
Associative Memories

Hopfield Network

(Revised slides from HOU-PLH31)

I. Hatzilygeroudis

Dept of Computer Engineering & Informatics, University of 
Patras



Associative Memory

❑Recall of an event at a point in time is caused by the 

association of that event with some stimulus.

❑Many times, we are also asked to recognize partially 

damaged letters or to recognize through a window while it 

is raining (in the presence of noise).
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Mechanical analog of associative memory

❑ Start position: stimulus, end position: recall

❑ The ball always ends up at the same point (equilibrium point) 

because it 'remembers' where the bottom of the container is 

(state of minimum potential energy). 



❑ If the sphere starts from some random point, then it will end up 

at the nearest local concavity (local minimum).

❑  Therefore, it recalls the nearest stored pattern. This point is 

also a local minimum of the energy of the system.

x1 x2 x3 x4

x1, x2, x3, x4
 are the stored states

Mechanical analog of associative memory



Associative memory system

❑ The state of the system is described by a state vector 

x=(x1,x2,…,xn).

❑ There exists a set of equilibrium states {x1,x2,…,xm}, where 

xi=(xi1,xi2,…,xin). These correspond to the stored examples and 

are the local minima of the energy of the system.

❑ The system starts from an initial state (stimulus) and ends up 

in one of the equilibrium states (recall) corresponding to one of 

the stored patterns, also called basic memories. This process is 

accompanied by a reduction in the energy E of the system.



Ηοpfield Network

❑ Fully connected

❑ Recursive connections

❑ Symetric weights (wij = wji), wii=0.

❑ Biases bi.

❑ Recurrent ANN.
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❑ Discrete-time and discrete-output Hopfield network:

✓ time progresses in discrete steps t, t+1,…

✓ neuron outputs are discrete: bipolar values (1 or -1) or binary 

values (1 or 0).

❑ In such a network with n neurons examples can be stored 

such as

    x= (x1,…,xn) (where xi is e.g. -1 or 1).

❑ We want these examples to be equilibrium situations of the 

network, with an appropriate selection of the weights wij. 

Ηοpfield Network



❑ Update of the status (output) of a node i at time point t:

    sgn(u)=1 if u>0, sgn(u)=-1 if u < 0.

if ui(t)=0, θέτουμε yi(t+1)= yi(t)

❑ Definition: A situation y(t)=(y1(t),…,yn(t)) is an equilibrium 

situation of a Hopfield network, when yi(t+1)=yi(t) for each

i=1,…,n. 

❑ A situation y=(y1,…,yn) is an equilibrium situation , if and on;y if 

satisfies the equilibrium condition for each i=1,…,n: 

n

i ij j i

j=1

u (t)= w  y (t) + b i iy (t+1)=sgn(u (t))

n n

i ij j i i ij j i

j=1 j=1

y =sgn( w  y   + b ) y ( w  y   + b ) 0   

Ηοpfield Network



Synchronous operation of Ηοpfield network

❑ Initialization: t=0, application of the input example x and 

specification of the initial state y(0) by setting yi(0)=xi

❑ At each time t, let y(t)=(y1(t),…,yn(t))T be the state of the 

network. All its nodes are simultaneously updated by first 

computing ui(t) for all i: 

and in the sequel the for all i.

❑ It is shown that the network will either reach an equilibrium 

state or engage in a cycle of length two, i.e. it will 

continuously oscillate between two states. 

n

i ij j i

j=1

u (t)= w  y (t) + b

i iy (t+1)=sgn(u (t))



❑ Initialization: t=0, application of the input example x and specification of 

the initial state y(0) by setting yi(0)=xi

❑ At each time t, let y(t)=(y1(t),…,yn(t))T be the state of the network. 

Selection of a neuron i. 

Update output yi(t+1):

 t:=t+1

❑ Until an equilibrium situation/state is reached: yi(t+1)=yi(t) for each

i=1,…,n.

❑ The final equilibrium situation/state constitutes the response of the 

network to the stimulus y(0)=x.

n

i ij j i

j=1

u (t)= w  y (t) + b i iy (t+1)=sgn(u (t))

Asynchronous operation of Ηοpfield network



❑ In practice the neurons are selected for updating in order rather than 

randomly. When all neurons have been examined once, we consider an 

epoch to be completed. The update order can be changed every epoch or 

kept the same.

❑ We consider that we have reached a state of equilibrium when an epoch 

is completed (every node has been examined) and the output of no 

neuron has changed.

❑ Asynchronous operation guarantees the convergence of the network 

to equilibrium because the network is characterized by a function called 

the energy function :
n n n

i j ij i i

i=1 j=1 i=1

1
E(t) = -  y (t) y (t) w  -  b  y (t)

2
 

Asynchronous operation of Ηοpfield network



Example
❑ A Hopfield network of two neurons is given, with weights values

w12=w21=-1 and zero biases.

❑ Let the initial status (t=0) is y(0)=(1,1), i.e. y1(0)=1 and y2(0)=1. 

❑ If we apply synchronous update, we observe that:

y1(t=1)=sgn(w21y2(0)+b1)=sgn(-1)=-1

y2(t=1)=sgn(w12y1(0)+b2)=sgn(-1)=-1

❑ Hence y(1)=(-1,-1). Next, we calculate for t=2:

y1(t=2)=sgn(w21y2(1)+b1)=sgn(1)=1

y2(t=1)=sgn(w12y1(1)+b2)=sgn(1)=1

❑ Consequently y(2)=(1,1)=y(0) (cycle of length 2).

❑ The same we find for the initial state y=(-1,-1).



❑ Let us now consider the case where the initial state is y(0)=(1,-1) 

and the network again operates with synchronous updating.

❑ y1(t=1)=sgn(w21y2(0)+b1)=sgn(1)=1

❑ y2(t=1)=sgn(w12y1(0)+b2)=sgn(-1)=-1

❑ So, y(1)=(1,-1)=y(0), δηλ. η y=(1,-1) is an equilibrium situation. 

❑ The same we find for the initial state y=(-1,1).

Example



❑ Asynchronous update with initial state y(0)=(1,1). Suppose that 

neuron 1 is selected first for updating :

y1(t=1)=sgn(w21y2(0)+b1)=sgn(-1)=-1

y2(t=1)=1 (not updated)

❑ So, y(1)=(-1,1). Next, neuron 2 is selected:

y1(t=2)=-1 (not updated)

y2(t=2)=sgn(w12y1(1)+b2)=sgn(1)=1

❑ So, y(2)=(-1,1). Then if we examine neuron 1 again, we will see that 

its state will not change, so we are in equilibrium state.

❑ . 

Example



Design-Operation of Hopfield Net

Determination of architecture and weights

❑ Suppose we have M examples (of dimension n) to store as 

equilibrium states or basic memories of a Hopfield network. Let 

xpi, xpj (with values 1 or -1) be the elements i and j of example p.

❑ Due to the dimensionality of the examples, the network will have 

n nodes (neurons).

❑ Weights are calculated using Hebb's Rule :

that in the matrix form is written:

 where Υm are the basic memories and I is the identity matrix of 

dimensions nxn.


M

T

m m

m=1

W = Y ×Y - M×I

m

ij pi pj ii i

p=1

w = x  x  , w 0,  b 0,  i,j = 1,...,n= =
M



❑ The weight matrix is symmetric (wij = wji) with zero values on the 

main diagonal (wii = 0). The weights are calculated once and 

remain constant.

❑ It does not guarantee that the memories will be saved. Also, other 

patterns may be stored as memories without our desire.
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Network testing

❑ A check is made to store the equilibrium states for each :

 Normally all basic memories (equilibrium states) should be 

recalled.

❑ The capacity of a Hopfield network, i.e. the maximum number of 

equilibrium states (basic memories) it can store, is 

approximately: C = n/(2log2n), where n is the number of neurons. 

On the other hand, a more simplified version, C = 1.38*n is also 

considered. 

,  m=1,2, ... ,M
m m

X = Y

( )m mY = sign W× X -θ

Design-Operation of Hopfield Net



Network operation

❑ A "decayed" vector of a basic memory (equilibrium state) is given 

as input and the system "recalls" the corresponding basic 

memory.

❑ For example, a vector representing a "distorted" image is given 

as input, and the network returns to the output the normal image, 

already stored in the network as basic memory.

Design-Operation of Hopfield Net



❑ Problem: Design a Hopfield network that stores the following 

states (basic memories):

 Assume that the biases are zero and we have synchronous 

operation.

Hopfield example
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❑ Architecture: Since the vectors have three component values, 

so the Hopfield network will have three neurons :

Παράδειγμα Hopfield
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❑ Calculation of weights matrix:

Hopfield example
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Hopfield example



Hopfield example

Testing: We test whether the two states have been stored.

We put as input the first vector: 

We calculate the output:

The memory is recalled, so it is stored correctly.



Hopfield example

We put as input the second vector :

We calculate the output :

The memory is recalled, so it is stored correctly.



Hopfield example

Let's try to insert a "decayed" vector of one of the two main 

memories (let's say the first one):

We calculate the output :

Basic memory is recalled, so the network operates correctly.

Observe that sign(0) = +1, because 

when the input x = 0, the output is 

the same as the previous one.
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