
Bloom Filters for Efficient Coupling between
Tables of a Database

Eirini Chioti1, Elias Dritsas1, Andreas Kanavos1, Xenophon Liapakis3,
Spyros Sioutas2, and Athanasios Tsakalidis1

1. Computer Engineering and Informatics Department
University of Patras, Patras, Greece

eldritsas@gmail.com

{chiotie,kanavos,tsak}@ceid.upatras.gr

2. Department of Informatics, Ionian University, Corfu, Greece
sioutas@ionio.gr

3. Interamerican, Greece
liapakisx@interamerican.gr

Abstract. Nowadays, digital data are the most valuable asset of al-
most every organization. Database management systems are considered
as storing systems for efficient retrieval and processing of digital data.
However, effective operation, in terms of data access speed and relational
database is limited, as its size increases significantly [6]. Bloom filter is a
special data structure with finite storage requirements and rapid control
of an object membership to a dataset. It is worth mentioning that the
Bloom filter structure has been proposed with a view to constructively
increase data access in relational databases. Since the characteristics of
a Bloom filter are consistent with the requirements of a fast data access
structure, we examine the possibility of using it in order to increase the
SQL query execution speed in a database. In the context of this research,
a database in a RDBMS SQL Server that includes big data tables is im-
plemented and in following the performance enhancement, using Bloom
filters, in terms of execution time on different categories of SQL queries,
is examined. We experimentally proved the time effectiveness of Bloom
filter structure in relational databases when dealing with large scale data.

Keywords: Databases, Bloom Filters, RDBMS, SQL Queries Optimiza-
tion

1 Introduction

The business data, associated with all of the business activities, are typically
stored in relational databases in order to manage them using the SQL lan-
guage, and more specifically perform SQL queries to the database. The relational
databases are particularly effective in their operation. However, their efficiency
is limited if they store “big data” with complex correlations [14]. An SQL query
can be very expensive in execution cost, and concretely in time and access to



2 Chioti, Dritsas, Kanavos, Liapakis, Sioutas and Tsakalidis

resources, if the execution plan is not optimized. Possible delays in the accom-
plishment of SQL queries may have impact on application performance using
relational databases, thus reducing business performance.

The main way to improve the performance of an SQL query is to reduce the
number of required operations/calculations that should be performed during the
execution of the corresponding query. However, further reduction of the required
commands in an SQL query is not always possible and also requires additional
techniques for SQL query performance optimization in a database [5]. In [11],
authors investigate this specific problem and recommend the use of IN, EXITS,
EQUAL and OPERATOR-TOP along with indexes. Moreover, the bloom filter
structure is used in databases such as Google Big Data or Apache HBase in
order to decrease searching (in disk) for non-existent records, optimizing in this
way the performance of executed SQL queries [3].

The traditional database systems store data in the form of a table with
records. Each record corresponds to a different entity object that holds informa-
tion in a relational table. The relative organization of the databases is effective
when there are performing queries on tables with a small number of records.
However, as the number of records increases, e.g. hundreds of thousands or mil-
lions of records, SQL queries usually search in a much larger number of records
in order to locate and access a small number of records or fields [9].

The best way to improve the execution speed of SQL queries in a database is
the definition of indexes in fields, which are part of the search criteria of an SQL
query. When indexes are not set in a database, then the database management
system operates as a reader trying to find a word in a book by reading the
entire book. By integrating an index term at the back of a book, the reader
can complete the procedure much more quickly. The benefit of using indexes
when searching records in a table becomes greater as the number of table entries
increases 1. The role of indexes, in a database is to direct access records according
to the search criteria of the SQL query. However, when a table in a database
contains millions of records, despite the use of indexes, then the identification of
records that meet the search criteria, requires to access thousands of records of
the relational table 2. Therefore, in order to improve the efficiency of execution
speed of relational SQL queries, the, in advance, exclusion of a significant number
of records that do not meet the search criteria, would be particularly useful. To
this purpose, the implementation of Bloom filter structure is suggested; this
structure is based on records of the tables and it is further used for the exclusion
of records that do not meet the criteria of relevant SQL queries.

The purpose of this research is to examine to what extent the structure of
Bloom filter tables in relational databases can affect the performance of data
access queries for data tables with millions of records. To achieve the aim of
this survey, our contributions lie in the following bullets: (i) implementation of

1 http://odetocode.com/articles/237.aspx
2 http://dataidol.com/tonyrogerson/2013/05/09/reducing-sql-server-io-

and-access-times-using-Bloom-filters-part-2-basics-of-the-method-in-

sql-server

http://odetocode.com/articles/237.aspx
http://dataidol.com/tonyrogerson/2013/05/09/reducing-sql-server-io-and-access-times-using-Bloom-filters-part-2-basics-of-the-method-in-sql-server
http://dataidol.com/tonyrogerson/2013/05/09/reducing-sql-server-io-and-access-times-using-Bloom-filters-part-2-basics-of-the-method-in-sql-server
http://dataidol.com/tonyrogerson/2013/05/09/reducing-sql-server-io-and-access-times-using-Bloom-filters-part-2-basics-of-the-method-in-sql-server


Bloom Filters for Efficient Coupling between Tables of a Database 3

Bloom filter to a relational database, (ii) experimental evaluation of queries with
or without the support of Bloom filter and table recording of execution time of
queries and (iii) graphic visualization of results to show Bloom filter effectiveness
(in terms of integration time) in executing SQL queries on tables with millions
of records.

The rest of the paper is organized as follows: in Section 2 the properties
and basic components of Bloom filters are introduced. In Section 3, Relational
Databases and SQL framework is presented. Moreover, Section 4 presents the
evaluation experiments conducted and the results gathered. Ultimately, Section
5 presents conclusions, constraints and draws directions for future work.

2 Bloom Filters Background

2.1 Bloom Filter Elements

The Bloom filter structure, devised by Burton Howard Bloom in 1970, is used
for rapid check whether an element is present in a data set or not [1]. It also
permits checking if an item certainly does not belong to it. Although the Bloom
filters allow false positive responses, the space savings they offer outweigh any
downside [8]. A Bloom filter is composed of two parts: a set of k hash functions
and a bit vector. The number of hash functions and the length of bit vector are
chosen according to the expected number of keys to be added to the Bloom filter
and the level of acceptable error rate per case 3.

A number of important components need to be properly defined in order for
a bloom filter to operate correctly. These parameters are briefly and comprehen-
sively described in the following paragraphs.

2.1.1 Hash Functions A hash function takes as input data of any length
and returns as output an ID smaller in length and fixed in size, which can be
employed with the aim to identify elements 4.

The main features that a hash function should have, are the following:

– Return the same value at each iteration with the same data input.
– Quick execution.
– Generate output with uniform distribution in the potential range it produces.

Some of the most popular algorithms for implementing hash functions are:
SHA1 and MD5. These functions differ in safety level and hash value calculation
speed. Also, some algorithms homogeneously distribute the values generated by
the hash function, but they are impractical. In each case, the selected hash
function should satisfy the application requirements.

As for the hash functions number, the bigger this number is, then the hash
values are generated in a slower way and the binary vector fills in a faster way.

3 https://www.perl.com/pub/2004/04/08/bloom_filters.html
4 https://blog.medium.com/what-are-bloom-filters-1ec2a50c68ff

https://www.perl.com/pub/2004/04/08/bloom_filters.html
https://blog.medium.com/what-are-bloom-filters-1ec2a50c68ff


4 Chioti, Dritsas, Kanavos, Liapakis, Sioutas and Tsakalidis

Fig. 1: Bloom Filter Overview

However, this decision increases the incorrect predictions on the existence of an
object in a dataset 5. The optimal number of hash functions derives from the
following formula in [8]:

k =
m

n
ln(2) (1)

where m is the binary vector length and n the number of inserted keys
in bloom filter. When selecting the number of hash functions to be used, we
also calculate the probability of false positive predictions. The previous step is
repeated until we get an accepted value for the probability index of false positive
responses [4].

2.1.2 Binary Vectors Length The length of the binary values of a Bloom
filter vector affects the pointer value of false positive responses of the filter. The
greater the length of the binary vector values, the lower the probability of false
positive responses. Conversely, as the length of the vector is shrinked, the relative
probability is increased. Generally, a Bloom filter is considered complete when
50% values of bits in the array are equal to 1. At this point, further addition of
objects will result in the increase of false positive responses rate [10].

2.1.3 Key Insertion We initialize a Bloom filter by setting the values of
binary vector equal to 0. To insert a key into a Bloom filter, the relevant k hash
functions are originally performed and positions of the binary vector, which
corresponds to hash values, change from 0 to 1. If the relevant bit is already set
to 1, then the value of the relevant bit does not further alter 6. Each bit of the
vector can simultaneously encode multiple keys, which makes the Bloom filter
compact as shown in Figure 1 [2].

The overlapping values do not permit a key removal from the filter, since it
is not known whether the relevant bits are not activated by other key values.
The only way to remove a key from a Bloom filter is to rebuild the filter from
scratch, thus not incorporating the key to be removed from the Bloom filter. For

5 https://llimllib.github.io/bloomfilter-tutorial
6 https://www.perl.com/pub/2004/04/08/bloom_filters.html

https://llimllib.github.io/bloomfilter-tutorial
https://www.perl.com/pub/2004/04/08/bloom_filters.html


Bloom Filters for Efficient Coupling between Tables of a Database 5

checking the possibility for a key in the Bloom filter to be present, the following
procedure is applied. Initially, the hash functions are applied to the search key,
and then we check the relevant bits generated by the hash functions to be all
activated. Concretely, if at least one of the bits is disabled, it is certain that the
corresponding key is not included in the filter. If all bits are turned on, then we
know that with high probability, the key has been introduced.

2.2 Space-Time Advantages and Constraints

The implementation of a Bloom filter is relatively simple in comparison with
other relevant search structures. In addition, the use of a Bloom filter ensures
the fast membership checking of a value and in following absolute reliability of
the non-existence of an object in it (no false negatives) [13]. Concerning the
time required for adding a new item or to control whether a point belongs to
a set of data, it is independent of the number of elements in the filter 7. More
to the point, a strong advantage of Bloom filters is the storage space saving in
comparison with other data structures such as sets, hash tables, or binary search
trees.

The insertion of an element into a Bloom filter is an irreversible process 8.
The size of data in a Bloom filter must be known in advance for determining the
vector length and the number of hash functions. However, the number of objects
that will be imported into a Bloom filter are not always known in advance. It is
theoretically possible to define an arbitrarily large size, but it would be wasteful
in terms of space and would overturn the main advantage on the Bloom filter,
which is storage economy. Alternatively, a Dynamic Bloom filter structure could
be adopted, which, however, is not always possible. There is a variant of the
Bloom filter, called Scalable Bloom filter, which dynamically adjusts its size for
different number of objects. The use of a relative Bloom filter could alleviate some
of its shortcomings. A Bloom filter cannot produce the list of items imported,
but it can only check whether an item has been introduced in a dataset. Finally,
the Bloom filter cannot be used for answering questions about the properties of
the objects.

3 Bloom Filters and RDBMS

3.1 Relational Database Management Systems

The relational database management systems have been a common choice for
storing information in databases used for a wide range of data such as finan-
cial, logistic information, personal data, and other forms of information, since
1980. The relational databases have replaced other forms such as hierarchical or

7 https://prakhar.me/articles/bloom-filters-for-dummies
8 http://bugra.github.io/work/notes/2016-06-05/a-gentle-introduction-to-

bloom-filter

https://prakhar.me/articles/bloom-filters-for-dummies
http://bugra.github.io/work/notes/2016-06-05/a-gentle-introduction-to-bloom-filter
http://bugra.github.io/work/notes/2016-06-05/a-gentle-introduction-to-bloom-filter


6 Chioti, Dritsas, Kanavos, Liapakis, Sioutas and Tsakalidis

network databases, as they are easier in understanding and their use is conve-
nient. The main advantage of relational data model is that it allows the user to
make query-in data access command, without the need to define access paths to
stored data or other additional details [7]. Furthermore, the relational databases
keep their data in form of tables. Each table consists of records, called tuples,
and each record is uniquely identified by a field, i. e. primary key, which has a
unique value. Each panel is usually connected to at least another database table
in relation to the form: (i) one-by-one, (ii) one-to-many, or (iii) many-to-many.

These relationships grant users unlimited ways of data access and dynamic
combination amongst them from different tables. Nowadays, the market provides
more than one hundred RDBMS systems and the most popular of them are the
following: (i) Oracle, (ii) MySQL, (iii) Microsoft SQL Server, (iv) PostgreSQL,
(v) DB2 and (vi) Microsoft Access (DB-Engines 2016), etc. 9.

The SQL language is used for user communication with a relational database
[12]. An SQL query demands no knowledge of the internal operation of database
or the relevant data storage system [15]. According to ANSI (American National
Institute Standards) standards, the SQL is a standard language for relational
database management systems. Moreover, the SQL language is used in order to
query a database for the management of such data and also for the data update
or retrieval from a database. Some examples of relational databases that use
SQL are: Oracle, Sybase, Microsoft SQL Server, Access and Ingres.

The most important commands of SQL query language are 10: SELECT, UP-
DATE, DELETE, INSERT INTO, CREATE DATABASE, ALTER DATABASE,
CREATE TABLE, ALTER TABLE, DROP TABLE, CREATE INDEX, DROP
INDEX.

The SQL commands are classified into the following basic types:

– Query Language with key command: where the Select command for
accessing information from the database tables is used.

– Data Manipulation Language with key commands: (i) Insert-introduction
of new records, (ii) Update-modify records, and (iii) Delete-delete records.

– Data Objects Definition with key commands: (i) Create Table, and
(ii) Alter Table.

– Safety Control of Database with key commands: (i) Grand, Revoke
for user rights management to database objects, and (ii) Commit, Rollback
for transactions management.

3.2 Queries Language-SQL

3.2.1 Membership Queries The command SQL IN controls whether an
expression matches any value from a list of values. Furthermore, it is used in order
to prevent multiple use of the OR command in SELECT, INSERT, UPDATE
or DELETE queries 11. Besides checking should an expression belong to a set

9 http://db-engines.com/en/ranking/relational+dbms
10 http://www.w3schools.com/sql/sql_syntax.asp
11 https://www.techonthenet.com/sql/in.php

http://db-engines.com/en/ranking/relational+dbms
http://www.w3schools.com/sql/sql_syntax.asp 
https://www.techonthenet.com/sql/in.php 


Bloom Filters for Efficient Coupling between Tables of a Database 7

of values registered directly to a relevant query SQL, it may also check if an
expression is part of a set of values from other tables.

3.2.2 Join Queries The union queries, which combine values from two or
more data tables based on a JOIN criterion, usually concern relationships be-
tween relevant tables. More to the point, JOIN queries are distinguished in four
categories:

1. Inner Join: returns the values from Table A and Table B that satisfy the
joining criteria.

2. Left Join: returns all the values from Table A and the values of the Table
B meeting the joining criteria.

3. Right Join: returns all the values from Table B and the values of the Table
A that meet the joining criteria.

4. Outer Join: returns all the values from Table A and Table B regardless if
they satisfy the relevant criteria combination.

3.2.3 Exist Queries The existence control queries are used in conjunction
with a secondary query. It is considered that the control condition is satisfied
when the secondary query returns at least one relevant registration. The verifica-
tion can be used in terms of the following queries: SELECT, INSERT, UPDATE
or DELETE 12.

3.2.4 Top Queries The command TOP limits the number of records that a
query will return, that is to a specified number of rows or a specified percentage
of records from the 2016 version of SQL Server 13. When the command TOP is
used in combination with the ORDER BY command, then the first N records
are returned according to the sorting arrangement provided by the ORDER BY
command. Otherwise, N unsorted records are returned.

In addition, the TOP command specifies the number of records returned
by a SELECT statement or affected by a plethora of command statements,
such as INSERT, UPDATE, JOIN, or DELETE. The TOP SELECT command
can be particularly useful in large tables with thousands of records. The access
and choice of a large number of records can adversely affect the performance
execution of a query.

3.3 Indexes Table

Indexes are auxiliary structures in a relational database management system
with the aim of increasing data access performance to the database. Relevant
helping structures are created in one or more fields (columns) of a table or a

12 https://www.techonthenet.com/sql/exists.php
13 https://docs.microsoft.com/en-us/sql/t-sql/queries/top-transact-sql

https://www.techonthenet.com/sql/exists.php
https://docs.microsoft.com/en-us/sql/t-sql/queries/top-transact-sql


8 Chioti, Dritsas, Kanavos, Liapakis, Sioutas and Tsakalidis

Fig. 2: B-Tree overview

database. Moreover, an index provides a quick way to search data based on the
values in the specific fields that are part of the index.

For example, if an index on the primary key of a table is created, and then a
series of data based on the values of the corresponding fields is found, then the
SQL Server finds the value of the index field first and in following it uses the
relevant index so as to quickly locate the whole relevant table entries. In this
way, without the index marker field, it would require a scan of the entire table
line by line, directly influencing the performance of the relevant query execution
14.

Furthermore, an index consists of a set of pages that are organized into B-tree
data structure. The relevant structure is hierarchical, comprising a root node at
the top of the tree and the leaf nodes at the lower level, as illustrated in the above
Figure 2. When a query, including a search criterion, is executed, then the query
starts delving into relevant records from the root node and navigates through
intermediate nodes, which are the leaf nodes of the B-tree structure. After lo-
cating the relevant leaf node, the query will access the interrelative record either
directly (in the case of clustered index), or through a pointer to the relevant
data record (if it is a non clustered index).

A table in an SQL Server database can have at most one clustered index and
more than one non clustered index, depending on the version of SQL Server that
is used.

14 https://www.simple-talk.com/sql/learn-sql-server/sql-server-index-

basics

https://www.simple-talk.com/sql/learn-sql-server/sql-server-index-basics
https://www.simple-talk.com/sql/learn-sql-server/sql-server-index-basics


Bloom Filters for Efficient Coupling between Tables of a Database 9

4 Experimental Evaluation in SQL Server

In this section, the results of the experiments conducted in the context of this
research in order to evaluate the use of Bloom filters, are presented. We perform
a series of common SQL database queries with and without the support of the
Bloom filter and graphically present the resulted time performance of executed
SQL queries. The SQL queries utilized are the following: In, Inner Join, Left
Join, Right Join, Exists and Top.

The following Tables 1 and 2 as well as Figure 3 show the execution times
of the questions described previously. In particular in the corresponding Tables,
the results are shown with and without the use of Bloom filter by introducing
the label BF as the relative number of records is changed.

Table 1: SQL Queries Execution Time Results vs Data Size
Execution Time in seconds

Data In In BF Inner Join Inner Join
BF

Left Join Left Join
BF

10.000.000 44 24 44 24 1 1
9.000.000 38 24 41 26 1 1
8.000.000 26 21 26 24 1 1
7.000.000 19 21 19 20 0 1
6.000.000 19 20 19 20 0 1
5.000.000 18 19 19 19 0 1
4.000.000 13 14 13 12 0 1
3.000.000 11 12 12 13 0 1
2.000.000 10 12 11 12 0 1
1.000.000 3 3 3 3 0 1

For all SQL commands and in particular for small number of records, we
observed that the adoption of Bloom filter structure overloaded the system and
thus, the execution of the queries without the use of Bloom filter is much faster.

As the number of table records is increased and especially for values more
than (or equal to) 8, 000, 000, the performance advantage offered by employing
the Bloom filter structure increases significantly and the difference in speed
execution of queries is obvious as it also rises exponentially.

It is important to consider the fact that during the repetitive execution of
the same queries, we observed the same runtime, but sometimes there was a
gap of about two seconds between results. In these cases, we decided to take the
average values in the relevant cases.



10 Chioti, Dritsas, Kanavos, Liapakis, Sioutas and Tsakalidis

Table 2: SQL Queries Execution Time Results vs Data Size
Execution Time in seconds

Data Size Right Join Right Join
BF

Exists Exists BF Top Top BF

10.000.000 44 42 43 23 26 6
9.000.000 37 27 38 24 18 6
8.000.000 26 26 25 25 7 6
7.000.000 19 20 18 20 7 5
6.000.000 19 20 19 20 7 5
5.000.000 19 19 19 19 5 5
4.000.000 13 12 12 12 5 5
3.000.000 12 13 11 12 5 5
2.000.000 11 12 12 12 3 3
1.000.000 3 3 2 3 1 2

5 Conclusions

5.1 Research Conclusions

The large response times of SQL queries in relational databases affects not only
the users, but also other applications that may run on the same computer or the
network itself hosting the relevant database. The Bloom filter, capacity wise, is
an effective solution and it has been used in numerous applications in the past,
especially when immediate control of an object membership was required.

The relevant experiments suggest that the inclusion of Bloom filter structure
in an SQL Server database (with large number of records - 10, 000, 000 records)
that may increase its data access performance. The optimization of query execu-
tion time to a database, using Bloom structure, allows users to quickly extract
the needed information and increase the efficiency of relevant database. The
Bloom structure in a relational database acts as a filter that removes from the
join, membership or existence control queries the need to access-process records
that do not meet the criteria of relevant questions. The potential profit from this
restriction involved in accessing-searching records through an SQL query highly
depends on the false positive records that the control of the Bloom filter returns.
This relative number is limited as the length of the binary values of Bloom filter
is increased.

In this topic, an acceptable speed execution as well as balanced storage re-
quirements, according to the requirements of each database instance and the user
requirements, which concern the access speed of the relevant database, should
be chosen. Especially, in cases like a database containing historical data records
with no probability of further record updates, the adoption of Bloom filter for
faster access among numerous relevant tables can be considered a solution that
could lead to increased efficiency.



Bloom Filters for Efficient Coupling between Tables of a Database 11

Fig. 3: Queries Execution Time vs Records Size

As it can be seen from the execution times of SQL queries (Tables 1, 2 and
Figure 3), the benefit of the, in advance, restriction of records involved in an SQL
query is greater than including all records of data tables and indexes used for
direct access to them. It should be noted that as the experimental measurements
show, the application of Bloom filter structure in a database deserves to be
selected only when the number of entries in the relevant tables are very large.
Consequently, the use of Bloom filter may have the opposite effect, i.e. increase
the query runtime.

5.2 Research Constraints

In the evaluation of the Bloom filter, we did not take into account possible delays
caused by maintenance and regular updates of the Bloom filter structure during
the record updates in the relevant tables. These possible delays could be caused
in the execution of other SQL queries as well. Although all experiments were
performed on the same machine, the ones with Bloom filter that were performed
at different times, may have been affected (in performance) by possible processes
running in the background. These relevant deviations do not directly affect the
performance comparison among the same queries with or without the use of
Bloom filter, but mostly between different SQL commands used.



12 Chioti, Dritsas, Kanavos, Liapakis, Sioutas and Tsakalidis

5.3 Future Extensions

A promising and useful step would be to investigate the applicability of Bloom
filters in other relational database management systems (like Oracle, SysBase,
MySQL) with the aim of generalizing previous conclusions drawn from experi-
mentation on the SQL Server relational database management system. Also, a
possible review of the actual performance of database operations with millions
of records used to store application data, will allow more reliable conclusions
about the use of Bloom filter structure in relational databases. Thus possible
delays of the system during the application operation can be taken into account.

References

1. Blustein, J., El-Maazawi, A.: Bloom filters:A Tutorial, Analysis and Survey (2002)
2. Broder, A.Z., Mitzenmacher, M.: Survey: Network applications of bloom filters: A

survey. Internet Mathematics 1(4), 485–509 (2003)
3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS) 26(2), 4:1–4:26
(2008)

4. Christensen, K.J., Roginsky, A., Jimeno, M.: A new analysis of the false-positive
rate of a bloom filter. Information Processing Letters 110(21), 944–949 (2010)

5. Gupta, M.K., Chandra, P.: An empirical evaluation of like operator in oracle.
BVICAM’s International Journal of Information Technology 3(2) (2011)

6. Khan, M., Khan, M.N.A.: Exploring query optimization techniques in relational
databases. International Journal of Database Theory and Application 6(3), 11–20
(2013)

7. Kim, W.: On optimizing an sql-like nested query. ACM Transactions on Database
Systems (TODS) 7(3), 443–469 (1982)

8. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: Building a better
bloom filter. In: Annual European Symposium on Algorithms (ESA). pp. 456–467
(2006)

9. Larson, P., Clinciu, C., Hanson, E.N., Oks, A., Price, S.L., Rangarajan, S., Surna,
A., Zhou, Q.: SQL server column store indexes. In: ACM SIGMOD International
Conference on Management of Data. pp. 1177–1184 (2011)

10. Lyons, M.J., Brooks, D.M.: The design of a bloom filter hardware accelerator for
ultra low power systems. In: International Symposium on Low Power Electronics
and Design. pp. 371–376 (2009)

11. Oktavia, T., Sujarwo, S.: Evaluation of sub query performance in sql server. EPJ
Web of Conferences 68 (2014)

12. Ramakrishnan, R., Donjerkovic, D., Ranganathan, A., Beyer, K.S., Krishnaprasad,
M.: SRQL: sorted relational query language. In: International Conference on Sci-
entific and Statistical Database Management (SSDBM). pp. 84–95 (1998)

13. Roozenburg, J.: A literature survey on bloom filters. Research Assignment in Com-
puter Science (2005)

14. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: A data provenance perspective. In:
ACM Southeast Regional Conference. p. 42 (2010)

15. Winand, M.: SQL Performance Explained: Everything Developers Need to Know
about SQL Performance (2012)


	Bloom Filters for Efficient Coupling between Tables of a Database
	Introduction
	Bloom Filters Background
	Bloom Filter Elements
	Hash Functions
	Binary Vectors Length
	Key Insertion

	Space-Time Advantages and Constraints

	Bloom Filters and RDBMS
	Relational Database Management Systems
	Queries Language-SQL
	Membership Queries
	Join Queries
	Exist Queries
	Top Queries 

	Indexes Table

	Experimental Evaluation in SQL Server
	Conclusions
	Research Conclusions
	Research Constraints
	Future Extensions



