
Journal of Computer and System Sciences 74 (2008) 70–83

www.elsevier.com/locate/jcss

A decentralized algorithm for spectral analysis

David Kempe a,∗,1, Frank McSherry b

a Computer Science Department, University of Southern California, USA
b Microsoft Research SVC, USA

Received 1 February 2005; received in revised form 1 March 2006

Available online 25 April 2007

Abstract

In many large network settings, such as computer networks, social networks, or hyperlinked text documents, much information
can be obtained from the network’s spectral properties. However, traditional centralized approaches for computing eigenvectors
struggle with at least two obstacles: the data may be difficult to obtain (both due to technical reasons and because of privacy
concerns), and the sheer size of the networks makes the computation expensive. A decentralized, distributed algorithm addresses
both of these obstacles: it utilizes the computational power of all nodes in the network and their ability to communicate, thus
speeding up the computation with the network size. And as each node knows its incident edges, the data collection problem is
avoided as well.

Our main result is a simple decentralized algorithm for computing the top k eigenvectors of a symmetric weighted adjacency
matrix, and a proof that it converges essentially in O(τmix log2 n) rounds of communication and computation, where τmix is the
mixing time of a random walk on the network. An additional contribution of our work is a decentralized way of actually detecting
convergence, and diagnosing the current error. Our protocol scales well, in that the amount of computation performed at any node
in any one round, and the sizes of messages sent, depend linearly on the degree of the node, polynomially on k, but not at all on the
(typically much larger) number n of nodes. To achieve independence of n, the coordinates of the computed eigenvectors are held
locally by the nodes to which they correspond, enabling many eigenanalyses without distributing complete global state.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Eigenvectors; Spectral analysis; Decentralized algorithm; Markov Chain; Large networks

1. Introduction

One of the most stunning trends of recent years has been the emergence of very large-scale networks. A major
driving force behind this development has been the growth and wide-spread usage of the Internet. The structure
of hosts and routers—in itself a large network—has facilitated the growth of the World Wide Web, consisting of
billions of web pages linking to each other. This in turn has allowed or helped users to take advantage of services
such as Instant Messaging (IM) or various sites such as Friendster, Orkut, or BuddyZoo to explore their current

* Corresponding author.
E-mail addresses: dkempe@usc.edu (D. Kempe), mcsherry@microsoft.com (F. McSherry).

1 Work done while the author was supported by an NSF Graduate Fellowship.
0022-0000/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2007.04.014

D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83 71
social network and develop new social ties. Beyond Internet-based applications, a large amount of effort is now being
focused on structures and applications of decentralized Peer-to-Peer (P2P) networks [1–4].

In all of these cases, the (weighted) network structure contains much information that could be beneficial to the
nodes. For the router graph of the Internet or P2P networks, we may be interested in sparse cuts, as these may lead
to network traffic congestion, or—in the extreme case—network partitioning. For linked web pages, most useful
measures of relevance or relatedness (such as PageRank [5] or hub and authority weights [6]) are defined in terms
of the eigenvectors of the network’s adjacency matrix. In social networks, individuals may be interested in questions
such as: Is there a natural clustering among my friends? Which two of my friends are most likely to be compatible, and
should therefore be introduced? Which of my friends belong to social circles different from mine, and could therefore
introduce me to new people?

For all of the above questions, good solutions can be obtained by spectral analysis of the underlying graph structure,
as nodes on different sides of a sparse cut tend to have very different entries in the second eigenvector [7]. In addition,
several recent results have also shown how to use spectral techniques for clustering [8–10], characterization [6,11,12],
and recommendation/prediction [13].

When trying to apply these techniques to the large network settings described above, one encounters several dif-
ficulties. First and foremost, the very size of the networks may be prohibitively large for (efficient, but superlinear)
spectral algorithms. Second, the actual network data may be difficult to collect. This may be a result of either tech-
nological obstacles (such as implementing an efficient web crawler), or of privacy concerns: users of a P2P network
may want to keep their identity concealed, and users of IM or other social network systems may be reluctant to share
their social connections.

A solution to both of these problems is to perform the computation in the network. This leverages the computational
power of the individual nodes. At the same time, nodes only communicate and share data with their neighbors in the
network, which may go a long way toward alleviating privacy concerns. Last but not least, a decentralized design may
be more desirable solely on the grounds that it does not offer a single point of failure, and the system as a whole can
continue to function even when many of the nodes fail.

1.1. Our contributions

We present a decentralized algorithm for computing eigenvectors of a symmetric matrix, and singular vectors of
arbitrary matrices (corresponding to the adjacency matrices of undirected respectively directed graphs). We assume
that associated with each edge of the network is a weight aij , which is known to both endpoints. This weight may be
the bandwidth available between two machines, the number of links between two web pages, or an estimate of the
strength of a social tie between two individuals.

Our algorithm considers each node of the network as an independent computational entity that can communicate
with all of its neighbors. (This assumption is certainly warranted for social networks, P2P networks, or the autonomous
systems in the Internet; it can also be simulated fairly easily for web graphs.) The sizes of messages passed between
nodes, as well as the computation performed at each node, are nominal; when computing the k principal eigenvectors
(or singular vectors), they are O(k3) in each round. The number of rounds to achieve error ε is O(log2(n/ε) ·τmix(G)),
where τmix(G) denotes the mixing time of the random walk on the network G. As many of the above-mentioned
networks have good expansion (either by design or empirical observation), this time will essentially be logarithmic in
the number n of nodes, hence exponentially faster than the centralized algorithms for spectral analysis.

Our algorithm is based on a decentralized implementation of Orthogonal Iteration, a simple method for computing
eigenvectors. Let A = (aij) denote the weighted adjacency matrix of the graph under consideration. In the Orthogonal
Iteration method, k random vectors are chosen initially. In each iteration, all vectors are first multiplied by A; then, the
resulting vectors are orthonormalized, and serve as the starting vectors for the next iteration. We show how to approx-
imately implement both the multiplication and orthogonalization phases of an iteration in a decentralized fashion. As
this implementation introduces additional errors, we analyze how errors propagate through future iterations.

Our analysis of a single orthogonal iteration shows that the error with respect to a centralized implementation drops
to ε within time O(log 1

ε
· τmix). One feature of our approach is that nodes need not (and usually do not) know the

entire network structure, and in particular will usually not know the value of τmix. Hence, we also show how nodes
can detect convergence to within error ε in a decentralized way without more than a constant factor in overhead.

72 D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83
1.2. Applications

We elaborate briefly on some of the previously mentioned potential applications of spectral methods in a decentral-
ized setting. We restrict our discussion to applications where nodes can make decisions or draw inferences locally, by
comparing their own k-tuples to those of their neighbors. This precludes more global uses of eigenvectors, including
the prediction of non-existing links (except perhaps when the two nodes are at distance 2, and the comparison could
thus be performed by a common neighbor).

1.2.1. Network engineering
One of the main challenges in designing and maintaining networks is to ensure a high bandwidth for concurrent

flows between arbitrary sources and sinks. This usually involves detecting bottlenecks, and removing them by increas-
ing the bandwidth along bottleneck edges, or by adding more edges. Bottlenecks can often be detected by considering
the principal eigenvectors of the network’s adjacency matrix, as the components of nodes on different sides of a sparse
cut tend to have different signs in these eigenvectors.

More formally, by combining the theorem of Leighton and Rao [14], on the maximum amount f ∗ of flow that
can be concurrently routed between source/sink pairs (si , ti), with results relating the expansion of a graph to the
second-largest eigenvector of its Laplacian matrix L, maximum concurrent flow and eigenvalues relate as follows:
O(

nλn−1(L)

logn
) � f ∗ � O(n

√
λn−1(L)). Hence, to increase the amount of flow that can be concurrently sent, it suffices

to increase λn−1(L)—or equivalently, to decrease the second-largest eigenvalue of I − L.
One approach to attempt to minimize λ2(I − L) is to consider the eigenvalue characterization λ2(I − L) =

max�x⊥�x1
�xT (I−L)�x

�xT �x , where �x1 denotes the principal eigenvector of I − L. The second eigenvector is the �x attaining
the maximum. By increasing aij for nodes i, j with opposite signs in the vector �x (and decreasing aij for nodes
with equal signs), the ratio on the right-hand side is reduced, corresponding to the above intuition that the bandwidth
should be increased between nodes with different signs in their eigenvector entries. Notice that this will not necessar-
ily reduce λ2(I − L), as the maximum may be attained by a different vector �x now. However, at worst, this is a good
practical heuristic; in fact, we conjecture that by extending this technique to multiple eigenvectors, λ2(I − L) can be
provably reduced. As all non-zero entries of I − L coincide with non-zero entries of A, they correspond to edges of
the network, and the computation can thus be performed by our decentralized algorithm.

1.2.2. Social engineering and weak ties
The importance of spectral methods in the analysis of networks in general, and social networks in particular,

results from the fact that they assign to each point a vector in R
k for some small k, and that proximity in this space R

k

corresponds to a similarity of the two nodes in terms of their positions within the network. For social networks, this
means that individuals with similar (or compatible) social circles will be mapped to close points.

A first application of this observation would lie in link prediction or “social engineering”: introducing individuals
who do not know each other (do not share an edge), even though their mappings into R

k are close. This requires
the existence of a node to observe the proximity, for instance a “common friend” (a node adjacent to both); a more
sophisticated solution might let a node broadcast its k-dimensional vector to other nodes, and let them choose to
contact this possibly compatible node (with small inner product of the two vectors [13]).

A second, and perhaps more interesting, application is the detection of weak ties. Sociologists have long distin-
guished between “strong” and “weak” social ties—see the seminal paper by Granovetter [15] on the subject. The
notions of weak and strong ties refer to the frequency of interaction between individuals, but frequently coincide with
ties between individuals of different respectively similar social circles. The distinction of social ties into different
classes is important in that [15] reports that a disproportionately large fraction of employment contracts are the result
of weak tie interaction. One may expect similar phenomena for other aspects of life. An individual may therefore want
to discover which of his ties are weak, in order to seek introduction to potential employers, new friends, etc.

Using the mapping into R
k , we can define a precise notion of a weak tie, by comparing the distance between the two

endpoints of an edge. (A weak tie between individuals will thus correspond intuitively to adjacent nodes on different
sides of a sparse cut in the sense discussed above.) What is more, the two endpoints themselves can determine whether
their tie is weak, and act accordingly.

D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83 73
1.3. Related work

For a general introduction to spectral techniques, see [16]. There has been a large body of work on parallelizing
matrix operations—see for instance [17] for a comprehensive overview. These approaches assume a fixed topology
of the parallel computer which is unrelated to the matrix to be decomposed; our approach, on the other hand, has a
network of processors analyze its own adjacency matrix.

Our work relates to other recent work that tries to infer global properties of a graph by simple local processes
on it. In particular, Benjamini and Lovász [18] show how to determine the genus of a graph from a simple random
walk-style process.

Our implementation of Orthogonal Iteration is based on a recent decentralized protocol for computing aggregate
data in networks, due to Kempe, Dobra, and Gehrke [19]. Here, we show how to extend the ideas to compute signifi-
cantly more complex properties of the network itself.

Both the above-mentioned paper [19] and our paper draw connections between computing the sum or average of
numbers, and the mixing speed of random walks. In recent work, Boyd et al. [20,21] have made this connection even
more explicit, showing that the two are essentially identical under additional assumptions.

The equivalence between averaging and Markov Chains suggests that in order for these decentralized algorithms
to be efficient, they should use a Markov Chain with as small mixing time as possible. Boyd, Diaconis, and Xiao [22]
show that the fastest mixing Markov Chain can be computed in polynomial time, using semi-definite programming.
For the special case of random geometric graphs (which are reasonable models for sensor networks), Boyd et al. [23]
show that the fastest mixing Markov Chain mixes at most by a constant factor faster than the random walk, in time
Θ(r−2 logn) (where all n points are randomly placed in a unit square, and considered adjacent if they are within
distance r). In essence, this shows that slow convergence is inherent in decentralized averaging algorithms on random
geometric graphs.

2. The algorithm

We consider the problem of computing the eigenvectors of a weighted graph, where the computation is performed
at the nodes in the graph. Each node has access to the weights on incident edges, and is able to communicate along
edges of non-zero weight, exchanging messages of small size. The goal is for each node to compute its value in each
of k principal eigenvectors. For simplicity, we will assume that each node can perform an amount of computation and
communication proportional to its degree in each round.

2.1. Orthogonal iteration

Our algorithm emulates the behavior of Orthogonal Iteration, a simple algorithm for computing the top k eigen-
vectors of a (graph adjacency) matrix A = (aij)i,j .

Algorithm 1. Orthogonal Iteration (A)

1: Choose a random n×k matrix Q.
2: loop
3: Let V = AQ.
4: Let Q = Orthonormalize(V).
5: end loop
6: Return Q as the eigenvectors.

Once the eigenvectors have been computed, it is easy to obtain from them the projections of each node onto the
eigenspace, as it is captured by the rows of V .

Orthogonal Iteration converges quickly: the error in the approximation to the true Q decreases exponentially in the
number t of iterations, as characterized by Theorem 3 below.

We adapt Orthogonal Iteration to a decentralized environment. Each node i takes full responsibility for the rows of
V and Q associated with it, denoted Vi and Qi . The choice of a random matrix is easy to implement in a decentralized

74 D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83
fashion. Similarly, when the matrix Q is already known, then V = AQ can be computed locally: each node j sends
its row Qj to all of its neighbors; then, node i can compute its row Vi as a linear combination (with coefficients aij)
of all vectors Qj received from its neighbors j . The key aspect of the decentralization is therefore how to perform the
orthonormalization of V in a decentralized way.

2.2. Decentralized orthonormalization

The orthonormalization in Orthogonal Iteration is typically performed by computing the QR factorization of V ,
i.e. matrices Q,R such that V = QR, the k columns of Q are orthonormal, and the k × k matrix R is upper triangular.
Orthonormalization is thus performed by applying R−1 to V , yielding Q. If each node had access to R, each could
locally compute the inverse R−1 and apply it to its copy of Vi . The resulting collection of vectors would then form an
orthonormal Q.

However, it is not obvious how to compute R directly. Therefore, we use the fact that if K = V T V , then R is
the unique k × k upper triangular matrix with K = RT R. This holds because if Q is orthonormal, then QT Q is the
identity matrix, so

K = V T V = RT QT QR = RT R.

(Here, we are using the fact that the QR-factorization V = QR and the Cholesky factorization K = RT R are both
unique.) Once each node i has access to the k × k matrix K , each can compute the Cholesky factorization K = RT R

locally, invert R, and apply R−1 to its row Vi .
Unfortunately, it is unclear how to provide each node with the precise matrix K . Instead, each node computes an

approximation to K . To see how, observe that K = ∑
i V

T
i Vi . Each node i is capable of producing K(i) = V T

i Vi

locally, and if we can, in a decentralized manner, sum up these matrices, each node can obtain a copy of K .
In order to compute this sum of matrices in a decentralized fashion, we employ a technique proposed in [19]: the

idea is to have the value (or, in this case, matrix) from each node perform a deterministic simulation of a random walk.
Once this “random walk” has mixed well, each node i will hold roughly a πi fraction of the value from each other
node j (where πi denotes the stationary probability for node i of the random walk). Hence, if we also compute πi

and divide by it, then each node calculates approximately the sum of all values. (For matrices, all of this computation
applies entry-wise.) Hence, let B = (bij) be an arbitrary stochastic matrix, such that the corresponding Markov Chain
is ergodic and reversible,2 and bij = 0 whenever there is no edge from i to j in the network.3 Then, the algorithm for
summing is given by Algorithm 2 below.

Algorithm 2. Push-Sum (B, (K(i)))

1: One node ı̂ starts with wı̂ = 1, all others with wi = 0.
2: All nodes set Si = K(i).
3: loop
4: Set Si = ∑

j∈N(i) bjiSj

5: Set wi = ∑
j∈N(i) bjiwj

6: end loop
7: Return Si

wi
.

At each node, the ratio Si

wi
converges to the sum

∑
i K

(i) at essentially the same speed as the Markov Chain defined
by B converges to its stationary distribution. The exact bound and analysis are given as Theorem 5.

Combining this orthonormalization process with the decentralized computation of AV , we obtain the following
decentralized algorithm for eigencomputation, as executed at each node i:

2 Recall that a Markov Chain is called reversible if it satisfies the detailed balance condition πiBij = πjBji for all i and j .
3 A natural choice is the random walk on the underlying network, i.e. bij = 1

deg(i)
. However, our results hold in greater generality, and the

additional flexibility may be useful in practice when the random walk on the network itself does not mix well.

D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83 75
Algorithm 3. DecentralizedOI (k)

1: Choose a random k-dimensional vector Qi .
2: loop
3: Set Vi = ∑

j∈N(i) aij Qj .

4: Compute K(i) = V T
i

Vi .

5: Set K = Push-Sum(B,K(i)).
6: Compute the Cholesky factorization K = RT R.
7: Set Qi = ViR

−1.
8: end loop
9: Return Qi as the ith component of each eigenvector.

We have been fairly casual about the number of iterations that should occur, and how a common consensus on
this number is achieved by the nodes. One simplistic approach is to have the initiator specify a number of iterations,
and keep this amount fixed throughout the execution. A more detailed analysis, showing how nodes can estimate the
approximation error in a decentralized way, is given in Section 3.3.

The main technical result of our paper is a careful analysis of the convergence speed and properties of the Decen-
tralizedOI Algorithm 3. In order to state the convergence properties formally, we describe the subspaces in terms of
projection matrices, instead of a specific set of basis vectors. This simplifies the presentation by avoiding technical
issues with ordering and rotations among the basis vectors. For a subspace S with orthonormal basis {�b1, . . . , �bk}, the
projection matrix onto S is PS = ∑

i
�bi

�bT
i . Our main theorem is then:

Theorem 1. Let A be a symmetric matrix, and λ1, λ2, . . . its eigenvalues, such that |λ1| � |λ2| � Let PQ denote
the projection onto the space spanned by the top k eigenvectors of A and let PQ′ denote the projection onto the space
spanned by the eigenvectors computed after t iterations of Decentralized Orthogonal Iteration.

If DecentralizedOI runs Push-Sum for Ω(tτmix · log(kc
ε

· ‖A‖2)) steps in each of its iterations, and ‖R−1‖2 is
consistently less than c, then with high probability,

‖PQ − PQ′ ‖2 � O

(∣∣∣∣λk+1

λk

∣∣∣∣t · n
)

+ 3ε4t .

Remark 2 (Vector and matrix norm notation). For any probability distribution �μ, we write ‖�x‖p, �μ =
(
∑

i |xi |p · μi)
1/p , and ‖�x‖∞, �μ = maxi |xi |. When �μ is omitted, we mean the norm ‖�x‖p = (

∑
i |xi |p)1/p .

For vector norms ‖·‖a,‖·‖b, the matrix operator norm of a matrix A is defined as ‖A‖a→b = max‖�x‖a=1 ‖A�x‖b .
We most frequently use ‖A‖2 := ‖A‖2→2. In addition to the operator norms induced by Lp norms on vectors, we
define the Frobenius norm of a matrix A as ‖A‖F := (

∑
i,j a2

ij)
1/2. These two norms relate in the following useful

ways: for any two matrices A,B , we have that ‖A‖2 � ‖A‖F �
√

rank(A)‖A‖2, and ‖AB‖F � ‖A‖2‖B‖F .

3. Analysis

In this section, we analyze the convergence properties of our decentralized algorithm, and prove Theorem 1. The
proof must take into account two sources of error: (1) The Orthogonal Iteration algorithm itself does not produce an ex-
act solution, but instead converges to the true eigenvectors, and (2) our decentralized implementation DecentralizedOI
introduces additional error.

The convergence of Orthogonal Iteration itself has been analyzed extensively in the past (Theorem 8.2.2 in [24]);
the relevant results are stated as Theorem 3.

Theorem 3. Let PQ describe the projection onto the space spanned by the top k eigenvectors of a symmetric matrix A,
and let PQ′ be the projection onto the space spanned by the approximate Q′ obtained after t iterations of Orthogonal
Iteration, starting from a uniformly random projection. With high probability,

‖PQ − PQ′ ‖2 � O

(∣∣∣∣λk+1

λk

∣∣∣∣t · n
)

.

76 D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83
Remark 4. Interpreted, this theorem implies that the space found by orthogonal iteration is close to the true space, so
the projections Vi = AQi are nearly perfect. Furthermore, not many iterations are required to achieve good accuracy.
To bring this error bound to O(ε), we need to perform t = log(n

ε
)/ log(| λk

λk+1
|) iterations.

Notice that the bound of Theorem 8.2.2 in [24] characterizes the error in terms of the tangent of the angle between
the initial subspace and the span of the top k eigenvectors. Here, we bound the tangent by O(n) with high probability,
having started from a uniformly random initial subspace. The probability is not exponentially small, though one can
make it so through repeated or parallel application of the algorithm, as is common in the centralized setting. If a better
bound on the tangent of the angle between subspaces is available, e.g., if we are starting from a solution that is known
a priori to be nearly accurate, the O(n) term can be replaced by a better bound.

For analyzing the second type of error—introduced by the inaccurate computations of sums, we first analyze the
error introduced by one iteration of Push-Sum in Section 3.1, and then analyze the propagation of such errors through
multiple iterations of DecentralizedOI in Section 3.2.

3.1. Analysis of Push-Sum

We begin by analyzing the error introduced by using Push-Sum for adding matrices instead of obtaining accurate
sums. We define the mixing time τmix of the Markov Chain associated with B in terms of the ‖·‖2 norm, namely as
the smallest t such that ‖�eT

i Bt − �πT ‖2 � 1
2 for all i. Then, we can prove the following theorem about the convergence

speed of Push-Sum:

Theorem 5. Let St,i be the k × k matrix held by node i after the t th iteration of Push-Sum, wt,i its weight at that
time, and S the correct matrix. Define M = ∑

i |S0,i | to be the matrix whose (r, c) entry is the sum of absolute values

of the initial matrices S0,i at all nodes i. Then, for any ε, the approximation error is ‖ St,i

wt,i
− S‖F � ε‖M‖F , after

t = O(τmix · log 1
ε
) rounds.

The proof of this theorem rests mainly on Lemma 6 below, relating the approximation quality for every single entry
of the matrix to the convergence of Bt to the stationary distribution of B . In the formulation of the lemma, we are
fixing a single entry (r, c) of all matrices involved. We write xi = K

(i)
rc , and st,i = (St,i)rc.

Lemma 6. Let t be such that ‖ �eT
j Bt−�π

�π ‖∞ � ε
2+ε

for all j .4 Then, for any node i, the approximation error

| st,i
wt,i

− ∑
j xj | at time t is at most ε

∑
j |xj |.

Proof. Let �st and �wt denote the vector of all st,i respectively wt,i values at time t . Thus, �s0 = �x, and �w0 = �eı̂ , for the
special node ı̂. Then, it follows immediately from the definition of Push-Sum that �sT

t+1 = �sT
t B , and �wT

t+1 = �wT
t B . By

induction, we obtain that �sT
t = �xT Bt = ∑

j xj · �ejB
t , and �wT

t = �eT
ı̂
Bt .

Node i’s estimate of the sum at time t is st,i
wt,i

= ∑
j xj · (�ej Bt)i

(�eı̂B
t)i

. Because both the numerator and denominator

converge to πi , the right-hand side converges to
∑

j xj . Specifically, let t be such that ‖ �eT
j Bt−�π

�π ‖∞ � ε
2+ε

for all j .

Then, a straightforward calculation shows that 1 − ε � (�ej Bt)i
(�eı̂B

t)i
� 1 + ε for all i, j .

Finally, by a simple application of the Triangle Inequality, we obtain that | st,i
wt,i

− ∑
j xj | � ε

∑
j |xj |, completing

the proof. �
The lemma gives bounds on the error in terms of the mixing speed of the Markov Chain, as measured in the ‖·‖∞

norm. Most analysis of Markov Chains is done in terms of the ‖·‖2,�π norm, or the total variation distance. For this
reason, we give the discrete time analogue of Lemma 2.4.6 from [25], which relates ‖·‖∞ and ‖·‖2,�π for reversible
Markov Chains.

4 When we write a fraction of vectors, we mean the vector whose entries are the component-wise fractions.

D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83 77
Lemma 7. Let B be a stochastic matrix whose associated Markov Chain is ergodic and reversible, with stationary

probability �π . Then, for any time t , we have that maxi ‖ �eT
i B2t−�πT

�π ‖∞ � (maxi ‖ �eT
i Bt−�πT

�π ‖2,�π)2.

Proof. Substituting the definition of ‖·‖∞, and noticing that �πT = �eT
i
�1�πT , we can rewrite the quantity to be bounded

as maxi,j �eT
i (B2t − �1�πT)

�ej

�π . Then, it is easy to see that this quantity is equal to max‖�x‖1,�π=1 ‖(B2t − �1�πT)�x‖∞ (as
the maximum in the second version is attained when only one coordinate of �x is non-zero). This is, by definition, the
operator norm ‖B2t − �1�πT ‖1,�π→∞.

Because B (and hence Bt) is stochastic with stationary probability �π , we have that �πT · Bt = �πT , and Bt · �1 = �1.
Furthermore, the fact that �π is a probability measure implies that �πT �1 = 1, so we obtain that B2t − �1�πT = (Bt −
�1�πT)2. Now, applying the submultiplicativity of operator norms to B2t − �1�πT gives us that ‖B2t − �1�πT ‖1,�π→∞ �
‖Bt − �1�πT ‖1,�π→2,�π · ‖Bt − �1�πT ‖2,�π→∞.

For ease of notation, we write K = Bt − �1�πT . Because B satisfies the detailed balance condition πibij = πjbji for
all i, j , so does Bt (which can be shown by a simple inductive proof). Therefore, K also satisfies the detailed balance
condition. Using the fact that ‖K‖1,�π→2,�π = max‖�x‖1,�π=1,‖�y‖2,�π=1

∑
i (K �x)iyiπi (one direction of which is proved

using the Cauchy–Schwartz Inequality, the other by appropriate choice of �x and �y), the detailed balance property

of K yields ‖K‖1,�π→2,�π = ‖K‖2,�π→∞. Finally, ‖K‖1,�π→2,�π = maxi (
∑

j

K2
ij

πj
)1/2 = maxi ‖ �eT

i Bt−�πT

�π ‖2,�π , again by
the detailed balanced condition. �

By combining Lemma 6 and Lemma 7, we can prove Theorem 5.

Proof of Theorem 5. Given a desired approximation quality ε, we define ε′ = ε
(2+ε)

. By definition of the mixing

time τmix, the ‖·‖2 distance at time τmix is at most ‖�eT
i Bτmix − �πT ‖2 � 1

2 for any i. Therefore, by a simple geometric
convergence argument, at time t = O(log 1√

ε′ τmix) = O(log 1
ε
τmix), the error is at most ‖�eT

i Bt − �πT ‖2 �
√

ε′, for
any i.

By Lemma 7, maxi ‖ �eT
i B2t−�πT

�π ‖∞ � ε′ = ε
2+ε

. For any node i and each (r, c) pair, Lemma 6 therefore shows that

| (S2t,i)rc
w2t,i

− ∑
j xj | � ε · ∑j |xj | = εmrc. Hence, we can bound the Frobenius norm

‖S2t,i − S‖F �
√∑

r,c

ε2
∑
j

m2
rc = ε‖M‖F ,

completing the proof. �
3.2. Error of Orthogonal Iteration

The more challenging part is to analyze the effect of the errors introduced by Push-Sum on the aggregation. In
Section 3.1, we showed that the error for each entry of the matrix K at each node i drops exponentially in the number
of steps that Push-Sum is run. Still, after any finite number of steps, each node i is using a (different) approximation
K̂i to the correct matrix K , from which it computes R̂−1

i and then its new vector Qi . We therefore need to analyze
the effects that the error introduced into the matrix K̂i will have on future (approximate) iterations, and show that it
does not hinder convergence. Specifically, we want to know how many iterations of Push-Sum need to be run to make
the error so small that even the accumulation over the iterations of Orthogonal Iteration keeps the total error bounded
by ε.

In order to bound the growth of error for the decentralized Orthogonal Iteration algorithm, we first analyze the
effects of a single iteration. Recall that a single iteration, in the version that we use to decentralize, looks as follows:
It starts with an orthonormal matrix Q, determines V = AQ and K = V T V , and from this computes a Cholesky
factorization K = RT R, where R is a k × k matrix. Finally, the output of the iteration is Q′ = V R−1, which is used
as input for the next iteration.

The decentralized implementation will start from a matrix Q̂ which is perturbed due to approximation errors
from previous iterations. The network computes V̂ = AQ̂, and we can hence define K̂ = V̂ T V̂ . However, due to

78 D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83
the approximate nature of Push-Sum, node i will not use K̂ , but instead use a matrix K̂i = K̂ + Ei , for some error
matrix Ei . Node i then computes R̂i such that K̂i = R̂T

i R̂i , and applies R̂−1
i to its row V̂i of the matrix V̂ . Hence, the

resulting matrix Q̂′ has as its ith row the vector V̂i R̂
−1
i .

Lemma 8. Let Q and Q̂ be matrices where Q is orthonormal, satisfying the bound ‖Q − Q̂‖F + εk �
(2‖A‖2‖R−1‖2)

−3. If Q′ and Q̂′ are respectively the results of one step of Orthogonal Iteration applied to Q and
Decentralized Orthogonal Iteration applied to Q̂, and the number of steps run in Push-Sum is t = Ω(τmix log(1/ε)),
then

‖Q′ − Q̂′‖F �
√

k
(
2‖A‖2

∥∥R−1
∥∥

2

)4(‖Q − Q̂‖F + εk
)
.

Proof. The proof consists of two parts: First, we apply perturbation results for the Cholesky decomposition and matrix
inverse to derive a bound on ‖R−1 − R̂−1

i ‖2. Second, we analyze the effect of applying the (different) matrices R̂−1
i

to the rows of V̂ .
Throughout, we will be making repeated use of the relationship between the matrix norms of A,V,R,K . Because

V = Q′R, and V = AQ, we can use the submultiplicativity of matrix norms, together with the fact that Q and Q′
are orthonormal (and hence have norm 1) to observe that ‖V ‖F � ‖R‖F , ‖V ‖2 � ‖R‖2, and ‖V ‖2 � ‖A‖2. Finally,
because K = RT R, its norms satisfy ‖K‖2 = ‖R‖2

2, and ‖K‖F � ‖R‖2
F .

The perturbation bound will have four steps, which respectively bound the terms ‖K − K̂‖F , then ‖K − K̂i‖F ,
then ‖R − R̂i‖F , then ‖R−1 − R̂−1

i ‖2. We start by applying the Triangle Inequality to ‖K − K̂‖F , followed by some
rearrangement,

‖K − K̂‖F = ∥∥V T V − V̂ T V̂
∥∥

F
�

∥∥V T V − V̂ T V
∥∥

F
+ ∥∥V̂ T V − V̂ T V̂

∥∥
F

� ‖V ‖2
∥∥V T − V̂ T

∥∥
F

+ ‖V̂ ‖2‖V − V̂ ‖F = (‖V ‖2 + ‖V̂ ‖2
)‖V − V̂ ‖F .

Next, we want to bound the distance between K and the approximation K̂i used by node i. Because we chose the
number t of iterations large enough, Theorem 5 implies that ‖K̂i − K̂‖F � ε‖M‖F , where M = (mrc)r,c denotes the
matrix with entries mrc = ∑

i |(V̂ T
i V̂i)rc|. Applying the Cauchy–Schwartz Inequality after expanding the definition

of ‖·‖F bounds ‖M‖F � ‖V̂ ‖2
F , so

‖K − K̂i‖F � ‖K − K̂‖F + ‖K̂ − K̂i‖F �
(‖V ‖2 + ‖V̂ ‖2

)‖V − V̂ ‖F + ε‖V̂ ‖2
F .

We apply two well-known theorems to bound the propagation of errors in the Cholesky factorization and matrix
inversion steps. First, a theorem by Stewart [26] states that if K = RT R and K̂ = R̂T R̂ are Cholesky factorizations of
symmetric matrices, then ‖R − R̂‖F � ‖K−1‖2‖R‖2‖K̂ − K‖F . Applying this theorem to our setting, using ‖R‖2 =
‖V ‖2

‖R − R̂i‖F � ‖K−1‖2‖V ‖2
((‖V ‖2 + ‖V̂ ‖2

)‖V − V̂ ‖F + ε‖V̂ ‖2
F

)
. (1)

Now is a good time to reduce these terms somewhat. Recall that because V̂ = V + A(Q̂ − Q), we have that

‖V − V̂ ‖F � ‖A‖2‖Q − Q̂‖F and ‖V̂ ‖2 � ‖V ‖2 + ‖A‖2‖Q − Q̂‖2.

Recalling our assumption that ‖Q − Q̂‖F � (2‖A‖2‖R−1‖2)
−3, and noting that by submultiplicativity

‖A‖2‖R−1‖2 � ‖AQR−1‖2 = ‖Q′‖2 = 1, we have

‖V − V̂ ‖F � ‖A‖2/8 and ‖V̂ ‖2 � ‖V ‖2 + ‖A‖2/8.

Introducing these bounds into (1), as well as ‖V ‖2 � ‖A‖2 and ‖V̂ ‖2
F � k‖V̂ ‖2

2, followed by a sequence of rearrange-
ment of terms, we bound

‖R − R̂i‖F �
∥∥K−1

∥∥
2‖A‖3

2

(
(17/8)‖Q − Q̂‖F + εk(9/8)2)

� (17/8)
∥∥K−1

∥∥
2‖A‖3

2

(‖Q − Q̂‖F + εk
)
.

As ‖K−1‖2 = ‖R−1‖2
2, and using the lemma’s assumption on ‖Q − Q̂‖F + εk,

‖R − R̂i‖F � (17/64)
∥∥R−1

∥∥−1
.
2

D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83 79
As the final step in our perturbation bounds, we apply Wedin’s Theorem [27], which states that for non-singular
matrices R, R̂i ,∥∥R−1 − R̂−1

i

∥∥
2 � 1 + √

5

2
‖R − R̂i‖2 max

{∥∥R−1
∥∥2

2,
∥∥R̂−1

i

∥∥2
2

}
.

To bound ‖R̂−1
i ‖2, we use a perturbation bound on the singular values of a matrix: σk(R) − σk(R̂i) � ‖R − R̂i‖2. As

σk(R) = ‖R−1‖−1
2 and σk(R̂i) = ‖R̂−1

i ‖−1
2 , we have that∥∥R−1

∥∥−1
2 − ∥∥R̂−1

i

∥∥−1
2 � ‖R − R̂i‖2.

Substituting our bound on ‖R − R̂i‖F , we obtain that∥∥R−1
∥∥−1

2 − ∥∥R̂−1
i

∥∥−1
2 � 17

64

∥∥R−1
∥∥−1

2 .

Rearranging these terms yields 47
64‖R−1‖−1

2 � ‖R̂−1
i ‖−1

2 , and reciprocating then gives ‖R̂−1
i ‖2 � 64

47‖R−1‖2. Using
this bound in Wedin’s theorem, we obtain∥∥R−1 − R̂−1

i

∥∥
2 � 1 + √

5

2
· 64

47
· ∥∥R−1

∥∥2
2‖R − R̂i‖2 � 5‖A‖3

2

∥∥R−1
∥∥4

2 · (‖Q − Q̂‖F + εk
)
.

In the second part of the proof, we want to analyze the effect obtained by each node i applying its own matrix R̂−1
i to

its row V̂i of the matrix V̂ . Notice that this is a non-linear operation, so we cannot argue in terms of matrix products
as above. Instead, we perform the analysis on a row-by-row basis. We can write Q′

i − Q̂′
i as

Q′
i − Q̂′

i = ViR
−1 − V̂i R̂

−1
i = Vi

(
R−1 − R̂−1

i

) + (Vi − V̂i)R̂
−1
i .

We let C be the matrix whose ith row is (Vi − V̂i)R̂
−1
i , and D the matrix whose ith row is Vi(R

−1 − R̂−1
i). We bound

the Frobenius norms ‖C‖F , ‖D‖F separately. To bound ‖C‖F , observe that

‖C‖2
F =

∑
i

∥∥(Vi − V̂i)R̂
−1
i

∥∥2
2 �

∑
i

‖Vi − V̂i‖2
2

∥∥R̂−1
i

∥∥2
2 � max

i

∥∥R̂−1
i

∥∥2
2 ·

∑
i

‖Vi − V̂i‖2
2

= max
i

∥∥R̂−1
i

∥∥2
2 · ‖V − V̂ ‖2

F .

Similarly, to bound the Frobenius norm of D:

‖D‖2
F =

∑
i

∥∥Vi

(
R−1 − R̂−1

i

)∥∥2
2 � ‖V ‖2

F · max
i

∥∥R−1 − R̂−1
i

∥∥2
2.

We take square roots on both sides of these bounds, and combine them using the Triangle Inequality, getting

‖Q′ − Q̂′‖F � ‖V̂ − V ‖F · max
i

∥∥R̂−1
i

∥∥
2 + ‖V ‖F · max

i

∥∥R−1 − R̂−1
i

∥∥
2.

Finally, inserting our bounds on ‖R̂−1
i ‖2 and ‖R−1 − R̂−1

i ‖2 yields that

‖Q′ − Q̂′‖F � ‖A‖2‖Q̂ − Q‖F · 64

47

∥∥R−1
∥∥

2 + 5
√

k‖A‖2‖A‖3
2

∥∥R−1
∥∥4

2

(‖Q − Q̂‖F + εk
)

� 7
√

k · ∥∥R−1
∥∥4

2 · ‖A‖4
2 · (‖Q − Q̂‖F + εk

)
,

completing the proof. �
Proof of Theorem 1. Lemma 8 establishes that the approximation error ‖Q − Q̂‖F grows by at most a factor of√

k · (2‖R−1‖2‖A‖2)
4 with each iteration, plus an additional εk error. While this worst-case exponential growth is

worrisome, the initial error is 0, and ε decreases exponentially with the number of Push-Sum steps performed. In
particular, if we perform Ω(tτmix log(kc

ε
· ‖A‖2)) steps of Push-Sum in each iteration, then by Theorem 5, the new

error introduced by the Push-Sum approximation in each iteration is at most δk, with δ = (ε 1)4t .
2kc ‖A‖2

80 D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83
As the matrices Q,Q̂ always satisfy the conditions of Lemma 8 (an easy proof by induction), the total error
introduced over all t iterations is

δk ·
t−1∑
i=0

(√
k · (2

∥∥R−1
∥∥

2‖A‖2
)4)i = O

(
δk · (√k · (2

∥∥R−1
∥∥

2‖A‖2
)4)t)

.

Substituting the value of δ shows that if ‖R−1‖2 � c in each iteration, then the difference ‖Q − Q̂‖F is bounded by
ε4t after t iterations.

To transform this bound into the claimed bound on the difference in projections ‖PQ − PQ̂‖F , note that

‖PQ − PQ̂‖F = ∥∥QQT − Q̂Q̂T
∥∥

F
�

∥∥QQT − QQ̂T
∥∥

F
+ ∥∥QQ̂T − Q̂Q̂T

∥∥
F

�
(‖Q‖2 + ‖Q̂‖2

)‖Q − Q̂‖F .

By the argument in the proof of Lemma 8, the first factor is at most 17/8 � 3, so that ‖PQ − PQ̂‖F � 3ε4t . Finally,
combining this bound with the one from Theorem 3 completes the proof of Theorem 1. �

The main assumption of Theorem 1, that ‖R−1‖2 is bounded, raises an interesting point. ‖R−1‖2 becoming un-
bounded corresponds to the columns of Q becoming linearly dependent, an event that is unlikely to happen outside
of matrices A of rank less than k. Should it happen, the decentralized algorithm will deal with this in the same man-
ner that the centralized algorithm does: The final column of Q will be filled with garbage values. This garbage will
then serve as the basis for a new attempt at convergence for this column. The difference between the centralized and
decentralized approaches is precisely which garbage is used. Clearly if the error is adversarial, the new columns of Q

could be chosen to be orthogonal to the top k eigenvectors, and correct convergence will not occur.
Notice that even if ‖R−1‖2 is large for some value of k, it may be bounded for smaller values k′. Orthogonal

iteration is a nested process, meaning that the results hold for k′ < k, where we examine the matrices restricted to the
first k′ eigenvectors. This means that while we can no longer say that the final k − k′ columns necessarily track the
centralized approach, we can say that the first k′ are still behaving properly.

3.3. Detecting convergence in Push-Sum

In our discussion thus far, we have glossed over the issue of termination by writing “Run Push-Sum until the error
drops below ε.” We have yet to address the issue of how the nodes in the network know how many rounds to run. If
the nodes knew τmix, the problem would be easy—however, this would require knowledge and a detailed analysis of
the graph topology, which we cannot assume nodes to possess.

Instead, we would like nodes to detect convergence to within error ε themselves. We show how to achieve this goal
under the assumption that each node knows (a reasonable upper bound on) the diameter diam(G) of the graph G.
In order to learn the diameter to within a factor of 2, a node may simply initiate a BFS at the beginning of the
computation, and add the length of the two longest paths found this way.

Assume now that nodes know an upper bound d on the diameter, as well as a target upper bound ε on the relative
error. For the purpose of error detection, the nodes, in addition to the matrices Si from before, compute the sum of the
non-negative matrices Ai , with (Ai)rc = |(Si)rc|. When the nodes want to test whether the error has dropped below
ε, they compute the values amax

rc = maxi
(Ai)rc

wi
, amin

rc = mini
(Ai)rc

wi
, smax

rc = maxi
(Si)rc

wi
, and smin

rc = mini
(Si)rc

wi
. (Notice

that the maximum and minimum can be computed by using flooding, and only sending one value for each position
(r, c), as both operations are idempotent.) The nodes decide to stop if the values for all matrix positions (r, c) satisfy
amin
rc � 1

1+ε
amax
rc , and smax

rc − smin
rc � ε

1+ε
amax
rc . Otherwise, the nodes continue with Push-Sum.

We will show in Theorem 9 below that this rule essentially terminates when the maximum error is less than ε. As
the computation of the maximum and minimum takes time Θ(diam(G)), testing the error after each iteration would
cause a slowdown by a multiplicative factor of Θ(diam(G)). However, the BFS need only be performed every d steps,
in which case at most an additional d rounds are run, while the amortized cost is at most a constant factor. Whenever
d = Θ(diam(G)), the overall effect is only a constant factor.

For our theorem below, we focus only on one matrix entry (r, c), as taking the conjunction over all entries does
not alter the problem. We let xi denote the value held by node i before the first iteration, and write si = (Si)rc, and
ai = (Ai)rc for the entries at the time under consideration. We define amax, amin, smax, and smin in the obvious way.

D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83 81
In line with the error analysis above, we say that the error at node i is bounded by ε if | si
wi

− ∑
j xj | � ε

∑
j |xj |. The

error is bounded by ε if it is bounded by ε at all nodes i.

Theorem 9.

(1) When the computation stops, the error is at most ε.
(2) After the number t of steps specified in Lemma 6 to obtain error at most ε

2(1+ε)
, the computation will stop.

Notice that there is a gap of 1
2(1+ε)

between the actual desired error and the error bound that ensures that the protocol
will terminate. However, this is only a constant factor, so only a constant number of additional steps is required (after
the actual error has dropped below ε) until the nodes actually detect that it is time to terminate.

Proof. (1) When the computation stops, the stopping requirement ensures that

amin � 1

1 + ε
amax, (2)

smax − smin � ε

1 + ε
amax. (3)

Because
∑

j wj = 1, we obtain that
∑

j aj = ∑
j wj

aj

wj
is in fact a convex combination of

aj

wj
terms, and in particular

amin �
∑

i ai � amax. Thus, inequality (2) implies that amax � (1 + ε) · ∑j aj .

Inequality (3) therefore implies that smax − smin � ε
∑

j aj . The same convexity argument, applied this time to∑
j sj , as well as the facts that

∑
j aj = ∑

j |xj | and
∑

j sj = ∑
j xj , now ensures that | si

wi
− ∑

j xj | � ε · ∑j |xj |
for all nodes i, i.e. the desired error bound.

(2) For the second part, we first apply Lemma 6, yielding for all nodes i that∣∣∣∣ ai

wi

−
∑
j

|xj |
∣∣∣∣ � ε

2(1 + ε)

∑
j

|xj |,∣∣∣∣ si

wi

−
∑
j

xj

∣∣∣∣ � ε

2(1 + ε)

∑
j

|xj |.

By the Triangle Inequality and the above convexity argument,

amax − amin � 2
ε

2(1 + ε)

∑
j

|xj | � ε

1 + ε
amax,

so the first stopping criterion is satisfied. Similarly,

smax − smin � 2
ε

2(1 + ε)

∑
j

|xj | � ε

1 + ε
amax,

so the second criterion is met as well, and the protocol will terminate. �
4. Conclusions

In this paper, we have presented and analyzed a decentralized algorithm for the computation of a graph’s spectral
decomposition. The approach is based on a simple algorithm called Push-Sum for summing values held by nodes in a
network [19].

We have presented a worst-case error analysis; one that is far more pessimistic than those performed in bounding
the (similar) effects of floating point errors on numerical linear algebra algorithms. Nonetheless, our analysis shows
that t iterations of orthogonal iteration can be performed without central control in time O(t2τmix), where τmix is the
mixing time of any Markov Chain on the network under consideration.

We believe that our algorithm represents a starting point for a large class of distributed data mining algorithms,
which leverage the structure and participants of the network. This suggests the more general question of which data

82 D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83
mining services really need to be centralized. For example, Google’s primary service is not the computation of Pager-
ank, but rather computing and serving a huge text reverse-index. Can such a task be decentralized, and can a web
search system be designed without central control?

Above, we argue informally that one of the advantages of our algorithm is a greater protection of nodes’ privacy.
An exciting direction for future work is to investigate in what sense decentralized algorithms can give formal privacy
guarantees.

The convergence of our algorithm depends on the mixing speed of the underlying Markov Chain. For a fixed
network, different Markov Chains may have vastly different mixing speeds [22]. Boyd et al. [22] show how to compute
the fastest mixing Markov Chain by using semi-definite programming; however, this approach requires knowledge of
the entire network and is inherently centralized. In more recent work, Boyd, Ghosh, et al. [21], using the techniques
of this paper for distributed eigenvector computation, give a fully decentralized implementation of a subgradient
approximation algorithm for convex optimization, and use it to compute a (nearly) fastest mixing Markov Chain.
Nevertheless, it would be interesting whether a simpler and more direct approach based on the eigenvectors can be
used to compute an approximately fastest mixing Markov Chain more efficiently. Such an algorithm would have
applications to routing of concurrent flows (by removing bottlenecks), and allow the network to “self-diagnose” and
speed up future invocations of our decentralized algorithm.

Another question related to self-diagnosis is the error estimate in the Push-Sum algorithm. At the moment, we
assume that all nodes know the diameter, and can run an error estimation protocol after appropriately chosen intervals.
Is there a decentralized stopping criterion that does not require knowledge of diam(G) or n?

Acknowledgments

We would like to thank Alin Dobra, Johannes Gehrke, Sharad Goel, Jon Kleinberg, and Laurent Saloff-Coste for
useful discussions. We would also like to thank two anonymous referees for useful suggestions.

References

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-addressable network, in: Proc. ACM–SIGCOMM Conference,
2001, pp. 161–172.

[2] A. Rowstron, P. Druschel, Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems, in: Proc. 18th
IFIP/ACM Intl. Conf. on Distributed Systems Platforms, Middleware 2001, 2001, pp. 329–350.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: A scalable peer-to-peer lookup service for Internet applications, in:
Proc. ACM–SIGCOMM Conference, 2001, pp. 149–160.

[4] B. Zhao, J. Kubiatowicz, A. Joseph, Tapestry: An infrastructure for fault-tolerant wide-area location and routing, Tech. Rep. UCB/CSD-01-
1141, UC Berkeley, 2001.

[5] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine, Comput. Netw. ISDN Systems 30 (1998) 107–117.
[6] J. Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM 46 (1999) 604–632.
[7] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25

(1975) 619–633.
[8] R. Kannan, S. Vempala, A. Vetta, On clusterings: Good, bad and spectral, in: Proc. 41st IEEE Symp. on Foundations of Computer Science,

2000, pp. 367–377.
[9] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Proc. 14th Advances in Neural Information Processing

Systems, 2002, pp. 849–856.
[10] F. McSherry, Spectral partitioning of random graphs, in: Proc. 42nd IEEE Symp. on Foundations of Computer Science, 2001, pp. 529–537.
[11] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, R. Harshman, Indexing by latent semantic analysis, J. Amer. Soc. Inform. Sci. 41 (1990)

391–407.
[12] D. Achlioptas, A. Fiat, A. Karlin, F. McSherry, Web search via hub synthesis, in: Proc. 42nd IEEE Symp. on Foundations of Computer

Science, 2001, pp. 500–509.
[13] Y. Azar, A. Fiat, A. Karlin, F. McSherry, J. Saia, Spectral analysis of data, in: Proc. 33rd ACM Symp. on Theory of Computing, 2001,

pp. 619–626.
[14] F. Leighton, S. Rao, Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms, J. ACM 46 (1999)

787–832.
[15] M. Granovetter, The strength of weak ties, Amer. J. Sociol. 78 (1973) 1360–1380.
[16] F. Chung, Spectral Graph Theory, American Mathematical Society, 1997.
[17] K. Gallivan, M. Heath, E. Ng, B. Peyton, R. Plemmons, J. Ortega, C. Romine, A. Sameh, R. Voigt, Parallel Algorithms for Matrix Computa-

tions, Society for Industrial and Applied Mathematics, 1990.

D. Kempe, F. McSherry / Journal of Computer and System Sciences 74 (2008) 70–83 83
[18] I. Benjamini, L. Lovász, Global information from local observation, in: Proc. 43rd IEEE Symp. on Foundations of Computer Science, 2002,
pp. 701–710.

[19] D. Kempe, A. Dobra, J. Gehrke, Computing aggregate information using gossip, in: Proc. 44th IEEE Symp. on Foundations of Computer
Science, 2003, pp. 482–491.

[20] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Analysis and optimization of randomized gossip algorithms, in: Proc. 43rd IEEE Conference on
Decision and Control, 2004, pp. 5310–5315.

[21] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Gossip algorithms: Design, analysis and applications, in: Proc. 24th IEEE INFOCOM Conference,
2005, pp. 1653–1664.

[22] S. Boyd, P. Diaconis, L. Xiao, Fastest mixing Markov Chain on a graph, SIAM Rev. 46 (2004) 667–689.
[23] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Mixing times for random walks on geometric random graphs, in: Proc. 2nd SIAM Workshop on

Analytic Algorithms and Combinatorics, 2005.
[24] G. Golub, C. van Loan, Matrix Computations, third ed., Johns Hopkins University Press, 1996.
[25] L. Saloff-Coste, Lectures on finite Markov Chains, in: Lecture Notes in Math., vol. 1665, Springer, 1997, pp. 301–408, École d’été de St.

Flour 1996.
[26] G. Stewart, On the perturbation of LU and Cholesky factors, IMA J. Numer. Anal. 17 (1997) 1–6.
[27] P. Wedin, Perturbation theory for pseudo-inverses, BIT 13 (1973) 217–232.

