m) = Es¢ if (Z,r,m) = K,¢ foralli € S(r, m). In addition,
define (Z, r, m) = Clso precisely if (Z, r, m) = (E5)*¢ holds for all k > 0. (Note
that this is precisely the definition we showed in Exercise 6.19 was inappropriate for
SBA in the general-omission failure mode, when the specification does not enforce
uniformity.)
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(a) Let (y, m) be a ba-compatible interpreted context and let P be a determin-
istic protocol. Suppose that Z = I"P(P, y, ) satisfies 0%, Prove that
T k= deciding(y) = C\(3y).

(b) Let y € {y, y%™}, let FIP be a full-information protocol, and let Z =
P (FIP, y, 75b4) . Assume that # < n — 2. Prove that for all formulas ©, we
have 7 = Cno < Clo.

(c) Let Z = I'*P(FIP, y8°™, 7504y and suppose that n > 2¢. Prove that for all
formulas ¢, we have Z = Cyr¢ < Clo.

6.21 What can you conclude from Exercises 6.19 and 6.20 about the attainability
of uniform SBA in the various failure modes?

6.22 We defined SBA in terms of the processes needing to decide on one of two
values: 0 or 1. There are cases in which it is natural to consider agreements on a
decision among more than two values. In the following, let many-valued SBA refer
to a variant of SBA differing from SBA only in that the processes must decide on
one of k > 2 values.

(a) Show that Corollary 6.4.4 fails for many-valued SBA.

(b) Let all(y) be a proposition that is true at a point (r, m) if all processes
have initial preference y in r. Let Z be an interpreted system satisfying
the specification of many-valued SBA and suppose x # y. Prove that
T = deciding \/(y) = Ca(—all(x)).

6.23 Define a receiving-omission failure to be one where a faulty process fails to
receive a message. Describe the context ™" that captures receiving omissions,
and let 7™ = I"*P(FIP', y™™, 709) Show that for every run r in 7", we have
™" r,1) = Cx(30) v Cpr(31). We remark that this shows that agreement is
attainable in one round if we restrict to receiving-omission faults. (Hint: find an
appropriate formula to which the Induction Rule can be applied to show that common
knowledge among the nonfaulty processes holds.)

6.24 Suppose that P is a deterministic protocol, y € I'*?¢, R = R™(FIP, y), and
R = R™(P,y). Let r and r’ be runs in R and let 7 and r/ be the corresponding
runs of R.
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(a) Prove that if r; (k) = r/(k) then 7; (k) = r/ (k).

(b) Use part (a) to prove Theorem 6.5.3.

2 .. .
* 6.25 Show that there are at most 22"+ distinct prefixes of runs through time m

in the system I'®? (FIP, y8°™ 5@, Show that there are at least 27~ runs through
time 1 in the system 1"P (FIP, y", by,

6.26 The communication graphs G (r, m) were used in Section 6.6.3 to present effi-
cient implementations of the full-information protocol FIP. This exercise considers
how to define succinct representations of local states using these graphs.

(a) Formally define the graph G (r, m) described in Section 6.6.3.

(b) Define the graph G (r; (m)) corresponding to what process i has learned by the
point (r, m).

(c) Describe how the graph G(r;(m + 1)) is obtained from G (r;(m)) and the
messages that i receives in round m + 1.

(d) What is the size of G(r;(m)) and what is the complexity of constructing
G(riim + 1))?

*6.27 The purpose of this exercise is to show that it is possible to test whether
Cx(3y) holds at a point (r, m) of ' for fm € {cr, som, gom}, using polynomial
space computations. (Recall that polynomial space and related complexity-theoretic
notions were defined in Section 3.5.)

(a) Describe an effective construction that, given a graph of the form G (r;(m)),
yields a graph of the form G (+', m) for some run r’ such that r; (m) = r}(m).

(b) Describe a nondeterministic polynomial space algorithm that, given as in-
put two graphs G(r’, m) and G(r”, m), accepts if and only if (v, m) is N~
reachable from (+/, m) in 7/ .

(¢) Show how parts (a) and (b) can be used to test, given a graph of the
form G(r;(m)) capturing i’s local state at (r, m), whether (If’"/, r,m) E
BYCxn(3y), fory =0, 1.
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(d) Finally, prove that testing for B} Cr(3y) can be performed by a polynomial

space computation in 7" (Hint: use the fact that polynomial space is the
same as nondeterministic polynomial space.)

6.28 Prove Theorem 6.6.8.

6.29 Consider the run % described at the beginning of Section 6.6.2. Show that
in the case of either crash or sending-omission failures, at the point (%%, 2) it is
common knowledge among the nonfaulty processes that process i detected ¢ failures,
and that the second round is clean. (Hint: find an appropriate formula to which the
Induction Rule can be applied to show that common knowledge among the nonfaulty
processes holds.)

* 6.30 The analysis of clean rounds is slightly different for the case t = n — 1. Here,
n — 1 assumes the role that # 4+ 1 has in the case of r <n — 2. Lett =n — 1 and let
¢ be a formula determined by the initial state.

(a) Prove that (Z¢,r,n — 1) = Dy@ = Cpe. (Hint: define clean’ to be true
if either there is only one nonfaulty process or a clean round has occurred,
and show that an analogue to Theorem 6.6.1 holds for clean’. Then show that
Cy(clean’) holds at time n — 1 whent =n — 1.)

(b) Prove the analogue of Theorem 6.6.3 for clean’, namely, show that for every
run 7 in Z¢, we have (Z", r,n — 1 = W(r)) = Cp(clean’). (Hint: show how
to modify the proofs of Lemma 6.7.3 and Theorem 6.7.4 appropriately.)

(c) Using part (b), show that (Z,r,n — 1 —W()) = Dax¢p = Crre.
6.31 Prove Theorem 6.7.2.
6.32 In this exercise, we extend some results on stable formulas stated in Exer-
cise 4.18 to nonrigid sets. Prove that in a system where processes have perfect recall,
if ¢ is stable, then so are E ¢ and Cpre. Show, however, that D¢ might not be

stable.

6.33 Prove that Z¢ = En@ = ExDyo.
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6.34 Prove that W(r) depends only on the failure pattern of r for every run r
in Z. (Hint: consider two runs r and r’ of the full-information protocol that have
the same failure pattern, and prove by induction on m that #KnownFailed(r, m) =
#KnownFailed(r', m).)

6.35 Show thatif W(r) = w, then there must be a clean round in r by time  + 1 — w.

*6.36 Show how to modify the proof of Lemma 6.7.5 given for ¢t < n — 2 for the
caseof r =n — 1.

** 6,37 While our focus here has been on the crash- and omission-failure modes, we
can prove corresponding results for the Byzantine failure mode as well.

(a) Define a context y?*? analogous to the contexts in I'*?% but where Byzantine
failures are allowed.

(b) Define a notion of corresponding run for the context 322,

(¢) Prove an analogue of Theorem 6.5.3 for the interpreted context (ybyz, by,

6.38 The problem of weak SBA, denoted WSBA, differs from SBA in that the
validity requirement is changed so that the nonfaulty processes are required to decide
on a value v only if all initial preferences are v and no process fails.

(a) Formalize WSBA along the lines of our formalization of SBA.

(b) Prove that, just as in the case of SBA, there is no deterministic protocol P that
attains WSBA in fewer than min(n — 1 — W(r), t + 1 — W(r)) rounds in any
run r € R™P(P, y").

This exercise and the next one show the essential commonality among a number of
different variants of SBA that have been considered in the literature. On the other
hand, Exercise 6.40 shows that not all variants are identical.

6.39 Inthe Byzantine Generals problem (BG), only one process (the source) initially
has a value, and the nonfaulty processes need to decide on this value if the source
does not fail, and on the same value otherwise. We denote by SBG the simultaneous
version of BG, where the processes are required to decide simultaneously.
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(a) Formalize SBG along the lines of our formalization of SBA.

(b) Prove that, just as in the case of SBA, there is no deterministic protocol P that
attains SBG in fewer than min(n — 1 — W(r), ¢t + 1 — W(r)) rounds in any
run r € R™P (P, y").

*6.40 Simultaneous bivalent agreement is defined just like SBA except that the va-
lidity requirement is replaced by

e Validity': There is at least one run in which the nonfaulty processes decide on
the value 0, and at least one in which the nonfaulty processes decide on the
value 1.

Construct a protocol for simultaneous bivalent agreement that always halts in two
rounds.

* 6.41 Eventual Byzantine agreement (EBA) is defined by dropping the simultaneity
requirement from SBA: the processes’ decisions need not be simultaneous. Suppose
that P is a protocol for EBA in the case of crash failures. Prove that

(a) there is a run r of P such that W(r) = 0 and not all processes decide before
roundf + linr,

(b) forall j, there is arun r of P such that W(r) = j and not all processes decide
beforeround s + 1 — j inr.

* 6.42 This exercise considers optimality of protocols with respect to the EBA prob-
lem of Exercise 6.41.

(a) Define a notion of optimal and optimum protocols for EBA.

(b) Prove that no optimum protocol for EBA exists even in y<". (Hint: for ev-
ery y € {0, 1}, design an EBA protocol that decides very quickly if at least
one nonfaulty process has initial preference y. Use the lower bounds given
in Sections 6.6 and 6.7 to prove that no protocol can dominate both of the
protocols you designed.)
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Notes

The coordinated attack problem was introduced by Gray [1978]. It has become part
of the folklore of distributed systems; a formal proof of its impossibility (by induction
on the number of messages) is given by Yemini and Cohen [1979]. Its relationship
to common knowledge was established by Halpern and Moses [1990].

A probabilistic version of the Agreement Theorem (essentially corresponding
to the second example of a union-consistent function in Section 6.2) was proved
by Aumann [1976]. Aumann’s result was the basis for a number of so-called no-
speculation theorems regarding speculative trading in the stock market, such as that of
Milgrom and Stokey [1982], showing that speculative trading was impossible under
certain conditions (along the lines of our third example). Aumann’s result was later
generalized to the case of decision functions by Cave [1983] and Bacharach [1985].
The first and third examples of union-consistent functions presented here are due to
Cave and Bacharach. The intuition we gave for union-consistency is close to that
given by Savage [1954] for the Sure Thing Principle. Moses and Nachum [1990]
discuss the relationship between union consistency and the Sure Thing Principle;
in addition, they discuss the fact that the proof of the Agreement Theorem relies
heavily on the value of the decision function on sets that are not information sets
of the players and consider the implications of this fact for the applicability of the
Agreement Theorem.

Parikh and Krasucki [1990] study conditions under which an analogue of the
Agreement Theorem holds in circumstances where there are more than two players,
and they interact in pairs (without public announcements). They show that union
consistency is not a sufficient condition in that case, but other conditions are. For
more on this and other generalizations of the Agreement Theorem, see the survey
paper by Geanakoplos [1992], as well as the work of Rubinstein and Wolinsky [1990].
Geanakoplos and Polemarchakis [1982] prove that if the set of runs is finite, then a
protocol by which players repeatedly announce their estimates of the probability of
an event e is guaranteed to lead to common knowledge of their respective estimates
of the probability of e in finite time. Exercise 6.9 is based on a more general version
of this theorem, given in Geanakoplos’s survey paper.

The Byzantine agreement problem dates back to the seminal paper of Pease,
Shostak, and Lamport [1980], and has attracted a great deal of interest in the literature.
The Byzantine agreement problem is also often referred to as the consensus problem.
A good overview of early work on Byzantine agreement, as well as further pointers to
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the literature, can be found in Fischer’s survey paper [1983]. See also [Lynch 1997]
and [Moses and Rajsbaum 2002]. The fact that requiring simultaneous agreement
makes a difference was first observed by Dolev, Reischuk, and Strong [1990].

The fact that # + 1 rounds are required to attain SBA was proved by Fischer
and Lynch [1982] for the case of Byzantine failures, by DeMillo, Lynch, and Mer-
ritt [1982] for the case of Byzantine failures with a special mechanism that allows
processes to sign the their messages in an “unforgeable” manner, and by Dolev and
Strong [1982] in the case of crash failures. The proof given in Section 6.7 (essentially
that of Dwork and Moses [1990]) simplifies and generalizes the result of Dolev and
Strong.

The relationship between SBA and common knowledge in the crash-failure mode
was established by Dwork and Moses [1990]. Their work is the source of the anal-
ysis in Sections 6.6 and 6.7. (The communication graph introduced in Section 6.6.3
is due to Merritt [1984].) This work was extended to variants of the omission fail-
ure mode by Moses and Tuttle [1988], who proved Theorem 6.6.10. Moses and
Tuttle also defined a wide class of problems, called simultaneous choice problems,
involving simultaneous actions. This class generalizes SBA and includes many re-
lated problems. They showed that appropriate common knowledge is a necessary
and sufficient condition for the solution of all such problems, and derived optimum
knowledge-based and standard programs for all of the problems in this class in the
crash- and omission-failure modes.

While nonrigid constants, whose meaning changes from world to world, have
been studied at length in the context of modal logic (see, for example, the discussion
in [Hughes and Cresswell 1968] and [Garson 1984] as well as the discussion in
Section 3.7), Dwork and Moses [1990] seem to have been the first to define common
knowledge with respect to a nonrigid set of agents. The definitions used in Section 6.4
are taken from [Moses and Tuttle 1988] (except that they used the term “indexical”
instead of “nonrigid”). A deeper exploration of the logical issues involved in using
modal operators parameterized by nonrigid sets can be found in the work of Grove
and Halpern [1991]; Moses and Roth (see [Roth 1989]) consider further applications
of nonrigid names to the analysis of distributed systems.

While our focus here has been on the crash- and omission-failure modes, as we
mentioned in Exercise 6.37 it is possible to define a notion of corresponding runs for
the Byzantine case as well. Michel [1989a, 1989b] considers optimum protocols for
SBA and analogues of the protocols FIP and FIP' in the case of Byzantine failures.
Michel argues that for Byzantine failures, in contrast to the other failure types, any
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optimum protocol for SBA must use exponential communication. Michel also looks
at protocols from a category-theoretic perspective and proves that the full-information
is a universal element in an appropriately defined category of protocols. This can be
viewed as a generalization of Theorem 6.5.3.

Exercises 6.19 and 6.20 are taken from [Moses and Tuttle 1988] and [Neiger and
Tuttle 1993], respectively. Uniform SBA was introduced and studied by Neiger and
Toueg [1990].

The weak SBA problem of Exercise 6.38 was defined by Lamport [Lamport
1983]; Lamport and Fischer [1982] proved that # 4+ 1 rounds are required to attain
weak SBA. The EBA problem of Exercise 6.41 was introduced by Pease, Shostak,
and Lamport [1980] and further studied by Dolev, Reischuk, and Strong [1990].
Exercises 6.38-6.41 are from [Dwork and Moses 1990], while Exercises 6.23, 6.27,
and 6.42 are from [Moses and Tuttle 1988]. A knowledge-based analysis of optimal
protocols for EBA was carried out by Halpern, Moses, and Waarts [2001].
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Knowledge-Based Programming

...you act, and you know why you act, but you don’t know why you
know that you know what you do.

Umberto Eco, The Name of the Rose

7.1 Knowledge-Based Programs

Our notion of standard programs, in which agents perform actions based on the results
of tests that are applied to their local state, is very simple. We argued, however, in
Chapter 5 that this notion is rich enough to describe protocols. Nevertheless, standard
programs cannot be used to describe the relationships between knowledge and action
that we would often like to capture. We already observed this to some extent in our
discussion of simultaneous Byzantine agreement in Section 6.5 (we return to SBA
in Section 7.4). The issue is perhaps best understood by considering the muddy
children puzzle again.

Recall that in the muddy children puzzle, the children are asked by the father if
they know whether they have mud on their foreheads. If so, they are supposed to
answer “Yes”; otherwise they should answer “No.” If, as in Section 2.3, we take the
proposition p; to represent “child i has mud on his forehead,” then it seems quite
reasonable to think of child i as following the program MC;:

case of
if childheard; N (K;p; VvV K;—p;) do say “Yes”
if childheard; N —K;p; A —K;—p; do say “No”
end case.
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Here childheard; is a primitive proposition that is true at a given state if child i
heard the father’s question, “Does any of you know whether you have mud on your
own forehead?” in the previous round. Unfortunately, MC; is not a program as
we have defined it. Besides propositional tests, it has tests for knowledge such
as K;p; v K;—p;. Moreover, we cannot use our earlier techniques to associate a
protocol with a program, since the truth value of such a knowledge test cannot be
determined by looking at a local state in isolation.

We call a program of this form a knowledge-based program, to distinguish it from
the standard programs defined in Chapter 5. Formally, a knowledge-based program
for agent i has the form

case of
if 1y Ak do a;
if 1 N kydoap

end case

where the 7;°s are standard tests, the k;’s are knowledge tests for agent i, and the a;’s
are actions of agent i. A knowledge test for agent i is a Boolean combination of
formulas of the form K; ¢, where ¢ can be an arbitrary formula that may include other
modal operators, including common knowledge and temporal operators. Intuitively,
the agent selects an action based on the result of applying the standard test to her local
state and applying the knowledge test to her “knowledge state.” In the program MC;
the test childheard; is a standard test, while K; p; V K;—p; and =K; p; A =K;—p;
are knowledge tests. In any given clause, we can omit either the standard test or
the knowledge test; thus, a standard program is a special case of a knowledge-
based program. We define a joint knowledge-based program to be a tuple Pg =
(Pgy, ..., Pg,), with one knowledge-based program for each agent.

The muddy children example shows that knowledge-based programs are better
than standard programs in capturing our intuitions about the relationship between
knowledge and action. Even when we can capture our intuitions using a standard
program, it may be useful to think at the knowledge level. As the following example
shows, knowledge-based programs allow us to look at things in a more high-level
way, abstracting away irrelevant details.

Example 7.1.1 Consider the bit-transmission problem from the knowledge-based
perspective. The sender S’s protocol is to keep sending the bit until an acknowl-
edgment is received from the receiver R. The purpose of the acknowledgment is to
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inform S that the bit was received by R. Thus, another way to describe the sender’s
behavior is to say that S keeps sending the bit until it knows that the bit was received
by R. This can be described by the knowledge-based program BTY:

if =K g(recbit) do sendbit.

The advantage of this program over the standard program BTg in Example 5.3.1 is
that it abstracts away the mechanism by which § learns that the bit was received
by R. For example, if messages from S to R are guaranteed to be delivered in the
same round in which they are sent, then S knows that R received the bit even if §
does not receive an acknowledgment.

Now consider the receiver R, which keeps sending acknowledgments after it
receives the bit. Surely, if R knew that S received the acknowledgment, then R
would stop sending it. Thus, it makes sense to replace the standard program BT g
described in Example 5.3.1 by the knowledge-based program BT':

if recbit A =K g (recack) do sendack.

An advantage of this program is that if messages from R to S are guaranteed to be
delivered in the same round in which they are sent, then R needs to send only one
acknowledgment.

The knowledge-based framework enables us to abstract even further. The reason
that S keeps sending the bit to R is that S wants R to know the value of the bit.
The reason that R keeps sending the acknowledgment to S is that R wants S to
know that R knows the value of the bit. Thus, intuitively, S should keep sending
the bit until it knows that R knows its value. Let Kg(bit) be an abbreviation for
Kr(bit = 0) v Kr(bit = 1). Thus, Kg(bit) is true precisely if R knows the value
of the bit. The sender’s behavior can be described by the knowledge-based program
BTX:

if =K sK g (bit) do sendbit,
and the receiver’s behavior by the knowledge-based program BT':
if K (bit) N ~KgrKgsKpg(bit) do sendack.

This program abstracts away the manner in which S learns that R knows the value
of the bit and the manner in which R learns that S knows that R knows the value of
the bit. If messages are guaranteed to be delivered in the same round that they are
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sent, then § has to send the bit only once, and R need not send any acknowledgment.
Furthermore, if the value of the bit is common knowledge, then BT'; does not require S
to send any messages. In contrast, BT and BT’ require S to send messages even in
such contexts. Thus, programming at the knowledge level enables us to design more
efficient programs. i

We have described the syntax of knowledge-based programs, and have provided
(by example) some intuition for how knowledge-based programs can be used to give
high-level descriptions of the agents’ behavior. It remains to give formal semantics
to knowledge-based programs. Just as we think of a standard program as inducing a
protocol that determines an agent’s actions in a given context, we also want to think of
a knowledge-based program as inducing a protocol. It is not obvious, however, how
to associate a protocol with a knowledge-based program. A protocol is a function
from local states to actions. To go from a standard program to a protocol, all we
needed to do was to evaluate the standard tests at a given local state, which we did
using interpretations. In a knowledge-based program, we also need to evaluate the
knowledge tests. But in our framework, a knowledge test depends on the whole
interpreted system, not just the local state. It may well be the case that agent i is in
the same local state £ in two different interpreted systems Z; and Z,, and the test K; p
may turn out to be true at the local state £ in Z1, and false at the local state £ in 7.

To deal with this problem, we proceed as follows. Given an interpreted sys-
tem Z = (R,m), we associate with a joint knowledge-based program Pg =
(Pgy, ..., Pg,) ajoint protocol that we denote Pg” = (Pg{, ..., Pg}). Intuitively,
we evaluate the standard tests in Pg according to 7 and evaluate the knowledge tests
in Pg according to Z. As in the case of standard programs, we require that = be
compatible with Pg, that is, that every proposition appearing in a standard test in Pg;
should be local to i. Note that we place the locality requirement only on the proposi-
tions appearing in the standard tests, not the propositions appearing in the knowledge
tests. We wish to define PgiI (¢) for all local states £ of agent i. To define this, we
first define when a test ¢ holds in a local state ¢ with respect to an interpreted system
7, denoted (Z, £) = ¢.

If ¢ is a standard test and Z = (R, m), then in analogy to Section 5.3, we define

(7.0 Egiff (7, £) = ¢.
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Since ¢ is a standard test in Pg;, it must be local to agent i, so this definition
makes sense. If ¢ is a knowledge test of the form K;, we define

(Z,0) = Ky iff (Z,r,m) = ¢ for all points (r, m) of Z such that r; (m) = £.

Finally, for conjunctions and negations, we follow the standard treatment (see Sec-
tion 2.1).

Note that (Z, £) = ¢ is defined even if the local state £ does not occur in Z. In
this case it is almost immediate from the definitions that (Z, £) = K; (false), so the
Knowledge Axiom fails. On the other hand, if £ does occur in Z, then K; behaves in
the standard way. This follows, since if £ = r;(m) for some point (r, m) in Z, then
it is not hard to show that (Z, £) = K;y iff (Z,r, m) = K;{ (Exercise 7.1).

We can now define

pgt (0 = | BIEOFGAK) IO EG Ak #0
' {A} if{jl(Z, 0 =t ANk} =0.
Intuitively, the actions prescribed by i’s protocol Pgl.I are exactly those prescribed

by Pg; in the interpreted system Z.

Let Pg be a standard program. Then Pg is also a knowledge-based program, with
no knowledge tests. Consider an interpreted system Z = (R, 7). We can associate
a protocol with Pg in two ways. We can think of Pg as a standard program, and
associate with it the protocol Pg”™, or we can think of Pg as a knowledge-based
program and associate with it the protocol Pg”. Our definitions guarantee that these
protocols are identical (Exercise 7.2).

The mapping from knowledge-based programs to protocols allows us to de-
fine what it means for an interpreted system to be consistent with or to represent
a knowledge-based program in a given interpreted context by reduction to the cor-
responding definitions for protocols. Thus, we say that an interpreted system Z is
consistent with the knowledge-based program Pg in an interpreted context (y, )
if 77 is compatible with Pg and if Z is consistent with the protocol Pg” in (y, );
similarly, Z represents Pg in (y, ) if m is compatible with Pg and if Z represents
Pg” in (y, ). This means that to check if Z represents (resp., is consistent with) Pg,
we check if Z represents (resp., is consistent with) the protocol obtained by evaluat-
ing the knowledge tests in Pg with respect to Z itself. Because of the circularity of
the definition, it is not necessarily the case that there is a unique interpreted system
representing Pg in a given interpreted context. There may be more than one or there
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may be none, as we shall see in Section 7.2. In contrast, there can be at most one
interpreted system that represents a standard program.

Just as in the case of standard programs, we say that a knowledge-based pro-
gram Pg satisfies the specification o, or is correct with respect to o, in the interpreted
context (y, ), precisely if every interpreted system representing Pg in (y, ) satis-
fies o. Of course, there may be more than one such system, or none. (We can also
define a notion of strong correctness for knowledge-based programs analogous to the
definition we gave for standard programs. This notion is discussed in Section 7.5.)

We have already seen some examples that demonstrate that knowledge-based
programs can be viewed as programs in a very high-level programming language.
While this means that knowledge-based programming can be a powerful tool, it
has one significant disadvantage: knowledge-based programs are not directly “exe-
cutable.” To “execute” a program, a process has to be able to evaluate the tests with
respect to its local state, but knowledge tests cannot be evaluated with respect to the
local state. Thus, we need a way to implement knowledge-based programs by both
protocols and standard programs.

We say that protocol P is an implementation of , or implements, the knowledge-
based program Pg in interpreted context (y, ) if the system Zp = I"P (P, y, w)
represents Pg in (y, ), that is, if Zp = I"?(Pg’?, y, 7). Intuitively, P imple-
ments Pg if P and Pg prescribe the same actions in the interpreted system Zp that
represents P in (y, ). A direct consequence of this definition is that if Pg satisfies
some specification o in (y, ), then so does P. We remark that this is very close to,
but not quite the same as, requiring that P = PgZ?. Our definition depends only on
behaviors that do in fact arise in runs of P, while the latter definition would require
that the protocols prescribe the same actions in all states, including ones that do not
arise in Zp.

Note that a knowledge-based program Pg is implemented by some protocol P
in the interpreted context (y, ) precisely if there is some interpreted system that
represents Pg in (y, w). To see this, note that if P implements Pg in (y, &), then,
by definition, I'®’ (P, y, ) represents Pg. Thus, Z = I"%”(PgZ, y, 7). On the other
hand, if 7 represents Pg in (y, ), then, by definition, Z = 1P (Pg?, y, ). Thus,
Pg? implements Pg in (y, 7).

We can now define implementation by standard programs. We say that a standard
program Pg; is an implementation of , or implements, the knowledge-based program
Pgy,, in the interpreted context (y, ) if the protocol Pgy , obtained from Pg; by using
the interpretation 7, implements Pg;,, in (y, 7). Note that, in general, just as there
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may not be a unique interpreted system representing a knowledge-based program,
there may be more than one standard program implementing a knowledge-based
program, or there may be none.

Example 7.1.2 Let us return to the bit-transmission problem once more. Recall
from Example 5.4.1 that we considered two specifications: o’ is the run-based
specification Orecbit A OO=sentbit, and o’ is the knowledge-based specification
OKsKpgbit) A O(KsKg(bit) = —(Osentbit). We saw a standard program BT for
the bit-transmission problem in Example 5.3.1, and two knowledge-based programs,
BT  and BT”, in Example 7.1.1. We observed in Example 5.4.1 that BT satisfies both
o’ and ¢” in the interpreted context (ny’ir, 7P, where all messages sent infinitely
often are eventually delivered.

What can we say about the knowledge-based programs? We are interested in two
questions: whether the standard program BT implements BT’ and BT”, and whether
BT’ and BT” satisfy the specifications o’ and o”. The answer, of course, depends
on the context. We sketch some aspects of the situation here, leaving details to the
reader (Exercise 7.3).

Consider the interpreted context (Vf%r’ 7P"). The standard program BT imple-

ments both of the knowledge-based programs BT” and BT” in (yf%r, 7P"). We shall
give a result (Theorem 7.2.4) from which it follows that there is a unique inter-
preted system representing each of BT and BT” in this interpreted context; thus,
this interpreted system must in fact be I'’ (BT, ny’ir, 7). Since, as we showed in
Example 5.4.1, BT satisfies both 0" and o” in (Vf%r’ %), it follows that BT” and BT”
satisfy both specifications in this interpreted context as well. I

7.2 Getting Unique Representations

As we mentioned in the previous section, in general there is no unique interpreted
system that represents a knowledge-based program in a given context. The following
example illustrates how this can occur.

Example 7.2.1 Suppose that we have a system consisting of only one agent, agent 1,
who has a bit that is initially set to 0. Suppose that agent 1 runs the following simple
knowledge-based program NU (for “not unique”):

if K1 (O it = 1)) do bit := 1.
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Intuitively, bit := 1 has the effect of assigning the value 1 to the bit. According to NU,
agent 1 sets the bit to 1 if she knows that eventually the bit is 1, and otherwise does
nothing. It should be clear that there are two ways that agent 1 could be consistent
with the program: either by never setting the bit to 1 or by setting the bit to 1 in the first
round. We can formalize this by considering the context y"* = (P, Go, 7, True),
defined as follows: We take agent 1’s local state to be either O or 1; we think of this
local state as representing the value of the bit. We take the environment’s state to
always be A (the environment plays no role in this example). Since the bitis initially O,
we take Gop = {(1, 0)}. We assume that the environment’s action is always A, so
P.(A) = A. The agent’s action is either A or bit := 1. The effect of 7 is to reset the
bit as appropriate; thus, T (A, A)(A, k) = (A, k) and (A, bit := 1)(X, k) = (X, 1).
This completes the description of 1", Finally, we define 7"* in the obvious way:
™ ((A, k))(bit = 1) is true exactly if k = 1.

Let ¥ be the run where agent 1 does nothing, starting in the initial state (1, 0);
thus, rO(m) = (1, 0) forallm > 0. Let r, for j > 1, be the run where agent 1 sets
the bit to 1 in round j, after starting in the initial state (A, 0); thus, ri(m) = (1, 0)
form < j and ri(m) = (&, 1) form > j. It is easy to see that the only runs that
we can have in context " are of the form r/. It is also not hard to see that no run
of the form 7/ for j > 1 can be in an interpreted system consistent with NU. For if
rJ is in an interpreted system Z consistent with NU, then since agent 1 sets the bit
to 1 in round j of r/, it must be the case that (Z, rj,j — 1) E K1 ($bit = 1)).
But clearly (r/,0) ~ (r/, j — 1). Thus, (Z, r/,0) = K{(O(bit = 1)). Since 7 is
consistent with NUZ, this means that agent 1 should have set the bit to 1 in round 1
of r/, a contradiction. Thus, the set of runs in any interpreted system consistent with
NU must be a nonempty subset of {r?, r!}. Let R/ be the system consisting of the
single run r, for j = 0,1, and let 7/ = (Rj, ™). We claim that both 79 and 7!
represent NU in the context (y™, 7™). Clearly, in Z!, agent 1 knows <(bit = 1),
since it is true at every point in Z', so the only possible action that she can take is
to set the bit to 1 in round 1, which is precisely what she does in r!. On the other
hand, in 79, agent 1 never knows < (bit = 1), since it is false at all points in 0. This
means that according to the protocol NUIO, agent 1 never sets the bit to 1, so the
only run consistent with NUZ" is 0. Tt follows that both Z° and 7' represent NU in
(™, 7t In fact, it is easy to see that if R? = {r°, r!}, then the interpreted system
7% = (R?, 7™) is not consistent with NU (Exercise 7.4), so that Z° and Z! are the
only interpreted systems consistent with NU.
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Now consider the program that intuitively says “set the bit to 1 exactly if you
know you will never set the bitto 1.” No interpreted system can be consistent with this
program, since it amounts to saying “set the bit to 1 exactly if you know you should
not” We can capture this intuition by means of the following knowledge-based
program NU':

if K1 (=it = 1)) do bit := 1.

There can be no interpreted system consistent with NU’ in the context (y™, 7"):
Arguments similar to those used before show that the only runs that can be in an
interpreted system consistent with NU’ are r* and r!'. Thus, Z°, Z', and Z? are the
only possible candidates for interpreted systems consistent with NU’. It is straight-
forward to show that none of these interpreted systems in fact are consistent with
NU’ (Exercise 7.4). Hence, there is no interpreted system that is consistent with or
represents NU'. We take this to mean that the program NU'’ is inconsistent with the
interpreted context (y"™, 7). 1

In Example 7.2.1, we saw programs that determine an agent’s current actions
as a function of his knowledge about the actions that he will perform in the future.
This direct reference to knowledge about the future seemed to make it possible to
define both nonsensical programs such as NU’, which cannot be implemented by any
standard program, and ambiguous programs such as NU, which can be implemented
in a number of different ways. We remark that the explicit use of future temporal
operators such as < is not crucial to this example. Essentially the same effect can be
achieved without such operators (Exercise 7.5). The programs in Example 7.2.1 are
somewhat contrived, and were designed specifically for the purpose of this example.
We do not come across such programs in common applications. We now consider an
example from the realm of robot motion planning in which a program with multiple
implementations arises in a fairly natural setting.

Example 7.2.2 Consider a mobile robot that travels on a track. For simplicity, we
assume that the track has discrete locations numbered 0,1,2,. . . The robot starts out
at location 0 and can move only in the positive direction. Our robot has an imperfect
location sensor. For every location g > 0, it is guaranteed that whenever the robot
is at location ¢, the sensor-reading o will be one of {g — 1, g, ¢ + 1}. This sensor
provides the robot with information about its current location. We assume that the
robot’s motion is determined by the environment, and that the only actions the robot
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can take are halt and the null action A. Once the robot performs the halt action, it no
longer moves. We are interested in studying programs that the robot can use to ensure
thatit halts in a given region. We assume that the robot’s local state consists only of «,
the current reading of the sensor. Moreover, we assume that the environment can, at
any given point, choose either to move the robot one step in the positive direction or
to let it stay at the same location. In addition, the environment determines the robot’s
sensor reading, subject to the constraint that the reading is within 1 of the robot’s
actual position. Finally, we assume that the environment is fair, in the sense that in
runs in which the robot never performs the halt action, the robot moves an infinite
number of times.

To reason about this system, we use a language with five primitive propositions:
halted, p, p', a = 3, and o € {3, 4, 5}, where, intuitively, halted is true if the robot
has halted, p is true if the robot’s location is one of {2, 3, 4}, p’ is true if the robot’s
location is one of {2,4, 6}, « = 3 is true if the robot’s sensor reading is 3, and
o € {3, 4, 5} is true if the robot’s sensor reading is one of 3,4, or 5. Let (y, w) be a
recording context corresponding to this description. The formal definition of (y, )
is left to the reader (Exercise 7.6).

Suppose that the robot follows the trivial program P4,

if true do A,

and hence never performs the halt action. Let Z% be the interpreted system repre-
senting this program in the interpreted context (y, m). It is straightforward to verify
that 7% = (K,p < « = 3), so that the only points of 77 at which the robot
knows p are those at which the sensor reading is 3. In addition, it can be shown that
7 = =K, p’: the robot never knows p’ in 7% (Exercise 7.6).

Suppose that the robot has a goal of stopping in the region {2, 3, 4} (intuitively,
at a location where p is true). Formally, we can capture this goal by the specification
o"P (where the superscript mp stands for motion planning), which is defined by the
formula O(halted = p) A O(halted). The first conjunct of o™P, which is called the
safety property, says that the robot halts only in the goal region, while the second
conjunct, which is called the liveness property, says that the robot eventually halts.
Note that ™ is a run-based specification.

How can we design a program to satisfy this specification? Intuitively, as long as
the robot does not know that p holds, it should not halt. On the other hand, once the
robot does know that p holds, it should be able to safely perform the halt action and
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stop in the desired region. Thus, K, p seems to be both a necessary and a sufficient
condition for stopping in the goal region.
Consider the knowledge-based program MP

if X, p do halt.

Clearly MP satisfies the safety property, in that in any interpreted system that repre-
sents it, the robot halts only in the goal region. Does it satisfy the liveness property?
Not necessarily.

Recall that K, p is guaranteed to hold when « = 3. This follows directly from
the precision of the sensor. This suggests that the following standard program,
denoted MPg,

if « = 3 do halt,

should be an implementation of MP in (y, 7). Indeed, it is not hard to check that
this is the case (Exercise 7.6). Unfortunately, the program MP; does not satisfy the
liveness condition of ™ in (y, 7). There are many runs of MPy in this context in
which o # 3 holds throughout the run, despite the fact that the robot crosses the goal
region and exits it. It follows that, in spite of its “obviousness,” the knowledge-based
program MP does not satisfy the liveness condition of o™ in (y, i) either.

Now consider the program MP;,:

if o € {3, 4, 5} do halt.

This program guarantees that the robot will not stop before reaching position g = 2,
because o € {3, 4, 5} is not satisfied when ¢ < 2. Moreover, when following this
program, the robot is guaranteed to stop if it ever reaches the position g = 4, since at
that point the sensor reading must satisfy o € {3, 4, 5}. By the fairness assumption
about the environment, the robot must be moved at least four times if it never performs
the halt action, in which case it would eventually reach the position g = 4. It follows
that MP;, satisfies o™ in (y, 7).

It can be shown (Exercise 7.6) that MP; is also an implementation of MP in
(y,m). Thus, despite depending only on what the robot knows about its current
position and making no reference to the robot’s future actions, the knowledge-based
program MP does not have a unique representation in (y, 7). Interestingly, MP and
MP, are, in a precise sense, the only implementations of MP in (y, ) (Exercise 7.6).

Notice that by assuming that the robot’s local state consists only of the sensor
reading, we have implicitly assumed that the robot is not aware of whether it has
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halted. Having the robot be aware of whether it has halted turns out not to make any
difference in this case. It is not hard to show that we would still have the same two
distinct implementations of MP even if we add to the robot’s local state a halted bit,
which starts out with value 0 and is set to 1 once the robot has performed the halt
action, so that the robot does know whether or not it has halted (Exercise 7.6).

A change that does affect the outcome would be to modify the robot’s local state so
that it contains the global time m, in addition to the sensor reading ««. (Thus, the local
states would have the form (m, @).) Let (y’, ') be the interpreted context obtained
from (y, m) by making this change. With this change, we are guaranteed that every
system representing MP in the new context is synchronous. The added information
that the robot obtains from the fact that the system is synchronous together with the
fact that the robot cannot be moved more than one step per round is enough to ensure
that MPg does not implement MP in (y’, 7’). Thus, for example, when m = 3 and
o = 4 the robot knows that its position is 3, since at time m = 3 it is guaranteed
that ¢ < 3, whereas when o = 4 it is guaranteed that ¢ > 3. It is possible to show
that MP has a unique representation in (y’, 7’). Indeed, MP), implements MP in
this context, and as a result MP does satisfy o in (y’, n’) (Exercise 7.6). In the
sequel we will see that although synchrony by itself is not enough to guarantee that a
knowledge-based program is represented by a unique system, and although the lack
of future temporal operators is also not sufficient, taken together they do guarantee
(for reasonable contexts) that a knowledge-based program is represented by a unique
system. i

Examples 7.2.1 and 7.2.2 show that a knowledge-based program may have zero,
one, or more than one interpreted systems representing it. Is this a problem? Not
necessarily. A knowledge-based program should be viewed as a high-level speci-
fication; the systems that represent it can be viewed as those systems that satisfy
the specification. For example, consider the knowledge-based program NU from
Example 7.2.1:

if K1 (O (it = 1)) do bit := 1.

This program can be viewed as saying: “if you know that you are going to take
an action, then take it as soon as possible.” Appropriately, as we have shown, this
program is represented by two interpreted systems, one in which the action is taken
and one in which the action is never taken. On the other hand, the program NU’
can be viewed as saying “if you know that you are not going to take an action, then
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take it as soon as possible.” Not surprisingly, there are no systems representing this
program; it is an unsatisfiable specification.

A standard program (in a given interpreted context) is a complete description of
the behavior of the agents; this is not the case in general with a knowledge-based pro-
gram. In many situations, however, there is a strong intuition that a knowledge-based
program does completely describe the behavior of the agents, and consequently, the
program ought to be represented by a unique interpreted system. For example, in the
case of the muddy children puzzle, we expect the behavior of the children follow-
ing the knowledge-based program MC (described at the beginning of the chapter) to
be uniquely determined. This also seems to be the case for the programs BT and
BT” for the bit-transmission problem. In the remainder of this section, we describe
circumstances under which there will be a unique interpreted system representing
a knowledge-based program. We start with an informal discussion and then make
things more formal.

Why may one feel that there should be a unique interpreted system representing
MC? Intuitively, it is because, once we fix the initial set of states, we can start running
the program step by step, generating the run as we go. If r is a run over G, the prefix
of r through time m, denoted Pref ,,(r), is the sequence of the first m + 1 global
states in r, that is, it is a function p from {0, ..., m} to G such that p(k) = r(k) for
k=0,...,m. If Ris a set of runs, then Pref,,(R) is the set of prefixes through
time m of the runs in R, that is, Pref,,(R) = {Pref,,(r)|r € R}. f T = (R, 7),
we define Pref,, (Z) = (Pref,,(R), w). Suppose that we can generate all prefixes of
runs through time m. Once we have all prefixes through time m, at any given point
(r, m), the children in that situation can determine whether they do indeed know
whether their own forehead is muddy, and thus can take the appropriate action at the
next step. This allows us to generate all prefixes through time m + 1.

The key reason that this idea works is that the prefixes that we have already
constructed are sufficient to determine the truth of the knowledge tests in the chil-
dren’s program. In general, this might not be the case. To understand why, suppose
we have a knowledge-based program Pg = (Pgy, ..., Pg,), and Pg; includes a test
such as K;¢. Suppose that we have indeed constructed all the prefixes of runs of Pg
through time m. For agent i to know what actions to perform next at a point (r, m),
the knowledge test K;¢ has to be evaluated. As long as this can be done solely by
considering points of the form (', m") with m’ < m—intuitively, these are the points
we have already constructed—then there is no problem. If, on the other hand, ¢ is
a temporal formula such as the formula & (bit = 1) that appears in the program NU
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in Example 7.2.1, then we may not be able to evaluate the truth of ¢ in the prefixes
we have constructed thus far. Even if ¢ is a nontemporal formula, there may be a
problem. For example, suppose the time m is encoded in the environment’s state,
and ¢ is the formula m < 1, which is true at all time m points with m less than
or equal to 1. Then K;(m < 1) may be false at a point (r, 1) if agent 1 does not
know the time, that is, if (r, 1) ~ (r/, k) for some point (r’, k) where k > 1. Note,
however, that there is no point that occurs in a prefix through time 1 and “witnesses”
the fact that K1 (m < 1) fails at (r, 1), since the formula m < 1 is true at all points
of the form (+/,0) or (+/, 1). This discussion suggests that to make the inductive
construction work, if a test K;¢ in the program is false, there must be a “witness” to
its falsity in some prefix we have already constructed.

Subtle problems can arise in the interaction between the assumption that wit-
nesses are provided in the sense that we have just described (informally) and the
admissibility condition W on runs in a context. Suppose that we are interested in
running the knowledge-based program Pg in the interpreted context (y, ), where
y = (Py, Go, 7, V). What should the system representing Pg be? Intuitively, it
should consist of all runs in W whose prefixes arise in the inductive construction.
But even if, at every step of the inductive construction, the prefixes constructed pro-
vide witnesses, it is possible that W does not include a run with a prefix p that arises
in the construction. This means that we cannot include a run with prefix p in the
system. This, in turn, might mean that a witness that we counted on in the course
of the inductive construction may not occur in the system, thus undermining our
evaluation of the tests.

We now show that there is a unique system representing Pg if “witnesses are pro-
vided” and if the admissibility condition W is “reasonable,” in that it is nonexcluding
(as defined in Section 5.2).

We say that an interpreted system Z provides witnesses for K; ¢ if, for every point
(r,m) of Z, if (Z, r, m) = —K;¢, then there is a point (+', m’) in Z with m" < m,
such that (r, m) ~; (r',m’) and (Z,7,m’) = —¢. Notice that if T = (R, )
provides witnesses for K;¢ and ¢ contains no temporal operators, then the truth of
K;¢ at a point (r, m) of 7 is uniquely determined by Pref,, (R)—the set of prefixes
up to time m of the runs of Z. We say that 7 provides witnesses for a knowledge-
based program Pg if Z provides witnesses for every formula K;¢ that appears as a
subformula of a knowledge test in Pg.
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Our sufficient condition for the existence of a unique representation depends on
the assumption that the system representing Pg provides witnesses for Pg. Unfor-
tunately, we do not know in advance what system this is. Thus, we require that a
large collection of systems all provide witnesses for Pg. If a system representing Pg
exists, it is guaranteed to be in this collection.

We say that an interpreted context (y, ) provides witnesses for a knowledge-
based program Pg if every system Z’ of the form 7' = 1"’ (Pg?, y, ), where 7 =
(R, ), provides witnesses for Pg. The system R here can be arbitrary, except that
we require that it consist of runs over the global states that arise in the context y
(i.e., all the global states in runs of R are ones that appear in a system of the form
R’P(P, y)); the interpretation 7 is the same as in the interpreted context (y, ).
In other words, the context (y, w) provides witnesses for Pg if all of the systems
representing standard programs of the form Pg” in this context provide witnesses
for Pg. Note that if (y, ) provides witnesses for Pg, then we do indeed have the
property we desired that any system representing Pg in (y, ) provides witnesses
for Pg, since if Z represents Pg, then, by definition, Z = I"?(Pg?, y, ).

In general, it may be difficult to tell if a given interpreted context (y, ) provides
witnesses for a program Pg. As we shall see, however, if the tests in the program are
sufficiently simple, it need not be very difficult. The following lemma gives a useful
sufficient condition that guarantees that a context provides witnesses for a program.

Lemma 7.2.3 Let (y, ) be an interpreted context. If every system of the form
1P (PgZ, y, 1) is synchronous, then (y, ) provides witnesses for Pg.

Proof We need to show that every system Z’ of the form I'?(PgZ, y, 7r) provides
witnesses for Pg. Thus, we must show thatif K; ¢ is a subformula of a knowledge test
in Pg, then Z’ provides witnesses for K;¢. Since Z’ is synchronous by assumption,
it certainly suffices to show that every synchronous system provides witnesses for
every formula of the form K;¢. As we now show, this is almost immediate from the
definition of a synchronous system. Recall that in synchronous systems, if (r, m) ~;
(r',m’) then m = m’. Suppose that (Z/, r, m) = —K;¢. Then, by assumption, there
is a point (', m) in ' with (+', m) ~; (r, m) such that (Z, r’, m) = —¢. It follows
that 7’ provides witnesses for K; ¢, and we are done. lI

The second condition in Lemma 7.2.3 requires that every interpreted system of the
form I'? (PgZ, y, 7) be synchronous. This holds, for example, if the program Pg (in
the interpreted context (y, 7)) prescribes that each agent performs exactly one action
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in every round and if (according to y) the agents keep track of the actions they have
performed in their local states (as is the case in message-passing systems). Under
these assumptions, systems of the form I’ (Pg”, y, ) are necessarily synchronous,
since an agent can determine the time by looking at his local state.

Lemma 7.2.3 is only a sufficient condition; for example, the context (yf%r, 7P
provides witnesses for the programs BT’ and BT”, even though the systems that
represent these programs are not synchronous (Exercise 7.7).

We are now ready to state a theorem that gives a useful sufficient condition
on a knowledge-based program Pg in an interpreted context (y, 7) that guarantees
that there is a unique interpreted system representing Pg in (y, 7). We denote this
interpreted system by I’ (Pg, y, 7).

Theorem 7.2.4 Let Pg be a knowledge-based program in which the tests do not
involve temporal operators, let y be a nonexcluding context, and assume that the
context (y, w) provides witnesses for PQ. Then there is a unique interpreted system
1"’ (Pg, y, ) representing Pg in (y, ).

Proof The proof formalizes the construction we sketched informally at the begin-
ning of the section. We inductively construct interpreted systems Z"” = (R™, )
form = 0,1,2,..., where m is the interpretation that appears in the statement
of the theorem. The prefixes Pref,,(R"™) correspond to the prefixes in our infor-
mal construction. Suppose that y = (P, Gy, T, V). The set RO consists of all
runs r in ¥ such that r(0) € Gog. (Note that RO is nonempty, since y is nonex-
cluding.) Let 7% = (R?, ). Suppose that we have constructed Z"; we then define
7+l = 1eP(Pg™" |y, ). We define the system R® to consist of all runs r such
that Pref,,(r) is in Pref,,(R™) for all m > 0, and let 7% = (R®, 7). We would
like to say at this point that Z¢ is the unique interpreted system representing Pg
in the interpreted context (y, 7). This would be the case if Z® were of the form
I'er (PgI/, y, ) for some Z’. Since, in general, it is not, we need to take one extra
step: Let 79! = 1" (PgZ” y, 7r). It turns out that Z®*! is the unique interpreted
system representing Pg in the interpreted context (y, ). The actual details of the
proof are described in Exercise 7.9.

Notice that our construction is somewhat more complicated than the intuition we
gave at the beginning of the section. Our discussion there was in terms of prefixes
of runs. The idea was that by inductively assuming that we have defined all prefixes
through time m, we could then construct all prefixes through time m + 1. The runs
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of our system would be those all of whose prefixes were constructed. Unfortunately,
in our actual proof, we must work directly with systems consisting not of prefixes of
runs, but of (full) runs; this is because we have no definition of PgP refm (D) Hence,
in our proof, we used the full system R rather than Pref ,,(R"™). On the other hand,
our assumption that (y, i) provides witnesses for Pg guarantees that all that matters
about R™ is Pref,,(R™); the proof shows that we could have replaced R™ in the
construction by any other system R’ such that Pref,,(R’) = Pref,,(R™) (see part (b)
of Exercise 7.9). 1

Using Theorem 7.2.4, we can show that many knowledge-based programs of
interest have unique representations. For example, since, as we have already men-
tioned, (szi‘r’ ) provides witnesses for BT and BT”, and yf%r is a nonexcluding
context, it follows that BT’ and BT” have unique representations in this context.
Another obvious application is the muddy children puzzle.

Example 7.2.5 We now want to take a more careful look at the knowledge-
based program MC run by the muddy children. We start by formally describing
the context (y"¢, 7€) corresponding to our intuitive description of the muddy
children puzzle. The agents here are the children and the father. We can view
Y™ = (P}"°, Go, T, True) as a recording message-passing context, in which what-
ever an agent (the father or one of the children) says in a given round is repre-
sented as a message that is delivered in the same round to all other agents. The
initial states of the children and the father describe what they see; later states de-
scribe everything they have heard. Thus, Gy consists of all 2" tuples of the form
), x-1 ... xn X), where X = (x1,...,x,) is a tuple of 0’s and 1’s, with
x; = 0 meaning that child i is clean, and x; = 1 meaning that he has a muddy fore-
head, and X~ = (X1, ...y Xi—1, *, Xi+1, - . . , Xp), that is, it differs from X only in
that it contains a  in the i component. Intuitively, X ~* describes what child i sees
given that X describes the true situation, where % means “no information.” Only the
father sees all the children, so his initial local state is X. The initial local state of the
environment is the empty history (). The only actions performed by the children and
the father are the sending of messages, and these actions have the obvious results of
changing their local states and the local state of the environment. The environment’s
protocol P)*“ is simply to deliver all messages in the same round in which they are
sent.

The children run the knowledge-based programs MC; described in the beginning
of the chapter. The father runs the following (standard) program:
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case of
if initial A \/!_, pi do
say “At least one of you has mud on your forehead; does any
of you know whether you have mud on your own forehead?”
if initial A = \/7_, pi do
say “Does any of you know whether you have mud
on your own forehead?”
if childrenanswered do
say “Does any of you know whether you have mud
on your own forehead?”
end case.

Here initial is a primitive proposition that is true in the initial state, that is, before
any communication has taken place, and childrenanswered is a primitive proposition
that is true if the father heard the children’s answers in the previous round. Thus, in
round 1, if there is at least one muddy child, a message to this effect is sent to all
children. In the odd-numbered rounds 1, 3, 5, ..., the father sends to all children
the message “Does any of you know whether you have mud on your own fore-
head?” The children respond “Yes” or “No” in the even-numbered rounds. Finally,
the interpretation 7€ interprets the propositions p;, childheard;, initial, and chil-
drenanswered in the obvious way. It is straightforward to see that in the interpreted
context (y"*¢, ™), the knowledge-based program MC satisfies the knowledge-based
specification o”¢: “a child says ‘Yes’ if he knows whether he is muddy, and says
‘No’ otherwise” (Exercise 7.11).

We now want to apply Theorem 7.2.4 to show that there is a unique interpreted
system representing MC. Since the condition in ™ is True, it easily follows that y""*¢
isnonexcluding. Clearly there are no temporal operators in the tests in MC. Moreover,
notice that the father and the children each either send a message or receive one in
every round, and they keep track of the messages they send and receive in their local
states. As we observed in the discussion following Lemma 7.2.3, it follows that
every interpreted system of the form I"”(MC?, y™¢, ™€) is synchronous. Thus, we
can apply Lemma 7.2.3 to conclude that (y"*, ™) provides witnesses for MC.

The same arguments show that the hypotheses of Theorem 7.2.4 also hold for
any subcontext ¥’ C "¢ obtained by restricting the set of initial states, that is, by
replacing Go by some subset of Gy. Restricting the set of initial states corresponds
to changing the puzzle by making certain information common knowledge. For
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example, eliminating the initial states where child 3’s forehead is clean corresponds
to making it common knowledge that child 3’s forehead is muddy. It can be shown that
MC satisfies 0™ in any interpreted context (y/, 7€) where Y’ is a subcontext of €.
(See Exercise 7.11 for more discussion on the effect of passing to subcontexts.)

Let MC; be the standard program for the muddy children implicitly described
in Chapters 1 and 2. Namely, if the father initially says that at least one child has
a muddy forehead, then a child that sees kK muddy children responds “No” to the
father’s first k questions and “Yes” to the (k + 1) question (and to all the questions
after that). Finally, let 7*¢ = I'"?(MCy, y"™¢, 7"). It is straightforward to show
that Z¢ represents MC in (y"*¢, ") (Exercise 7.11), and hence, by our previous
argument, is the unique such interpreted system. In fact, MC; implements MC in
(y™¢, 7). There are, however, contexts in which MC; does not implement MC.
For example, consider the context where it is common knowledge that the children
all have muddy foreheads. This is the subcontext ' = ™€ in which we replace Gy
by the singleton set {((), X~!,..., X" X)}, where X = (1,...,1). We leave it
to the reader to check that in the unique interpreted system Z’ representing MC in
(y’, ©™), all the children respond “Yes” to the father’s first question. Clearly MC;
does not implement MC in this context. Il

In the remainder of this chapter, we show the power of programming at the
knowledge level, by considering a number of other examples of knowledge-based
programs. As we shall see, these programs all have unique representations in the
contexts of interest. This will make it easier to implement them by standard programs.

7.3 Knowledge Bases Revisited

We now return to modeling a knowledge base KB, as first discussed in Section 4.4.1.
As we observed, there are difficulties in modeling a situation where the Teller gives
the KB information that is not purely propositional, and includes information about
its knowledge. We now have the tools to model this situation.

We start by describing a context that captures the situation. Let yk =
(Pekb , Go, T, True) where, as before, we take the KB’s local state to consist of the
sequence of formulas it has been told and the environment’s state to consist of a
truth assignment describing the external world. We start by considering the basic
situation described in Section 4.4.1, where the Teller is assumed to have complete
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information about the world, so that the Teller’s state consists of the truth assignment
that describes the external world and the sequence of formulas the Teller has told
the KB. Thus, as in Section 4.4.1, we denote a global state by a tuple of the form
(o, (@1, ..., k), ), where the ¢;’s can be arbitrary formulas about the world and
the KB’s knowledge. The initial states have the form («, (), -). The Teller’s actions
are to send messages, which are formulas. We assume that the environment delivers
all messages in the same round that they are sent; using our earlier terminology, the
only action of the environment is delivergp(current), and it performs this action at
every round. We leave it to the reader to describe t and fill in the remaining details
of y*b (Exercise 7.12). As before, we want the interpretation 7%? to be such that
nkb(oz, L) =a.

The Teller runs a simple knowledge-based program TELL7. It consists of an
infinite number of clauses. For each KB-formula ¢ (i.e., a formula ¢ in which the
only modal operator is Kgp), there is a clause

if K7¢ do send(g).
In addition the program has a clause
if true do A.

That is, at each step, either the Teller does nothing, or it nondeterministically chooses
some information involving the KB’s knowledge and the external world (but not the
Teller’s knowledge) and sends it to the KB. If, instead of having a clause for each
KB-formula, we have a clause for each propositional formula, then we get a program
TELLPROP7. This is essentially the special case that we focused on in Section 4.4.1.

Let TELL (resp., TELLPROP) be the joint knowledge-based program where the
Teller runs TELL7 (resp., TELLPROP7) and the KB does nothing (that is, its pro-
gram is to perform the action A at every step). It should be clear that these programs
precisely capture our intuition regarding what the Teller can do. It can be shown,
using Theorem 7.2.4, that there are unique interpreted systems Z%¢/ and 7%¢!P"oP rep-
resenting TELL and TELLPROP in (ykb , kb, respectively (Exercise 7.14). It turns
out that the interpreted system Z? (defined in Section 4.4.1), which captures the
interaction of the knowledge base with the Teller, is precisely the system Z¢/rrop
(Exercise 7.15). This observation provides support for our intuition that Z%" appro-
priately captures the situation where the Teller tells the KB formulas that may involve
the KB’s knowledge, even in the non-propositional case. An important advantage of
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using a knowledge-based program here is that it allows us to characterize the system
7%l without describing it explicitly.

In Section 4.4.1, we considered a number of variants of the basic situation. These
variants are easily modeled in the more general setting we are considering here, where
we allow the Teller to give information about the KB’s knowledge. For example,
suppose we have a default assumption such as “if p is true then the first thing the
KB will be told is p.” Clearly, this corresponds to an obvious modification of the
Teller’s program (Exercise 7.16).

As we already observed in Section 4.4.1, once we allow the Teller to tell the
KB formulas that refer to the KB’s knowledge, we can no longer represent the KB’s
knowledge by the conjunction of the formulas it has been told. Interestingly, we can
still show that there is a single propositional formula that characterizes what the KB
knows.

Theorem 7.3.1 Suppose that rggp(m) = (¢1,...,¢k). We can effectively find
a propositional formula ¢ such that for all propositional formulas  we have
(@, r,m) = Kgpy if and only if M (= ¢ = .

Proof See Exercise 7.17. 11

Theorem 7.3.1 tells us that there is a single propositional formula that determines
how the KB answers propositional queries. As we observed in Section 4.4.1, once
we know how the KB answers propositional queries, we can determine how the KB
answers arbitrary KB-queries.

In more complicated applications, one cannot divide the world neatly into a KB
and a Teller. Rather, one often has many agents, each of which plays both the role of
the KB and the Teller. More specifically, suppose we have n agents each of whom
makes an initial observation of the external world, and then communicates with the
others. We assume that the agents are truthful, but they do not necessarily know or
tell the “whole truth.” We refer to such agents as observing agents.

For example, assume that there are three observing agents, namely Alice, Bob,
and Charlie, and assume that the external world can be described by exactly two
primitive propositions, p and g. Let the external world be characterized by the truth
assignment where p and g are both true. Alice’s initial information is that p and ¢
are either both true or both false. Bob, on the other hand, has no nontrivial initial
information about nature. Thus, as far as Bob is concerned, any of the four truth
assignments are possible. Finally, Charlie’s initial information is that p is true, but
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he has no initial information about g. Alice, Bob, and Charlie now begin sending
each other messages. Alice sends Charlie a message saying that she knows p = g¢.
Assume that Charlie receives this message; he then combines his initial information
with the information he gained from Alice’s message, and thereby knows that p
and g are both true. Charlie then sends a message to Alice saying that he (Charlie)
knows that Bob does not know that ¢ is false. Even though Charlie has not received
any messages from Bob, this is a truthful message: Charlie knows that ¢ is true, and
so Charlie knows that Bob could not possibly know that ¢ is false.

We can see already in this example that the agents do not necessarily tell every-
thing they know. For example, when Alice says that she knows that p implies ¢,
she is making a true statement, but is not telling everything she knows. This is quite
reasonable in practice, of course. Even truthful people hide some private information
from others. (On the other hand, as we saw in Section 6.5, telling all you know often
does lead to protocols where agents acquire information as quickly as possible.)

We formalize the observing agents setting as a synchronous, recording, message-
passing system, where all the agents are following a simple knowledge-based pro-
gram,

At every round, agent i nondeterministically selects, for each agent j, a for-
mula ¢; thati knows to be true, and sends the message “p;” to j. Formally, agent i’s
program consists of all clauses of the form

if Kipr A ... A Kigr do send(e, ji1);. . .; send(k, jik),

where, just as with a.m.p. systems, we take send(¢y, j;) to be the action sending the
message ¢; to agent j;. We assume that & > 1, so agent i has to send at least one
message to some agent j at each round. We allow the messages ¢ to be arbitrary
formulas in £, (®), that is, formulas with modal operators for knowledge, but no
temporal operators. @ here is the set of primitive propositions that describe the
external world. Note that the tests in the program guarantee that the agents send only
messages that they know to be true. We denote the joint program followed by the
observing agents by OA.

We now briefly describe the interpreted context (y°¢, 7°%), in which we are
interested. The initial local states of agent i are of the form (77, ()), where 7; is
a set of truth assignments over ®. Intuitively, 7; describes the states of nature that
agent i considers possible as a result of her initial observation. Agent i’s local state
is a pair (7;, h;), where 7; is her initial state and /; describes the rest of her history:
what actions she took in each round (and in particular, what messages she sent in
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each round, and to which agents) and what messages she received in each round (and
from which agents she received them). This explains why the empty sequence () is
part of agent i’s initial state.

The environment’s state is a pair (o, i), where « is the truth assignment that
describes the external world (which we assume does not change over time) and &
is the sequence of joint actions performed thus far. We take the set Gy of initial
states to be all the global states of the form ((«, ()), (71, (), ..., (Zn, {))), where
a € Tifori =1, ..., n. The fact that 7; includes « says that while the agent’s initial
observation may not completely specify the exact state of nature, it does give her
correct information about the true situation; the observing agents do not have false
beliefs.

The environment nondeterministically chooses what messages will be delivered
at each round. We allow messages to be delayed for an arbitrary length of time,
messages to be lost, and messages to be delivered several times. We omit a formal
description of the environment’s protocol here, but it is much like what we described
in the case of a.m.p. systems in Section 5.1 (except that there are no go; or nogo;
actions, since the agents are enabled in every round). We also omit description of the
transition function 7, although again it is much like the transition function in y%"?.
A joint action has the obvious effect on a global state, namely, that of extending the
histories as appropriate. The actions do not change the truth assignment « in the
environment’s component, since we assume that the external world does not change
during the interaction among the agents. We take the admissibility condition to be
True; that is, we place no restrictions on the allowable runs. Finally, 7°¢ is much
like 7%°: If s = ((t, 1), (71, h1), . .., (T, hy)), then we define 7%(s) = .

The assumption that each agent sends at least one message in every round was one
we did not make in the case of a single KB. Of course, the message may be simply true,
so that the agent receiving the message may not learn anything from it. Nevertheless,
this assumption is not innocuous. It forces every interpreted system of the form
1P (OAZ, y°%, £°%) to be synchronous. Since there are no temporal operators in the
tests in OA, it follows from Lemma 7.2.3 that (y ¢, w°%) provides witnesses for OA.
Since y°? is clearly nonexcluding, we can thus apply Theorem 7.2.4 to conclude
that there is a unique system representing OA in context (y?¢, w°%). We call this
system (with n observing agents) Z(®). (As we shall see Chapter 8, ® plays an
important role in Z (®).) In the case of a single KB, we observed that every system
of the form I"P(TELLZ, y*0| 7% provides witnesses for TELL, even without the
assumption that a message is sent in every round. In contrast, it can be shown that if
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we modify OA so as to allow a null action, then (¢, 7%%) does not provide witnesses
for the resulting knowledge-based program (Exercise 7.18). Similarly, if we allow
messages about the future, such as “you will eventually know about p,” then again
the context (y %%, 7°%) does not provide witnesses for the resulting knowledge-based
program.

The system Z7“(®) is certainly an idealization of a rather simple scenario of
observing agents exchanging messages, but it turns out to involve some interesting
subtleties. Althoughknowledge in Z9“ () satisfies the S5 properties, it has additional
properties of interest. This point is discussed in detail in Chapter 8, where we study
the evolution of the knowledge in Z,)% (P).

7.4 A Knowledge-Based Program for SBA

We already saw in Section 6.5 that designing programs for SBA is best done by
reasoning in terms of the processes’ knowledge. In fact, we even sketched there an
outline of a knowledge-based program for SBA. We can now formally define such
a program and prove that it really does attain SBA in contexts of interest. We can
also use the analysis of Section 6.6 to show how the knowledge-based program can
be implemented efficiently. We consider a knowledge-based program SBA that is
based on the full-information protocol FIP of Section 6.5. We describe process i’s
program SBA; in Figure 7.1. As in Section 6.5, we use decided; as an abbreviation
for decided; (0) V decided; (1).

case of
if —decided; N B} Cr(30)
do decide; (0)
if —decided; N =B} Cxr(30) A B Cpr(31)
do decide; (1)
if —decided; N =B} Cxr(30) A =B Cxr(31)
do sendall; (local state)
end case

Figure 7.1 The knowledge-based program SBA;
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Recall that the action sendall; (local state) has the effect of sending each process
other than i the message ¢ if process i’s local state is £. Thus, messages in SBA; are
sent according to FIP. Note that since B¢ is an abbreviation for K;(i € N' = ¢),
tests such as B;¥C»r(30) and B;Y C(31) are indeed knowledge tests.

We argued informally in Section 6.5 that, provided that all nonfaulty processes
do eventually decide, then a program of this form satisfies the specification 0%,
The next theorem makes this informal argument precise.

Theorem 7.4.1 [f(y, m) is a ba-compatible interpreted context, I is consistent with
the program SBA in (y, ), and Cn(30) vV Cnr(31) is attained in every run of T,
then T satisfies *°®. Moreover, the processes decide in a run r of T at the round
following the first time that Cx(30) vV Car(31) is attained.

Proof Suppose that 7 satisfies the hypotheses of the theorem. Fix a run r of Z.
We want to show that all the properties required by ¢ hold of r. Recall (see
Exercise 6.14) that

IEieN= (Cyp < B Cyo). ()

Suppose that processes i1 and i are nonfaulty throughout run . Let m > O be the
smallest integer such that (Z,r,m) = Cx(30) vV Cnr(31). The existence of m is
guaranteed by the hypotheses of the theorem. From (x), it follows that if k < m,
then (Z,r, k) = —-B]’.‘fCN(EIO) A —-B]J."CN(EII) for j = iy, iz, so neither process
decides before round m + 1. Notice that we must have either (Z, r, m) &= Cx(30)
or (Z,r,m) &= —Cx(30) A Cpnr(31). In the first case, from (x) it follows that
Z,r,m) = B]’.\’CN(EIO) for j = iy, iy, so both processes decide 0 at round m + 1.
In the second case, from () it follows that (Z, r, m) = ﬂB].NCN(EIO) A BJ’.VCN(EII)
for j = iy, ip, so both processes decide 1 at round m + 1. Clearly if £k > m, then
(Z,r, k) |= decided; for j = iy, iy, so the program guarantees that neither process
decides after round m + 1. This gives us the decision, agreement, and simultaneity
properties. For validity, suppose that all initial values were 0 (a similar argument
holds if all initial values were 1). Since t < n we are guaranteed that N' # @ (see
Exercise 6.14), so that 7 = Cxr(31) = 31. It follows that if all processes start with
initial value O, then 31 is false, and O is the value the nonfaulty processes decide on.
Since the run » was chosen arbitrarily, we thus obtain that all runs of Z satisfy the
decision, agreement, validity and simultaneity properties, so that 7 satisfies 0. I

Notice that the fact that SBA is a knowledge-based program makes the proof
of Theorem 7.4.1 direct and simple. We now want to use Theorem 7.4.1 to prove
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that SBA indeed satisfies the specification o in certain contexts. As expected, the

contexts we consider are those in ['%?¢ = {7 %0m 1,80m} that is, the contexts
corresponding to crash failures, sending-omission failures, and general-omission
failures. Before proceeding with the proof, we need some preliminary observations.
The first observation is that, in these contexts, there is a unique interpreted system that
represents the program; the program SBA does completely describe the processes’
behavior.

Proposition 7.4.2 Fory € T'%4, there is a unique interpreted system representing
SBA in (y, m*0%).

Proof Lety € I'*’ Clearly y is nonexcluding, since the admissibility condition
in y is True. It is also easy to show that (y, 7°7%) provides witnesses for SBA
(Exercise 7.19). The result now follows from Theorem 7.2.4. I

Let I{Z" ., be the interpreted system representing SBA in (/M 504y, for fim €

{cr, gom, som}. In analyzing SBA we need to know when basic formulas hold in
Ij:l? . (Recall that in Section 6.5 we defined a basic formula to be one of the form
Ki@, Dy@, Cye, or B¥ ¢, where ¢ is a formula determined by the initial state.)
We note that the interpreted system IZ; is closely related to the interpreted system
' = TP (FIP, y/™, 5b4), which we analyzed in Section 6.6: I{':a represents SBA,
whereas 7/ represents FIP. The difference between these interpreted systems is that

in 7™, the only actions are sending the description of local states, whereas in I’SJT ’
we also have decide; actions. Therefore, up to the time that the processes decide,

we would expect that the same basic formulas are true in Z and in I{Z’a. The next
lemma says that this is indeed the case.

Lemma 7.4.3 Let ¢ be a basic formula. For fm € {cr, gom, som}, let r be a run

in ™, and let r' be the corresponding run in If;a. Let m;, be the least m such that

(@™, r,m) = Cpr(30) v Car(31). Then for allm < m,, we have (™ r, m) = ¢ iff
(Z{Zna’ r',m) = @. In particular, we have that (I{;na, r’',m;) = Cxn(30) v Car(31).

Proof See Exercise 7.20. 11

We can now prove that SBA really does satisfy o**% in the contexts of interest.

fm
Moreover, it leads to an optimum protocol. This protocol is SBA%sba, the protocol
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obtained from SBA in the interpreted system I{Zl. For ease of notation, we denote
this protocol by SBA/™.

Theorem 7.4.4 For each fm € {cr, gom, som}, the interpreted system Z{’Za satisfies

the specification o** in the context (™, w5%%). Moreover, the protocol SBA™ is
an optimum protocol for SBA in the context y/™.

Proof Fix fin € {cr, gom, som}. By Corollary 6.5.4 we know that C/(30) v Cr(31)
is attained in every run of . By Lemma 7.4.3 it follows that C/(30) Vv Cxr(31) is

attained in every run of I{ZZ. By Theorem 7.4.1, it follows that I{ZZ satisfies o577
Now let P be a deterministic protocol that satisfies o-*¢ in (", 757). Letr be a

run of 7, let ' be the corresponding run of I?n .» and let 7" be the corresponding run
of I/ = I"P(P, y/™ 7%b¢). Suppose that m is the first time such that (Z, r, m) =

Cnr(30) v Car(31). By Lemma 7.4.3, m is also the first time such that (I{Z"a, r',m) =
Cn(30) v Car(31). By Theorem 7.4.1, the nonfaulty processes decide at round m + 1
of run r’.

Suppose that the nonfaulty processes decide y in round m’ 4 1 of run r”. From
Corollary 6.4.4, it follows that (Z/, ", m") = Cnr(3y). By Theorem 6.5.3, it follows
that (Z™, r,m’) = Car(3y). Thus, we must have m < m’. It follows that SBA™
dominates P, as desired. i

These results show how doing a knowledge-based analysis of a problem can
clarify what is going on and help in designing protocols. The key role of common
knowledge in SBA was already brought out by our analysis in Chapter 6. Here we
exploited these results to design a knowledge-based program that was easily proved
correct and led to an optimum protocol for contexts in I'5?4.

This analysis has shown us how to obtain optimum protocols for SBA, but these
protocols are not particularly efficient. We already observed in Section 6.6 that if
we use FIP (or a program based on FIP, as SBA is), then the messages, and hence
processes’ local states, grow exponentially large. In Section 6.6, we also considered
the protocol FIP’, which still transmits all the information that FIP does, but does
so using much shorter messages, by sending a compact representation of the local
state. Let SBA’ be the knowledge-based program that is based on FIP' in the same
way that SBA is based on FIP. To be precise, SBA’ is the same as SBA, except that
the action sendall(local state) is replaced by sendall(G(local state)), which has the
effect of sending each process other than i the message G (¢) if i’s local state is £.
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(Recall from Section 6.6 that G (£) is a compact representation of the local state £.)
It is easy to see that we get the following analogue to Proposition 7.4.2.

Proposition 7.4.5 For y € I'** there is a unique interpreted system representing
SBA' in (y, 7b9).

Proof See Exercise 7.21. 11

Let I’:Za/ be the unique interpreted system representing SBA’ in (™, w5b4),
for fim € {cr, gom, som}. Using Theorem 6.6.8, we immediately get the following

fin
analogue to Theorem 7.4.4. Here we use (SBA'Y" to denote the protocol (SBA’ )Isba/ ,
the protocol obtained from SBA’ in the interpreted system I]; ':a/.

Theorem 7.4.6 For each fin € {cr, gom, som}, the interpreted system Iﬁ:

by Salisfies
the specification %% in the context (yf’", 709). Moreover, the protocol (SBA'Y™ g
an optimum protocol for SBA in the context yﬁ“.

Proof See Exercise 7.22. 11

In Section 6.6 we showed that there are polynomial-time algorithms to compute
whether B}C,r(3y) holds at a given point in the systems Z¢ and Z°”" (see The-
orems 6.6.9 and 6.6.10). This means that we can replace the tests for knowledge
in SBA’ by polynomial-time standard tests. Thus we get:

Theorem 7.4.7 There are polynomial-time optimum protocols for SBA in the con-
texts (ycr’ 7.[sba) and (ysom’ n_sba)‘

What about general-omission failures? According to Theorem 6.6.10, in the
interpreted system Z&°™, the problem of computing when C/(3y) holds is NP-hard.
This does not immediately imply that there cannot be an optimum polynomial-time
protocol for SBA in the context (y8°™, w*b¢). Itis possible that an optimum protocol
for SBA does not compute when Cx(3y) holds. Nevertheless, it can be shown
that from an optimum polynomial-time protocol for SBA in y$°" we can obtain a
polynomial-time algorithm that tests for Cr(3y) in Z8°". As a result, we get

Theorem 7.4.8 If P # NP, then no polynomial-time protocol can be optimum for
SBA in (y8°™, 75b9).
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7.5 Strong Correctness

As we observed in Section 5.4, we are often interested in the correctness of pro-
tocols and programs with respect to all subcontexts of some context y. Thus, we
defined the notion of strong correctness (for standard programs) as follows: a stan-
dard program Pg strongly satisfies a specification o or is strongly correct with respect
to o in (y, ) if every interpreted system consistent with Pg in (y, ) satisfies o.
By Lemma 5.2.2, this means that every interpreted system that represents Pg in a
subcontext ¥’ = y satisfies o.

In the case of a standard program Pg, there is a well-defined relationship between
the (unique) system that represents Pg in a given interpreted context (y, ) and the
systems consistent with Pg in (y, ): a system consistent with Pg must be a subset
of the system that represents Pg, because the system that represents Pg consists of all
runs that are consistent with Pgin (y, ). As we shall see in Example 7.5.2, no such
relationship exists in the case of knowledge-based programs, even in situations where
there is a unique interpreted system representing the program. In fact, there is no
simple relationship between the systems that are consistent with Pg and the systems
that represent Pg in (y, i), except for the fact that a system that represents Pg in
(y, ) is of course also consistent with Pg in (y, w). Nevertheless, the connection
described in Lemma 5.2.2 between the systems that are consistent with Pgin (y, )
and the systems that represent Pg in subcontexts of (y, ) still holds:

Lemma 7.5.1 7 is consistent with the knowledge-based program Pg in the inter-
preted context (y, ) if and only if T represents Pg in some subcontext y' T y.

Proof See Exercise 7.23. 11

In analogy to our definitions with standard programs, we say that Pg strongly
satisfies o or is strongly correct with respect to o in the interpreted context (y, m)
if every interpreted system consistent with Pg in (y, m) satisfies o. Our motivation
for considering strong correctness here is the same as it was in the case of standard
programs: By Lemma 7.5.1, it follows that by proving strong correctness with respect
to an interpreted context we prove correctness with respect to all subcontexts, as we
did, for example, in Example 7.2.5 for the knowledge-based program MC.

In the case of standard programs, we observed that correctness and strong cor-
rectness coincide for run-based specifications. This depends crucially on the fact
that a system consistent with a protocol is a subset of the unique system representing
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the protocol. As we have already mentioned, the analogous property does not hold
for knowledge-based programs. As Example 7.5.2 will show, even if we consider
only run-based specifications, correctness and strong correctness do not coincide for
knowledge-based programs.

Example 7.5.2 Letus return to the bit-transmission problem for the last time. Recall
from Example 7.1.2 that we are considering the standard program BT, the knowledge-
based programs BT’ and BT”, and the speciﬁcations o' ando”. We already observed
that BT, BT’ and BT” satisfy both ¢’ and o in the interpreted context (yfmr, 7bh.

Since o’ is a run-based specification and BT is a standard program, BT strongly
satisfies o’ in (me ” 7P Indeed, satisfaction and strong satisfaction coincide in the
case of run-based specifications and standard programs (see Exercise 5.10). This
is not so for knowledge-based programs. It can be shown that BT also strongly
satisfies ¢’ in (yfmr, 7P (Exercise 7.24), but BT” does not. This is a significant

difference between standard and knowledge-based programs. To see that BT’ " does

not strongly satisfy o’ in (yfmr, 7", consider again the context yl’t Cypl ir ! defined

in Section 5.4, where it is common knowledge that S’s initial value is 1. Let r* be
the run starting with initial state ({), 1, 1) (the only one possible in y ") in which
neither S nor R send any messages. Let R = {r*} and let 7 = (RCk 7. Ttis
easy to see that Z¢ is the unique system representing BT” in the interpreted context
(yck, 7Py, Now I does not satisfy o/, because no messages are sent in r<*. It
follows that BT” does not strongly satisfy o’ in (yf’;’", 7P"). Notice that r* is not

in I"P (BT”, yf%r, 7l = 1P (BT, yﬁm, 7b"). This shows that by passing from y 2

air
to its subcontext Vck’ we get a system that is not a subset of R/, By contrast,
with a standard program, we always obtain a subset of the runs when we pass to a
subcontext.

What about the knowledge-based specification o”’? We already observed in
Example 5.4.1 that BT does not strongly satisfy o” in (yfl;’l.r, 7P, because it does

not satisfy o’ in the subcontext (y 7P, Similarly, BT’ does not strongly satisfy

"in (yfmr, 7P either. To see this, consider the context y " again. In this context,
accordmg to BT/, § still starts by sending R messages, since it must send messages
until it knows that R received the bit. But S knows that R knows (in y ") that the
value of the initial bit is 1 even before R receives a message from S, since this fact
is common knowledge. Thus, S should not send any messages according to o”.
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The program BT”, however, does satisfy o’ in ()/Cbk’ , w%). In fact, BT” strongly
satisfies o’ in (yf%, %) (Exercise 7.24). 1

7.6 The Sequence-Transmission Problem

We now focus on an extension of the bit-transmission problem called the sequence-
transmission problem, and we show how a knowledge-based analysis can help to
clarify many issues here as well.

The sequence-transmission problem is a standard problem of data communica-
tion. Just as in the bit-transmission problem, we have a sender S and a receiver R.
The sender S has an input tape with an infinite sequence X = (xg, x1, .. .) of data
elements. S reads these data elements and tries to transmit them to R. R must write
these data elements onto an output tape. We would like a solution that satisfies (a) at
any time the sequence of data elements written by R is a prefix of X and (b) every
data element x; in the sequence X is eventually written by R (or more precisely, every
finite prefix of X is eventually a prefix of the data elements written by R). In analogy
to our terminology in Example 7.2.2, property (a) is called the safety property, while
(b) is called the liveness property. Note that both safety and liveness are run-based
specifications.

The sequence-transmission problem clearly has a trivial solution if we assume
that messages sent by S cannot be lost, corrupted, duplicated, or reordered. S sim-
ply sends xq, x1, ... in order, and R writes them out as it receives them. Once
we consider a faulty communication medium, however, the problem becomes far
more complicated. The sequence-transmission problem over a faulty communica-
tion medium has been extensively studied in the literature, and solutions for several
communication models have been proposed. (We mention some of these solutions in
the notes at the end of the chapter.) These solutions were all designed individually,
on an ad hoc basis. Instead of giving individual solutions for a number of different
communication models, we describe here one high-level knowledge-based solution.
Solutions for various communication models can be derived from our solution. Thus,
the knowledge-based approach enables us to design programs at a higher level of
abstraction.

Generalizing our ideas about the bit-transmission problem, there is a very simple
knowledge-based solution to the sequence-transmission problem. S reads the i
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data element, and repeatedly sends it to R until S knows that R has received it and
that R knows that it is the i element. At that point, S reads the (i + 1) element,
and so on. R writes the data elements as it learns about them, and it then requests S
to send the next data element. A knowledge-based program ST that captures this
intuition is described in Figure 7.2. For simplicity, we assume here that the input
sequence consists only of 0’s and 1°s, although we could easily deal with any finite
data domain.

STg:
case of
if “KsKg(x@;) do send((i, y))
if KsKr(x@;)doi :=i+ 1;read
end case
STR:
case of
if =K g(x;) do send(j)
if Kg(xj = 0) do write(0); j := j + 1
if Kr(xj = 1) dowrite(1); j :=j+1
end case

Figure 7.2 The knowledge-based program ST

A few words are now in order on the notation we use in the program. The
variable y refers to the most recent data element read and is initialized with the
first data element; i is a counter, initialized to 1, that keeps track of how many data
elements have been read by §; and j is a counter, initialized to 0, that keeps track of the
number of data elements written by R. The effect of the “read” action in S’s program
is to read the value of the current data element (where “current” is determined by
the counter i). The effect of the “write(0)” and “write(1)” actions in R’s program is
to write an output value. As in message-passing systems, neither S nor R takes a
receive action; we leave message delivery to the environment’s protocol.

Generalizing what we did in the knowledge-based program for the bit trans-
mission problem (Example 7.1.1), we take Kgr(x;) to be an abbreviation for
Kr(x; =0) v Kr(x; = 1). Thus, if Kg(x;) holds, then R knows the value of x;.
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Recall that S sends the i™ data element until it knows that R knows the value of
this data element. Intuitively, this suggests that S should test if KgKg(x;) holds;
if it does not, then S should continue to send the i™ data element; otherwise S can
increment i and read the next data element. There is, however, a subtle problem with
this intuition, caused by the fact that i is a variable local to §, and, consequently, its
value may not be known to R. Roughly speaking, the problem arises because we
cannot substitute equals for equals inside the scope of a K operator. For example,
suppose we are at a point where i = 3. What S really wants to do is to continue
sending the value of x3 until KgKg(x3) holds. This is not the same as sending it
the value of x3 until KsKg(x;) holds. Put another way, (i = 3) A KsKg(x;) is
not equivalent to (i = 3) A KsKg(x3). The problem is that R may know the value
of x3 without knowing the value of x; (or, for that matter, without even knowing
the value of i), since the variable i may take on different values in the global states
that R considers possible. In the terminology of Section 3.7.4, the number 3 is a rigid
designator, while i is not. In a state where i = 3, we want S to continue sending x;
until K¢Kpg(x3) holds, not until KsKpr(x;) holds. To achieve this effect, we take
the clause “if KsKgr(x@;) do ...” to be an abbreviation for the infinite collection
of clauses “if i = k A KsKg(xg) do ...,” for k = 0,1, ---. Similarly, we view
“if - KsKgr(x@;) do ...” as an abbreviation for the infinite collection of clauses
“if i = kA —-KgKgr(xr) do...” As we saw in Section 3.7.4, the semantics of
first-order modal logic forces free variables to act as rigid designators. Thus, if we
had allowed first-order tests in knowledge-based programs, we could have replaced
the test KsKr(x@;) by the first-order test Vk(k = i = KgKg(xx)), and achieved
the same effect (see Exercise 7.25). (We could similarly have used Kz (x@ ;) instead
of Kg(x;) in R’s program STg, but there is no need. Since j is part of R’s local
state, it is easy to see that Kg(x@ ;) and Kg(x;) are equivalent.)

It should now be clear—at least at an intuitive level—that the knowledge-based
program ST does what we want: S sends (i, y), where y is the i bit, as long
as S does not know that R knows the i bit. R’s send(j) can be interpreted both
as an acknowledgment for receiving the (j — 1) bit and as a request for the j®
bit. Given this intuition, we would expect that ST solves the sequence-transmission
problem in a wide variety of contexts. This is what we now want to prove. In
particular, we want to show that ST is correct if messages can be deleted, duplicated,
reordered, or detectably corrupted. We also want to prove that it is correct if there
is some common knowledge about the sequence of data elements. To do this, we
prove that ST is strongly correct in a very general context. All the other contexts of
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interest will be subcontexts of this general context. The interpreted context that we
study is (y*', %), where y*' = (P}, Go, 7, Fair®"). We now describe each of the
components in more detail.

We first consider the local states for S and R. It should come as no surprise at
this point that there is no unique way to represent these local states. Not all choices
are equally appropriate; indeed, the correctness of ST depends crucially on some of
the choices we make. Many of our choices express assumptions that are implicit in
the text of the program. For example, we assumed that S keeps track of the values
it has read and R keeps track of the values it has written. To see where we use this,
suppose R sends S the message k + 1 at the point (7, m) and S receives this message
at some later point (r, m"). As we show in the next section (Lemma 7.7.2), R knows
the value of x; when it sends this message; that is, K g (xx) holds at (r, m). To prove
that the program is correct, we need to show that K g K g (xx) holds when S receives
the message. If, however, R “forgets” the value of xj earlier, then K g (x)) would no
longer hold at (r, m"), and hence neither would K s K g(xx). By having R keep track
of all the values it has written, we assure that such forgetting does not occur.

Motivated by this discussion, we choose to model the sender and the receiver as
processes with perfect recall. As with message-passing contexts (see Section 5.2),
we assume that the local states of the processes consist of their histories. Recall that
the history of a process is a sequence whose first element is an initial state and whose
later elements are sets of messages (sent and delivered) and internal actions. Here
we take the history to include also the sequence of input/output values. Thus, the
sender’s history includes also the sequence of values read, and the receiver’s history
includes also the sequence of values written. It is convenient to view a local state
of each process as a pair (h1, hy), where &1 is the history of messages and internal
actions and /5 is the input/output history. Thus, y refers to the last element of /9
in S’s state, i refers to the length of 4, is §’s state, and j refers to the length of &,
in R’s state.

What about the environment’s states? As in Example 5.2.1, we assume that the
context is recording. We take the environment’s state to consist of the input sequence
and the sequence of joint actions that has been performed thus far. Thus, L., the set
of possible states for the environment, consists of states of the form (X, %,), where
h, is a sequence of joint actions. We describe the form of these joint actions later on.

As we mentioned earlier, we assume that the initial state of S includes the first
input value. Thus, we take Gy, the set of initial global states of ST, to consist of all
global states of the form (s., sg, Sg), where s, is of the form (X, ()), ss is of the
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form ({), (xp)), and sg is of the form ({), ()), where X is an infinite sequence of 0’s
and 1’s. Thus, in an initial state, the sender S starts out reading the first element of
the sequence X, the receiver R has not written any elements, and neither S nor R has
sent or received any messages.

To complete the description of the environment’s state (and to describe the envi-
ronment’s protocol), we need to describe the possible joint actions. The set of actions
for S and R is immediate from the knowledge-based program ST. § can perform two
actions: send({i, y)) and i := i + 1; read. Similarly, R can perform three actions:
write(0); j := j + 1, write(1); j := j + 1, and send(j). The actions we allow the
environment to perform are similar in spirit to those that the environment performs
in a.m.p. systems (see Example 5.1.2). Essentially, the environment decides when
to enable each of § and R and when messages sent by § and R will be delivered.
In particular, some messages may never be delivered, and messages may not arrive
in the order sent. Also, the environment can duplicate messages, so that the same
message may be delivered several times, and the environment can corrupt messages
in a detectable way. We capture these conditions by taking the environment’s action
to have the form (a.s, a.g), where

e 3,5 has the form nogog, gog, or delivers(us) for us € {x, A, current} U
{0,1,2,...},and

e a,r has the form nogog, gog, or deliverg(iug) for ugp € {x*, A, current} U
{(i, y)1i€{0,1,2,...} y € {0, 1}}.

Thus, each process can be disabled by the environment’s nogo action. If a,s =
nogog, then S’s action is disabled. If, on the other hand, a,s = gog, then S’s
action is enabled. Finally, if a,g = deliverg(us), then S’s action is enabled and
it also receives the message ws if s # current. (Thus, unlike in a.m.p. systems,
a process can perform an action and receive a message in the same round.) If
a.s = deliverg(current), then S receives the message that R is currently sending,
provided that R is currently sending a message and that R’s action is enabled (i.e.,
ar,r 7 nogog). We view A as the special “empty” message. It models a detectable
message “nondelivery.” This enables us to model situations in which a process tries
but fails to receive a message. This is different from nondelivery in which a process
simply does not receive a message. For example, if a,s = gog, then S does not
receive a message. The message *, on the other hand, is the special “detectably
corrupted” message; this is how we model message corruption. The effect of a, is
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similar to a,s; we omit details here. Notice that our model allows the environment to
deliver only one message at a time. At the price of slightly complicating the model,
we could easily allow the delivery of sets of messages (see Exercise 7.26).

We now have to define the transition function r. As in Example 5.1.2, the
definition is completely straightforward, although tedious to write down. For ex-
ample, consider the joint action (a,, as, ag), where a, = (deliverg(x), nogog),
as = send((i, y)), and ag = send(j). The effect of this joint action is that the tuple
(ae, as, aR) is appended to the environment’s history, and receive(x) is appended
to the sender’s history. Note that send(j) is not appended to the receiver’s history,
because of the nogop action by the environment. We leave further details to the
reader (see Exercise 7.27).

The environment’s protocol PS’ is straightforward: the environment nondeter-
ministically chooses some action a, at every state, with the only constraint being that
it does not deliver a message that was not sent earlier by an enabled process. Note
that we allow the same message to be delivered several times.

Finally, we take Fair® to be the set of runs where both S and R are scheduled
infinitely often, and message delivery is fair, in that a message sent infinitely often
is eventually delivered.

Next, we need to define an interpretation 77* for the propositions x; = 0, x; = 1,
i =0,i =1,i = 2,.... (Recall that propositions of the form i = k arise when
we replace Kg(x@;) by the infinite set of clauses that it abbreviates.) We give these
propositions the obvious interpretation, where x; refers to the j th element of X and i
refers to the number of data elements read by S. This completes the description of
the interpreted context (y*', 7*").

We leave it to the reader to check that by appropriately restricting the environ-
ment’s protocol Y%, we can construct contexts where message delivery is guaranteed,
messages are not corrupted, messages are received in the order in which they are
sent, and so on. Similarly, by appropriately restricting the set of initial states, we
can capture the fact that, for example, the value of the first data element is common
knowledge. These are all subcontexts of .

Recall that a run for the sequence-transmission problem satisfies the safety prop-
erty if the sequence of elements written is always a prefix of the input sequence, and
it satisfies the liveness property if every element in the input sequence is eventually
written. Consider the run-based specification 0%’ consisting of those interpreted sys-
tems all of whose runs satisfy both the safety and the liveness properties. We want
to show that ST satisfies o*' in the context (¥, 7%). But, as we said before, we
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actually would like to show more. We want to show that ST still satisfies o*' if we
pass to subcontexts. All of this is a consequence of the following result:

Theorem 7.6.1 The program ST strongly satisfies o*' in the interpreted con-
text (y*, ).

We defer the proof of Theorem 7.6.1 to Section 7.7, and continue here with our
discussion of ST. It is not hard to show that (y*', 7*") provides witnesses for the
knowledge tests in ST, and that y*' is nonexcluding (Exercise 7.28). Indeed, this
is also true if we restrict the environment’s protocol as previously described, or if
we restrict attention to a subset of initial states. By Theorem 7.2.4, this implies that
there exists a unique system representing ST in all these contexts.

We next consider a standard program ST’ that implements ST in (y*, 77). ST
is described in Figure 7.3. As the reader can see, the programs ST and ST are very
similar syntactically. In fact, the only difference is that knowledge tests in ST are
replaced by standard tests in ST'. The standard tests in ST’ use the variables z and 7.
The variable z refers to the last message received by S, and the variable 7 refers
to the last message received by R. The function proj; returns the i th component of
its argument. As we prove in the next section, in the case of the program ST, the
following are equivalent: (a) S knows that R knows the value of x;, and (b) z =i + 1.
Thus, we replace the test = KsKg(x@;) in ST by z # i + 1 in ST'. Similarly,
K g(x;j) holds if and only if R receives a message of the form (j, y), that is, when
proj;(z)) = j. In this case, R writes proj,(z') on the output tape.

We extend 7' to interpret the propositions “z = i + 1,” “proj;(z)) = j.
“proj,(z’) = 0,” and “proj,(z’) = 17 in the obvious way. It is not hard to show
that ST implements ST in (y*, 7*") (Exercise 7.29). Notice that since o* is a run-
based specification and ST’ satisfies 0% in (y*, %), it follows that ST strongly
satisfies o*" in (', 7%"). Thus, for every subcontext y = y* we have that ST’
satisfies %" in (y/, 7*").

ST implements ST not only in (y*, 7*"), but also in a number of other contexts
of interest. For example, if we restrict the environment’s protocol so that § and R
are always scheduled, or so that there is no message corruption, or that messages are
always delivered in the order in which they are sent, then ST’ still can be shown to
implement ST (Exercise 7.29).

On the other hand, there are contexts where ST’ does not implement ST. Roughly
speaking, ST’ cannot take advantage of some information regarding message deliv-
ery or common knowledge about the data sequence. For example, suppose it is
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S’s program (STY):

case of
ifz #£i 4 1dosend({i, y))
ifz=i+1doi:=i+1;read
end case

R’s program (ST'):

case of
if proj,(z') # j do send(j)
if proj,(z') = j A proj,(z') =0 do write(0); j :== j + 1
if proj(z') = j A proj,(z') = 1 do write(l); j :== j + 1
end case

Figure 7.3  The standard program ST’

common knowledge that the initial value in the sequence is 1. Running STg, the
sender will not bother sending xq since K s K g (xg) will hold. On the other hand, the
sender does not take advantage of such knowledge when running ST’; the sender S
sends R every value that it reads, even if R already knows that value. Formally,
if ! is the context that results by replacing G in y* by that subset consisting of
the initial states where the first element in the data sequence is 1, it is easy to see
that I?(ST', !, %) # T"P(ST, y!, x%"). Similarly, it can be shown that ST’ does
not implement ST in a context where all messages are guaranteed to be delivered in
precisely five rounds (Exercise 7.29).

7.7 Proving Strong Correctness of ST

In this section, we provide a formal proof of Theorem 7.6.1. This section can be
skipped on a first reading of the book; none of the results will be used in later sections.

We want to show that ST strongly satisfies the specification 0% in the inter-
preted context (%, 7%"). (Recall that o' is the run-based specification consisting of
those interpreted systems all of whose runs satisfy both the safety and the liveness
properties.) By definition, this means we must show that every interpreted system
consistent with ST satisfies 0%’ in this interpreted context. Fix a systemZ = (R, 7*")
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that is consistent with ST in the interpreted context (%, 7*"). With the help of a few
lemmas, we prove that 7 satisfies o*’. Before we prove these lemmas, we need to
introduce some notation. Assume that » € R. For every k > 0 and every variable v
of the programs ST and ST’, we let v”®) denote the value of v at the global state r (k).
For example, i” (&) denotes the value of i at r(k). Also, we take bg(k) to consist of

the messages sent by S up to the (r, k), we take b;e(k) to consist of the messages sent
by R up to this point, we take ¥"®) to be the sequence of values written by R up to
this point, and we take X" to be the input sequence in the run r. Finally, if Z and Z’
are two sequences, we write Z < Z’ if Z is a prefix (not necessarily strict) of Z’.

Intuitively, safety for ST is obvious, since R writes a data element only if R
knows its value. This intuition is formalized in the following lemma.

Lemma 7.7.1 For all runs r € R and all times m > 0, IY’(’")I = jr(m) and
Yr(m) < X",

Proof Letr € R. We proceed by induction on m. For m = 0, the claim follows
from our characterization of Gp, the set of initial global states. To see that for
every m > 0 we have |Y"| = ;"™ note that from the semantics of ST, it
is immediate that |Y| increases by one if and only if j does. For the inductive
step of the second part, assume that the claim is established for every [ < m. If
jrom = jrm=1 then yrm = yrm=1 go that the claim trivially follows from
the induction hypothesis. If j*™ = j* =D ‘then (Z,r,m — 1) = Kg(x;), where
[ = jrm=Dand jrm = jrm=1 4 1 If x; = 0, then (Z,r,m — 1) = Kr(x; = 0),
sothat Y70 = y7(m=D.0_(As before, Y""~1 .0 denotes the result of appending 0
to the sequence Y"*~D ) Similarly, if x; = 1, then (Z, r,m — 1) = K, (x; = 1), so
that Y™ = y7(m=1) . 1 1n either case, it is immediate that the claim holds. il

To prove liveness, we need two preliminary lemmas.
Lemma 7.7.2 For everyl > 0 and every d € {0, 1}, the following all hold:
(a) If (I, d) is in B3 then (T, r,m) = (x; = d).
(b) IfLis in b\™ and 1 > 1, then (Z,r, m) = NiZb) Kr(xp).
(c) If )™ = (I, d), then (Z,r,m) = Kg(x; = d).

(d) If "™ =landl > 1, then (Z,r,m) = Ni_{) KsKr(x¢)-
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(a)

(b)

(©)

(d)
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r(m)

Suppose that (/, d) is in by and let k < m be the least integer such that

(L, d) is in bg(k). From the semantics of ST it follows that the message was
sent by § at the point (r, kK — 1); moreover, i" k=1 — Jandd = x;. Hence,

, VK — X =d). e definition of 7r°° guarantees that (Z, r, m
Z,r,k—1) = ( d). The definiti f st hat (7 ) E
(x; =d).

Suppose that [ is in b;e(m), [ >1,and (r,m) ~g (+',m’). We want to show
that the values of xq, ..., x;—; are the same in both r(m) and r'(m’). Note
that from the semantics of ST it follows that there exists m” < m such that /
was sent by R at the point (r, m”) and j*™") = |. By Lemma 7.7.1, we have
that |Y’(’"”)| — [ and Y7 =< X". We clearly have yrm" < yrm go
|Y"(™)| > [. Since R records the sequence of values it has written in its local
state, we must have Y ") = yr(m), By Lemma 7.7.1 again, yr'm) < xr'
and Y"™) < X" It follows that the values of xg, ..., x;_; are the same in
both »(m) and r'(m’). Thus, (Z,r,m) = /\i_:%) Kr(xp).

Suppose that (z/)" ™ = (I, d) and that (+', m’) ~g (r, m). Then (/)" ™) =

(I, d). Thus, we must have that ([, d) is in bg/(m/), since (I, d) must have
been sent at some time m” < m’ in run r’. From part (a), it follows that
(Z,r',m") = (xy =d). Thus (Z,r,m) = Kg(x; = d).

This proof follows the same lines as that for part (c), using part (b) instead of
part (a); we leave details to the reader (Exercise 7.30). 1

Lemma 7.7.3 For all runs v of T and all k > 0, there exists my > 0 such that
ir(mg) —
J’ =k.

Proof We prove the lemma by induction on k. For the base case we can take
mo = 0; the result follows, since j”© = 0 by our assumptions about the initial
states. For the inductive case, assume that for some my > 0, we have j” me) = k.
We want to show that there exists m > my such that j” m) — k + 1. Assume, by
way of contradiction, that for all m > my, we have j" (m) — k. The semantics of ST
implies that, for all m > my, we must have (Z, r, m) &= —Kpg(xx). Since all runs
of Z are fair, R sends infinitely many k& messages to S in r, and these are received
at infinitely many points by S. From Lemma 7.7.2 we get that if "™ = k and
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k> 1,then (Z,r,m) = /\;C;O1 KsKpg(x;). It is clear from the semantics of ST that
i"© = 0, and i increases by at most 1 at each round, and never decreases. We claim
that at some time 7’ we must have i” ) = k. To see this, note that at every step, S
evaluates the test ~KsKr(x@;). By our earlier remarks, this formula will be false
at every point (r, n) such that 77 = k and i"™ < k. Moreover, each time it is
false, the variable i is increased by 1. Since 7" = k infinitely often, there must
indeed be some point (r, n") such that i"®™) = k. Since (Z,r,m) = ~Kg(xy) forall
m > my, it follows from the Knowledge Axiom that (Z,r, m) = —KsKg(xx) for
all m > my. Thus, S performs the action send((k, y)) at all times n”” > n’. Since r
is a fair run, there must be some m’ > 0 such that zr(m/) = (k, y). By Lemma 7.7.2,
this implies that (Z, r, m") = Kg(x;), which is a contradiction. il

The fact that 7 satisfies 0" now follows easily. Safety follows from Lemma 7.7.1.
For liveness, suppose r is a run in Z. We want to show that every data element xj
in X" is eventually written. By Lemma 7.7.3, there is some my such that j" (") = k.
By Lemma 7.7.1, we have that |Y"(")| = k and that Y"("®) < X", so that x; is
written by time my.

Exercises

7.1 Show that if ¢ is either a standard test or a knowledge test that appears in the
knowledge-based program Pg; for agent i, and £ = r; (m) for some point (r, m) in Z,
then (Z, ) = ¢ iff (Z,r, m) = ¢. (Hint: use the fact that the propositions in ¢ are
local to i.)

7.2 Let Pg be a standard program, and assume that 7 = (R, ). Show that Pg =
Pg”.

7.3 This exercise completes the details of Example 7.1.2.

(a) Show that BT implements BT’ and BT” in the interpreted context (yf%r, b,

(b) Show further that I'¢? (BT, Vf%’r’ 7P represents each of BT’ and BT” in the

interpreted context (yf%r, by,
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7.4 This exercise completes the details of Example 7.2.1.

(a) Show that the interpreted system Z? is inconsistent with NU in the interpreted
context (y"™, 7).

(b) Show that no interpreted system is consistent with NU’ in the context
(y™, r™), by showing that none of 79, 71, nor 72 are consistent with it.

7.5 Show that even without temporal operators in the knowledge tests, we can still

find a knowledge-based program that is represented by more than one interpreted
system, and a knowledge-based program that is not represented by any interpreted
system in an appropriate context. (Hint: modify the context y"* described in Ex-
ample 7.2.1 so that the environment’s state includes the time. Modify the transition
function 7 so that the time m is updated at every step. Then consider the programs

if KKm#Z0=x=1)dox :=1

and
if Kim#0=>x#1)dox:=1.)

7.6 This exercise completes the details of Example 7.2.2.

(a) Define the recording context (y, w) corresponding to the description in the
example.

(b) Prove that 7% = (K, p < « = 3) and that 7% = =K, p'.
(c) Prove that the program MP; implements MP in the context (y, ).
(d) Prove that the program MP), implements MP in the context (y, 7).

(e) Prove that every system representing MP in the context (y, &) coincides with
one of the two systems I'” (MPy, y, ) and I'” (MPY, y, ) representing MP;
and MP, respectively. (Intuitively, this means that MP; and MP are the only
implementations of MP in this context.)

(f) Let (y”, ") be the interpreted context resulting from adding a halted bit to
the robot’s local state, as described in the example. Prove that analogues to
parts (c), (d), and (e) still hold when we substitute the context (y”, 7”) for

(y, 7).
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(2) Describe the context (y’, ') of the example, and prove that there is only one
interpreted system representing MP in this context.

7.7 Show that (yfl;’l.r, 7Pty provides witnesses for BT’ and BT”.

7.8 Show thatif P is a protocol and r is arun such that Pref,, (r) € Pref,,(R™P (P,y))
for all m, then r is weakly consistent with P.

** 7.9 This exercise fills in some of the details of the proof of Theorem 7.2.4.

(a) Show that if P is a protocol and y = (P, Go, 7, ¥) is nonexcluding, then
Prefo(R™P (P, y)) = Go N Pref (V).

Next is the key step, which shows that our inductive construction has the right prop-
erties. Intuitively, this step shows that, for each interpreted system Z’ of the form
1"’ (PgZ, y, i), the actions of the protocol Pg” attime m depend only on the prefixes
of T’ through time m. This is the only place in the proof where we use the assumption
that (y, ) provides witnesses for Pg; this and part (a) are the only places where we
use the assumption that y is nonexcluding.

(b) Assume that 7; and 7, provide witnesses for Pg and that Pref, (Z1) =
Pref,(To) = Pref,, "’ (Pg™, y, 1)) = Pref,,'”(Pg™, y, ). Show
that Pref ,, (I"P(Pg™, y, 7)) = Pref,, . I"P(Pg™2, y,)). (Hint: sup-
pose p € Pref .1 (R (Pg’l, y)), so that there is a run r € R™’(Pg’l, y)
such that p = Pref | (r). Suppose that r(m) = (€, €1, ..., £,). It follows
that there mustbe atuple (a,, aj, ..., a,) € P.(£,) ngfl (1) x---xPgi (£,)
such that r(m + 1) = t((a., at, ..., a,))(r(m)). Show that a; € Pgl.Iz(Zi)
for each agent i. Use this to show that there is a run with prefix p that is
weakly consistent with Pg?2 in context y. Use the fact that y is nonexcluding
to conclude that there is a run with prefix p that is consistent with Pg?2 in
context y.)

(c) Show thatif 0 <m < m’ < w, then Prefm(Im,) = Pref,,(T™).

(d) Assume that Z; is of the form I’eP(Pin, y,m) and I, is of the form
I'?P (Pg”2, v, ). Show thatif Pref,,(Z1) = Pref,,(Z;) forallm, thenZ| = ;.

Recall that Z0+! = 1P (Pg%”, y, 7). Define 792 = I?(Pg”""", y, ). Our goal
now is to prove that 7¢+! = 7¢+2,
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(e) Show that Z¢ provides witnesses for Pg. (Hint: assume that Z is either Z¢
or Z™ for some m, and similarly for Z’. Let ¢ be a formula with no temporal
operators, such that ¢ is a subformula or the negation of a subformula of a test
in Pg. Prove by induction on the structure of ¢ that (i) for every run r of 7
and run r’ of Z’ such that Pref,,(r) = Pref,,(r'), we have (Z,r, m) = ¢ iff
(Z',r,m) E ¢, and (ii) if ¢ is of the form K;, then Z provides witnesses
for ¢.)

(f) Show that Pref, (Z¢t') = Pref, (Z®+?) for all m. (Hint: show that
Pref,, (z@t) = Pref,,(Z™) for each m, by using parts (a), (b), (c), and (e).
Similarly, show that Pref,, (Z®*?) = Pref,,(Z™) for each m.)

(g) Prove that 7@+ = 70+2,
(h) Show that 7@+! represents Pg in (y, ).
We have shown that some system represents Pg in (y, 7). We now show uniqueness.

(1) Show that if 77 and Z; are systems that represent Pg in (y,w), then
Pref ,,(I1) = Pref,,(1,) for all m.

(j) Show that there is at most one system that represents Pg in (y, 7).

*7.10 This exercise provides a weakening of the notion of providing witnesses that is
still sufficient to guarantee that there is at most one interpreted system that represents
a knowledge-based program Pg in the interpreted context (y, 7) (though it does not
guarantee the existence of such a system). We say that the context (y, ) provides
witnesses in the weak sense for Pg if every system 7 that represents Pg in (y, ) pro-
vides witnesses for Pg. Show that there is at most one interpreted system representing
Pgin (y, ) if (y, m) provides witnesses in the weak sense for Pg and y is a nonex-
cluding context. (Hint: show by induction on m thatif Z = (R, 7) and 7’ = (R/, 7)
are two systems representing Pg in (y, i), then Pref,,(R) = Pref,,(R’) for all m.)

*7.11 This exercise completes the details of Example 7.2.5.

(a) Show that MC satisfies 0™ in any interpreted context (y’, 7"°) where ' is a
subcontext of ™.
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(b) Show that we can find sets W' and W of runs such that Prefy (V') =
Pref (W) = Go, and if y’ (resp., ") is the context that results from replacing
the admissibility condition True in y™¢ by W’ (resp., W), then there are two
interpreted systems representing MC in (y’, 7"¢) and no interpreted systems
representing MC in (y”, 7). Of course, it follows from Theorem 7.2.4 that
neither y” nor y” can be nonexcluding. (Hint: define W’ to be the set of runs
that actually arise in the muddy children puzzle, along with the unique run
in the system where it is common knowledge that all of the children have a
muddy forehead. Define W to be the set of all runs in which the children
answer “Yes” to all the father’s questions.)

(c) Describe the standard program MC; formally. (Hint: you need to introduce
new primitive propositions.)

(d) Show that Z™¢ represents MC in (¢, 7/"¢) and that MC; implements MC in
(ymc nmt)

7.12 Fill in the remaining details of the context y*? for knowledge bases in Sec-
tion 7.3.

7.13 Suppose that 7 is a system of the form I'P(TELLY v ., k), and at some
point (r, m) in Z, we have rgg(m) = (@1, ..., ¢r). Show that there is a run r" in T
such that rgg(k) = rgg(m). Thus, although the KB may not get a message in every
round, it considers it possible that it did get a message in every round.

7.14 Show that there is a unique interpreted system representing TELL in (2, 7).

(Hint: using Theorem 7.2.4, it clearly suffices to show that this context provides
witnesses for TELL. To do this, suppose that 7 = (R, 7¥) is a system of the form
I'*P(TELLZ, ykb, 7% and that (Z, r, m) &= —Kxpe. Use Exercise 7.13 to show that
there exists a point (+’, m’) such that (r, m) ~gg (+',m’), (Z,r’,m') & —¢, and
m <m)

7.15 Show that Z/* = I"®?(TELLPROP, y*?, 7rkb).

7.16 Inthe formalization of knowledge bases in Section 4.4.1 in terms of knowledge-

based programs, show how we can capture the default assumption that if p is true,
then the first thing the KB will be told is p. (Hint: introduce a new proposition told,
which is initially false and becomes true after the Teller tells the KB at least one
formula.)
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*7.17 Prove Theorem7.3.1. (Hint: define the propositional formula ¢ = {¢1,. .., gr)*
by induction on k. We can clearly take ( )* = true, while {¢1, ..., ¢k, Pk+1)* has
the form (g1, ..., @x)™ A (/)I/<+1' Thus, the problem reduces to defining ‘pl/<+1' By
Exercise 3.23, it suffices to assume that ¢ is of depth 1. Now proceed by induction
on the structure of ¢g1.)

*7.18 This exercise deals with variants of the knowledge-based program OA.

(a) Let OA’ be the knowledge-based program that is obtained by modifying OA so
as to allow the agents to perform null actions in every round, just as in TELL.
Show that (24, w%?) does not provide witnesses for OA’.

(b) Let OA” be the knowledge-based program that is obtained by modifying OA
so as to allow the agents to send formulas with temporal operators. Show that
(y°%, w°%) does not provide witnesses for OA”.

7.19 Show that (y, 77 provides witnesses for the knowledge-based program SBA,
for every y € [P,

7.20 Prove Lemma 7.4.3.
7.21 Prove Proposition 7.4.5.
7.22 Prove Theorem 7.4.6.
7.23 Prove Lemma 7.5.1.

7.24 This exercise completes the details of Example 7.5.2.

(a) Show that BT’ strongly satisfies o’ in (yf%r, by,

b

(b) Show that BT” strongly satisfies ¢” in (yfai.r, .

7.25 Show that the test KsKg(x@;) in ST could be replaced by Vk(k = i =
KsKRg(xy)) if we had allowed first-order tests in knowledge-based programs.

7.26 Discuss how the context of ST would have to be modified if the environment
could deliver more than one message at a time to a given process.
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7.27 Given the context y* for ST described in Section 7.6, describe the effect
of t(a., agr, as), where (1) a, is (deliverg(x), deliverg (current)), (2) ag is i :=
i + 1; read, and (3) ag is write(1); j := j + 1.

7.28 Prove that (y*', 75") provides witnesses for the program ST, and that ' is
nonexcluding. (Hint: the proof that (y*', 7*") provides witnesses for ST is similar
in spirit to the proof in Exercise 7.14 that (y*?, 7% provides witnesses for TELL in
that it uses an analogue of Exercise 7.13.)

7.29 In this exercise, we consider in what contexts ST’ implements ST:
(a) Show that ST’ implements ST in (y5, 7*").

(b) Show that there are a number of subcontexts y = y*' such that ST implements
ST in (y, 7). In particular, describe y and show that this is the case if

(i) y corresponds to restricting the environment’s protocol so that S and R
are always scheduled,

(i1) y corresponds to restricting the environment’s protocol so that there is
no message corruption,

(iii) y corresponds to restricting the environment’s protocol so that messages
are always delivered in the order in which they are sent.

(c) Show that ST’ does not implement ST in a context where all messages are
guaranteed to be delivered in precisely five rounds.

7.30 Complete the proof of Lemma 7.7.2.

Notes

The notion of a knowledge-based protocol, where an agent’s actions depended not
just on his local state, but also on his knowledge, was introduced by Halpern and
Fagin [1989], and studied further by Neiger and Toueg [1993]. Although the idea of
a knowledge-based program, in the sense of a syntactic object of the type we have
here, with explicit tests for knowledge, was implicit in the discussion of [Halpern
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and Fagin 1985] (an earlier version of [Halpern and Fagin 1989]) and knowledge-
based programs were used informally by Dwork and Moses [1990], Halpern and
Fagin [1989], Halpern and Zuck [1992], and Moses and Tuttle [1988], the first
formal definition of a knowledge-based program seems to have been given by Kurki-
Suonio [1986] and by Shoham [1993]. Kurki-Suonio and Shoham, however, did not
work with interpreted systems. Rather, they assumed that an agent’s knowledge was
explicitly encoded in his local state (and thus, in our terminology, was independent of
the interpreted system). This means that their knowledge-based programs are really
more like our standard programs, although some of the tests in their programs are
intuitively thought of as tests for knowledge. Our definition of (Z, £) = ¢ is related
to a similar notion used by Neiger [1988].

Sanders [1991] extended the syntax of the programming language UNITY
[Chandy and Misra 1988], to allow for explicit tests for knowledge. The obser-
vation that even a run-based specification that is satisfied by a knowledge-based
program Pg in an interpreted context is not necessarily satisfied by Pg in a subcon-
text is essentially due to her. Our discussion of the unique system representing a
knowledge-based program (including Theorem 7.2.4 and various generalizations) is
based on [Fagin, Halpern, Moses, and Vardi 1997]. It is in the spirit of the discussion
of canonical models for knowledge-based protocols in [Halpern and Fagin 1989].

Finding weaker conditions that guarantee the existence of at least one, or exactly
one, interpreted system representing a given knowledge-based program is an impor-
tant open problem. In particular, while we conjecture that there is in fact a unique
interpreted system representing the variants of OA discussed in Exercise 7.18, we
have not been able to prove this. The discussion of a knowledge-based program with
multiple implementations in the simple motion-planning context of Example 7.2.2
is based on the work of Brafman, Latombe, Moses, and Shoham [1997].

The model of observing agents was introduced by Fagin and Vardi [1986], who
called them communicating scientists. Fagin and Halpern [1988b] examined the role
of truthfulness in multi-agent systems in more detail.

The notion of implementation we define here is much stronger than other no-
tions that have been proposed in the literature. Halpern and Fagin [1989], Lamport
[1986], and Mazer [1991] discuss other notions of implementation. The definition of
implementation of a knowledge-based protocol by a standard protocol used here is
slightly weaker than that used in the first edition of the book and in [Fagin, Halpern,
Moses, and Vardi 1997]. That is, if P implements the knowledge-based protocol Pg
according to the earlier definition, then P implements Pg according to the current
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definition as well, but the converse is not true. According to the earlier definition,
P implements Pg in the context (y, 7) if P = PgZ? where Zp = I"P(P, y, 7).
This requires P and PgZ? to agree even on states that do not arise in runs of P
in the given context. The current definition requires the weaker condition that
Ip =1"?(Pg*?, y, m), which depends only on behaviors of P that actually arise.

One instance where this distinction makes a difference is in Exercise 7.6. An
alternative notion of knowledge-based specifications and protocols is offered by
Engelhardt, van der Meyden and Moses [1998a, 1998b], based on a notion of local
propositions whose truth depends on the local state. Their setting allows a wide class
of implementations for their notion of knowledge-based protocols. For a study of
finite-state implementations of knowledge-based programs, see [Meyden 1996] For
verification problems related to knowledge-based specifications, see, for example,
[Meyden 1998], [Meyden and Shilov 1996], and [Hoek and Wooldridge 2002].

Knowledge-based analyses of protocols were carried out by (among others)
Bazzi and Neiger [1992], Brafman, Latombe, Moses and Shoham [1997], Chandy
and Misra [1986], Dwork and Moses [1990], Hadzilacos [1987], Halpern, Moses,
and Waarts [2001], Halpern and Zuck [1992], Fischer and Immerman [1986],
Janssen [1995], Kurki-Suonio [1986], Mazer [1990], Mazer and Lochovsky [1990],
Merritt and Taubenfeld [1991], Michel [1989b], Moses and Kislev [1993], Moses
and Roth [1989], Moses and Tuttle [1988], Neiger [1988], Neiger and Bazzi [1999],
Neiger and Toueg [1993], and Neiger and Tuttle [1993]. The first use of a knowledge-
based program as a tool for designing a standard program was by Dwork and Moses
[1990]. Their discussion, and that of Moses and Tuttle [ 1988], forms the basis of Sec-
tion 7.4. A generalization of knowledge-based programs, called knowledge-oriented
programs, is suggested by Moses and Kislev [1993]. They consider programs that
involve, in addition to tests for knowledge, high-level actions that are defined in terms
of their effect on the state of knowledge of the agents. Janssen [1996] goes one step
further and defines abstract transitions among states of knowledge, and considers
how they can be realized in different contexts.

A knowledge-based analysis of the sequence-transmission problem in an asyn-
chronous setting was carried out in detail by Halpern and Zuck [1992]; it serves as
the basis for our treatment in Sections 7.6 and 7.7. Well-known solutions to the
sequence-transmission problem include the alternating-bit protocol [Bartlett, Scant-
lebury, and Wilkinson 1969], Stenning’s protocol [1976], and the protocols of Aho,
Ullman, Wyner, and Yannakakis [1979, 1982]. Stenning’s protocol is designed to
work in asynchronous systems where messages can be deleted, duplicated, reordered,
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or detectably corrupted; it is essentially our ST’. As is shown by Halpern and Zuck,
the other protocols mentioned here can be derived from ST as well. This leads to
relatively straightforward proofs of their correctness. For other proofs of correct-
ness of programs for the sequence-transmission problem, the reader should consult
Bochmann and Gecsei [1977], Gouda [1985], Hailpern [1982, 1985], and Hailpern
and Owicki [1983]. A knowledge-oriented program for the sequence transmission
problem is presented by Moses and Kislev [1993]. That program generalizes ST
and satisfies o' in a wider range of contexts. A knowledge-based program for the
Internet protocol is described by Stulp and Verbrugge [2002].



Chapter 8
Evolving Knowledge

We may with advantage at times forget what we know.
Publilius Syrus, c. 100 B.C.

In Chapters 2 and 3 we studied the properties of knowledge in depth. The possible-
worlds setting in which we conducted our study was static. There was no notion
of an agent gaining or losing knowledge over time. On the other hand, our formal
model of multi-agent systems described in Chapter 4 explicitly includes time, and
we extended the language with temporal operators in Section 4.3. We already saw
that incorporating time in our framework is quite useful. For example, we saw in
Section 4.5 that we can gain useful insights into a.m.p. systems by understanding
how knowledge is gained or lost over time. In the analysis of SBA in Chapter 6 we
also saw a specific example of how knowledge evolves when the full-information
protocol is executed in specific contexts of interest. In this chapter, we study in more
generality how knowledge evolves in multi-agent systems.

8.1 Properties of Knowledge and Time

In Chapters 2 and 3 we characterized the properties of knowledge using an axiom
system. We can similarly characterize the properties of time. We focus here on
axioms for O and U, since as we noted, O and < are expressible in terms of U.
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TL. OpA Olp = ¥) = OY
T2. O—¢ & =0O¢
T3. oUy & ¥ v (9 A OU¥))
RT1. From ¢ infer O
RT2. From ¢’ = =y A O¢’ infer ¢’ = =(pU ).

Axiom T1 and rule RT1 show that the modal operator () has some of the same
flavor as K;; axiom T1 is analogous to the Distribution Axiom for knowledge (A2),
while RT1 is analogous to the Rule of Knowledge Generalization (R1). The differ-
ence between K; and (O is summarized by T2, which says that time is deterministic.
There is only one way the world can be at the next step, so that if at the next step
@ is false, then it is not the case that ¢ can be true at the next step. (We could also
consider branching time operators, where time is taken to be nondeterministic. See
the notes at the end of the chapter for further discussion of this point.) Axiom T3
captures the relationship between O and U. Intuitively, it says that ¢ holds until
does exactly if either ¥ is true now, or ¢ is true now and at the next step it is still
the case that ¢ holds until ¥ does. Finally, rule RT2 gives us a way to conclude
that —(p Uvr) holds. As we show below, it is an analogue to the Induction Rule for
common knowledge.

As we shall see, these axioms are both sound and complete for the language of
temporal logic, so they can be viewed as a complete characterization of the properties
of time. Furthermore, when combined with the S5 axioms for knowledge, they form
a complete axiomatization for knowledge and time in multi-agent systems. Thus, the
combined set of axioms can be viewed as a complete characterization of the properties
of evolving knowledge in multi-agent systems. To state this result carefully, we need
some notation analogous to that defined in Chapter 3. Let £V (®) be the result of
augmenting £, (®P), the language of knowledge defined in Chapter 3, with the modal
operators U and (. We similarly define the language ESU(d)) as the analogous
extension of .C,?(d)), the language of knowledge and common knowledge. Again,
we typically omit mention of ® when it is clear from context. In this section, we
focus attention on knowledge and common knowledge, and how they interact with
time. Adding distributed knowledge to the language does not seem to cause any
difficulties; see the notes at the end of the chapter for further discussion. As we shall
see in later sections, however, in other circumstances distributed knowledge does
play a key role in capturing properties of the system.
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We first prove soundness. Let C,, be the class of all interpreted systems with n
agents.

Theorem 8.1.1 For all formulas ¢, ¥ € LEY and interpreted systems T € Cy:
(@ ITE Opn Olp=1v)= OV,
(b) T O~¢ < ~0¢
(c) TEQUY & ¥V (pA OeUy)),
(d) fTE¢thenI = O,
(e) fTE¢ = (Y A O¢) thenT = ¢' = —(pU).

Proof We sketch a proof of part (e) here, leaving the proofs of the other parts to
the reader (Exercise 8.1). The proof of part (e) has some of the flavor of the proof
of validity of the Induction Rule for common knowledge. Fix an interpreted system
T € Cy and suppose that Z = ¢' = = A Og¢’. By induction on k we can show that
T E ¢ = OF¢ (where OFgisan abbreviation for O ... O, with k occurrences
of ). It follows that Z = ¢’ = O¢’. And since Z = ¢’ = —, we also get that
T & ¢/ = O=1. Thus, ¥ is never true after a point where ¢ is true. But this means
that for any choice of ¢, the formula ¢ Uty cannot be true either after any point where
¢’ is true (since if ¢ Uy were true, then at some point in the future ¥ would have to
be true). Thus, Z = ¢’ = —=(eUVy). I

We next prove completeness. More precisely, let SSfl/ (resp., SSS U) be the
axiom system that results from adding T1, T2, T3, RT1, and RT2 to S5, (resp.,
S55). Thus, S5Y is the result of combining the axioms and rules for knowledge and
time into one system; SSSU is the result of adding axioms and rules for common
knowledge. There are no additional axioms for knowledge and no axioms describing
the interaction between knowledge and time.

Theorem 8.1.2 SSfl] (resp., SS,? Y) is a sound and complete axiomatization for the
language Li,l[ (resp., LSU ) with respect to Cy,.

Proof Soundness follows immediately from Theorem 8.1.1 and the fact that the
axioms of S5, are valid in multi-agent systems. To prove completeness, we use
ideas similar to those we have already encountered in the completeness proofs in
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Chapter 3. We just sketch the main ideas in the case of [,fl] here, leaving details (and
the ,C,f U case) to the reader (Exercise 8.2).

Suppose that ¢ € E,l,] is consistent with SSf/ . We want to show that there is some
interpreted system Z and some point (r, m) in Z such that (Z, r, m) &= ¢. As in the
proof of Theorem 3.1.3, each state corresponds to a set of formulas. The difference
is that here we have to define both the possibility relations and a temporal relation
between the states. As before, we take Sub™ (¢) to consist of all the subformulas
of ¢ and their negations. Let S = {sy |V is a maximal SSflj -consistent subset of
Sub™t(¢)}. We define equivalence relations K; on S as suggested by the proof of
Theorem 3.2.4: we take (sy, sw) € K; iff V/K; = W/K; where, as before, for an
arbitrary set X of formulas, we define X/K; = {¢ | K;ip € X}. We also define a
binary relation 7 on S by taking (sy, sw) € 7 iff V/O € W, where

VIO=W IOy e VIU{=¢¥ | ~Oy e V}.

(Note that although =Oy = (O— is valid, we would not get the same set if we
had just defined V/ O as {/ |Oy € V}. The problem is that = Oy € Sub™ (¢)
does not imply O— € Sub™ (p).) We can now use techniques like those used in
our earlier proofs to show that for all maximal consistent subsets V of Sub™ (¢) and
all formulas ¢ € Sub™ (¢), we have

1. if ¢ is of the form K;v’, then ¢ € V iff ' € W for all W such that
(sv,sw) € Ki,

2. if ¢ is of the form O/, then ¥ € V iff ' € W for all W such that
(sv,sw) €7,

3. if ¥ is of the form v Uyn, then v € V iff there exists a sequence
($vy» - - - » Sy, ) of states such that Vo =V, (sv;, sy, ;) € T forl < k, Y € Vg,
and Y| € V) forl < k (see Exercise 8.2).

We say an infinite sequence (svy,, v, , .. .) of states is acceptable if
L. (sv,sv,,,) € T forallk > 0, and

2. for all &, if the formula yr| Uy € Vi, then there exists [ > k such that Y, € V;
and yrq € Vy foralll’ withk <!’ <.
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It is not hard to show from the properties described above that for every state s € S
there is an acceptable sequence that starts with s. Finally, we now define an inter-
preted system 7 = (R, m). Let A = (sy,, Sv,,...) be an arbitrary acceptable se-
quence of states in S. Define the run rA by taking rlA (m) =V, /K;,fori =1,...,n,
and setting reA (m) = ¥. We now define R to be the set of all such runs r4. De-
fine m by setting 7(r4(m))(p) = trueiff p € V,,. Let Z = (R, 7). It is now
straightforward to show (using the properties of X; and 7 listed above) that if A is
the acceptable sequence (sy,, sv;, ...), then (Z, ré, m) = ¢ iff ¢ € V,, for all
formulas ¥ € Sub™ (¢). Since ¢ is in some maximal consistent subset of Sub™ (¢),
it must be the case that ¢ is satisfied in the interpreted system Z. i

This result shows that in the most general setting, where we consider the class
of all interpreted systems, there is no interaction between knowledge and time.
That is, we can completely characterize the properties of knowledge and time by
simply combining the separate characterizations of knowledge and of time. What
are the properties of knowledge and time in less general settings? In Chapter 3, we
considered classes of structures determined by properties of the K; relations, and
saw that the properties of knowledge could vary, depending on the class of structures
under consideration. Given this experience, the reader may not find it surprising
that the properties of knowledge and time in multi-agent systems, and in particular
the interaction between knowledge and time, depend strongly on the setting, that is,
on the class of interpreted systems under consideration. What is surprising is how
subtle this dependence can be. We illustrate this situation by considering a number
of the classes we have discussed in previous chapters, namely, synchronous systems,
systems with perfect recall, asynchronous message passing systems, and systems of
observing agents.

8.2 Synchrony and Perfect Recall

We start by considering systems that are synchronous and systems where agents
have perfect recall. We use the superscript pr on C, to indicate a restriction to those
systems in C, in which agents have perfect recall and the superscript sync to indicate
a restriction to synchronous systems. For example, C}"*”" represents the class of
synchronous systems where agents have perfect recall.



308 Chapter 8 Evolving Knowledge

If we add just the requirement of synchrony, it turns out that we get no additional
properties at all. This shows that our language is not strong enough to capture
synchrony.

Theorem 8.2.1 SS,({ (resp., SSS v ) is a sound and complete axiomatization for the
language LY (resp., L5V ) with respect to C;>"°.

Proof The proof is a straightforward modification of the proof of Theorem 8.1.2.
The only difference is that we take rl.A (m) = (m, Vi, /K;). By making the time part
of agent i’s state, we guarantee that the system is synchronous. The only difficulty
now is in showing that it is still the case that if K;v € Sub™(¢), then we have
(Z,r4, m) = K;v¥ iff K;yy € V,. This is done by showing that if a state appears
in an acceptable sequence, then for all k, we can find an acceptable sequence in
which it is the k™ member. This in turn requires two additional observations: (1) for
all V, there exists W such that (sw, sy) € 7 and (2) any finite sequence (s, - . . , S, )
of states such that (sy,, sy,,,) € 7 for 0 </ < k can be extended to an acceptable
sequence. Again, we leave details to the reader (Exercise 8.3). 1

If we restrict attention to systems where agents have perfect recall, then knowl-
edge and time do interact. As we observed in Section 4.4.4, although K;¢ = OK;¢
is not valid in general, it is valid if we restrict to stable formulas (formulas that, once
true, remain true). It is not hard to show that a formula 1/ is stable in an interpreted
system Z precisely if it is equivalent in the system to a formula of the form g for
some formula ¢ (Exercise 8.4). This observation suggests the following axiom:

KT1. K;Op = 0K;p, i=1,...,n.

Axiom KTI1 says, roughly, that formulas that are known to always be true are
always known to be true. Itis easily seen to be valid with respect to C; (Exercise 8.5).
Of course, it is still valid with respect to C£"*>", but once we assume synchrony, we
get an additional property. Intuitively, if an agent that has perfect recall can also keep
track of time, then if he knows that a formula ¢ will hold at the next time instant,
then at the next instant he will be able to notice that the time has elapsed, and so will
know ¢ then. This intuition is captured by the following axiom:

KT2. KiQ¢ = OKip, i=1,...,n.

It is easy to see that axiom KT2 is valid with respect to chiC (Exercise 8.5).
Axiom KT2 is actually a strengthening of axiom KT1; KT1 can be deduced from
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KT?2 and the other axioms and rules of SS,? , using the fact that Og is an abbreviation
for —(true U—¢) (Exercise 8.6).

Are there any further properties of knowledge and time in synchronous systems
with perfect recall? The following result shows that there are not.

Theorem 8.2.2 SS,LL/ + {KT2} is a sound and complete axiomatization for the lan-
guage L‘rIlJ with respect to cprome,

What happens when we drop the assumption of synchrony? It can be shown that
SS,’{ + {KT1} is not complete for £V with respect to C}" . By adding a rather compli-
cated axiom, a sound and complete axiomatization can be obtained; see Exercise 8.7
and the bibliographic notes for further discussion.

We next consider what happens when we add common knowledge to the lan-
guage, still restricting attention to systems where agents have perfect recall. Itis easy
to show that SSSU + {KT1} is a sound axiomatization for ESU with respect to C2",
while SS,?U + {KT2} is sound with respect to C£"*”"“. Our earlier results might lead
us to expect completeness, at least in the latter case. However, we can prove that we
do not get completeness in either case. In fact, there can be no sound and complete
axiomatization for the language LSU with respect to either C}" or C§"*>"' consisting
of only finitely many axiom schemes and rules! Adding common knowledge to the
language considerably complicates things. To make this statement precise, we need
to consider the complexity of the validity problem.

We start by considering validity with respect to C,. How hard is it to decide
if a formula in E,lf (resp., E,fU) is valid with respect to C,? Equivalently (thanks
to Theorem 8.1.2) how hard is it to decide if a formula is provable in SS;J (resp.,
SSSU )? We saw in Chapter 3 that deciding validity for formulas involving knowledge
alone (that is, for the language £;) is co-NP-complete in the case of one agent
(i.e., if n = 1) and PSPACE-complete if there are two or more agents. Adding
distributed knowledge does not affect the complexity, but with common knowledge
in the language (and at least two agents in the system) the complexity of the validity
problem goes up to EXPTIME-complete. If we consider pure temporal formulas
(i.e., formulas where the only modal operators that appear are O and U), then the
validity problem for that language is also known to be PSPACE-complete. Clearly
the complexity of the validity problem for the language involving both knowledge and
time must be at least as high as the complexity for knowledge or for time separately,
since formulas involving only knowledge or only time are a subset of those involving
both. The interaction between knowledge and time, however, might, in general,
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make things much worse. In the case of C,,, we have seen that there is no interaction
between knowledge and time reflected in the axioms. This also extends to complexity
(of validity); the complexity of reasoning about knowledge and time together is no
worse than the complexity of reasoning about each of knowledge and time separately.
As can be seen from the top row of Table 8.1, the validity problem with respect to C,, is
PSPACE-complete for the language £V, and EXPTIME-complete for the language
ES U Since precisely the same formulas are valid with respect to C;""' and C,,, the
results are identical in the case of C"*C.

Once we assume that agents have perfect recall, the validity problem becomes
dramatically harder. To make precise exactly how hard it becomes, we need to
introduce some additional notation. Define ex,, (k) inductively on m, by setting
exo(k) = k and ex;, (k) = 2exm (k) (Intuitively, ex,, (k) is a stack of m 2’s, with
the top 2 having exponent k.) It turns out that the validity problem for £V with respect
toCL" (resp., CL" ") is nonelementary. That is, the complexity of deciding validity
is not bounded by ex,, for any m. For every algorithm .4 that correctly decides the
validity problem and every m, there is a formula ¢ such that .4 will take time at least
exm(l¢|) when running on ¢.

In fact, we can get an even more precise characterization of the complexity of the
validity problem. Let the alternation depth of a formula ¢ € E,l{ , written ad (¢), be
the number of alternations of distinct K;’s in ¢; temporal operators do not count. We
take the alternation depth of a formula that mentions only one of the K; operators to
be one. Thus, the alternation depth of K1OK{(p A K1¢) is one, the alternation depth
of K1 K> p is two, the alternation depth of both K1O—=K>(pUKq) and K1—K,K1q
is three, and the alternation depth of K| K7 K3 K7q is four. There exists an algorithm
that decides whether a formula ¢ € E,ll] is valid with respect to ckr (resp., cpmiey
that runs in time exqq(¢)+1(cl@|), for some constant ¢ > 0. Thus, the time required
looks like a stack of 2’s of height one greater than the alternation depth of ¢, with
the top 2 having exponent c|¢|, for some constant ¢ > 0, and this running time is
essentially optimal.

We can define the complexity class nonelementary time to consist of those sets
A such that for some constant ¢ > 0, the question of whether x € A can be decided
in time ex|y|(c|x|). The techniques used in the analysis above actually show that
the validity problem for the language Lg with respect to C£" (resp., CF"°"¢) is
nonelementary time complete: itis decidable in nonelementary time, and any problem
decidable in nonelementary time can be reduced to this validity problem. Since
the alternation depth of any formula that mentions only the knowledge of agent 1
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£V, Cl n=1 LYV, n>2 £EU n>2
0 G PSPACE-complete | PSPACE- EXPTIME-
complete complete
¢y, el | doubly-exponential | nonelementary H}—complete
time complete time complete

Table 8.1 The complexity of the validity problem for logics of knowledge and time

(i.e., where the only knowledge operator that appears is K1) is at most one, the same
techniques can also be used to show that the validity problem for the language Eij is
doubly-exponential time complete.

Once we add common knowledge to the language, things get significantly worse.
The validity problem is not decidable at all. That is, there is no program which,
given an arbitrary formula in EfU, can decide if it is valid with respect to C%" or
¢ In fact, we can characterize exactly how undecidable the validity problem
is; technically, it is what is known as H%—complete. The exact definition of 1'[{ is
not all that relevant here, but the following observation is: if a logic has a sound and
complete axiomatization with a finite collection of axioms (actually, axiom schemes)
and inference rules, then the set of valid formulas must be recursively enumerable,
that is, there must be a program that can generate all the valid formulas of the
language in some systematic way. This is easy to see. Suppose that we have a sound
and complete axiom system AX. It is straightforward to construct a program that
generates all the possible proofs in AX. In this way, it will actually generate all the
provable (and, since AX is complete, all the valid) formulas. Since AX is sound, it
will generate only valid formulas. However, a set of formulas that is H%—complete
is not recursively enumerable. Thus, the fact that the validity problem for £$Y with
respect to Ci' (resp., C&""") is H%—complete implies that there cannot be a finite
complete axiomatization in this case. In fact, the same argument shows that there
cannot even be a recursively enumerable set of axioms that is complete.

These results are summarized in Table 8.1.

8.3 Knowledge and Time in A.M.P. Systems

We now turn our attention to asynchronous message passing systems. Let C, " be
the class of interpreted a.m.p. systems with n agents. Since C, © C CP", it follows
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from our earlier observations that S5Y + {KT1} is a sound axiomatization for £Y
with respect to Cy; . It is not, however, complete. There are a number of additional
properties that are a consequence of Theorem 4.5.3 and are thus sound for E,Lf with
respect to C, . For example, it is not hard to show that OK; K ¢ = Ko is valid
in C;"" if i # j. For suppose that K; K ¢ holds at the point (r, m + 1) in some
interpreted system Z € ¢ I —K i holds at (r, m) then, by Theorem 4.5.3, (j, i)
must be a process chain in (v, m..m + 1). But this means that there must be an event
e1 in j’s history that occurs at or after round m + 1 and an event e; in i’s history that
occurs at or before round m + 1 such that e; = e;. It is easy to see that this cannot
happen.

A different property arises from the fact that an agent can “stutter”, that is, stay in
the same state for a long time. For example, because of stuttering, K; O K;j¢ = K¢
is valid with respect to C," " . For suppose that Z € C, " and (Z, r, m) = K;OK;¢.
Because of stuttering, there is a point (r/, m) such that r(m) = r’(m) and agent
i’s state does not change between (r’,m) and (r',m + 1). It follows both that
(Z,r',m + 1) &= K,p and that (¥',m + 1) ~; (*',m) ~; (r,m). Hence,
(Z,r,m) = Kip.

A case can be made that it is inappropriate to include (O in a language for
reasoning about asynchronous systems. The whole point of asynchrony is that the
notion of “next time” does not make sense! But even without (), we have a new
property. Because of stuttering, we can show that K; CK;¢ = K;g is also valid with
respect to Gy, " . (See Exercise 8.8 for further discussion of properties of knowledge
inc,"".)

Once we add common knowledge to the language, there are further properties.
As we saw in Theorem 4.5.4, common knowledge can be neither gained nor lost in
a.m.p. systems. This fact can be captured axiomatically:

CG. =Cgp = O-Cgep if |G| = 2.

This axiom says only that common knowledge cannot be gained. It might seem
that we need another axiom of the form Cgp = OCg¢ to ensure that common
knowledge cannot be lost. In fact, this axiom already follows from axiom CG together
with other properties of knowledge and common knowledge, particularly negative
introspection (see Exercise 8.9).
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8.4 Knowledge and Time in 7% ()

Finally, we consider properties of knowledge and time in the system Z;¢(®) of
observing agents, as described in Section 7.3. This will be a case study illustrating
how subtle the interaction between knowledge and time in a specific setting may be,
and how sensitive it is to small changes in modeling the system. We continue to write
the set ® of primitive propositions in Z)¢ (P), since the set ® will figure prominently
in an axiom we discuss later. Our construction of Z?¢(®) clearly assumes that the
agents have perfect recall and that the system is synchronous, so KT2 is valid with
respect to Z7“(P). An additional property follows because we assumed that the truth
assignment does not change over time. This fact is characterized by the following
axiom CP (which stands for “constant propositions”):

CP. dp v O-p, forall p € ®.

In Section 4.5 we showed that common knowledge is neither gained nor lost
in a.m.p. systems. In the system of observing agents, common knowledge can be
gained, since the system is synchronous (although common knowledge of stable
facts cannot be lost, by the results of Exercise 4.18, since the agents have perfect
recall). However, as we now show, distributed knowledge of propositional formulas
(ones which do not mention any modal operators) cannot be gained or lost among
the group of all agents. More formally, let Dg be an abbreviation of Dg¢, when G
is the group consisting of all the agents in the system. Now consider the following
two axioms:

DGI1. D¢ = ODg if ¢ is a propositional formula

DG2. =D¢ = O-Dgy if ¢ is a propositional formula.
Theorem 8.4.1 DG/ and DG2 are both valid with respect to 7, (®).

Proof Since the truth value of a primitive proposition does not change through-
out a run, it immediately follows that a propositional formula ¢ must be stable; if
(Z74(®@), r,m) = @, then (Z)4(P), r, m) |= Og. Since Z;“ (P) is a synchronous sys-
tem where agents have perfect recall, it follows that D is stable too (Exercise 4.18).
Thus Z74(®) = Dy = ODg.

Now letr be arunin Z“ (®), and suppose that (Z;* (®), r, m) = —=D¢p. We must
show that (Z94(®), r,m") = —Dg for all m" > m. The validity of DG1 implies that
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(Z74(®), r,0) = —=Deg. Suppose that (7;, ()) is the initial state of agent i in run r,
fori =1,...,n. Since Dy is not true at the point (r, 0), there is a truth assignment
o that makes ¢ false such that o’ € N_,7;. Define r’ to be a run exactly like r
(in that the same messages are sent and received at every step) except that o’ is the
truth assignment in the environment component of r’. We want to show that r’ is
arun in Z?¢(®). Recall that we obtained Z7“(®P) by applying Theorem 7.2.4. To
show that ' is a run in Z?*(®P), we must show that each prefix of r’ appears in the
inductive construction of Z¢ (®) in the proof of Theorem 7.2.4, which in turn means
that we must show that the only messages sent in r" are ones known to be true. But
since by construction (r, m") ~; (r’, m’) for all times m’ and all agents i, it is easy
to show that this is the case by induction on m’ (Exercise 8.11). Since o’ is the truth
assignment at every point of r/, it follows that (Z2*(®), r’, m’) = —¢ forallm’ > 0.
By construction, (r, m") ~; (r', m’) for all agents i and times m” > 0. Thus, we have
(Z94(®), r,m") = =Dy for all m" > 0, giving us the desired result. Il

The reader should compare this to Theorem 6.7.1, which says that when run-
ning the full-information protocol for SBA in the case of crash failures, distributed
knowledge cannot be gained. Note, however, that because of the possibility of faulty
processes in that context, distributed knowledge can be lost there.

It is easy to show that distributed knowledge of a stable formula cannot be lost
among any subgroup of agents (Exercise 4.18). That is, DG1 holds if we replace
D¢ by Dge, where G is any nonempty subgroup of agents and ¢ is an arbitrary
stable formula. We cannot, however, strengthen DG2 in this way, as the following
examples show.

Example 8.4.2 In this example, we show that the assumption that the formula ¢ is
propositional is necessary for the validity of DG2. Let p be a primitive proposition.
Neither Alice nor Bob initially knows whether p is true or false, but Charlie knows
that p is true. Charlie sends Alice the message p, which is received by Alice in the
first round. Let ¢ be the formula K 4;;c¢ p; this is a stable formula. This formula is
initially false, but becomes true after Alice receives the message. Thus, initially D¢
does not hold (since ¢ is false), but when Alice receives the message from Charlie,
both ¢ and D¢ become true; thus distributed knowledge is gained. Il

Example 8.4.3 In this example, we show that considering distributed knowledge
only of the set of all agents is necessary for the validity of DG2. The situation is
just as in the previous example. Thus, p is a primitive proposition; neither Alice
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nor Bob initially knows whether p is true or false, but Charlie knows that p is true;
and Charlie sends Alice the message p, which is received by Alice in the first round.
Now let G consist of Alice and Bob. Initially —Dg p holds, but after Alice receives
Charlie’s message, D¢ p holds. Again, distributed knowledge is gained. i

Theorem 8.4.1 shows that there is some interaction between knowledge and
time in the system Z7¢(®). We now demonstrate that the properties of evolving
knowledge also affect the properties of static knowledge. More precisely, we show
that in Z7“ (®) there are extra properties of knowledge alone, not involving time, over
and above the S5 axioms. We start by considering an example.

Example 8.4.4 Assume that there are precisely two agents, namely Alice and Bob,
and assume that there is exactly one primitive proposition p in the language. We can
think of p as a fact that characterizes nature at a given time (for example, if all we
care about is whether or not it rained in San Francisco on January 1, we could take
p to be “It rained in San Francisco on January 17). Consider a situation where p is
in fact true, but Alice doesn’t know whether p is true or false, and Alice knows that
either p is true and Bob knows that p is true, or p is false and Bob doesn’t know that
p is false. Alice’s state of knowledge can be captured by the formula

©AaB =def —Katicep N —KalicempP N Katice((p AKpobp) V (=p A=Kpop—p)).

It is easy to show that ¢4 p is consistent with S5,, where the two agents are Alice
and Bob (Exercise 8.12). We now give an informal argument that although this is
a consistent situation, Alice can never attain this state of knowledge! (We give a
formal proof later.) Assume that at some point ¢4 p holds. Then we can reason as
follows:

Suppose that p is false. Then ¢4p implies that neither Alice nor Bob
knows that p is false. But Alice could then receive a message from Bob
saying “I (Bob) don’t know p”. Then, since Alice knows that either (a)
p is true and Bob knows that p is true, or (b) p is false and Bob does
not know that p is false, it follows that Alice would know that p must
be false. But, by axiom DG?2, it is impossible for Alice and Bob to learn
a nontrivial fact about nature (in this case, that p is false) simply by
communicating, if this fact was not distributed knowledge beforehand.
So p must be true.
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This argument shows that if ¢4 p holds, then so does p. Now observe that if g4 p
holds at some point (7, m), then since ¢4 p is a statement about Alice’s knowledge,
@4 p holds at all points that Alice cannot distinguish from (7, m). Thus, p must hold
at all points that Alice cannot distinguish from (r, m). But this means that K 47;c. p
holds at (r, m), contradicting the assumption that ¢4 p (which implies =K 4j;ce p)
holds at (r, m). i

This informal argument shows that the formula —¢ 4 g, which is not a consequence
of S5, is valid with respect to Z7“ ({ p}). Infact, itis a consequence of a more general
axiom.

Suppose that @ is a finite set of primitive propositions, say ® = {p1, ..., px}. To
state our new axiom, it is convenient to identify a truth assignment « to the primitive
propositions in ® with the formula p] A ... A p;, where p; is p; if p; is true under
the truth assignment o, and pl’- is —p; if p; is false under the truth assignment . (The
assumption that @ is finite is crucial here; if ® were infinite, then « could not be
viewed as a formula in the language. This is the only place in the book that we find
it necessary to assume that the set of primitive propositions is finite. We reconsider
this assumption later in the section.) Consider the following axiom:

OA,. 9. D—o = (K1j—aV...vK,—a), where « is a truth assignment to the primitive
propositions in &.

Axiom OA, ¢ says that if it is distributed knowledge among all the agents that o
does not describe the state of nature, then in fact one of the agents must already know
that o does not describe the state of nature. Axiom OA, ¢ is not a consequence of
SS,? (Exercise 8.13). It describes a property of knowledge that does not hold in
arbitrary systems; however, as we now show, it does hold in the system of observing
agents.

Proposition 8.4.5 OA, o is valid with respect to ;)" (D).

Proof Suppose that (Z7*(®),r,m) = —Kj—a A ... AN =K,—a, where o is
a truth assignment to the primitive propositions in . We must show that
(Z74(®),r,m) = —D—a. Since the formulas K;« are stable fori = 1,...,n
(Exercise 4.18), we must have that (Z,¢(®), r,0) = —~Kj—a A ... A =K, —a. Sup-
pose that (7;, ()) is the initial state of agent i in run r, fori = 1, ..., n. Then we
must have o € 7; for each agent i. By definition, Gy includes the initial global state
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s = ((a, (). (71, (), ..., (Zn, ())). By the inductive construction of Z;¢ (P), there
must be some run r’ with r'(0) = 5. Since all agents consider (r’, 0) possible at the
point (r, 0), we must have (Z;*(®), r,0) = =D—«a. The validity of DG2 implies
that (Z0“(®), r, m) = ~D—a, as desired. |l

Again, both of the assumptions that are implicit in axiom OA,, ¢, namely that
o is a truth assignment and that we are considering the distributed knowledge of
the group of all agents, are necessary. OA, ¢ is not valid if we replace the truth
assignment « by an arbitrary propositional formula (Exercise 8.14(a)). Nor is it the
case that Dg—a = \/;cg K;—a is valid with respect to Z;*(®P) for an arbitrary
subgroup G (Exercise 8.14(b)). Of course Dg—o = (K1—a V...V K,;—«) is valid,
since Dg—o = D—« is valid for any subgroup G (Exercise 2.10(f)).

It is easy to check that —@4p is provable in SSE + {OA; ()} (Exercise 8.15).
This is the formal version of the argument given in Example 8.4.4.

Is SS,? + {OA,, o} complete with respect to Z“(®P) for the language E,? (D)?
That depends. If n = 2, so that there are exactly two agents, then it can be shown to
be complete. However, if n > 3, it is not. For, assume that there are three agents,
say, Alice, Bob, and Charlie, and p is a primitive proposition. Given the observing
agents’ protocol, it is impossible to arrive at a situation where Alice knows that
Bob knows p and that Charlie does not know p: this is because Alice never knows
whether Bob has just told Charlie that p is true. Thus, the formula

©ABC =def KaliceKBobP N KalicemKcharlieP

is false at every point. However, —¢4pc is not a consequence of SS,? + {OA; 0},
where p € © (Exercise 8.21). It is an open problem to characterize the formulas
in £, that are valid in the case n > 3. If we modify the assumptions of the system of
communicating agents by requiring that each message be delivered in the same round
it is sent (and in particular not allowing messages to be lost), then there are some
further properties of knowledge (Exercise 8.16). This demonstrates once again how
small changes in the underlying assumptions about communication can affect the
properties of knowledge, even if we keep the general scenario fixed. Furthermore,
under appropriate assumptions about the agents’ behavior and the messages they can
send, SS,? + {OA,, ¢} is indeed complete, even when n > 3. (See the notes at the
end of the chapter for further details.)

We briefly consider one other seemingly subtle change—this time a syntactic
change—that can affect the properties of knowledge. Up to now we have assumed
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that the language has a fixed, finite set ® of primitive propositions. Suppose that we
allow @ to be infinite. We can now construct the system Z?“ (&) as before, although
it has the somewhat unpleasant property that there are uncountably many possible
initial states (since there are uncountably many truth assignments). Alternatively,
we can consider the class C2%(®) consisting of all interpreted systems Z¢(®’) such
that @’ is a finite subset of ®. The first possibility corresponds to assuming that
the agents really are communicating about an infinite set of propositions, while the
second amounts to saying that the agents are communicating about a fixed finite set of
propositions (some subset of @), but we do not know which itis. Are there any extra
properties of knowledge in either case? Note that the extra axiom OA,, ¢ is no longer
even a formula, since it is “infinitely long”. It is still conceivable a priori that there
could be other extra properties of knowledge. It turns out, however, that this does not
happen in either case. More precisely, SS,? is a sound and complete axiomatization
withrespect to both the interpreted system Z7“ (®) and the class C;;* (®), of interpreted
systems, if @ is an infinite set of primitive propositions (Exercise 8.23). Thus, in this
case, no additional axioms are needed; the need for an extra axiom depends crucially
on the assumption that & is finite.

8.5 A Closer Look at Axiom OA,, ¢

It may seem somewhat surprising that knowledge in systems of observing agents has
such a nonobvious property as that described by axiom OA;, ¢ (and by —¢4 g, which
is a consequence in SS? +{OA2 ()}, by Exercise 8.15). The reader may wonder at
this point if axiom OA,, ¢ applies in other situations as well. If not, what is it about
7% (®) that makes this axiom valid? It turns out that the validity of OA,, ¢ depends
on a number of subtle assumptions hidden in our construction of Z“ (¥). Before we
examine the situation formally, we consider the following examples, all variants of
Example 8.4.4 in the previous section, showing situations where the “impossible”
formula @4 p is attainable.

Example 8.5.1 Let p be the statement “The communication line between Alice and
Bob is up”. Suppose that p is true and Alice sends Bob the message “Hello”, which
Bob receives (since, after all, the communication line is up). At this point, Bob
knows p (since he received the message) and Alice doesn’t know whether p is true
or false (since she doesn’t know whether Bob received her message). But Alice does
know that either p is true and Bob knows that p is true, or else p is false and Bob
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doesn’t know that p is false (since if p is false, Bob will have no way of knowing
whether he didn’t receive a message because the line was down or because Alice
didn’t send one in the first place). Thus, we have a situation where ¢4 p is attained.

Why does ¢4 p hold in this situation? Where does our soundness proof fail? In
our construction of Z7¢(®), we implicitly assumed that the primitive propositions
about which the agents are communicating cannot affect the communication process.
By contrast, in this example, if p is false, then Alice and Bob cannot communicate.
It is interesting to note that we also used this assumption implicitly to prove the
validity of axiom DG2. DG?2 fails here as well. Before communicating, there was
no distributed knowledge among Alice and Bob about p, but after communicating,
Bob knows that p is true.

Example 8.5.2 Another key assumption made in Z¢ () is that agents have perfect
recall. To see the importance of this assumption, suppose that we no longer require
it. Now let p be the statement “Bob has perfect recall”. Alice knows that if Bob
knows p, then p is true, so Bob has perfect recall, and so Bob never forgets that he
knows p. In addition, Alice knows that if Bob knows — p, then p is false, and so Bob
does not have perfect recall, and so Bob might forget that he knows —p. Suppose
that, in fact, p is true and Bob knows this, and Bob sends Alice two messages. The
first one says “either I know p or I know —p” (i.e., Kpopp V Kpopb—p), and the
second says “I don’t know —p” (i.e., =K pop—p). At this point, Alice knows that
either p is true and Bob knows that p is true, or that p is false and Bob doesn’t
know that p is false (Bob knew that p was false and then forgot). Again, we have a
situation where the “unattainable” state of knowledge is attained! Il

Example 8.5.3 We have already mentioned that axiom OA,, ¢ does not hold if we
replace the truth assignment « by an arbitrary propositional formula, nor does it
hold if we consider an arbitrary subgroup G rather than all the agents in the system
(Exercise 8.14). It is not hard to modify Example 8.4.4 by adding more agents to
the system or by using extra propositions to characterize nature in order to get a
situation where ¢4 p holds. For example, suppose that rather than assuming that
nature is completely characterized by one primitive proposition p, we assume that
nature is characterized both by whether it is rainy or dry and whether the temperature
is cold or warm. Thus, there are two primitive propositions p and ¢, where p is “It
rained in San Francisco on January 17, and g is “It was cold in San Francisco on
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January 1. Assume that Alice knows that either (a) it was rainy and cold (that is,
p and g are both true), or else (b) it was dry and warm (that is, p and ¢ are both
false). Assume that Bob knows that it was rainy and cold (that is, he knows that p
and ¢ are both true). Assume that Bob tells Alice that either (a’) he knows that it was
rainy and cold (which is the actual situation), or else (b") he knows that it was warm
but doesn’t know whether it was rainy (that is, he knows that ¢ is false but doesn’t
know whether or not p is true). After Alice receives this information from Bob, she
still doesn’t know whether it was rainy or dry. She knows that if it was rainy, then
case (a) occurred, so it was cold, hence case (b’) is impossible, so case (a’) occurred,
and Bob knows that it was rainy. Thus, Alice knows that if p is true (it was rainy),
then Bob knows that p is true. Furthermore, she knows that if it was dry, then case
(b) occurred, so it was warm, hence case (a’) is impossible, so case (b’) occurred,
and Bob doesn’t know whether it was rainy. Thus, Alice knows that if p is false (it
was dry), then Bob doesn’t know that p is false. So, yet again, we have attained the
“unattainable” state of knowledge. We leave it to the reader to construct a variant of
the system with a third agent in the picture where, again, ¢4 p holds (Exercise 8.18).

These examples illustrate the subtleties in modeling a real-world situation. Small
changes in the model can result in significant changes to the conclusions one can
draw from the model. Under seemingly small perturbations of the assumptions
underlying the system, we can go from a situation where OA,, ¢ is valid to one
where it is not. Our goal in the remainder of this section is to isolate the key features
of the system of observing agents that cause axiom OA, ¢ to be valid. The idea will
be to consider a number of abstract properties of systems, motivated by properties
that hold in Z“(®), and show that OA, ¢ is valid in all systems satisfying these
abstract properties.

As we showed in Example 8.5.2, one key property of Z“ (®) that we need is that
it is a system where agents have perfect recall. What else is necessary?

It was clearly important in the discussion of the observing agents that the prim-
itive propositions talked about the initial state of nature (so that their truth values
did not change over time), and in fact completely characterized the initial state of
nature. More formally, we say that the primitive propositions characterize the initial
environment in an interpreted system if the truth values of the primitive proposi-
tions remain the same throughout each run, and the primitive propositions have the
same truth values in two runs r and r’ precisely when the initial environment state
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is identical in r and r’. Tt is easy to see that Z0%(®) is a system where the primitive
propositions characterize the initial environment.

The next key feature of the system of observing agents that we want to capture
is that the agents start by making independent observations of nature. This “in-
dependence” intuitively means that what one agent observes does not affect what
any of the other agents observe (although, of course, the observations do have to
be consistent, so that we cannot have one agent observing p and another observing
—p). Since “nature” is encoded in the environment’s state, this amounts to requir-
ing that an agent’s initial state depend only on the initial state of the environment.
More precisely, suppose that s, is an initial environment state and it is possible for
agent i to have initial state s; when the initial state of the environment is s., for
i = 1,...,n. Thatis, assume that, for each agent i, there is a run ri such that in
the initial global state i (0), the environment state is s, and agent i’s local state is ;.
Intuitively, this means there is some observation that agent i can make that puts it into
state s; when the environment state is s,. We then require that each of the agents can
simultaneously make the observation that puts them into them into this local state
when the environment state is s.. That is, we require that there be a run r* such that
r*(0) = (s¢, S1, ..., 8,). If this requirement holds for every possible initial state s,
of the environment, then we say that the environment determines the initial states. It
is easy to see that 7% (®) is a system where the environment determines the initial
states.

As we can see from Example 8.5.1, to guarantee that —g4p is valid, it is not
enough that the agents have perfect recall, the primitive propositions characterize the
initial environment, and the environment determines the initial states. Somehow we
need to assume that we do not have primitive propositions corresponding to events
such as “the communication line is up”, whose truth may affect the transitions of
the system. Formally, we say that agent state transitions are independent of the
initial environment in a system if whenever there are two runs r and r’ such that
each agent has the same initial state in r as in 7/, then there is a run r” with the
same initial global state as in r’, and where for each time m, each agent has the same
state at time m in " as in r. Intuitively, r”" has the same initial state as r" (both for
the agents and for the environment), and every agent makes the same transitions at
corresponding steps of r and r”. As shown in Exercise 8.11, Z¢(®) is a system
where agent state transitions are independent of the initial environment. However, in
Example 8.5.1, where the environment could describe whether the communication
line between Alice and Bob is up, it is not the case that agent state transitions are
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independent of the initial environment. We can have two runs r and r’ such that
Alice and Bob have the same initial state in both (intuitively, they are ignorant as to
whether the communication line is up), the communication line is up in r, and down
in r’. Moreover, suppose that Bob sends Alice a message in r, which Alice receives
(since the line is up). The receipt of the message is encoded in Alice’s state in (r, 1).
Suppose that the state of the line is part of the environment state. There can be no
run r” with the same initial global state as in r’ (so that the communication line is
down), but where Alice receives a message at time 1 (as she does in r).

The following theorem shows that the four conditions we have abstracted out
from the system of observing agents are what cause axiom OA, ¢ to hold. Let C¢
be the subclass of C,, consisting of all interpreted systems for n agents that satisfy
these four conditions: (a) agents have perfect recall, (b) the primitive propositions
characterize the initial environment, (c) the environment determines the initial states,
and (d) agent state transitions are independent of the initial environment.

Theorem 8.5.4 SS,? + {OA, ¢} is a sound and complete axiomatization for the
language LD with respect to Co°.

Proof See Exercises 8.19 and 8.20.

Interestingly, all four conditions that characterize Co“ are crucial. If any one
of them is dropped, then OA; ¢ is not sound, and SS,? alone remains a sound and
complete axiomatization (Exercise 8.22).

Exercises

8.1 Prove parts (a)—(d) of Theorem 8.1.1, and fill in the details of the sketch of the
proof provided for part (e).

* 8.2 Fill in the missing details of the proof of Theorem 8.1.2. In particular, show the
following:

(a) The K; and 7T relations have the three properties claimed of them. (Hint: for
property (3), define ¢y, as in the proof of Theorem 3.3.1, to be the conjunction
of the formulas in V. Define ¢’ to be the disjunction of all of the formulas ¢y
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such that the formula yr; Uy is in V but there is no sequence as promised in
part (3). Now apply rule RT2, where the roles of ¢ and ¥ in RT2 are played
by 11 and yrp, respectively.)

(b) There is an acceptable sequence going through every state in S.

(c) If ¥ € Sub™(¢) and A is the acceptable sequence ($vy» Svy» -+ -), then
(Z,rd, m) = Y iff € V.

Point out what changes would have to be made to deal with the language L',SU.

* 8.3 Fill in the missing details of the proof of Theorem 8.2.1. In particular, prove
the two observations stated in the text and do the induction argument showing that
if A is the acceptable sequence (sv,, v, - . .), then (Z, ré, m) =y iff € V,,, for
all formulas ¢ € Sub™ (¢).

8.4 Show that a formula v is stable in an interpreted system Z precisely if it is
equivalent in Z to a formula of the form O¢ for some formula ¢.

8.5 In this exercise, we consider the validity of axioms KT1 and KT2.
(a) Show that axiom KT1 is valid with respect to cbr.
r,sync

(b) Show that axiom KT2 is valid with respect to C}

(c) Show that KT?2 is not valid with respect to CP" . Note that this means that KT2
is not valid with respect to C, either.

(d) Show that KT1 is not valid with respect to Cj,.
8.6 Show that axiom KT1 can be deduced from SSf,] + {KT2}.

* 8.7 Consider the following axiom:
KT3. (Kip1 A Ki=((Kig1 vV Kip3)U=¢2)) = O(Kip3 = Kip2).
(a) Show that KT3 is valid in C£".

(b) Show that KT1 is provable from SS,IIJ + {KT3}.
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(c) Show that K'T3 is not provable from SSfl] +{KT1}. (Hint: consider “nonstan-
dard” runs where time ranges over the integers rather than the natural numbers.
Construct a system consisting of two nonstandard runs where all the axioms
of S5¢ 4 {K T1} are valid, but KT3 is not.)

This shows that SS,I{ + {KT1} is not a complete axiomatization for ¢l A com-
plete axiomatization can be obtained, but it requires an adding an axiom even more
complicated that KT3. (See the notes for further discussion.)

* 8.8 In this exercise, we consider properties of C, ©. Show that the following for-
mulas are all valid with respect to Cp, " :

(@) K;OKip = Ko,

(b) KiCKip = Ko,

(©) Ki®Kjp = KiK;op,

(d) Om_lKil ...Ki, 0 = K;,o,whereij #ij i forj=1,....,m—1,

(e) “KiKjp1 NKiKrpr = OKiKjp1 vV KiKrpp) ifi # jandi # k. (Hint:
use Exercise 4.31.)

Show that none of these formulas are provable in SS,[{ +{KT1}.

8.9 Show that the fact that common knowledge cannot be lost is provable from the
fact that common knowledge cannot be gained. More precisely, show

S5¢Y +{CG} - Coy = OCgy, if |G| > 2.
(Hint: use the results of Exercise 3.11(d).)

* 8.10 Show that axiom CG characterizes systems where the initial point in a run is
reachable from all later points. More precisely, let C;e‘”h consist of all interpreted
systems Z of n agents where for all subgroups G with |G| > 2 and all points (r, m)
in Z, we have that (r, 0) is G-reachable from (r, m). Show that S5¢V + {CG} is
a sound and complete axiomatization for the language £SY with respect to C/¢4<",
(Hint: extend the techniques used to prove Theorem 8.1.2.)
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8.11 Fill in the details of the inductive proof showing that the run r’ in the proof of

Theorem 8.4.1 is indeed a run in Z?*(®P). That is, prove that if r is a run in Z7*(P)
such that 7(0) = (o, (), (71, (), ..., (T, () and o’ € ﬂi:l,...,n 7;, then the
run r’ which is identical to r except that the truth assignment at every point of r’ is
o' rather than «, is also a run in Z9*(®). In the language of Section 8.5, this says
that agent state transitions are independent of the initial environment in Z“(®P).

8.12 Show that the formula ¢4p from Example 8.4.4 is consistent with S5;, by
constructing a Kripke structure M € Mg” such that (M, s) = ¢4 p for some state s
in M.

8.13 Show that axiom OA,, ¢ is not a consequence of SS,? by constructing a Kripke
structure M € M*" and a state s of M such that OA,, o is false at (M, s).

8.14 In this exercise, we show that the assumptions in axiom OA,, ¢ are necessary.

(a) Show that the formula that results by allowing « in OA, ¢ to be a primitive
proposition p, rather than a truth assignment, is false at some point if there are
at least two primitive propositions.

(b) Show that Do = \/;c; Ki—a is not valid with respect to Z,¢(®P) if G is a
proper subset of the agents, even if « is a truth assignment.

8.15 Show that S50 + {OA, ()} F —¢as.

*8.16 Suppose that we modify the system of observing agents by assuming that
immediate message delivery is guaranteed (that is, every message is delivered in the
same round it was sent). Assume that there are only two agents. Let us say that two
points (r, m) and (r’', m") are equivalent if they satisfy precisely the same formulas
in £EP (D)

b .

(a) If S is a set of truth assignments, then let g be the formula

(N Ki—a) A (N —K1—a).

ag¢s aeS

Intuitively, tg says that according to agent 1’s knowledge, precisely the truth
assignments in S are possible. Let (r, m) be a point. Show that there is a
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(b)

(©)

(d)

(e)
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run 7" in which agent 1 sends a message in round 1 to agent 2 of the form
T, V...V Tg,, and in which agent 2 sends a similar message to agent 1 in
round 1, such that (r, m) and (+/, 1) are equivalent. Thus, to decide whether
a formula is satisfiable, we can restrict attention to runs where each agent
sends one message in round 1 and no other messages afterwards. (Hint: the
only information that agent 2 can learn about agent 1 is what agent 1’s initial
information was; this can be done by considering which possible formulas g
about agent 1’s initial information are consistent with the messages that agent 1
sent.)

Show that there are only a finite number of distinct equivalence classes of
points. That is, show that there is a finite set P of points such that every point
is equivalent to a point in P.

Show that only finitely many of the following formulas are satisfiable:

Kia A=K Kra
KiKya N K1 Kr)K ja
K1 Kr)Kiao A =K1 K2 K1 Ky

(Hint: show that no two of these formulas are mutually satisfiable, that is, there
is no point where two of these formulas can both be true. Then use part (b).)

Show that there are new axioms when there are only two agents and immediate
message delivery is guaranteed. (Hint: use part (c), along with the fact that
each of the formulas in part (¢) is satisfiable when immediate message delivery
is not guaranteed.)

Show that if « is a truth assignment, then the formula
(K1Kra N KroKija) = K1 K> K«

is valid. (Hint: By part (a), we need only show that this formula is true at
every point (r, 1), where in run r/, agent 1 sends agent 2 a message of the
form rg, V...V g, inround 1, agent 2 sends agent 1 a message of the form
77, V...V 17, intound 1, and no other messages are sent. Assume that 75, and
77, hold before any messages are sent. Thus, agent 1’s initial knowledge before
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)

€9)

()

8.17

any communication takes place is that precisely the truth assignments in S
are possible; similarly, agent 2’s initial knowledge before any communication
takes place is that precisely the truth assignments in 77 are possible. Show that
K1 K>a holds after round 1 iff for each T; that intersects Sy, and for each S;
that intersects 7;, we have S; N T; = {a}. Show that the analogous statement
characterizes when K> K1« holds after round 1. Show that K| Ky K« holds
after round 1 iff for each 7; that intersects Sy, and for each S; that intersects
T;, and for each T} that intersects S;, we have T N S; = {a}.)

Show, however, that if « is a truth assignment, then the formula
K1 K)o = Kr2K o
is not valid.

Refine the result of part (c) by showing that of the infinite set of formulas in the
listin part (c), only Kjoe A—K1 Ko and K1 Koo A—K1 Ky Ko are satisfiable.

Show that if « is a truth assignment, then the formula
(K1 Kra A KryKja) = Cy p)a
is valid.

This exercise presents an alternative to OA, ¢ for the language £, without

distributed knowledge.

(a)

As in Exercise 3.33, define a pure knowledge formula to be a Boolean com-
bination of formulas of the form K;¢, where ¢ is arbitrary. Consider the
following axiom, where « is a truth assignment and f is a pure knowledge
formula:

OA;:,cp' BAKi(B=—-a)= (Ki—aV...V K,—«).

Since B is a pure knowledge formula, it is a fact about the state of knowledge
of the agents. So axiom OA;“D says that if a fact about the state of knowledge
of the agents holds, and if some agent knows that this state is incompatible
with the truth assignment «, then some agent knows that the truth assignment
« is impossible. Show that OA;’cI> is a consequence of SS,? +{0A,.¢}. (Hint:
use the fact, proved in Exercise 3.33, that if § is a pure knowledge formula,
then 8 = D§ is provable in SS,?.)
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(b) Assume that p is the only primitive proposition. Show that —¢4 g is a conse-
quence of S5; + {OA’Z@}, where agents 1 and 2 are Alice and Bob. (Hint: let
¥ be the formula obtained from axiom OA/, ,, by letting i be Alice, letting o
be p, and letting 8 be =Kpopp A —|K30b—1’p. Then show that —¢ 4 p can be
proved from S5, + {}.)

It can be shown that if the class of messages is sufficiently rich, then S5, + {OA;,CD}
is a sound and complete axiomatization for the language £,, with respect to Z¢(®).

8.18 This exercise presents yet another “counterexample” to the argument in Ex-
ample 8.4.4. Show that if there is another agent besides Alice and Bob, then @45
is attainable in the system of observing agents. Where does the argument of Exam-
ple 8.4.4 break down in this case?

* 8.19 In this exercise, and the next, we provide details of the proof of Theorem 8.5.4.
This exercise proves soundness; the next proves completeness. Thus, in this exercise,
we show that the four conditions that we have abstracted out from the system of
observing agents are sufficient to cause every instance of axiom OA, ¢ to hold.
We begin by considering a certain condition on Kripke structures that essentially
characterizes OA, ¢. Let us say that a Kripke structure M = (S, 7, Ky, ..., Kp)
satisfies the pasting condition if whenever

1. s1,...,8,,t €8,
2. n(s;) =a,fori =1, ...,n,and
3. (l‘,,Si) e K, fori=1,...,n,

then there exists 1 € S such that 7(f) = o and (¢,¢') € K; fori =1, ..., n.

This condition is called the “pasting condition”, since it says that if certain states
are in S, then another state, that is the result of “pasting together” information from
these states, is also in §. Not surprisingly, the pasting condition implies certain
properties of knowledge (as we see in part (b)).

(a) Let Z be an interpreted system in C;*. Prove that the Kripke structure Mz
corresponding to Z satisfies the pasting condition. (Hint: assume that the
three antecedents of the pasting condition hold for Mz = (S, &, ~1, ..., ~n).
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Assume that s; = r;(m;), fori = 1,...,n, and ¢/ = r’(m’). Show that the
environment components at the points (r;, 0), fori = 1, ..., n, are all the same;
call this common environment component s,. Show that there is arun r”” where
r”’(0) has environment component s, and r”(0) ~ r’(0). Show that there is a
run r with r(0) = r”(0) such that r(m’) ~ r’(m’) = t'. Show that t = r(m’)
satisfies the consequent of the pasting condition.)

(b) Prove that the pasting condition holds for a Kripke structure M € M*"(®) iff
every instance of OA, ¢ (in the language ﬁ,? (®)) is valid in M. Thus, in a
precise sense, the pasting condition corresponds to axiom OA,;, .

(¢) Show that SS,? + {OA,, ¢} is sound with respect to C;¢.

* 8.20 Show thatS5 ,? +{OA,,, o} is complete withrespectto C;“. (Hint: assume that ¢
is consistent with SS,IZ) + {OA,,¢}. Show that ¢ is satisfiable in a Kripke structure
M € MP'(®) where every instance of OA, ¢ is valid in M. (Use an argument
similar to that in the proof of Theorem 3.4.1 and, in particular, in Exercise 3.30, but
where every maximal consistent set that is used is consistent with respect to not just
S5P but also S52 4 {OA,,.¢}.) Use Exercise 8.19(b) to show that M satisfies the
pasting condition of Exercise 8.19. Write M = (S, w, K1, ..., K). Define a subset
S’ C § to be a connected component if no state r ¢ S’ is reachable from a state
s € 8" and every state in S’ is reachable from every other state in §’. We say that a
Kripke structure is connected if its state space is a connected component. Since ¢ is
satisfiable in a Kripke structure satisfying the pasting condition, it is satisfiable in a
connected Kripke structure satisfying the pasting condition. Now show that for each
connected Kripke structure M’ € M*" satisfying the pasting condition, there is an
interpreted system Z € C;¢ such that some connected component of M7 is identical
to M'. Therefore, ¢ is satisfiable in a member of C%.)

8.21 Show that —¢@4pc is not a consequence of SS,? + {OA, ¢}, where n > 3,
p € ®,and g pcistheformula K ajice K pob PAK Alice— K Chartie p- (Hint: construct
a Kripke structure M € M and a state s of M such that M satisfies the pasting
condition of Exercise 8.19, and (M, s) = ¢apc.)

*8.22 Show that if any of the four conditions in the definition of C7¢ are dropped,
then SS,? is a sound and complete axiomatization for the language E,? with respect
to the resulting class of systems. (Hint: let M be a connected Kripke structure, as
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defined in Exercise 8.20. For each proper subset A of the four conditions, construct
an interpreted system Z that satisfies the conditions in .A such that some connected
component of Mz isidentical to M. Soif ¢ is consistent with SS,? , then ¢ is satisfiable
in an interpreted system that satisfies the conditions in .A.)

* 8.23 This exercise deals with the situation where the set @ of primitive propositions
is infinite, as discussed at the end of Section 8.4.

(a) Show that SS,? is a sound and complete axiomatization with respect to the
interpreted system Z7“(®). (Hint: given a formula ¢ that is consistent with
S5D show that there must be a Kripke structure M € M (®') satisfying ¢,
where @’ consists of all the finitely many primitive propositions that appear
in @. Show that there is a Kripke structure M’ € M (®) satisfying the
pasting condition of Exercise 8.19, that is identical to M when restricted to
@’. It is then easy to show that ¢ is satisfiable in M’. The result now follows
as in the conclusion of the hint in Exercise 8.20.)

(b) Show that SS,];) is a sound and complete axiomatization with respect to the class
Co%(®P) of interpreted systems. (Hint: the proof is similar to that of part (a).)

Notes

The axiom system for time alone is a variation of that given by Gabbay, Pnueli,
Shelah, and Stavi [1980] (where the completeness result was first proved), along the
lines of the axiom system for branching time given by Emerson and Halpern [1985].
Axiom KT1 is due to Ladner and Reif [1986], while KT?2 is due to Lehmann [1984].
The completeness of SS,ll] with respect to C, and C,;’"¢, as well as completeness of
SS,IIJ + {KT2}, is due to Halpern and Vardi [1986]. Ron van der Meyden pointed
out to us that axiom KT3 from Exercise 8.7 is not provable in SS,[{ + {KT1}; he has
provided a sound and complete axiomatization for ;" [Meyden 1994]. As observed
in Section 8.2, it is not possible to obtain complete axiomatizations for a logic whose
set of valid formulas is not recursively enumerable. Halpern, van der Meyden, and
Vardi [1997] give sound and complete axiomatizations for all the logics discussed in
Section 8.2 whose set of valid formulas is recursively enumerable.
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In Section 8.2, we saw that in the class of all systems and in the class of syn-
chronous systems there is no interaction between knowledge, common knowledge,
and time. We can similarly show that in these classes there is no interaction between
knowledge, distributed knowledge, and time. More precisely, if we let S5 ,? U be the
axiom system that results from adding T1, T2, T3, RT1, and RT2 to SS,? , and we de-
fine the language £PY similarly to before, then we get analogues to Theorems 8.1.2
and 8.2.1 for distributed knowledge, namely, that SS,? U is a sound and complete
axiomatization for the language £V with respect to both C, and C,;”"“.

The properties of knowledge and time for C, " discussed in Exercise 8.8 were
also pointed out to us by Ron van der Meyden. At this point, we do not even have a
candidate for a sound and complete axiomatization of C,, .

The PSPACE-completeness of the logic with temporal operators only was proved
by Halpern and Reif [1983] and by Sistla and Clarke [1985]. All of the complexity
results in Table 8.1 are due to Halpern and Vardi [1989]. Further details are given in
their papers [1988a, 1988b]; see also [Spaan 1990]. The exponential-time complexity
of the validity problem for common knowledge and time with respect to C, is also
proved by Fischer and Immerman [1987]. Halpern and Vardi [1989] extend Table 8.1
to cover a number of other conditions, including the case where branching time
operators are used. For a resolution-based approach to logics of knowledge and
time, see [Dixon, Fisher, and Wooldridge 1998].

Example 8.4.4 and the results of Section 8.4 are by Fagin and Vardi [1986].
They introduce the axioms OA,, ¢ and OA;L ¢ (of Exercise 8.17). They also consider
a situation where the agents can send messages that are promises about the future
(such as “I will not send a message in round 17”). They then modify the system of
observing agents by requiring that agents fulfill all such promises. Under these cir-
cumstances, they show that S5 ,Il) +{OA, ¢} (respectively, S5, + {OA;’ o)) isasound

and complete axiomatization for L,? (@) (respectively, L£,(P)), with respect to the
resulting interpreted systems. The material in Section 8.5 (along with Exercise 8.23)
is taken from [Fagin, Halpern, and Vardi 1992a]; this paper also considers other con-
ditions on interpreted systems, and provides sound and complete axiomatizations for
interpreted systems that satisfy various combinations of these conditions.



Chapter 9

Logical Omniscience

The animal knows, of course. But it certainly does not know that it
knows.

Teilhard de Chardin

A person who knows anything, by that very fact knows that he knows
and knows that he knows that he knows, and so on ad infinitum.

Baruch Spinoza, Ethics, 11, Prop. 21, 1677

Throughout this book we have found the possible-worlds model to be a very useful
tool. As we already saw in Chapter 2, however, the possible-worlds model gives rise
to a notion of knowledge that seems to require that agents be very powerful reasoners,
since they know all consequences of their knowledge and, in particular, they know all
tautologies. Thus, the agents could be described as logically omniscient. This does
not especially trouble us in the context of multi-agent systems, since in that context
we view our notion of knowledge as external. That is, knowledge is ascribed by
the system designer to the agents. There is no notion of the agents computing their
knowledge, and no requirement that the agents be able to answer questions based on
their knowledge.

Nevertheless, there are situations where the assumption of logical omniscience
seems completely inappropriate. Perhaps the most obvious example occurs when
we consider human reasoning. People are simply not logically omniscient; a person
can know a set of facts without knowing all of the logical consequences of this set of
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facts. For example, a person can know the rules of chess without knowing whether
or not White has a winning strategy.

Lack of logical omniscience may stem from many sources. One obvious source
is lack of computational power; for example, an agent simply may not have the
computational resources to compute whether White has a winning strategy in chess.
But there are other causes of lack of logical omniscience that are quite independent
of computational power. For example, people may do faulty reasoning or refuse to
acknowledge some of the logical consequences of what they know, even in cases
where they do not lack the computational resources to compute those logical conse-
quences. Our goal in this chapter is to develop formal models of knowledge that do
not suffer from the logical-omniscience problem to the same extent that the standard
possible-worlds approach does. We consider a number of approaches that are appro-
priate to capture different sources of the lack of logical omniscience. In Chapter 10,
we describe a computational model of knowledge, which addresses issues such as
capturing what a resource-bounded agent knows. As we shall see, that model also
addresses the logical-omniscience problem in a way that is closely related to some
of the approaches described in this chapter.

9.1 Logical Omniscience

A careful examination of the logical-omniscience problem must begin with the notion
of logical omniscience itself. Exactly what do we mean by logical omniscience?
Underlying the notion of logical omniscience is the notion of logical implication
(or logical consequence). Roughly speaking, a formula ¢ logically implies the
formula ¢ if ¢ holds whenever i holds; a set ¥ of formulas logically implies the
formula ¢ if ¢ holds whenever all members of W hold. Clearly, a formula is valid
precisely if it is a logical consequence of the empty set of formulas. Like validity,
logical implication is not an absolute notion, but is relative to a class of structures
(and to a notion of truth, or satisfaction). Thus, more formally, we say that W
logically implies ¢ with respect to a class M of structures if, for all M € M and
all states s in M, whenever (M, s) = ¢ for every ¥ € W, then (M, s) = ¢. If &
is finite, it follows from Theorem 3.1.3 of Chapter 3 that W logically implies ¢ with
respect to M, if and only if the formula (AW) = ¢ is provable in K, where AW
is the conjunction of all formulas in . Thus, in the standard modal logic studied so
far, logical and material implication coincide (where ¢ materially implies 1 if the
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formula ¢ = ¥ is valid). As we shall see, logical and material implication do not
coincide in some of the logics considered in this chapter.

We can define logical equivalence in terms of logical implication. Two formulas
are logically equivalent if each logically implies the other. Thus, if two formulas are
logically equivalent, then one is true precisely when the other is. Note that logical
equivalence is also a relative notion, just as logical implication is.

Logical omniscience can be viewed as a certain closure property of an agent’s
knowledge; it says that if an agent knows certain facts and if certain conditions
hold, then the agent must also know some other facts. The term logical omniscience
actually refers to a family of related closure conditions. As we shall see, some of our
models will eliminate certain strong forms of logical omniscience, but not necessarily
all of its forms. The strongest form is what we call full logical omniscience.

e An agent is fully logically omniscient with respect to a class M of structures
if, whenever he knows all of the formulas in a set ¥, and W logically implies
the formula ¢ with respect to M, then the agent also knows ¢.

It is easy to see that we have full logical omniscience with respect to M, (see
Exercise 9.1). Full logical omniscience encompasses several weaker forms of om-
niscience. All of these notions also depend on the class of structures under consid-
eration; we do not state that dependence here, to avoid clutter.

e Knowledge of valid formulas: if ¢ is valid, then agent i knows ¢.

e Closure under logical implication: if agent i knows ¢ and if ¢ logically im-
plies ¥, then agent i knows .

e Closure under logical equivalence: if agent i knows ¢ and if ¢ and y are
logically equivalent, then agent i knows .

Because all of the above are special cases of full logical omniscience, they auto-
matically hold for M,,. As we shall see, however, it is possible to define classes of
structures (and notions of truth) for which we do not have full logical omniscience,
but do have some of these weaker notions.

There are also forms of omniscience that do not necessarily follow from full
logical omniscience:

o Closure under material implication: if agent i knows ¢ and if agent i knows
¢ = 1, then agent i also knows 1.
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o Closure under valid implication: if agent i knows ¢ and if ¢ =  is valid,
then agent i knows .

e Closure under conjunction: if agent i knows both ¢ and 1, then agent i knows
pAY.

All these forms of logical omniscience in fact do hold for M,,. Indeed, if {¢, ¢ = ¥}
logically implies v, as is it does with respect to M, and we give = its standard
interpretation, then closure under material implication is a special case of full log-
ical omniscience. One of the approaches described in this chapter is based on a
nonstandard propositional semantics. In this approach, = does not get its stan-
dard interpretation. So logical and material implication do not coincide; we get full
logical omniscience but not closure under material implication. Similarly, closure
under valid implication is a special case of full logical omniscience (and in fact is
equivalent to closure under logical implication) if ¢ = 1 is valid precisely when ¢
logically implies ¥. Again, while this is true under standard propositional semantics,
it is not true in our nonstandard approach. Finally, closure under conjunction is a
special case of full logical omniscience if the set {¢, ¥/} logically implies ¢ A V.
This indeed will be the case in all the logics we consider, including the nonstandard
one. It is clear that there are other relationships among the types of omniscience
previously discussed. For example, closure under logical equivalence follows from
closure under logical implication. See Exercise 9.2 for further examples.

Full logical omniscience seems to be unavoidable, given that knowledge is de-
fined as truth in all possible worlds, as it is in Kripke structures. If an agent knows
all of the formulas in W, then every formula in W is true in every world he consid-
ers possible. Therefore, if W logically implies ¢, then ¢ is true in every world he
considers possible. Hence, the agent must also know ¢. Thus, any line of attack on
the logical-omniscience problem has to start by addressing this basic definition of
knowledge as truth in all possible worlds. The most radical approach is to abandon
the definition altogether. We describe two approaches that do this, one syntactic and
one semantic, in Section 9.2.

It is possible, however, to attack the logical-omniscience problem without com-
pletely abandoning the idea that knowledge means truth in all possible worlds. One
approach to dealing with logical omniscience is to change the notion of truth. This
is the direction pursued in Section 9.3, where we consider a nonstandard notion of
truth. Another approach is to change the notion of possible world. This is what we
do in Section 9.4, where we consider “impossible” worlds. Yet another approach
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is to have truth in all possible worlds be a necessary but not sufficient condition
for knowledge. For example, in Section 9.5, we consider a notion of knowledge in
which an agent is said to know a formula ¢ if ¢ is true in all worlds he considers
possible and if, in addition, he is “aware” of the formula ¢. Finally, we consider an
approach in which knowledge is defined as truth in a subset of the possible worlds.
In Section 9.6, we describe a notion of knowledge in which an agent is said to know
a formula ¢ if ¢ is true in all worlds he considers possible in some particular “frame
of mind.”

As we saw earlier, the possible-worlds approach gives rise to many different
notions of knowledge whose appropriateness depends on the situation under con-
sideration. For example, at the beginning of Chapter 3 we described a situation
where the ; relation need not be reflexive. Similarly, our goal in this chapter is
to demonstrate that the logical-omniscience problem can be attacked in a variety of
ways. Rather than prescribe the “correct” way to deal with logical omniscience, we
describe several ways in which the problem can be dealt with. Because the issue
of dealing with logical omniscience is orthogonal to the issues of dealing with dis-
tributed knowledge and common knowledge, we do not deal with distributed and
common knowledge in this chapter.

In the chapters dealing with knowledge in multi-agent systems we used the term
knowledge with a specific sense in mind: knowledge was defined by the possible-
worlds semantics. The properties of this notion of knowledge were described in
Chapters 2 and 3. But it is precisely this notion of knowledge that creates the logical-
omniscience problem. Thus, in this chapter we start with a notion of knowledge that
involves no prior assumptions on its properties. What exactly we mean by knowledge
in this chapter will depend on the approach discussed and will differ from approach
to approach.

9.2 Explicit Representation of Knowledge

As we already said, the simplest and most radical approach to the logical-omniscience
problem is to abandon the definition of knowledge as truth in all possible worlds.
This does not mean that we also have to abandon the notion of possible worlds.
After all, the notion that the world can be in any one of a number of different states
is independent of the concept of knowledge, and it arises naturally in a number of
contexts, in particular, as we have seen, in our model of multi-agent systems. In this
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section, we intend to keep the possible-worlds framework, but change the way we
define knowledge. Instead of defining knowledge in terms of possible worlds, we
let knowledge be defined directly. Intuitively, we think of each agent’s knowledge
as being explicitly stored in a database of formulas. We now describe two ways to
capture this intuition: a syntactic approach and its semantic analogue.

9.2.1 The Syntactic Approach

As we saw in Chapter 3, a Kripke structure M = (S, &, Ky, ..., K;,) consists of
frame F = (S, K1, ..., K;) and an assignment 7 of truth values to the primitive
propositions in each state. Our definition of the satisfaction relation |= then gives
truth values to all formulas in all states. Here we replace the truth assignment 7
by a syntactic assignment. A syntactic assignment simply assigns truth values to
all formulas in all states. For example, a syntactic assignment o can assign both p
and —p to be true in a state s.

Since in this section we are interested in changing the definition of knowledge
but not the underlying propositional semantics, we restrict our syntactic assignments
here to be standard. A standard syntactic assignment ¢ is a syntactic assignment
that obeys the following constraints for all formulas ¢ and ¥ :

o (s)(@¢ A ) = true if and only if o (s)(¢) = true and o (s) (V) = true.
0 (s)(¢) = true if and only if o (s) (—¢) = false, and

Thus, in syntactic structures we replace truth assignments by standard syntactic
assignments. In addition, we discard the possibility relations, because these relations
were needed just to define satisfaction for formulas of the form K;¢. Formally, a
syntactic structure M is a pair (S, o), consisting of a set S of states and a standard
syntactic assignment o. We can now define the truth of a formula ¢ in a syntactic
structure in a straightforward way: (M, s) = ¢ precisely when o (s)(¢) = true.
Notice that we can identify every Kripke structure M = (S, w, K1, ..., k) with the
syntactic structure (S, o), where o (s)(¢) = true if (M, s) = ¢. Thus, syntactic
structures can be viewed as a generalization of Kripke structures. In fact, syntactic
structures provide the most general model of knowledge. (More precisely, they
provide a most general model for knowledge among models that are based on standard
propositional semantics.)

Itis easy to see that no form of logical omniscience holds for syntactic structures.
For example, knowledge of valid formulas fails, because there is no requirement that a
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standard syntactic assignment assign the truth value true to formulas of the form K; ¢
where ¢ is a valid formula. Similarly, closure under logical equivalence fails, since ¢
and ¥ could be logically equivalent, but a standard syntactic assignment may assign
the truth value true to K;¢ and the truth value false to K;v. In fact, knowledge in
syntactic structures does not have any interesting properties; the only formulas that are
valid in all syntactic structures are substitution instances of propositional tautologies.
If we want to use syntactic structures to model a notion of knowledge that does
obey certain properties, then we have to impose some constraints on the allowable
standard syntactic assignments. For example, if we want to capture the fact that
we are modeling knowledge rather than belief, then we can enforce the Knowledge
Axiom (K;¢ = ¢) by requiring that o (s)(¢) = true whenever o (s)(K;¢) = true.

One particular property of knowledge that syntactic structures fail to capture is a
property that played a central role in our study of multi-agent systems in Chapter 4.
In that framework we assumed that every agent in the system is in some local state at
any point in time. An important feature of knowledge in the framework of Chapter 4
is its locality. That is, if s and s’ are states of the system such that agent i has the
same local state in both of them, that is, s ~; s’, and agent i knows ¢ in state s,
then i also knows ¢ in state s’. In Chapter 4, this property was a consequence of
the definition of knowledge as truth in all possible worlds, but it is a property that
we may want to keep even if we abandon that definition. For example, a natural
interpretation of o (s)(K;¢) = true, which we pursue in Chapter 10, is that agent i
can decide, say by using some algorithm A, whether ¢ follows from the information
in i’s local state. Unfortunately, syntactic structures have no notion of local state;
we cannot get locality of knowledge just by imposing further restrictions on the
syntactic assignments. If we want to capture locality of knowledge, then we need to
reintroduce possibility relations, because we can use them to express locality. If the
possibility relation X; is an equivalence relation ~;, fori = 1, ..., n, then we can
say that an agent i is in the same local state in states s and ¢ precisely when s ~; ¢.
For knowledge to depend only on the agent’s local state, we should require that if
s ~i t, then o (s)(Kig) = o (1)(Ki¢).

Syntactic structures can be used to model fairly realistic situations. Consider
the situation where each agent has a base set of formulas from which the agent’s
knowledge is derived using a sound but possibly incomplete set of inference rules.
Formally, we could interpret this to mean that for each agent i, there is a formal
system R; of inference rules, and for each state s € S, there is a set B;(s) (the base
set of formulas) such that o (s)(K;¢) = true iff ¢ is derivable from B;(s) using R;.
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Intuitively, agent i knows ¢ if she can deduce ¢ from her base formulas using her
inference rules. For example, a student might know that x + a = b but not conclude
that x = b — a, because he might not know the rule allowing subtraction of equal
quantities from both sides. In this case, we would have o (s)(K; (x +a = b)) = true,
but o (s)(K;(x = b—a)) = false. As another example, a deduction system might be
capable of certain limited reasoning about equality. For example, from A = B and
B = C, it might be able to deduce that A = C; however, given the information that
f(1) = landthat f(x) = x- f(x—1), it might not be able to deduce that f(4) = 24.
In both of these cases, agents have a base set of formulas and an incomplete set of
inference rules. Notice that, in these examples, if we view the base set B;(s) of
formulas as agent i’s local state, then agent i’s knowledge indeed depends only on
his local state, so knowledge has the locality property.

9.2.2 The Semantic Approach

In a syntactic structure M = (S, o), for each state s the function o (s) tells which
formulas are true at state s. In particular, agent i knows ¢ at state s precisely if
o (s)(K;p) = true. Essentially, an agent’s knowledge is explicitly described at a
state by giving a list of the formulas that he knows. While this approach indeed
avoids the logical-omniscience problem, its main weakness is its syntactic flavor.
After all, the separation between syntax and semantics is one of the major strengths
of modern logic. Is it possible to “semanticize” this approach? That is, is it possible
to model knowledge explicitly on a semantic level?

To do that, we first need to find the semantic counterpart of formulas. We can
identify the semantic “content” of a formula ¢ with its intension (see Section 2.5),
that is, the set of states in which ¢ holds. The motivation for this identification is as
follows. Let ¢ and 1 be two formulas with the same intension in a structure M. Then
forall s € S we have that (M, s) |= ¢ if and only if (M, s) = 1. That s, if ¢ and
have the same intension in M, then they are semantically indistinguishable in M.
Consequently, we can take sets of states as the semantic counterpart of formulas.
Put another way, we can think of a set W of states as a “proposition” py that is true
precisely at the states of W. Thus, we can represent an agent’s semantic knowledge by
simply listing the propositions that he knows, instead of representing his knowledge
syntactically by listing the formulas that he knows. Since a proposition is a set of
states, we can describe agent i’s semantic knowledge explicitly by a set of sets of
states.
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The previous discussion motivates the following definition. A Montague-Scott
structure M is a tuple (S, 7, Cy, ..., C,) where S is a set of states, 7 (s) is a truth
assignment to the primitive propositions for each state s € §, and C;(s) is a set of
subsets of S, fori = 1, ..., n. For the sake of brevity, we refer to Montague-Scott
structures as MS structures. In an MS structure, we describe agent i’s knowledge (in
state s) by a set of sets of states; this is given to us by C;(s). The members of C; (s)
are the propositions that agent i knows.

We can now define = for all formulas. The clauses for primitive propositions,
conjunctions, and negations are identical to the corresponding clauses for Kripke
structures. The clause for formulas K;¢ is different:

(M, s) = Kipiff {t | (M, 1) = ¢} € Ci(s).

As in Section 2.5, we denote the intension of a formula ¢ in the structure M by oM.
That is, oM = {s|(M,s) = ¢} is the set of states in M where ¢ is true. The
clause above says that agent i knows ¢ at state s if the intension of ¢ is one of the
propositions that he knows, that is, if o™ € C; (s).

Example 9.2.1 These definitions are perhaps best illustrated by a simple example.
Supposethat ® = {p}andn = 2, so that our language has one primitive proposition p
and there are two agents. Further suppose that M’ = (S, n, Cy,C2), where S =
{s, t, u}, and that the primitive proposition p is true at states s and u, but false at ¢
(so that w(s)(p) = w(u)(p) = true and 7 (¢)(p) = false). Suppose that

o Ci(s) =C1() = {{s. 1}, {s. 1, u}},
o Ci(u) = {{u}, {s,u}, {t,u}, {s, 1, u}},

o Cr(s) =Co(u) = {{s, u}, {s,t,u}}, and

o Co(1) = {{r}. {s. t}. {t, u}, {s. 1, u}}.

Consider agent 1. In states s and ¢ agent 1 knows the propositions {s, ¢} and {s, ¢, u},
and in state u he knows the propositions {u}, {s, u}, {t, u}, and {s, ¢z, u}. In some
sense, one could say that agent 1 cannot distinguish between the states s and ¢, since
C1(s) = C1(¢), and s and ¢ play symmetric roles in C1(s), C1(¢), and C1(u#). On the
other hand, agent 1 can distinguish between the state # and each of s and ¢, since
Ci1(s) = C1(t) # C1(u). The situation for agent 2 is analogous.
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Consider the formulas K1p and K1—p. The intension of p is {s, u} and the
intension of —p is {r}. Since {s, u} & C1(s) and {t} & C1(s), in state s agent 1 does
not know whether or not p holds. That is,

(M',s) = Kip Vv Ki—p.

Consider the formulas K, p and K>—p. Because the intension of p is {s, u}, and
since {s,u} € Cy(s), {s,u} € Ca(u), and {s,u} & Cy(t), the intension of K> p is
{s, u}. Similarly, the intension of K,—p is {¢t}. Thus, the intension of K, p VvV Ko—p
is {s, t, u}. Because {s,t,u} € Ci(s), it follows that in state s agent 1 knows that
agent 2 knows whether or not p is true. That is,

(M',s) = K1(K2p vV K2—p).

Itisinstructive to compare this example with the example described by Figure 2.1.
In that example, we considered a Kripke structure M = (S, , K1, K2) with the
same state space as M’. There are a number of other more significant similarities
between M and M’. Justas with M’, agent 1 cannot distinguish s and 7 in M, although
he can distinguish u# from both of them. Similarly, agent 2 cannot distinguish s and u
in M, although she can distinguish s and ¢. Notice, however, that the way we
captured indistinguishability in M (using the relations K1 and K») is very different
from the way we capture it in M’ (in terms of the sets of propositions the agents
know). Nevertheless, it can be shown that precisely the same formulas are true at
corresponding states in the two structures. As we shall see, this similarity between
the MS structure M’ and the Kripke structure M is not a coincidence. Il

We observed in Section 9.2.1 that syntactic structures generalize Kripke struc-
tures. Similarly, MS structures can also be viewed as a generalization of Kripke
structures. Thus, let M = (S, 7, Ky, ..., K;) be a Kripke structure. Let ; (s) be
the set of all “i-neighbors” of a state s, that is,

Ki(s) ={t](s,1) € Ki}.

Let M’ be the MS structure (S, 7, Cy, ..., Cy), where C; (s) is the set of all supersets
of IC; (s). Intuitively, in a state s of M, an agent i knows that the actual state is one of
the states in /C; (s). Thus, i knows all the propositions that contain /; (s). It can now
be shown that for each formula ¢ we have (M, s) = ¢ iff (M, s) = ¢ (Exercise 9.4).
This explains the tight correspondence between the MS structure M’ and the Kripke
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structure M observed in Example 9.2.1. The reader can verify that in that example
we indeed had that C; (s) is the set of all supersets of KC; (s).

Earlier we observed that syntactic structures strip away all properties of knowl-
edge. This is not quite the case for MS structures. Suppose that ¢ and ¥ are
equivalent formulas. Then, by definition, they must have the same intension in every
MS structure. It follows that K;¢ is true in a state precisely when K;y is true in
that state. Thus, knowledge in MS structures is closed under logical equivalence. It
is easy to verify, however, that all other forms of logical omniscience fail here (see
Exercise 9.5). In fact, closure under logical equivalence is in some formal sense the
only necessary property of knowledge in MS structures.

Theorem 9.2.2 The following is a sound and complete axiomatization for validity
with respect to MS structures:

Al. All instances of tautologies of propositional logic
R1. From ¢ and ¢ =  infer ¥ (modus ponens)
LE. From ¢ <  infer Kjp < K.

Proof See Exercise 9.6. 11

Thus, propositional reasoning and closure under logical equivalence completely
characterize knowledge in MS structures. This suggests that reasoning about knowl-
edge in Montague-Scott semantics may not be any harder than propositional reason-
ing. This indeed is the case, as the following result shows.

Theorem 9.2.3 The satisfiability problem with respect to MS structures is NP-
complete.

Proof The lower bound is immediate, since the satisfiability problem for proposi-
tional logic is already NP-hard. For the upper bound, we proceed along similar lines
to the proof of Proposition 3.6.2: we show that if a formula ¢ is satisfiable, then
it is satisfiable in an MS structure with at most |go|2 states. We leave details to the
reader (Exercise 9.7); however, the following example might provide some intuition.
Consider the formula ¢ = K;p1 A...AK;j@o A=K, Clearly, for ¢ to be satisfiable,
Y cannot be logically equivalent to any of the ¢;, for j =1, ..., r. In other words,
not knowing v has to be consistent with knowing ¢;, for j =1, ..., r. It turns out
that the consistency of not knowing v with knowing ¢;, for j = 1,...,r, is also
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a sufficient condition for the satisfiability of ¢. This means that we can test if ¢ is
satisfiable by testing if K;¢; A =K;y is satisfiable, for j = 1,...,r. Moreover,
it is easy to see that K;p; A —K; is satisfiable exactly if at least one of —¢@; A ¥
or ¢; A = is satisfiable. Thus, we can decompose the problem of testing if ¢ is
satisfiable into testing a number of smaller satisfiability problems. In fact, it can be
shown that there are only quadratically many such problems to test (at most two for
every pair of subformulas of ¢), so the problem is in NP. I

Do MS structures avoid logical omniscience? The answer is “almost.” As we
observed, all forms of logical omniscience fail except for closure under logical equiv-
alence. In other words, while agents need not know all logical consequences of their
knowledge, they are unable to distinguish between logically equivalent formulas.
This is as much as we can expect to accomplish in a purely semantic model, since
logically equivalent formulas are by definition semantically indistinguishable. Thus,
just as syntactic structures provide the most general model of knowledge, MS struc-
tures provide the most general semantic model of knowledge. (Of course, just as
in the case of syntactic structures, MS structures provide the most general semantic
model of knowledge only among models that are based on standard propositional
semantics, since Montague-Scott semantics is based on standard propositional se-
mantics.)

We saw in Chapter 3 how certain properties of knowledge in Kripke structures
correspond to certain conditions on the possibility relations ;. Similarly, certain
properties of knowledge in MS structures correspond to certain conditions on the C;’s.
Especially interesting are properties of knowledge that correspond to various forms
of logical omniscience. For example, knowledge of valid formulas corresponds to
the condition that S € C;(s), where S is the set of all states, since the intension of
true is the set S. For another example, consider closure under conjunction. This
property corresponds to C; (s) being closed under intersection; that is, if U and V
are in C;(s), then U N V is also in C;(s). The reason for this is that the intension
of ¢ A 1 is the intersection of the intensions of ¢ and 1. Exercise 9.8 provides a
precise statement of the equivalence between various properties of knowledge and
corresponding restrictions on the C;’s.

We already saw in Chapter 3 that imposing certain restrictions on Kripke struc-
tures, or, equivalently, assuming that knowledge satisfies some additional properties
may sometimes (but not always) have an effect on the computational complexityof
reasoning about knowledge. A similar phenomenon occurs in the context of MS
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structures. It turns out that we can capture several properties of knowledge without
increasing the complexity of reasoning beyond that of propositional reasoning (i.e.,
NP-complete). Once, however, we capture closure under conjunction by insisting
that each C; (s) be closed under intersection, then the complexity of the satisfiability
problem rises to PSPACE-complete. To understand the intuitive reason for this dif-
ference, consider again the formulap = K;p1 A.. . AK;jp, A—K; . As we observed
in the proof of Theorem 9.2.3, if we do not assume closure under conjunction, then a
necessary and sufficient condition for ¢ to be satisfiable is that ¢ cannot be logically
equivalent to any of the ¢;, for j =1, ..., r. The situation is quite different when we
do assume closure under conjunction. Now it is not sufficient that ¥ not be logically
equivalent to any of the ¢;’s; it also cannot be equivalent to any conjunction of ¢;’s.
In other words, in the presence of closure under conjunction we have to show that
not knowing v is simultaneously consistent with knowing any conjunction of ¢;’s.
Thus, to test whether ¢ is satisfiable, we have to consider sets of subformulas of ¢
rather than only pairs of subformulas of ¢. Since there are exponentially many such
sets, the problem is PSPACE-hard.

9.2.3 Discussion

The two approaches described in this section overcome the logical omniscience prob-
lem by explicitly modeling an agent’s knowledge, either as a set of formulas (the
formulas the agent knows) or as a set of sets of possible worlds (the intensions of
the formulas the agent knows). These approaches are very powerful. They solve the
logical-omniscience problem by giving us direct fine-grained control over an agent’s
knowledge. This power, however, comes at a price. One gains very little intuition
about knowledge from studying syntactic structures or MS structures; in these ap-
proaches knowledge is a primitive construct (much like the primitive propositions
in a Kripke structure). Arguably, these approaches give us ways of representing
knowledge rather than modeling knowledge. In contrast, the semantics given to
knowledge in Kripke structures explains knowledge as truth in all possible worlds.
Unfortunately, this “explanation” does not fit certain applications, because it forces
logical omniscience.

In the following sections, we try to steer a middle course, by keeping the flavor
of the possible-worlds approach, while trying to mitigate its side effects.
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9.3 Nonstandard Logic

If knowledge is truth in all possible worlds, then one way to deal with logical om-
niscience is to change the notion of truth. The underlying idea is to weaken the
“logical” aspect of the logical-omniscience problem, thus reducing the acuteness of
the problem. Indeed, as we saw in Section 9.1, certain forms of logical omniscience
follow from full logical omniscience only under standard propositional semantics.
The nonstandard semantics for knowledge we are about to describe is based on a
nonstandard propositional semantics. Knowledge is still defined to be truth in all
possible worlds, so we still have logical omniscience, but this time with respect to
the nonstandard logic. The hope is that the logical-omniscience problem can be
alleviated somewhat by appropriately choosing the nonstandard logic.

There are many ways in which one can define a nonstandard propositional se-
mantics. We describe here one approach that changes the treatment of negation. We
do not mean to argue that this is the “right” propositional semantics to deal with
knowledge, but rather we mean to demonstrate how knowledge can be modeled on
the basis of a nonstandard propositional semantics.

9.3.1 Nonstandard Structures

Standard propositional logic has several undesirable and counterintuitive properties.
Often people first introduced to propositional logic are somewhat uncomfortable
when they learn that “p = " is taken to be simply an abbreviation for —¢ V .
Why should the fact that either —¢ is true or v is true correspond to “if ¢ is true,
then y is true”?

Another problem with standard propositional logic is that it is fragile: a false
statement implies everything. In particular, the formula (p A —p) = ¢ is valid, even
when p and g are unrelated primitive propositions; for example, p could say that
Alice graduated from college in 1987 and ¢ could say that Bob’s salary is $500,000.
This could be a serious problem if we have a large database of formulas, obtained
from multiple sources. Such a database will often contain an inconsistency; for
example, someone may have input the datum that Alice graduated in 1987, and
someone else may have input the datum that Alice graduated in 1986. If the database
contains a constraint that each person’s graduation year is unique, then, using standard
propositional reasoning, any arbitrary fact about Bob’s salary can be derived from
the database. Many alternatives to the standard semantics have been proposed over
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the years, designed to deal with various aspects of these problems. We focus on one
particular alternative here, and consider its consequences.

The idea is to allow formulas ¢ and —¢ to have “independent” truth values. Thus,
rather than requiring that —¢ be true if and only if ¢ is false, we wish instead to allow
the possibility that —¢ can be either true or false, regardless of whether ¢ is true or
false. Intuitively, the truth of formulas can be thought of as being determined by
some database of formulas. We can think of ¢ being true as meaning that the fact ¢
is in a database of true formulas, and we can think of —¢ being true as meaning that
the fact ¢ is in a database of false formulas. Since it is possible for ¢ to be in both
databases, it is possible for both ¢ and —¢ to be true. Similarly, if ¢ is in neither
database, then neither ¢ nor —¢ would be true.

There are several ways to capture this intuition formally. We now discuss one
approach; some closely related approaches are discussed in Exercises 9.9 and 9.10.
For each state s, there is an adjunct state s*, which is used for giving semantics to
negated formulas. Rather than defining —¢ to hold at s iff ¢ does not hold at s, we
instead define —¢ to hold at s iff ¢ does not hold at s*. Note that if s = s*, then
this gives our usual notion of negation. Very roughly, we can think of a state s as
consisting of a pair (B, Br) of databases; Bt is the database of true facts, while Br
is the database of false facts. The state s* should be thought of as the adjunct pair
(BF, Br) (where, if X is a set of formulas, then X is the set consisting of all formulas
not in X). Continuing this intuition, to see if ¢ holds at s, we check if ¢ € Br; to see
if —¢ holds at s, we check if ¢ € Br. Notice that ¢ € Br iff ¢ ¢ Bpr. Since Bpr is
the database of true facts at s*, we have an alternative way of checking if —¢ holds
at s: we can check if ¢ does not hold at s*. Note that if B = Br, then s = s* and
we get the standard semantics of negation.

Under this interpretation, not only is s* the adjunct state of s, but s is the adjunct
state of s*; that is, s*™* = s (where s** = (s*)*). To support this intuitive view of s
as a pair of databases and s* as its adjunct, we make s** = s a general requirement
in our framework.

A nonstandard (Kripke) structure M is a tuple (S, 7, K1, ..., Kn,™), where the
tuple (S, 7, K1, ..., Ky) is a Kripke structure, and * is a unary function from the
set S of worlds to itself (where we write s* for the result of applying the function * to
the state s) such that s** = s for each s € S. We call these structures nonstandard,
since we think of a world where ¢ and —¢ are both true or both false as nonstandard.
We denote the class of nonstandard structures for n agents over ® by N’ M, (®) (or
by N M,, when ® is clear from the context).
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The definition of = is the same as for standard Kripke structures, except for the
clause for negation. In this case, we have

(M, s) =~ iff (M, s™) = ¢.

Note that it is possible for neither ¢ nor —¢ to be true at state s (if (M, s) ~= ¢
and (M, s*) & @) and for both ¢ and —¢ to be true at state s (if (M, s) & ¢ and
(M, s*) = ¢). We call a state s where neither ¢ nor —¢ is true incomplete (with
respect to ¢); otherwise, we call s complete (with respect to ¢). The intuition behind
an incomplete state is that there is not enough information to determine whether ¢ is
true or whether —¢ is true. We call a state s where both ¢ and —¢ are true incoherent
(with respect to ¢); otherwise, s is coherent (with respect to ¢). The intuition behind
an incoherent state is that it is overdetermined; it might correspond to a situation
where several people have provided mutually inconsistent information.

A state s is standard if s = s*. Note that for a standard state, the semantics of
negation is equivalent to the standard semantics. In particular, a standard state s is
both complete and coherent with respect to all formulas: for each formula ¢ exactly
one of ¢ or —g is true at s. (See also Exercise 9.11.)

In standard propositional logic, disjunction (V) and material implication (=) can
be defined in terms of conjunction and negation, that is, ¢; V ¢; can be defined as
—(—@p1 A—¢2), and ¢1 = ¢> can be defined as —¢1 V ¢;. We retain these definitions
in the nonstandard framework. Since, however, the semantics of negation is now
nonstandard, it is not a priori clear how the propositional connectives behave in
our nonstandard semantics. For example, while p A g holds by definition precisely
when p and ¢ both hold, it is not clear that p Vv g holds precisely when at least
one of p or g holds. It is even less clear how negation interacts with conjunction
and disjunction in our nonstandard semantics. The next proposition shows that even
though we have decoupled the semantics for ¢ and —¢, the propositional connectives
—, A, and V still behave in a fairly standard way.

Proposition 9.3.1 Let M be a nonstandard structure. Then
(a) (M,s) = ——¢iff (M,s) = ¢.
(b) (M,s) =@V yiff(M,s)l=qgor(M,s) =1y
(c) (M,s) = —(eAY)iff (M,s) E—pV .
(d) (M,s) =—(oV ) iff (M,s) == A=y,
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(e) (M,s) =@ A V) iff (M,s) = (@AY V(eA).
(f) M,s) =@V @A) iff (M,s) = (o V) AV ).
Proof See Exercise 9.12. 11

In contrast to A and V, the connective = behaves in a nonstandard fashion. In
particular, both p and p = ¢ can be true at a state without g being true, so = does
not capture our usual notion of logical implication (see Exercise 9.14).

What are the properties of knowledge in nonstandard structures? So far, our
approach to understanding the properties of knowledge in some semantic model
has been to consider all the valid formulas under that semantics. What are the valid
formulas with respect to A/ M,,? Itis easy to verify that certain tautologies of standard
propositional logic are not valid. For example, the formula (p A —=p) = ¢, which
wreaked havoc in deriving consequences from a database, is not valid. How about
even simpler tautologies of standard propositional logic, such as p = p? This
formula, too, is not valid. One might think that these formulas are not valid because
of the nonstandard behavior of =, but observe that p = p is just an abbreviation
for —=p Vv p (which is not valid). In fact, no formula is valid with respect to N'M,,!
Furthermore, there is a single structure that simultaneously shows that no formula is
valid!

Theorem 9.3.2 No formula of L, is valid with respect to NM,,. In fact, there is a
nonstandard structure M and a state s of M such that every formula of L, is false
at s, and a state t of M such that every formula of L, is true at t.

Proof LetM = (S, 7, Ky, ..., Ky,™)beaspecial nonstandard structure, defined as
follows. Let S contain only two states s and 7, where t = s* (and sos = ¢*). Define 7
by taking 7 (s) be the truth assignment where 7 (s)(p) = false for every primitive
proposition p, and taking 7 (¢) be the truth assignment where 7 (¢)(p) = true for
every primitive proposition p. Define K; to be {(s, s), (¢, 1)}, fori = 1,...,n. By
a straightforward induction on the structure of formulas (Exercise 9.13), it follows
that for every formula ¢ of £,, we have (M, s) = ¢ and (M, t) |= ¢. In particular,
every formula of £, is false at s and every formula of £, is true at . Since every
formula of £, is false at s, no formula of £, is valid with respect to N'M,,. 1

It follows from Theorem 9.3.2 that the validity problem with respect to A’ M,,
is very easy: the answer is always, “No, the formula is not valid!” Thus, the notion
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of validity is trivially uninteresting in our logic. In particular, we cannot use valid
formulas to characterize the properties of knowledge in nonstandard structures, since
there are no valid formulas.

In contrast to validity, there are many nontrivial logical implications with respect
to N'M,,. For example, as we see from Proposition 9.3.1, =—¢ logically implies ¢
and — (@1 A @) logically implies —¢; vV —¢,. The reader may be puzzled why
Proposition 9.3.1 does not provide us with some tautologies. For example, Proposi-
tion 9.3.1 tells us that ——¢ logically implies ¢. Doesn’t this mean that =—¢ = ¢
is a tautology? This does not follow. With standard Kripke structures, ¢ logically
implies v iff the formula ¢ =  is valid. This is not the case for nonstandard
structures; here, logical and material implication do not coincide. For example, ¢
logically implies ¢, yet we have already observed that ¢ = ¢ (i.e., —¢ V @) is not
valid with respect to N’ M,,. In Section 9.3.2, we define a new connective that allows
us to express logical implication in the language, just as = does for standard Kripke
structures.

What about logical omniscience? Full logical omniscience holds, just as with
ordinary Kripke structures. For example, it follows from Proposition 9.3.1(b) that ¢
logically implies ¢ Vv ¥; hence, by full logical omniscience, K;¢ logically implies
K (¢ V). Moreover, closure under conjunction holds, since {¢, v} logically implies
@ A . Nevertheless, since it is not the case here that {¢, ¢ = 1} logically implies
(Exercise 9.14), we might expect that closure under material implication would fail.
Closure under material implication does in fact fail: it is possible for K;¢ and
K;(¢ = ) tohold, without K; 1 holding (Exercise 9.16). Finally, note that although
knowledge of valid formulas holds, it is completely innocuous here; there are no valid
formulas!

9.3.2 Strong Implication

In the previous subsection we introduced nonstandard semantics, motivated by our
discomfort with the tautology (p A =p) = ¢, and, indeed, under this semantics
(p A—p) = q isno longer valid. Unfortunately, the bad news is that other formulas,
such as ¢ = ¢, that seem as if they should be valid, are not valid either. In fact,
as we saw, no formula is valid in the nonstandard approach. It seems that we have
thrown out the baby with the bath water.

To get better insight into this problem, let us look more closely at why the formula
¢ = @ is not valid. Our intuition about implication tells us that ¢; = ¢- should say
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“if @1 is true, then @, is true,” but ¢ = ¢; is defined to be —¢; V ¢z, which says
“either —¢ is true or ¢; is true.” In standard propositional logic, this is the same as
“if ¢ is true, then ¢y is true,” since —¢; is false in standard logic iff ¢y is true. In
nonstandard structures, however, these are not equivalent. In particular, ¢ = ¢ is
simply an abbreviation for —¢ V ¢. Since our semantics decouples the meaning of ¢
and —g, the formula —¢ V ¢ should not be valid.

While the above explains why —¢ V ¢ is not valid, it still seems that the statement
“if ¢ is true then g is true” ought to be valid. Unfortunately, our definition of = does
not capture the intuition of “if ... then ....” This motivates the definition of a new
propositional connective <, which we call strong implication, where ¢; — ¢, is
defined to be true if whenever ¢ is true, then ¢, is true. Formally,

(M, s) = @1 — @ iff (M, s) = @2 holds whenever (M, s) = ¢ does.

That is, (M, s) = @1 <= ¢ iff either (M, s) & @1 or (M, s) = ¢».

We denote by £, (P), or £, when & is obvious from the context, the set of
formulas obtained by closing off £, (®) under the connective — (i.e., if ¢ and ¥ are
formulas of £, (®), then so is ¢ — ). We call the formulas of £, nonstandard
Sformulas, to distinguish them from the standard formulas of £,. We call the proposi-
tional fragment of £, and its interpretation by nonstandard structures nonstandard
propositional logic, to distinguish it from standard propositional logic. We redefine
true to be an abbreviation for some fixed nonstandard tautology such as p < p;
again, we abbreviate —true by false.

Strong implication is indeed a new connective, that is, it cannot be defined using
(nonstandard) — and A. For example, there are no valid formulas using only —
and A, whereas by using <, there are valid formulas: ¢ < ¢ is valid, as is
@1 <> (91 V @2). Strong implication is indeed stronger than implication, in the
sense that if ¢; and ¢; are standard formulas (formulas of £,), and if ¢; — ¢,
is valid with respect to nonstandard Kripke structures, then ¢; = ¢, is valid with
respect to standard Kripke structures (Exercise 9.17). The converse, however, is
false. For example, the formula (p A —=p) = ¢ is valid with respect to standard
propositional logic, whereas the formula (p A —p) < ¢ is not valid with respect to
nonstandard propositional logic (Exercise 9.17).

As we promised in the previous section, we can now express nonstandard logical
implication using <, just as we can express standard logical implication using =.

Proposition 9.3.3 Let ¢ and @2 be formulas in L, . Then ¢y logically implies ¢
with respect to NM,, iff o1 < @y is valid with respect to N'M,,.
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Proof See Exercise 9.18. 11

It turns out that it was the lack of ability to express logical implication within the
language that prevented us from getting interesting formulas valid in A’M,,. Now
that we have introduced <, there are many valid formulas. Thus, we can try again
to characterize the properties of knowledge by getting a sound and complete axiom-
atization for £,”. Such an axiomatization can be obtained by modifying the axiom
system K, by (a) replacing propositional reasoning by nonstandard propositional
reasoning, and (b) replacing standard implication (=) in the other axioms and rules
by strong implication (< ). Thus, we obtain the axiom system K, which consists
of all instances (for the language £, of the following axiom scheme and inference
rules:

A27. (Kip A Ki(p <= ) — K;y (Distribution Axiom)
NPR. All sound inference rules of nonstandard propositional logic.

R2.  From ¢ infer K;¢ (Knowledge Generalization)

Note that the way we include nonstandard propositional reasoning in our axioma-
tization is quite different from the way we include standard propositional reasoning in
the axiomatizations of Chapter 3. In the axiomatizations of Chapter 3, we took from
the underlying propositional logic only the tautologies and modus ponens, while here
we include all sound inference rules of nonstandard propositional logic. An example
of a sound inference rule of nonstandard propositional logic is (nonstandard) modus
ponens: From ¢ and ¢ < i infer ¥ (this is a “nonstandard” rule, since it uses <
instead of =). Other examples of sound inference rules of nonstandard propositional
logic are given in Exercise 9.20. It can be shown that the axiomatization would not
be complete had we included only the valid formulas of our nonstandard proposi-
tional logic as axioms, along with nonstandard modus ponens as the sole nonstandard
propositional inference rule, rather than including all the sound inference rules of
nonstandard propositional logic.

Theorem 9.3.4 K~ is a sound and complete axiomatization with respect to N M,
for formulas in the language L, .

Proof See Exercise 9.19. 11

Theorem 9.3.4 shows that we can in some sense separate the properties of knowl-
edge from the properties of the underlying propositional semantics. Even though
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logical omniscience is an essential feature of the possible-worlds approach (it is easy
to see that in our enlarged language £, all of our types of logical omniscience hold,
where we use < instead of =; see Exercise 9.21), it can be controlled to a certain
degree by varying the propositional component of the semantics. Thus, one can say
that in the nonstandard approach agents are “nonstandardly” logically omniscient.

In Chapter 3, we saw that under the standard semantics we can capture addi-
tional properties of knowledge by imposing suitable restrictions on the possibility
relations ;. For example, restricting /C; to be reflexive captures the property that
agents know only true facts (K;¢ = ¢), and restricting K; to be transitive captures
the property of positive introspection (K;¢ = K;K;¢). The same phenomenon
occurs under the nonstandard semantics. For example, restricting XC; to be reflexive
captures the property that agents know only true facts, and analogously for positive
introspection. Note, however, that to express these properties by valid formulas in
the nonstandard approach, we need to use strong implication instead of standard
implication. That is, the property that agents know only true facts is expressed by
the axiom K;p <> ¢, and the property of positive introspection is expressed by the
axiom K;¢ — K;K;p. In the standard approach we captured negative introspec-
tion (—K;¢ = K;—K;p) by requiring K; to be Euclidean. It turns out that this
is not sufficient to capture negative introspection in the nonstandard approach (as
expressed by the axiom —K;¢ — K;—K;p), because of the nonstandard behavior
of negation. To capture negative introspection we have to impose further restrictions
on K;. For example, a sufficient additional restriction is that (s, ) € K; implies that
(s*, t*) € K; (see Exercise 9.22).

Now that we have characterized the properties of knowledge in the nonstan-
dard approach (in Theorem 9.3.4), we can consider the computational complexity
of reasoning about knowledge, that is, the complexity of determining validity in the
nonstandard approach. Clearly, without <, determining validity is very easy, since
no formula is valid. As we saw in Proposition 9.3.3, however, < enables us to
express logical implication. It turns out that once we introduce <, reasoning about
knowledge in the nonstandard approach is just as hard as reasoning about knowl-
edge in the standard approach. The reason for this is the ability to “emulate” the
standard semantics within the nonstandard semantics. Let ¢ be a formula of £,
Then (M, s) = ¢ <> false iff (M, s) [~ ¢ for all nonstandard structures M and
states s (see Exercise 9.23). Thus, standard negation can be expressed using strong
implication.



354 Chapter 9 Logical Omniscience

Theorem 9.3.5 The validity problem for L, -formulas with respect to N M, is
PSPACE-complete.

Proof The polynomial-space upper bound holds for much the same reasons that it
does in the case of the logic K;, (see Section 3.5); a proof is beyond the scope of this
book. For the lower bound, see Exercise 9.24. I

As we observed, logical omniscience still holds in the nonstandard approach. We
also observed that the computational complexity of reasoning about knowledge does
not improve. Nevertheless, our goal, which was to weaken the “logical” aspect in the
logical-omniscience problem, is accomplished. For example, under the nonstandard
semantics, agents do not know all standard tautologies. In the next section we provide
an additional payoff of this approach: we show that in a certain important application
we can obtain polynomial-time algorithms for reasoning about knowledge.

9.3.3 A Payoff: Querying Knowledge Bases

In Section 4.4.1, we introduced and discussed knowledge bases. An interesting
application of our approach here concerns query evaluation in knowledge bases.
Recall that the knowledge base (KB for short) is told facts about an external world,
and is asked queries about the world. As we saw in Section 4.4.1, after the KB is told
a sequence of standard propositional facts whose conjunction is «, it then answers
the propositional query i positively precisely when k = v is valid with respect to
standard propositional logic, which is precisely when Kgpx = Kgp is valid with
respect to M*'. Thus, the formula k completely characterizes the KB’s knowledge
in this case.

Our focus in this section is on the computational complexity of query evaluation in
knowledge bases. We know that in the standard propositional approach, determining
whether « logically implies ¥ or, equivalently, whether K;« logically implies K; v,
is co-NP-complete. We show now that the nonstandard approach can yield a more
efficient algorithm.

Consider the query-evaluation problem from the nonstandard perspective. Is the
problem of determining the consequences of a knowledge base in the nonstandard
approach any easier than in the standard approach? It turns out that, just as in
the standard case, in the nonstandard approach, determining whether « logically
implies ¥ is equivalent to determining whether Kk logically implies K;y and both
problems are still co-NP-complete (see Exercises 9.25 and 9.26). There is, however,
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an important special case where using the nonstandard semantics does make the
problem easier.

Define a literal to be a primitive proposition p or its negation —p, and a clause
to be a disjunction of literals. For example, a typical clause is p V =g V r. A
formula that is a conjunction of clauses is said to be in conjunctive normal form
(CNF). We assume here that « (the formula that characterizes the KB’s knowledge)
is in CNF. This is not so unreasonable in practice, since once we have a knowledge
base in CNF, it is easy to maintain it in CNF; before telling a new fact to the KB,
we simply convert it to CNFE. If 9N is the result of converting ¢ to CNF, then the
result of adding ¢ to « is k A ¢V Note that k A 9N is in CNF if « is. Every
standard propositional formula is equivalent to a formula in CNF (this is true even
in our nonstandard semantics; see Exercise 9.27), so the transformation from ¢ to
@SN can always be carried out. Now, in general, this transformation can result in
an exponential blowup; that is, the length of V¥ can be exponential in the length
of ¢. We typically expect each fact ¢ that the KB is told to be small relative to the
size of the KB, so even this exponential blowup is not unreasonable in practice. (On
the other hand, it would not be reasonable to convert to CNF a whole knowledge base
that had not been maintained in CNF.) For similar reasons, we can safely assume that
the query v has been transformed to CNF.

Let us now reconsider the query evaluation problem, where both the KB and
the query are in CNF. Under the standard semantics, the problem is no easier than
the general problem of logical implication in propositional logic, that is, co-NP-
complete (Exercise 9.28). By contrast, the problem is feasible under the nonstandard
semantics.

Theorem 9.3.6 There is a polynomial-time algorithm for deciding whether k logi-
cally implies v with respect to N M,, for CNF formulas k and .

Proof We say that clause « includes clause ay if every literal that is a disjunct
of «y is also a disjunct of «;. For example, the clause p vV —¢ Vv —r includes the
clause p v —g. We can now characterize when « logically implies i with respect to
nonstandard propositional logic, for CNF formulas « and .

Let x and ¥ be propositional formulas in CNF. We claim that « logically implies v
with respect to nonstandard propositional logic iff every clause of ¥ includes a clause
of k. (This claim s false in standard propositional logic. For example, letx be gV —gq,
and let ¢ be p v —p. Then « = 1 is valid, but the single clause p vV —p of ¢ does
not include the single clause of «.)
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The “if” direction, which is fairly straightforward, is left to the reader (Exer-
cise 9.29). We now prove the other direction. Assume that some clause o of
includes no clause of k. We need only show that there is a nonstandard structure
M= (S,n,Ki,...,K;,*) and state s € S such that (M, s) = « but (M, s) £ .
Let S contain precisely two states s and ¢, and let s* = 7. Define 7 (s)(p) = false
iff p is a disjunct of «, and 7w (¢)(p) = true iff —p is a disjunct of ¢, for each primi-
tive proposition p. The K;’s are arbitrary. We now show that (M, s) & ', for each
disjunct o’ of «. Notice that «’ is a literal. If &’ is a primitive proposition p, then
(s)(p) = false, so (M, s) W~ o'; if o’ is =p, where p is a primitive proposition,
then 7 (¢)(p) = true, so (M, t) &= p, so again (M, s) [~ o’. Hence, (M, s) I~ .
Since « is one of the conjuncts of i, it follows that (M, s) [~ . We next show that
(M, s) = B if o does not include 8. For if o does not include 8, then there is some
literal B’ that is a disjunct of B but not of «. It is easy to see that (M, s) = B, and
hence that (M, s) = B. It follows that (M, s) = «, since by assumption, « does not
include any of the conjuncts of «.

It is clear that this characterization of nonstandard implication gives us a
polynomial-time decision procedure for deciding whether one CNF formula implies
another in the nonstandard approach. 1

Theorem 9.3.6 gives us a real payoff of the nonstandard approach. It shows that
even though the nonstandard approach does not improve the complexity of reasoning
about knowledge in general, there are practical applications for which reasoning
about knowledge can be feasible. As the following proposition shows, this also has
implications for reasoning in standard logic.

Proposition 9.3.7 Let k and  be propositional formulas in CNF. If k logically
implies r with respect to N'M,, then k logically implies \ with respect to standard
propositional logic.

Proof See Exercise 9.30. 11

Theorem 9.3.6 and Proposition 9.3.7 yield an efficient algorithm for the evalua-
tion of a CNF query i with respect to a CNF knowledge base «: answer “Yes” if «
logically implies v with respect to N'M,,. By Theorem 9.3.6, logical implication of
CNF formulas with respect to A’ M,, can be checked in polynomial time. Proposi-
tion 9.3.7 implies that any positive answer we obtain from testing logical implication
between CNF formulas in nonstandard semantics will provide us with a correct posi-
tive answer for standard semantics as well. This means that even if we are ultimately
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interested only in conclusions that are derivable from standard reasoning, we can
safely use the positive conclusions we obtain using nonstandard reasoning. Thus,
the nonstandard approach yields a feasible query-answering algorithm for knowledge
bases. Notice that the algorithm need not be correct with respect to negative answers.
It is possible that ¥ does not logically imply ¥ with respect to A" M,,, even though «
logically implies ¥ with respect to standard propositional logic (see Exercise 9.30).

9.3.4 Discussion

The goal of our approach in this section was to gain some control over logical omni-
science rather than to eliminate it. To this end, we tried to decouple the knowledge
part of the semantics from its propositional part by keeping the definition of knowl-
edge as truth in all possible worlds but changing the underlying notion of truth (the
propositional semantics). With this approach, we still have closure under logical
implication. Since knowledge is still defined as truth in all possible worlds, it is still
the case that if ¢ logically implies v, then an agent that knows ¢ will also know .
Nevertheless, as a result of the change in the definition of truth, the notion of logical
implication has changed. It may not be so unreasonable for an agent’s knowledge
to be closed under logical implication if we have a weaker notion of logical impli-
cation. As a particular example of this approach, we considered a nonstandard logic
in which the truth values of ¢ and —¢ are independent, and logical implication is
captured using < rather than =. While this particular nonstandard approach does
not improve the complexity of reasoning about knowledge in general, we gave one
application where it does yield a significant improvement.

We should stress that we considered only one particular nonstandard logic in this
section. Many nonstandard propositional logics have been studied. (See the notes at
the end of the chapter for references.) It would be interesting to explore how these
other nonstandard propositional logics could be combined with epistemic operators,
and what the consequences of doing so would be.

9.4 Impossible Worlds

Logical omniscience arises from considering knowledge as truth in all possible
worlds. In the previous section, we modified logical omniscience by changing the
notion of truth. In this section, we modify logical omniscience by changing the
notion of possible world. The idea is to augment the possible worlds by impossible
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worlds, where the customary rules of logic do not hold. For example, we may have
both ¢ and v holding in an impossible world without having ¢ A ¥ hold in that world.
Even though these worlds are logically impossible, the agents nevertheless may con-
sider them possible. Unlike our approach in the previous section, where nonstandard
worlds had the same status as standard worlds, under the current approach the im-
possible worlds are only a figment of the agents’ imagination; they serve only as
epistemic alternatives. Thus, logical implication and validity are determined solely
with respect to the standard worlds.

Formally, an impossible-worlds structure M 1is a tuple (S, W, o, K1, ..., Ky),
where (S, Ky, ..., Ky,) is a Kripke frame, W C § is the set of possible states or
worlds, and o is a syntactic assignment (recall that syntactic assignments assign
truth values to all formulas in all states). We require that o behaves standardly on
possible states, that is, if s € W, then

o (s)(@ A Y) = true iff o (s)(¢) = true and o (s) () = true,
o (s)(—p) = true iff o (s)(p) = false, and
o (s)(K;@) = true iff o (t)(¢) = true for all # such that (s, ¢) € K;.

Note that o can behave in an arbitrary way on the impossible states, i.e, the states in
S — W. We use o to define satisfaction in the obvious way: (M, s) = ¢ precisely
when o (s)(¢) = true.

As mentioned earlier, logical implication and validity are determined only with
respect to possible states, that is, the states in W. Formally, a set W of formulas log-
ically implies the formula ¢ with respect to impossible-worlds structures if for each
impossible-worlds structure M = (S, W, 0, K1, ..., K,) and possible state s € W
we have that whenever (M, s) = ¢ for all ¥ € W, then (M, s) = ¢. Similarly, ¢ is
valid with respect to impossible-worlds structures if for each impossible-worlds struc-
ture M = (S, W, 0, Kq, ..., K,) and possible state s € W we have that (M, s) = ¢.

Since agents consider the impossible states when determining their knowledge,
but impossible states are not considered when determining logical implication, log-
ical omniscience need not hold. Consider, for example, full logical omniscience.
Suppose that an agent knows all formulas in W, and W logically implies ¢. Since
the agent knows all formulas in W, all formulas in ¥ must hold in all the states that
the agent considers epistemically possible. But in an impossible state, ¢ may fail
even though W holds. The reason for this is that logical implication is determined
by us, rational logicians, for whom impossible states are simply impossible and are
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therefore not taken into account. Thus, the agent need not know ¢, since ¢ may fail
to hold in some impossible state that the agent considers possible.

The impossible-worlds approach is very general; it can capture different prop-
erties of knowledge by imposing certain conditions on the behavior of syntactic
assignment o in the impossible states. For example, to capture closure under con-
junction we have to demand that in an impossible state if both ¢ and 1 are true, then
@ A Y is also true. (See also Exercise 9.31.)

We now consider one instance of the impossible-worlds approach, which will
enable us to contrast the impossible-worlds approach with the nonstandard-logic
approach of Section 9.3. Essentially, the idea is to view nonstandard structures as
impossible-worlds structures, where the nonstandard states are the impossible worlds.
Recall that nonstandard structures are Kripke structures with a * function. This func-
tion associates with a state s an adjunct state s*. If s = s*, then s is a standard state
and therefore a possible world. If s # s*, then s and s* are nonstandard states and
therefore considered to be impossible worlds. More formally, given a nonstandard
structure M = (S, w, Ky, ..., Ky,™), we can identify it with the impossible-worlds
structure M’ = (S, W, 0, K1, ..., K,), where W is the set of standard states, that is,
the states s such that s* = s, and, for all states s € S, we have that o (s)(¢) = true
iff (M, s) = ¢. We can therefore view a nonstandard structure M as implicitly
defining the impossible-worlds structure M’ obtained by this translation. We shall
abuse language slightly and say that we view M as an impossible-worlds structure.
When M is viewed as a nonstandard structure, the distinction between standard and
nonstandard states does not play any role. In contrast, when M is viewed as an
impossible-worlds structure, the standard states have a special status. Intuitively,
although an agent (who is not a perfect reasoner) might consider nonstandard states
possible (where, for example, p A —p or K; p A =K; p holds), we do not consider
such states possible; surely in the real world a formula is either true or false, but not
both.

Nonstandard structures can be viewed both from the perspective of the nonstan-
dard-logic approach and from the perspective of the impossible-worlds approach.
When we view a nonstandard structure as an impossible-worlds structure, we consider
nonstandard states to be impossible states, and thus consider a formula ¢ to be valid
if it is true in all of the possible states, that is, in all of the standard states. Formally,
define a formula of £, to be standard-state valid if it is true at every standard state
of every nonstandard structure. The definition for standard-state logical implication
is analogous.
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We demonstrate the difference between logical implication and standard-state
logical implication by reconsidering the knowledge base example discussed in Sec-
tion 9.3.3, where the knowledge base is characterized by the formula « and the query
is the formula ¢. We saw in Section 9.3.3 that in the nonstandard approach, ¢ is a
consequence of x precisely when knowledge of ¢ is a consequence of knowledge
of k. This is not the case in the impossible-worlds approach; it is possible to find
@1 and @7 in £, such that ¢ standard-state logically implies g7, but K;¢; does not
standard-state logically imply K; ¢ (Exercise 9.32). The reason for this difference is
that ¢1’s standard-state logically implying ¢, deals with logical implication in stan-
dard states, whereas K;¢1’s standard-state logically implying K; ¢, deals with logical
implication in states agents consider possible, which can include nonstandard states.
Interestingly, logical implication of knowledge formulas coincides in the nonstandard
approach and the impossible-worlds approach; that is, K;¢; standard-state logically
implies K; @ iff K; @1 logically implies K; @, with respect to N'M,, (Exercise 9.33).

The reader may recall that under the nonstandard semantics, = behaves in a
nonstandard way. In particular, = does not capture the notion of logical implication.
In fact, that was part of the motivation for the introduction of strong implication. In
standard states, however, = and < coincide; that is, ¢; = ¢; holds at a standard
state precisely if ¢; < ¢ holds. It follows that even though = does not capture
logical implication, it does capture standard-state logical implication. The following
analogue to Proposition 9.3.3 is immediate.

Proposition 9.4.1 Let ¢ and ¢, be formulasin L,,. Then ¢ standard-state logically
implies @o iff o1 = @2 is standard-state valid.

The main feature of the impossible-worlds approach is the fact that knowledge is
evaluated with respect to all states, while logical implication is evaluated only with
respect to standard states. As a result, we avoid logical omniscience. For example,
an agent does not necessarily know valid formulas of standard propositional logic.
Although the classical tautology ¢ Vv —¢ is standard-state valid, K; (¢ vV —¢) may not
hold at a standard state s, since agent i might consider an incomplete state possible.
(Recall that in an incomplete state of a nonstandard structure both ¢ and —¢ may fail
to hold.) On the other hand, as we now show, incompleteness is all that prevents an
agent from knowing valid formulas. In particular, we show that if an agent knows
that the state is complete, then he does know all tautologies.

What does it mean for an agent to know that a state is complete? Let ¢ be a
propositional formula that contains precisely the primitive propositions pq, ..., pk.
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Define complete(g) to be the formula

(p1V=p)A...ANPLY —Pr).

Thus, complete(yp) is true at a state s precisely if s is complete as far as all the
primitive propositions in ¢ are concerned. In particular, if complete(p) is true at s,
then s is complete with respect to ¢ (see Exercise 9.34). Thus, if an agent knows
complete(yp), then he knows that he is in a state that is complete with respect to ¢.

The following result makes precise our earlier claim that incompleteness is all
that prevents an agent from knowing tautologies.

Theorem 9.4.2 Let ¢ be a tautology of standard propositional logic. Then
Ki(complete(¢p)) = K;@ is standard-state valid.

Proof By Exercise 9.35 (see also Exercise 9.36), complete(p) logically implies ¢
with respect to N'M,,. From Exercise 9.25 it follows that K; (complete(p)) logically
implies K;¢ with respect to A’M,,. In particular, K;(complete(¢)) standard-state
logically implies K;¢. It follows by Proposition 9.4.1 that K; (complete(¢)) = K¢
is standard-state valid. Il

In addition to the failure of knowledge of valid formulas, another form of logical
omniscience that fails under the impossible-worlds approach is closure under logical
implication: the formula K;¢p A K;j(¢ = ) = K;V¥ is not standard-state valid
(Exercise 9.37). This lack of closure results from considering incoherent states
possible: indeed, K;¢p A K; (¢ = V) = K; (¥ V (¢ A —¢)) is standard-state valid
(Exercise 9.37). That is, if an agent knows that ¢ holds and also knows that ¢ =
holds, then she knows that either ¢ holds or the state is incoherent. This observation
generalizes. As we now show, as long as the agent knows that the state is coherent,
then her knowledge is closed under logical implication.

Recall that true is an abbreviation for some fixed nonstandard tautology such as
p < p, and false is an abbreviation for —true. We use the fact that the formula
¢ — false asserts the falsehood of ¢ (see Exercise 9.23). Let ¢ be a formula that
contains precisely the primitive propositions pyq, ..., px. Define coherent(¢) to be
the formula

((p1 A=p1) = false) A ... A ((pr A —pi) < false).

Thus, coherent(¢) is true at a state s precisely if s is coherent as far as the primitive
propositions in ¢ are concerned. In particular, if coherent(¢) holds at s, then s is
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coherent with respect to ¢. (Note that coherent(¢) is not definable in £, but only in
L, ; see Exercise 9.38.) Knowledge of coherence implies that knowledge is closed
under material implication.

Theorem 9.4.3 Let ¢ and v be standard propositional formulas. Then
(K;i(coherent(p)) N Kip A Ki(p = ) = K;V is standard-state valid.

Proof Denote K;(coherent(p)) A Kip A Ki(¢ = ) by 7. By Proposition 9.4.1,
it is sufficient to show that 7 standard-state logically implies K;y. We shall show
the stronger fact that t logically implies K;¢. Let M = (S, 7, Ky, ..., Ky,™) be
a nonstandard structure, and s a state of M. Assume that 7 is true at s, and that
(s,t) € K;. So coherent(p) is true at t. By a straightforward induction on the
structure of formulas, we can show that for every propositional formula y all of
whose primitive propositions are contained in g, it is not the case that both y and —y
are true at 1. Now ¢ and ¢ = 1 are both true at ¢, since K;¢ and K;(¢ = ) are
true at s. Since ¢ is true at ¢, it follows from what we just showed that —¢ is not
true at z. Since ¢ = ¥ is an abbreviation for —¢ V ¥, it follows that i is true at ¢.
Hence, K; is true at s. i

Theorems 9.4.2 and 9.4.3 explain why agents are not logically omniscient:
when we view nonstandard structures as impossible-worlds structures, “logically”
is defined with respect to standard states, but the agents may consider nonstandard
states possible. If an agent considers only standard states possible, so that both
Ki(complete(¢)) and K;(coherent(¢)) hold, then by Theorems 9.4.2 and 9.4.3, this
agent is logically omniscient (more accurately, he knows every tautology of standard
propositional logic and his knowledge is closed under material implication).

9.5 Awareness

In Section 9.2, we described syntactic and semantic approaches to dealing with
omniscience. In Section 9.4, we described what can be viewed as a mixed approach,
that is, an approach that has both semantic and syntactic components: in impossible-
worlds structures, truth is defined semantically in the possible states and syntactically
in the impossible states. We now describe another approach that has both semantic
and syntactic components.

The underlying idea is that it is necessary to be aware of a concept before one can
have beliefs about it. One cannot know something of which one is unaware. Indeed,
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how can someone say that he knows or doesn’t know about p if p is a concept of
which he is completely unaware? One can imagine the puzzled response of someone
not up on the latest computer jargon when asked if he knows that the price of SIMMs
is going down! (For the benefit of the reader who is not fluent in the computer-speak
of the early 1990’s, a SIMM is a Single In-line Memory Module, a basic component
in current-day computer memories.) In fact, even a sentence such as “He doesn’t
even know that he doesn’t know p!” is often best understood as saying “He’s not
even aware that he doesn’t know p.”

In this section we augment the possible-worlds approach with a syntactic notion
of awareness. This will be reflected in the language by a new modal operator A; for
each agent i. The intended interpretation of A; @ is “i is aware of ¢.” We do not wish
to attach any fixed cognitive meaning to the notion of awareness; A; @ may mean ‘i
is familiar with all the propositions mentioned in ¢,” i is able to figure out the truth
of ¢,” or perhaps “i is able to compute the truth of ¢ within time 7.” (We return to
a computational notion of knowledge later in this chapter and also in Chapter 10.)
The power of the approach comes from the flexibility of the notion of awareness.

To represent the knowledge of agent i, we allow two modal operators K; and X;,
standing for implicit knowledge and explicit knowledge of agent i, respectively. Im-
plicit knowledge is the notion we have been considering up to now: truth in all worlds
that the agent considers possible. On the other hand, an agent explicitly knows a
formula ¢ if he is aware of ¢ and implicitly knows ¢. Intuitively, an agent’s implicit
knowledge includes all the logical consequences of his explicit knowledge. We de-
note by ﬁfl‘ (®), or ﬁfl‘ for short, the set of formulas obtained by enlarging £, (®) to
include the new modal operators A; and X;.

An awareness structure is atuple M = (S, w, Ky, ..., Ky, A1, ..., Ay), where
the tuple (S, w, Ky, ..., K,) is a Kripke structure and .4; is a function associating
a set of formulas with each state, fori = 1, ..., n. Intuitively, A;(s) is the set of

formulas that agent i is aware of at state s. The awareness functions .4; form the
syntactic component of the semantics. The formulas in A4; (s) are those that the agent
is “aware of,” not necessarily those he knows. The set of formulas that the agent is
aware of can be arbitrary. It is possible for both ¢ and —¢ to be in A4;(s), for only
one of ¢ and —¢ to be in 4;(s), or for neither ¢ nor —¢ to be in A;(s). It is also
possible, for example, that ¢ V 1 is in A; (s) but ¥ V ¢ is not in A4; (s).

The semantics for primitive propositions, conjunctions, negations, and for for-
mulas K¢ is just as for standard Kripke structures. We only need to add new clauses
for formulas of the form A;¢ and X;¢:
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(M, s) = Aig iff g € Ai(s)
(M, s) = Xipiff (M, s) = Ajp and (M, 5) = Kig

The first clause states that agent i is aware of ¢ at state s exactly if ¢ isin A; (s). The
second clause states that agent i explicitly knows ¢ iff (1) agent i is aware of ¢, and
(2) agent i implicitly knows ¢ (i.e., ¢ is true in all the worlds he considers possible).
We see immediately that X;¢ < A;jp A K;p is valid. You cannot have explicit
knowledge about formulas of which you are not aware! If we assume that agents are
aware of all formulas, then explicit knowledge reduces to implicit knowledge.

By definition, the implicit-knowledge operator K; behaves just as it does in a
Kripke structure. Thus, as in Chapter 3, implicit knowledge is closed under material
implication (thatis, (K;p A K; (¢ = v¥)) = K;v is valid) and K; ¢ is valid for every
valid formula ¢. The explicit-knowledge operator X;, however, may behave differ-
ently. Agents do not explicitly know all valid formulas; for example, =X; (p V —p)
is satisfiable, because the agent might not be aware of the formula p v —p. Also,
an agent’s explicit knowledge is not necessarily closed under material implication;
Xip A Xi(p = q) A —X;q is satisfiable, because i might not be aware of ¢g. Since
awareness is essentially a syntactic operator, this approach shares some of the fea-
tures of the syntactic approach. For example, order of presentation matters; there is
no reason to suppose that the formula X; (¢ V 1) is equivalent to X; (v V ¢), since
A; (¢ V ¥) might hold without A; (¢ Vv @) holding. A computer program that can
determine in time 7" whether ¢ Vv i follows from some initial premises might not
be able to determine in time 7" whether i Vv ¢ follows from those premises. (The
program might work on, say, the left disjunct first, and be able to determine quickly
that ¢ is true, but get stuck working on ¥.) And people do not necessarily identify
formulas such as ¢ Vv i and ¢ Vv ¢. The reader can validate the idea that the order
matters by computing the product 1 x 2 x3 x4 x5 x6x7x8 x9 x0.

Up to now we have placed no restrictions on the set of formulas that an agent
may be aware of. Once we have a concrete interpretation in mind, we may well
want to add some restrictions to the awareness function to capture certain types of
“awareness.” The clean separation in our framework between knowledge (captured
by the binary relations ;) and awareness (captured by the syntactic functions 4;)
makes this easy to do. Some typical restrictions we may want to add to .4; include
the following:

e Awareness could be closed under subformulas; that is, if ¢ € A;(s) and
is a subformula of ¢, then ¥ € A;(s). Note that this makes sense if we are
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reasoning about a computer program that will never compute the truth of a
formula unless it has computed the truth of all its subformulas. But it is also
easy to imagine a program that knows that ¢ Vv —¢ is true without needing
to compute the truth of ¢. Perhaps a more reasonable restriction is simply to
require that if ¢ A ¥ € A;(s) then both ¢, ¥ € A; (s) (see Exercise 9.39).

e Agent i might be aware of only a certain subset of the primitive propositions,
say W. In this case we could take A4; (s) to consist of exactly those formulas
that mention only primitive propositions that appear in W.

o A self-reflective agent will be aware of what he is aware of. Semantically, this
means that if ¢ € A;(s), then A;¢ € A;(s). This corresponds to the axiom
Aip = AiAigp.

e Similarly, an agent might know of which formulas he is or is not aware. Seman-
tically, this means that if (s, ¢) € K;, then A;(s) = A;(¢). This corresponds
to the axioms A;¢ = K;A;¢ and —A;¢ = K;—A;@. This restriction holds
when the set of formulas that an agent is aware of is a function of his local state.
It also holds when awareness is generated by a subset of primitive propositions,
as discussed previously.

We now turn to examining the properties of knowledge in this logic. It is easy to
see that the axiom system K, is sound, since the semantics of K; has not changed.
Indeed, we can obtain a sound and complete axiomatization simply by adding the
axiom X;¢p < (A;jp A K;) to K, (Exercise 9.40). These axioms, however, do not
give us much insight into the properties of explicit knowledge.

In fact, despite the syntactic nature of the awareness operator, explicit knowledge
retains many of the same properties as implicit knowledge, once we relativize to
awareness. For example, corresponding to the Distribution Axiom

Kio ANKi(p = V) = Kiy
we have

(Xig AXi(p = V) NAY) = Xy

(see Exercise 9.41). Thus, if you explicitly know ¢ and ¢ = v, then you will
explicitly know ¢ provided you are aware of ¥r. Similarly, corresponding to the
Knowledge Generalization Rule, we have

from ¢ infer A;jp = Xi¢
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(see Exercise 9.41). That is, you explicitly know a valid formula if you are aware of
it. Note the similarity between this rule and Theorem 9.4.2, which says that, in the
impossible-worlds approach, knowledge of a tautology ¢ follows from knowledge
of complete(¢). In that setting, we can think of K;(p Vv —p) as saying that agent i
is aware of p. If we take the view of awareness as being generated by a subset of
primitive propositions, then K; (complete(¢)) can be thought of saying that agent i
is aware of ¢. Thus, Theorem 9.4.2 can be viewed as saying that an agent knows a
tautology if he is aware of it. In both cases, an agent must be aware of the relevant
formula in order to know it explicitly.

As we saw earlier, we can capture certain properties of knowledge by imposing
the appropriate conditions on the K; relations. For example, if we assume that C;
is reflexive, then, as before, we obtain the axiom X;¢ = ¢, since X;¢ = K, is
valid, and reflexivity of K; entails that K;¢ = ¢ is valid. It may be tempting to
think that if K; is an equivalence relation, then we obtain the introspection axioms
Xip = XiXip and —=X;p = X;—X;@. It is easy to verify, however, that this is not
the case. In fact, even the obvious modification of the introspection axioms, where
an agent must be aware of a formula before she explicitly knows it, fails to hold:

(Xip NA Xip) = XiXip
(—=Xip NA(—Xip)) = Xi—Xip

(see Exercise 9.42). The reason for this failure is the independence of the the aware-
ness operator and the possibility relation; an agent may be aware of different formulas
in states that she considers to be equivalent. It may be reasonable to assume that if an
agent cannot distinguish between two states, then she is aware of the same formulas
in both states, that is, (s, ) € K; implies A; (s) = A; (¢). Intuitively, this means that
the agent knows of which formulas she is aware. If this assumption holds and if K; is
an equivalence relation, then the modified introspection properties mentioned earlier
hold (see Exercise 9.42). The phenomenon described by these axioms is similar to
the phenomenon of the previous section, where knowledge of completeness or co-
herence was required. The first of the two axioms suggests how, as in the quotation
from de Chardin at the beginning of the chapter, an animal may know, but not know
that it knows: it might not be aware of its knowledge. The second axiom suggests
how someone can fail to be conscious of his ignorance. By contrast, the Spinoza
quotation suggests that people are aware of their knowledge. Of course, we can con-
struct axioms analogous to these even if we do not assume that an agent knows what
formulas she is aware of, although they are not quite as elegant (see Exercise 9.42).
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As we observed earlier, if we are reasoning about a computer program that will
never compute the truth of a formula unless it has computed the truth of all its
subformulas, then awareness is closed under subformulas: if ¢ € A;(s) and ¥ is a
subformula of ¢, then ¥ € A;(s). Taking awareness to be closed under subformulas
has some interesting consequences. First note that this property can be captured
axiomatically by the following axioms:

Ai(—p) = Aigp

Ailp ANY) = (Aip N Aiy)
Ai(Xjp) = Ajgp
Ai(Kjp) = Aigp
Ai(Ajp) = Ajg.

(By changing = to < in these axioms, we can capture a notion of awareness gen-
erated by a set of primitive propositions; see Exercise 9.43.)

Although agents still do not explicitly know all valid formulas if awareness is
closed under subformulas, an agent’s knowledge is then closed under material impli-
cation; that is, X;¢ A X; (¢ = ¥) = X; ¢ is then valid (see Exercise 9.44). Thus,
the seemingly innocuous assumption that awareness is closed under subformulas
has a rather powerful impact on the properties of explicit knowledge. Certainly
this assumption is inappropriate for resource-bounded notions of awareness, where
awareness of ¢ corresponds to being able to compute the truth of ¢. As we remarked,
it may be easy to see that ¢ V —g is a tautology without having to compute whether
either ¢ or —¢ follows from some information. Nevertheless, this observation shows
that there are some natural interpretations of awareness and explicit knowledge (for
example, an interpretation of awareness that is closed under subformulas and an in-
terpretation of explicit knowledge that is not closed under material implication) that
cannot be simultaneously captured in this framework.

What about the computational complexity of the validity problem? Clearly the
addition of A; and X; cannot decrease the complexity. It turns out that this addition
does not increase the complexity; the validity problem is still PSPACE-complete.

In summary, the awareness approach is very flexible and general. In a natural and
appealing way, it can be used to demonstrate why various types of logical omniscience
fail, and to give assumptions on what the agent must be aware of for these various
types of logical omniscience to hold. It gains this flexibility through the use of a
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syntactic awareness operator. While at first this may seem to put us right back into
the syntactic approach of Section 9.2, by isolating the syntactic component, we have
more structure to study, while maintaining our intuition about knowledge being truth
in all possible worlds.

This observation suggests that we focus on natural notions of awareness. We
considered some notions already in this section. In Chapter 10, we describe a com-
putational model of knowledge, which can be viewed as using a computational notion
of awareness.

It is interesting to relate the awareness approach to the impossible-worlds ap-
proach. Both mix syntax and semantics, butin a very different way. In the impossible-
worlds approach, knowledge depends on impossible worlds, where truth is defined
syntactically. In the awareness approach, knowledge depends on awareness, which
is defined syntactically. It turns out that in some sense the two approaches are equiva-
lent; every impossible-worlds structure can be represented by an awareness structure
and vice versa (see Exercise 9.45); thus, both approaches can be used to model the
same situations.

9.6 Local Reasoning

An important difference between an idealized model of knowledge (such as a Kripke
structure) and the knowledge of people in the real world is that in the real world
people have inconsistent knowledge. That is, they may believe both ¢ and —¢ for
some formula ¢; this may happen when an agent believes both ¢ and — without
realizing that ¢ and  are logically equivalent. We already have tools to model
inconsistent knowledge: it is possible for an agent to believe both ¢ and —¢ in
a standard Kripke structure. Standard Kripke structures, however, provide a poor
model for inconsistent knowledge. It is easy to see that the only way that an agent i
in a standard Kripke structure (S, 7, Ky, ..., K,) can have inconsistent knowledge
in a state s is for KC;(s) = {t|(s,t) € K;} to be empty, which implies that in
state s, agent i knows every formula. Some of the approaches described earlier in
this chapter can also be used to model inconsistent knowledge. For example, in
an awareness structure (S, 7, K1, ..., Ky, A1, ..., Ap), it is possible for agent i to
have contradictory explicit knowledge in state s without having explicit knowledge
of every formula: this can be modeled by again letting /; (s) be empty and taking
A; (s) to consist precisely of those formulas of which agent i has explicit knowledge.
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In this section we describe another approach, in which inconsistent knowledge
arises in a very natural way. Since this approach seems to be especially interesting
when the agents are people, we describe the results in this section in these terms.

One reason that people have inconsistent knowledge is that knowledge tends to
depend on an agent’s frame of mind. We can view an agent as a society of minds,
each with its own knowledge. The members of the society may have contradic-
tory knowledge (or, perhaps better, beliefs). For example, in one frame of mind, a
politician might believe in the importance of a balanced budget. In another frame of
mind, however, he might believe it is necessary to greatly increase spending. This
phenomenon seems to occur even in science. For example, the two great theories
physicists reason with are the theory of quantum phenomena and the general theory
of relativity. Some physicists work with both theories, even though they believe that
the two theories might well be incompatible!

In Kripke structures, agents can be said to have a single frame of mind. We
viewed /C; (s) as the set of states that agent i thinks possible in state s. In our next
approach, there is not necessarily one set of states that an agent thinks possible,
but rather a number of sets, each one corresponding to the knowledge of a different
member of the society of minds. We can view each of these sets as representing the
worlds the agent thinks possible in a given frame of mind, when he is focusing on a
certain set of issues. This models agents with many frames of mind.

More formally, a local-reasoning structure is a tuple M = (S, n,Cy,...,Cpn)
where S is a set of states, 7 (s) is a truth assignment to the primitive propositions
for each state s € S, and C;(s) is a nonempty set of subsets of S. Intuitively, if
Ci(s) = {11, ..., Ty}, then in state s agent i sometimes (depending perhaps on his
frame of mind or the issues on which he is focusing) considers the set of possible
states to be precisely 77, sometimes he considers the set of possible states to be
precisely 7>, etc. Or, taking a more schizophrenic point of view, we could view each
of these sets as representing precisely the worlds that some member of the society in
agent i’s mind thinks possible.

We now interpret K; ¢ as “agent i knows ¢ in some frame of mind”; that is, some
member of the society of minds making up agent i at s knows ¢. Note that although
we are using the same symbol K;, this notion is quite different from the notions of
knowledge discussed earlier in this chapter. This form of knowledge could be called
local knowledge, since it is local to one of the members of the society. The semantics
for primitive propositions, conjunctions, and negations is just as for standard Kripke
structures. The semantics for knowledge, however, has changed:
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(M, s5) = K, iff there is some T € C;(s) such that (M, t) =g forallt € T.

There is a stronger notion of knowledge where we would say that i knows ¢ if ¢
is known in all of i’s frames of mind. Under the society of minds viewpoint, our
notion of K; corresponds to “some member (of agent i’s society) knows,” whereas
this stronger notion corresponds to “all members know.” We can get an even stronger
notion by having i know ¢ only if ¢ is common knowledge among i’s frames of mind.
Going in the other direction, towards weaker notions of knowledge, there is a notion
of distributed knowledge (among the frames of mind of agent i) analogous to that
considered in Chapter 2. We do not pursue these directions here; Exercise 9.46 deals
with the notion of distributed knowledge among the frames of mind.

Note that an agent may hold inconsistent knowledge in a local-reasoning struc-
ture: K;p A K;—p is satisfiable, since in one frame of mind agent i might know p,
while in another he might know —p. In fact, K;(false) is even possible: this will
be true at state s if one of the sets in C; (s) is the empty set. There is quite a differ-
ence between having inconsistent knowledge (that is, K;¢ A K;—¢) and knowing a
contradiction (that is, K; (¢ A —¢)). In the approach of this section, these are not
equivalent. One can imagine a situation where contradictory statements ¢ and —¢
can both be known: this might correspond to having received contradictory informa-
tion. It is harder to imagine knowing a contradictory statement ¢ A —¢. Knowing
contradictory statements can be forbidden (while still allowing the possibility of
having inconsistent knowledge) by simply requiring that each set in each C;(s) be
nonempty.

IfM = (S,n,Cyq,...,Cy)isalocal-reasoning structure, and if C; (s) is a singleton
set for each state s, say C;(s) = {7}, then M is equivalent to a Kripke structure
(S, 7, Ky, ..., Ky), where (s, 1) € K; exactly if t € T (see Exercise 9.47).

Clearly, there is a formal similarity between local-reasoning structures and MS
structures,though the philosophy and the semantics are quite different. Itis instructive
to compare the two approaches. The Montague-Scott approach is more general than
the local reasoning approach. In fact, if we were to take a local-reasoning structure
M = (S, m,Cq,...,Cy), and let le be the set of all supersets of members of C;,
then the MS structure M' = (S, 7, C{, ..., C,) is equivalent to the local-reasoning
structure M, in the sense that (M, s) = ¢ iff (M', s) = ¢ (Exercise 9.48). Despite
this formal embedding of local-reasoning structures in MS structures, we do not
view the former as a special case of the latter. As we said earlier, the philosophy
behind them is quite different. In Montague-Scott semantics, C; (s) represents a set
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of propositions believed by i, while in local reasoning semantics C; (s) represents
the knowledge of each of the members of the society of minds. Thus the former is
a model that explicitly represents knowledge, while the latter is a model for local
reasoning.

What about logical omniscience? We already noted that closure under conjunc-
tion fails in the local reasoning semantics, since knowing ¢ and knowing —¢ is not
equivalent to knowing ¢ A —¢. It is easy to see that knowledge is not closed under
material implication, but for different reasons than for the logics of the previous sec-
tions. The formula K; p A K;(p = q) A —Kjq is satisfiable simply because in one
frame of mind agent i might know p, in another he might know p = ¢, but he might
never be in a frame of mind where he puts these facts together to conclude ¢. (See
Exercise 9.49 to see how to guarantee closure under material implication.) We do
have other types of omniscience: for example, in this approach, there is knowledge
of valid formulas and closure under logical implication (Exercise 9.50). In fact, these
two types of omniscience form the basis for a sound and complete axiomatization:

Theorem 9.6.1 The following is a sound and complete axiomatization for validity
with respect to local-reasoning structures:

Al. All instances of tautologies of propositional logic
R1. From ¢ and ¢ = 1 infer v (modus ponens)
R2. From ¢ infer K;¢ (Knowledge of valid formulas)

R3. From ¢ =  infer K;¢ = K;{ (Closure under valid implication)

Proof See Exercise 9.51. 11

The computational complexity of the satisfiability problem is only NP-complete,
even if there are many agents. This contrasts with the complexity of the satisfiability
problem for K, which is PSPACE-complete. This is essentially the phenomenon
that we saw in Section 9.2.2, where in the absence of closure under conjunction the
complexity of the satisfiability problem in MS structures is only NP-complete.

Theorem 9.6.2 The satisfiability problem with respect to local-reasoning structures
is NP-complete.
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Proof See Exercise 9.52. 11

Just as we can impose conditions on the K;’s to capture various properties of
knowledge, we can similarly impose conditions on the C;’s. We already noted that
knowing contradictory statements can be forbidden (while still allowing the possi-
bility of having inconsistent knowledge) by simply requiring that each set in each
Ci (s) be nonempty (this is the analogue of the seriality condition of Section 3.1). We
also gave a condition in Exercise 9.49 that guarantees closure under material impli-
cation. We now mention some other properties of knowledge that can be guaranteed
by appropriate assumptions on the C;’s. By assuming that s is a member of every
T € Ci(s), we make K;¢ = ¢ valid (this is the analogue to the reflexivity condition
of Section 3.1). In Kripke structures, we capture positive and negative introspection
by requiring the kC;’s to be transitive and Euclidean, respectively. Here we can cap-
ture positive introspection by requiring that if 7 € C;(s) and t € T, then T € C;(t).
Intuitively, this says that in each frame of mind an agent considers it possible that
he is in that frame of mind. We can capture negative introspection by requiring that
if T € Ci(s)andt € T, then C;(t) < C;(s). Intuitively, this says that in each frame
of mind, the agent considers possible only the actual frames of mind. We note that
these conditions are sufficient but not necessary. Exercises 9.53 and 9.54 deal with
the conditions that we need to impose on the C;’s to capture various properties of
knowledge.

A particularly interesting special case we can capture is one where in each frame
of mind, an agent refuses to admit that he may occasionally be in another frame of
mind. (This phenomenon can certainly be observed with people!) Semantically, we
can capture this by requiring that if 7 € C;(s) and s” € T, then C; (s”) is the singleton
set {T'}. This says that if an agent has a frame of mind 7, then in every state in this
frame of mind, he thinks that his only possible frame of mind is 7. We call such
agents narrow-minded agents.

A narrow-minded agent will believe he is consistent (even if he is not), since
in a given frame of mind he refuses to recognize that he may have other frames of
mind. Thus, K;(—(K;¢ A K;—¢)) is valid in this case, even though K;¢ A K;—¢
is consistent (Exercise 9.55). Moreover, because an agent can do perfect reasoning
within a given frame of mind, a narrow-minded agent will also believe that he is a
perfect reasoner. Thus (K;(K;p A Ki(¢p = ¥)) = K;¥) is a valid formula in all
local-reasoning structures with narrow-minded agents (Exercise 9.55).
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9.7 Concluding Remarks

The motivation behind this chapter is the observation that the semantics of knowledge
in Kripke structures presented in Chapters 2 and 3, while adequate (and very useful!)
for many applications, simply does not work for all applications. In particular, logical
omniscience of agents, which is inherent in the standard possible-worlds approach,
is in many cases inappropriate.

Just as we do not feel that there is one right, true definition of knowledge that
captures all the nuances of the use of the word in English, we also do not feel that
there is a single semantic approach to deal with the logical-omniscience problem.
Thus, in this chapter we suggested a number of different approaches to avoiding
or alleviating the logical-omniscience problem. With the exception of the explicit-
representation approach (using either syntactic structures or MS structures), all of
our approaches try to maintain the flavor of the possible-worlds approach, with
knowledge defined as truth in all possible worlds. Nevertheless, they embody quite
different intuitions. The nonstandard approach concedes that agents do not know all
the logical consequences of their knowledge, at least if we consider all the logical
consequences in standard logic. The hope is that by moving to a nonstandard logic,
the fact that an agent’s knowledge is closed under logical consequence will become
more palatable. The impossible-worlds approach, while formally quite similar to the
nonstandard approach, takes the point of view that, although we, the modelers, may
know that the world satisfies the laws of standard logic, the agent may be confused,
and consider “impossible” worlds possible. The awareness approach adds awareness
as another component of knowledge, contending that one cannot explicitly know a
fact unless one is aware of it. Finally, the local-reasoning approach tries to capture
the intuition of a mind as a society of agents, each with its own (possibly inconsistent)
beliefs.

One issue that we did not explore in this chapter is that of hybrid approaches,
which combine features from several of the approaches discussed. We also did not
address the interaction between knowledge and time. Combining several approaches
and adding time to the models can greatly increase the complexity of the situations
that can be captured. To see how the extra expressive power gained by adding time
can be used, consider how people deal with inconsistencies. It has frequently been
observed that people do not like inconsistencies. Yet occasionally they become aware
that their beliefs are inconsistent. When this happens, people tend to modify their
beliefs in order to make them consistent again. In a system with awareness, local
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reasoning, and time, this can be captured with the following axiom:
(Xig A Xi=p A Ai(Xip A Xi—9)) = O(=(Xig A Xi—p)).

This axiom says that if agent i has an inconsistent belief of which he is aware, then
at the next step he will modify his belief so that it is no longer inconsistent. See
Exercise 9.56 for a further discussion of adding time.

Ultimately, the choice of the approach used depends on the application. Cer-
tainly one criterion for an adequate approach is that it be expressive. As is shown
in Exercises 9.45 and 9.48, there is a sense in which the syntactic approach, the
impossible-worlds approach (in its full generality), and the awareness approach are
all equally expressive, and more expressive than the other approaches we have con-
sidered. Nevertheless, while whatever approach we use must be expressive enough to
describe the relevant details of the application being modeled, the “most expressive”
approach is not always the one that does so in the most useful or most natural way.
We expect that many applications can be usefully represented using the techniques
we have presented, but this is an empirical question that deserves further study.

Exercises

9.1 Show that if M is any subclass of M,,, then we have full logical omniscience
with respect to M.

9.2 This exercise considers some relations among various cases of omniscience.

(a) Assume that whenever ¢ logically implies ¥, then the formula ¢ = ¥ is
valid. Show that closure under material implication and knowledge of valid
formulas implies closure under logical implication.

(b) Assume that ¢ A ¥ logically implies both ¢ and v, and that ¢ logically
implies ¥ iff ¢ is logically equivalent to ¢ A ¥. Show that closure under
logical implication is equivalent to the combination of closure under logical
equivalence and the opposite direction of closure under conjunction (if agent i
knows ¢ A ¥, then agent i knows both ¢ and ).
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9.3 Discuss various conditions that can be imposed on standard syntactic assign-
ments in order to make the positive and negative introspection axioms valid in syn-
tactic structures that satisfy these conditions.

94 Let M = (S, 7, Ky, ...,Ky,) be a Kripke structure. Let M’ be the MS struc-
ture (S, 7, Cy, ..., Cy), where C;(s) is the set of all supersets of /C;(s). Show that
(M, s) = @ iff (M’,s) = ¢, for each formula ¢.

9.5 Show that the only form of logical omniscience that holds in MS structures is
closure under logical equivalence.

** 9.6 Prove Theorem 9.2.2. (Hint: use the maximal consistent set construction as in
Chapter 3.)

*% 9.7 Fill in the details of the proof of Theorem 9.2.3.

* 9.8 Consider the following possible axioms:
El. —K;(false)
E2. K;(true)
E3. Ki(p AY¥) = Kjp
E4. Kiop AKiy = Ki(p AY)
ES5. Kip = K;iK;p
E6. —K;¢p = K;—K;¢p
E7. Kip = ¢.

Now consider the following conditions on C;:

Cl. 8 &Ci(s)
C2. S eCi(s)
C3. f T eCi(s)and T C U, then U € C;i(s)

C4. If T € Ci(s) and U € Ci(s),then T N U € C;(s)
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C5. IfT €Ci(s)then{t | T € Ci(t)} € Ci(s)
Co. T &Ci(s)then{t|T & C;i(t)} € Ci(s)
C7. f T € Ci(s),thens € T.

Define an MS frame tobe a tuple (S, Cq, . .., C,) where S is a set (wWhose members
are called states), and C;(s) is a set of subsets of S. We say that the MS structure
(S, m, Cq,...,Cy)isbased onthe MS frame (S, Cy, ..., C,). Note that the conditions
C1-C7 are really conditions on frames.

Prove that for 1 < k < 7, an MS frame N satisfies Ck if and only if every MS
structure based on N satisfies Ek at every state. (Hint: the “if”” direction may require
the use of two primitive propositions.)

9.9 In this exercise, we consider an alternate approach to the nonstandard approach
based on a nonstandard notion of truth. In this approach, there is no * function.
The structure, however, contains nonstandard truth assignments (which we describe
below) rather than usual truth assignments, and a pair of possibility relations, ICl.+
and KC;, for each agent i. Intuitively, ICZ-Jr is used to evaluate the truth of formulas of
the form K; and KC; is used to evaluate the truth of formulas of the form —K;¢.

As before, a literal is a primitive proposition p or its negation —p. Define a
nonstandard truth assignment to be a function that assigns to each literal a truth
value. Thus, although an ordinary truth assignment assigns a truth value to each
primitive proposition p, a nonstandard truth assignment assigns a truth value to
both p and —p. Under a given nonstandard truth assignment, it is possible that
both p and —p are assigned the value true, or that both are assigned false, or that
one is assigned true and the other false. Intuitively, this allows the truth value of p
and of its negation to be independent.

An alternate nonstandard structure M is a tuple

n

(S,m KF, KK K,

where S is a set of states, 7 (s) is a nonstandard truth assignment for each state s € S,
and each IC,-+ and K is a binary relation on S. Rather than define —¢ to be true iff ¢
is not true, as we do with Kripke structures, we define separately what it means for ¢
to be true and what it means for —¢ to be true, for each type of formula ¢ (that is,
for primitive propositions, and formulas of the form ¢ A ¢, —¢, and K;¢). This
way we can make the truth of ¢ and —¢ independent. The definition is as follows:



Exercises 377

(M, s) = p (for a primitive proposition p) iff 7w (s)(p) = true

(M, s) = @1 A iff (M, s) = @1 and (M, s) = ¢2
(M, s) = K@ iff (M, t) = ¢ for all # such that (s, 1) € K"

(M, s) = —p (for a primitive proposition p) iff 7 (s)(—p) = true
(M, s) = —(p1 A @) iff (M, s) =~ or (M, s) & —¢

(M, s5) = ——iff (M,s) E¢

(M, s) = —K;piff (M, t) = ¢ for some 7 such that (s, ) € K; .

Show that nonstandard semantics and alternate nonstandard semantics are equiv-
alent:

(a) Show that for each nonstandard structure M and state s of M, there is an alter-
nate nonstandard structure M’ and state s’ of M, such that for each formula ¢
of £,,, we have (M, s) = ¢ iff (M’,s") = ¢.

(b) Show that for each alternate nonstandard structure M and state s of M, there
is a nonstandard structure M’ and state s’ of M’, such that for each formula ¢
of £,,, we have (M, 5) = ¢ iff (M, s") = ¢.

9.10 In this exercise, we consider yet another alternate nonstandard semantics. We
again use the alternate nonstandard structures of Exercise 9.9, but instead of explicitly
defining the negation case separately (as we did in Exercise 9.9), we now have two
“support relations” =7 and =F. Intuitively, (M,s) =1 ¢ (where T stands for
“true”) means that the truth of ¢ is supported at (M, s), while (M, s) =r ¢ (where F
stands for “false”) means that the truth of —¢ is supported at (M, s). We say that
(M, s) =it (M,s) =1 ¢.

(M, s) =7 p (for a primitive proposition p) iff 7 (s)(p) = true

(M, s) =F p (for a primitive proposition p) iff 7 (s)(—p) = true

(M, s) Er —@iff (M,s) EF ¢
M, s) EF ~@iff (M, s) =1 ¢
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(M, s) =1 o1 Ao iff (M, s) =7 @1 and (M, s) =1 @2

(M, s) =F o1 A2 ift (M, 5) = @1 or (M, s) =F ¢2

(M, s) =1 Kipiff (M, t) =7 ¢ for all ¢ such that (s, t) € K
(M, s) =F Kipiff (M, 1) =7 ¢ for some ¢ such that (s, 1) € KC;”

Show that for all formulas ¢, we have (M, s) =1 ¢ iff (M, s) = ¢ according to the
alternative semantics of Exercise 9.9, and (M, s) =F ¢ iff (M, s) = —¢ according
to the alternative semantics.

9.11 Define a nonstandard frame F to be a tuple (S,Ki,...,K,,™) where
(S,K1,...,Ky) is a Kripke frame and where * is a unary function from § to it-
self such that s** = s for each s € S. Thus, a nonstandard frame is a nonstandard
structure without the 7. We say that the nonstandard structure (S, 7, K1, ..., Ky,™)
is based on the nonstandard frame (S, Ky, ..., K,,*). Prove that a state s in a
frame F is standard iff the formula p A —p is false at s in all nonstandard structures
based on F.

9.12 Prove Proposition 9.3.1.
9.13 Prove the induction claim in Proposition 9.3.2.

9.14 Demonstrate the nonstandard behavior of = by showing that
(a) the following are equivalent for nonstandard structures:
D) (M,s) =¢1= ¢
(i) If (M, s™) = ¢y, then (M, 5) = ¢3.
Note that if s = s*, then part (ii) gives the usual semantics for implication.

(b) {p, p = q} does not logically imply ¢g in nonstandard structures.

9.15 Let (S, m, K, IC,J{, Ki....,K,) be an alternate nonstandard structure
as in Exercise 9.9. Show that positive introspection (K;¢ = K; K;¢) holds for this
structure if ICl.+ is transitive. Show that negative introspection (—K;¢ = K;—K;¢)
holds if (s, ) € K;" and (s, u) € K imply that (t,u) € K; .
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9.16 Construct a nonstandard structure M and state s of M where (M, s) = K;p
and (M, s) = Ki(p = q), but (M, s) |~ Kiq.

9.17 Let @1 and ¢, be standard formulas. Show that if ¢ < @7 is valid with
respect to nonstandard Kripke structures, then ¢; = ¢; is valid with respect to
standard Kripke structures. Show that the converse implication does not hold.

9.18 Prove Proposition 9.3.3.

** 9,19 Prove Theorem 9.3.4. (Hint: use the maximal consistent set construction as in
Chapter 3. Show thataset V of K~ formulas is a maximal consistent set iff for each
formula ¢ of £, either ¢ or (¢ — false) isin V. If V is a set of K~ formulas,
define V* = {¢ € £, | ~¢ & V}. Show that V* is a maximal K, consistent set,
and that V** = V. In constructing the canonical model, if sy is the set corresponding
to the maximal K~ consistent set V, then define (sy)* = sy+.)

9.20 In this exercise, we consider the relationship between the two forms of negation
definable in nonstandard structures.

(a) Show that the rule “from —¢ infer ¢ < false” is a sound inference rule with
respect to N'M,,.

(b) Show that the rule “from ¢ < false infer —¢” is a sound inference rule with
respect to N’ M,,.

(¢c) Show, however, that neither —¢ — (¢ < false) nor (¢ — false) — —¢ are
sound axioms with respect to A" M,,.

9.21 Show that in the nonstandard worlds approach, each of the types of logical
omniscience mentioned in the introduction to this chapter hold, when we replace =
by —.

9.22 In this exercise, we focus on the axiom = K;¢ — K;—K;¢.

(a) Show that the axiom —K;¢ > K;—K;¢ may fail in nonstandard structures,
even if we restrict to structures where the K;’s are equivalence relations.

(b) Show that —=K;¢ — K;—K;¢ is valid in nonstandard structures where the
K;’s are equivalence relations and where (s*, t*) € K; whenever (s, t) € K;.
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(c) Show that —=K;¢o < K;—K;p is valid in a nonstandard frame F =
(S, K1, ..., Ky, %) (i.e., valid in every nonstandard structure based on F', ac-
cording to the definition given in Exercise 9.11) iff for all s, ¢, u € S, we have
that (s*, t*) € K; and (s, u) € K; together imply that (u*, t*) € K;.

9.23 In this exercise, we consider the problem of expressing standard negation in
nonstandard structures.

(a) Prove that in £,, we cannot say that a formula ¢ is false. That is, there is no
formula v such that for all nonstandard structures M and states s we have that
(M, s) = iff (M, s) = ¢. (Hint: use the second part of Theorem 9.3.2.)

(b) Recall that in the nonstandard semantics, we redefined true to be an abbrevia-
tion for some fixed nonstandard tautology such as p < p; we still abbreviate
—true by false. Let ¢ be a formula of £,”. Prove that for all nonstandard
structures M and states s we have that (M, s) = ¢ < false iff (M, s) = ¢.

*9.24 Prove that the validity problem for £, -formulas with respect to N'M,, is
PSPACE-hard in general and co-NP-hard for propositional £, -formulas. (Hint:
show that standard validity can be reduced to nonstandard validity in the following
manner. If ¢ is a standard formula, then let ¢"** be the nonstandard formula obtained
by recursively replacing in ¢ each subformula of the form —¢ by ¢ < false and
each occurrence of = by <. Show that ¢ is valid with respect to standard structures
iff ¢"* is valid with respect to nonstandard structures.)

9.25 Let ¢ and @ be £, -formulas. Show that ¢ logically implies ¢, with respect

to N M,, iff K; ¢ logically implies K; ¢, with respect to N'M,,. (Hint: one direction
is easy. For the other direction, assume that ¢ does not logically imply ¢, with
respect to N M,,. Let M = (S, w, Ky, ..., K,,™) be a nonstandard structure and u
a state of M such that (M, u) = ¢ and (M, u) = ¢>. Define a new nonstandard
structure M’ = (§', 7', K}, ..., K1) with one additional state t ¢ S by taking
(@) ' = SU{t}, (b) 7'(s) = m(s) for s € S and 7/ (¢) is arbitrary, (c) ICJ’- = K, for
j #1i,and IC; = K; U{(t,u)},and (d) s" = s* fors € S,and t' = r. Show that since
(M, u) = @1 and (M, u) = ¢a, we also have (M, u) = ¢ and (M’, u) £~ ¢,. But
then (M', t) = K;¢; and (M’ t) ¥~ K;@, and hence K;¢; does not logically imply
K; @y with respect to N’ M,,.)
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9.26 Show that the problem of determining whether « logically implies ¢ in non-
standard propositional logic is co-NP-hard. (Hint: use Exercise 9.24 and Proposi-
tion 9.3.3).

9.27 Show that even in our nonstandard propositional semantics, every standard
propositional formula is equivalent to a formula in CNF. (Hint: make use of Propo-
sition 9.3.1, and mimic the usual textbook proof that every propositional formula is
equivalent to a formula in CNF.)

9.28 Show that in standard propositional logic, the problem of deciding whether a
CNF formula « logically implies a clause ¢ is no easier than the general problem of
logical implication in propositional logic, that is, co-NP-complete. (Hint: let p be a
primitive proposition that does not appear in the propositional formula ¢. Show that
¢ = p is valid with respect to standard propositional logic iff ¢ is unsatisfiable in
standard propositional logic.)

9.29 Prove the “if” direction in the proof of Theorem 9.3.6.
9.30 Prove Proposition 9.3.7. Show that the converse claim fails.

* 9,31 Show how the various forms of logical omniscience can be captured by impos-
ing appropriate conditions on the syntactic assignment in impossible-worlds struc-
tures.

9.32 Show that there are formulas ¢; and ¢, in £, such that ¢; standard-state
logically implies g7, but K;¢1 does not standard-state logically imply K;¢>.

9.33 Let ¢; and ¢ be £, -formulas. Show that K;¢; standard-state logically
implies K;¢p iff K;p; logically implies K;@, with respect to N M,,. (Hint: the
proof is very similar to that of Exercise 9.25.)

9.34 Let ¢ be a standard propositional formula. Show that if complete(¢p) is true at
a state s of a nonstandard structure, then s is complete with respect to ¢.

9.35 Let ¢ be a standard propositional formula. Show that ¢ is a tautology of
standard propositional logic if and only if complete(p) logically implies ¢ with
respect to N M,,. (Hint: one direction is easy. For the other direction: assume that ¢
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is a tautology of standard propositional logic, and (M, s) = complete(¢). Let W be
the set of primitive propositions that appear in ¢. Thus, (M, s) = p Vv —p for each
p € V. Hence, either (M, s) = por (M, s) = —p,foreach p € V. Define the truth
assignment v by letting v(p) = trueif (M, s) = p, and v(p) = false otherwise. By
an induction on the structure of formulas, show that for each propositional formula v
all of whose primitive propositions are in W, (a) if v is true under v, then (M, s) = ¥,
and (b) if ¥ is false under v, then (M, s) = —1. Since ¢ is a tautology of standard
propositional logic, ¢ is true under v. It follows that (M, s) = ¢.)

*9.36 Let ¢ be a formula in £, of depth d (see Exercise 3.23). Let 7 be the formula
complete(p) N E(complete(p)) A ... A E?¢ (complete(p)).

Show that ¢ is a valid formula of K, iff 7 logically implies ¢ with respect to N’ M,,.
(Hint: the proof is similar to the proof of Exercise 9.35. Let ¢ be a valid formula
of K,. Let M = (S, 7w, Kq,...,K,,™) be a nonstandard structure and s a state
of M such that (M, s) = t. Define n’ so that 7/ (¢)(p) = true if (M, t) &= p, and
7' (t)(p) = false otherwise, for each state t of M and each primitive proposition p.
Let M' = (S,7/,K1,...,Ky). Thus, M’ is a standard Kripke structure. Show that
if ¢ is of depth d’ < d, if every primitive proposition that appears in ¥ also appears
in @, and if ¢ is of distance at most d — d’ from s, then (M, t) |=  iff (M', 1) = .
In particular, since (M, s) = ¢, we also have (M, 5) = ¢.)

9.37 Show that the following formulas are satisfiable at a standard state of a non-
standard structure:

(@) Kip AKi(p=q) A—Kiq,
(b) Kip A=Ki(p A (qV —q)).
Show that the following formulas are standard-state valid:
© ¢ & (pn@Vv-y),
d) (Kip AKilp = ¥)) = Ki(¥ V(9 A—9)).

9.38 Let p be a primitive proposition. Show that there is no formula ¢ in £,, such
that if ¢ holds in a state s of a nonstandard structure M, then at most one of p or —p
is true in 5. (Hint: use Theorem 9.3.2.)
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9.39 Show that without the restriction thatif g Ay € A;(s), thenboth g, ¥ € A;(s),
the formula X; (p A —X; p) (‘“agent i explicitly knows both that p is true and that he
doesn’t explicitly know it”) is satisfiable in an awareness structure, even if £; is an
equivalence relation. As shown in Exercise 3.10, this is not true if we replace the X;
by K;.

*9.40 In this exercise, we examine some properties of the logic of awareness.

(a) Show that a sound and complete axiomatization of the logic of awareness is
given by K, + {X;0 & (Ao A K@)}

(b) Show that a sound and complete axiomatization of the logic of awareness when
we restrict attention to awareness structures where the &C;’s are equivalence
relations is given by S5, + {X;j¢ < (Ajp A K;p)}.

9.41 Show that the following are valid with respect to awareness structures:
(@) Xip AXi(p= V) NAY = XiY,

(b) From ¢ infer A;¢ = X;o.

9.42 This exercise deals with awareness structures where the /C;’s are equivalence
relations.

(a) Show that there is an awareness structure (S, 7, i, ..., Ky, A1, ..., An)
where 