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Summary. This article analyzes thewo wise girls puzzle, which is a simpler
variant of the so-calledhree wise men puzze, with someproof-theoretic tools.

We formulate the puzzle in an epistemic logic. Our chief assumption is that the
reasoning ability of each player of the puzzle is equivalent to what is described
by the epistemic logic. We will interpret the behaviors of the players in the
puzzle in terms ofunprovability of certain statements. The proof-theoretic tools
we employ are consequences ofmata-theorem, known as thecut elimination
theorem.
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1 Introduction

In this article we take up thavo wise girls puzzle, which is a simpler variant of
the so-calledhree wise men puzze. Puzzles of this type have been analyzed in
a number of references, to which we will add an interpretation in terms of some
meta-theorems on a logical system.

We formulate the puzzle as follows.

* The authors are indebted to Osamu Takaki for his careful reading of the original manuscript,
giving us some useful comments. We are also grateful to H. Ono, M. Sato, H. Hisamoto, J. Iritani
and T. Matsuhisa for their interests and discussions. K. Matsumoto and M. Takano kindly provided
us with some chronological information on proof-theoretic results in modal logics. Our special thanks
are due to M. Kaneko, with whose advice we have been able to improve this article.
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Two girls are seated, facing the same direction, so that the first girl is seated
behind the second girl; the girls are put on a white hat on their heads; the first
girl can see the second girl's hat but not conversely, and neither can see her own
hat (see Fig. 1). The girls are told by the observer that at least one of them wears
a white hat. The first girl is asked by the observer: “Do you know if your hat
is white?” She answers “No! | do not know.” Then the second girl is asked the
same question, and she answers “Yes, | know.”

Figure 1 (illustrated by T. Kadota)

In this article, we will analyze the process of the puzzle in termprobf-
theory of a logical system which represents the reasoning abilities of the girls in
the puzzle.

There are two points at issue, which are inherent in the puzzles of this type.
They are more tangible in our simpler version.

The first point is that a certain ambiguity is hidden in the answer of the first
girl, which is not discussed in the usual treatment of the puzzle. Namely, the first
girl in fact cannot reach the conclusion “no” with her reasoning, and hence she
either remains silent or gives up reasoning and answers “No!”

The second point is that the second girl must interpret the first girl's reaction
in order to reach the right conclusion. In other words, she cannot deduce the
correct answer without receiving the information from the behavior of the first
girl.

We will give our version of the inability of the girls as explained above in
terms ofunprovability of certain statements.

Including this introduction, this article is composed of five sections. In Section
2, we will discuss our observation of the puzzle in more detail.

In Section 3, we present the logical system within which the girls can reason.
The system, which is formulated in thsequential calculus, corresponds to the
modal logic KD#. Proof-theoretic tools for our purpose are also explained. A
most useful tool is the meta-theorem called the elimination theorem. (The
cut elimination theorem was originally proved for a system of classical predicate
logic by Gentzen [2] and has been regarded as the central tool in proof-theory.
It is known that the cut-elimination theorem holds for KD4nd we will use
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this fact in some steps of our subsequent discussion.) Several consequences of
the theorem are also listed here and in Section 4.

In Section 4, we interpret two girls’ behaviors in terms of the proof-theoretic
tools presented in Section 3.

In Section 5, we mention some remarks: the notionnof knowing (or,
not believing); analternative interpretation of the puzzle; thesolvability of the
puzzle; thegeneral case of n girls.

The only background assumed in this article is some basic knowledge in the
classical propositional calculus. Some texts are listed as references.

2 Discussion on two wise girls puzzle

We will henceforth call the first girPlayer 1 and the second gifPlayer 2 .

Let us discuss the points at issue in the puzzle as were explained in Intro-
duction.

First, Player 1 would try to derive, from the pieces of information she has,
the conclusion that she knows her hat is white by using logical reasoning, unsuc-
cessfully. On the other hand, she cannot derive the negative conclusion either.
In these circumstances, she might remain silent, or else, after some long search
of a correct answer, she might give it up and answer “No!”

Next, Player 2 might try to derive an answer from her initial information,
unsuccessfully. Then she would try to interpRbayer 1 's reaction in order to
reach the right conclusion. WhethBftayer 1 answers “No!” or remains silent,

a reasonable player in the position Bifayer 2 would interpret it as Player 1
does not know that she wears a white hat.” With this interpretaBtayer 2 can
conclude that she knows she wears a white hat.

The last process of the puzzle, that Bayer 2 derives her conclusion, can
be demonstrated straightforward. What must be treated with care is the inability
of a player to derive an answer. That is, one needs some device in order to show
that Player 1 cannot derive any conclusion and tHalayer 2 cannot derive a
conclusion without waiting foPlayer 1 's reaction.

The objective of this article is to analyze theo wise girls puzze by formu-
lating it accurately in a formal language and by adopfingof-theoretic tools.

For this purpose, we first formulate the statements of the puzzle in a language
of the propositional calculus with thieelief operators, which express that one
believes (knows) a fact. In order to analyze the process of the puzzlgsaene

that the players can reason logically. We will see fRi@yer 1 cannot logically
derive (from the pieces of information she has) that she knows she wears a white
hat, by showing the logicalnprovability of the statement.

ThenPlayer 2's interpretation thaPlayer 1 does not know if her hat is white
can be justifiedPlayer 2 would then proceed to logically derive that her own
hat is white.

In the subsequent sections, we will formulate a logical system in which the
players reason, and theoretically justify the players’ reactions.
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Before getting into an exact treatment, let us note the following.

In the standard “three wise men puzzle” (or muddy children puzzle), the men
look at each other and answer simultaneously. See, for example, Sato [14]. We
have taken our simpler version, since our objective is not to solve the puzzle,
but to examine the solving process. With a simpler version, the essence of the
solving process can be distilled.

3 Logical system and tools

We will set a language” with which one can express the statements of the
puzzle, and then a logical (reasoning) system in wiitdyer 2 's solution can
be deduced. We adopt a formulation of the system by Kaneko [8], Section 4.4.

Except for propositional connectives, we need an operatdcdled a belief
operator) for each player,= 1,2. The logical system to be defined is KH4
system of modal logic.

Although the system is described in Section 4.4 of Kaneko [8], we will
present the definitions for the reader’'s convenience. For the modal logic, one
can also refer to Chellas [1], Gerbrandy [3], Halpern and Moses [4], Hughes
and Cresswell [7], Kaneko and Nagashima [9], Ohnishi and Matsumoto [13] and
Sato [14]. For basic background in logical systems, we list Gentzen [2], Hayashi
[5] and Kleene [10].

Definition 1 (Language and system)
1) The languag€eZ: We prepare two propositional symbal/,i = 1,2. iW
is read as Player i wears a white hat.”
The propositional connectives are(not), A (and),V (or), and= (implies).
Parentheses “(" and “)” are also assumed.
Belief operators B (“Player 1 believes that”) and B (“Player 2 believes
that”) are added.
2) Formulas of%: % -formulas are defined as follows.
2.1) Propositional symbolsV and 2V are (atomic)% -formulas.
2.2) If Ais an. % -formula, then so are(A) and B(A),i = 1,2.
2.3) If AandB are Z-formulas, then so aréA(A B), (AV B) and @ = B).

Parentheses may be abbreviated when confusion is not likely, gAgaril
AAB.

3) I', A4,--- each denotes a finite set of formulas (possibly empty). A set such
as {Ag, Az, - -, Ac} will be sometimes written ay, Az, - - -, Ac, and the union
of sets such ag’ U A may be written ad”, A. For example, we may writé&', A
instead ofI" U {A}. We will also write BI" for the set{BiA: Ae I'}.

Using the notation above, we will introduce an expression callegjaent.
For that purpose, we introduce a new symbel

An expression of the fornT" — A is called asequent. I" and A are re-
spectively called theantecedent and thesuccedent of the sequent. A sequent
Fi,F2,- -, Fm — G1,Gy, - -+, G, is intended to have the same meaning as the
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formulaFi AFo A - AFyn = G VGV ---V Gy The notion of a sequent

is introduced for technical usefulness. We may wiitd= — ©,G instead of
I'u{F} - 6OU{G}.

4) Initial sequents: A sequent of the forfn— A for any formulaA is called
aninitial sequent. (Such a sequent represents a tautolagy A.)

5) The logical inferences can be classified into three categories. The first one is
calledthin, which infers athinned sequent from a given sequent. The second one

is calledcut, which cuts out a formula common to the succedent of a sequent
and the antecedent of another. The third one consigtsopbsitional inferences,
which introduce propositional connectives in the antecedents or in the succedents.

I =6 . A—=60,A AT'—> A
AT o4 ) ArSead @y
AT -0 =) B, -6 A=)
AAB, T 0 V7 AAB.T - O '
r—-6A I'-6,B (= )

I'—-6,ANB
ATl -6 B,F—>9(\/ )
AVB,[ — O -
I'—0,A (V) r—-o6,B (V)
I > 6,AVB ! I - 6,AVB r
I' - 6,A B,F%@(:%) AT —-6,B (=)
A=B, I -6 I —-6,A=B
I'— 6A (- 5) ATl -6 (= )
AT =6 "' I —0,-A"

6) Belief Inference: The belief operator is introduced by the following rule.

F,Bi(A)—>9
Bi(I"UA) — Bj(©)

(Bi — By)
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Herei = 1,2, and® has at most one formula.
7) Upper and lower sequents: A sequent above the line of an inference is called
an (the)upper sequent of the inference, and the one below the line is called the
lower sequent of the inference. An upper sequent is an assumption and a lower
sequent is the conclusion of an inference.
8) Proof-figure: A proof in KD4 is a tree with a sequent at each node, where
any topmost sequent is an initial sequent (cf. 4) above) and the sequents on the
nodes are connected by the inferences in 5) above. A proof in this context is
usually called aproof-figure. Some examples of proof-figures will be given in
Sections 3 and 4.
9) Provability: A sequenf” — A is said to beprovable in the system KD2 if
there is a proof-figure whose lowest sequenfis> A. It is said to beunprovable
if it is not provable. A formulaA is said to be provable if the sequent A is
provable.

The fact that T" — A is provable in KD4” is denoted by~ I" — A, and
the fact that “it is not provable” is denoted byI" — A.

Remark 1) Provability and unprovability as defined above are meta-notions.
2) A finite set of formulasl” is inconsistent in KD4? if I — is provable.I" is

said to beconsistent otherwise. (Logically]” — andI” — AA—A are equivalent,
and hencel” — expresses that the formulas inlead to a contradiction. The
consistency ofl” can therefore be expressedtag” — .)

3) A study of meta-notions is calletheta-mathematics, and, if the method

of such a study is a syntactic one, that is, without referring to truth values of
formulas, it is calledproof-theory. A meta-notion which is shown to hold by
meta-mathematics is callednaeta-theorem.

The fundamental meta-theorem for the system Kix4the following.

Theorem 1 (The cut elimination theorem for KD4?) If - I" — A, then there
is acut-free proof-figure ofI" — A.

The present article can be read without knowing the proof of the theorem, and
hence we do not include the proof here. It is included in Kaneko and Nagashima
[9], the finitary part of whose treatment corresponds to KDWe refer the
interested reader to Sections 11 and 12 in Yasugi and Oda [15], where a detailed
cut elimination proof for KD4 is presented.

It is an immediate consequence of Theorem 1 that K consistent.
Namely, no contradiction is provable in KB4(A contradiction is a formula
of the formA A —A and the system can be said to be consistent if a sequent of
the form— A A —A is not provable.)

Lemmas %3 are crucial in our analysis. Lemma 2 is a consequence of the
cut-elimination theorem.

Lemma 1 (Elimination lemma: cf. Kaneko and Nagashima [9]) Let ¢ I" de-
note the result of eliminating all the occurrences ¢f(Bs well as superfluous
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parentheses) frond’, and lete/” denote the result of eliminating all the belief
operators from/".

If a sequentl” — © is provable in KD4, thene¢ I" — 6 is provable in
KD42 without an application of (B— B;), and alsc:I” — €6 is provable in the
classical propositional logic.

Definition 2 (Separation: cf. Kaneko and Nagashima [9]) A formula A is
called B-atomic if the outermost symbol ofA is B;. A formula A is called
a B-formula if it is constructed from Batomic formulas by applications of
propositional connectived\ is called a B -formula if B; occurs inA only in
the scope of &; forj #1i.

For example, B(B,B) A B1(B = B1C) is a B;-formula, where B(B,B) and
B1(B = B;C) are B-atomic subformulas. EBVvB;,C) = 1W is a B_;-formula.
B1B A B,C is neither a B-formula nor a B.;-formula.

A sequent is called Bseparable if it consists of B-formulas and B;-
formulas.

Lemma 2 (Separation lemma: cf. Theorem 3.3 of Kaneko and Nagashi-
mal[9]) LetlI,A — O, A be a B-separable sequent, whefeand©® each con-
sists of B-formulas andA and A each consists of B -formulas. IfI", A — 6, A
is provable in KD4, thenI" — © or A — A is provable in KD4.

For the proof, apply the cut-elimination theorem to any proof-figure. Then
simply check the claimed fact for each sequent in a cut-free proof-figure down-
ward, starting with initial sequents. The reader who is interested in a detailed
proof is invited to look at Section 2 of Yasugi and Oda [15].

The following is a well-known fact in the classical propositional calculus,
which also holds for the present system KD4

Lemma 3 (Implication distribution lemma) Suppose
F A= B, ,A=B,, I - A.

Then all the following four sequents are provable: (I — A, A, A (2)
Bl, BQ,F — A; (3) B]_,F — A,Az; (4) 827]_‘ — A,A]_.

Note. This property holds for an arbitrary number of pa§#§, B; }j=12,... n.

As an example, we present a proof-figure of (1) fremA; = B, Ay =
By, I' — A.

A — A
MM (thin)
Ag — A2 (th|n) A]_ — A]_7 Bl (*):>)
Ay — Az, By (_} ) — A1, A1 = By AL = B1,A0 =By, I' — A (cut)
SRR =SB Ap = By I — A A

T A ALA (cut)
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Lemma 4 (Cut within belief)
Bi(A= B),Bi(BAC = D) — B;{(AAC = D)
is provable in KD4. (A sequent without\C is also provable.)
This is an immediate consequence of
A=B,BAC=D-—-AAC =D

by an application of (B— B;).

4 Reasoning process of players

Let us express more precisely what was discussed in Introduction and Section
2. We will show thatPlayer 1 cannot obtain the exact answer by reasoning in
KD42. We will adopt the proof-theoretic tools in Section 3 to our arguments.

We will write the fact thatPlayer 1 does not believe a fach as —B;A.
Then B—-B11W expresses the fact thaPtayer 2 believes thaPlayer 1 does not
believe sheRlayer 1) wears a white hat.”

Let Wp denote W v 2W. (“Player 1 or Player 2 wears white.”) Then, the
initial belief set for Player 1, I7, is expressed as

Fl = {B]_WO7 812\/\/}

Notice thatl; consists of B-formulas (cf. Definition 2).
Player 2 's initial belief set, I, is expressed as follows.

Ip= {BzWQ, Bz(B]_W())7 BZ(ZW = 812W), Bg(‘!ZW = B]_—\ZW)}
Notice thatl» consists of B-formulas.

We can show the consistency of each player’s initial belief set, that is, (i)
t/ I1 — and (ii) ¥ I — . These two facts can be established similarly to the
proposition below.

First, we prove the following proposition, which states tRkyer 1 can reach
no definite answer.

Proposition 1 (1) t In — B11W
(2) |7/ Fl — Bl—\lW

Proof. (1) Supposeli; — B;1W were provable. Then, by Lemma 1 B
elimination), Wp,2W — 1W would be provable in the classical proposi-
tional calculus, which is easily shown to be impossible. (The unprovability of
Wo, 2W — 1W in the classical propositional calculus can be shown by construct-
ing a counter-model of it. See Kaneko [8], Section 3. It can also be shown by
examining cut-free proof-figures.)

(2) can be shown similarly.
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Interpretation of Player Is behavior Due to (1) of Proposition 1Player 1

can never reach the conclusion1BV from her belief set/; with her logical
ability. So, if she tried, she would keep searching for a proof in vain. Such a
state of affairs would makPlayer 1 remain silent. However, since she is asked

a question and since she would get tired of her search, it would be natural to
assume thallayer 1 eventually gives up thinking and answers that she does not
know if she wears white.

The fact thatPlayer 1 cannot logically reacli; — B;1W differs from that
she can reach the conclusidh — B;—1W. In fact, (2) of Proposition 1 states
that shecannot.

Now, we go on toPlayer 2 's problem. Without takingPlayer 1 's answer
into accountPlayer 2 cannot reach any definite answer.

Proposition 2 (1) I/ I — B2W
(2) |7[ Fz — Bz—\Bl:LW
(3) |71 Fz, Bz—\Bj_lW —

Proof. (2) Supposd’» — B,—B;1W were provable. First apply Lemma 1 with
i =2 (Bp-elimination) to obtain

Wo, B1Wo, 2W = B]_ZW, -2W = B;—-2W — —B11W
This is equivalent to
Wo, BiWp, 2W = B12W, -2W = B;—2W,B11W —

By Lemma 3 (Implication distribution lemma) applied t&W\2= B;2W and
-2W = B;—2W, we obtain that, in particular,

Wo, B]_Wo, B]_ZW7 811W — —2W

must be provable. By Lemma 2 (Separation) with respect;tfoBnulas, either
Wy — —2W or B;Wy, B12W, B;1W — must be provable. The first one is im-
possible. As for the second one, applying Lemma 1 withl (B;-elimination),
W, 2W, 1W — must be provable, but this is impossible. (These impossibilities
are also shown by constructing counter-models.)

(1) and (3) can be proved similarly.

Interpretation of Player 2s behavior Due to (1) of Proposition 2Player 2
cannot logically derive the conclusion that she wears a white hat from her initial
belief set. Upon hearingPlayer 1 's answer or interpreting her silence as a
negative answeRlayer 2 interprets it as-B;1W. The fact thaPlayer 2 believes
-B11W can be expressed ag-#B,1W. Player 2 expands her belief set by adding
the new piece of belief. The fact thBtayer 2 indeed needs this new piece of
belief, that is, that she had to wait féayer 1 's reaction in order to assume
B,—B;1W, can be assured with (2) of Proposition 2. The fact ®layer 2 can
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add B—-B11W to her belief set without causing a contradiction is assured with
(3) of Proposition 2.

Now, from the expanded belief set, she would reason with her logical ability
to obtain her conclusion.

Expanded belief set and conclusion Let us denotePlayer 2 's new belief set
by I; = I U {B,—B11W}. By (3) of Proposition 2] is consistent. Usind?,
Player 2 will now deduce her conclusion. We will presdpitayer 2 ’s reasoning
step by step in order to show that the system RB4adequate for that purpose.

Proposition 3 (Conclusion)
ko Iy — B2W

Proof. Let F denote one of the formulas in~B below. We show thaf, — F
can be derived succesively, so that the desired formpPA\Bwill be reached at
the end (in 8 below).  will denote a contradiction, that is, any formula of the
form X A =X.)

1. Bg(ﬁZW = BlﬁZW)
By(B1—2W = B11W)
By(B1IW A —B11W = 1)
Bo(—2W A —B1IW = 1)
Bo(—B11W = ——2W)
Bo(——2W = 2W)
By(—B11W = 2W)

B2W

O NG~ WD

1 is an assumption if;. 2 is obtained from\p, =2W — 1W by applications
of (B1 — B1) and (B, — B,). (Recall thatWp denotes W v 2W.) 3 is obtained
from — (B11W A—-B11W = 1) by (B, — B5). 4 is obtained from 1, 2 and 3 by
applications of Lemma 4 (Cut within belief). 5 follows from 4 by an application
of Lemma 4. 6 is proved with the fact that-2W is classically equivalent to
2W and an application of (B— By). 7 follows from 5 and 6 by Lemma 4.
Finally, 8 follows from 7, B-B11W in I},

—B11W, (-B11W = 2W) — 2W,

an application of (B — B,) and two cuts. This completé3ayer 2 's deduction.

As an example, we will present the part of the proof-figure which derives 8
from 7.

ﬁB]_lW — ﬁB]_lW 2W — 2W
7 —B11W, —B11W = 2W — 2W
I} — By(~B11W = 2W) B—B11W, Bo(—B11W = 2W) — B,2W
I} — B2W

(=-)
(B2 — B2)
(cut)
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Note. In fact, we did not need all the formulas ifj for the conclusion of
Proposition 3. Only the subset consisting of #811W, Bo(—2W = B;—-2W)
sufficed.

5 Remarks

We have seen that even in a very simple puzzle, there are some ambiguities,
and believe that such ambiguities are intrinsic in human logical activities. This

may have some implications in economics and in other fields of science and
engineering; see, for example, Oda and Yasugi [12]. To avoid to be involved too

deeply in general arguments, however, we will conclude this article with some

concrete remarks. For details, see [11], [12] and [15].

The notion of not knowing The notion ofnot knowing (not believing) plays a
crucial role in thetwo wise girls puzze. We interpreted the sentenc®layer 1
does not know (believe)” as —B1A. Nevertheless, there can be other possibilites
of expressingiot know. B;—B;A is a sensible alternative. In fact, we can replace
—-B; by B;—B; in the preceding arguments. Logically, the latter implies the
former in KD4.

Since—B; suffices to our persent purpose, we do not go any further on this
subject.

Alternative interpretation We can interpret our foregoing argument in a dif-
ferent manner.

Player 1 can claim with certainty that she does not know her hat is white if
she is aware thaf; — B;1W cannot be proved within her logical systeRhayer
1 can find out this unprovability if she can study the logical system in which
she reasons from outside. She can definitely claim that she does not know she
wears white if she cajump out of the system KD4, borrowing an expression
from Hofstadter [6].

Solvability of the puzzle We have assumed that, in answering the puzzle, both
players are wise enough to reason logically. With regards to the interpretation of
this article, such an ability suffices for the players.

With the alternative interpretation as mentioned above, we can go further
and claim that the puzzle isolvable, that is, the following are altletermined
automatically.

Both I'; and I, are consistent in KD4

Player 1 can show that there is no proof-figure Bf — B11W in KD42.

Player 2 can show thaf’y is consistent in KD2.

Player 2 can construct a proof-figure df, — B22W.

More precisely, there is aalgorithm to evaluate the unprovability of each meta-
theoretic proposition (cf. Propositions 1 and 2), and there is alssganithm to
construct a proof-figure dPlayer 2 ’'s conclusion (Proposition 3).
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General case The essence of meta-theory of the wise girls puzzle has been
fully explained with the case of the two girls puzzle. Although technically the
proofs of the propositions in Sections 3 and 4 are much more complicated for
the general case af girls, there is no difference in the preceding observations.
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