
Peer-to-Peer Similarity Search based on M-Tree
Indexing

Akrivi Vlachou1?, Christos Doulkeridis1?, and Yannis Kotidis2

1Dept.of Computer and Information Science, Norwegian University of Science and Technology
2Dept.of Informatics, Athens University of Economics and Business

{vlachou,cdoulk}@idi.ntnu.no, kotidis@aueb.gr

Abstract. Similarity search in metric spaces has several important applications
both in centralized and distributed environments. In centralized applications, such
as similarity-based image retrieval, usually a server indexes its data with a state-
of-the-art centralized metric indexing technique, such as the M-Tree. In this pa-
per, we propose a framework for distributed similarity search, where each par-
ticipating peer stores its own data autonomously, under the assumption that data
is indexed locally by peers using M-Trees. In order to support scalability and
efficiency of search, we adopt a super-peer architecture, where super-peers are
responsible for query routing. We propose the construction of metric routing in-
dices suitable for distributed similarity search in metric spaces. We study the
performance of the proposed framework using both synthetic and real data.

1 Introduction

Similarity search in metric spaces has received significant attention in centralized set-
tings [1, 6], but also recently in decentralized environments [3, 5, 8]. A prominent appli-
cation is distributed search for multimedia content, such as images, video or plain text.
Existing approaches for P2P metric-based similarity search mainly rely on a structured
P2P overlay, which is used to intentionally store objects to peers [5, 8]. The aim is to
achieve high parallelism and share the high processing cost over a set of cooperative
computers. In contrast, in this paper we focus on the scenario of autonomous peers
that store multimedia content and collaborate in order to process similarity queries over
distributed data. A P2P architecture for image retrieval was proposed in [9]. In more
details, content providers are simple peers that keep multimedia content, usually gener-
ated on their own. Each peer joins the collaborative search engine, by connecting to one
of the information brokers that act as super-peers, using the basic bootstrapping pro-
tocol. In this scenario the super-peers are responsible for the execution of the queries.
In such a distributed search engine, the objective is to find all objects that are similar
to a given query object, such as a digital image or a text document. Objects are repre-
sented in a high dimensional feature space and a metric distance function defines the
similarity of two objects. One of the most commonly used centralized indexing tech-
niques for searching in metric spaces is the M-Tree [2] that consists of a hierarchy of
hyper-spheres.
? This work was carried out during the tenure of an ERCIM ”Alain Bensoussan” Fellowship

Programme.

In this paper, we propose a distributed search mechanism that relies on a super-peer
architecture, assuming that cooperative peers store and index their data using an M-Tree
in an autonomous manner. Each peer connects to a super-peer and publishes the set of
hyper-spheres stored at the root of its M-Tree to its super-peer, as a summarization
of the stored data. The super-peers store the collected hyper-spheres using an M-Tree
index, in order to direct queries only to relevant peers efficiently, thus establishing a
peer selection mechanism. Capitalizing on their local metric index structures, super-
peers exchange summary information to construct metric-based routing indices, which
improve the performance of query routing significantly. Then, given a range query, this
super-peer selection mechanism enables efficient query routing only to that subset of
super-peers that are responsible for peers with relevant query results.

Following the same spirit, in SIMPEER [3], P2P metric-based indexing is supported
using the iDistance [7] technique. An extension of SIMPEER for recall-based range
queries is presented in [4]. In contrast, this paper provides an alternative technique for
similarity search in metric spaces, based on a popular metric index (M-Tree) for data
access both on peers and super-peers.

2 Preliminaries

We assume an unstructured P2P network that consists of Np peers. Some peers have
special roles, due to their enhanced features, such as availability, stability, storage ca-
pability and bandwidth capacity. These peers are called super-peers SPi (i = 1..Nsp),
and they constitute only a small fraction of the peers in the network, i.e. Nsp << Np.
Peers that join the network connect to one of the super-peers directly. Each super-peer
maintains links to peers, based on the value of its degree parameter DEGp, which is
the number of peers that it is connected to. In addition, a super-peer is connected to a
limited set of at most DEGsp other super-peers (DEGsp < DEGp). In our system,
peers that join the network autonomously store their own data. Each peer Pi holds ni

d-dimensional points, denoted as a set Si (1 ≤ i ≤ Np). Assuming horizontal data dis-
tribution to the Np peers, the size of the complete set of points is n =

∑Np

i=1 ni and the
dataset S is the union of all peers’ datasets Si (S = ∪Si). Each peer maintains its own
data objects, while the d-dimensional points are features extracted from the objects.

Similarity search in metric spaces focuses on supporting queries that retrieve objects
similar to a query point, when a metric distance function dist measures the objects’
(dis)similarity. More formally, a metric space is a pair M = (∆, dist), where ∆ is a
domain of feature values and dist is a distance function with the following properties:
1) dist(p, q) > 0, q 6= p and dist(p, p) = 0 (non negativity), 2) dist(p, q) = dist(q, p)
(symmetry), and 3) dist(p, q) ≤ dist(p, o) + dist(o, q) (triangle inequality). Similarity
search in metric spaces involves two different types of queries, namely range and near-
est neighbor queries. In this paper, we focus on range queries since k-NN queries can
be transformed to range queries, if the distance of the k-th nearest neighbor is known.
Radius estimation techniques for distributed nearest neighbor search have been studied
in [3].

The M-Tree [2] is a distance-based indexing method, suitable for disk-based im-
plementation. An M-Tree can be seen as a hierarchy of metric regions, also known

as hyper-spheres or balls. More precisely, all the objects being indexed are referenced
in the leaf nodes, while an entry in a non-leaf node stores a pointer to a node at the
next lower level along with summary information about the objects in the subtree be-
ing pointed at. The objects in the internal nodes are database objects that are chosen
(during the insertion) as representative points. For a non-leaf node N , the entries are
quad-tuples {(p, r(p)), D, T}, where p is an representative object, r(p) is the corre-
sponding covering radius, D is a distance value, and T is a reference to a child node
of N . The basic property is that for all objects o in the subtree rooted at T , we have
dist(p, o) ≤ r(p). For each non-root node N , let object p′ be the parent object, i.e.
the object in the entry pointing to N . The distance value stored in D is the distance
dist(p, p′) between p and the parent object p′ of N . These parent distances allow more
efficient pruning during search than would otherwise be possible. Similarly, for a leaf
node N , the entries consist of pairs of the form (o,D), where o is a data object and D
is the distance between o and the parent object of N .

3 Metric-based Routing Indices

In our framework, each peer Pi that connects to a super-peer SPj publishes a summary
of its data, in order to make its content searchable by other peers. In our framework,
we take advantage of the existing M-Tree index and each peer Pi publishes to its re-
sponsible super-peer SPj , the hyper-spheres contained in the root of the M-Tree, as a
summary of the stored data. This set of hyper-spheres covers all data objects stored at
Pi, thus SPj is able to determine if Pi stores data relevant to a potential range query, by
searching for hyper-spheres that overlap with the query. SPj needs to support efficient
retrieval of peer hyper-spheres, and consequently selection of the peers that store rele-
vant data to a similarity query. For this purpose, SPj inserts the collected hyper-spheres
into a local M-Tree, also mentioned as super-peer M-Tree.

The remaining challenge is to construct routing indices for processing similarity
queries over the entire super-peer network. For this purpose, each super-peer maintains
an M-Tree, also called routing M-Tree, to store hyper-spheres (collected from other
super-peers) that describe the data accessible through each neighbor in the super-peer
topology. A super-peer SPi sends the descriptions of the hyper-spheres contained in
the root of the super-peer M-Tree to its neighbors. This message has the following for-
mat: (msgId, {(pi, r(pi))}), where msgId is an identifier that is unique for each SPi,
and {(pi, r(pi))} represents the set of SPi’s hyper-spheres corresponding to the root of
SPi’s M-Tree. Each hyper-sphere is defined by a representative object pi and the cor-
responding covering radius r(pi). Each neighboring super-peer SPj that receives a set
of hyper-spheres for the first time performs two operations. First, SPj stores locally the
hyper-spheres in the routing M-Tree and attaches to them the identifier of the neighbor-
ing super-peer SPi, from which the hyper-spheres were received. Second, SPj prop-
agates the hyper-spheres to all its neighbors, except for the one it received them from
(SPi). Any super-peer SPk that is contacted by SPj performs the same operations.
However, notice that SPk stores in its routing M-Tree the identifier of its neighbor SPj

together with the hyper-spheres, and not the identifier of the owner super-peer SPi.

This construction protocol works also for network topologies that contain cycles.
Since hyper-spheres of any super-peer SPi are accompanied by a unique msgId, each
recipient super-peer SPk can perform duplicate elimination, in case SPi’s hyper-spheres
are also received from a different network path. Notice that the granularity of the rout-
ing information stored at any super-peer is at the level of its neighbors O(DEGsp) and
not at the level of the network O(Nsp). Therefore, the constructed routing indices are
scalable with network size.

We now elaborate more on the internal structure of nodes in the routing M-Tree.
For internal nodes, the routing M-Tree entry is {(p, r(p)), D, T}, where (p, r(p)) is
the representative object p and its covering radius r(p), D is the distance to the parent
object and T is a reference to a subtree. For leaf nodes, the routing M-Tree entry is
{(p, r(p), SP (p)), D}, where (p, r(p), SP (p)) consists of the representative object p,
its covering radius r(p), and SP (p) is the neighbor super-peer responsible for the hyper-
sphere, whereas D is the distance to the parent object.

4 Metric-based Similarity Search

Our framework creates routing M-Trees on each super-peer and supports efficient query
processing, in terms of local computation costs, communication costs and overall re-
sponse time. A query may be posed by any peer Pq and is propagated to the associated
super-peer SPq , which becomes responsible for local query processing and query rout-
ing, and finally returns the result set to Pq .

4.1 Super-peer Local Query Processing

Given a range query R(q, r), query processing at SPi is performed by exploiting the
summary information stored in the super-peer M-Tree. The aim is to retrieve the subset
of local peers that need to be contacted. The peers that store data enclosed in the range
query R(q, r) have to be contacted, since these results are necessary to be retrieved and
reported back to SPq, in order to form the exact and complete result set. Therefore,
SPi uses its super-peer M-Tree to identify hyper-spheres of peers that intersect with the
query. Recall that the retrieved hyper-spheres contain the peer identifier of the owner
peer. Thus, the subset of peers that can contribute to the query result is determined
and the range query is forwarded to the corresponding peers. This enables efficient
similarity search over all data stored by peers associated to SPi, since the query is
posed only to peers having data that may appear in the result set, essentially forming
an effective peer selection mechanism at a super-peer. Each recipient peer processes the
query using its local M-Tree, in the traditional way of processing range queries in M-
Trees. Consequently, each peer reports its results to SPi, which in turn is responsible
for returning the results to SPq .

4.2 Query Routing

After having described the local query processing on each super-peer, we proceed to
present the details on query routing at super-peer level. Henceforth, we assume that each

 0

 200

 400

 600

 800

 1000

 8 16 24 32

N
um

be
r

of
 M

es
sa

ge
s

Dimensionality (d)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(a) Number of messages

 0

 50

 100

 150

 200

 8 16 24 32

N
um

be
r

of
 C

on
ta

ct
ed

 P
ee

rs

Dimensionality (d)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(b) Contacted peers

 0

 50

 100

 150

 200

 8 16 24 32

N
um

be
r

of
 C

on
ta

ct
ed

 S
up

er
-P

ee
rs

Dimensionality (d)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(c) Contacted super-peers

Fig. 1. Scalability with dimensionality for clustered dataset.

super-peer that receives the query also performs local query processing, as described
above. Given a range query R(q, r), the querying super-peer SPq needs to selectively
propagate the query to a fraction of its neighboring super-peers and each intermediate
super-peer SPi that receives the query repeats the same process. The routing algorithm
on any super-peer SPi is based on its routing M-Tree. When a super-peer SPr receives
a range query R(q, r), SPr uses the routing M-Tree to efficiently retrieve all hyper-
spheres that have an overlap with the query. Then, the set of neighbor super-peers is
determined and the query is forwarded to them only. This forms the super-peer selection
mechanism that enables routing of queries at super-peer level. Afterwards, the relevant
data is collected and sent back to the neighboring super-peer from which the query was
received. Finally, SPq collects all results of its neighboring super-peers and sends the
result set back to the peer Pq that posed the query.

5 Experimental Evaluation

In order to evaluate the performance of our approach, we implemented a simulator pro-
totype in Java. For the P2P network topology, we used the GT-ITM topology generator1

to create well-connected random graphs of Nsp peers with a user-specified average con-
nectivity (DEGsp). We used synthetic data collections, in order to study the scalability
of our approach. The uniform and clustered datasets are generated as described in [3]
and they are horizontally partitioned evenly among the peers by keeping n/Np=1000
in all setups. Additionally, we employed a real data collection (VEC), which consists
of 1M 45-dimensional vectors of color image features. In all cases, we generate 100
queries uniformly distributed and we show the average values. For each query, a peer
initiator is randomly selected. Although different metric distance functions can be sup-
ported, in this set of experiments we used the Euclidean distance function. We measure
the: (i) number of messages, (ii) volume of transferred data, (iii) number of transferred
objects, (iv) maximum hop count, (v) number of contacted peers, (vi) number of con-
tacted super-peers, and (vii) response time.

Initially, we focus on the case of clustered dataset. We use a default setup of:
Nsp=200, Np=4000, DEGsp=4, n=4M, and the selectivity of range queries ranges
from 50 to 200 objects. We study the effect of increasing dimensionality d to our ap-
proach. In Fig. 1(a), the number of messages required for searching increases when

1 Available at: http://www.cc.gatech.edu/projects/gtitm/

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000

M
ax

im
um

 H
op

 C
ou

nt

Number of Super-Peers (Nsp)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(a) Scalability with Nsp

 0

 50

 100

 150

 200

 250

 300

 4000 8000 12000 16000 20000

N
um

be
r

of
 C

on
ta

ct
ed

 P
ee

rs

Number of Peers (Np)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(b) Scalability with Np

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 8 16 24 32

V
ol

um
e

(B
yt

es
)

Dimensionality (d)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(c) Uniform data

Fig. 2. Scalability for clustered and uniform dataset.

the dimensionality increases. Then, in Fig. 1(b) and 1(c), we measure the number of
contacted peers and super-peers respectively. Although the number of super-peers that
process the query is between 120 and 150, the number of peers is much lower, ranging
from 60 to 100 peers.

In the following, we study the scalability of our approach with respect to the network
parameters, by fixing d=8. For this purpose, we increase the number of super-peers Nsp

(Fig. 2(a)) and peers Np (Fig. 2(b)). We observe that the maximum hop count increases
only slightly, always remaining below 12, when the number of super-peers is increased
by a factor of 5. On the other hand, in Fig. 2(b), the increasing number of peers only
affects the number of contacted peers, however the increase is only marginal compared
to the network size.

In Fig. 2(c), we examine the case of uniform data. Clearly, this is a hard case for
our approach, as a query may in worst case have to contact all peers, in order to retrieve
the correct results. This actually occurs in our experiments, causing also a large number
of messages to be sent. We show the volume of transferred data in Fig. 2(c). Compared
to the case of the clustered dataset, the total volume transferred increases by a factor of
3-4. However, when the maximum hop count is measured, this value is small (equal to
6, for d=8-32), even smaller than in the case of clustered dataset, since the probability
of finding the results in smaller distance increases.

In addition, we evaluate our approach using the real dataset (VEC). We used a net-
work of 200 super-peers and 1000 peers, thus each peer stores 1000 data points. In
Fig. 3(a), the number of contacted peers and super-peers are depicted for increasing
query selectivity from 50 to 200 points. The results are comparable to the case of the
clustered dataset, but slightly worse, as the VEC dataset is not clustered. However, no-
tice that the absolute numbers are comparable to the results obtained using the synthetic
dataset, which is a strong argument in favor of the feasibility of our approach.

Finally, we study the comparative performance of the proposed framework to SIM-
PEER [3]. We performed a set of experiments using both approaches, assuming a mod-
est 4KB/sec as network transfer rate. In the case of the uniform dataset, our framework
outperforms SIMPEER in terms of response time, as depicted in Fig. 3(b). In contrast,
when a clustered dataset is used, SIMPEER is marginally better than our framework,
as shown in Fig. 3(c). For the clustered dataset, SIMPEER is able to accurately dis-
cover the underlying clusters in the data, resulting in better performance. When the data
distribution is uniform, our framework based on M-Trees is more efficient than SIM-

 0

 50

 100

 150

 200

 50 100 150 200

C
on

ta
ct

ed
 P

ee
rs

/S
up

er
-P

ee
rs

Query selectivity

SP
P

(a) Real data

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 100 150 200

R
es

po
ns

e
T

im
e

(s
ec

)

Query Selectivity

M-Tree
SIMPEER

(b) Uniform data

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200

R
es

po
ns

e
T

im
e

(s
ec

)

Query Selectivity

M-Tree
SIMPEER

(c) Clustered data

Fig. 3. Real data and comparison to SIMPEER in terms of response time.

PEER, since the performance of our metric-based routing indices is not influenced by
the absence of a clustering structure in the data.

6 Conclusions

Similarity search in metric spaces has several applications, such as image retrieval. In
such applications that require similarity search in metric spaces, usually a server indexes
its data with a state-of-the-art centralized metric indexing technique, such as the M-
Tree. In this paper, we study the challenging problem of supporting efficient similarity
queries over distributed data in a P2P system. The experimental results show that our
approach performs efficiently in all cases, while the performance of our framework
scales with all network and dataset parameters.

References

1. E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Searching in metric spaces.
ACM Computing Surveys (CSUR), 33(3):273–321, 2001.

2. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search
in metric spaces. In Proc. of VLDB, pages 426–435, 1997.

3. C. Doulkeridis, A. Vlachou, Y. Kotidis, and M. Vazirgiannis. Peer-to-peer similarity search in
metric spaces. In Proc. of VLDB, pages 986–997, 2007.

4. C. Doulkeridis, A. Vlachou, Y. Kotidis, and M. Vazirgiannis. Efficient range query process-
ing in metric spaces over highly distributed data. Distributed and Parallel Databases, 26(2-
3):155–180, 2009.

5. F. Falchi, C. Gennaro, and P. Zezula. A content-addressable network for similarity search in
metric spaces. In Proc. of DBISP2P, pages 126–137, 2005.

6. G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces. ACM Trans-
actions on Database Systems (TODS), 28(4):517–580, 2003.

7. H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance: An adaptive B+-tree
based indexing method for nearest neighbor search. ACM Transactions on Database Systems
(TODS), 30(2):364–397, June 2005.

8. D. Novak and P. Zezula. M-Chord: a scalable distributed similarity search structure. In Proc.
of InfoScale, page 19, 2006.

9. A. Vlachou, C. Doulkeridis, D. Mavroeidis, and M. Vazirgiannis. Designing a peer-to-peer
architecture for distributed image retrieval. In Adaptive Multimedia Retrieval, pages 182–195,
2007.

