
Introduction to Artificial Neural

Networks and Machine Learning

(Revised slides from HOU-PLH31)

I. Hatzilygeroudis

Dept of Computer Engineering & Informatics, University of
Patras

Artificial Neural Networks-ANN

❑ANN: arose from the need to make computational

models of the human brain (biological neural networks)

❑Problem: we still don't know (exactly) how the human

brain works!

❑1950: simplified mathematical models of the brain.

❑The first ANNs: computer simulation of these models

(solving elementary problems)

❑ The brain consists of a huge number of interconnected neurons, i.e.

nerve cells.

❑ Every neuron

❑ receives stimuli (inputs) from other cells through connections that

affect its state and, depending on the state it is in,

❑ it sends impulses (outputs) to affect in turn the state of other

neurons.

❑ Each connection between two neurons is characterized by a power

value (synaptic potential) which indicates how strong the

interaction between them is.

Artificial Neural Networks-ANN

Biological neuron

❑ Dendrites, which are the input

lines of stimuli (biological

signals)

❑ Body, in which the

accumulation of stimuli and the

determination of the excitation

of the axon, which is the output

line of the neuron.

❑ Synapse, which is the point of

connection between two

neurons.

It has been observed that the signal exiting the axon of

one neuron and entering the dendrite of the other neuron

is modulated by a rate related to the strength of the

synapse called the synaptic potential.

Dendrites
Neural fluid

Axon

Body

Axonal
branches

Synapse
In
p
u
t

A
x
o

n
a

l b
ra

n
c

h
e

s
o

f
o

th
e

r
n

e
u

ro
n

s

O
u
tp
u
t

D
e

n
d

ri
te

s
o

f
o

th
e

r
n

e
u

ro
n

s

Synaptic Potential

❑The synaptic potential can amplify (positive) or suppress

(negative) the output signal.

❑Our knowledge is 'stored' in the values of synaptic

potentials.

❑Learning in biological systems is the change of

synaptic potentials.

❑The more a synapse is used, the more its potential is

enhanced.

Artificial Neuron

(bias)

(output)

activation function

❑ Architectural structures (networks) consisting of a number of

interconnected processing units (artificial neurons).

❑ Each connection between two modules is characterized by a weight

value.

❑ Each processing unit is characterized by inputs and outputs.

Locally implements a simple calculation based on the inputs it

receives and transmits the result (output) to other processing units it

is connected to.

❑ .

Artificial Neural Networks-ANN

❑The weight values constitute the knowledge stored in

the ANN and define its functionality.

❑Usually a ANN develops an overall functionality

through a form of training (learning)..

Artificial Neural Networks-ANN

Capabilities of ANNs

❑ Basic abilities of the human brain

✓ Learning by example

✓ Ability to Generalize

✓ Stores experiences (distributed storage)

✓ Self-organization

✓ Tolerance of noise and incomplete information

✓ Damage tolerance

❑ The brain's capabilities are complementary to conventional

computers

❑ Artificial Neural Networks also have (to some extent) the above

capabilities

Machine Learning
❑ Training an ANN:

✓ Determining the weights of its links so as to perform a desired function

which is described via examples

❑ Generalization Ability:

✓ The objective of the training process: to find appropriate weight

values so that the ANN 'gives correct answers' for the examples that are

'similar' to the ones with which it was trained

❑ TNNs have proven to be a successful technology for developing

systems with good generalization ability using a set of representative

training examples.

Machine Learning Methods

❑Supervised learning

❑Unsupervised learning

❑Reinforcement learning

❑Semi-supervised learning

Supervised Learning

❑ The elements of the set of examples are pairs of the form:

(input, desired output) (X={(xi, ti)}, i=1,…,N).

❑ Each xi is of the form <vi1, vi2, …, vin> where vij j = 1, n are

values corresponding to features/properties of the problem

represented by the data set.

❑ Qualitatively we can think of each pair as: (question/xi, correct

answer/ti).

❑ The learning system implements input-output correlations

❑ When some data xi appears as input, we want the ANN to

provide the output with the corresponding desired value ti.

❑The term supervised learning derives from the analogue

of 'supervisor':

✓supervises the learning process, asking questions and

providing the correct answers at the same time.

❑Suitable for two major categories of problems:

✓classification

 t : class label

✓regression or function approximation

 t : number (value)

Supervised Learning

❑ The training examples do not include the desired output but only the input data
(X={xi}, i=1,…,N).

❑ The goal is to extract some basic structural properties of the training data (eg
finding clusters).

❑ Problem Categories:

✓ Clustering: dividing the training data into groups so that data in the same group
are sufficiently 'similar' to each other and sufficiently 'different' from those of the
other groups.

✓ Dimensionality reduction: projection of the data into a smaller dimensional
space in which the relative distances between the data in the original
multidimensional space are preserved as much as possible

✓ If the dimension of the projection space is two then the visualization of the
original multidimensional data is possible.

✓ Topographic data map

Unsupervised Learning

❑ In the learning system, the desired output is not provided

for each input, but only the value of a quantity called the

reinforcement signal (X={xi, ri)}, i=1,…,N).

❑ The reinforcement signal r indicates whether the system

provided a response in the correct or incorrect direction

but does not provide details of what the correct response

is.

❑ Applications in robotics, games.

Reinforcement Learning

Artificial Neuron

(Revised slides from HOU-PLH31)

I. Hatzilygeroudis

Dept of Computer Engineering & Informatics, University of
Patras

Artificial Neuron-Computational Model

• d inputs,

• Input signal xi (i=1,…,d)

• Input weights wi, (i=1,…,d)

• bias w0 → weight value of the fixed input (input value = 1)

(bias)

(output)

activation function

Artificial Neuron-Alternative Model

w0

x0=-1

(threshold)

• d inputs,

• Input signal xi (i=1,…,d)

• Input weights wi, (i=1,…,d)

• threshold w0 → weight value of the fixed input (input value = -1)

activation function

(output)

Computation in two stages:

✓ calculation of total input (activation):

✓Calculation of neuron output o(x) by passing the total input

u(x) through an activation function g(.)

o(x)=g(u)

Neuron of internal product

u(x)=wTx +w0

d

i i 0i=1
u(x)= w x +w

Artificial Neuron

Alternative notation:

✓Weights vector: w=(w1, w2, …, wd)
Τ

✓Extended weights vector:

we=(w0, w1, w2, …, wd)
Τ

✓ Extended input vector:

xe=(1, x1, x2, …, xd)
Τ

u(x)=we
Txe <=> u(x)=wTx +w0

Artificial Neuron

Activation Functions

Step or Threshold function:

✓ The activation function in the biological neuron

✓ It is characterized by two values a and b.

✓ If x<0 then g(x)=a and if x>0 then g(x)=b. Usually the values a=0

and b=1 or a=-1 and b=1 are used.

✓ The step function has the disadvantage that its derivative is

zero

Since learning in ANNs is the change of

weight values and change is related to

the derivative, the step function is not

convenient as the activation function of

neurons in ANNs.

Sigmoid functions

 They have a sigma form

 They are continuous and derivative approximations of step function.

 At the limit where the slope becomes too large, the sigmoid becomes the step
function.

 Two basic types:

1) Logistic:

 σ(x)=1/(1+exp(-ax))

 (a: slope, usually a=1)

give values in (0,1)

σ’(x)=σ(x)(1-σ(x)) (for a=1)

σ’’(x)=σ(x)(1-σ(x))(1-2σ(x))

We can calculate the derivative σ’(x) with

only σ(x) given, without needing the value

of x.

Activation Functions

2) Hyperbolic tangent:

 tanh(x)=

 (a: slope, usually a=1)

gives values in (-1,1)

 tanh’(x)=1-tanh2(x) (for a=1)

ax -ax

ax -ax

e -e

e +e

Linear function

g(x)=x, g’(x)=1

gives values in R

Activation Functions

g(x) = max(0,x)

❑ Properties:

✓ Nonlinear

✓ (g(-1) + g(1) = 1, g(-1+1) = 0)

✓ Less activations-

computationally favorable

✓ Ideal for deep networks

Disadvantages:

✓ It is not upper bounded.

✓ For negative parameters, the local

derivative is 0, so they do not

respond during training

 (dying Relu problem).

Rectified linear unit (Relu)

Activation Functions

Perceptron

❑ Perceptron is the simplest form of Neural Network, which is
used to classify linearly separable patterns, following the
McCulloch – Pitts model.

❑ Uses the sign function as an activation function:

sgn 𝑢 = ቊ
+1 𝛼𝜈 𝑢 ≥ 0
−1 𝛼𝜈 𝑢 < 0

Training Perceptron

1. Initialization

We initialize the weights and threshold with values in the
range [-0.5, 0.5]

2. Activation-Output computation

y(n) = g(u(n)))()()(
0

nxnwnu i

m

i

i
=

= or u(n) = W(n)ΤX(n)

3. Weights adaptation

wi(n+1) = wi(n) + Δwi(n) Δwi(n) = η xi(n) e(n) e(n) = d(n) – y(n)

wi(n+1) = wi(n) + η [d(n) – y(n)] xi(n)

4. Testing-Iteration (from step 2)

e(n) < ε (ε = 10-1 – 10-4)

Training Perceptron-Example
We have the following three-input neuron. We use the Perceptron

algorithm to solve the following simple pattern classification

problem:

Χ1 = [1, -1, 1]Τ→ d1 = 0 και X2 = [1, 1, -1]T → d2 = 1

w1

w2

w3

-1

θ = w0x1

x2

x3

y

Consider weights w1,w2,w3 having as initial values: [0.5, -1, -0.5]
and threshold θ=w0=-0.5. Also, η = 1.

❑ We assume that we are at step k, set as input the vector X1
and calculate the total input

 u(k+1) = w T(k) * X1

where w = [-0.5, 0.5, -1, -0.5] and Χ1 = [-1, 1, -1, 1]

We use extended vectors, where the first values correspond
 to the threshold input. So

u(k+1) =

−0.5
0.5
−1

−0.5

*[-1, 1, -1, 1] = 1.5, and y(k+1) = sgn(1.5) = +1

❑ Update the weights, after we have calculated the error

e = d1-y(k+1) = 0-1 = -1

Παράδειγμα εκπαίδευσης Perceptron

❑ We proceed to the next step k+2, setting as input the vector X2
and calculate the output

Παράδειγμα εκπαίδευσης Perceptron

𝒘(𝑘 + 1) = 𝒘 (𝑘) + 𝜂 ⋅ 𝑒 ⋅ 𝑋1

= [−0.5,0.5, −1, −0.5] + 1(−1)[−1,1, −1,1] = [0.5, −0.5,0, −1.5]

𝑢(𝑘 + 2) = 𝒘𝑇(𝑘 + 1) ⋅ 𝑋2 =

0.5
−0.5

0
−1.5

⋅ [−1,1,1, −1] = 0.5 > 0

and y(k+2) = sgn(0.5) = +1

❑ Update the weights, after we have calculated the error

e = d2-y(k+2) = 1-1 = 0

Since e=0 there is no need to update the weights.

❑ We proceed to the next step k+3, setting as input the vector X1
and calculate the output

Παράδειγμα εκπαίδευσης Perceptron

and y(k+3) = sgn(-2.5) = -1

❑ Update the weights, after we have calculated the error

e = d1-y(k+3) = 0-(-1) = 1

𝑢(𝑘 + 3) = 𝒘𝑇(𝑘 + 2) ⋅ 𝑋1 =

0.5
−0.5

0
−1.5

⋅ [−1,1, −1,1] = −2.5

𝒘(𝑘 + 3) = 𝒘 (𝑘 + 2) + 𝜂 ⋅ 𝑒 ⋅ 𝑋1

= [0.5, −0.5, 0, −1.5] + 1 ⋅ 1[−1,1, −1,1] = [−0.5, 0.5, −1, −0.5]

and so on …

ANN Training based on
minimization of squared

training error

(Revised slides from HOU-PLH31)

I. Hatzilygeroudis

Dept of Computer Engineering & Informatics, University of
Patras

Minimization of error function

❑ ANN training: can be formulated as a problem of minimizing an

error function E(w) with respect to the vector w=(w1,…wL) of

ANN parameters (weights and biases).

❑ Usually what is needed is the calculation of the partial

derivatives ∂E/∂wi of the error with respect to the ANN

parameters

❑ Many efficient numerical minimization methods are based on

partial derivatives

❑ Most popular method for ANNs: gradient descent

❑ It is also the simplest

❑ Let E(w) be an error function that we want to minimize with

respect to w:

✓ to find a point w* of minimum value, at which the function

E(w*) becomes minimal.

❑The extrema of a function satisfy the condition that

∂Ε/∂wi=0 for each i=1,…,L.

❑A function can have more than one minima called local

minima.

❑The best (the one with the smallest value) of the local

minima is called the global minimum.

Minimization of error function

w

E(w)

C
E

A

B

D

w1

w2

w3 Three local minima:

(A, C, E)

Global minimum: A

•Analytical finding of minima: solution of the system of

equations ∂E/∂wi=0, i=1,…,L. Only possible when E(w) is

quadratic.

•We resort to numerical analysis methods (iterative)

Minimization of error function

Iterative methods:

- start from an initial value (usually random) w(0).

- at each iteration t the vector of weights is modified by Δw(t):

w(t+1) = w(t) +Δw(t)

so that the function value decreases:

Ε(w(t+1)) ≤ E(w(t)).

- Optimization algorithms differ in how they calculate the change Δw(t).

- Information related to the slope of the function is usually used.

- The iterative process converges to a local minimum w* of function E(w).

Minimization of error function

❑ The methods implement local minimization.

❑ If the function E(w) has many local minima, the minimum the

method will arrive at depends on the initial value of the vector w(0)

(which is usually chosen randomly).

❑ There is a possibility of 'locking' into unwanted (high-valued) local

minima of the error function.

❑ A simple solution: multiple runs from different initial values. We

keep the best of the solutions we find.

Minimization of error function

Gradient descent (GD)

❑ We start from an initial value of the weights wi(0) (usually random).

❑ At each iteration t:

✓ Calculate the slope and updating wi

✓ Check for termination of the method

✓ If positive, terminate it, else t:=t+1 and continue.

w*w(1)w(0) w(2)

E(w)

w

i i

i

E
w (t+1)=w (t)- , i=1,...,L

w





Learning rate

η : it is called descent step

✓ In the case of ANN training, it is called the learning rate.

✓ Determines whether to move in the decreasing direction of

the function with small or large steps.

✓ A small learning rate implies a smooth descent to the local

minimum, but more iterations are required.

✓ A large learning rate implies a faster descent (bigger steps,

fewer iterations), but also an increased probability of

oscillations around the minimum point.

Training of single neuron based on

error minimization

• Set of training examples D={(xn,tn)}, n=1,…,N

• xn=(xn1,…,xnd)T and tn number

• Training single neuron with weights w=(w0,w1,…,wd)T and

activation function g(u).

• For input xn : u(xn; w)=Σi wi xi + w0 , ο(xn; w)=g(u(xn; w))

• In the case that for some vector of weights the training is

perfect:

• o(xn; w)=tn for each n=1,…,N

• that is, the output of the neuron for input xn will be equal to

the desired tn.

.

✓ Hence, we can define the quadratic training error function:

✓ As a sum of squares, it has as a lower bound the value zero, which

results when we have perfect training.

✓ The most important class of ANN training methods for supervised

learning results from updating the vector of weights w aiming to

minimize the squared error E(w).

✓ Most widely used minimization method: gradient descent

✓ .

N
n n 2

n=1

1
E(w)= (t -o(x ;w))

2


N
n n n n 2

n=1

1
E(w)= E (w), E (w)= (t -o(x ;w))

2


Training of single neuron based on

error minimization

Partial Derivative of training error

N
n n n n 2

n=1

1
E(w)= E (w), E (w)= (t -o(x ;w))

2


1

nN

ni i

E E

w w=

 
=

 


n n
n n

i i

E o(x ;w)
(t -o(x ;w))

w w

 
= −

 

n n

ni n0

i i

o(x ;w) g(u) u(x ;w)
g (u)x , i=0,...,d, x 1

w u w

  
= = =

  

n
n n n

ni n0

i

E
(t -o(x ;w)) (u(x ;w))x , i=0,...,d, x 1

w
g


= − =



N
n n n

ni n0

n=1i

E
(t -o(x ;w))g (u(x ;w))x , i=0,...,d, x 1

w


= − =




?
i

E

w


=



❑ Computation of the partial derivative corresponding to the error

for a training example (xn,tn):

✓ application of xn as input to the neuron and computation of

the total input u(xn;w) and the output ο(xn;w)

✓ calculation of the error: δn = (tn - ο(xn;w))

✓ calculation of partial derivatives with respect to wi

n
n n n

ni n0

i

E
(t -o(x ;w)) (u(x ;w))x , i=0,...,d, x 1

w
g


= − =



Partial Derivative of training error

Single neuron training with gradient

descent (batch update)
1. Initialization: We set k=0, initial values of weights w(0) and set the value of the

learning rate η.

2. At each iteration k, let w(t) be the vector of weights.

• We initialize: , i=0,…,L

• For n=1,…,N:

 apply xn as input to the neuron and computε the total input u(xn;w) and the output ο(xn;w)

 calculation of the error: δn= (tn - ο(xn;w)).

• We update the values of the weights:

3. We check for termination of the method. If positive, process is terminated.

4. k:=k+1, go to step 2.

i i

i

E
w (t+1)=w (t)- , i=1,...,L

w





n n

ni n0

i i

E E
: δ (u(x ;w))x , i=0,...,d, x 1

w w
g

 
= − =

 

i

E
0

w


=



❑ Batch update: the weights are updated once at the end of each epoch

based on the partial derivative of the total error, i.e. summing the partial

derivatives of the individual errors.

❑ The iteration counter t counts the epochs. An epoch is considered the

passage of all examples of the training set.

❑ Batch update corresponds to the mathematically rigorous

implementation of the gradient descent method to minimize the error

E(w):

❑ At each epoch t the error E(w) should decrease (if the learning rate is

sufficiently small)

i i

i

E
w (t+1)=w (t)- , i=1,...,L

w





Single neuron training with gradient

descent (batch update)

❑ The function E(w) that we want to minimize has the following

useful property: it is expressed as the sum of the individual

errors En(w).

❑ An alternative approach to minimizing E(w):

✓ At each iteration τ (i.e. after passing each example) we apply the

gradient descent update rule to minimize some of the individual

errors En(w) :

n n n

i i ni n0w (τ+1)=w (τ)+n(t -o(x ;w))g (u(x ;w))x , i=0,...,d, x 1 =

Single neuron training with gradient

descent (sequential update)

❑ It turns out that if all terms Εn(w) are chosen equally often, then

the final result of the method is the minimization of the total error

Ε(w)

❑ that is, operating at each step in the direction of reducing one

term, we achieve in the end the reduction of the sum of the

terms.

❑ This fact should not be taken as something obvious since at

each step changing the weights to reduce the term Εn(w) does

not necessarily reduce the total error Ε(w) because there may be

other terms Εm(w) which increase with the change of weights.

Single neuron training with gradient

descent (sequential update)

❑ The above procedure is called stochastic gradient descent or

on-line gradient descent or sequential gradient descent.

❑ We will call it the gradient descent method with sequential

updating of the weights.

❑ While in batch updating we have one update of the weights

per epoch (training cycle), in serial updating we have N

updates.

Single neuron training with gradient

descent (sequential update)

Training of linear neuron

The linear neuron has an activation function g(u)=u, hence

g’(u)=1.

• Batch update:
N

n n

i i ni n0

n=1

w (k+1)=w (k)+n (t -o(x ;w))x , i=0,...,d, x 1=

• Sequential update:

• Αν δn=tn-o(xn;w):

(delta rule)

n n

i i ni n0w (κ+1)=w (κ)+n(t -o(x ;w))x , i=0,...,d, x 1=

n

i i niw (κ+1)=w (κ)+n δ x

	Διαφάνεια 1: Introduction to Artificial Neural Networks and Machine Learning (Revised slides from HOU-PLH31)
	Διαφάνεια 2: Artificial Neural Networks-ANN
	Διαφάνεια 3: Artificial Neural Networks-ANN
	Διαφάνεια 4: Biological neuron
	Διαφάνεια 5: Synaptic Potential
	Διαφάνεια 6: Artificial Neuron
	Διαφάνεια 7: Artificial Neural Networks-ANN
	Διαφάνεια 8: Artificial Neural Networks-ANN
	Διαφάνεια 9: Capabilities of ANNs
	Διαφάνεια 10: Machine Learning
	Διαφάνεια 11: Machine Learning Methods
	Διαφάνεια 12: Supervised Learning
	Διαφάνεια 13: Supervised Learning
	Διαφάνεια 14: Unsupervised Learning
	Διαφάνεια 15: Reinforcement Learning
	Διαφάνεια 16: Artificial Neuron (Revised slides from HOU-PLH31)
	Διαφάνεια 17: Artificial Neuron-Computational Model
	Διαφάνεια 18: Artificial Neuron-Alternative Model
	Διαφάνεια 19: Artificial Neuron
	Διαφάνεια 20: Artificial Neuron
	Διαφάνεια 21: Activation Functions
	Διαφάνεια 22: Activation Functions
	Διαφάνεια 23: Activation Functions
	Διαφάνεια 24: Activation Functions
	Διαφάνεια 25: Perceptron
	Διαφάνεια 26: Training Perceptron
	Διαφάνεια 27: Training Perceptron-Example
	Διαφάνεια 28: Παράδειγμα εκπαίδευσης Perceptron
	Διαφάνεια 29: Παράδειγμα εκπαίδευσης Perceptron
	Διαφάνεια 30: Παράδειγμα εκπαίδευσης Perceptron
	Διαφάνεια 31
	Διαφάνεια 32: Minimization of error function
	Διαφάνεια 33: Minimization of error function
	Διαφάνεια 34: Minimization of error function
	Διαφάνεια 35: Minimization of error function
	Διαφάνεια 36: Minimization of error function
	Διαφάνεια 37: Gradient descent (GD)
	Διαφάνεια 38: Learning rate
	Διαφάνεια 39: Training of single neuron based on error minimization
	Διαφάνεια 40: Training of single neuron based on error minimization
	Διαφάνεια 41: Partial Derivative of training error
	Διαφάνεια 42: Partial Derivative of training error
	Διαφάνεια 43: Single neuron training with gradient descent (batch update)
	Διαφάνεια 44: Single neuron training with gradient descent (batch update)
	Διαφάνεια 45: Single neuron training with gradient descent (sequential update)
	Διαφάνεια 46: Single neuron training with gradient descent (sequential update)
	Διαφάνεια 47: Single neuron training with gradient descent (sequential update)
	Διαφάνεια 48: Training of linear neuron

