
Available online at www.sciencedirect.com
www.elsevier.com/locate/comcom

Computer Communications 31 (2008) 358–374
Range queries over skip tree graphs

A. González-Beltrán *, P. Milligan, P. Sage

Queen’s University Belfast, School of Electronics, Electrical Engineering and Computer Science, Belfast BT7 1NN, UK

Available online 14 August 2007
Abstract

The support for complex queries, such as range, prefix and aggregation queries, over structured peer-to-peer systems is currently an
active and significant topic of research. This paper demonstrates how Skip Tree Graph, as a novel structure, presents an efficient solution
to that problem area through provision of a distributed search tree functionality on decentralised and dynamic environments. Since Skip
Tree Graph is based on skip trees, a concurrent approach to skip lists, it constitutes an augmentation of skip graphs that extends its
functionality and allows for important performance improvements. This work presents a thorough comparison between these two related
peer-to-peer overlay networks, their construction, search algorithms and properties. Being based on tree structures, skip tree graphs sup-
ports aggregation queries and multicast/broadcast operations, which cannot be directly implemented in its predecessor. The repair mech-
anism for healing the structure in case of failures is more efficient and harnesses the parallelism inherent in P2P networks. Particular
consideration is given to the performance of different range-query schemes over the two related structures. Theoretical and experimental
results conclude that Skip Tree Graphs outperform skip graphs on both exact-match and range searches.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Structured peer-to-peer networks; Distributed search tree; Range queries; Aggregation queries; Concurrency
1. Introduction

Structured Peer-to-Peer (P2P) systems have built over-
lay networks by organising nodes in predefined topolo-
gies in the provision of large-scale, decentralised and
dynamic routing platforms. Initial examples of structured
P2P networks [1–4] provided a Distributed Hash Table
(DHT) functionality. DHTs are based on consistent hash-
ing [5] and, consequently, support efficient searches of
keys identifying distributed resources while maintaining
good load balancing properties. However, the main draw-
back of these systems is that the hashing approach
destroys the semantic relation between the keys, and
thus, there is no spatial locality among them. Conse-
quently, DHTs do not directly support complex queries
based on the key ordering, including range queries and
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.08.003

* Corresponding author. Tel.: +44 2031151143.
E-mail addresses: a.gonzalez-beltran@qub.ac.uk (A. González-Beltrán),

p.milligan@qub.ac.uk (P. Milligan), p.sage@qub.ac.uk (P. Sage).
nearest-neighbour queries. Moreover, DHTs assume a
flat identifier space and thus, they do not directly support
aggregation queries.

Dealing with complex queries efficiently is an important
requirement for applications that could benefit from the
scalability, fault-tolerance and dynamism of P2P systems
[6,7]. Grid monitoring and information services and dis-
tributed data processing are some examples of these appli-
cations. A grid information service support queries about
the capabilities and state of distributed resources available
on a grid [8] and it should support range queries, prefix
queries and aggregation queries. For instance, a user may
want to discover all the computational resources whose
CPU utilisation is less than 50% (expressed as a range
query), find out the total load of a subset of computational
resources or query about the free storage space on a subset
of storage resources (aggregation queries summing up the
corresponding attribute over a group or resources). Struc-
tured P2P systems have been proposed as an efficient rout-
ing platform for the provision of grid information services
[9,10].

mailto:a.gonzalez-beltran@qub.ac.uk
mailto:p.milligan@qub.ac.uk
mailto:p.sage@qub.ac.uk

A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374 359
This paper seeks to augment the expressiveness of the
query language for structured P2P systems through provi-
sion of support for order-based queries (range queries and
prefix queries) and aggregation queries, given their impor-
tance for many applications. In addition, the network
should offer efficient broadcast and multicast facilities,
allowing the dissemination and collection of information
on a global scale.

In order to meet this requirement, research to date has
explored DHT-based solutions and overlay networks spe-
cifically built to provide a Distributed Search Tree func-
tionality [11], i.e. the extension of DHT capabilities to
support order-based and aggregation queries. DHT-based
solutions can be classified into those which modify the
DHT [9,6,12,13] and those which leave it unchanged
[14,15]. The former group adapts the DHT so that complex
queries can be performed. The latter group includes sys-
tems whose architecture has a DHT as a routing substrate
component, on top of which another module dealing with
complex queries is overlaid.

Systems not based on DHTs have designed overlay
networks for which the order of the keys is preserved
[16–18,11,19,20]. As hashing provides a solution to the dic-
tionary problem, logical evolution has led to the consider-
ation of other data structures that implement (ordered)
dictionaries such as tries, 2–3 trees, B-trees, AVL trees,
and skip lists.

Skip graph [17] is a structured P2P network that is based
on skip lists [21]. A skip list is an increasingly sparse set of
sorted doubly-linked list of keys, where the higher levels
are used as shortcuts to reach nodes at greater distances
quickly. The approach for the construction of skip graphs
is to superimpose several skip lists, adding redundancy for
the provision of fault-tolerance and the avoidance of con-
gestion. Its search, insertion and delete operations are log-
arithmic in the number of nodes in the network.

This paper takes a further step by building a new P2P
network denominated Skip tree graph, which is based on
skip trees [22]. Skip trees are isomorphic to skip lists [21]
while they provide a concurrent approach by incorporating
in the structure information about the path followed by
skip lists when performing sequential searches for keys
[22]. They are suited for high degree of concurrency
because their operations are local, i.e. access a small num-
ber of close nodes.

Skip tree graphs constitute an augmentation of the skip
graph structure that keeps the good properties while
extending its functionality with the support of aggregation
queries and broadcast/multicast operations. Moreover,
skip tree graphs provide a significant improvement in the
performance on both exact-match and range searches. As
a skip graph is an overlapping set of skip lists, skip tree
graphs are defined as an overlapping set of transformed
skip trees. Transformed skip trees combine skip lists and
skip trees and their definition allows for an efficient con-
struction of the distributed structure. Transformed skip
trees incorporate what is defined as conjugate nodes, which
constitute a shortcut in the vertical direction. Given that
skip lists, skip trees and transformed skip trees are isomor-
phic (transformed skip trees are obtained as a sequence of
reversible steps from skip trees), it results that skip tree
graphs are isomorphic to skip graphs.

The skip tree graph structure was presented in a preli-
minary work [23] as the result of a set of transformations
to related skip trees. This preliminary work focused on
the analysis of exact-match queries. Two different exact-
match query schemes over skip tree graphs were presented
and compared with the skip graph search mechanism.
These two schemes are [23]:

(1) a modification of the skip graph search by consider-
ing conjugate nodes while traversing the horizontal
lists and

(2) a tree-based version that only considers conjugate
nodes.

It was shown that, while these two new schemes improve
skip graph search, the tree-based version outperforms the
other two [23].

In this paper, the Skip tree graph structure is formally
defined and its algorithms and its properties are presented
in comparison with skip graphs. It is shown that the addi-
tion of conjugate nodes does not affect the expected loga-
rithmic height of the structure and state of the nodes. It
is proved that the exact-match search remains logarithmic
on expectation, while the reduction of the constant of pro-
portionality produces a significant improvement in its cost
in terms of messages and hops. A more efficient mainte-
nance mechanism than the one for skip graphs is presented,
which repairs the structure in case of failures by taking
advantage of the hierarchical structure.

In addition, the main focus of this work is related to the
analysis of range queries over the two related skip-list-
based structures. At the time of writing, the authors are
not aware of other work performing such analysis. Two
new range-query schemes are introduced, one for each of
the structures. These are compared to the sequential and
the broadcasting range-query approach [17]. Analytical
and experimental results conclude that the range-query
scheme over skip tree graphs outperforms the rest of the
schemes. A discussion on how skip tree graphs support a
greater degree of concurrency than skip graphs is also
presented.

The organisation of this paper is as follows. Section 2
presents related work, i.e. solutions for range query sup-
port over structured P2P networks. Section 3 formally
defines the skip tree graph structure, analyses its properties,
presents an analysis on the tree-based search operation,
describes the insert operation in detail together with its per-
formance analysis and introduces the efficient repair mech-
anism for skip tree graphs. In Section 4 different schemes
for range queries over skip graph and skip tree graph are
analysed, providing proofs of their performance costs.
Next, experimental results are presented that confirm that

360 A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374
the skip tree graph range query scheme outperforms the
rest of the schemes. Finally, the last section presents the
conclusions.

2. Related work

The provision of support for range queries over DHTs
has considered two approaches: either adapting the DHT
to facilitate richer query functionality or using it as a build-
ing block in a layered architecture.

Since the feature that prevents DHTs directly supporting
range queries is the use of hashing to map the data in the dis-
tributed nodes, modifications have used different functions
to do this mapping, while pursuing the preservation of the
order among the keys or the relation between the ranges.
Andrzejak and Xu [9] propose one solution that uses a
space-filling curve (SFC) over CAN. Gupta et al. [12] use
locality sensitive hashing over Chord, satisfying that similar
ranges are hashed to the same peer with high probability.
However, their solution only allows the computation of
approximate answers for range queries. Sahin et al. [24]
improved the previous approach by allowing exact range-
query solutions. Pitoura et al. [13] attack simultaneously
the problems of providing efficient range query processing
and data-access load balance. Their solution uses a hash
function which is both locality-preserving and randomised.

Using a DHT as an application-independent routing
substrate gains on simplicity of implementation and
deployment of P2P applications [15]. Systems following
this approach rely on the DHT for scalability and fault-tol-
erance properties. In addition, they need to overlay other
components on top of the DHT, whose interface provides
only put/get operations, to deal with the requirements for
richer semantics. P-Tree [14] uses Chord as the routing
architecture and builds a B+-tree on top. Each P2P node
represents a leaf node in a B+-tree and maintains the path
from the index root to the leaf node. Chawathe et al. [15]
designed a Prefix Hash Tree (PHT) which is a trie-based
structure layered on top of a DHT, allowing for one-
dimensional range queries. To perform a range query, the
PHT has to perform multiple DHT-lookup queries and
the query-cost is data dependent. While this approach is
effective in reducing implementation and deployment com-
plexity because it can outsource the DHT functionality,
this is achieved at the expense of performance [15].

Non-DHT based approaches have considered solutions
for ordered dictionaries in the sequential domain (such as
tries, 2–3 trees, skip lists, AVL-trees) and have built overlay
networks where the connections among peers are influ-
enced by these data structures.

P-Grid [16] is based on the trie structure which is
induced by recursively bisecting the data space. Peers are
associated with each partition generated and have random
connections to other peers such that prefix routing is
enabled. Two approaches for range queries over P-Grid
have been introduced [25]: sequential and parallel. The cost
of the parallel approach depends on the distribution of the
data and the size of the answer set but it is independent of
the size of the range.

BATON [19] is a DST based on an AVL-tree augmented
with extra connections at each level for fault-tolerance and
load balancing. BATON* [20] extends the idea to a multi-
way-tree and speeds up the searches by increasing the fan-
out. Both structures undertake rigid insertion procedures,
where a restructuring process affecting several nodes is
needed. This restructuring process is expensive and pre-
vents concurrent insertions.

Skip graphs [17] and SkipNet [18] are randomised struc-
tures based on skip lists and achieve expected O(logn)
query and update times with O(logn) node state in an n-
nodes network. Skip graphs preserve the order of the keys
but do not provide load balancing. Alternatively, providing
load balancing would prevent preserving the order of the
keys [17]. A bucketing scheme [26] has been proposed to
overcome this drawback. Skip B-trees [11] also extend skip
graphs by combining them with B-trees. Their focus is on
reducing nodes’ state and providing a policy for assigning
resources to nodes. This policy allows the achievement of
good load balancing.

Skip tree graph is another extension of skip graphs, by
means of a skip tree. Skip tree graphs inherit the same prob-
lem as skip graph with respect to load balancing. Approaches
similar to the ones designed to improve skip graphs [26,11]
could be adapted for skip tree graph. Being based on skip
trees, which are a concurrent approach to skip lists, it
requires only local operations and provides a greater degree
of concurrency than other balanced-tree based approaches.

When classifying balanced search trees according to the
set of rules they use, two groups are determined: split-and-
join based and rotations based [22]. B-trees, skip lists and
skip trees are in the first group and AVL-trees are in the
second group. Therefore, skip graphs [17], skip B-trees
[11] and skip tree graphs are P2P versions lying on the first
group, while BATON [19] and BATON* [20] can be
included in the second group.

3. Skip tree graph

In order to formally define skip tree graphs, a notation
based on the notation used in [17] will be introduced next.
Later, an overview of the related randomised structures skip

lists, skip trees, transformed skip trees and skip graphs is given.
Let (K, <K) be a totally ordered domain, the set of keys

stored in the structures. Let R be a finite alphabet such that
a word from this alphabet denotes the random choices
made for each key in the probabilistic data structure being
considered. This word has been denominated membership

vector [17]. Let jRj be the cardinality of the alphabet and
assuming that all the symbols in the alphabet are equally
probable, each symbol occurs with probability p = jRj�1.
Let R* be the set of all finite words consisting of characters
in R, and let R1 consist of all infinite words. The member-
ship vector of key k, denoted by m(k), is potentially infinite
(m(k) 2 R1). However, only a O(logn)-prefix of m(k) needs

A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374 361
to be generated on average for the keys in all the data struc-
tures. Given a word w 2 R1, its length is denoted jwj, its
symbol at position i is wi, its prefix of length i 2 N0 is
denoted wji and wj0 = � is the empty word. Given two
words w1, w2 2 R1, their longest common prefix lcp(w1,
w2) is a word w such that $ijw1ji = w2ji = w and 9= j > i such
that w1jj = w2jj. Finally, Pw is defined as the set of all pos-
sible prefixes of w, i.e. Pw = {z 2 R*: "i P 0, z = wji}.

A skip list [21] is a random data structure introduced by
Pugh, which consists of a family of sorted linked lists
{L‘}‘P0 (see Fig. 1a). The bottom list contains all the
inserted keys and subsequent levels include random subsets
of the keys from the immediate lower level, providing
shortcuts to distant keys. A key k belongs to level ‘ if
m(k)j‘ = wj‘, for a given word w 2 R1. This word w identi-
fies the skip list, which is denoted by SLw,R or simply SLw

when it is clear which is the alphabet used. In the special
case R = {0, 1} and w = 11, the condition for k to belong
to level ‘ is m(k)j‘ = 1‘, which may be interpreted to mean
that a key belongs to level ‘ if ‘ successive tosses of a coin
return heads. Fig. 1a presents the skip list SL011,{0,1} =
SL011. In general, for ‘ P 0, L‘ ¼ Lwj‘ � L‘þ1 ¼ Lwj‘þ1

and
SLw ¼ fLzgz2P w

.
A skip tree [22], introduced by Messeguer, is a structur-

ally equivalent data structure to a skip list, i.e. there is a
one-to-one mapping between the two structures. Fig. 1b
shows an example of a skip tree equivalent to the skip list
of Fig. 1a. A skip tree is derived from the path followed by
the sequential search algorithm on skip lists [22], by adding
information about this path in the nodes themselves. This
addition allows for the implementation of concurrent algo-
rithms based on local rules [22]. In a skip tree identified
with word w, denoted by STw, a key k belongs to level i

if and only if lcp(m(k), w) = i. Consecutive keys with the
same level are grouped into a single node while the search
tree property is maintained. ‘White’ or empty nodes are
Fig. 1. Three structurally equivalent data structures: (a) skip lis
added so that all leaves in the tree are at the same level.
Thus, the skip tree is considered as an unbounded random

B-tree [22]. A skip tree is similar to a B-tree because all
leaves are at the same level, nodes have a set of keys and
pointers to children nodes and the search tree property is
satisfied. However, it is unbounded and random because
the number of keys in a node is not fixed as in the B-tree,
but follows a probability distribution.

A transformed skip tree ST 0w (see Fig. 1c) combines a skip
list and skip tree. A key k belongs to all the levels ‘ P 0
such that m(k)j‘ = wj‘. The maximum level is L if and only
if jlcpðk;wÞj ¼ L and this level contains a key identified as
the root, whose membership vector is lcp(k,w). ST 0w is
equivalent to SLw with the addition of conjugate keys (note
that to identify a root, it might be necessary to expand the
membership vector of the keys at SLw’s top level to distin-
guish keys and conjugate keys). Two keys are said to be
conjugate if their membership vectors share the same prefix
of length ‘ � 1 and differ in the symbol at position ‘. In
symbols, a conjugate at level ‘, for all ‘ P 1, for key k1,
denoted ‘-conjugate(k1) is k2 such that m(k1)j‘�1 =
m(k2)j‘�1 and m(k1)j‘ „ m(k2)j‘. Thus, a key k appears as
conjugate in ST 0w at level ‘ if its maximum level is ‘ � 1,
i.e. jlcp(w,m(k))j = ‘ � 1. A node v stores a (potentially
empty) ordered list of conjugate keys at each level, denoted
C‘(v), corresponding to the conjugate keys at level ‘ � 1
between itself and its left neighbour at level ‘. Conjugate
nodes are indicated with smaller squares than nodes in
Fig. 1c. As an example, C‘(80) = [60, 70]. The conjugate
keys correspond to the nodes at each level of the corre-
sponding skip tree STw. Note that the membership vectors
corresponding to nodes 50 and 80 in Fig. 1c have been
expanded to distinguish between a root and its conjugate.

Aspnes and Shah [17] presented a generalisation of a
skip list called skip graph, in which redundancy is incorpo-
rated to allow the system to work efficiently in a dynamic
t SL011, (b) skip tree ST011, (c) transformed skip tree ST 0011.

362 A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374
distributed environment such as the one assumed for P2P
systems. The skip graph structure [17] is defined as a family
fLzgz2R� of sorted doubly-linked lists, where Lz contains all
k for which z is a prefix of m(k) for all z 2 R*. A particular
Lz is part of level i if jwj = i. Thus, as for every w 2 R1, the
family fLzgz2P w

is a skip list, a skip graph is a family of skip
lists fSLwgw2R1 , which overlap in the lower levels.

Finally, a skip tree graph is a family of transformed skip
trees fST 0wgw2R1 , which overlap in the lower levels. Fig. 2
provides an example of a skip tree graph. Eliminating the
conjugate nodes, its equivalent skip graph is obtained.
The design of the transformed skip tree aims to maintain
the skip graph property that level ‘ + 1 can be built
through local operations on level ‘. This is achieved by
maintaining the neighbouring connections at each level
and it is required for the insertion operation.

The performance analysis for skip lists, skip trees and
skip graphs has shown that insertion, deletion and search-
ing operations take expected O(logn) time [21,22,17].

In the case of skip tree graphs, the same expected upper
bound is maintained for its operations. As a skip tree graph
is a super set of a skip graph, skip graph search operations
could be performed over skip tree graphs. The addition of
conjugate keys allows tree-based operations, which shorten
the search paths in the vertical sense. This paper shows that
by the augmentation of a skip graph with conjugate nodes,
the asymptotic logarithmic behaviour of exact-match is not
affected and in fact, its cost is improved by reducing the
constant of proportionality of the upper bound. A range
query scheme for skip tree graphs is also shown to outper-
form other schemes for skip graphs. To achieve this, the
insertion procedure needs to add conjugate nodes.
Although the insertion cost increases with respect to skip
graph’s cost, it is shown that it remains logarithmic in
the number of nodes. The value of the increment depends
on the cardinality of the alphabet R.
Fig. 2. A skip tree graph.
Apart from providing performance improvements in the
search operations, skip tree graphs extend skip graphs’
functionality. While skip graphs support range and prefix
queries, they do not support aggregation queries. Aggrega-
tion queries combine the results on a large number of
nodes, and thus, invariably rely on hierarchical structures
to perform this combination of results. Being based on
tree-structures, skip tree graphs allow for the implementa-
tion of aggregation queries. Nodes at each level constitute
an aggregation point of all its conjugate nodes at that level.
Some examples of aggregation functions are count, sum,
maximum, minimum, average, and median. Similarly, the
implementation of broadcasting or multicasting schemes
over skip tree graphs could rely upon the underlying hier-
archical structures.

3.1. Skip tree graph properties

The expected height of a skip tree graph coincides with
the average height of the equivalent skip graph and is
E[H] = O(log1/pn) [17].

The number of conjugate nodes for a particular node v

at level ‘ in a skip tree graph is a random variable Gv,‘.
In terms of the membership vectors, Gv,‘ is the number of
keys at level ‘ � 1 between v and its left neighbour at level
‘, denoted vL‘. Then, m(v)j‘ = m(vL‘j‘). Consequently, Gv,‘

counts the number of nodes w to the left of v, at level ‘ � 1
such that m(w)‘ „ m(v)‘ until vL‘ is found. Thus, Gv,‘ is a
geometric random variable with probability of success p,
Pr[Gv,‘ = i] = qip and E½Gv;‘� ¼ q

p. This magnitude is called
length of an internal node in a skip tree [22].

The state of a node in a skip tree graph includes two
neighbours at each level (O(log1/pn)) plus a set of conju-
gates, whose cardinality is qp�1 on average. Thus, it is
O((2 + qp�1) log1/pn). This implies that for a fixed p, the
state remains logarithmic on average. The benefits offered
by the skip tree graph structure come at the expense of
requiring greater state. The increment with respect to the
state of the skip graph is O(qp�1 log1/pn).

3.2. Exact-match search operation

Taking advantage of conjugate nodes allows the
improvement of the exact-match search cost either by
accelerating horizontal traversals in skip graph search or
by following the underlying tree-structures. Experimental
results comparing these schemes with the skip graph
scheme were presented elsewhere [23]. Next, the tree-based
scheme is described and analytically compared with the
skip graph scheme. A tight bound for the cost is given in
order to show that the constant of proportionality is less
than the corresponding constant for the exact-match search
in skip graphs.

A tree-based exact-match search operation over a skip
tree graph starts at an arbitrary node v and it traverses
the underlying skip tree for which v is the root node. Thus,
only conjugate nodes at each level need to be considered

A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374 363
and the search works as in a search tree by selecting the
most appropriate conjugate node at each level or going
down a level in the same node if there is no such conjugate.
Intuitively, the search is bounded by the height of the skip
tree and then, it takes expected O(log1/pn) hops and
messages.

Pugh showed an upper bound on the cost of the search
for skip lists by analysing the search in the backward direc-
tion [21]. The procedure involves obtaining an expression
for the cost of the search in an infinite list, using it to bound
the cost to get up to level L(n) = log1/pn and then, adding a
bound for the cost from level L(n) to the expected maxi-
mum level [21]. The expression for Ck, the expected cost
of the search that climbs up to k levels, is obtained by con-
sidering that being at node v and level ‘ the two possible
options are: to go up to level ‘ + 1 while remaining in the
same node (whose probability is p, the probability that
node v is at level ‘ + 1) and to go back to the left neighbour
in the same level (with probability 1 � p) [21]. Conse-
quently, Ck follows the recurrence relation

C0 ¼ 0

Ck ¼ ð1� pÞð1þ CkÞ þ pCk�1

�

whose solution is Ck ¼ 1�p
p k. Then, the search cost for a

skip list is SSL
n 6

1�p
p log1=p þ 1þ 1

1�p.
Note that the recurrence relation used here is not exactly

the same as in [21]: the model assumed in this paper is that
while each message takes at most unit time (one hop) to be
delivered, internal processing at a peer takes no time.
Therefore, the only operation that increases the cost is to
go back to other node. Another important observation is
that this is a tight upper bound [27] and by showing a lower
upper bound for the search in a skip tree, the difference in
the bounds will reflect the improvement properly.

When applying the same reasoning for the search over
skip trees, the two options in the backwards direction
are: to follow a conjugate ‘‘pointer’’ up (with probability
1 � p) or to go up a level within the same node (with prob-
ability p). Then, the recurrence relation is:

C0 ¼ 0

Ck ¼ pCk�1 þ ð1� pÞð1þ Ck�1Þ

�

whose solution is Ck = (1 � p)k. It results that the search
cost for a skip tree can be bounded by the expression:
SST

n 6 ð1� pÞðlog1=pnÞ þ 1
1�p.

Observing the constants accompanying the logarithms, it
results that 1�p

p > 1� p. The bound for the search in skip
tree graph is 1

p times less than the bound for the search in
skip graphs. As the bounds are tight, the search in the skip
tree graph reduces the cost of the skip graph’s search. For
instance, when p ¼ 1

2
, there is a reduction of 50% in the cost.
3.3. Insert operation

In order to build an skip tree graph the insertion opera-
tion has to determine neighbours and conjugate links for
the joining node. Establishing neighbour nodes at each
level is performed similarly to the insert operation of skip
graph [17]. However, this insertion procedure needs to be
augmented to consider conjugate nodes.

A new node that wants to join the network needs to
know a node already in the network. The new node v will
insert itself in one linked list (as a neighbour node) at each
level until it is in a singleton list at the topmost level. In
addition, it has to be added as a conjugate node to the clos-
est nodes to its right appearing in the rest of the lists at each
level. In total, when searching to the right, jRj = p�1 nodes
need to be found. The new node also stores a set of conju-
gates at each level that are the nodes traversed when
searching for the appropriate left neighbour for the next
level.

While the skip graph operation consists of two stages
[17], the skip tree graph insertion consists of the same
two stages augmented to consider conjugate nodes and it
might require a third stage if the new node was not added
as conjugate in all the required lists during the second
stage. The stages are:

(1) The new node v searches for its key in the network,
finding the neighbours at the bottom level, and con-
nects to them.

(2) For each level ‘ P 0, the new node v searches for the
closest nodes u and w at level ‘ such that u <K v <K w

and m(v)j‘+1 = m(u)j‘+1 = m(w)j‘+1. The nodes u and
w are the left and right neighbours for level ‘ + 1,
respectively. While traversing the list at level ‘ to find
u and w, the path is stored in respective lists cv and cw,
where cv contains the conjugate nodes of v and cw the
conjugate nodes of w. If the list cw is not empty, v is
added as conjugate to each node t 2 cw such that the
symbol m(t)‘+1 from R appears for the first time in
the traversal.

(3) If cw is empty (i.e. there is no conjugate node between
v and w) or not all symbols from R are represented,
then w forwards a message findConjugatesOp

to its right neighbour searching for conjugates for v

for the remaining symbols, if they exist.

This procedure makes evident the need to keep neigh-
bouring links at all levels to build the structure.

Before every new node v connects to any neighbour, it is
verified that no other nodes have joined in between. If there
is a node that joined in between, the order of the nodes will
be violated. Thus, when an existing node receives a message
to link to the a new node v, it checks that connecting to v

will maintain the proper order of the keys. If linking to
the new node would result in violating the key-ordering,
the old node transfers the message to its appropriate neigh-
bour. This procedure ensures that a new node links to cor-
rect nodes at each level, even in the case of nodes
concurrently joining the P2P network.

Once a new node is connected to a neighbour, these two
adjacent nodes may need to split and re-allocate their

364 A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374
conjugate nodes. For an example of the insert operation see
Fig. 3.

Summing up, the insertion procedure for node u tra-
verses each list ‘ to the right to find the right neighbour
and p�1 conjugate nodes that will link to u at level ‘ + 1,
if they exist. The expected bound for the number of mes-
sages and hops for this operation is expressed in Lemma
1, whose proof is detailed in Appendix A. The list at level
‘ is also traversed to the left to find the left neighbour. The
new node u includes in its conjugate table all the nodes
found in the path from u to its left neighbour.

Lemma 1. The expected number of messages and hops

needed for u to find its right neighbour and one conjugate for

each symbol in R � {m(u)‘+1} at level ‘ is less than p�2.
Theorem 2. The insert operation in a skip tree graph with n

nodes takes expected O(logn) messages and hops.

Proof of Theorem 2 Neighbours in the bottom level are
found after a search operation, which takes
O((1 � p) log1/pn) hops and messages on average. At each
level ‘ P 1, the new node u communicates with 1

p nodes
on average to find its left neighbours v satisfying
m(u)j‘+1 = m(v)j‘+1 (taking Oð1p log1=pnÞ hops and messages
on average). In the right direction, u needs to search for its
right neighbour w, verifying m(u)j‘ = m(v)j‘ but also a set of
Fig. 3. Example of insert operation. (a) Node 60 inserts itself at the
bottom level and searches for the appropriate neighbours for the first level
in both directions (sending messages getNeighbourAndConjugate-
sOp). After finding the right neighbour at level one, it has not been
inserted as a conjugate node. Thus, its right neighbour issues a message
findConjugatesOp to find 80. (b) Node 60 inserts itself at level 1 where
70 splits its conjugates (and 50 becomes a conjugate for 60). Then, node 60
searches for its appropriate neighbours for the following level resulting in
its adjacent neighbours. As 60 has not been added as conjugate after
finding the right neighbour, 70 sends a findConjugatesOp to its right,
finding 20.
conjugates cr such that m(cr)‘+1 = r for r 2 R � {m(u)‘+1},
i.e. one conjugate for each symbol r different to m(u)‘+1. By
Lemma 1, the expected number of hops and messages in
the right direction is bounded by p�2 at each level. Conse-
quently, the total cost for the insert operation in skip tree
graphs is O((1 � p + p�2 + p�1)log1/p n) that for a fixed p
is O(logn) hops and messages on average. h

In comparison with the insert operation for skip graphs,
it is observed that while finding the appropriate location at
the bottom level has better performance for skip tree
graphs, they incur an extra cost when determining conju-
gate nodes. When the number of elements in the alphabet
R increases, the difference on the cost increases. Then, the
improvements on exact-match and range queries and
added functionality are at the expense of a more costly
insert operation. Experimental results on the cost of the
insertion are given in [23].

3.4. Maintenance algorithm

In the presence of node or link failures, a repair mecha-
nism or maintenance algorithm is required to reorganise
the structure, healing the disruptions and avoiding perfor-
mance degradation.

Skip graph’s repair mechanism [17] is based on verifying
a set of constraints that guarantee that the structure is cor-
rect. These constraints include [17]:

(1) key-order constraints: a key is greater than its left
neighbour and less than its right neighbour.

(2) back-pointer constraints: ensuring that each list at
each level forms a proper doubly-linked list.

(3) inter-level constraints: guaranteeing that neighbours
at level ‘ are the closest neighbours at level ‘ � 1
whose membership vectors’ ‘-prefixes coincide with
the node’s membership vector ‘-prefix.

Key-order constraints are invariants in any execution of
the skip graph. Thus, the repair mechanism implements
two operations for repairing invalid back-pointer and
inter-level constraints, respectively. Checking inter-level
constraints requires the traversal of the immediate lower
level list and action upon the possible cases violating the
constraint. The repair mechanism requires time quadratic
in the number of nodes in the worst case.

A graph is a skip tree graph if, in addition to the previ-
ous constraints, it satisfies the following properties defining
conjugate nodes:

(1) If xL‘ „ ^, then $k such that xL‘ ¼ xLkþ1
‘�1 and

8jj1 < j < k þ 1 mðxÞj‘ 6¼ mðxLj
‘�1Þj‘, xCj

‘ ¼ xLj
‘�1.

(2) If xL‘ = ^, then 8jjmðxÞj‘ 6¼ mðxLj
‘�1Þj‘, xCj

‘ ¼ xLj
‘�1.

For skip tree graph, it is possible to extend skip graph’s
back-pointer and inter-level repair operations to record the
conjugate nodes and split them when setting new neigh-
bours, if necessary. The split operation is as in the insertion

Fig. 5. Parallel inter-level repair: case z = ^.

Fig. 6. Parallel inter-level repair: case z „ ^ � m(z)j‘ = m(x)j‘.

Fig. 7. Parallel inter-level repair: case z „ ^ � m(z)j‘ „ m(x)j‘.

A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374 365
algorithm. However, by exploiting the hierarchical struc-
ture, it is possible to increase the parallelism of the opera-
tion that checks inter-level constraints. Instead of
traversing the immediate lower level to verify proper
assignment of neighbours, a node could use the informa-
tion on its conjugate nodes to check simultaneously inter-
level and conjugates constraints. In this way, a more effi-
cient repair mechanism is obtained as follows.

For each level ‘ > 0, each node x sends messages in par-
allel to all its conjugate nodes, if they exist. Assuming that
xC‘ „ ;, jxC‘j = k + 1 and 8ij1 6 i 6 k; xCi

‘ 6¼?, these mes-
sages aim to check the following conditions (which
arise from the aforementioned constraints on conjugate
nodes):

(1) the left neighbour of x at level ‘ � 1 is the rightmost
conjugate at level ‘, i.e. xL‘�1 ¼ xC1

‘ .
(2) the left neighbour at level ‘ � 1 of each conjugate is

the following conjugate to the left, in symbols:
xCi

‘L‘�1 ¼ xCiþ1
‘

(3) the left neighbour at level ‘ � 1 of the leftmost conju-
gate is the left neighbour of x at level ‘, i.e.
xCk

‘L‘�1 ¼ xL‘:

Without loss of generality, each conjugate is considered
not ^, as if any of the conjugate nodes is ^, it can be elim-
inated and the same conditions as before are checked. On
the other hand, if xC‘ = ;, then the procedure checks if
xL‘ = xL‘�1.

Thus, each conjugate xCi
‘ receives a message check-

LeftNeighbourOp (‘ � 1, y, x) from x, and checks if
its left neighbour at level ‘ � 1 is the node y as indicated
by x (see Fig. 4 for an example of how the connections
are established at levels ‘ and ‘ � 1). If the neighbour is
correct, the constraint is not violated and no repair action
is required. If this is not the case and xCi

‘’s left neighbour is
z, one of the following cases violating the constraints occur
(the cases are outlined in Figs. 5–7, respectively):

(1) z = ^
(2) z „ ^ � m(z)j‘ = m(x)j‘
(3) z „ ^ � m(z)j‘ „ m(x)j‘

In the first case, xCi
‘ sets y, the node suggested by x, as

its left neighbour in level ‘ � 1 and sends a message to y. In
Fig. 4. Repair mechanism: node x checks that xC1
‘ is its neighbour at level

‘ � 1 and sends checkLeftNeighbourOp messages to all its conjugate
nodes.
the same way as in the insert operation, y verifies that link-
ing to xCi

‘ will preserve the ordering constraints. If this is
not the case, y finds the appropriate neighbour for xCi

‘.
In the second and third cases, xCi

‘ sends a message back
to x letting it know about the existence of its left neighbour
z. If m(z)j‘ = m(x)j‘, x will set z as its new left neighbour at
level ‘, splitting its conjugate nodes and sending a message
to z. In turn, z confirms that x will be its new right neigh-
bour or finds an appropriate node in its neighbourhood to
link to x.

Otherwise, when m(z)j‘ „ m(x)j‘, z (and possibly some of
its neighbours) will be inserted as a new conjugate between
xCi

‘ and xCiþ1
‘ . Additionally, x will send a checkLeft-

NeighbourOp ð‘� 1; xCiþ1
‘ ; xÞ message to z.

Then, the skip tree graph repair mechanism involves two
operations: the back-pointer repair (as in skip graphs) and
parallel inter-level repair using conjugates, as explained
above.

366 A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374
4. Algorithms for range queries

Skip tree graphs and skip graphs preserve the order of
the keys identifying each peer and then, support order-
based queries. It is assumed that each node v stores a set
of data objects identified by keys, which belong to the inter-
val ½kvL0

; kv� where kvL0
is the key of the left neighbour at

bottom level and kv is the key identifying the node.
In the cases where the query involves finding a unique

result, the operation can be performed as an adaptation
of the exact-match search operation [17] and while the per-
formance is of the same order in both structures (O(logn)
time with O(logn) messages), it was shown that skip tree
graph cost is lower.

In this paper, the description and analysis of range que-
ries requiring all keys of an interval for skip graphs and
skip tree graphs are presented. The range query cost (in
terms of the number of messages and hops) depends on
the total number of peers in the network (n) and the num-
ber of peers intersected by the query (r). The latter amount
is dependent on the length of the interval j[a,b]j defined by
the range query. Clearly, r 6 n.

Three different range query schemes are presented for
skip graphs: sequential scheme, memory-less broadcasting

scheme [17], and broadcasting with memory scheme. All
these schemes can be applied over a skip tree graph, as it
is a super set of a skip graph. A specific scheme is designed
for skip tree graphs, which exploits the underlying tree
structures. Analytical results are presented justifying the
costs of these schemes. It results that skip tree graph range
query scheme outperforms all the rest. The next section
presents experimental results that validate the theoretical
results.

Fig. 8 shows an example how each of the schemes works
over a subset of nodes from the skip tree graph of Fig. 2.
The starting node is 20 and the range is [40,70]. Different
arrows are used for each scheme and those corresponding
Fig. 8. Range-query schemes for Skip graph and Skip Tree Graph for the
range query starting at node 20 for the range [40,70]. Only a subset of
nodes related with the range query are shown. Different arrows are used
for each scheme, which are labeled with the corresponding hop number.
to a message are labeled with the corresponding hop
number.

4.1. Skip graph schemes

The basic range query scheme that can be implemented
over skip graphs involves finding the peer holding the lower
bound (an operation which takes expected O(logn) hops
and messages) and then, sequentially traversing the bottom
level until the peer holding the upper bound is found. This
scheme has been the only one considered in some works on
range queries when comparing with the skip graph struc-
ture [28,29]. The sequential search has a cost of O(r) mes-
sages and hops, where r is the number of nodes in the
interval. Thus, the sequential approach takes expected
O(logn + r) messages and hops.

Aspnes and Shah [17] envisioned a broadcasting
approach for finding all the keys in a given interval when
introducing the skip graph structure, whose cost was
expressed as expected O(r log n) messages and O(log r)
hops or time. This scheme amounts to reaching a node
holding a single element in the interval, for instance the
lower bound, and then at each following step, each node
broadcasts the range query to all the nodes it knows
belonging to the range. The node holding the lower bound
forwards the query to all the nodes in its routing table
belonging to the range (bounded by expected O(log r) mes-
sages and hops). Each node receiving the range query
repeats the same process (keeping track of the query mes-
sages already received so that only one result is sent and
unnecessary result messages are avoided). Then, the bound
on the expected number of messages is O(r log r) (O(log r)
for each of the r nodes). As regards the number of hops,
traversing the range requires at most O(log r) hops. This
bound can be obtained by considering that in the (sub) skip
graph containing only the r peers in the range, any node
can be reached in O(log r) hops [17]. To sum up, the range
search in skip graph will take O(logn + r log r) messages
and O(logn + log r) time. Note that given that r 6 n,
O(logn + log r) is O(logn). In addition, O(logn + log r) is
equivalent to O(log rn) (i.e., O(logn + log r) = O(log rn) =
O(logn)). Although this scheme improves the sequential
scheme with respect to latency, the number of messages
required increases significantly.

The previous scheme, introduced by Aspnes and Shah
[17], is denominated memory-less broadcasting (or equiva-
lently, broadcasting without memory) in this paper, as
opposed to broadcasting with memory which is described
next. The improvement consists in observing that peers in
the range may be receiving the range query several times,
and the number of messages can be reduced by keeping
track of the query messages already sent to other peers.
Then, each message stores the list of nodes that have been
visited and that will be visited in the next step. Therefore,
when each node sends a query range, it will include all
the neighbours in the range to which it is broadcasting
the message and in this way, subsequent nodes will not

A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374 367
resend it to nodes already in the path. This scheme
improves broadcasting without memory while it has the
same asymptotic behaviour, requiring an expected number
of O(logn + r log r) messages and O(logn + log r) hops. The
experimental results show that these bounds have a smaller
constant of proportionality than in the case of memory-less
broadcasting. It is noted that communication overhead is
not being considered but only number of messages.

4.2. Skip tree graph scheme

The implementation of range searches in skip tree
graphs harnesses the parallelism inherent in P2P by rely-
ing on the underlying tree structures. The pseudo-code
for the range search operation over skip tree graphs is
given in Algorithm 1. The range query procedure can
start on any node of the network. A node receiving a
rangeSearchOp for a particular range [a,b] at level ‘
computes the interval of the identifier space for which
it is responsible at that level (procedure getOwn-

Range(level)). The node’s interval lower bound at level
‘ is given by the key of the rightmost conjugate if it
exists, or the left neighbour’s key otherwise, i.e. if it
has no conjugate nodes at that level (in which case,
the rightmost conjugate will be ^). If this node is in
the range and the procedure is at the bottom level, the
result is sent to the starting node. If the operation is
at level ‘ P 1, the node establishes its ‘-conjugate nodes
that intersect the range [a,b] by means of the local pro-
cedure getConjugatesToPropagateRange(range,
level). It then multicasts the range query operation to
all these conjugates, indicating the immediate lower level.
If the node itself is in the range, it will also continue the
operation at its own immediate lower level.

The range search operation starts at the highest level of
a node and in each step, the node will send messages at
most to all its conjugate nodes, in the immediate lower
level. As in each step the messages go down a level, the
number of hops is directly related to the height of the skip
tree graph, which is bounded by O(logn) on average.
Theorem 3 states more precise bounds for the cost of
the range search showing their dependency with the
parameters n and r.

Theorem 3. The range search operation in a skip tree graph

STG with n nodes takes expected O(logn + r) messages and

O(logn + logr) = O(logn) hops.
At each level of the range query operation for the inter-
val [a,b], which intersects r nodes, a node sends messages to
all its conjugate nodes that intersect the range and this step
is counted as one hop. Then, the number of messages and
number of hops in a range query for the interval are related
with the number of conjugate nodes accessed by the range
search operation at each level ‘ P 1. Let C‘ be a random
variable representing such quantity.

In order to present the proof for Theorem 3, some inter-
mediate results are presented in the following Lemmas.
Lemma 4 enunciates the expression for the expected value
of the random variables in the sequence {C‘}‘P1.

Lemma 4. The expected value of C‘ is E[C‘] = (1 � p)[p‘�1

(r � 1) + 1], for all ‘ P 1.

Algorithm 1. Range search operation in node v over Skip
Tree Graphs
1:
 upon receiving Æ rangeSearchOp, startNode, range,
level æ:
2:
 while (level P 0) do
3:
 ownRange ‹ getOwnRange(level)

4:
 overlaps ‹ ownRange.overlaps(range)

5:
 if (level = 0) then
6:
 if overlaps then
7:
 sendÆ foundElementOp, v æ to startNode

8:
 end if
9:
 return

10:
 end if
11:
 conjugates ‹
getConjugatesToPropagateRange(range, level)
12:
 send_parallelÆ rangeSearchOp, startNode, range,
level-1 æ to conjugates
13:
 if overlaps then
14:
 level ‹ level � 1

15:
 else

16:
 return
17:
 end if
18:
 end while
getOwnRange (level): KeyRange
rightmostConjugate ‹ getRightmostConjugate()
leftNeighbour ‹ neighbour[LEFT][level]
if rightmostConjugate „ ^ then

return (rightmostConjugate.key, v.key]
end if

if leftNeighbour „ ^ then

return (leftNeighbour.key, v.key]
end if

return (v.key, v.key]
Lemmas 5 and 6 establish upper bounds for the expected
values of summations related to the sequence of random
variables {C‘}‘P0.

Lemma 5.
Pdlog1=pne

‘¼1 E½C‘�¼Oðlog1=pnþ rÞ and E½
PH

‘¼dlog neþ1

Ci� ¼OðrÞ, where H is the random variable representing the

height of the skip tree graph.

Lemma 6. Let be L a random variable denoting the number

of levels for which the range query does not access any con-

jugate node (i.e. it counts the levels ‘ such that C‘ = 0). Then,

E[L] = O(log1/pn + log1/pr).

The proofs for all the lemmas are presented in
Appendix A.

368 A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374
Proof of Theorem 3. Let M be the random variable
denoting the number of messages sent by the range query.
Thus, M ¼

PH
‘¼1C‘. Since the number of terms in this

summation is the random variable H for the height of the
skip tree graph, linearisation properties of the expected
value cannot be applied (E[M] is not equal to

PH
i¼1E½Ci�).

Additionally, the sequence of random variables H, C1,
C2, . . . is not mutually independent and not even pairwise
independent. Then, in order to bound the expected value of
the number of messages, the value of M is expressed as
follows:

M ¼
Xdlog1=pne

i¼1

Ci þ
XH

i¼dlog neþ1

Ci ð1Þ

As the first summation has a fixed number of terms, it fol-
lows that

E½M � ¼
Xdlog1=pne

‘¼1

E½C‘� þ E
XH

‘¼dlog neþ1

Ci

" #
ð2Þ

Each of these summations is bounded by Lemma 5 and it
results that the expected number of messages in the range
search is O(log1/pn + r).

As regards the number of hops, it is clear that they are
directly related with the height of the skip tree O(logn), as
in each step the range search operation goes down a level.

To obtain a more precise bound, T is defined as the
random variable for the number of hops required for the
range query. Then, the value of T is determined by
considering all the levels in the skip tree graph and
subtracting the levels for which no conjugate nodes are
accessed by the range query. In symbols, T = H � L, where
L and its expectation are as defined in Lemma 6.

Then,

E½T � ¼ E½H � � E½L� ¼ Oðlog1=pnÞ �Oðlog1=pn� log1=prÞ ð3Þ
¼ Oðlog1=pnþ log1=prÞ ¼ Oðlog nÞ: � ð4Þ
4.3. Discussion

Table 1 displays the costs of each of the schemes pre-
sented in relation to the average number of messages and
average number of hops required. Broadcasting schemes,
with or without memory, improve with respect to the
sequential scheme in the number of hops. However, the
Table 1
Asymptotic behaviour of the range query schemes with respect to average
number of messages and hops

Range query scheme DST Messages Hops

Sequential SG O(log n + r) O(log n + r)
Memory-less

broadcasting
SG O(log n + r log r) O(log rn) = O(log n)

Broadcasting with
memory

SG O(log n + r log r) O(logrn) = O(logn)

Tree-based STG O(logn + r) O(logr n) = O(logn)
number of messages that need to be sent increases.
Although both broadcasting schemes have the same
asymptotic performance, the experimental results in Sec-
tion 4.4 show that the constant of proportionality for
broadcasting with memory is less than the corresponding
one for broadcasting without memory. Hence, the cost in
number of messages and hops is ameliorated by keeping
track of the nodes visited. The range query scheme imple-
mented for skip tree graph reduces the number of mes-
sages so that its asymptotic behaviour matches that of
the sequential scheme. The simulations’ results presented
in the next section show that the constant of proportion-
ality is slightly smaller for the parallel scheme than the
sequential scheme in the number of messages. As a result,
the range query scheme for skip tree graph outperforms
the rest of the schemes with respect to both performance
costs.

As regards concurrency issues related to guaranteeing
the correctness of the range-query results, Linga et al.
[28] have developed techniques to guarantee accuracy
and availability of P2P range indices. Their work only
considers that the range search is performed sequentially,
by finding the lower bound and then scanning along the
bottom list to retrieve the items in the range [28], with
skip graph being one of their examples. Their analysis
focuses on maintaining consistency of the bottom level
and adapting to changes in the ranges maintained by
the peers. In the case of the schemes discussed here, it
is observed that broadcasting approaches may be access-
ing all the levels of the skip graph at the same time.
Then, correct results will be obtained if all the rings are
consistent, heavily limiting concurrency and scalability.
On the other hand, the skip tree graph scheme traverses
each level at a time. This fact implies that inconsistencies
can be treated separately at each level and the degree of
concurrency achieved will be higher.

4.4. Experimental evaluation

The skip tree graph data structure was implemented and
evaluated under event-driven simulations. The experiments
were performed to validate the analytical results related to
the different range query schemes presented in the previous
sections. Three sets of experiments were undertaken to
show how the performance cost, in terms of the average
number of messages and average number of hops required,
is influenced by each of the parameters involved in a range
query [a,b]: the number of nodes in the network (n), the
number of nodes intersecting the range (r, which are the
nodes storing the result set) and the length of the range
j[a,b]j. The results are shown in the three following
subsections.

The experimental methodology consisted in building
1000 skip tree graphs for each set of parameters and mea-
suring in each of them the cost of performing range que-
ries for each scheme. The starting nodes for the range
queries were chosen at random. For all the simulations,

A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374 369
the identifier space was considered as the interval
K = [0, 10000]. The peers’ identifiers were distributed uni-
formly at random in the identifier space. Regression analy-
sis was used to determine the relationship between the
parameters in the experiments to show that the results
are in agreement with the theoretical results.

In all the plots, the curve for the sequential scheme is
exactly the same when considering number of messages
and number of hops, as its cost is equivalent in both mea-
sures. However, as different scales were used for the corre-
sponding graphics, the reader needs to take this into
account. The reason why different scales were used is
because the focus is on comparing each scheme with respect
to either the number of messages or the number of hops.

4.4.1. Network size fixed

For a network size fixed at 1000 nodes, experiments
were run for range lengths varied from 20 to 500 in steps
of 20. The cost of the different range query schemes was
measured in terms of messages (Fig. 9a) and hops (Fig. 9b).

Since the identifiers for the 1000 nodes are chosen uni-
formly at random in the same identifier space, it results that
r varies linearly with respect to the range length j[a,b]j
(r � j[a,b]jn/jKj and the greater the range length, the
greater the number of nodes intersecting the interval
[a,b]). Consequently, the functions in the plots can be seen
as functions of r. In the case of the number of messages,
regression verified that the sequential and tree-based range
query schemes are linear with respect to r and both broad-
casting schemes follow the function r log r. For the number
of hops, all the schemes have a logarithmic cost with
respect to r, except from the sequential scheme that is lin-
ear. The skip tree graph range query scheme outperforms
the rest in both measurements.
100 200 300 400 500
Range Length

0

5

10

15

20

25

30

N
um

be
r

of
 M

es
sa

ge
s

STG
Broadcast With Memory
Broadcast Without Memory
Sequential

Fig. 9. Cost in messages and hops for
4.4.2. Range size fixed (on average)

The network size n was varied in the interval [10,1000] in
steps of 50. The range length was chosen for each n so that
r � 10 nodes on average (given the uniform distribution of
nodes in K). The plots in Fig. 10a and b show that the num-
ber of messages and hops depend logarithmically on n for
all the range query schemes. The skip tree graph scheme
outperforms the rest in both cases.

4.4.3. Range length fixed

In the last set of experiments, the network size was
varied from 50 to 1000 in steps of 50. In order to
observe the behaviour of the cost functions near the ori-
gin, an additional point was considered for n = 10 nodes.
The range length j[a,b]j was fixed at 500. Given that
peers’ identifiers are randomly and uniformly distributed
in the identifier space, as n increases, the number of peers
intersecting the range increases. Therefore, it results that
there is a linear relation between n and r. Therefore, the
simulations’ results show the costs as a function of x,
with n and r linearly dependent on x. Regression analysis
showed that the functions in Fig. 11a and b are in agree-
ment with the theoretical results summarised in Table 1.
The number of messages and hops for the sequential
scheme follow exactly the same function logx + x. The
number of messages for the skip tree graph scheme also
follows this function logx + x with a slightly smaller con-
stant of proportionality. Both broadcasting approaches
require a number of messages which varies as logx +
x logx. On the other hand, the number of hops for skip
tree graph and both broadcasting schemes follows a log-
arithmic function. Range queries over skip tree graph
show the best cost in terms of messages and hops with
n and r variable.
100 200 300 400 500
Range Length

5

10

15

N
um

be
r

of
 H

op
s

STG
Broadcast With Memory
Broadcast Without Memory
Sequential

network size fixed, with r variable.

200 400 600 800 1000

Network Size

10

20

30

40

50

60

N
um

be
r

of
 M

es
sa

ge
s

STG
Broadcast With Memory
Broadcast Without Memory
Sequential

200 400 600 800 1000

Network Size

5

10

15

20

25

N
um

be
r

of
 H

op
s

STG
Broadcast With Memory
Broadcast Without Memory
Sequential

Fig. 10. Cost in messages and hops for range size fixed.

0 200 400 600 800 1000
Network Size

0

50

100

150

200

250

300

N
um

be
r

of
 M

es
sa

ge
s

STG
Broadcast with Memory
Broadcast Without Memory
Sequential

0 200 400 600 800 1000
Network Size

0

10

20

30

40

50

60

70

N
um

be
r

of
 H

op
s

STG
Broadcast With Memory
Broadcast Without Memory
Sequential

Fig. 11. Cost in messages and hops for range length fixed.

370 A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374
5. Conclusions

This paper contributes to the currently active and
important area of research dealing with the provision of
distributed data structures supporting efficient complex
queries over structured peer-to-peer networks, including
range, prefix and aggregation queries. The skip tree graph
structure has been formally presented as an isomorphic
extension of skip graphs. While skip graphs are based on
skip lists, skip tree graphs are based on skip trees, a concur-
rent approach to skip lists. Skip tree graph’s properties and
algorithms have been thoroughly analysed and compared
to its predecessor. While skip graphs support order-based
queries such as range and prefix queries, they do not sup-
port aggregation queries, functionality which is provided
by skip tree graphs. This extension of the functionality is
allowed by the underlying hierarchical structure of skip
tree graphs, which additionally permits of a significant
improvement on the repair mechanism and straightforward
implementation of multicast/broadcast operations. It has
also been shown that efficiency on exact-match searches
is significantly improved. Furthermore, existing range-
query schemes for skip graphs were compared with new
proposed schemes over both structures. Analytical results
as well as experimental evaluation via discrete-event simu-
lations have demonstrated that skip tree graph performs
exact-match and range queries efficiently and they outper-
form the respective operations in skip graphs.
Acknowledgments

The authors would like to thank the Academic Planning
Group at Queen’s University Belfast for funding the work

A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374 371
of Alejandra González-Beltrán and the anonymous review-
ers for their useful comments.

Appendix A
Proof of Lemma 1. In the insertion procedure, when
determining the connections for node u at level ‘ in the
right direction, jRj = p�1 nodes {vr}r2R are searched, one
for each of the symbols in the alphabet R such that
m(vr)‘+1 = r. Each vr may or may not exist. In the latter
case, the whole list at level ‘ will be traversed. The node w

such that m(w)‘+1 = m(u)‘+1 is u’s right neighbour at level
‘ + 1 and the rest are used to add u as conjugate in p�1 � 1
lists.

Let Xr be a random variable counting the number of
steps required to find a node vr such that m(v)‘+1 = r,
for r 2 R. Then, the number of messages and hops
needed for u to find the p�1 nodes is denoted by the
variable X ¼ max

r2R
X r where {Xr} are not independent.

However, as they are geometric random variables with
E[Xr] = p�1, an upper bound on E[X] is obtained as
jRjp�1 = p�2. h
Proof of Lemma 4. Each random variable C‘, defined as
the number of conjugates accessed by the range search
operation at level ‘ P 1, is dependent on the number of
nodes accessed by the range query in the immediate lower
level. Let N‘ be a random variable denoting the number of
nodes accessed by the range query at level ‘.

In order to determine M’s value, the two sequences of
random variables {N‘}‘P0 and {C‘}‘P0 must be analysed.
With that objective, the levels of the STG are considered in
a bottom-up fashion. In the bottom level, the range query
accesses r nodes (i.e., N0 = r) and no conjugate nodes
(C0 = 0).

At the first level, N1 and C1 are the cardinality of two
random subsets of N0: R1 and R1. The intuition is that as
there is a probability p that each of the nodes appears in the
next level as a node and 1 � p as a conjugate node. Then,
the expected number of C1 is (1 � p)r. In the case of N1, it
may happen that the rightmost node, say vr, among the r

nodes at the bottom level is a conjugate node. In this case,
an extra node in the first level (not included in the r nodes
in the result) is accessed by the range search operation.
Consequently, one node is added to N1 regardless of vr

appearing as a node in level 1 or not. The expected number
of N1 is p(r � 1) + 1.

The preceding reasoning is formalised by considering an
indicator random variable Ii for each i, 1 6 i 6 r, indicating
if vi appears as a node at level 1 or not:

I i ¼
1; vi 2 fnodes accessed by the range query in level 1g
0; otherwise

�

whose expected value is E[Ii] = 0Pr[Ii = 0] + 1 Pr[Ii = 1] =
Pr[Ii = 1] = p.
Then, the size N1 of the random subset R1 is equal to
N1 ¼

Pr�1
i¼1 I i þ 1.

This results from considering that Ii counts if each of the
first r � 1 nodes appears as a node at level 1 and summing
one unit regardless of the rightmost node appearing as a
node or a conjugate (because an extra node will be used in
that case).

Consequently, the expected value is E½N1� ¼
E½
Pr�1

i¼1 I iþ1� ¼
Pr�1

i¼1 E½I i�þ1¼
Pr�1

i¼1 pþ1¼ðr�1Þpþ1.

In the case of the number of conjugate nodes, it follows
that C1 ¼

Pr
i¼1ð1� I iÞ and then the expected value is

E½C1� ¼ E½
Pr

i¼1ð1� I iÞ� ¼ rð1� pÞ.
The subsequent values for N‘ and C‘, with ‘ P 2,

depend on N‘�1. It is important to note that N‘ and C‘

represent the size of a random subset of a set that is also
random. Thus, the same reasoning as before cannot be
applied. First, N2 and C2 values are considered.

Using the conditional expectation E½X � ¼
P

yE½X jY ¼
y�Pr½Y ¼ y�, it results

E½N 2� ¼
Xr

k¼0

E½N 2jN 1 ¼ k�Pr½N 1 ¼ k�

¼
Xr

k¼0

½pðk � 1Þ þ 1�Pr½N 1 ¼ k�

¼ p
Xr

k¼0

kPr½N 1 ¼ k� þ ð1� pÞ
Xr

k¼0

Pr½N 1 ¼ k�

¼ pE½N 1� þ ð1� pÞ1
¼ p2ðr � 1Þ þ 1

E½C2� ¼
Xr

k¼0

E½C2jN 1 ¼ k�Pr½N 1 ¼ k�

¼
Xr

k¼0

kð1� pÞPr½N 1 ¼ k�

¼ ð1� pÞE½N 1� ¼ ð1� pÞ½ðr � 1Þp þ 1�

Following the same reasoning, and by induction, it follows
that the expected number of nodes accessed by the range
search operation at level ‘ is

E½N ‘� ¼ pðE½N ‘�1� � 1Þ þ 1 ðA:1Þ
Thus, it can be proved by induction that

E½N 0� ¼ r ðA:2Þ
E½N ‘� ¼ pðE½N ‘�1� � 1Þ þ 1 ðA:3Þ

implies E[N‘] = p‘(r � 1) + 1.
The expected number of conjugates accessed by the

range search operation at level ‘ is such that

E½C‘� ¼ ð1� pÞE½N ‘�1� ðA:4Þ
Therefore, E[C‘] = (1 � p)[p‘�1(r�1) + 1]. h

Proof of Lemma 5. First, an upper bound on the first sum-
mation is found:

372 A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374
Xdlog1=pne

‘¼1

E½C‘� ¼
Xdlog1=pne

‘¼1

½ð1�pÞðp‘�1ðr�1Þþ1Þ� ðA:5Þ

¼
Xdlog1=pne

‘¼1

½ð1�pÞp‘�1ðr�1Þþð1�pÞ� ðA:6Þ

¼ ð1�pÞðr�1Þ
p

Xdlog1=pne

‘¼1

p‘þð1�pÞ
Xdlog1=pne

‘¼1

1 ðA:7Þ

Recalling the formula for the sum of a geometric sequencePn
i¼0ci ¼ cnþ1�1

c�1
and for the sum index starting in 1,Pn

i¼1ci ¼ cðcn�1Þ
c�1

, it results

Xdlog1=pne

‘¼1

E½C‘� ¼
ð1�pÞðr�1Þ

p
pðpdlog1=pne �1Þ
ðp�1Þ þdlog1=pneð1�pÞ ðA:8Þ

¼ ðr�1Þð1�pdlog1=pneÞþdlog1=pneð1�pÞ ðA:9Þ

And as pdlog1=pne P plog1=pn ¼ 1
n, it results that 1� pdlog1=pne

6

1� 1
n

Xdlog1=pne

‘¼1

E½C‘�6 ðr� 1Þ 1� 1

n

� �
þdlog1=pneð1� pÞ ðA:10Þ

¼ ð1� pÞdlog1=pneþ ðr� 1Þ 1� 1

n

� �
ðA:11Þ

Considering

dlog1=pne 6 blog1=pnc þ 1 6 log1=pnþ 1 ðA:12Þ

it follows that Ø log1/pnø = O(log1/p n).
Additionally, as lim

n!1
1
n ¼ 0, it results ðr � 1Þð1� 1

nÞ
¼ OðrÞ.

The conclusion is that the first summation
Pdlog1=pne

‘¼1

E½C‘� ¼ Oðlog1=pnþ rÞ.
Next, a bound on the second summation

E½
PH

‘¼dlog neþ1Ci� is found.

The summation is non-zero if and only if
H P Ølognø + 1. Since H is random the lemma on the
conditional expected value of the summation given the
value of H is used.

Let IH be a random variable whose value is equal to

IH ¼
1; ifH P dlog ne þ 1
1; ifH 6 dlog ne

�

Then,

E
XH

‘¼dlogneþ1

C‘

" #
¼ E

XH

‘¼dlogneþ1

C‘jIH ¼ 1

" #
Pr½IH ¼ 1� ðA:13Þ

þE
XH

‘¼dlogneþ1

C‘jIH ¼ 0

" #
Pr½IH ¼ 0� ðA:14Þ

If IH = 0, i.e. H 6 Ølognø, the summation is zero. More-
over, Pr[IH = 1] 6 1. Incorporating these facts into the
equation

E
XH

‘¼dlog neþ1

C‘

" #
6 E

XH

‘¼dlog neþ1

C‘jIH ¼ 1

" #
ðA:15Þ
And considering that for any ‘, C‘ 6 r, it follows that

E
XH

‘¼dlogneþ1

C‘jIH ¼ 1

" #
6 E ðH �dlog1=pneÞr

h i
ðA:16Þ

¼ rðE½H � � dlog1=pneÞ ðA:17Þ
6 rðdlog1=pneþ 1�dlog1=pneÞ ðA:18Þ
6 r � ðA:19Þ

Proof of Lemma 6. Let L‘, ‘ P 1 be an indicator random
variable such that

L‘ ¼
0; C‘ P 1
1; C‘ < 1

�

whose expected value is

E½L‘� ¼ 0Pr½C‘ P 1� þ 1Pr½C‘ < 1� ¼ Pr½C‘ < 1� ðA:20Þ

Then, L ¼
PH

‘¼1L‘ and its expected value is E½L� ¼
Pdlog1=pre

‘¼1

E½L‘� þ E½
PH

‘¼dlog1=preþ1L‘�. The next step is to bound each of

the summations.
Using the expected value of L‘ from Eq. (A.20) and the

fact that Pr[C‘ < 1] 6 1, it follows that:

Xdlog1=pre

‘¼1

E½L‘� ¼
Xdlog1=pre

‘¼1

Pr½C‘ < 1� 6
Xdlog1=pre

‘¼1

1 ¼ dlogq=pre

ðA:21Þ
With respect to the second summation, the conditional
expectation is applied using the indicator random variable
IH as in the proof of the number of messages.

E
XH

‘¼dlog1=preþ1

L‘

2
4

3
5¼E

XH

‘¼dlog1=preþ1

L‘jIH ¼ 1

2
4

3
5Pr½IH ¼ 1� ðA:22Þ

þE
XH

‘¼dlog1=preþ1

L‘jIH ¼ 1

2
4

3
5Pr½IH ¼ 0� ðA:23Þ

E
XH

‘¼dlog1=preþ1

L‘

2
4

3
56E

XH

‘¼dlog1=preþ1

L‘jIH ¼ 1

2
4

3
5 ðA:24Þ

6E½H �dlog1=pre�¼E½H ��E½dlog1=pre� ðA:25Þ

6 dlog1=pneþ 1

1�p
þdlog1=pre ðA:26Þ

This means that the second summation is O(log1/pn + log1/

pr) and E[L] = O(log1/pn + log1/pr). h
References

[1] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan,
Chord: a scalable peer-to-peer lookup service for internet applications,
in: Proceedings of the ACM SIGCOMM 2001 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communication, ACM, San Diego, CA, USA, 2001, pp. 149–160.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker, A
scalable content-addressable network, in: Proceedings of the ACM
SIGCOMM 2001 Conference on Applications, Technologies,

A. González-Beltrán et al. / Computer Communications 31 (2008) 358–374 373
Architectures, and Protocols for Computer Communication, ACM
Press, San Diego, CA, USA, 2001, pp. 161–172.

[3] A. Rowstron, P. Druschel, Pastry: scalable, decentralized object
location and routing for large-scale peer-to-peer systems, in: IFIP/
ACM International Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, 2001, pp. 329–350.

[4] B.Y. Zhao, L. Huang, J. Stribling, S. Rhea, A.D. Joseph, J.D.
Kubiatowicz, Tapestry: A Resilient Global-scale Overlay for Service
Deployment, IEEE Journal on Selected Areas in Communications 22
(1) (2004) 41–53.

[5] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, R.
Panigrahy, Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web, in:
Proceedings of the Twenty-Ninth ACM Symposium on Theory of
Computing (STOC), El Paso, TX, USA, 1997, pp. 654–663.

[6] M. Harren, J. Hellerstein, R. Huebsch, B.T. Loo, S. Shenker, I.
Stoica, Complex Queries in DHT-based Peer-to-Peer Networks, in:
Proceedings of the First International Workshop on P2P Systems
(IPTPS’02), Springer, 2002, pp. 242–259.

[7] N. Daswani, H. Garcia-Molina, B. Yang, Open problems in data-
sharing peer-to-peer systems, in: Proceedings of the Ninth Interna-
tional Conference on Database Theory, Springer, 2003, pp. 1–15.

[8] I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid:
Enabling Scalable Virtual Organizations, International Journal of
High Performance Computing Applications 15 (3) (2001) 200–222.

[9] A. Andrzejak, Z. Xu, Scalable, efficient range queries for grid
information services, in: Proceedings of IEEE International Confer-
ence on Peer-to-Peer Computing, P2P 2002, pp. 33–40.

[10] Y. Shu, B.C. Ooi, K.-L. Tan, A.Y. Zhou, Supporting multi-
dimensional range queries in peer-to-peer systems, in: Proceedings
of the Fifth International Conference on Peer-to-Peer Computing,
2005, pp. 173–180.

[11] I. Abraham, J. Aspnes, J. Yuan, Skip B-Trees, in: Proceedings of the
9th International Conference on Principles of Distributed Systems
(OPODIS), Pisa, Italy, 2005, pp. 284–295.

[12] A. Gupta, D. Agrawal, A.E. Abbadi, Approximate range selection
queries in peer-to-peer systems, in: Proceedings of the First Biennal
Conference on Innovative Data Systems Research (CIDR), 2003, pp.
141–151.

[13] T. Pitoura, N. Ntarmos, P. Triantafillou, Replication, load balancing
and efficient range query processing in DHTs, in: Proceedings of the
10th International Conference on Extending Database Technology
(EDBT), LNCS, 2006, pp. 131–148.

[14] A. Crainiceanu, P. Linga, J. Gehrke, J. Shanmugasundaram, Query-
ing peer-to-peer networks using P-Trees, in: Proceedings of the
Seventh International Workshop on the Web and Databases (WebDB
2004), Paris, France, 2004, pp. 25–30.

[15] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S.
Shenker, J. Hellerstein, A case study in building layered DHT
applications, in: Proceedings of the ACM SIGCOMM 2005 Confer-
ence on Applications, Technologies, Architectures, and Protocols for
Computer Communications, 2005, pp. 97–108.

[16] K. Aberer, P-Grid: a self-organizing access structure for p2p
information systems, in: Proceedings of the 6th Conference on
Cooperative Information Systems (CoopIS 2001), Trento, Italy, 2001,
pp. 179–194.

[17] J. Aspnes, G. Shah, Skip Graphs, in: Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, Baltimore, MD, USA,
2003, pp. 384–393.

[18] N.J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, A. Wolman,
SkipNet: A Scalable Overlay Network with Practical Locality
Properties, in: Proceedings of Fourth USENIX Symposium on
Internet Technologies and Systems (USITS’03), Seattle, WA, USA,
2003, pp. 113–126.

[19] H.V. Jagadish, B.C. Ooi, Q.H. Vu, BATON: A Balanced Tree
Structure for Peer-to-Peer Networks, in: Proceedings of the 31st
International Conference on Very Large Data Bases (VLDB),
Trondheim, Norway, 2005, pp. 661–672.
[20] H.V. Jagadish, B.C. Ooig, K.-L. Tan, Q.H. Vu, R. Zhang, Speeding up
search in peer-to-peer networks with a multi-way tree structure, in:
Proceedings of SIGMOD 2006, Chicago, Illinois, USA, 2006, pp. 1–12.

[21] W. Pugh, Skip Lists: A probabilistic alternative to balanced trees,
Communications of the ACM 33 (6) (1990) 668–676.

[22] X. Messeguer, Skip Trees: an alternative data structure to Skip Lists
in a concurrent approach, Informatique Théorique et Applications 31
(3) (1997) 251–269.

[23] A. González-Beltrán, P. Sage, P. Milligan, Skip Tree Graph: a
distributed and balanced search tree for peer-to-peer networks, in:
Proceedings of the IEEE International Conference on Communica-
tions, Glasgow, UK, 2007.

[24] O.D. Sahin, A. Gupta, D. Agrawal, A.E. Abbadi, A peer-to-peer
framework for caching range queries, in: International Conference on
Data Engineering (ICDE), 2004, pp. 165–176.

[25] A. Datta, M. Hauswirth, R. John, R. Schmidt, K. Aberer, Range
queries in trie-structured overlays, in: Proceedings of the Fifth
International Conference on Peer-to-Peer Computing, 2005, pp. 57–66.

[26] J. Aspnes, J. Kirsch, A. Krishnamurthy, Load balancing and locality
in range-queriable data structures, in: Proceedings of the 23rd Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC 2004), St. John’s, Newfoundland, Canada, 2004,
pp. 115–124.

[27] T. Papadakis, Skip lists and probabilistic analysis of algorithms,
Ph.D. thesis, University of Waterloo, 1993.

[28] P. Linga, A. Crainiceanu, J. Gehrke, J. Shanmugasundaram, Guar-
anteeing correctness and availabitlity in P2P range indices, in:
Proceedings of the ACM SIGMOD International Conference on
Management of Data, Baltimore, Maryland, USA, 2005, pp. 323–334.

[29] D. Li, J. Cao, X. Lu, K.C.C. Chan, B. Wang, J. Su, H. va Leong,
A.T.S. Chan, Delay-bounded range queries in DHT-based peer-to-
peer systems, in: Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems (ICDCS’06), 2006,
p. 64.

Alejandra González-Beltrán received the degree of
Licentiate in Computer Science (Honours) from
Universidad Nacional de Rosario, Argentina.
She is currently working towards a Ph.D. in
Computer Science at the School of Electronics,
Electrical Engineering and Computer Science at
Queen’s University Belfast, Northern Ireland,
United Kingdom. Her research interests include
distributed systems and software engineering. In
particular, her current work is in the area of peer-
to-peer networks and grid computing.
Dr Peter Milligan received the degrees of BSc

Computer Science (Honours) and Ph.D. from the
Queen’s University of Belfast. Dr Milligan is a
member of the School of Electronics, Electrical
Engineering and Computer Science where he
holds a senior lectureship and is chair of the
School’s Postgraduate Research Committee. Dr
Milligan has worked in the field of High Perfor-
mance and Distributed Computing for over 25
years with special interest in the development of
environments for the automatic generation of

code for parallel architectures. Current interest is focused on grid and
peer-to-peer systems with the goal of developing middleware that will

assist with, e.g., resource discovery, dynamic task/resource mapping,
information retrieval in small worlds, efficient management of large data
sets, and the relationship between regulation and trust in virtual organi-
sations. Dr Milligan is on the editorial boards of three journals and has
been a member of over 40 international programme, scientific and con-
ference committees.

er Communications 31 (2008) 358–374
Dr Paul Sage received the degrees of B.Sc.
Computer Science (Honours) and Ph.D. from the
Queens University of Belfast and is a member of
the School of Electronics, Electrical Engineering
and Computer Science where he currently holds a
lectureship. His research interests include paral-
lel, distributed and grid computing and is spe-
cifically interested in fault tolerance in unstable
computational environments, virtual execution
environments and intelligent resource aggrega-
tion. Dr Sage has served on several international

program committees and is the author of 50+ conference and journal
publications in the field.

374 A. González-Beltrán et al. / Comput

	Range queries over skip tree graphs
	Introduction
	Related work
	Skip tree graph
	Skip tree graph properties
	Exact-match search operation
	Insert operation
	Maintenance algorithm

	Algorithms for range queries
	Skip graph schemes
	Skip tree graph scheme
	Discussion
	Experimental evaluation
	Network size fixed
	Range size fixed (on average)
	Range length fixed

	Conclusions
	Acknowledgments
	 blank

	References

