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Abstract. This paper provides a detailed description of the CNF part of the TPTP Problem Library
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obtaining and using the library, summary statistics about release v1.2.1, and an overview of the
tptp2X utility program. References for all the sources of TPTP problems are provided.
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1. Introduction

The TPTP (Thousands of Problems for Theorem Provers) is a library of problems
for automated theorem proving (ATP) systems. The principal motivation for the
TPTP project is to move the testing and evaluation of ATP systems from the previ-
ously ad hoc situation onto a firm footing. This became necessary because results
being published do not always accurately reflect the capabilities of the ATP sys-
tem being considered. A common library of problems is necessary for meaningful
system evaluations, meaningful system comparisons, repeatability of testing, and
the production of statistically significant results. The TPTP is such a library. The
TPTP provides a simple, unambiguous source and reference mechanism for ATP
problems. It is comprehensive and up to date and thus provides an overview of
the current application of ATP. The TPTP problems are stored in a specifically
designed, easy-to-understand format. A utility is provided for manipulating the
problems and for converting the problems to other known ATP formats. Since
the TPTP’s first release in 1993, many researchers have used the library as an
appropriate and convenient basis for ATP system evaluation.

This paper describes the part of the TPTP that uses the clause normal form
(CNF) of first-order logic. Release v1.2.1 of the TPTP was the last release of
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the TPTP containing only CNF problems and thus serves as the exemplar (TPTP
v1.2.1 is also interesting because it was used as the source of problems for the
CADE-13 ATP System Competition [109]). This paper explains the motivations
and reasoning behind the development of the TPTP (thus implicitly explaining the
design decisions made) and describes the TPTP contents and organization. It also
provides guidelines for obtaining and using the library, summary statistics about
release v1.2.1, and an overview of the tptp2X utility program. References for all
the sources of TPTP problems are provided.

1.1. OBTAINING AND USING THE TPTP

The TPTP may be obtained by FTP or via the Web from Australia:
ftp.cs.jcu.edu.au:pub/research/tptp-library/*
http://www.cs.jcu.edu.au/~tptp/

or Germany:
flop.informatik.tu-muenchen.de:pub/tptp-library/*
http://wwwjessen.informatik.tu-muenchen.de/~tptp/.
By providing this library of ATP problems and a specification of how these

problems should be presented to ATP systems, we intend to place the testing,
evaluation, and comparison of ATP systems on a firm footing. For this reason, the
technical report that accompanies each TPTP release contains specific conditions
for using the TPTP and presenting results based on that release of the TPTP. For
TPTP v1.2.1 these are conditions as follows:

• The TPTP release number must be stated.
• Each problem must be referenced by its unambiguous syntactic name.
• No clauses/literals may be changed, added, or removed without explicit notice

(this condition holds also for removing equality axioms when built-in equality is
provided by the prover).
• The clauses/literals may not be rearranged without explicit notice. If clause or lit-

eral reordering is done by using the tptp2X utility (see Section 3), the reordering
must be explicitly noted.
• The header information in each problem may not be used by the ATP system

without explicit notice. Any information that is given to the ATP system, other
than that in theinput_clauses, must be explicitly noted.
• All system switches and default settings must be recorded.

Abiding by the stated conditions will allow unambiguous identification of the
problem, the arrangement of clauses, and further input to the ATP system. Any-
one following the rules is asked to make that clear, in any presentation of re-
sults, by the following explicit statement: “These results were obtained in com-
pliance with the guidelines for use of TPTP〈Release number〉.” By making this
clear statement, ATP researchers are assured of one’s awareness of our guide-
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lines. Conversely, it will become clear when the guidelines may have been ig-
nored.

1.2. PREVIOUS PROBLEM COLLECTIONS

A large number of interesting problems have accumulated over the years in the
ATP community. Besides publishing particularly interesting individual problems,
from early on researchers collected problems in order to obtain a basis for exper-
imentation. The first major publication? in this regard was [61], which provides
an explicit listing of clauses for 63 problems, many of which are still relevant
today. In the same year, Wilson and Minker documented 86 problems, which have
since commonly been used for ATP testing. The problem clauses are not supplied
in [125], however. A second major thrust was provided by [77], which lists 75
problems. Other more recent papers are [17, 85, 63], and [65], to name a few.
TheJournal of Automated Reasoning’s Problem Corner also provided interesting
challenge problems. Problems published in hardcopy form are, however, often not
suitable for testing ATP systems because they have to be transcribed to electronic
form. This is a cumbersome, error-prone process and is feasible for only very
small numbers of small problems. A problem library in electronic form was made
publicly available by Argonne National Laboratory (in Otter format [66]) in 1988
[5]. This library has been a major source of problems for ATP researchers. Other
electronic collections of problems are available but have not been announced offi-
cially (e.g., that distributed with the SPRFN ATP system [102]). Although some of
these collections provide significant support to researchers, and formed the early
core of the TPTP library, none (with the possible exception of the ANL library)
was specifically designed to serve as a common basis for ATP research. Rather,
these collections typically were built in the course of research into a particular
ATP system. As a result, several factors limit the usefulness of such collections as
a common basis for research. In particular, previously existing problem collections

• are often hard to discover and obtain.
System development and system evaluations typically rely on a small set of test
problems, depending on the collections of problems available to the researcher.

• need to be transformed to the syntax of the ATP system being considered.
The problem format used in a collection may not be appropriate for the desired
purpose, and a comparatively large effort is required just to make the problems
locally usable (which in practice often means that such a collection of problems
is simply ignored).

• are often limited in scope and size.
The problems used are often homogeneous and thus cannot be used for a broad

? To our knowledge, the first circulation of problems for testing ATP systems was due to Larry
Wos in the late sixties.
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test of the capabilities of the ATP system under consideration. If there are too
few problems, statistically significant testing is not possible.

• may be outdated.
The problems may insufficiently reflect the state of the art in ATP research.

• are sometimes designed and tuned (regarding clause selection, clause ordering,
and literal ordering) for a particular ATP system.
Using a collection designed and tuned for a particular ATP system may lead to
biases in results.

• provide no indication of the difficulty or significance of the problems.
The significance and difficulty of a problem, with respect to the state of the art in
ATP systems, are hard to assess by newcomers to the field. Existing test problems
are often not adequate anymore (e.g., Schubert’s steamroller [106]), while others
may be solvable only with specialized techniques (e.g., LIM+ [13]) and therefore
are much too hard to start with.

• are inconsistent in their presentation of equally named problems.
Many copies and variants of the same “original” problem may exist in different
collections. Hence, unambiguous identification of problems, and therefore a clear
interpretation of performance figures for given problems, has become difficult.

• are usually undocumented.
It is hard to obtain information on problem semantics, the original problem source,
and the particular style of axiomatization. This situation also contributes to the
difficulty of unambiguous problem identification.

• are almost always unserviced.
Such collections do not provide a mechanism for adding new problems or cor-
recting errors in existing problems and cannot be used to electronically distrib-
ute new and corrected problems to the ATP community. This situation, in turn,
perpetuates the use of old and erroneous problems.

• provide no guidelines for their use.
Quite often, inadequate system evaluations are performed. As a consequence,
results that provide little indication of the system properties are reported.

The problem of meaningfully interpreting results can be even worse than in-
dicated. A few problems may be selected and hand-tuned (clauses and literals
arranged in a special order, irrelevant clauses omitted, lemmas added in, etc.)
specifically for the ATP system being tested. The presentation of a problem can sig-
nificantly affect the nature of the problem, and changing the clauses clearly makes
a different problem altogether. Nevertheless, the problem may be referenced under
the same name as it was presented elsewhere. As a consequence, the experimental
results reveal little. Some researchers avoid this ambiguity by listing the clause sets
explicitly, but obviously this approach usually cannot be done for a large number of
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problems or for large individual problems. The only satisfactory solution to these
issues is a common and stable library of problems. The TPTP is such a library.

1.3. WHAT IS REQUIRED?

The goal for building the TPTP has been to overcome previous drawbacks and
to centralize the burden of problem collection and maintenance to one place. The
TPTP tries to address all relevant issues. In particular, the TPTP

• is easy to discover and obtain.
Awareness of the TPTP is assured by extensive formal and informal announce-
ments. The TPTP is available via the Internet (FTP and WWW) and thus is easily
available to the research community.

• is easy to use.
Problems are presented in a specifically designed, easy-to-understand format.
Automatic conversion to other known formats is also provided, thus eliminating
the necessity for any other transcription.

• spans a diversity of subject matters.
This diversity reduces biases in the development and testing of ATP systems,
which arise from the use of a limited scope of problems. It also provides an
overview of the domains in which ATP systems are used.

• is large enough for statistically significant testing.
In contrast to common practice, an ATP system should be evaluated over a large
number of problems, rather than a small set of judiciously selected examples.
The large size of the TPTP makes this possible.

• is comprehensive.
The TPTP contains most problems known to the community. There is no longer
a need to look elsewhere.

• is up to date.
As new problems appear in the literature and elsewhere (see Section 2), they are
added to the TPTP as soon as possible.

• is independent of any particular ATP system.
The problem clauses are arranged so as to be modular and human-readable, rather
than arranged for a particular ATP system.

• contains problems varying in difficulty.
The difficulty of problems in the TPTP ranges from very simple problems to
open problems. This range allows all interested researchers, from newcomers to
experts, to rely on the same problem library.

• will provide a rating for the difficulty of each problem.
This rating is important for several reasons. (1) It simplifies problem selection
according to the user’s intention. (2) It allows the quality of an ATP system to
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be judged. (3) Over the years, changes in the problem ratings will provide an
indicator of the advancement in ATP.

• provides statistics for each problem and the library as a whole.
Such statistics provide information about the syntactic nature of the problems.

• has an unambiguous naming scheme.
This scheme provides unambiguous problem reference, and makes the compari-
son of results meaningful. See Section 2.4 for details.

• is well structured and documented.
This feature allows effective and efficient use of library. Useful background in-
formation, such as an overview of ATP application domains, is provided.

• documents each problem.
This feature contributes to the unambiguous identification of each problem.

• provides a mechanism for adding new problems.
The TPTP contains standard axiomatizations that can be used in new problems.
This simplifies the construction of new problems. A template is provided for sub-
mission of new problems. The TPTP is thus a channel for making new problems
available to the community, in a simple and effective way.

• provides a mechanism for correcting errors in existing problems.
All errors, noticed by the developers or reported by users, are corrected. Patched
TPTP releases are made regularly.

• provides guidelines for its use in evaluating ATP systems.
A standard library of problems together with evaluation guidelines makes re-
ported results meaningful and reproducible by others. This will in turn simplify
and improve system comparisons and will allow ATP researchers to accurately
gauge their progress.

The development of the TPTP problem library is an ongoing project, with the
aim to provide all of the desired properties.

1.4. TPTP HISTORY UP TO V1.2.1

The development of the TPTP, by Geoff Sutcliffe at James Cook University (ini-
tially at The University of Western Australia) and Christian Suttner at the Technis-
che Universität München (with initial support from Theodor Yemenis), started in
mid-1992. A beta release, v0.5.0, of the TPTP was made to selected researchers on
15 April 1993. The beta release contained 1211 abstract problems, which resulted
in 1695 ATP problems (because of alternative presentations); see Section 2.2. The
first public release of the TPTP was v1.0.0, made on Friday, 12 November 1993.
This release contained 2295 problems based on 1577 abstract problems, in 23
domains. Subsequent public releases were as follows:
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• v1.1.0, made on 8 April 1994, containing 2652 problems based on 1897 abstract
problems, in 25 domains. This release included 736 bugfixes. The tptp2X utility
had also been substantially overhauled.

• v1.1.1, made on 5 July 1994. This release was not much different from v1.1.0,
containing only a few bugfixes.

• v1.1.3, made on 25 August 1994. This release was made to distribute some more
bugfixes and some repairs to the tptp2X utility.

• v1.2.0, made on 30 August 1995, containing 2752 problems based on 2044
abstract problems, in 25 domains. This release included 49 bugfixes. Problem
generators (see Section 2.3) were introduced in this release, and the tptp2X utility
had been extended and improved in various ways. The TPTP technical report had
also been substantially revised.

• v1.2.1, made on 12 June 1996. This release was the one used in the CADE-13
ATP System Competition [109]. This release contained 233 bugfixes; the aim
was to distribute the most bugfree TPTP release possible for the competition. An
important repair made in this release was the renaming of theequal/2 predicate
in those problems where the equality axiomatization is incomplete. The tptp2X
utility in this release had been extended and improved; in particular, the equality
transformations had been upgraded to detect incomplete equality axiomatiza-
tions. Finally, the clause type information had been reviewed, and throughout
the TPTP thetheorem type had been replaced byconjecture, to reflect the true
status of those clauses when the problems are submitted to an ATP system. This
is the release documented in this paper.

2. Inside the TPTP

Scope.The technical report that accompanies each TPTP release contains tables of
statistics on the release. The statistics for TPTP v1.2.1, extracted from [110], are
given here. They are provided as an example to illustrate the scope of the TPTP.

Release v1.2.1 of the TPTP contains 2044 abstract problems, which result in
2752 ATP problems (because of alternative presentations; see Section 2.2). Ta-
bles I, II, and III provide some statistics about the release.

The problems in the TPTP are syntactically diverse, as is indicated by the ranges
of the values in Tables II and III. The problems in the TPTP are also semantically
diverse, as is indicated by the range of domains that are covered. The problems are
grouped into 25 domains, covering topics in the fields of logic, mathematics, com-
puter science, engineering, and others. The domains are presented and discussed in
Section 2.1.

Sources.The problems have been collected from various sources. The two
principal sources have been existing electronic problem collections and the ATP
literature. Other sources include logic programming, mathematics, puzzles, and
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Table I. Statistics on the TPTP

Number of problem domains 25

Number of abstract problems 2044
Number of generic problems 85

Number of problems 2752

Number of non-Horn problems 1486 (54%)

Number of range-restricted problems 105 (4%)

Number of problems with equality 1920 (70%)

Number of pure equality problems 493 (18%)

Number of satisfiable problems ≥ 59 (2%)

Number of propositional problems 42 (2%)

. . . beingnon-Horn 30 (1%)

. . . being satisfiable 6 (0%)

Total number of clauses 323,074

Total number of literals 743,104

Table II. Statistics for nonpropositional TPTP problems

Measure Min. Max. Ave. Median

Number of clauses 2 504 118 54

Percentage of non-Horn clauses 0% 99% 5% 4%

. . . in non-Horn problems 2% 99% 9% 5%

Percentage of unit clauses 0% 100% 34% 22%

Percentage of range-rest. clauses0% 100% 60% 63%

Number of literals 2 1512 273 129

Percentage of equality literals 0% 100% 43% 46%

. . . in equality problems 19% 100% 61% 47%

Maximal clause size 1 25 4 5

Number of predicate symbols 1 48 9 3

Percentage of propositions 0% 67% 0% 0%

Minimal predicate arities 0 5 1 1

Maximal predicate arities 1 10 2 3

Number of functors 1 93 23 9

Percentage of constants 0% 100% 50% 50%

Minimal functor arities 0 2 0 0

Maximal functor arities 0 8 2 2

Number of variables 0 1094 269 130

Percentage of singletons 0% 100% 8% 7%

Maximal term depth 1 14 4 4
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Table III. Statistics for propositional TPTP problems

Measure Min. Max. Ave. Median

Number of clauses 3 82 24 18

Percentage of non-Horn clauses 0% 81% 25% 25%

. . . in non-Horn problems 8% 81% 35% 33%

Percentage of unit clauses 0% 100% 19% 13%

Number of literals 4 232 64 40

Maximal clause size 1 11 3 3

Number of predicate symbols 2 63 13 11

correspondence with ATP researchers. Many people and organizations have con-
tributed to the TPTP. In particular, the foundations of the TPTP were laid with
David Plaisted’s SPRFN collection; many problems have been taken from Argonne
National Laboratory’s ATP problem library (special thanks to Bill McCune here);
Art Quaife provided several hundred problems in set theory and algebra; theJour-
nal of Automated Reasoning,CADE proceedings, and Association for Automated
Reasoning newsletters have provided a wealth of material; and smaller numbers
of problems have been provided by a number of further contributors. The books,
papers, reports, and so forth from which problems have been sourced are marked
with a⊕ in the References.

Releases.The TPTP is managed in the manner of a software product, in the
sense that fixed releases are made. Each release of the TPTP is identified by a
release number, in the form v<Version>.<Edition>.<Patch level>. The Version
number enumerates major new releases of the TPTP, in which important new fea-
tures have been added. The Edition number is incremented each time new problems
are added to the current version. The Patch level is incremented each time errors,
found in the current edition, are corrected. All nontrivial changes are recorded in a
history file, as well as in the file for an affected problem.

2.1. THE TPTP DOMAIN STRUCTURE

This section provides the structure according to which the problems are grouped
into domains. Some information about the domains is also given.

An attempt has been made to classify the totality of the TPTP problems in a sys-
tematic and natural way. The resulting domain scheme reflects the natural hierarchy
of scientific domains, as presented in standard subject classification literature. The
current classification is based mainly on the Dewey Decimal Classification (DDC)
[25] and the Mathematics Subject Classification (MSC) [1] used for the Mathemat-
ical Reviews by the American Mathematical Society. Five main fields are defined:
logic, mathematics, computer science, engineering, andother. Each field contains
further subdivisions, calleddomains. Each domain is identified by a three-letter
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mnemonic. These mnemonics are also part of the problem naming scheme (see
Section 2.4). The TPTP domains constitute the basic units of the classification.
The full classification scheme is shown in Figure 1.

Figure 1. The domain structure of the TPTP.

Given below is a brief description of the domains, with a non-ATP reference for
a general introduction and a generic ATP reference. For each domain, appropriate
DDC and MSC numbers are also given:

ALG Algebra.
An algebra is a set with a system of operations defined on it.
Indices : DDC 512; MSC 06XX, 20XX.
References : General [15, 11, 10], ATP –.

ANA Analysis.
Analysis is a branch of mathematics concerned with functions and limits.
The main parts of analysis are differential calculus, integral calculus, and
the theory of functions.
Indices : DDC 515; MSC 26XX.
References : General [91], ATP [13].
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BOO Boolean Algebra.
A Boolean algebra is a set of elements with two binary operations that are
idempotent, commutative, and associative. These operations are mutually
distributive; there exist universal bounds 0, 1; and there is a unary opera-
tion of complementation.
Indices : DDC 511.324, 512.89; MSC 06EXX.
References : General [122, 11, 10], ATP –.

CAT Category Theory.
A category is a mathematical structure together with the morphisms that
preserve this structure.
Indices : DDC 512.55; MSC 18XX.
References : General [59], ATP [61].

CID Circuit Design.
Circuits are formed by interconnecting logic gates. Circuit design is used
to form a circuit that will transform given input patterns to required output
patterns.
Indices : DDC 621.395; MSC 94CXX.
References : General [36], ATP [128].

CIV Circuit Verification.
Circuit verification is used to ensure that a previously designed circuit
performs the desired transformation of input patterns to required output
patterns. One approach is to check the performance of the circuit for every
possible combination of given inputs. Other techniques are also used.
Indices : DDC 621.395; MSC 94CXX.
References : General [36], ATP [129].

COL Combinatory Logic.
Combinatory logic is about applying one function to another. It can be
viewed as an alternative foundation of mathematics (or, because of its
Turing completeness, as a programming language). More formally, it is
a system satisfying two combinators and satisfying reflexivity, symmetry,
transitivity, and two equality substitution axioms for the function that ex-
ists implicitly for applying one combinator to another.
Indices : DDC 510.101; MSC 03B40.
References : General [23, 24, 7], ATP [135].

COM Computing Theory.
Computing theory is a subfield of computer science dealing with theoreti-
cal issues such as decidability (does a given problem admit an algorithmic
solution?), completeness (does an algorithm always find a solution if one
exists?), correctness (are only solutions produced?), and computational
complexity (what are the resource requirements of algorithms?).
Indices : DDC 004-006; MSC 68XX.
References : General [39], ATP –.

JARS1822.tex; 19/08/1998; 8:48; p.11



188 GEOFF SUTCLIFFE AND CHRISTIAN SUTTNER

GEO Geometry.
Geometry is a branch of mathematics that deals with the measurement,
properties, and relationships of points, lines, angles, surfaces, and solids.
In the TPTP the Geometry domain deals mainly with plane geometry,
based on Tarski’s axiom system for Euclidean geometry.
Indices : DDC 516; MSC 51.
References : General [112, 113], ATP [86].

GRA Graph Theory.
A graph consists of a finite nonempty set of vertices together with a pre-
scribed set of edges, each edge connecting a pair of vertices.
Indices : DDC 510.09; MSC 05CXX, 68R10.
References : General [34, 10], ATP –.

GRP Group Theory.
A group is a set G and a binary operation +:GxG→G that is associative,
for which there is an identity element in G, and for which each element of
G has an inverse in G.
Indices : DDC 512.2; MSC 20
References : General [15, 11], ATP [61].

HEN Henkin Models.
Henkin models provide a generalized semantics for higher-order logics.
This leads to a larger class of models and, as a consequence, fewer true
sentences. However, in contrast to standard semantics, complete and cor-
rect calculi can be found.
Indices : DDC 160; MSC 03CXX.
References : General [37, 46], ATP –.

LAT Lattice Theory.
A lattice is a set of elements with two binary operations that are idempo-
tent, commutative, and associative and that satisfy the absorption law.
Indices : DDC 512.865; MSC 06BXX.
References : General [11], ATP [62].

LCL Logic Calculi.
A logic calculus defines axioms and rules of inference that can be used
to prove theorems. This domain currently contains the following logical
calculi:

− Implication/Negation 2-valued modal
− Implication/Negation 2-valued sentential (CN-calculus)
− Implicational propositional (IC-calculus, negation-free part of senten-

tial calculus)
− Implication/Falsehood 2-valued sentential (C0-calculus)
− Disjunction/Negation 2-valued sentential (AN-calculus)
− Many-valued sentential (MV-calculus)
− Equivalential (EC-calculus; theorems represent group identity in

Boolean groups)
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− R (under some constraint, theorems represent identity in Abelian groups)
− Left group (LG-calculus; under some constraint, theorems represent

formulas equal to identity in groups)
− Right group (RG-calculus; theorems are related to identity in groups)
− Wajsberg algebra.

Indices : DDC 511.3; MSC 03XX.
References : General [53], ATP [63].

LDA Left Distributive Algebra.
LD-algebras are related to large cardinals. Under a very strong large car-
dinal assumption, the free-monogenic LD-algebra can be represented by
an algebra of elementary embeddings. Theorems about this algebra can be
proved from a small number of properties, suggesting the definition of an
embedding algebra.
Indices : DDC 512; MSC 20N02, 03E55, 08B20
References : General –, ATP [41].

MSC Miscellaneous.
A collection of problems that do not fit well into any other domain.

NUM Number Theory.
Number theory is the study of integers and their properties.
Indices : DDC 512.7; MSC 11YXX.
References : General [35], ATP [86].

PLA Planning.
Planning is the process of determining the sequence of actions to be per-
formed by an agent to reach a desired state. The initial state and the desired
state are provided.
Indices : DDC 006.3; MSC 68T99.
References : General [2], ATP [79, 80].

PRV Program Verification.
Program verification formally establishes that a computer program does
the task it is designed for.
Indices : DDC 005.14; MSC 68Q60.
References : General –, ATP [136, 61].

PUZ Puzzles.
Puzzles are designed to test the ingenuity of humans.
Indices : DDC 510, 793.73; MSC –.
References : General [20, 101, 100], ATP –.

RNG Ring Theory.
A ring is a group (see above) in which the binary operation is commuta-
tive, with an associative and distributive operation *:GxG→G for which
there is an identity element in G.
Indices : DDC 512.4; MSC 13XX, 16XX.
References : General [15, 10], ATP [61].
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ROB Robbins Algebra.
The Robbins algebra domain revolves around the question “Is every Rob-
bins algebra Boolean?” Most of the problems in this domain identify
conditions that make a near-Boolean algebra Boolean.
Indices : DDC 512; MSC 03G15.
References : General [38], ATP [127].

SET Set Theory.
Classically, a set is a totality of certain definite, distinguishable objects of
our intuition or thought, called the elements of the set. Because paradoxes
arise from such a naive definition, mathematicians now regard the notion
of a set as an undefined, primitive concept [40]. In this domain, naive and
Neumann–Bernays–Gödel axiom sets are used.
Indices : DDC 511.322, 512.817; MSC 03EXX, 04XX.
References : General [71, 88], ATP [86].

SYN Syntactic.
Syntactic problems have no obvious semantic interpretation.
Indices : DDC –; MSC –.
References : General [22], ATP [77].

TOP Topology.
Topology is the study of properties of geometric configurations (e.g., point
sets) that are unaltered by elastic deformations (homeomorphisms, i.e.,
functions that are 1-1 mappings between sets such that both the function
and its inverse are continuous).
Indices : DDC 514; MSC 46AXX.
References : General [43, 70], ATP [123].

2.2. PROBLEM VERSIONS AND STANDARD AXIOMATIZATIONS

There are often many ways to formulate a problem for presentation to an ATP sys-
tem. Thus, in the TPTP, there are often alternative presentations of a problem. The
alternative presentations are calledversionsof the underlyingabstract problem.
Since the problem versions are the objects that ATP systems must deal with, they
are referred to simply as problems, and the abstract problems are referred to explic-
itly as such. Each problem is stored in a separate physical file. The primary reason
for different versions of an abstract problem is the use of different axiomatizations.
This issue is discussed below. A secondary reason is different formulations of the
theorem to be proved.

Different Axiomatizations. Commonly, many different axiomatizations of a
theory exist. In the TPTP an axiomatization isstandardif it is a complete axiom-
atization of an established theory and it has not had any lemmas added. (Note:
A standard axiomatization may be redundant, because some axioms are dependent
on others. In general, it is not known whether or not an axiomatization is minimal,
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and thus the possibility of redundancy in standard axiomatizations must be toler-
ated.) In the TPTP, standard axiomatizations are kept in separate axiom files and are
included in problems as appropriate. By using different standard axiomatizations of
a particular theory, one can form different versions of a problem. Sets ofspecializa-
tion axioms may be used to extend or constrain an axiomatization. Specialization
axioms are also kept in separate axiom files. If an axiomatization uses equality, the
required axioms of substitution are kept separate from the theory-specific axioms.
The equality axioms of reflexivity, symmetry, and transitivity, which are also re-
quired when equality is present, are also kept separately. A side effect of separating
out the axioms into axiom files is that the clause order in the TPTP presentation of
problems is typically different from that of any original presentation. This reorder-
ing is acceptable because the performance of a decent ATP system should not be
very dependent on a particular clause ordering.

Within the ATP community, some problems have been created withnonstan-
dard axiomatizations. A nonstandard axiomatization is formed by modifying a
standard axiomatization. The standard axiomatization may bereduced(i.e., ax-
ioms are removed) and the result is anincompleteaxiomatization, or it may be
augmented(i.e., lemmas are added) and the result is aredundantaxiomatization.
Nonstandard axiomatizations are typically used to find a proof of a theorem (based
on the axiomatization) using a particular ATP system. In any “real” application
of an ATP system, a standard axiomatization of the application domain would
typically have to be used, at least initially. Thus, the use of standard axiomatizations
is desirable because it reflects such “real” usage. In the TPTP, for each collected
problem that uses a nonstandard axiomatization, a new version of the problem is
created with a standard axiomatization.

The axioms in some TPTP problems do not capture any established theory;
in other words, a standard axiomatization cannot exist. These axiomatizations are
called specialaxiomatizations. Typically, such axiomatizations are used in only
one problem.

Equality Axiomatization. In the TPTP equality is represented using theequal/2
predicate, written in prefix notation like all other predicates. Theequal/2 predi-
cate is used only if the equality axiomatization in the problem is complete, that
is, including the axioms of reflexivity, symmetry, transitivity, function substitu-
tion for all functors, and predicate substitution for all predicate symbols. If the
equality axiomatization is not complete, but the “intention” is to represent equal-
ity, theequalish/2 predicate is used. The TPTP problems containing theequal/2
predicate do contain a complete equality axiomatization.

Many ATP systems have built in mechanisms (e.g., paramodulation) that make
some or all of the equality and substitution axioms unnecessary. If any of these
axioms is removed when the problems are submitted to an ATP system, the removal
must be explicitly noted in reported results (see Section 1.1). The tptp2X utility (see
Section 3) can be used to remove equality axioms.
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2.3. PROBLEM GENERATORS

Some abstract problems have a generic nature, and particular instances of the ab-
stract problem are formed according to some size parameter(s). An example of a
generic problem is theN-queens problem: placeN queens on aN×N chess board
such that no queen attacks another. The clauses for any size of this problem can be
generated automatically, for any size ofN ≥ 2. Note that satisfiability may depend
on the problem size.

Up to TPTP v1.1.3, the TPTP simply contained problem files for particular sizes
of generic problems. This, however, was undesirable. First, only a finite number of
different problem sizes could be included, and therefore a desired size may have
been missing. Second, even a small number of different problem sizes for each
generic problem could consume a considerable amount of disk space. To overcome
these problems the TPTP now containsgeneratorfiles. Generator files are used to
generate instances of generic problems, according to user-supplied size parameters.
The generators are used in conjunction with the tptp2X utility (see Section 3).

For convenience, the TPTP still contains a particular instance of each generic
problem. The size chosen for each such instance is a compromise between being
large enough to be nontrivial and small enough to avoid using too much disk space.
An unsatisfiable size is chosen wherever one exists. The statistics in Tables I, II,
and III take into account these instances of generic problems.

2.4. PROBLEM, GENERATOR, AND AXIOMATIZATION NAMING

Providing unambiguous names for all problems is necessary in a problem library.
A naming scheme has been developed for the TPTP to provide unique, stable
names for abstract problems, problems, generators, and axiomatizations. Files are
assigned names according to the schemes depicted in Figures 2 and 3. TheDDDNNN
combination provides an unambiguous name for an abstract problem or axioma-
tization. TheDDDNNN-V[.SSS] combination provides an unambiguous name for a
problem or generator, and theDDDNNN-E combination provides an unambiguous
name for a set of axioms. The complete file names are unique within the TPTP.
For example, the fileGRP135-1.002.p contains the 135th group theory problem,
version number1, generated size2. Similarly, the fileCAT001-0.ax contains the
first basic category theory axiomatization.

Wherever possible the same version number is assigned to all problems that
come from the same source, within each domain.

If a file is ever removed from or renamed in the TPTP, the extension is changed
to .rm. The file is not physically removed, and a comment is added to the file to
explain what has happened. This mechanism maintains the unique identification of
problems and axiomatizations.

Semantic Names.Abstract problems and axiomatizations were also allocated
semantic names. The semantic names could be used to augment file names, so as
to provide an indication of the file contents. While these names were provided for
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Figure 2. Problem file naming scheme.

Figure 3. Axiom file naming scheme.

users who like to work with mnemonic names, only the standard syntactic names
are guaranteed to provide unambiguous reference. Because of their rare usage, the
semantic names will not be supported in future TPTP releases.

2.5. PROBLEM PRESENTATION

The physical presentation of the TPTP problem library is such that ATP researchers
can easily use the problems. The syntax of all files is that of Prolog. This confor-
mance makes it trivial to manipulate the files using Prolog. All information in the
files that is not for use by ATP systems is formatted as Prolog comments, with a
leading%. The clauses are formatted as Prolog facts. The tptp2X utility can be used
to convert TPTP files to other known ATP system formats (see Section 3).

Figure 4 shows an example of a TPTP problem file. The first section is a header
section that contains information for the user. This information is not for use by
ATP systems. It is divided into four parts separated by blank lines. The first part
identifies and describes the problem:

• The % File field gives the problem’s name, the current TPTP release number,
and the TPTP release in which the problem was released or last bugfixed.
• The% Domain field identifies the domain, and possibly a subdomain, from which

the problem is drawn (see Section 2.1).
• The% Problem field provides a one-line, high-level description of the abstract

problem.
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Figure 4. Example of a problem file (GRP039-7.p).

• The % Version field gives information that differentiates this version of the
problem from other versions of the problem.
• The% English field provides a full description of the problem, if the one-line

description in the% Problem field is too terse.
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The second part provides information about occurrences of the problem in the
literature and elsewhere:

• The % Refs field provides a list of references in which the problem has been
presented.
• The% Source field acknowledges the source of the problem, usually as a cita-

tion.
• The% Names field lists names by which this problem is known in the ATP com-

munity.

The third part gives the problem’s ATP status and a table of syntactic measurements
made on the problem:

• The% Status field gives the ATP status of the problem, one ofsatisfiable,
unsatisfiable, open, or unknown.
• The% Syntax field lists various syntactic measures of the problem’s clauses.

The last part contains general information about the problem:

• The% Comments field contains free-format comments about the problem.
• The% Bugfixes field describes any bugfixes that have been done to the clauses

of the problem.

The second section of a problem file containsinclude instructions for axiom
files. Each of theinclude instructions indicates that the clauses in the named
axiom file should be included at that point. Axiom files are presented in the same
format as problem files, andinclude instructions may also appear in axiom files.
If required, full versions of TPTP problems (withoutinclude instructions) can be
created by using the tptp2X utility (see Section 3).

The last section of a problem or axiom file contains the clauses that are specific
to the problem or axiomatization. The literals that make up a clause are presented
as a Prolog list of terms (i.e., in[]). Each literal is a unary term whose functor is
either++ or --, indicating a positive or negative literal, respectively. The argument
of the term is the atom of the literal, in the form of a Prolog term. Each clause also
has a name, in the form of a Prolog atom, and a type, one ofaxiom, hypothesis, or
conjecture. Thehypothesis andconjecture clauses are those that are derived
from the negation of the conjecture to be proved. The name, type, and literal list of
each clause are bundled as the three arguments of a Prolog fact, whose predicate
symbol isinput_clause.

TPTP generator files have three sections, different from the problem and axiom
files. The header section of generator files is similar to that of problem and axiom
files, but with place-holders for information that is filled in based on the size of
the problem and the clauses generated. Following that comes Prolog source code
to generate the clauses, and finally data describing the permissible sizes and the
chosen TPTP size for the problem.
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2.6. PHYSICAL ORGANIZATION

The TPTP is physically organized into six subdirectories, as follows:

• Axioms - The axiom files directory.

• Problems - The problem files directory with subdirectories for each domain. The
domain name abbreviations, as described in Section 2.1, are used as subdirectory
names. The subdirectories contain the problem files.

• Generators - The generator files directory.

• Documents - A directory containing documents that relate to the TPTP. The files
contain comprehensive online information about the TPTP. Their format provides
quick access to the data, using standard system tools (e.g.,grep, awk).

• Scripts - A directory containing scripts that may be used with the TPTP.

• TPTP2X - The directory containing the tptp2X utility, described in Section 3.

3. The tptp2X Utility

The tptp2X utility is a multifunctional utility for reformatting, transforming, and
generating TPTP problem files. In particular, it

− Converts from the TPTP format to formats used by existing ATP systems. The
system formats available are KIF [31], leanTAP [8], 3TAP [33], METEOR
[6], MGTP [29], Otter [66], PTTP [105], SETHEO [93], SPASS [120, 119],
SPRFN [81], and TPTP (substitutinginclude instructions with the actual
clauses).

− Applies various transformations to the clauses of TPTP problems. The trans-
formations available are to reverse the order of the literals or clauses, to ran-
domly reorder the clauses and literals, to remove selected equality axioms, to
add missing equality axioms, to do Mark Stickel’s magic set transformation
[107], and to replace all the predicate, function, and variable symbols by short,
meaningless symbols.

− Controls the generation of TPTP problem files from TPTP generator files.

The tptp2X utility is written in Prolog and should run on most Prolog systems.?

It is simple to add new output formats, transformations, and generators to the TPTP.

? In particular, the tptp2X code will run on BinProlog. BinProlog is written by Paul Ta-
rau of the University of Moncton (Canada) and is freely available by anonymous ftp, from
clement.info.umoncton.ca:BinProlog.

JARS1822.tex; 19/08/1998; 8:48; p.20



THE TPTP PROBLEM LIBRARY 197

4. Conclusion

This paper describes the CNF part of the TPTP Problem Library. The motivation
and reasoning behind the development of the TPTP are explained, thus implicitly
explaining the design decisions made. The structure and use of the TPTP are also
described.

Since its first release in 1993, the TPTP has been used extensively by a large
number of researchers. This has resulted in visible improvements to ATP system
evaluation. Most important, direct comparisons of systems have become easily
possible, through the common use of the TPTP. In particular, a growing number
of publications now contain evaluations that can be meaningfully interpreted and
compared with other results.

There are also some less visible, but important, effects on ATP system develop-
ment. System devlopers now commonly make extensive evaluations of their own
systems using the TPTP. Because of its large size and problem variety, testing based
on the TPTP has revealed bugs in a number of ATP systems. The development of
heuristics has also been influenced by the large number of problems in the TPTP,
which provides a significantly broader basis for evaluating a general-purpose strat-
egy. Finally, qualitative judgments about ATP systems, based on comparatively
narrow evaluations, are no longer necessary.

A collection of performance data from ATP systems evaluated over the whole
TPTP is being made (see, e.g., [108], but more recent data is available). The col-
lection provides a basis for quantitative assessments of ATP systems. TPTP users
are invited to submit performance data for their ATP systems. Please see the results
WWW page:

http://www.cs.jcu.edu.au/~tptp/TPTP/Results.html
or contact us for details for contributing.

Future versions of the TPTP will contain some important new features:

• Problems in First Order Format (FOF), that is, including quantifiers, will be inte-
grated into the TPTP. This will extend the TPTP user community to researchers
working on non-normal form systems. ATP systems with automatic conversion
to clause normal form will be able to derive additional information regarding a
given problem, such as which functors are Skolem functors. For systems unable
to deal with FOF, a clause normal form transformation will be provided in the
tptp2X utility.

• Each problem will obtain an individual difficulty rating. The collection of per-
formance data is used as the basis for this. As advances in automated theorem
proving are made, the problem ratings should decrease. The long-term devel-
opment of the individual problem ratings will therefore provide an objective
measure of progress in the field.

• A BibTeX file will be added to the TPTP, containing entries for all the references
found in the TPTP. To complement this, a WWW page of references to the TPTP
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is also being created. This will give an overview on the usage of the TPTP, and
also will allow users to compare published results obtained for different systems.

There are also several short- and long-term plans for further development of the
TPTP:

• A benchmark suite (the BSTP) will be selected from the TPTP. The BSTP will be
a minimal set of problems on which an ATP system evaluation can be based. The
BSTP will be accompanied by specific guidelines for computing a performance
index for an ATP system. The problems will be a subset of those eligible for the
CADE ATP system competitions [109].

• Translators between various logical forms will be provided, for example, from
non-Horn to Horn form, and from first-order to propositional form.

• The TPTP may be extended to include problems expressed in nonclassical and
higher-order logics.
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