
AUTOMATED REASONING

WITH LOGIC

1
CEID

MSc on DATA DRIVEN COMPUTING AND

DECISION MAKING (DDCDM)

I. HATZILYGEROUDIS, PROFESSOR EMERITUS

LOGIC AND AUTOMATED REASONING

3/11/2024Ι. Χατζηλυγερούδης

2

NATURAL

LANGUAGE

(NL)

FOL

CLAUSAL FORM

(CF)
RESOLUTION

REFUTATION

answer

question

CLAUSAL FORM OF FOL (1)

3/11/2024Ι. Χατζηλυγερούδης

3

BASIC POINTS

• Handling FOL propositions for inference would be complex (due to

the many logic symbols) and would cause performance problems.

• The clause form of FOL is a syntactically much simpler form of

logic, where all logic symbols have been removed and only the

disjunction remains.

• The important thing is that although this form in terms of information

and naturalness is subordinate to FOL, in terms of derivability

capabilities it is equivalent.

• Also, there is an automatic conversion process

3/11/2024Ι. Χατζηλυγερούδης

4

BASIC DEFINITIONS

• literal: an atom (positive literal) or the negation of an atom

(negative literal)

• clause: a set of literals representing their disjunction

TYPES OF CLAUSES

• empty

• unit

• positive, negative, mixed

• Horn (at most one positive literal)

CLAUSAL FORM OF FOL (2)

3/11/2024Ι. Χατζηλυγερούδης

5

CONVERSION TO CLAUSAL FORM (CF)

1. Implication elimination

(F1  F2) → (F1  F2)

2. Reduce the scope of negation

(F) → F

(x) F → ( x) (F)

( x) F → ( x) (F)

(F1  … Fn) → (F1  …  Fn)

(F1  …  Fn) → (F1  …  Fn)

CLAUSAL FORM OF FOL (3)

3/11/2024Ι. Χατζηλυγερούδης

6

3. Rename variables with the same name that are bound by

different quantifiers (usually not applicable)

4. Transform to PNF

5. Eliminate existential quantifiers (Skolemisation)-Replace

corresponding variables with

• Skolem constants or

• Skolem functions

6. Remove universal quantifiers

7. Transform to CNF

(F  (F1  …  Fn)) → ((F  F1)  …  (F  Fn))

CLAUSAL FORM OF FOL (4)

3/11/2024Ι. Χατζηλυγερούδης

7

8. Remove logical connectives and write down resulted clauses

9. Rename variables (in case that more than one clause are

produced)

CLAUSAL FORM OF FOL (5)

CONVERSION TO CF-EXAMPLE (1)

3/11/2024Ι. Χατζηλυγερούδης

8

FOL Formula: (x) (a(x)  b(x))  ( y) d(x, y)

1. Elimination of implication

(x) (a(x)  b(x))  ( y) d(x, y)

2. Reduce the scope of negation

 (x) (a(x)   b(x))  ( y) d(x, y)

3. Rename variables (not applicable)

4. Transform to PNF

(x) ( y) ((a(x)   b(x))  d(x, y))

5. Eliminate existential quantifiers

(x) ((a(x)   b(x))  d(x, f(x)))

3/11/2024Ι. Χατζηλυγερούδης

9

6. Remove universal quantifiers

 ((a(x)   b(x))  d(x, f(x)))

7. Transform to CNF (not applicable)

8. Remove connectives-create clauses

φ  {a(x),  b(x), d(x, f(x))}

9. Rename variables (not applicable)

CONVERSION TO CF-EXAMPLE (2)

LOGIC AND AUTOMATED REASONING

3/11/2024Ι. Χατζηλυγερούδης

10

NATURAL

LANGUAGE

(NL)

FOL

CLAUSAL FORM

(CF)
RESOLUTION

REFUTATION

answer

question

SUBSTITUTION (1)

3/11/2024Ι. Χατζηλυγερούδης

11

DEFINITION

A substitution θ is a finite set of the form

{t1/v1, … , tn/vn} with vi  ti

where t1 , … , tn terms → bindings

and v1 , … , vn variables→ bound variables

If none of ti includes any of vi then it is called

ground substitution

Application of a substitution (θ) to an expression (Ε):

Εθ (instance of Ε)

3/11/2024Ι. Χατζηλυγερούδης

12

Composition of substitutions

θ ={t1/x1, … , tn/xn}, σ ={u1/y1, … , um/ym}

θoσ (ή θσ) ={t1σ/x1, … , tnσ/xn, u1/y1, … , um/ym}

except tiσ/xi with tiσ = xi

and ui/yi with yi  {x1 , … , xn }

SUBSTITUTION (2)

3/11/2024Ι. Χατζηλυγερούδης

13

1. θoσ = {f(b)/x, b/z, a/x, b/y, c/z}

Example

Let θ = {f(y)/x, y/z} , σ = {a/x, b/y, c/z}

Then

2. θoσ = {f(b)/x, b/z, b/y}

SUBSTITUTION (3)

UNIFICATION (1)

3/11/2024Ι. Χατζηλυγερούδης

14

• A substitution θ is called a unifier of the set {E1, … , Εn} if

Ε1θ = … = Εnθ. The set is called unifiable.

• A unifier σ of a set is called most general unifier (mgu) if for

every other unifier θ of the set there is a substitution λ such that

θ = σ o λ.

• Unification is the process by which we examine whether two

expressions can be made syntactically identical by applying

some substitution.

3/11/2024Ι. Χατζηλυγερούδης

15

Terms Unification Rules

1. A constant can only be unified with an identical constant or a

variable.

2. A variable is unified with any term unless it is a function

containing the variable.

3. A function can only be unified with a function with the same

function symbol and unifiable parameters.

Literals Unification Rules

Two literals are unified if they have the same polarity, the same

predicate, unifiable terms, and the resulting substitution has no

same-variable binding conflicts.

UNIFICATION (2)

3/11/2024Ι. Χατζηλυγερούδης

16

Examples

1. p(a, y, z) , p(x, b, z) are unified with mgu σ = {a/x, b/y}

2. q(a, y, z), p(x, b, z) are not unified because p  q

3. p(a, y, z), p(x, b, z) are not unified due to different polarity

4. p(a, y, z) , p(x, f(a), c) are unified with mgu σ = {a/x, f(a)/y, c/z}

UNIFICATION (3)

RESOLUTION PRINCIPLE (1)

3/11/2024Ι. Χατζηλυγερούδης

17

Resolution Principle

It is an inference rule (IR) that is applied to the clausal form of

FOL.

It refers to the production of a "new" clause from two existing

ones.

 Because this rule alone does not ensure completeness, it is

usually accompanied by a simpler rule (or transformation), called

factoring.

Factorization acts on one clause and transforms it into another,

relying on the unification of literals of the clause.

3/11/2024Ι. Χατζηλυγερούδης

18

Factor: If two or more literals of a clause C have a mgu γ then

Cγ is called factor of C (f.C).

Resolution Principle (RP): If L1, L2 are literals of C1, C2

respectively and L1, L2 have a mgu σ then (C1σ - L1σ) 

(C2σ - L2σ) is called binary resolvent (b.r.) of C1, C2.

Resolvent of two clauses C1, C2 is one of the following:

1. b.r. C1 και C2, 2. b.r. C1 και f. C2

3. b.r. f.C1 και C2, 4. b.r. f.C1 και f.C2

RESOLUTION PRINCIPLE (2)

3/11/2024Ι. Χατζηλυγερούδης

19

Example

 C1={p(x), p(f(y)), r(g(y))} , C2= {p(f(g(a)), q(b)}

C1 has factor C1’ = {p(f(y)), r(g(y))}, while C2 does not have a factor

So, because «p(f(y))» and «p(f(g(a))» are resolved with mgu

 σ = {g(a)/y} the resolvent of C1’ and C2 is produced:

C12 = {r(g(g(a)), q(b))

The C1, C2 are called left parent and right parent respectively.

RESOLUTION PRINCIPLE (3)

THEOREM PROVING (1)

3/11/2024Ι. Χατζηλυγερούδης

20

Theorem: If S {φ} is inconsistent then S |= φ. Hence if S

{φ} is inconsistent then S |= φ, where S is a set of logic formulas.

RESOLUTION REFUTATION

The process for the proof of a theorem φ from a set of axioms S
(formulas in S in clausal form) is as follows:

1. S’ = S {φ} (φ in clausal form)

2. Apply RP, produce resolvent

3. If resolvent = empty clause, stop (success)

4. Update S’ (insert resolvent)

5. Go to step 2.

3/11/2024Ι. Χατζηλυγερούδης

21

Example

 S = {C1, C2} με C1 = {p(u), p(v)} , C2= {p(x), p(y)}

C1 has factor the C1’ = {p(v)}, while C2 the C2’ = { p(y)}

The resolvent of C1’ και C2’ is produced, which is

C12 = { }

 Hence S is inconsistent.

Notice that without the use of factors the empty clause cannot be

produced, so we cannot make the proof.

THEOREM PROVING (2)

EXAMPLE (1)

3/11/2024Ι. Χατζηλυγερούδης

22

The following FOL formulas are given

(1) works (george, patras)

(2) works (paul, rio)

(3) master (george, pluto)

(4) master (paul, boby)

(5) (x) (y) (works (x, y)  lives (x, y))

(6) (x) (y) (z) ((master (x, y)  lives (x, z))  lives (y, z))

where x, y, z are variables.

(α) Convert them to CF.

(β) Using Resolution Refutation prove that “lives (pluto, patras)”.

(γ) Using Resolution Refutation , find the values of ‘x’ for which “(x) lives (x, rio)” becomes

true.

master(george,pluto)

works(george,patra)

works(paul,rio)

master(paul,boby)

master(x2,y2)  lives(x2,z)  lives(y2,z)

works(x1,y1)  lives(x1,y1)

(α)

lives(x,rio)

EXAMPLE (2)

3/11/2024Ι. Χατζηλυγερούδης

23

master(george,pluto) master(x2,y2)  lives(x2,z)  lives(y2,z) lives(pluto,patra))

master(x2,pluto)  lives(x2,patra)

lives(george,patra) works(x1,y1)  lives(x1,y1)

works(george,patra) works(george,patra)

(β)

σ1 = {pluto/y2, patra/z}

σ2 = {george/x2}

σ3 = {george/x1, patra/y1}

Sometimes, it is required to use the equality predicate (‘=‘) in the

FOL formulas, used in in infix notation.

Example 1:

o Let a, b, c three constants, and S the following set of FOL:

S = { a = b, b = c, ¬(a=c) }

o Obviously, S is inconsistent. However, resolution cannot

produce the empty clause.

24

EXAMPLES with use of equality (1)

25

Example 2:

Let a, b, c three constants, P is a predicate and S the following

set of FOL:

S = { a = b, P(a), ¬P(b) }

Obviously, S is inconsistent. However, resolution cannot produce

the empty clause.

EXAMPLES with use of equality (2)

To handle equality in the right way and produce right results, we

need to add in our FOL knowledge base the following axioms:

o E1. ∀x (x = x)

o E2. ∀x∀y (x=y ⇒ y=x)

o E3. ∀x∀y∀z (x=y ∧ y=z ⇒ x=z)

26

EXAMPLES with use of equality (3)

Also, for each function f with n arguments add the axiom:

o E4. ∀x1 . . . ∀xn ∀y1 . . . ∀yn (x1=y1 ∧ . . . ∧ xn=yn ⇒ f(x1 , . . . , xn) = f(y1 , . . . , yn))

and for each predicate P with n terms add the axiom:

o E5. ∀x1 . . . ∀xn ∀y1 . . . ∀yn (x1=y1 ∧ . . . ∧ xn=yn) ⇒ P(x1 , . . . , xn) ≡ P(y1 , . . . , yn))

27

After that, equality (‘=‘) can be used in resolution like a regular

predicate.

EXAMPLES with use of equality (4)

Prove that S = { father-of(John) = Bill, ∀x (married(father-of(x), mother-of(x)),

¬married(Bill, mother-of(John)) } is unsatisfiable.

We introduce axiom for predicate «married»:

x1,x2 y1,y2 (x1=y1  x2=y2) => married(x1,x2)  married(y1,y2)

which is analyzed in the following two axioms:

1. x1,x2 y1,y2 (x1=y1  x2=y2) => (married(x1,x2) => married(y1,y2))

and

2. x1,x2 y1,y2 (x1=y1  x2=y2) => (married(y1,y2) => married(x1,x2))

EXAMPLES with use of equality (5)

1. father-of(John) = Bill

2. ∀x (married(father-of(x), mother-of(x))

3. ¬married(Bill, mother-of(John))

4. ∀x (x = x)

5. ∀x∀y (x=y ⇒ y=x)

6. ∀x∀y∀z (x=y ∧ y=z ⇒ x=z)

7. x y (x=y) => (father-of(x) => father-of(y))

8. x y (x=y) => (mother-of(x) => mother-of(y))

9. x1,x2 y1,y2 (x1=y1  x2=y2) => (married(x1,x2) => married(y1,y2))

10. x1,x2 y1,y2 (x1=y1  x2=y2) => (married(y1,y2) => married(x1,x2))

29

EXAMPLES with use of equality (6)

30

Clausal form of (9) is produced as follows (universal quantifiers are removed in

advance for the sake of simplicity, given that there are no existential quantfiers):

1. (x1=y1  x2=y2) => (married(x1,x2) => married(y1,y2))

2. (x1=y1  x2=y2) => (married(x1,x2)  married(y1,y2))

3.  (x1=y1  x2=y2)  (married(x1,x2)  married(y1,y2))

and finally

{ (x1=y1) , (x2=y2), married(x1,x2), married(y1,y2)}

Acting similarly for (10), we get:

{ (x1=y1), (x2=y2), married(y1,y2), married(x1,x2)}

EXAMPLES with use of equality (7)

1. {father-of(John) = Bill}

2. { (married(father-of(x), mother-of(x)) }

3. {¬married(Bill, mother-of(John))}

4. {y = y}

5. {(z=w), w=z }

6. {(r=s), (s=t), r=t }

7. {(x1=y1), father-of(x1), father-of(y1)}

8. {(x2=y2),  mother-of(x2), mother-of(y2)}

9. {(x3=y3), (x4=y4), married(x3,x4), married(y3,y4)}

10. { (x5=y5), (x6=y6), married(y5,y6), married(x5,x6)}

31

EXAMPLES with use of equality (8)

Εφαρμογή της αντίφασης της επίλυσης:

32

3.{ ¬married(Bill, mother-of(John)) } 9.{ ¬(x3=y3), ¬(x4=y4), ¬married(x3,x4), married(y3,y4) }

11.{ ¬(x3=Bill), ¬(x4=mother-of(John)), ¬married(x3,x4) } 1.{ father-of(John) = Bill }

12.{ ¬(x4=mother-of(John)), ¬married(father-of(John), x4) } 2.{ married(father-of(x), mother-of(x)) }

13.{ ¬(mother-of(John)=mother-of(John)) } 4.{ y=y }

 { }

{Bill/y3, mother-of(John)/y4}

{father-of(John)/x4}

{John/x, mother-of(x)/x4 }

EXAMPLES with use of equality (9)

PARAMODULATION – A RULE FOR

HANDLING EQUALITY (1)

3/11/2024Ι. Χατζηλυγερούδης

33

Necessity

o The equality relation is: reflexive, symmetric and transitive

o We need additional K axioms to represent the above

properties

o Applying the classical solution to S  K is inefficient

o There is a need for a specific rule for handling equality

3/11/2024Ι. Χατζηλυγερούδης

34

Example

o C1: P(a), C2: a = b

 Taking advantage of equality axioms→ C3 = P(b).

Definition (Equality substitution)

If a clause C includes term t (C[t]) and if we have the unit clause t =

s, then a new clause is produced after substituting s for an

occurrence of t (indicated as C[s])

PARAMODULATION – A RULE FOR

HANDLING EQUALITY (2)

3/11/2024Ι. Χατζηλυγερούδης

35

Ground Paramodulation

From C1: L[t]  C1’ and C2: t = s  C2’

we derive the paramodulant:

L[s]  C1’  C2’

Example

From C1 : P(a)  Q(b) and C2 : a = b  R(b)

we derive P(b)  Q(b)  R(b)

PARAMODULATION – A RULE FOR

HANDLING EQUALITY (3)

3/11/2024Ι. Χατζηλυγερούδης

36

General Paramodulation

Substitution before applying paramodulation

Example

From C1 : P(x)  Q(b), C2 : a = b  R(b),

σ = {a/x} and C1’: C1σ = P(a)  Q(b),

We derive the paramodulant of C1 και C2:

C3’ = P(b)  Q(b)  R(b)

PARAMODULATION – A RULE FOR

HANDLING EQUALITY (4)

3/11/2024Ι. Χατζηλυγερούδης

37

Definition

If C1: L[t]  C1’, C2: r = s  C2’ and C1 and C2 have no common

variables, and σ the mgu of t και r, we can derive the binary

paramodulant (b.p.):

C12: Lσ[sσ]  C1’σ  C2’σ

where Lσ[sσ] is derived substituting sσ for an occurrence of tσ in

Lσ.

o C12 is called binary paramodulant (b.p.) of C1 και C2

o The L and r = s are the literals that were paramodulated

o The process is called paramodulation from C2 to C1.

PARAMODULATION – A RULE FOR

HANDLING EQUALITY (5)

3/11/2024Ι. Χατζηλυγερούδης

38

Example-1

C1: P(g(f(x)))  Q(x) και C2: f(g(b)) = a  R(g(c))

Application of paramodulation

o t: f(x), L[t]: P(g(f(x)))

o r: f(g(b)), r = s : f(g(b)) = a

o σ = {g(b)/x}

o C12 = P(g(a))  Q(g(b))  R(g(c))

PARAMODULATION – A RULE FOR

HANDLING EQUALITY (6)

3/11/2024Ι. Χατζηλυγερούδης

39

Example-2

C1: P(f(x,a), y)  R(y) και C2: f(c,a) = g(b)  R(g(b))

Application of paramodulation (three paramodulants)

o P(g(b),y)  R(y)  R(g(b))

o P(f(x,a), g(b))  R(f(c,a))  R(g(b))

o P(f(x,a), f(c,a))  R(g(b))

PARAMODULATION – A RULE FOR

HANDLING EQUALITY (7)

3/11/2024Ι. Χατζηλυγερούδης

40

Paramodulant of two clauses C1, C2 is one of the following:

1. (b.p.) C1 and C2, 2. (b.p.). C1 and f. C2

3. (b.p.) f.C1 and C2, 4. (b.p.) f.C1 και f.C2

PARAMODULATION – A RULE FOR

HANDLING EQUALITY (8)

3/11/2024Ι. Χατζηλυγερούδης

41 REASONING WITH TABLEAUX METHOD (1)

o The Tableaux method is a process by which we examine

whether (prove that) a set of logical formulas is inconsistent.

o It proceeds step-by-step by breaking down complex logical

statements into simpler ones, thus making inconsistency

checking simpler.

o The proof process is depicted as a tableaux, i.e. a binary tree,

the nodes of which are named with logical formulas.

3/11/2024Ι. Χατζηλυγερούδης

42

o We begin by placing the logical formulas and the negation of the

formula to be proved at the root of the tree.

o We apply decomposition rules or expansion rules of (complex)

logical formulas into simpler ones, thus creating (new) branches

and (new) nodes in the tree.

o Branches containing contradictions/clashes are closed and the

corresponding nodes are not developed further.

o If there is no open branch, then it means that the proof is

successful.

REASONING WITH TABLEAUX METHOD (2)

3/11/2024Ι. Χατζηλυγερούδης

43

REASONING WITH TABLEAUX METHOD -

PROPOSITIONAL LOGIC (1)

o There are two types of complex logical formulas,

conjunctive sentences, called a-sentences, and

disjunctive sentences, called b-sentences.

o Accordingly, there are rules-a and rules-b for splitting

sentences:

Κανόνες-α Κανόνες-β

α α1 α2 β β1 β2

P  Q P Q (P  Q) P Q

(P  Q) P Q P  Q P Q

(P  Q) P Q P  Q P Q

(P  Q) P Q P  Q P Q

Can be extended for formulas with more than two elements.

3/11/2024Ι. Χατζηλυγερούδης

44

EXAMPLE-1

(From Jan van Eijck, Tutorial on Theorem

Proving-With corrections)

¬((P ⇒ Q ∧ Q ⇒ R) ⇒ (P ⇒ R))

¬(P ⇒ R)

Q ⇒ R

   

Since all leaves have clash

(inconsistence), the

formula at the root is

inconsistent.

REASONING WITH TABLEAUX METHOD -

PROPOSITIONAL LOGIC (2)

3/11/2024Ι. Χατζηλυγερούδης

45

EXAMPLE-2

(From Jan van Eijck, Tutorial on Theorem Proving)

Since there is a leaf

without a clash

(inconsistence), the

formula at the root is

consistent.

REASONING WITH TABLEAUX METHOD -

PROPOSITIONAL LOGIC (3)

3/11/2024Ι. Χατζηλυγερούδης

46

o There are two additional types of complex logical sentences,

the universal ones, which use a universal quantifier () and

are called c-sentences, and the existential ones, which use

an existential quantifier () and are called d-sentences.

o Accordingly, there are rules-c and rules-d for splitting

sentences :

Κανόνες-γ Κανόνες-δ

γ γ1(t) δ δ1(c)

xF F[t/x] xF F[c/x]

(xF) F[t/x] (xF) F[c/x]

t: any ground term

c: constant not existing in the branch

F[t/x] means

replacement of x

with t in F.

REASONING WITH TABLEAUX METHOD -

PREDICATE LOGIC (1)

3/11/2024Ι. Χατζηλυγερούδης

47

ΠΑΡΑΔΕΙΓΜΑ-3

REASONING WITH TABLEAUX METHOD -

PREDICATE LOGIC (2)

LOGIC IS MONOTONIC

3/11/2024Ι. Χατζηλυγερούδης

48

Suppose we have the axioms

(knowledge base-KB):

(x) (bird(x)  flies(x))

bird(Twiti)

We want to prove: flies(Twiti)

We get the negation : flies(Twiti)

Convert it in CF:

We use resolution refutation:

Convert them in CF: { bird(x)  flies(x)} (1)

{bird(Twiti)} (2)

{flies(Twiti)}

S |= φ  (S  y) |= φ

MONOTONICITY-PROOF EXAMPLE (1)

3/11/2024Ι. Χατζηλυγερούδης

49

Then KB becomes:

Resolve (1) and (2) and we get: {flies(Twiti)} (4)

με σ = {Twiti/x}

{ } (empty clause)

So, KB became inconsistent by introducing “flies(Twiti)”,

hence “flies(Twiti)” is true: is logically implied from KB.

{bird(x)  fliesx)} (1)

{bird(Twiti)} (2)

{flies(Twiti)} (3)

Resolve (3) and (4) and we get:

3/11/2024Ι. Χατζηλυγερούδης

50

But we are informed that

Twiti is a penguin and that

penguins, while they are

birds, do not fly. So, we

capture the new knowledge

with the logical expressions

on the right.

(x) (penguin(x)  bird(x))

(x) (penguin(x)  flies(x))

penguin(Twiti)

We convert them into

clausal form and insert

them into the KB:

{ bird(x)  flies(x)} (1)

{bird(Twiti)} (2)

{ penguin(y)  bird(y)} (3)

{ penguin(z)   flies(z)} (4)

{penguin(Twiti)} (5)

MONOTONICITY-PROOF EXAMPLE (2)

3/11/2024Ι. Χατζηλυγερούδης

51

Let say that we want to prove again that: flies(Twiti)

We find that it is again proved by means of the same
clauses.

Let say that we want now to prove that: flies(Twiti)

It is easy to see that this is also proved through the new
clauses introduced in KB.

This means that new knowledge that conflicts with older
knowledge cannot invalidate it.

MONOTONICITY-PROOF EXAMPLE (3)

	Διαφάνεια 1: CEID MSc on DATA DRIVEN COMPUTING AND DECISION MAKING (DDCDM)
	Διαφάνεια 2: LOGIC AND AUTOMATED REASONING
	Διαφάνεια 3: CLAUSAL FORM OF FOL (1)
	Διαφάνεια 4: CLAUSAL FORM OF FOL (2)
	Διαφάνεια 5: CLAUSAL FORM OF FOL (3)
	Διαφάνεια 6: CLAUSAL FORM OF FOL (4)
	Διαφάνεια 7: CLAUSAL FORM OF FOL (5)
	Διαφάνεια 8: CONVERSION TO CF-EXAMPLE (1)
	Διαφάνεια 9: CONVERSION TO CF-EXAMPLE (2)
	Διαφάνεια 10: LOGIC AND AUTOMATED REASONING
	Διαφάνεια 11: SUBSTITUTION (1)
	Διαφάνεια 12: SUBSTITUTION (2)
	Διαφάνεια 13: SUBSTITUTION (3)
	Διαφάνεια 14: UNIFICATION (1)
	Διαφάνεια 15: UNIFICATION (2)
	Διαφάνεια 16: UNIFICATION (3)
	Διαφάνεια 17: RESOLUTION PRINCIPLE (1)
	Διαφάνεια 18: RESOLUTION PRINCIPLE (2)
	Διαφάνεια 19: RESOLUTION PRINCIPLE (3)
	Διαφάνεια 20: THEOREM PROVING (1)
	Διαφάνεια 21: THEOREM PROVING (2)
	Διαφάνεια 22: EXAMPLE (1)
	Διαφάνεια 23: EXAMPLE (2)
	Διαφάνεια 24
	Διαφάνεια 25
	Διαφάνεια 26
	Διαφάνεια 27
	Διαφάνεια 28
	Διαφάνεια 29
	Διαφάνεια 30
	Διαφάνεια 31
	Διαφάνεια 32
	Διαφάνεια 33: PARAMODULATION – A RULE FOR HANDLING EQUALITY (1)
	Διαφάνεια 34: PARAMODULATION – A RULE FOR HANDLING EQUALITY (2)
	Διαφάνεια 35: PARAMODULATION – A RULE FOR HANDLING EQUALITY (3)
	Διαφάνεια 36: PARAMODULATION – A RULE FOR HANDLING EQUALITY (4)
	Διαφάνεια 37
	Διαφάνεια 38
	Διαφάνεια 39
	Διαφάνεια 40
	Διαφάνεια 41: REASONING WITH TABLEAUX METHOD (1)
	Διαφάνεια 42: REASONING WITH TABLEAUX METHOD (2)
	Διαφάνεια 43: REASONING WITH TABLEAUX METHOD -PROPOSITIONAL LOGIC (1)
	Διαφάνεια 44: REASONING WITH TABLEAUX METHOD -PROPOSITIONAL LOGIC (2)
	Διαφάνεια 45: REASONING WITH TABLEAUX METHOD -PROPOSITIONAL LOGIC (3)
	Διαφάνεια 46: REASONING WITH TABLEAUX METHOD -PREDICATE LOGIC (1)
	Διαφάνεια 47: REASONING WITH TABLEAUX METHOD -PREDICATE LOGIC (2)
	Διαφάνεια 48: LOGIC IS MONOTONIC
	Διαφάνεια 49: MONOTONICITY-PROOF EXAMPLE (1)
	Διαφάνεια 50: MONOTONICITY-PROOF EXAMPLE (2)
	Διαφάνεια 51: MONOTONICITY-PROOF EXAMPLE (3)

