
Ontology Web Language:
OWL

CEID
MSc on DATA DRIVEN COMPUTING AND

DECISION MAKING (DDCDM)

I. HATZILYGEROUDIS, PROFESSOR EMERITUS

Web Ontology Languages

◼ They allow writing explicit, rigorous
conceptualizations for domain models

◼ Requirements

– Well defined syntax

– Efficient reasoning support

– Formal semantics

– Adequate expressiveness

– Ease of expession

◼ Participation in classes
-If x is an instance of C and C is a subclass of D, then x is an
instance of D

◼ Class equivalence

-If class A is equivalent to B and B to C, then A is equivalent
to C

◼ Consistency

-If x is an instance of A, A is a subclass of BD, A is a
subclass of D, and B and D are disjoint to each other, then we
have an inconsistency (which must be detected)

◼ Classification

-If particular property-value pairs are a sufficient condition for
membership in a class A, then if an individual element x
satisfies them it is an instance of A

Web Ontology Languages-
Reasoning

◼ Reasoning support is important because it allows

-Ontology consistency check

-Checking for unwanted relationships between classes

-The automatic classification of instances into classes

◼ Rigorous semantics and reasoning support is usually ensured
by mapping to known rigorous formalisms (eg FOL) and using
corresponding automated reasoning methods/tools.

◼ In the case of OWL, the corresponding rigorous formalism is a
description logic (DL) and the corresponding reasoning
mechanism one of existing DL reasoners (e.g. Pellet, FaCT,
RACER etc.).

◼ Description logics are subsets of the full first-order logic (FOL)
that ensure efficient reasoning support.

Web Ontology Languages-
Reasoning

OWL-Syntax

◼ Uses RDF syntax based on XML (RDF/XML)

◼ There are other syntax formats for OWL:

-XML based, RDF/XML independent

-An abstract syntax more compact and readable than its
XML and RDF/XML counterparts

-A graphical syntax based on UML

◼ An OWL document is an RDF document and is
commonly called an OWL ontology.

OWL-Header
◼ Root element

<rdf:RDF

 xmlns:owl = “http://www.w3.org/2002/07/owl#”

 xmlns:rdf = “http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 xmlns:rdfs = “http://www.w3.org/2001/01/rdf-shema#”

 xmlns:xsd = “http://www.w3.org/2001/02/XMLSchema#”>

◼ Assertions

 <owl:Ontology rdf:about = “”>

 <rdfs:comment>παράδειγμα οντολογίας OWL</rdfs:comment>

 <owl:priorVersion rdf:resource=http://www.mydomain.org/

 uni-ns-old”/>

 <owl:imports rdf:resource=http://www.mydomain.org/persons”/>

 <rdfs:label>University Ontology</rdfs:label>

 </owl:Ontology>

owl:imports has implications for the
logical meaning of the ontology: it
imports other ontologies.

Το owl:imports έχει
μεταβατική ιδιότητα.

owl:imports has transitive property

OWL-Classes

◼ They are defined using the owl:Class element.

 <owl:Class rdf:ID=“associateProfessor”>

 <rdf:subClassOf rdf:resource=“#academicStaffMember”/>

 </owl:Class>

<owl:Class rdf:about=“#associateProfessor”>
 <owl:disjointWith rdf:resource=“#professor”/>
 <owl:disjointWith rdf:resource=“#assistantProfessor”/>
</owl:Class>

<owl:Class rdf:ID=“faculty”>
 <owl:equivalentClass rdf:resource=“# academicStaffMember”/>
</owl:Class>

Superclass of all classes
owl:Thing

Subclass of all classes-
empty class
owl:Nothing

OWL-Properties

◼ Object properties

-Associate objects with each other (eg isTaughtBy,
supervises)

◼ Data type properties

-They associate objects with values ​​of a data type (eg
phone, title, age).

-OWL has no predefined data types

-Allows the use of XML Schema data types.

OWL-Properties

◼ Examples

<owl:ObjectProperty rdf:ID=“isTaughtBy”>
 <rdf:domain rdf:resource=“#course”/>
 <rdf:range rdf:resource=“#academicStaffMember”/>
 <rdfs:subPropertyOf rdf:resource=”#involves”/>
</owl:ObjectProperty>

<owl:DataTypeProperty rdf:ID=“age”>
 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema
 #nonNegativeInteger”/>
</owl:ObjectProperty>

Object property

Data type property

More than one domain and range can be declared, in
which dcase we take their intersection.

User data types are collected in an XML schema and then
used in an OWL ontology.

OWL-Properties

<owl:ObjectProperty rdf:ID=“teaches”>
 <rdf:domain rdf:resource=“#academicStaffMember”/>

<rdf:range rdf:resource=“#course”/>
 <owl:inverseOf rdf:resource=”#isTaughtBy”/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=“lecturesIn”>
 <owl:equivalentProperty rdf:resource=“#teaches”/>
</owl:ObjectProperty>

Reverse properties association

Property equivalence

OWL-Properties

◼ Property restrictions

<owl:Class rdf:about=“#firstYearCourse”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#isTaughtBy”/>
 <owl:allValuesFrom rdf:resource=”#Professor”/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

(First year courses are taught only by professors.)

Anonymous
superclass

We declare that the class 'firstYearCourse' is a subclass of an
anonymous class, which gathers all objects that satisfy some
constraints.

The “owl:allValuesFrom” element
declares the possible values ​​that
the “isTaughtBy” property can
take, as instances of the class
'Professor'.

OWL-Properties

<owl:Class rdf:about=“#mathCourse”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#isTaughtBy”/>
 <owl:hasValue rdf:resource=”#949318”/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

(All mathematics courses are taught by the teacher with code
949318-e.g. John Hatzis)

The “owl:hasValue” element specifies a specific value that the
“isTaughtBy” property should take.

OWL-Properties

<owl:Class rdf:about=“#academicStaffMember”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#teaches”/>
 <owl:someValuesFrom rdf:resource=”#undergradCourse”/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

(All members of academic staff must teach at least one
undergraduate course)

owl:allValuesFrom → universal quantification

owl:someValuesFrom → existential quantification

OWL-ιδιότητες
<owl:Class rdf:about=“#department”>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#hasMember”/>
 <owl:minCardinality rdf:datatype=”&xsd;nonNegativeInteger”/>
 10
 </owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#hasMember”/>
 <owl:maxCardinality rdf:datatype=”&xsd;nonNegativeInteger”/>
 30
 </owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

(A department must have a minimum of 10
and a maximum of 30 members)

An “owl:Restriction” element contains an
“owl:onProperty” element and one or
more restriction declarations.

OWL-Properties

◼ owl:Restriction defines an anonymous class, which has
no ID and has local scope.

◼ There are generally two kinds of classes, regular ones
defined through owl:Class and having an ID, and local
anonymous classes (as collections of objects that satisfy
constraints or combinations of classes), as above, also
called class expressions.

◼ An owl:Restriction element contains an owl:onProperty
element and one or more constraint declarations
(owl:allValuesFrom, owl:someValuesFrom, owl:hasValue,
owl:minCardinality, owl:maxCardinality)

OWL-Properties

◼ Special properties

– owl:TransitiveProperty (defines a transitive property:
“is taller than”, “is ancestor of”)

– owl:SymmetricProperty (defines a symetric property :
“has same grade as”, “is sibling of”)

– owl:FunctionalProperty (defines a property with at
most one value for each object: “age”, “height”)

– owl:InverseFunctionalProperty (defines a property for
which two different objects cannot have the same
value: “isTheSocialSecurityNumber”)

OWL-Properties

<owl:ObjectProperty rdf:ID=“hasSameGradeAs”>
 <rdf:type rdf:resource=“&owl;TransitiveProperty”/>
 <rdf:type rdf:resource=“&owl;SymmetricProperty”/>
 <rdfs:domain rdf:resource=”#student”/>
 <rdfs:range rdf:resource=”#student”/>
</owl:ObjectProperty>

Example

OWL-Properties

Functional properties
◼ If a property is 'functional', for a given entity,

there can be at most one entity associated
with that property.

– For a given domain, range should be unique

◼ Functional properties are also known as
single value properties.

OWL-Properties

Inverse functional properties

◼ If a property is 'inverse functional', then its
inverse is functional.

– For a given domain, range should be unique

OWL-Properties

Functional vs Inverse functional properties

domain range example

Functional

Property

For a given

domain

Range is

unique

hasFather:

A hasFather B,

A hasFather C

 →B=C

InverseFunctional

Property

Domain is

unique

For a given

range

hasID:

A hasID B,

C hasID B

 →A=C

OWL-Properties

Transitive properties

◼ If a property is transitive and relates entity A
to entity B and entity B to entity C, then it is
inferred that it also relates entity A to C.

OWL-Properties

Symmetric properties

◼ If a property is 'symmetric' and relates entity
A to entity B, then it is inferred that it also
relates entity B to A.

OWL-logical combinations

<owl:Class rdf:about=“#course”>
 <rdfs:subClassOf>
 <owl:Class>
 <owl:complementOf rdf:resource=”#staffMember”/>
 </owl:Class>
 </rdfs:subClassOf>
</owl:Class>

(Each course is an instance of the complement of staff members, i.e. no
class is a staff member, i.e. class 'course' and class 'staff member' are
foreign to each other.)

(Alternatively, the element owl:disjointWith could be used.)

Logical combinations of classes (union, intersection, complement)

staffMember

staffMember

course

OWL-logical combinations

<owl:Class rdf:ID=“peopleAtUni”>
 <owl:unionOf rdf:parseType = “Collection”>
 <owl:Class rdf:about = “#staffMember”/>
 <owl:Class rdf:about=“#student”/>
 </owl:unionOf>
</owl:Class>

(The new class is not declared to be a subclass of the union, but equal
to the union of two classes: case of class equivalence. It also doesn't
state that the two classes must be foreign to each other, so a member
of ‘staffMember’ can also be member of ‘student’).

staffMember student

peopleAtUni

OWL-logical combinations

<owl:Class rdf:ID=“facultyInCS”>
 <owl:intersectionOf rdf:parseType = “Collection”>
 <owl:Class rdf:about = “#faculty”/>
 <owl:Restriction>
 <owl:onProperty rdf:about = “#belongsTo”/>
 <owl:hasValue rdf:about = “#CSDepartment”/>
 </owl:Restriction>
 </owl:interSectionOf>
</owl:Class>

(The intersection of two classes is created, one of which is
anonymous - objects belonging to the Department of Computers -
and the other the 'faculty', so finally the teaching staff of the
Department of Computers is resulted.)

Anonymous
class

faculty belongsTo CSDepartment
facultyInCS

OWL- nested logical operators

Administrative staff (adminStaff) are the staff
members (staffMember) who are neither teaching
(faculty) nor technical staff (techSupportStaff).

<owl:Class rdf:ID="adminStaff">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#staffMember"/>
 <owl:Class>
 <owl:complementOf>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#faculty"/>
 <owl:Class rdf:about="#techSupportStaff"/>
 </owl:unionOf>
 </owl:Class>
 </owl:complementOf>
 </owl:Class>
 </owl:intersectionOf>
</owl:Class>

OWL- nested logical operators

staffMember

techSup-
portStaff

faculty

unionOf
adminStaff

unionOf

OWL-enumeration

<owl:Class rdf:ID=“weekdays”>
 <owl:oneOf rdf:parseType = “Collection”>
 <owl:Thing rdf:about = “#Monday”/>
 <owl:Thing rdf:about = “#Tuesday”/>
 <owl:Thing rdf:about = “#Wednesday”/>
 <owl:Thing rdf:about = “#Thursday”/>
 <owl:Thing rdf:about = “#Friday”/>
 <owl:Thing rdf:about = “#Saturday”/>
 <owl:Thing rdf:about = “#Sunday”/>
 <owl:oneOf>
</owl:Class>

OWL- instances
As in RDF

<rdf:Description rdf:ID=“949352”>
 <rdf:type rdf:resource = “#academicStaffMember”/>
</rdf:Description>

or equivalently

<academicStaffMember rdf:ID = “949352”/>

or with more details

<academicStaffMember rdf:ID = “949352”/>
<uni:age rdf:datatype = “&xsd;integer”>39</uni:age>

</academicStaffMember>

OWL- instances

◼ Owl does not adopt the assumption of unique names

Π.χ.

<owl:ObjectProperty rdf:ID=“isTaughtBy”>
 <rdf:type rdf:resource=“&owl;FunctionalProperty”/>
</owl:ObjectProperty>
(Each course is taught by at most one member of staff)

<course rdf:ID=“CS4553”>
 <isTaughtBy rdf:resource=“#949318”/>
 <isTaughtBy rdf:resource=“#949352”/>
</course>
(Course CS4553 is taught by 949318 and 949352)

Owl does not create a reasoning error. 949318 and 949352 are
considered non-different.

OWL- instances

◼ To ensure diversity we must declare it:

<lecturer rdf:ID=“949318”>
 <owl:differentFrom rdf:resource=“#949352”/>
</lecturer>

<owl:AllDifferent>
 <owl:distinctMembers rdf:parseType=“Collection”/>
 <lecturer rdf:about = “#949318”/>
 <lecturer rdf:about = “#949352”/>
 <lecturer rdf:about = “#949311”/>
 </owl:distinctMembers>
</owl:AllDifferent>

or in a group mode:

OWL Sub-languages

◼ OWL Full

– It uses all the fundamental elements ("constructors") of OWL
and allows combining them in any arbitrary way, via RDF and
RDFS.

– Capability to change meaning of fundamental elements of RDF
and OWL.

– Fully compatible with RDF.
▪ Every valid RDF document is also a valid OWL Full document.

▪ Any valid inference in RDF is also a valid inference in OWL full.

– Reasoning efficiency problems.

OWL Sub-languages

◼ OWL DL (SHOIN(D))

– Rectrictions to OWL DL ontology
▪ Vocabulary partitioning. Each resource is just: class, data type, data type

property, object property, individual element, data value, part of built-in
vocabulary. E.g. a class cannot be an individual element at the same time, or a
property cannot be both a type property and an object property.

▪ Ρητή τυποποίηση (explicit typing). Partitioning must be explicitly declared.
E.g. Even if the following is declared

<owl:Class rdf:ID=“C1”> <rdf:subClassOf rdf:about=“#C2”/> </owl:Class>

 the following must be explicitly declared too:

<owl:Class rdf:ID=“C2”/>

▪ Separation of properties. The sets "object properties" and "type properties" are
foreign to each other. So the following cannot be defined as data type
properties: owl:inverseOf, owl:FunctionalProperty,
owl:InverseFunctionalProperty, owl:SymmetricProperty

OWL Sub-languages

– Restrictions to OWL DL ontology (cont.)
▪ Absence of transitive cardinality constraints. Cardinality constraints

cannot be applied to transitive properties (or their superproperties
that are also transitive)

▪ Restricted anonymous classes. Anonymous classes may only appear
as the domain and values set of either the owl:equivalentClass or
owl:disjointWith element, as well as the values set (but not the
domain) of the rdfs:subClassOf property.

– Full compatibility with RDF is lost.
▪ An RDF document should be extended in some ways and restricted

in others to be considered an OWL DL document.

▪ Every valid OWL DL document is a valid RDF document.

OWL Sub-languages

◼ OWL Lite (SHIF(D))

– Rectrictions to OWL Lite ontology (on top of those for OWL DL)

▪ The elements ("constructors") owl:oneOf, owl:disjointWith,
owl:unionOf, owl:complementOf and owl:hasValue are not allowed.

▪ Cardinality statements (min, max, and exact numbers) can only be
made for the values ​​0 or 1, not for arbitrary non-negative integers.

▪ Statements owl:equivalentClass can no longer be made between
anonymous classes, but only between class identifiers.

▪ Every valid OWL Lite ontology is a valid OWL DL ontology.

▪ Any valid inference in OWL Lite is a valid inference in OWL DL

Printers Ontology
From “A Semantic Web Primer”, by G. Antoniou and F.V. Harmelen

Printers Ontology

Printers Ontology

Printers Ontology

Printers Ontology

Printers Ontology

Printers Ontology

Printers Ontology

Printers Ontology

Printers Ontology

	Διαφάνεια 1
	Διαφάνεια 2: Web Ontology Languages
	Διαφάνεια 3: Web Ontology Languages-Reasoning
	Διαφάνεια 4: Web Ontology Languages-Reasoning
	Διαφάνεια 5: OWL-Syntax
	Διαφάνεια 6: OWL-Header
	Διαφάνεια 7: OWL-Classes
	Διαφάνεια 8: OWL-Properties
	Διαφάνεια 9: OWL-Properties
	Διαφάνεια 10: OWL-Properties
	Διαφάνεια 11: OWL-Properties
	Διαφάνεια 12: OWL-Properties
	Διαφάνεια 13: OWL-Properties
	Διαφάνεια 14: OWL-ιδιότητες
	Διαφάνεια 15: OWL-Properties
	Διαφάνεια 16: OWL-Properties
	Διαφάνεια 17: OWL-Properties
	Διαφάνεια 18: OWL-Properties
	Διαφάνεια 19: OWL-Properties
	Διαφάνεια 20: OWL-Properties
	Διαφάνεια 21: OWL-Properties
	Διαφάνεια 22: OWL-Properties
	Διαφάνεια 23: OWL-logical combinations
	Διαφάνεια 24: OWL-logical combinations
	Διαφάνεια 25: OWL-logical combinations
	Διαφάνεια 26: OWL- nested logical operators
	Διαφάνεια 27: OWL- nested logical operators
	Διαφάνεια 28: OWL-enumeration
	Διαφάνεια 29: OWL- instances
	Διαφάνεια 30: OWL- instances
	Διαφάνεια 31: OWL- instances
	Διαφάνεια 32: OWL Sub-languages
	Διαφάνεια 33: OWL Sub-languages
	Διαφάνεια 34: OWL Sub-languages
	Διαφάνεια 35: OWL Sub-languages
	Διαφάνεια 36: Printers Ontology
	Διαφάνεια 37: Printers Ontology
	Διαφάνεια 38: Printers Ontology
	Διαφάνεια 39: Printers Ontology
	Διαφάνεια 40: Printers Ontology
	Διαφάνεια 41: Printers Ontology
	Διαφάνεια 42: Printers Ontology
	Διαφάνεια 43: Printers Ontology
	Διαφάνεια 44: Printers Ontology
	Διαφάνεια 45: Printers Ontology

