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Abstract—The advent of the Big Data era has given birth to
a variety of new architectures aiming at applications with in-
creased scalability, robustness and fault tolerance. At the same
time these architectures have complicated application structure,
leading to an exponential growth of their configuration space
and increased difficulty in predicting their performance. In
this work, we describe a novel, automated profiling method-
ology that makes no assumptions on application structure.
Our approach utilizes oblique Decision Trees in order to
recursively partition an application’s configuration space in
disjoint regions, choose a set of representative samples from
each subregion according to a defined policy and return a
model for the entire space as a composition of linear models
over each subregion. An extensive evaluation over real-life
applications and synthetic performance functions showcases
that our scheme outperforms other state-of-the-art profiling
methodologies. It particularly excels at reflecting abnormalities
and discontinuities of the performance function, as well as
identifying the parameters with the highest impact on the
application’s behavior.

I. INTRODUCTION

Performance modeling is a well-researched problem [1],
[2], [3]. The identification of an application’s behavior under
different configurations is a key factor for it to be able to
fulfill its objectives. As the application landscape evolves,
mainly due to the emergence of the Big Data era, new
architectures and design patterns have enabled an increasing
number of applications to be deployed in a distributed man-
ner and benefit from the merits of this approach: Scalability,
robustness and fault-tolerance are some of the properties that
render distributed platforms attractive and explain their wide
adoption. By virtue of their design, distributed applications
are commonly deployed to cloud infrastructures [4], in order
to combine their inherent characteristics with the power of
the cloud: Seemingly infinite compute and storage resources,
dynamically allocated and purchased, enable a Big Data
application, i.e., an application that processes Big Data, to
scale in a cost effective way. However, the adoption of the
distributed paradigm increases the complexity of the appli-
cation architecture: Many assisting software modules that
support coordination, cluster management, etc., are essential
for the application to run properly. Yet, each module can
be configured in numerous ways. As such, the application
configuration space has vastly expanded. Hence, the problem

of modeling an application performance, also called an
application profile, has become particularly complicated.

Evidently, the automated estimation of an application pro-
file would prove highly beneficial. The magnitude of the con-
figuration space renders exhaustive approaches that explore
a massive part of the configuration space impractical, since
they entail both a prohibitive number of deployments and
an enormous amount of computation. Several approaches
target to model application performance in an analytical
way [5], [6], [7], [8]. These approaches are effective for
known applications with specific structure and they are
based on simulation or emulation techniques [9], [10]. To
overcome the rigidness of these schemes, other methods
(e.g., [11], [12], [13]) take a “black-box” approach, in which
the application receives a set of inputs, corresponding to the
different factors of the configuration space and produces one
or more outputs, corresponding to its performance. These
approaches try to identify the relationship between the input
and the output variables for a subset of the configuration
space (utilizing sampling) and generalize the findings with
Machine Learning techniques (modeling).

Such profiling approaches require multiple application
deployments for distinct configurations in order to efficiently
explore the configuration space and capture its behavior.
However, the policy employed for selecting these config-
urations, is a decisive factor. This dimension of the profiling
problem, though, is not addressed by current research works,
as most of the suggested application profiling approaches
assume a random configuration selection policy, implying
that all input dimensions have the same impact on the appli-
cation’s behavior, and aim at minimizing the modeling error
through increasing the number of examined configurations.
Therefore, the employment of an adaptive configuration
selection policy, that wisely picks the tested configurations
with respect to investigating the most “representative” appli-
cation configurations, would result in more accurate appli-
cation profiles with fewer tested configurations, accelerating
the profiling process and minimizing the respective cost.

In this work, we propose an adaptive approach to auto-
matically generate an application profile for any Big Data
application with unknown structure, given a specific num-
ber of deployments, particularly focusing on appropriately
selecting the tested configurations in order to maximize



the modeling accuracy. Our work tackles the sampling and
modeling steps in a unified way: First, we introduce an
accuracy-driven sampling technique that favors regions of
the configuration space which are not accurately approxi-
mated. Second, we decompose the configuration space in
disjoint regions and utilize different models to approximate
the application performance in each of them. The basis
of our approach lies on the mechanics of Classification
and Regression Trees [14] that use a recursive partitioning
of the application’s configuration space. Each partition is
assigned with a number of configurations to be deployed,
with the process being iterated until a pre-defined maximum
number of sample configurations is reached. The number of
configurations allocated at each region is adaptively decided
according to the approximation error and the size of each
partition. Finally, the entire space is approximated by linear
models per partition, based on the deployed configurations.
Intuitively, our approach attempts to “zoom-in” to regions
where application performance is not accurately approxi-
mated, paying specific interest to all the abnormalities and
discontinuities of the performance function. By utilizing
oblique Decision Trees [15], we are able to capture patterns
that are affected by multiple configuration parameters simul-
taneously. In this work we make the following contributions:
•We propose an adaptive, accuracy-driven profiling tech-
nique for Big Data applications that utilizes oblique Decision
Trees. Our method decomposes the multi-dimensional input
space into disjoint regions, naturally adapting to the com-
plex performance application behavior in a fully automated
manner. Our scheme utilizes three unique features relative
to the standard Decision Tree algorithm: First, it proposes a
novel expansion algorithm that constructs oblique Decision
Trees by examining whether the obtained samples fit into
a linear model. Second, it allows developers to provide
a compromise between exploring the configuration space
and exploiting the previously obtained knowledge. Third, it
adaptively selects the most accurate modeling scheme, based
on the achieved accuracy.
•We perform an extensive experimental evaluation over
diverse, real-world applications and synthetic performance
functions of various complexities. Our results showcase
that our methodology is very effective, achieving modeling
accuracies even 3× higher that its competitors and, at the
same time, being able to create models that reflect abnormal-
ities and discontinuities of the performance function orders
of magnitude more accurately. Furthermore, our sampling
methodology proves to be particularly beneficial for linear
classifiers, as linear models trained with samples chosen by
our scheme present up to 38% lower modeling error.

II. BACKGROUND

A. Problem formulation

Application profiling can be formulated as a function
approximation problem [16], [12]. The application is viewed

as a black-box that receives a number of inputs and pro-
duces a single (or more) output(s). The main idea be-
hind constructing the performance model is to predict the
relationship between the inputs and the output, without
making any assumption regarding the application’s archi-
tecture. Inputs reflect any parameters affecting application
performance, such as the number and quality of different
types of resources (e.g., cores/memory, number of nodes,
etc.), application-level parameters (e.g., cache used by an
RDBMS, HDFS block size, etc.), workload-specific param-
eters (e.g., throughput/type of requests) and dataset-specific
parameters (e.g., size, dimensionality, distribution, etc.).

Assume that an application comprises n inputs and one
output. We assume that the ith input, 1 ≤ i ≤ n, receives
values from a predefined finite set of values, denoted as di.
The Cartesian product of all di, 1 ≤ i ≤ n is the Deployment
Space of the application D = d1× d2× · · · × dn. Similarly,
the application’s output reflects values that correspond to
a performance metric, indicative of its ability to fulfill its
objectives. The set of the application’s output will be referred
to as the application’s Performance Space. Based on the
definitions of D and P , we define the performance model m
of an application as a function m : D → P . The estimation
of the performance model entails the estimation of the
performance value bi ∈ P for each ai ∈ D. However, |D|
increases exponentially with n (as |D| =

∏n
i=1 |di|), thus the

identification of all performance values becomes prohibitive,
both in terms of time and cost. A common approach to
tackle this challenge is the extraction of a subset Ds ⊆ D
(|Ds| � |D|) and the estimation of the performance points
Ps for each ai ∈ Ds. Using Ds and Ps, model m can
be approximated, creating an approximate model m′. While
m′ → m, the approximation is more accurate.

Note that this formulation is valid only under the as-
sumption that distinct deployments are reproducible, i.e., in
case where a given Deployment Space point is redeployed,
the measured outcome is identical or at least very similar.
For many reasons, such as the interference [17], network
glitches, etc., such an assumption can be violated when the
application is deployed to cloud environments, because of
the introduced unpredictability that distorts the application’s
behavior. The treatment of this dimension of the problem
is outside the scope of our work. This works tackles the
complexity introduced by the excessive dimensionality of
the Deployment Space. The presented methodology can be,
thus, directly applied to fairly predictable environments with
reduced interference, such as private cloud installations that,
according to [18], remain extremely popular, since they
will host half of the user generated workloads for 2017,
maintaining the trend from the previous years.

B. Decision Trees

Classification and Regression Trees (CART) [14], or De-
cision Trees (DT), are a very popular classification and



regression approach. They are formed as tree structures
containing intermediate (test) and leaf nodes. Each test node
represents a boundary of the data space and each leaf node
represents a class, if the DT is used for classification, or a
linear model, if used for regression. The boundaries of the
DT divide the original space into a set of disjoint regions.
The construction of a DT is based on recursively partitioning
the space of the data so as to create disjoint groups of points
that maximize their intra-group homogeneity and minimize
their inter-group homogeneity. The homogeneity metric of a
group differs among the existing algorithms: GINI impurity
has been used by the CART algorithm [14], Information
Gain has been used by ID3 and C4.5 [19] for classification,
whereas the Variance Reduction [14] is commonly used for
regression. These heuristics are applied to each leaf to decide
which dimension should partitioned and at which value. The
termination condition of the DT construction varies between
different algorithms as the tree height is either pre-defined
or dynamically decided, i.e., the tree grows until new leaves
marginally benefit its accuracy.

Each boundary of a DT is parallel to one axis of the
data, since it involves a single dimension of the data space,
i.e., the boundary line is expressed by a rule of the form
xi = c, where c is a constant value. Generalizing this
rule into a multivariate line, we obtain the oblique DTs
[15] that consist of lines of the form:

∑n
i=1 cixi + γ = 0.

The multivariate boundaries boost the expressiveness of a
DT, since non axis-parallel patterns can be recognized and
expressed. In this paper, we utilize oblique DTs in two ways:
First, they are employed to create an approximate model
of the performance function. Second, their construction
algorithm is modified to adaptively sample the Deployment
Space of the application, focusing more on regions where
the application presents a complex behavior and ignoring
regions where it tends to be easily predictable.

III. PROFILING METHODOLOGY

A. Method overview

The main idea of the suggested algorithm is to partition
the Deployment Space by grouping samples that better fit
different linear models, infer knowledge about the perfor-
mance function through sampling the Deployment Space,
deploying the selected configurations and, when a predefined
number of deployments is reached, model the performance
function utilizing different linear models for each partition.
Specifically, at each step, the Deployment Space is parti-
tioned by grouping the already obtained samples according
to their ability to create a linear model that accurately
approximates the application performance. Estimates are
then created regarding the intra-group homogeneity, which
corresponds to the prediction accuracy of the performance
function for the specified region. Therefore, poorly approx-
imated regions need to be further sampled in order to be
better approximated, whereas accurate regions need not to

be further explored. Intuitively, the suggested algorithm
is an attempt to adaptively “zoom-in” to areas of the
Deployment Space where the behavior of the performance
function is more obscure, in the sense that it is unpredictable
and hard to model. This enables the number of allowed
application deployments to be dynamically distributed inside
the Deployment Space, leading to more accurate predictions
as more samples are collected for performance areas that
are harder to approximate. This smart distribution of the
deployed samples requires the closer examination of regions
of the Deployment Space independently, something that is
inherently conducted by DTs. Their properties, such as their
scalability to multiple dimensions, robustness and their in-
nate divide-and-conquer functionality render them a perfect
fit for the application profiling problem and facilitate the
decomposition of the Deployment Space in an intuitive and
efficient manner. In Algorithm 1, we provide the pseudocode
of the suggested methodology.

Algorithm 1 DT-based Adaptive Profiling Algorithm
1: procedure DTADAPTIVE(D, B, b)
2: tree← TREEINIT(∅), samples← ∅
3: while |samples| ≤ B do
4: tree← PARTITION(tree, samples)
5: s← SAMPLE(D, tree, samples, b)
6: d← DEPLOY(s)
7: samples← samples ∪ d

8: model← CREATEMODEL(samples)
9: return model

Our Algorithm takes three input parameters: (a) the ap-
plication’s Deployment Space D, (b) the maximum number
of samples B and (c) the number of samples selected at
each algorithm iteration b. The tree variable represents a DT,
while the samples set contains the obtained samples. While
the number of obtained samples is less than B, the following
steps are executed: First, the leaves of the tree are examined
and tested whether they can be replaced by subtrees that
further partition their regions (Line 4). The leaves of the
expanded tree are, then, sampled with the SAMPLE function
(Line 5), the chosen samples are deployed (Line 6) according
to the sample’s deployment configuration and performance
metrics are obtained. Note that, s ⊆ D whereas d ⊆ D×P ,
i.e., s contains the sampled configurations and samples
contains the deployment configurations along with their
performance value. Finally, when B samples have been
chosen, the final model is created (Line 8).

B. Space Partitioning

Space partitioning occurs through the expansion of the
DT, i.e., the replacement of the DT’s leaves with test nodes
with two new children/leaves. The replacement of a leaf
entails the identification of a split line that maximizes the
homogeneity between the two newly leaves. Recall that, the
utilization of oblique DTs allows the test node to be repre-
sented by a multivariate line and enhances their adaptability
to different performance functions. Nevertheless, calculating



an optimal multivariate split line is NP-complete [15]. Since
we want to exploit the expressiveness of the oblique parti-
tions without introducing a prohibitive computation cost for
their estimation, we express the problem as an optimization
problem [15] and utilize Simulated Annealing (SA) [20] to
identify a near-optimal line. In Algorithm 2, we present the
PARTITION function. For each leaf of the tree (Line 3),
SA is executed to identify the best multivariate split line
(Line 5), considering solely the samples whose Deployment
Space-related dimensions (d.in) lie inside the specified
leaf (Line 4). The samples of the specified leaf are then
partitioned in two disjoint sets according to their position
(Lines 7-11), in which the symbol � indicates that a sample
s is located below line. Finally, a new test node is generated
(Line 12), replacing the original leaf node of the tree and
the new tree is returned.
Algorithm 2 Partitioning Algorithm
1: procedure PARTITION(tree, samples)
2: newTree← tree
3: for l ∈ leaves(tree) do
4: v ← {d|d ∈ samples, d.in ∈ l}
5: line← SA(v)
6: L1 ← ∅, L2 ← ∅
7: for s ∈ v do
8: if s � line then
9: L1 ← L1 ∪ s

10: else
11: L2 ← L2 ∪ s

12: testNode← {line, L1, L2}
13: newTree←replace(l, testNode)
14: return newTree

The cornerstone of SA’s effectiveness is the score function
that quantifies the efficacy of each candidate solution. The
methodologies utilized by various DT construction algo-
rithms make no assumption regarding the nature of the data.
Although this enhances their adaptability to different prob-
lem spaces, their utilization in this work resulted in poorly
partitioned Deployment Spaces. The data that our work
attempts to model belong to a performance function. Intu-
itively, if all the performance function points were available,
one would anticipate that a closer observation of a specific
region of the Deployment Space would present an approxi-
mately linear behavior, as “neighboring” configurations are
anticipated to produce similar performance. When focusing
on a single neighborhood, this “similar performance” could
be summarized by a linear hyperplane. A split line is
considered to be “good” when the generated leaves are best
summarized by linear regression models or, equivalently, if
the samples located in the two leaves can produce linear
models with low modeling error. Given a Deployment Space
D, a line l and two sets L1, L2 that contain D’s samples
after partitioning it with l (as in lines 6-10 of Algorithm 2),
we estimate two linear regression models for L1 and L2 and
estimate their residuals using the coefficient of determination
R2. l’s score is: Score(l) = − |L1|R2

L1
+|L2|R2

L2

|L1|+|L2| .
Note that, 0 ≤ R2 ≤ 1 and a value of 1 represents

perfect fit to the linear model. Score(l) is minimized when
both L1 and L2 generate highly accurate linear models or,
equivalently, if the two sets can be accurately represented by
two linear hyperplanes. We weight the importance of each
set according to the number of samples they contain as an
inaccurate model with more samples has greater impact to
the accuracy than an inaccurate model with fewer samples.
The negative sign is employed in order to remain aligned
with the literature, in which SA seeks for minimum points.
Finally, one SA property not discussed this far is the ability
to achieve a customizable compromise between the mod-
eling accuracy and the required computation. Specifically,
prior to SA’s execution, the user defines a maximum number
of iterations to be executed for the identification of the best
split line. When one wants to maximize the quality of the
partitioning, many iterations are conducted. On the contrary,
the number of iterations is set to lower values in order to
allow for a rapid split line estimation.

C. Adaptive Sampling

Algorithm 3 Sampling algorithm
1: procedure SAMPLE(D, tree, samples, b)
2: errors, sizes← ∅, maxError,maxSize← 0
3: for l ∈ leaves(tree) do
4: points← {d|d ∈ samples, d.in ∈ l}
5: m← regression(points)
6: errors[l]← crossValidation(m,points)
7: sizes[l]← |{e|e ∈ D ∩ l}|
8: if maxError ≤ errors[l] then
9: maxError ← errors[l]

10: if maxSize ≤ sizes[l] then
11: maxSize← sizes[l]

12: scores, newSamples← ∅, sumScores← 0
13: for l ∈ leaves(tree) do
14: scores[l]← werror · errors[l]

maxError
+ wsize · sizes[l]

maxSize
15: sumScores← sumScores+ scores[l]

16: for l ∈ leaves(tree) do
17: leafNumDeps← d scores[l]

sumScores
· be

18: s←RANDOMSELECT({d|d ∈ D ∩ l}, leafNumDeps)
19: newSamples← newSamples ∪ s

20: return newSamples

After the tree expansion, the SAMPLE function is executed
(Algorithm 3). The algorithm iterates over the leaves of the
tree (Line 3). For the samples of each leaf, a new linear
regression model is calculated (Line 5) and its residuals
are estimated using Cross Validation [21]: The higher the
residuals, the worse the fit of the points to the linear model.
The size of the specified leaf is then estimated. After storing
both the error and the size of each leaf into a map, the
maximum leaf error and size are calculated (Lines 8-11).
Subsequently, a score is estimated for each leaf (Lines 13-
15). The score of each leaf is set to be proportional to
its scaled size and error. This normalization is conducted
so as to guarantee that the impact of the two factors is
equivalent. Two coefficients werror and wsize are used to
assign different weights to each measure. These scores are
accumulated and used to proportionally distribute b to each



leaf (Lines 16-19). In that loop, the number of deployments
of the specified leaf is calculated and new samples from
the subregion of the Deployment Space are randomly drawn
with the RANDOMSELECT function, in a uniform manner.
Finally, the new samples set is returned.

The consideration of two factors (error and size) for
deciding the number of deployments spent at each leaf
targets the trade-off of exploring the Deployment Space
versus exploiting the obtained knowledge, i.e., focus on the
abnormalities of the space and allocate more points to further
examine them. This is a well-known trade-off in many fields
of study [22]. In our approach, one can favor either direction
by adjusting the weights of leaf error and size, respectively.
Note that this scheme enables the consideration of other
parameters as well, such as the deployment cost through the
extension of the score function (Line 14). This way, more
“expensive” deployment configurations, e.g., ones that entail
multiple VMs with many cores, would be avoided in order
to regulate the profiling cost.

D. Modeling

After B samples are returned by the profiling algorithm,
they are utilized by the CREATEMODEL (Algorithm 1, Line
8) function to train a new DT. The choice of training a new
DT instead of expanding the one used during the sampling
phase is made to maximize the accuracy of the final model.
When the first test nodes of the former DT were created,
only a short portion of the samples were available to the
profiling algorithm and, hence, the original DT may have
initially created inaccurate partitions. Moreover, in cases
where the number of obtained samples is comparable to
the dimensionality of the Deployment Space, the number of
constructed leaves is extremely low and the tree degenerates
into a linear model that covers sizeable regions of the
Deployment Space with reduced accuracy. To overcome
this limitation, along with the final DT, a set of Machine
Learning classifiers are also trained, keeping the one that
achieves the lowest Cross Validation error. However, when
the DT is trained with enough samples, it outperforms all
the other classifiers. This is the main reason for choosing
the DT as a base model for our scheme: The ability to
provide higher expressiveness by composing multiple linear
models in areas of higher unpredictability, make them a
perfect choice for modeling a performance function. Note
that, the linearity of this model does not compromise its
expressiveness: Non-linear performance functions can also
be accurately approximated by a piecewise linear model,
through further partitioning the Deployment Space.

Finally, we provide an example of execution of Algorithm
1 for the Wordcount operator. The operator is executed for a
100G synthetic dataset, on a Hadoop cluster of varying sizes,
i.e., the Deployment Space is 1-d and represents the number
of nodes of the Hadoop cluster (4–256 nodes) and the Per-
formance Space represents the execution time. We execute

our methodology for a budget of B = 14 configurations and
b = 7 for each iteration. In Figures 1 (a) and (b) we depict
the actual and approximated performance functions for the
first and second algorithm iterations, respectively.
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Figure 1. Algorithm execution for Wordcount

During the first iteration, 7 samples are randomly picked
and the first partitioning of the Deployment Space takes
place (for a cluster of 96 nodes) generating the areas (1) and
(2) of Figure 1 (a). Note that, the performance function in
area (2) presents linear behavior and, hence, is extremely ac-
curately approximated with only 4 tested configurations. On
the contrary, the performance function is strongly non-linear
in area (1) and, hence, poorly approximated. The scores of
the two Deployment Space areas are, then, calculated, and
in the following iteration all the 7 available configurations
are assigned to area (1), because the error of area (2) is
practically zero (and wsize = 0). In Figure (b), only area (1)
is depicted, as the rest of the space remains intact. The new
samples enforce space partitioning which, makes the model
accurately approximate the actual performance function us-
ing a piecewise linear function. The final model approxi-
mates the actual performance function extremely accurately,
examining only a mere 5% of the Deployment Space. This
example is indicative of our methodology’s power: Our
divide-and-conquer approach allows us to sample and model
each region separately, assigning different level of detail
to different regions of the Deployment Space. Moreover,
the piecewise linear function is extremely effective for
the performance functions of typical Big Data applications
and operators, since the behavior observed in this example
(i.e., the “Actual” line) is commonly encountered, especially
when the Deployment Space consists of resource-related
dimensions. This enables us to provide extremely accurate
approximations with a minimal number of deployments.
Finally, even when addressing performance functions of high
complexity and strongly non-linear behavior, the utilization
of more detailed partitions (as in the area (1) of Figure
1 (a)) guarantees that the actual line can be accurately
approximated through the deployment of more samples.

IV. EXPERIMENTAL EVALUATION

A. Methodology and data

To evaluate the accuracy of our profiling algorithm, we
test it over various real and synthetic performance func-
tions. The Mean Squared Error (MSE) metric is utilized
for the comparison, estimated over the entire Deployment
Space, i.e., we exhaustively deploy all possible combinations



of each application’s configurations, so as to ensure that
the generated model successfully approximates the origi-
nal function for the entire space. We have deployed four
different popular real-world Big Data operators and applica-
tions, summarized in Table I. We opt for applications with
diverse characteristics with Deployment Spaces of varying
dimensionality (3 – 7 dimensions). The first three operators
are implemented in Spark (k-means, Bayes) and Hadoop
(Wordcount) and they are deployed to a YARN cluster. In all
cases, the performance metric corresponds to the execution
time. MongoDB is deployed as a sharded cluster and it
is queried using YCSB [23]. The sharded deployment of
MongoDB consists of three components: (a) A configuration
server that holds the cluster metadata, (b) a set of nodes that
store the data (MongoD) and (c) a set of loadbalancers that
act as endpoints to the clients (MongoS). Each application
was deployed in a private Openstack cluster with 8 nodes
aggregating 200 cores and 600GB of RAM. Due to space
constraints, in Appendix B of the Extended Version of this
work [24], a thorough application analysis is provided.

Table I
APPLICATIONS UNDER PROFILING

Application Dimensions Values(perf. metric)

Spark k-means

YARN nodes 2–20
# cores per node 2–8
memory per node 2–8 GB
# of tuples 200–1000 (×103)

(execution time) # of dimensions {1,2,3,5,10}
data skewness 5 levels
k {2,5,8,10,20}

Spark Bayes

YARN nodes 4–20
# cores per node 2–8
memory per node 2–8 GB

(execution time) # of documents 0.5–2.5 (×106)
# of classes 50–200 classes
YARN nodes 2–20

Hadoop Wordcount # cores per node 2–8
(execution time) memory per node 2–8 GB

dataset size 5–50 GB

MongoDB
# of MongoD 2–10
# of MongoS 2–10

(throughput) request rate 5–75 (×103) req/s

We have also generated a set of synthetic performance
functions, listed in Table II. The listed functions are chosen
with the intention of testing our profiling algorithm against
multiple scenarios of varying complexity and dimensionality.
To quantify each function’s complexity, we measure how
accurately can each function be approximated by a linear hy-
perplane. Linear performance functions can be approximated
with only a handful of samples, hence we regard them as
the least complex case. For each of the listed functions, we
calculate a linear model that best represents the respective
data points and test its accuracy using the coefficient of
determination R2, whose value indicates the linearity of the
respective function (1 indicating total linearity and 0 the
opposite). Based on R2 values for each case, we generate
three complexity classes: Functions of LOW complexity
(when R2 is higher than 0.95), functions of AVERAGE

complexity (when R2 is between 0.5 and 0.7) and functions
of HIGH complexity when R2 is close to 0. The values of R2

depicted in Table II refer to two-dimensional Deployment
Spaces.

Table II
SYNTHETIC PERFORMANCE FUNCTIONS

Complexity Name Function R2

LOW LIN f1(x) = a1x1 + · · ·+ anxn 1.00
POLY f2(x) = a1x2

1 + · · ·+ anx2
n 0.95

AVG
EXP f3(x) = ef1(x) 0.65

EXPABS f4(x) = e|f1(x)| 0.62

EXPSQ f5(x) = e−f1(x)
2

0.54

HIGH
GAUSS f6(x) = e−f2(x) 0.00
WAVE f7(x) = cos(f1(x)) · f3(x) 0.00
HAT f8(x) = f2(x) · f6(x) 0.00

B. Profiling algorithms comparison

First, we compare our profiling methodology against other
end-to-end profiling schemes. Our approach is referred to as
DT-based Adaptive methodology (DTA). Active Learning
[25] (ACTL) is a Machine Learning field that specializes
on exploring a performance space by obtaining samples
assuming that finding the class or the output value of the
sample is computationally hard. We implemented Uncer-
tainty Sampling that prioritizes the points of the Deployment
Space with the highest uncertainty, i.e., points for which a
Machine Learning model cannot predict their class or contin-
uous value with high confidence. PANIC [12] is an adaptive
approach that favors points belonging into steep areas of
the performance function, utilizing the assumption that the
abnormalities of the performance function characterize it
best. Furthermore, since most profiling approaches use a ran-
domized sampling algorithm [11], [16], [13] to sample the
Deployment Space and different Machine Learning models
to approximate the performance, we implement a profiling
scheme where we draw random samples (UNI) from the
performance functions and approximate them using the
models offered by WEKA [26], keeping the most accurate
in each case. In all but a few cases, the Random Committee
[27] algorithm prevailed, constructed using Multi-Layer Per-
ceptron as a base classifier. For each of the aforementioned
methodologies, we execute the experiments 20 times and
present the median of the results.

1) Sampling rate: We first compare the four methods
against a varying Sampling Rate, i.e., the portion of the De-
ployment Space utilized for approximating the performance
function (SR = |Ds|

|D| × 100%). SR varies from 3% up to
20% for the tested applications. In Figure 2 we provide the
accuracy of each approach measured in terms of MSE.

Figure 2 showcases that DTA outperforms all the competi-
tors for increasing SR, something indicative of its ability to
distribute the available number of deployments accordingly
so as to maximize the modeling accuracy. In more detail, all
algorithms benefit from an increase in SR since the error
metrics rapidly degrade. Both in k-means and Bayes, when
the SR is around 3% UNI and DTA construct models of the



highest accuracy. As mentioned in Section III-D, for such
low SR the linearity of the DT would fail to accurately
represent the relationship between the input and the output
dimensions, thus a Random Committee classifier based on
Multi-Layer Perceptrons is utilized for the approximation.
The same type of classifier also achieves the highest accu-
racy for the rest of the profiling algorithms (ACTL, PANIC)
that also present higher errors due to the less accurate
sampling policy at low SR. As SR increases, the DT obtains
more samples and creates more leaves, which contributes
in the creation of more linear models that capture a shorter
region of the Deployment Space and, thus, producing higher
accuracy. Specifically, for SR ≥ 3%, DT created a more
accurate prediction than other classifiers and was preferred.
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Figure 2. Accuracy vs sampling rate (MSE)

In the rest of the cases, DTA outperforms its competitors
for the Wordcount application and, interestingly, this is
intensified for increasing SR. Specifically, DTA manages
to present 3× less modeling error than UNI when SR =
20%. Finally, for the MongoDB case, DTA outperforms
the competitors increasingly with SR. In almost all cases,
DTA outperforms its competitors and creates models even
3 times more accurate (for Bayes when SR = 20%)
from the best competitor. As an endnote, the oscillations
in PANIC’s and ACTL’s behavior are explained by the
aggressive exploitation policy they implement. PANIC does
not explore the Deployment Space and only follows the steep
regions, whereas ACTL retains a similar policy only follow-
ing the regions of uncertainty, hence the final models may
become overfitted in some regions and fail to capture most
patterns of the performance function. Our work identifies
the necessity of both exploiting the regions of uncertainty
but also for exploring the entire space. This trade-off is only
addressed by DTA and explains its dominance for difficult
to approximate applications.

2) Performance function complexity and dimensionality:
We now compare the accuracy of the profiling algorithms
against synthetic profiling functions with varying complex-

ity and dimensionality. We create synthetic performance
functions using the ones presented in Table II for 2 and
10 dimensions, employing 2 different SR (0.5% and 2%).
Specifically, we assume that there exist 2 dimensions that
highly impact the function’s output and, in the 10-d case,
the remainder dimensions are of much lower significance,
i.e., their coefficients tend to zero. This simulates the real-
world use case where one wants to profile an application
with many dimensions, but only a handful of them are,
indeed, significant to the output performance. The results
are depicted in Table III. Since the output of each dataset
is in different scale, we normalize all the results, dividing
the error of each methodology with the error produced by
UNI. All methodologies approximated LIN, POLY, EXP and
EXPSQ with minimal error and hence are not provided. The
lowest errors for each case are demonstrated in bold.

Table III
ACCURACY VS FUNCTION COMPLEXITY

n ACTL PANIC DTA
0.5% 2% 0.5% 2% 0.5% 2%

EXPABS 2 1.99 5.29 1.29 2.63 0.58 0.52
10 0.40 0.31 0.33 0.28 0.13 0.11

GAUSS 2 1.55 5.91 1.32 5.63 0.68 0.52
10 0.42 0.39 0.45 0.42 0.42 0.36

WAVE 2 0.98 2.34 1.01 2.51 0.71 0.79
10 0.30 0.28 0.31 0.28 0.18 0.15

HAT 2 1.17 6.49 1.25 4.85 0.60 0.42
10 0.52 0.43 0.49 0.45 0.32 0.29

Table III showcases that all the synthetic functions were
more accurately approximated by DTA than the rest of
the profiling schemes. Specifically, when the dimensionality
of the space is low, DTA achieves considerably lower
modeling errors than the UNI case, whereas ACTL and
PANIC produce much worse results, compared to UNI,
something intensified with increasing SR. This is ascribed
to the fact that ACTL and PANIC only exploit the space
abnormalities whereas UNI focuses on space exploration. In
cases where the space consists of 2 dimensions with high
impact, UNI is, understandably, better than the exploitation-
centric ACTL and PANIC approaches, DTA standing in
the middle and producing the best results. Interestingly,
though, when the dimensionality of the space increases,
UNI becomes insufficient, as in these cases all the other
approaches exhibited a considerably more accurate behavior.
The spaces now consist of 10 dimensions, the 8 of which
are of low importance: All the approaches that focus on
the abnormalities of the space (ACTL and PANIC) benefit
from their exploitation-based functionality since they ig-
nore deployment space regions with uninteresting behavior.
DTA, on the other hand, achieves the same results, but
for another reason: The construction of the DT during the
sampling and modeling phases, is constantly ignoring the
unimportant dimensions, executing a form of Dimensionality
Reduction to the deployment space and only focusing on
the dimensions of higher interest. This functionality renders
our approach suitable both for cases where there exist
several non-interesting dimensions that need to be ignored



and cases where there exist equally important dimensions
that should be evaluated. This discussion highlights that
DTA manages to elegantly compromise the contradicting
aspects of exploration and exploitation. Furthermore, the
recursive Deployment Space partitioning manages not only
to distribute the deployment budget appropriately, but also
ignore the dimensions that present no interest.

C. Parameter Impact Analysis

1) Per-iteration number of deployments: We now eval-
uate b’s impact, i.e., the number of deployments spent in
each algorithm iteration, in DTA’s performance. In Figure
3, we model k-means and set b as a portion of B (the
total number of allowed deployments) for three different SR.
The horizontal axis represents the ratio B/b. The Figure on
the left depicts the MSE while the right one represents the
respective execution time of DTA.
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Figure 3. Accuracy vs B/b

When B/b = 1, the algorithm degenerates into UNI,
since the tree is constructed in one step. At this point, the
algorithm presents the highest error and the lowest execution
time, since the tree is only constructed once and the most er-
roneous leaves are not prioritized. When the ratio increases,
the algorithm produces more accurate results and the error
decrease intensifies for increasing SR. For example, when
SR = 20% the error decreases more than 35% for increasing
B/b. However, when SR = 5% and SR = 10% and
for low b values (e.g., B/b = 10) an interesting pattern
appears: MSE starts to increase, neutralizing the effect of
lower b. This occurs in cases where b is extremely small,
compared to the dimensionality of the Deployment Space.
In such cases, the per-iteration budget becomes too small in
order to be efficiently distributed among the DT leaves, and
hence, many iterations need to take place before the tree is
further expanded and analyzed. This leads to a suboptimal
distribution of the b samples and, finally, a suboptimal
configuration selection policy.

The performance gain presented by increasing B/b is
ascribed to two factors: (a) the final DT has more accurate
cuts and, hence, well-placed models and (b) the samples
are properly picked during the profiling. To isolate the
impact of each factor, we repeat the same experiment for
all applications and train different ML classifiers instead of
a DT. This way, we isolate the impact of sampling and only
examine its importance. We identified that the classifiers
that consist of linear models, i.e., regression classifiers such

as OLS (Ordinary Least Squares) [28], or an Ensemble of
Classifiers created with Bagging [29] (BAG) that utilize
linear models as base improve their accuracy with increasing
B/b. In Table IV we provide our findings for two classifiers
(OLS and BAG), expressing the percentage decrease of MSE
of each case, compared to the B/b = 1 case.

Table IV
MSE DECREASE % FOR LINEAR CLASSIFIERS

Application Classifier B/b
2 5 8 10

k-means OLS 8% 10% 12% 12%
BAG 3% 8% 8% 9%

Bayes OLS 23% 27% 28% 29%
BAG 23% 22% 21% 23%

Wordcount OLS 23% 17% 19% 23%
BAG 21% 28% 41% 38%

MongoDB OLS 19% 13% 12% 7%
BAG 6% 12% 11% 2%

The table demonstrates that for all cases, increasing B/b
benefits the linear models, something that showcases that
our sampling algorithm itself achieves better focus on the
interesting Deployment Space regions. Nevertheless, we
notice that an increasing B/b ratio does not always lead
to linear error reduction. When B/b = 8 and B/b = 10,
one can notice that the error either degrades marginally (for
k-means and Bayes) or slightly increases (for MongoDB)
when compared to B/b = 5. This is, again, ascribed
to the extremely low per-iteration number of deployments
b that almost equals the dimensionality of the space. In
summary, our findings demonstrate that even utilizing solely
the sampling part of our methodology can be particularly
useful in cases where linear models, or a composition of
them, are employed.

2) Oblique boundaries: We now evaluate the impact of
flat versus oblique DTs in the profiling accuracy and execu-
tion time. In Figure 4 (a), we model k-means for varying SR.
The oblique tree introduces a slight accuracy gain (of about
10% for low SR) compared to the flat tree and demands
about twice the time for algorithm execution. The accuracy
gains fade out when the SR increases. This is due to the
fact that when a higher SR is employed, more leaves are
created and the profiling algorithm functions in a more fine-
grained manner. At this point, the structure of the leaf nodes
is not important. However, when the algorithm must work
with fewer leaves, i.e., lower SR, the importance of the leaf
shape becomes crucial, hence the performance boost of the
oblique cuts. Nevertheless, a point not stressed in the results
so far is that oblique DTs, apart from a minor performance
boost, offer the ability to accurately approximate points of
the performance function with patterns spanning to multiple
dimensions of the Deployment Space. When measuring the
accuracy of the model in the entire space, as in Figure 4 (a),
this effect can be overlooked, yet, it is evident when focusing
on the region containing the pattern. To showcase this,
we conduct the following experiment: Assume EXPABS of
Table II, minimized when a1x1 + · · · + anxn = 0. We
again compare the flat and oblique approaches for a two-



dimensional Deployment Space but now use two different
test sets: (i) points from the entire space (as before) depicted
in Figure 4 (b) and (ii) points close to the aforementioned
line (less than ε = 10−3) in Figure 4 (c).
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Figure 4. Accuracy vs flat and oblique cuts

While the difference in (b) is considerable for this case (a
gain of 30% to 90%), when testing against points close to the
abnormality we observe that the oblique version produces
errors that are orders of magnitude lower than those of the
flat case. To further evaluate the impact of the test set into
the measured accuracy for different performance functions,
we repeat the previous experiment for EXPABS and WAVE
(that also contains similar complex patterns) for a SR = 2%.
We measure the accuracy of the model when the test points
are picked from (a) the entire Deployment Space (ALL), (b)
close to the “abnormal” region (ABN) and (c) both (MIX).
For MIX, half of the test points are far from the abnormality
and the other half is located in a distance less than ε. Figure
4 (d) showcases the respective results. The produced errors
for MIX and ABN are divided with the error of ALL for each
execution. Our results demonstrate that when more points are
picked around the abnormality region, the flat DT produce
higher modeling errors and oblique DT achieve much lower
errors. A similar to the flat DT behavior is also verified
for the rest of the profiling algorithms as well (UNI, ACTL
and PANIC): None of them was able to approximate the
abnormal regions of the synthetic functions with satisfying
accuracy, rendering DTA the only profiling methodology
with this feature.

V. RELATED WORK

Performance modeling is a vividly researched area. The
distinct approaches used to model the behavior of a given ap-
plication can be assigned in three categories: (a) simulation-
based, (b) emulation-based and (c) approaches involving the
benchmarking of the application and take a “black-box”
view. In the first case, the approaches are based on known
models of the cloud platforms [30] and enhance them with
known performance models of the applications under pro-
filing. CDOSim [5] is an approach that targets to model the
Cloud Deployment Options (CDOs) and simulate the cost

and performance of an application. CloudAnalyst [6] is a
similar work that simulates large distributed applications and
studies their performance for different cloud configurations.
Finally, WebProphet [7] is a work that specializes in web
applications. These works assume that performance models
regarding both the infrastructure and the application are
known, as opposed to our approach that makes no assump-
tions neither for the application nor for the infrastructure.

The idea of emulation-based approaches is to deploy
the application and capture performance traces for various
scenarios, which are then “replayed” to the infrastructure
in order to to predict the performance. CloudProphet [31]
is an approach used for migrating an application into the
cloud. It collects traces from the application running locally
and replays them into the cloud, predicting the performance
it should achieve over the cloud infrastructure. //Trace [9]
is an approach specializing in predicting the I/O behavior
of a parallel application, identifying the causality between
I/O patterns among different nodes. In [10] a similar ap-
proach is presented, in which a set of benchmark appli-
cations are executed in a cloud infrastructure, measuring
microarchitecture-independent characteristics and evaluating
the relationship between a target and the benchmarked
application. According to this relationship, a performance
prediction is extracted. Finally, [8] specializes to I/O-bound
BigData applications, generating a model of the virtualized
storage through microbenchmarking and generalizing it to
predict the application performance. Although emulation
approaches can be extremely efficient for capturing specific
aspects of an application’s behavior, they cannot be generally
applied if the application structure is unknown.

The final category of profiling methodologies view the ap-
plication as a black-box that receives a number of inputs and
produces a number of outputs, corresponding to performance
metrics. The application is deployed for some represen-
tative deployment configurations and performance metrics
are obtained, utilized by machine learning techniques to
map the configuration space to the application performance.
In [11], [16] a generic methodology is proposed used to
infer the application performance of based on representa-
tive deployments of the configuration space. The approach
tackles the problem of generalizing the performance for the
entire deployment space, but does not tackle the problem of
picking the most appropriate samples from the deployment
space, as the suggested approach. PANIC [12] is a similar
work, that addresses the problem of picking representative
points during sampling. This approach favors the points
that belong to the most steep regions of the Deployment
Space, based on the idea that these regions characterize most
appropriately the entire performance function. However it is
too focused on the abnormalities of the Deployment Space
and the proposed approach outperforms it. Similarly, the
problem of picking representative samples of the Deploy-
ment Samples is also addressed by Active Learning [25].



This theoretical model introduces the term of uncertainty for
a classifier that, simply put, expresses its confidence to label
a specific sample of the Deployment Space. Active Learning
favors the regions of the Deployment Space that present
the highest uncertainty and, as PANIC, fail to accurately
approximate the performance function for the entire space,
as also indicated by our experimental evaluation. Finally,
in [13] two more generic black-box approaches are pro-
vided, utilizing different machine learning models for the
approximation. Neither of these works, though, address the
problem of picking the appropriate samples, since they are
more focused on the modeling problem.

VI. CONCLUSIONS

In this work, we revisited the problem of performance
modeling of Big Data applications. Their configuration space
can grow exponentially large, making the required number
of deployments for good accuracy prohibitively large. We
proposed a methodology that utilizes oblique Decision Trees
to recursively partition and sample the Deployment Space,
assuming a maximum number of deployments. Our approach
manages to adaptively focus on areas where the model fails
to accurately approximate application performance, achiev-
ing superior accuracy under a small number of deployments.
We demonstrated that our method better approximates both
real-life and synthetic performance functions.
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