CEID
MSc on DATA DRIVEN COMPUTING AND
DECISION MAKING (DDCDM)

Reasoning with Description
Logics

I. HATZILYGEROUDIS, PROFESSOR EMERITUS

DL System Architecture

Knowledge Base

TBox
Woman = Person~Female
Man = Person~—Female

Abox

Man(BOB)
hasChild(BOB, MARY)
—Doctor(MARY)

Reasoning in DL

m Concept satisfiability

Whether a concept C is satisfiable with respect to a
TBox T (i.e. does not create a conflict)

m Concept subsumption
Whether a concept C subsumes another concept D
(C < D) with respect to a TBox T
m Concept equivalence
Whether two concepts C and C are equivalent (C = D)
with respect to a TBox T

Reasoning in DL

m Concept inconsistency
Whether a concept C is inconsistent (disjoint) with
concept D with respect to TBox T

m [nstance checking
Whether an entity ais instance of concept C with
respect to a TBox T and an ABox A

The following refer to DL AALC

Satisfiability

m All previous types of reasoning are equivalent to some
satisfiability checking:
— Concept subsumption:
C < D iff C n =D is non-satisfiable
(C is subsumed by D or D subsumes C)
— Concept equivalence:
C=DiffCcDandD c C, that is
iff (C n =D) u (=C n D) is non-satisfiable
— Concept inconsistency:
C and D are disjoint iff C n D is non-satisfiable
— Instance checking:
a is an instance of C iff A U {a: —C} is non-satisfiable
(A is an ABox)

Tableau Reasoning Method

m [t is a concept satisfiability checking method

m Process
1. Convert the concept to Negation Normal Form (NNF)

2. Apply Completion Rules in arbitrary order until:
v" encounter a conflict case or
v' there is no other applicable rule

3. The concept is satisfied iff a complete and clash-free

tableau is produced, i.e. it does not contain L nor any pair
{-C, C}.

Negative Normal Form (NNF)

m All negations are moved to the level of concept
names

m NNF transformation rules (from Zakharyaschev
slides)

-~C U-D (De Morgan’'s law)

—~C' M —=D (De Morgan’s law)
dR.-C
VR.-C

Negative Normal Form (NNF)

Transform the following concept:

-3dR.(AM-B) U ~VR.(mA U -B)

in equivalent NNF

—3R.(An—-B) LU —VR.(~AL-B) =
VRS(AT1=B) U —VR.(~AU -B) =
VR.(~AU[SSB)) U —-VR.(~A U -B)
VR.(~AU B) u BVRIEALSE) =
VR.(-AU B) U 3R/S(mAU-B) =
VR.(~AUB) u 3R.(554n[=58B) =

VR.(~AU B) U 3R.(AN B)

)

(use =3R.D = VR.—D)
(use =(AND) = -AU-D)
(use =—=B = B)

(use =VR.D = 3IR.-D)
(use -(CuU D) = -CnN~-D)

(use =C = C)

(from Zakharyaschev’s slides)

Definitions

d Constraint: Expression of the form «x: C» n «(x, y): R»

 Constraint system: A non-empty finite set of
constraints S

 Completion rules: A transformation S > S, where S’ is
a constraint system which includes S

 Complete system: S is complete if nho completion rule
can apply to S

 Clash: S includes a class if {x: A, x;: —=A} = S, where A
IS @ concept hame

Completion Rules

—n SU{x:C, x: D}

If (O) 4 i C Il D iS in S (intersection)
(b) x: C and x: D are notbothin S

—y SU{x: E}
if (@) z:C LD lsin S (union)

(b) neither : C nor : D isin S
(c) E=C or E=D (branching!)

(from Zakharyaschev’s slides)

Completion Rules

—v SU{y: C}

if (@) «:VR.C isin S (Universality)
b)) (z,y): R isin S
(c) y:C isnotin S

Su{(z,y): R, y: C}

z: AR.C isin S EEEY)
there is no z such that

both (z,z): R and z: C arein S
y is a fresh individual

(from Zakharyaschev’s slides)

S =n SU{x:C, z: D}

if (@ z:CnND isin S
() x: C and x: D are notbothin S

Examples

Tableau Algorithm: example

S -, Su{xz: E}

if (@ z:CUD isin S
(b) neither z: C nor : D isin S
(©0 E=C or E=D (branching!)

let |Woman = Person r Female |,

Does the concept

Mother = Parent m Female |

and | Parent = Person mn 3hasChild.Person

Woman| subsume the concept

Mother |?

i.e., is the concept | "Woman rn Mofher| satisfiable?

So :{113:

(—=Person LI —=Female) m

((Person 1 3hasChild.Person) m Female) }

Si1 —>n S =S U{x:
52—)|—153 ZSQU{JZ:

So —=nS1 = SoU{ x: ~Person LI -Female,
x: (Person m 3hasChild.Person) m Female }

Person m 3hasChild.Person, x: Female }
Person, « : 3hasChild.Person }
Sz = Si41 = SsU { x: —Person } clash
Ss —u Sie =S3uU{z: -Female} clash

Thus the concept

—Woman rn Mother| is unsatisfiable,

and so

Woman

subsumes | Mother

Examples

(the previous one as a tree)

{x:(—Personu —FemaleJj(Person~3hasChild.Person)~Female)} s
l >N (kavovag TOUNC)

{x:—Personu —~Female, x:(Personn3hasChild.PersonjFemale} S,

1 >N
{x:—Personu —Female, XiPersor{-ihasChild:Person, X:Female} S
1 >N
{x:—PersoflL)—Female, XiPerson, XiShasChildiPersan, x:Female} S
>U / (kavovag evwonc)

{ , X:3hasChild. n, x:Female} S,
(clash) {00, x:Person, x:3hasChild.Person,
(clash)

Examples

(the previous one in a more abstract tree)

53
/ \éu

(clash) S,; S, (clash)

Examples

Reasoning with ABoxes: example

Given: Samis a person living in Germany. Sam drinks beer and Deuchars. A
Bavarian is a person who lives in Germany, drinks beer and only beer.

Q: Is Sam a Bavarian?

ABox A TBox T

sam: Person Bavarian = Person M dlivesin.Germany
sam: dlivesin.Germany M 3drinks.Beer M vdrinks.Beer

sam: 3drinks.Beer
(sam, deuchars) : drinks

an instance of | Bavarian |-

1. Reduction to ABox consistency:

Sam is an instance of Bavarian iff AU {sam: =Bavarian } is unsatisfiable

2. NNF of =Bavarian:

—-Person U Vlivesin.—Germany U Vdrinks.—Beer L 3drinks.—Beer

S -y Su{y:C} S -3 SU{(z,y): R, y: C}
if (@ «:VR.C isin S

if (@ z:3JR.C isin S
) . e (b) thereisno z such that
® (””y)j i |s.|n e Xa I I I p eS both (z,z): R and 2: C arein S
(© y:Cisnofin § © y isafresh individual

Reasoning with ABoxes: example (cont.)

= { sam: Person, sam: dlivesin.Germany,

sam: 3drinks.Beer, (sam, deuchars): drinks,
sam: —Person U Vlivesin.—Germany

Ll Vdrinks.—Beer L 3drinks.—Beer }
So =1 S11 = So U { sam: —Person } clash

So —u Si2 = So U {sam: Viivesin.-Germany }

S1.2 =3 Sa2= S12 U { (sam, x): livesin, : Germany }
Ss2 —v Sza= S22 U{ z: -Germany } clash

So —u S1.3 = So U { sam: Vdrinks.—Beer }

S1.3 —3 Sa3= S13 U { (sam, x): drinks, x: Beer }

Ss.3 —+v Ssa= Ss3U { x: —Beer} clash

So —u S1.4 = So U { sam: Idrinks.—Beer }

(...see the next slide)

(from Zakharyaschev’s slides)

Examples

Reasoning with ABoxes: example (cont.)

= { sam: Person, sam: 3Jlivesin.Germany,
sam: 3drinks.Beer, (sam, deuchars): drinks,
sam: —Person U Vlivesin.—Germany
L Vdrinks.—Beer 1 3drinks.—Beer }

So —u S1.4 = So U {sam: Idrinks.—Beer }
S1.4 —3 S24= S1.4 U { (sam,x): drinks, «: —Beer }
So.4 —3 S3.4= S>4U { (sam,y): drinks, y: Beer }

S3.4 —3 S44= S34U{ (sam, z): livesin, z: Germany }

S4.4 IS a complete clash-free constraint system. Therefore,
AU {sam: —-Bavarian}

is satisfiable and Samis not an instance of Bavarian.
Indeed, the interpretation which is obtained on the fourth branch on the one hand is a model

of \A; on the other hand it includes the pair of constraints (sam, «) : drinks and x: —Beer, which
contradicts the definition of a Bavarian (‘drinks only beer”).

Note that nothing would change if we added | deuchars: Beer | fo the ABox.

(from Zakharyaschev’s slides)

	Διαφάνεια 1
	Διαφάνεια 2: DL System Architecture
	Διαφάνεια 3: Reasoning in DL
	Διαφάνεια 4: Reasoning in DL
	Διαφάνεια 5: Satisfiability
	Διαφάνεια 6: Tableau Reasoning Method
	Διαφάνεια 7: Negative Normal Form (NNF)
	Διαφάνεια 8: Negative Normal Form (NNF)
	Διαφάνεια 9: Definitions
	Διαφάνεια 10: Completion Rules
	Διαφάνεια 11: Completion Rules
	Διαφάνεια 12: Examples
	Διαφάνεια 13: Examples
	Διαφάνεια 14: Examples
	Διαφάνεια 15: Examples
	Διαφάνεια 16: Examples
	Διαφάνεια 17: Examples

