CEID

MSc on DATA DRIVEN COMPUTING AND DECISION MAKING (DDCDM)

Description Logics-DLs)

I. HATZILYGEROUDIS, PROFESSOR EMERITUS

Introductory (1)

Knowledge Representation Methods Logic based (variations of FOL) Performance problems Clear semantics – Structured (Semantic Nets, Frames) Non-clear semantics Good performance

Introductory (2)

How can we assign explicit semantics to non-logical representations?

Expressing structured representations through logical representations.

Consequences?

Loss of some features of structured representations.

Gain the clear semantics.

Description Logics-DLs

DL-Basic Elements (1)

concepts

- Represented by unary predicates
- They represent subsets of the domain D (e.g. female, person) and correspond to classes of the structured representations.
- Distinguished in primitive (e.g. male, person) and defined (e.g. man is defined as person with gender male).

roles

- Represented by binary predicates
- Represent relations between concepts (e.g. hasChild)

DL-Basic Elements (2)

constructors or operators

- Used for creating concept or term descriptions
- To produce new (defined) concepts.
- Basic constructors:

 - \cap (intersection)
 - \subset , \subseteq (subset)
 - ¬ (negation)
- Examples: Person∩Female, Male∪Female, Person∩¬Female
- quantifiers
 - ∀ (universal), ∃ (existential)

DL-Basic Elements (3)

Value restrictions

- They are used to assign constraints on role values.
- Format: ∀R.C, ∃R.C (R: role, C: concept)
 - C is a universal or existential constraint on the values of R.
- Examples:
 - **HasChild.Female** (entities that have at least one daughter)
 - ∀hasChild.Female (entities that have only daughters)
- Individuals or nominals
 - They correspond to logic constants or class instances of structured representations (e.g. JOHN, MARIA).

Equivalences DL-FOL (1)

Constructor	DL Syntax	FOL Syntax	DL example	FOL example
intersectionOf	C1∩C2	C1(x)∧C2(x)	Human∩Male	Human(x) Alle(x)
unionOf	C1∪C2	C1(x)∨C2(x)	Doctor ∪Lawyer	Doctor(x) Lawyer(x)
complementOf	−C	¬C(x)	Male	–Male(x)
one of	{a1}∪{a2}	x=a1∨x=a2	{John}∪{Mary}	John∨Mary
allValuesFrom	∀ P.C	$\forall y P(x,y) \Rightarrow C(y)$	∀hasChild.Doctor	$\forall y \text{ hasChild}(x,y) \Rightarrow$ Doctor(y)
someValuesFrom	∃ P.C	∃yP(x,y) ∧ C(y)	∃hasChild.Doctor	∃y hasChild(x,y) ∧ Doctor(y)
hasValue	∃ P. {a}	P(x,a)	∃hasChild.{Mary}	hasChild(x,Mary)
subClassOf	C1⊆C2	$\forall x C1(x) \Rightarrow C2(x)$	Human⊆Animal	$\forall x \text{ Human}(x) \Rightarrow$ Animal(x)
equivalentClass	C1≡C2	∀x C1(x) ⇔ C2(x)	Man≡Human∩Male	$\forall x \text{ Man}(x) \Leftrightarrow$ Human(x) \land Male(x)

Equivalences DL-FOL (1)

Constructor	DL Syntax	FOL Syntax	DL example	FOL example
disjointWith	C1⊆¬C2 ἡ C2⊆¬C1	$\forall x C1(x) \Rightarrow \neg C2(x)$	Female⊆¬Male	$\forall x \text{ Female}(x) \Rightarrow \neg Male(x)$
minCardinality	≥nP.C ἡ ≥nP	∃ ^{≥n} y P(x,y) ∧ C(y) ἡ ∃ ^{≥n} y P(x,y)	≥2hasChild.Doctor ἡ≥2hasChild	∃ ^{≥n} y hasChild(x,y) ∧ Doctor(y) ή ∃ ^{≥n} y hasChild(x,y)
maxCardinality	≤nP.C ἡ ≤nP	∃ ^{≤n} y P(x,y) ∧ C(y) ἡ ∃ ^{≤n} y P(x,y)	≤2hasChild.Doctor ἡ ≤2hasChild	∃ ^{≤n} y hasChild(x,y) ∧ Doctor(y) ή ∃ ^{≤n} y hasChild(x,y)

DL Knowledge Base

Tbox (Terminological Box)

- It represents general knowledge related to the domain of the problem (intensional knowledge).
- This knowledge concerns definitions and taxonomichierarchical relationships of concepts.

ABox (Assertional Box)

- It represents special knowledge related to the specific problem (extensional knowledge).
- This knowledge is about specific facts related to the problem.

Tbox (1)

- Concept definitions
 - Woman \equiv Person \cap Female Man \equiv Person \cap \neg Female

Hypotheses:

- Only one definition for each concept is allowed.
- Definitions are acyclic (a concept is not defined by itself or through other concepts that indirectly refer to it).

Tbox (2)

Taxonomic relations-General axioms
Man ⊂ Human
∃hasChild.Person ⊆ Person
(Only persons can have children who are persons)
More analytically
(Entities that have at least one child that is a person are persons)

Specific knowledge (facts)
Man(BOB) ή BOB: Man
hasChild(BOB, MARY) ή (BOB, MARY): hasChild
¬Doctor(MARY) ή MARY: ¬Doctor

Types of Description Logics (DL)

■ Basic DL: *AL* (Atrributive Language)

Offers:

- concepts: C, D
- Atomic concepts: A
- Most general concept (Top): T
- Bottom concept (Bottom): \perp
- Concepts intersection: $C \cap D$
- Value restrictions: $\forall R.C$
- Restricted existential quantification: $\exists R. \perp$
- Negation only to atomic concepts
- Equivalence: $C \equiv D$
- Subsumption: $C \subseteq D$

Types of Description Logics (DL)

■ Basic DL: *AL* (Atrributive Language)

Examples:

Person, Female : atomic/primitive concepts

Person \cap Female

Person $\cap \neg$ Female

Person $\cap \exists hasChild.T$

Person $\cap \forall$ hasChild.Female Person $\cap \forall$ hasChild.T (defined) concepts

AL Extensions

- Addition of «union»: $C \cup D$ (symbol \mathcal{U})
- Addition of complete \exists : $\exists R.C$ (symbol \mathcal{E})
- Addition of numerical restrictions: $\geq n R$, $\leq n R$ (symbol \mathcal{N})
- Addition of negation to any concept: $\neg C$, $\neg (C \cap D)$ (symbol *C*)

Depending on the extensions we have different variations $\Pi\Lambda$: ALC, ALEN, ALUN $\kappa\lambda\Pi$.

When a DL has the *C* extension, then it can simulate \mathcal{U} kall \mathcal{E} . So, we have e.g. $\mathcal{ALUE} \equiv \mathcal{ALC}$ and $\mathcal{ALUEN} \equiv \mathcal{ALCN}$.

More Extensions

- Roles hierarchy (symbol: \mathcal{H})
- Limited complex roles inclusion, reflexivity and nonreflexivity, role incompatibility: (symbol: *R*)
- Nominals (Enumerate classes of constraints on object values): (symbol: O)
- Reverse properties: (symbol: I)
- Functional properties: (symbol: \mathcal{F})
- Qualified cardinality restrictions: (symbol: Q)
- Using properties of data types, data values, or data types: (symbol : (D))

DL Examples

- S: abbreviation of ALC with transitional roles
- SHIQ
- *SHOI*M^(D) (OWL-DL)
- *SROIQ*^(D) (OWL 2)
- $SHIF^{(D)}$ (OWL-Lite)

Examples

Entities of which at least one child is a person.

Entities whose children are all boys.

Human, Doctor, Professor, Female, hasChild, married

Entities whose at least one child is a person and a boy.

Examples

Human, Doctor, Professor, Female, hasChild, married

2. Represent/Define in DL the following concept/class:

«Individuals whose children are all either doctors or professors»

 \forall hasChild.(Doctor \cup Professor)

Human, Doctor, Professor, Female, hasChild, married

3. Represent/Define in DL the following concept/class : «Men who are married to a doctor and their children are either doctors or professors»

Examples

4. (\geq 3 hasChild) \cap (\leq 2 hasFemaleRelative)

What does it mean in natural language?

Individuals who have at least 3 children and at most 2 female relatives

5. Woman $\cap \leq$ 2 (hasChild \cap hasFemaleRelative) What does it mean in natural language?

A woman who has at most 2 daughters