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Abstract data in the system might be unavailable for large periods
of time—the hosts with those data are offline. Short upti-
Peer-To-Peer (P2P) networks are self-organizing, diaes also hurt system performance because there are fewer
tributed systems, with no centralized authority or infraservers to download files from. Similarly, as a growing
tructure. Because of the voluntary participation, the availumber of users become free riders, the system starts to
ability of resources in a P2P system can be highly varialise its peer-to-peer spirit, and begins to resemble a more
and unpredictable. In this paper, we use ideas f@&ame traditional client-server system.
Theoryto study the interaction of strategic and rational If the P2P systems are to become a reliable platform
peers, and proposedifferential service-based incentivefor distributed resource-sharing (storage, computing, data
schemeo improve the system’s performance. etc), then they must provide a predictable level of service,
both in content and performance. A necessary step to-
. wards that goal is to develop mechanisms by which con-
1 Introduction tributions of individual peers can be solicited and pre-
dicted. In a system of autonomous lrational partici-
Peer-To-Peer (P2P) systems are self-organizing, dignts, a reasonable assumption is that the peers can be
tributed resource-sharing networks. They differ from trincentivized using economic principles. Two forms of in-
ditional distributed computing systems in that no centreéntives have been considered in the past [4]: (1) mon-
authority controls or manages the various componergsary payments (one pays to consume resources and is
instead, nodes form a dynamically changing and seifaid to contribute resources), and (2) differential service
organizing network. By pooling together the resourcggseers that contribute more get better quality of service).
of many autonomous machines, P2P systems are affhe monetary payment scheme involves a fictitious cur-
to provide an inexpensive platform for distributed conrency, and requires an accounting infrastructure to track
puting, storage, or data-sharing that is highly scalabl@rious resource transactions, and charges for them using
available, fault tolerant and robust. As a result, a largeicropayments. While the monetary scheme provides a
number of academic and commercial projects are ulean economic model, it seems highly impractical. For
derway to develop P2P systems for various applicationstance, see [5] for arguments against such a scheme for
[1,2,8,9, 10, 11]. network pricing.

The democratic (or anarchic) nature of P2P systemsThe differential service seems more promising as an in-
which is responsible for their popularity and scalabilitgentive model, and that is the direction we follow. There
also has serious potential drawbacks. There is no cane many different ways to differentiate among the users.
tral authority to mandate or coordinate the resources tiatr instance, one could defingeputation indexor the
each peer should contribute. Because of the voluntgmers, where the reputation reflects a user’s overall contri-
participation, the system’s resources can be highly vapition to the system. In fact, a reputation based mecha-
able and unpredictable. Indeed, in a recent experimeism is already used by the KaZaA [2] file sharing system;
tal study of Napster and Gnutella, Saroiu et al. [3] fourid that system, it's called thearticipation level Quanti-
that many users are simply consumers, and do not céying a user’s reputation and prevention of faked reputa-
tribute much to the system. In particular, they found thébns, however, are thorny problems.

(1) user sessions are relatively shéfi% of the sessions In general, since the nodes in a P2P systems are strate-
are shorter than 1 hour, and (2) many userdraeeriders gic players, they are likely to manipulate any incentive
that is, they contribute little or nothing. For example, iBystem. As a result, we argue that a correct tool for mod-
the Gnutella system, 25% of the users share no files at aling the interaction of peers game theonf6]. We in-

Short sessions mean that a significant portion of ttreduce a formal model dhcentives through differential



servicein P2P systems, and use the game theoretic notmete with each other or try to subvert the system. A P2P
of Nash Equilibriumto analyze the strategic choices bgystems, on the other hand, consists of autonomous com-
different peers. ponents: users compete for shared but limited resources
We treat each peer in the system as a rational, strdieg. download bandwidth from popular servers) and, at
gic player, who wants to maximize his utility by particithe same time, they can restrict the download from their
pating in the P2P system. The utility of a peer dependwn server by denying access or not contributing any re-
on his benefit (the resources of the system he can uselrces. As such, the interaction of the various peers in
and his cost (his contribution). Outifferential service a P2P system is best modeled asa-cooperative game
model links the benefit any peer can draw from the syamong rational and strategic players. The players are ra-
tem to his contribution—the benefit is a monotonicallfonal because they wish to maximize their own gain, and
increasing function of a peer’s contribution. Thus, thikey are strategic because they can choose their actions
is anon-cooperativgame among the peers: each wan(e.g. resources contributed) that influence the system. The
to maximize his utility. The classical concept of Nashehavior that a player adopts while interacting with other
Equilibrium points a way out of the endless cycle of speptayers is known as that playergrategy In our set-
ulation and counter-speculation as to what strategies timg, a peer’s strategy is his level of contribution. The
other peers will use. An equilibrium point idacally op- player derives a benefit from his interaction with other
timum set of strategies (contribution levels in our caseplayers which is termed as a payoff oiility. Interest-
where no peer can improve his utility by deviating froring economic behavior occurs when the utility of a player
the strategy. While Nash equilibrium is a powerful cordepends not only on his own strategy, but on everybody
cept, computing these equilibria is not trivial. In fact, nelse’s strategy as well. The most popular way of char-
polynomial time algorithm is known for finding the Naskacterizing this dynamics is in terms Nash equilibrium
equilibrium of a generalN person game. Since the utility or payoff of a player is dependent on his
We first consider a simplified settindyomogeneous Strategy, he might decide to unilaterally switch his strat-
peers where we assume that all peers derive equal b&gy to improve his utility. This switch in strategy will af-
efit from everybody else (homogeneity of peers). In thigct other players by changing their utility and they might
case, we show (1) there are exactly two Nash equilibri¢gcide to switch their strategy as well. The collection of
and (2) there are closed-form analytic formulae for thepéayers is said to be at Nash equilibrium if no player can
equilibria. We also investigate the stability properties éhprove his utility by unilaterally switching his strategy.
these equilibria, and show that in a repeated game settiiiggeneral, a system can have multiple equilibria.
the equilibrium with the better system welfare will be re-
alized. 2.2 Incentives and Strategies in P2P System
We next consider the case ofterogeneous peers
where the interaction matrix is an arbitraly x N ma- We assume that there afé users (peers) in the system,
trix. That is, we allow an arbitrary benefit function fof’1; P2, - .., Pn. We will denote the utility function of the
each pair of peers. No closed form solution is posgf.h peer ad/;. This utility depends on several parameters
ble for this setting, and so we study this using simul¥thich we shall discuss below one by one.
tion. We use the homogeneous case as a benchmark to
see how well the simulation tracks the theoretical prediz-2.1 Measuring the Contribution

tion. Our main findin re that tlpialitativeproperti : . _—
on. Ourma dings are that tiialitativeproperties We will use a single numbep; to denote the contribution

of the Nash equilibrium are impervious to (1) exact formfpil The precise definition b is immaterial as long as

of the probability function used to implement dlfferentlal can be quantified and treated as a continuous variable.

service, (2) perturbations like users leaving and jOInIFE%r concreteness, we will takb; to be thecumulative

the system, (3) non'-strateg|c or non-ratlongl players, WHRK spacedisk space contribution integrated over a fixed
do not play according to the rules, etc. Finally, we dis-_ . ; )
; : . . ; . period of time, say a week. One can also use other metrics

cuss practical ways of implementing a differential servids :
. : ; such as number of downloads served by this peer to other
incentive scheme in a P2P system. peers

For each unit of resource contributed, the peer incurs
a coste; (measured in dollars). So the total costaf
for participating in the system ig D;. We shall find it

convenient to define a dimensionless contribution

2 Our Incentive Model

2.1 Strategy and Nash Equilibrium

A traditional distributed system assumes that all partici- di = Di/Dy, @)
pants in the system work together cooperatively; the parere D, is an absolute measure of contribution (say
ticipants in the system share a common goal, do not coR®MB/week). D, is a constant that the system architect



is free to set—our incentive scheme will strive to ensure
that all peers make a contribution at ledxt.

2.2.2 The Benefit Matrix

Each peer’s contribution to the system potentially benefits gosy
all other peers, but perhaps to varying degrees. We encode
this benefit using & x N matrix B, whereB;; denotes ,
how much the contribution made h¥; is worth to P; i
(measured in dollars). For instanceHfis not interested
in P;’s contribution, thenB;; = 0. In general,B;; > 0, °
and we assume th&,;; = 0, for all ;. Again, we define a

set of dimensionless parameters corresponding;fdy  Figure 1: p(d) plotted as a function of for values ofa

1/2, 1, 4 and 10.
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step, requests have high probability of rejection; and for

b; is the total benefit thab; can derive from the systemcontribution above the step, requests have high probabil-
if all other users make unit contribution ea¢hwill turn ity of acceptance.
out to be an important parameter in determining whether
it is worthwhile for P; to join the system. We shall show, . .
that there exists a critical value of benéfitsuch that if 2:24  The Utility Function
b; < b, thenP; is better off not joining the system,, is  With these cost and benefit parameters, the total ufiljity
simply the average df; for the whole system. that P; will derive by joining the system is

2.2.3 Probability as Service Differentiator Ui = —¢;Di + p(d;) ZBiij, Bi;=0 (4
j

The differential service is a game of expectations: a peer

rewards other peers in proportiontteeir contribution A The first term is the cost to join the system, while the sec-

simple scheme to implement this idea is as follows: pe@td term is the total expected benefit from joining the sys-

P; accepts a request for a file from pe@rwith probabil- tem. In terms of the dimensionless parameter

ity p(d;), and rejects it with probability — p(d;). Thus,

if P;’s contribution is small, its request is more likely to u; = Ui (5)

be rejected. There are many enhancements and improve- ¢iDo

ments to this simple idea. One could, for example, curtail . .
g . . _\We rewrite the utility as

the search capabilities of a peer depending on his con-

tribution. In the Napster model, one could return only a

fraction p(d;) of the total results found. We also assume

that every request from peét; is tagged with his con-

tribution d; as metadata. We will discuss some of thesge _ 4. term is simplyP;’s cost to join the system and it
enhancements and implementation issues in Section Sincreases linearly aB; contributes more disk/bandwidth
Itturns out that the choice of the exact probability fungy the systemP,’s benefit depends on how much the other
tion does not affect thqualitative nature of our results. peers are contributing to the systed)( what that con-
Any reasonable probability function that is a monotongripytion is worth to him §;;), and how probable it is that
cally increasing function of the contribution should do. IRe will be able to download that content({;)). Using
our analysis, we have chosen the following natural formpe fact thap(0) = 0 andp(co) = 1, we can find the two

J

g limits of the utility function :
p(d) = ——5, a>0. 3)
1+d lim u; =0, lim u; = —o0. (7
It has the desirable properties thg0) = 0, andp(d) — d:—0 di—00

1 asd gets large. The choice of the exponentleter-

mines how “step-function-like” the probability function Thus, neither extreme maximizes a peer’s utility. The

is. See Figure 1. For small values, say= 1, the func- value of an intermediate strategy depends on the contri-
tion is rather smooth; but for larger values, say= 10, bution of other users and the worth of those contributions.
the function has a steep step; for contribution below tis®e Figure 2 for a graphical representation of a possible



- Lowbencii the peers not to join. The question to ask at this point is

—— High Benefit

whether a Nash equilibrium exists for large enough values
of benefits where both peers can derive non-zero utility
from their interaction.

This model is very similar to the Cournot duopoly
model [6] and we can analyze it using similar method-
ology. Suppose>, decides to make a contributiai to
the system. Given this contributiafz, naturally the best
thing for P; to do is to tune higl; such that it maximize
his utility ;. Maximizingu; with respect tai;, we im-

Utility

Contribution mediately find that the best respon&eis given by
Figure 2: A qualitative plot of utility vs. the contribu- r1(d2) = di = \/bi2dz — 1, (10)

tion/strategy; the scales on X and Y axes are arbitrary.

Unless there is a critical level of benefit, the utility for Wherer(dz) is known as theeaction functionfor .
the peer is always less than 0. This is the best reaction fdp;, given a fixed strategy for

P,. SinceP, knows thatP; is going to respond in this
fashion, his own reaction function to 1's strategy is

utility function for different levels of benefi;. If b; ex- ro(dy) = do = \/bardy — 1. (11)
ceeds a critical valué,, then it is possible for the utility
function to have a maximum and only then the peer woulhsh equilibriunt exists if there is a set dfl;, d3), such

want to join the system. that they form a fixed point for equations 10 and 11, i.e.
In the next Section we start with the discussion of Naghe fixed points satisfy

equilibrium for the model that we have just described.
di = /bed5—1,

3 Nash Equilibrium in the Homoge- d; = Vbadi - 1. (12)
neous System of Peers Finding the fixed point is much easier if we assumge=

b1 = b (this is the homogeneous peer system). In that
We define a homogeneous system of peers to be a f¥sed; = d5 = d* and the solution of equation 12 is
tem whereb;; = b for all ¢ # j; in other words in this
system all peers derive equal benefit from everybody else. d* = (b/2 — 1)+ ((b/2 — 1)> - 1)1/2 (13)
This simplified system allows us to study the problem in
an idealized setting, and gain insights that can be appligaolution to this equation exists onlytif> 4 = b.. 2
to the more complex heterogeneous system. In the homraus, b, = 4 is the critical value of benefit illustrated in
geneous system, the model of equation 6 reduces to  Figure 2 below which it is not profitable for a peer to join
the system. Note that this critical valdas an artifact of
u=—d+ (N —1)bdp(d). (8) the form of thep(d) we chose. For different choices of
b = bay = b(N — 1) for all peersP;. By symmetry, p(d), this constanb, will change, but will always be a

therefore, the problem reduces to a 2-person game, wHi@gstant independent of the number of peers in the sys-
we analyze below. tem. Forb = b., the only solution isi} = d5 = 1. For

b > b., there are two solutions
3.1 The Two Player Game d=dy=d, <1, anddf =ds =d; >1. (15)

In a homogeneous system of two players, Equation 6 T hich are plotted in Figure 3

duces to
1For readers versed in game theory, we want to say that we are only
up = —di+ b12d2p(d1) interested in pure strategy Nash equilibrium. A mixed strategy will cor-
respond to a peer probabilistically choosing a contribution. Such a sce-
uy = —dz+ badip(ds) (9) =P ety y 9

nario is inadmissible and and we shall not discuss it any further

L . 2For general values af,
For algebraic simplicity, let us also assume that 1, 9

ie. p(d) = §l/(1 +d). As discussed in Sect.ion 2.2, we d = <(ba/2 1) ((baf2— 1) - 1)1/2>1/a w
expect that if the benefits that the peers derive from each
other, i.e.b15 andby; are too small then it will be best forA solution to this equation exists onlyéfy > 4.
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Figure 3: The Nash equilibrium contributions for the twgigure 4: The Cournot learning process near the vicinity

peer system plotted as a function of scaled beriéfit of the two fixed points. Here we have plotted the reaction

be)/be. Forb < b, there are no equilibria. For &> b. functions from equations 10,11. For any starting value of

there are two possible equilibria dy > dj, (df, is the unstable fixed point), the learning
process converges to the stable fixed point. If the starting
point is too close to the origin, then the iteration moves

3.2 TheN Player Game awa¥(;rom the unstable fixed point and eventually ends
up at 0.

At this point we can come back to the homogeneous sys-

tem of peers of equation 8. A comparison of equations 8

and 9 shows that for the homogeneous system of peers,

the fixed point equations 12 are now The learning process and convergence is graphically out-
i} lined in Figure 4. From the figure we see that under this
d* = \/b(N —1)d* — 1, (16) learning process, either the peers will quit the game (zero

utility) or they will converge to the equilibriurd;;. Note

that this iterative procedure gives us an algorithm to find
1/2  the stable Nash equilibrium of a game and we shall make
(17') use of it in Section 4. The fixed poiaf;(d;) is locally

So, with the replacement dfby b(N — 1), the results stable(unstable)i.e. if the two peers start near the fixed

for the two peer system are exactly applicable for Me point, under iteration of the mappings, they will move

closer to (away from) the fixed point. It is gratifying to
player system as_wgll. Although the homogeneous P&E% that the stable Nash equilibriufy is also the desir-
system is not realistic, we shall see that &tverageprop-

erties of the Nash equilibria for the heterogeneous systgme equilibrium for the performance of the system.

closely follow the homogeneous case. The stability of the fixed points can be estimated by
linearizing the mappings andr, near the fixed point [7].
. S Consider a pointd; + ddy,ds + dds) close to the fixed

3.3 Stability of the Nash Equilibria point (d}, d%). Expanding equation 12 around the fixed

Since our system has two possible Nash equilibria tﬁgint, we find that after one iteration, the new deviations

natural question arises which equilibrium will be choseH€ 9iven by
by the system in practice. There is a natural learning sce-

or in other words

d*=(bN-1)/2-1) £ ((b(N —1)/2-1)> 1)

nario between peers which can help us answer this qu 5d) 0 (dF +1)/(2d3) 5dy
tion. Suppose the usét, sets his contribution to somef od, } - [ (d5 +1)/(2d%) 0 } { 5ds } :
do to start with. In this situation/; can use the reac- (19)

tion functionr;(dz) to set his optimum contribution atThe new deviation will be smaller in magnitude than
dy. Seeing this contributio®, adjusts his own contribu-the old deviation provided the maximum eigenvalue
tion and thus each peer takes turns in setting their cont\r/'/(dik +1)(d5 + 1)/(4d;d5) of the matrix on the RHS is
bution. If this process converges, then naturally that levghaller than 1. Fob > b,, the fixed point G > 1),

of contribution forP, and P, will constitute a Nash equi- is stable and the other fixed point;() is unstable. For

librium, i.e. b = b., the two fixed points collapse into one. The eigen-
values of the matrix are exactly equal to one and the de-
di = ri(ri(ri(ri(.....(d2))))) viations neither increase, nor decrease in magnitude, i.e.
dy = ra(ra(ra(ra(.....(d1))))). (18) the fixed point imeutral



4 Nash Equilibrium in the Hetero-
geneous System of Peers

In a heterogeneous system, we need to deal with the full
complexity of the model. The fixed point equations for
a = 1 can be immediately derived in analogy with the
two player game (equation 12) as

Frequency

1/2

di = | byd;| -1 (20) '  enent
J#i ‘ ‘ ‘

Since it is not possible to solve this set of equations ana-
lytically, we use an iterative learning model to solve this
system of equations.

Frequency

4.1 The Learning Model and Simulation
Results

Let us consider the interaction of users in a real P2P sys-
tem. Any particular peeP; interacts only with a limited Contribution
set of all possible peers — these are the peers who serve
files of interest taP;. As it interacts with these peerB;
learns of the contributions made by them and to maximi
its utility adjusts its own contribution. Obviously this con
tribution that P; makes is not globally optimal because i
is based only on information from a limited set of peersy Zij
But after P, has set its own contributions, this information
will be p_ropa_gated tq the peers |'F mt_eracts Wlt_h and thoi_el_ 1 Choice of Parameters
peers will adjust their own contribution. In this way the
actions of any peef; will eventually reach all possiblewe choose the number of pee¥sto be from 500-1000.
peers. The reaction of the peersigs contribution will Since a peer; interacts only with a small subset of its
affect P, itself and it will find that perhaps it will be betterpeers,bij is non-zero only for a few values gf We also
off by adjusting its contribution once more. In this wayassume that the peers for whigh is non-zero are picked
every peer will go through an iterative process of settingndomly from all possible peers. Note that this subset is
its contribution. If and when this process converges, thgt the set of neighbors in the overlay network sense, but
resulting contributions will constitute a Nash equilibriunthe set of other peers with whom it exchanges files. The
The iterative learning algorithm that we have chosen ¢fze of the set for which;; # 0 is chosen to be 2% of.
solve equation 20 mimics this learning process. To st#itgeneral for smaller value of this fraction, the algorithm
with, all the peers have some random set of contributiomskes longer to reach the Nash equilibrium, but the equi-
In a single iteration of the algorithm, every pe@r de- librium itself does not change. The valuesigf do not
termines the optimal value @f; that it should contribute evolve in time and we choose them from a Gamma distri-
given the values of for other peers and the valuestgf. bution. The choice of Gamma distribution was arbitrary,
At the end of the iteration the peers update their contribiwe have experimented with Gaussian distribution as well.
tion to their new optimal values. Since now the contribiwe choose the initial values df from a Gaussian distri-
tionsd; are all different, the peers need to recompute théition. The distributionl; evolves at every iteration and
optimal values of/; and we can start the next iterationeventually converges to the Nash equilibrium distribution.
When this iterative process converges to a stable poihe value ofa for all our results is 1.0 unless otherwise
we reach a Nash equilibrium. In the following numericalpecified.
experiments we demonstrate that for heterogeneous sys-
tem of peers, the iterativellfaa_rning process does conveyge Convergence to Nash Equilibrium
to the desirable Nash equilibriudj; and we compare the
results with the analytic results for the system of homogi Figure 5 we show the distribution @f; andd; for
neous peers. N = 1000 peers. The values @f; were chosen from a

Figure 5: Distributions of benefit and resulting contribu-
tion for 1000 peers. The histogram for benefits is the
istribution of b;; for b;; # 0. Corresponding,, =

b;; is 6.0. For contribution, the average is 3.68.
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Figure 6: Average contribution at Nash equilibrium plofFigure 8: Average contribution at Nash equilibrium plot-
ted against average benefit for 500 and 1000 peers. Té@ against fraction of peers alive. Total number of peers
solid line is the prediction from the homogeneous systéa1000. The solid lines are predictions from the homoge-
(equation 13). neous system model (equation 13).

o b_/b_—1= 0.30, N=500

- BaL0m N 1000 In Figure 7 we show the approach to convergence for
5 P00 N=100 the learning algorithm. The two data sets correspond to
different values of averagg,. Higher the average value
of b,,, faster is the convergence to equilibrium. As the
value ofb,, approach the critical valug., approach to
equilibrium becomes slower and slower. This is to be ex-
pected since we have argued in Section 3.3 that near the
critical point, any deviation dies out very slowly. We have
S observed that for a wide set of initial conditions &y the
et e teratone process always converges to a unique Nash equilibrium.
For very small initial values ofl;, we are close to the
unstable Nash equilibrium and the iteration converges to
Figure 7: Average contribution at Nash equilibrium plotzero, i.e. the contribution by all peers vanish and the sys-
ted against number of steps required to reach Nash edein collapses. The data for system collapse is not shown,
librium for 500 and 1000 peers. We assumed convergetes Figure 4 illustrates the situation.
was reached when the average contribution per peer dif-
fered no more than one part in a million. The average; 3 |nactive or Uncooperative Peers

initial value of contribution per peer is 1.0. The values of
average benefit are scaled as usual. In Figure 8, we show the effect of some peers leaving the

system. Intuitively one would think that if some peers

leave the system, the benefit per peer would be reduced
Gamma distribution such thaf, = 6.0. The equilibrium and we should be seeing pretty much the same behavior
valuesd; distribute themselves in a bell shaped distribas in Figure 6. Our simulations confirm this intuition. As
tion with meand’, = 3.68. If the system was completelythe fraction of active peers dwindle, the contribution from
homogeneous, than the distributiontef would consist each of the peers decrease and at some point, the benefits
of a single peak a = b,, /(N — 1) and the correspond-are too low for the peers and the whole system collapses.
ing value ofdy, from equation 17 would be 3.73 which isThe system can be pretty robust for high benefits : for a
less than 1.5% away from the valuedif . In Figure 6 we benefit level of(b,, — b.)/b. = 2.0, the system can sur-
show the equilibrium average contribution by the peerswse until 2/3 of the peers leave the system. In contrast
a function of average benefit. The solid line is the solutida traditionally fragile distributed systems, we see that for
from the homogeneous system. As expected, the equilt2P systems robustness increase with size : as the system
rium contribution increases monotonically with increagirows bigger and bigger, benefits for each peer increases
ing benefit. For average benedit, < b., the iterative and the system becomes more robust to random fluctua-
algorithm converges td; = 0. Note that the two sets oftions.
results for 500 and 1000 peers almost coincide with eacHn Figure 9 we explore the effect of having peers which
other. So our results are essentially independent of systeehave uncooperatively, i.e. they refuse to adjust their
size. contribution and simply make a constant contribution.

av

Average Contribution (d‘ )




=20 for a small duration of time. In our discussion we have as-

. . dZors sumed that the functiop(d) is same for all users, i.e. itis

§o, Lo = ) part of the system architecture which can not be modified
; s %o by users. For greater flexibility, it is possible to allow in-

i IR I ] dividual peers to configurg(d), but the effects on overall

2t G ° 00 o system performance is not clear.

e | The contribution is measured in terms of uptime and

ol disk space. When a peer makes a request for a file,

o "t o g the contribution information can be attached as an extra

5 o

0t — o e ML - ! header to the request. In fact, the current Gnutella pro-
Fragtion of Uncooperative Peers tocol already sends metadata like shared disk space and
uptime with its request messages. New users can be given
Figure 9: Average contribution at Nash equilibrium ploy gefault value of contribution for a limited period of time
ted against fraction of uncooperative peers. Total NURY that they can start using the system at a reasonable
ber of peers is 1000. The labels specify the averagge|.
contribution of uncooperative peers. Average benefit iSThere js incentive for peers to misreport contributions
bav/be —1 =0.5. so that they can reap the benefit of the system while mak-
ing no contribution. To prevent such misuse, it is possible
to implement aneighbor audit schemesuch a scheme is

The effect of such non-cooperative peers is clear. If thé§Pecially attractive in a fixed network topology such as
constitute 100% of the peers, of course the average cBift CAN [9] or Chord [10] system. Every peer will con-
tribution is equal to their contribution. Otherwise theiinually monitor the uptime and disk space of its neighbor.

effect is to bias the equilibrium contribution value towarlf @ny doubt exists about the accuracy of the information
them. reported by a peer, the information can be verified from

its neighbor.

2o o q
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> Discussion 5.2 Alternative Metrics for Contribution

In this paper we have proposed a differential service based ~and Incentive

incentive mechanism for P2P systems to eliminate fr .
riding and increase overall availability of the system V\?é?e have touched upon only a handful of questions that
9 y y " are relevant to building a reliable P2P architecture with

have shown that a system with differential incentives Wﬁ:ll

o I fcentives. There are many unresolved issues which will
eventually operate at Nash equilibrium. The strategy ave to be addressed in future by system architects. For

a peerP; wishing to join the system depends on a single : . I
parameteb; which is the benefit thaP; can derive from example, what is the best metric for the contribution of a

X " __user? A popular metric is the number of uploads provided
the system. If the benefit is I_arggr tha.n a critical benefltb a peerr). go the peers that provide the rrﬁ)ost pogular files
be, then the peer's best .O.ptI.OI’] Is to join the systgm a éd have the highest bandwidth are deemed to contribute
operate at the Nash equilibrium yalue of contr|b'ut'|o.n. e most. Our metric, which simply integrates disk-space
?hnetgesct)g:src\?;g&ibg’ t?ﬁepe:errlsisbiit;ief;ec:z:tol;g:\';'enegnover time does not discriminate against low bandwidth
thesgtwo o. tions. 'Fhege rcg3 erties are robust and dop%?rs or peers which provide file which are not very pop-

b L Propert . : Q8. Such a metric is very appropriate for a project like
dgpend on the details of the particular incentive med‘l‘—ar'eenet [11] which aspires to be an anonymous publish-
nism that is used. ing system regardless of the popularity of the documents

published. The metric that is in practical use by KaZaA is

5.1 Implications for System Architecture calledparticipation leveland is given by

The incentive policy that we have discussed can be imple- uploads in MB

mented with minor modifications to current P2P systemsparticipation level = . x 100. (21)
o : downloadsin MB

Let us look at some of the modifications required.

Current P2P architectures do not restrict download Tine participation level is capped at a maximum of 1000.
any way except by enforcing queues and maximum num-Our analysis of incentives relied on the peers being ra-
ber of possible open connections. Our incentive scheméahal and trustworthy. Trust is not easy to enforce. The
easily implemented by accepting requests from peers witkighbor audit scheme will deter individual misbehavior,
a probabilityp(d). To prevent rapid fire requests from théut collusion among a set of peers is still possible. An-
same peer, it will be necessary to keep record of a requetster trust related problem involves malicious peers who




contribute fake files. The idea of EigenTrust [12] is a sig{8]
nificant step in this direction which also protects against
collusion among malicious peers.

The incentive scheme we have outlined is through se-
lective denial of requests. There are other ways to imple-
ment incentives. For example one could implement dif-
ferential service folP; by restricting the download band- [°
width to a fractionp(d;) of the total bandwidth available.
KaZaA's participation level operates on a similar princi-
ple: if more than one peer requests the same file, the peer
with smaller participation level is pushed to the back of
the queue. [10

Instead of implementing incentives on download level,
one could also restrict the search capabilities of a peer.
The basic idea is to reduce the number of peers to which
gueries are propagated. In Gnutella, a peer forwards a
query to its neighbors based on the Time To Live (TTL)
field. By reducing the TTL of the query or by forward-
ing the query only to a fraction of the total neighbors, tHé1]
search space for the query can be restricted.

scaled TTL for P; = [p(d;) x initial TTL]  (22) [12]

We note that the effect of restricting search using a func-
tion p(d) is not equivalent to restricting download using
the same function. Network topology will have a signifi-
cant role to play in determining the actual set of files that
a user has access to. Regardless of the actual implemen-
tation of incentives, our conclusions concerning existence
and properties of the Nash equilibrium in the system will
remain qualitatively unchanged.
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