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Abstract. In this paper we present LinkedPeers, a DHT-based system designed
for efficient distribution and processing of multidimensional, loosely structured
data over a Peer-to-Peer overlay. Each dimension is further annotated with the
use of concept hierarchies. The system design aims at incorporating two impor-
tant features, namely large-scale support for partially-structured data and high-
performance, distributed query processing including multiple aggregates. To en-
able the efficient resolution of such queries, LinkedPeers utilizes a conceptual
chain of DHT rings that stores data in a hierarchy-preserving manner. Moreover,
adaptive mechanisms detect dynamic changes in the query workloads and adjust
the granularity of the indexing on a per node basis. The pre-computation of pos-
sible future queries is also performed during the resolution of an incoming query.
Extensive experiments prove that our system is very efficient achieving over 85%
precision in answering queries while minimizing communication cost and adapt-
ing its indexing to the incoming queries.

1 Introduction
Our era is characterized by an astonishing explosion in the amount of produced data
forming a new reality in the digital world. This tremendous increase of content is a
global phenomenon, affecting a variety of applications and making it one of the biggest
challenges in the area of Information Technologies. Market globalization, business pro-
cess automation, web applications, new regulations, the increasing use of sensors, all
mandate even more data retention from companies and organizations as a brute force
method to reduce risk and increase profits. In most applications, data are described
by multiple characteristics (or dimensions) such as time, customer, location, etc. Di-
mensions can be further annotated at different levels of granularity through the use of
concept hierarchies (e.g., Year − Quarter − Month − Day). Concept hierarchies
are important because they allow the structuring of information into categories, thus
enabling its search and reuse.

Besides the well-documented need for efficient analytics, web-scale data poses ex-
tra challenges: While size is the dominating factor, the lack of a centralized or strict
schema is another important aspect: Data without rigid structures as those found in
traditional database systems are provided by an increasing number of sources, for ex-
ample data produced among different sources in the Web [1]. The distribution of data
sources renders many centralized solutions useless in performing on-line processing.
Consequently, any modern analytics platform is required to be able to perform efficient
analytics tasks on distributed, multi-attribute structured data without strict schema.
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In this paper, we present the LinkedPeers system that efficiently stores and processes
data described with multiple dimensions, while each dimension is organized by a con-
cept hierarchy. We choose a Distributed Hash Table (DHT) substrate to organize any
number of commodity nodes participating in LinkedPeers. Data producers can individ-
ually insert and update data to the system described by a predefined group of concept
hierarchies, while the number of dimensions may vary for each data item. Queries are
processed in a fully distributed manner triggering adaptive, query-driven reindexing and
materialization mechanisms to minimize communication costs.

The motivation behind the design of LinkedPeers is to provide a large-scale dis-
tributed infrastructure to accommodate collections of partially-structured data. In con-
trast to approaches where both data and their relationships are pre-defined by rigid
schemas, we intend to support a higher degree of freedom: System objects are described
by d dimensions, each of which is further annotated through a corresponding concept
hierarchy. LinkedPeers does not require that each inserted fact be described by values
for all dimensions. On the contrary, it attempts to fully support it and not restrict the
ability to efficiently process it.

LinkedPeers manages to preserve all hierarchy-specific information for each dimen-
sion, using a tree-like data structure to store data and interlinking trees among different
dimensions. A natural ordering of the dimensions that stems from their importance,
query skew, etc, yields to a corresponding organization of the DHT layer: LinkedPeers
comprises of multiple ‘virtual’ overlays, one for each dimension. This strategy results
with each object being split into d parts and ending up in nodes of the primary and
secondary rings. Trees at secondary rings maintain information towards related trees of
the primary ring.

The purpose of this design is to couple the operational autonomy of the primary ring
with a powerful meta-indexing structure integrated at the secondary rings, allowing
our system to return fast aggregated results for the queried values by minimizing the
communication cost. By allowing adaptive result caching and precomputation of related
queries, this efficacy is further enhanced.

The proposed scheme enables the processing of complex aggregate queries for any
level of any dimension, such as: “Which Cities belong to Country ‘Greece’ ?” or
“What is the population of Country ‘Greece’ ?” or “Which Cities of Country
‘Greece’ have population above 1 million in Year ‘2000’?”, considering that the
Location and Time hierarchies describe a numerical fact for population. The en-
forced indexing allows to find the location of any value of any stored hierarchy without
requiring any knowledge, while aggregation functions can be calculated on the nodes
that a query ends up.

To summarize, this work presents the LinkedPeers system which offers the follow-
ing innovative features:

– A complete storage, indexing and query processing system for data described by an
arbitrary number of dimensions and annotated according to defined concept hierar-
chies. LinkedPeers is able to perform efficient and online incremental updates and
maintain data in a fault-tolerant and fully distributed manner.

– A query-based “materialization” engine that pro-actively precomputes relevant views
of a processed query for future reference.
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– Query-based adaptation of the indexing granularity of its indexing according to in-
coming requests.

Finally, to support our analysis, we present a thorough performance evaluation in
order to identify the behavior of our scheme under a large range of data and query loads.
The effectiveness of the techniques applied in LinkedPeers is also studied for the use
case of hosting Web data published and classified in RDF format.

2 LinkedPeers System Description

2.1 Notation and Definitions

Data items are described by tuples containing values from a data space domain D. These
tuples are defined by a set of d dimensions {d0, ..,dd−1} and the actual fact(s). Each
dimension di is associated with a concept hierarchy organized along Li levels of ag-
gregation `i j, where j ( j ∈ [0,Li− 1]) represents the j-th level of the i-th dimension.
It is defined that `ik lies higher (lower) than `il and denote it as `ik < `il (`ik > `il)
iff k < l (k > l), i.e., if `ik corresponds to a less (more) detailed level than `il (e.g.,
Month < Day).Tuples are shown in the form:

〈v0,0, . . . ,v0,L0−1, . . . ,vd−1,0, . . . ,vd−1,Ld−1−1, f0, ...〉

where vi, j represents the value of the j-th level of the i-th dimension. Note also that
any value-set (vi,0, . . . ,vi,Li−1) for the i-th dimension may be absent from a tuple, but
one dimension has to be considered as primary. The fact (e.g., f0) may be of any type
(e.g., numerical, text, vector, etc). Level `i0 is called the root level for the i-th dimension
and its hashed value vi0 is called root key. The values of the lowest level of a hierarchy
(vi,(Li−1)) are also referred to as leaf values.

The values of the hierarchy levels in each dimension are organized in tree structures,
one per root key. Without loss of generality, it is assumed that each value of `i j has at
most one parent in `i( j−1). To insert tuples in the multiple rings, one level from each
dimension hierarchy is chosen; its hashed value serves as its key in the underlying DHT
overlay. Any reference to this level is noted as pivot level and to its hashed value as
pivot key. The pivot key that corresponds to the primary dimension (or primary ring)
is called the primary key. The highest and lowest pivot levels of each hierarchy for a
specific root key are called MinPivotLevel and MaxPivotLevel respectively.

The value-set of a dimension along the aggregated fact are organized as nodes of a
tree structure, which contributes to the preservation of semantic relations and search.
Figure 1 describes the running example. The shown tuples adhere to a 3-dimensional
schema. The primary dimension is described by a 4-level hierarchy, while the other two
are described by a 3-level and a 2-level hierarchy respectively. Note that the last two
tuples do not contain values in d1 and d2 respectively. The selected pivot level for the
primary dimension is `02 and thus all the shown tuples have the same pivot key in the
primary dimension. All the value-sets in each dimension are organized in tree-structures
with common root keys.

The basic type of query supported in LinkedPeers is of the form:

q = (q0k, ...,qi j, ...,q(d−1)m)



4 Athanasia Asiki, Dimitrios Tsoumakos, and Nectarios Koziris

over the fact(s) using an appropriate aggregate function. By qi j is denoted the value for
the j-th hierarchy level of the i-th dimension which can also be the special ‘*’ (or ALL)
value.
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Fig. 1. A group of tuples with various value combinations among dimensions and the resulted
tree structure for the primary dimension.

2.2 Data Insertion

The proposed system handles both bulk insertions and incremental updates in a uni-
fied manner. As our design implies one virtual overlay per dimension, one key (using
the SHA1 hash function for instance) for a selected pivot value of each dimension is
generated.

During data insertions, the information about the pivot value is vital (only for initial
insertions the pivot level can be selected according to the needs of the application).
The design of LinkedPeers assumes if a value vi j is selected as a pivot key during the
insertion of a tuple, every other tuple that contains vi j must also select it as its pivot
key for the i-th dimension. To comply with this assumption, a node should be aware of
the existing pivot keys during the insertion of a new tuple. Thus, a fully decentralized
catalogue storing information about root keys and their respective pivot keys in the
network is implemented in LinkedPeers. Each root key is stored at the node with ID
closest to its value. Every time that a new pivot key corresponding to this root key is
inserted in the system, the root key node is informed about it and adds it in a list of
known pivot keys. The root key node is also aware of the MaxPivotLevel used during
the insertion of its values in the specific dimension.

The procedure for inserting the values of a tuple appropriately in all dimensions
constitutes of the following basic steps:

– Inform each root key of every dimension about the corresponding value-set
(vi,0, . . . ,vi,Li−1) of the tuple, so as to decide for the appropriate pivot level.

– Insert each value-set (vi,0, . . . ,vi,Li−1) to the corresponding ith-ring.
– Create or update links among the trees of secondary dimensions towards the pri-

mary dimension.

Initially, the initiator contacts the root key of the primary dimension’s value-set.
The root key of the primary dimension is informed about the new tuple and indicates
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Fig. 2. The created data structures after the insertion of the first tuple of Figure 1

the appropriate pivot level: if the same pivot key already exists, then its pivot level is
used, otherwise the MaxPivotLevel. In case that the root key does not already exist, then
it is stored in the node responsible for it and the pivot level is chosen either randomly
or according to a predefined pivot level for the whole system. Afterwards, the DHT
operation for the insertion of the tuple in the primary dimension starts and the tuple
ends up to the node responsible for the decided pivot key. The node responsible for
the pivot key of the primary dimension stores its value set in a tree structure and the
whole tuple in a store defined as its local database. Moreover, it stores the result(s) of
the aggregate function(s) over all these tuples that have the same value in each level
(i.e., the results for (v0 j, ∗, . . . ,*) queries, where j ∈ [0,Li−1]). Figure 2 demonstrates
the insertion of the value-set (a0,a1,a2,a3) in the primary ring of an overlay consisting
of nodes referred to as Nodi. The root key a0 does not exist in the overlay and `02 is
selected randomly as pivot level. The root index is created from a0 towards a2 and the
tuple is inserted to the node Nod1, which is responsible for the pivot key of the value
a2 according to the DHT protocol. Nod1 inserts all the values of the tuple in its local
database as well.

The next step is to store the value-sets for the remaining dimensions in the corre-
sponding ring. The node responsible for the primary key contacts each node responsible
for the root keys and is informed about the appropriate pivot level in di. Since the pivot
levels for the secondary dimensions are determined, the value-set of each dimension
is stored in the node responsible for its pivot key. Again, the respective aggregates are
also maintained in the nodes of the trees. The values of the secondary dimensions are
associated to the primary dimension through the primary key. Each leaf value of a sec-
ondary tree structure maintains a list of the primary keys that is linked to. The structure
storing the mappings among the leaf values and the primary keys is referred to as Linked
Table. The node holding the primary key also stores the pivot levels of the value-sets
of the secondary dimensions in its local database along with the whole tuple. Another
remark is that if the insertion of tuples does not take place during the initial loading of
data in the system and the root key already exists, then any existing soft-state indices
should also be updated according to the procedure described in our previous work for
updating hierarchical data [2]. In this case, since soft-indices may store the aggregated
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Fig. 3. Final placement and indexing of the tuples of Figure 1 in LinkedPeers

facts for the indexed value, the soft-state indices should not only get informed about the
locations about the new trees, but also about the new facts. In case that the tree already
existed, the marked values as indexed should also learn about the new tuple.

In Figure 2, the tree structures comprising of only one branch for the secondary
dimensions are shown as well. During the insertion of value-set (b0,b1,b2), the root
index b0 is created (the pivot level for c0 is the root level and no further indexing is
needed). Figure 3 shows the final placement of the values of the tuples of Figure 1
among the nodes of the overlay. When the second tuple is inserted in the overlay, the
root index for a0 indicates that the value a2 exists already as pivot key and thus this
tuple needs to be stored in Nod1. A new branch below the pivot level is inserted in the
existing tree. The values of dim1 do not exist in the third tuple, but this fact does not
affect the procedure of the insertion. The insertion of the values for dim1 results also in
the construction of a new tree for the pivot value b′1. Since the primary key of all tuples
is the same, the local database of Nod1 contains all the rows shown in Figure 1.

3 Query Processing

The queries posed to the system are expressed by conjunctions of multiple values. When
a query includes a pivot value, then the node responsible for this value can be found
with a simple DHT lookup. Otherwise, the native DHT mechanisms are not adequate
to search the rest of the stored values. The proposed techniques can be further utilized
to enable the search for any stored value.

The idea behind the approach followed for the insertion of tuples in the DHT overlay
is the maintenance of the linking among the multiple dimensions, which can be searched
either independently from each other or in conjunction with others. When the query
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does not define a specific value for a dimension (a ‘*’-value), then any possible value is
acceptable for the query. A query is assumed to include up to d-1 ‘*’ for d dimensions.

LinkedPeers allows adaptive change of pivot levels according to the query skew.
Therefore, query initiators are not aware if any of the queried values correspond to a
pivot value, forcing them to issue consecutive lookups for any value contained in the
query according to the dimension priority, until they receive a result. Initially, a lookup
operation is initiated for the value of the dimension with the highest priority. If the node
holding the queried value cannot be located by the DHT lookup, then a lookup for the
next non-‘*’ value follows. If no results are returned for all the values in the query, then
the query is flooded among the nodes of the overlay.

3.1 Exact Match Queries

Queries concerning a pivot value of any ring are called exact match queries and can
be answered by the DHT lookup mechanism. The are two categories of an exact match
query:

Category 1: Query is q=(q0pivotlevel , . . .), where a pivot value of the primary dimen-
sion is defined in the query. Any other values may be included for other dimensions as
well. The DHT lookup ends up at the node responsible for the pivot key of the primary
dimension. If this is the only value asked, the corresponding tree structure is searched
for the aggregate fact. Otherwise, the local database is scanned and the results are fil-
tered according to the remaining values locally.

Category 2: Query is q = (q0 j, . . . ,qipivotlevel , . . .), where q0 j does not correspond
to a pivot value. In this case, a queried value in one of the secondary dimensions is a
pivot value. The strategy followed to resolve this query is that consecutive queries are
issued until the node responsible for qipivotlevel is reached. If the query contains no other
values, then the tree structure of this node is adequate to answer it, otherwise the query
is forwarded to all the nodes of the primary dimension that store tuples containing
qipivotlevel . These nodes query their local databases to retrieve the relative tuples and
send back the results to the initiator. If more than one pivot values are present in the
query, then the query is resolved by the dimension with the highest priority. In the
example of Figure 3, a query for value b1 can be resolved by the aggregated fact stored
in Nod3. On the other hand, a query for the combination of values (a3,b1,∗) reaches
Nod3, which does not store adequate information to answer it and (using its Linked
Table) forwards it to Nod1, which queries its local database.

3.2 Flood Queries

Queries not containing any pivot value cannot be resolved by the native DHT lookup.
The only alternative is to circulate the query among all nodes and process it individually.
In case that the query contains a single value, then the tree structures of each node are
searched. Otherwise, a node searches its local database for the queried values and sends
the found results back to the initiator.

To minimize the communication and processing costs, extra steps are taken for the
resolution of a flood query. Both the DHT mechanisms and the properties of the data
structure are utilized to avoid visiting the same node multiple times and impose an order
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in the way that the nodes are visited, instead of flooding the query in an uncontrolled
manner. The hierarchical structure of data along with the imposed indexing scheme
enable a controlled flooding strategy that significantly reduces the communication cost.

Initially, a flood query is forwarded from a node to its closest neighbour in the DHT
substrate. Each visited node searches its tree structures for any of the values included
in the query. It also searches its local database for any of the queried values and the
combination of values included in the query. If nothing is found in the reached node,
then the current node registers the key range(s) under its responsibility in the flood
message and forwards the query to its closest neighbour. This strategy is enforced so as
to avoid visiting the specific node again during the rest of the procedure for the flood
resolution. The reasoning behind this strategy is that if a node has been already queried
and does not store any relative tuples to the query, then there is no benefit of searching
the same node again, even if it is indicated as a candidate node for holding tuples that
answer the query.

If any relative information to the query is found in a reached node, then the query
forwarding stops. In case that the queried value is found in a tree structure of the node,
then this node becomes the coordinator of the flood procedure. If more than one of the
queried values are found in the same node, then the query is resolved in the ‘virtual’
ring of the dimension with the highest priority. The possible cases of a found flooded
value are two: either to belong to a level above the pivot level or to a level below the
pivot level. The refereed node does not become the coordinator, when a value is found
in one or more tuples of the local database. Nevertheless, in this case there is enough
information in the stored tuple to find out if the found value is located above the pivot
level or below the pivot level, so as to forward the flood query either to the root key of
this value or its pivot key respectively. Any found tuples answering the specific query
(or aggregated facts) are also included to the flood message during the forwarding of the
query. Apart from this additional step, the procedure for resolving the query continues
as described below without any other changes.

Assuming that the found value is located below the pivot level of a tree structure,
then there are no other trees with the specific value. The node either sends the result
to the initiator of the query (if the query involves only a single value or the found
value belongs to the primary dimension) or forwards the query along the links to the
nodes of the primary dimension excluding the ones that have been already visited. The
same strategy described for the second category of the exact match queries is followed.
The nodes with the primary keys respond with the relative tuples or the aggregated fact.
These results are collected by the coordinator and are sent back to the node that initiated
the query.

In case that the found value belongs to a level above the pivot level, there may exist
other trees with the same value, even if one has been already found. For example, if a
flood message for value a1 in Figure 3 reaches Nod1, other nodes with the value a1 and
different pivot keys may also exist. Yet, it is certain that this value is not stored at a tree
having a different root key. Thus, the flood message is forwarded to the node with the
corresponding root key, which becomes the coordinator of the procedure from now on.
This node forwards the flood query to the nodes whose pivot keys is aware of, excluding
the nodes that have been already visited. If the found value belongs to the primary
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dimension or the query does not involve any other values, then nodes respond with
the relative tuples or the aggregated fact respectively. Otherwise, each node includes
in its response any relative facts that may have found in its local database and a set
of candidate nodes that the pivot key(s) of the found value is(are) linked in the primary
dimension. Upon receiving all the results, the coordinator merges the links and excludes
from querying the nodes that have been already visited. Finally, the local databases of
the remaining nodes are queried and the returned results are merged with the already
found ones and returned back to the initiator.

3.3 A Query-driven Approach for Partial Materialization

In many high-dimensional storage systems, it is a common practice to pre-compute
different views (GROUP-BYs) to improve the response time. For a given data set R
described by d (dimensions) annotated by single-level hierarchies, a view is constructed
by an aggregation of R along a subset of the given attributes resulting in 2d different
possible views (i.e., exponential time and space complexity). The number of levels in
each dimension adds to the exponent of the previous formula. In LinkedPeers, a query-
based approach is considered to tackle the view selection problem and : The selection of
which “views” to pre-compute is query-driven, as it is taken advantage of the evaluation
process to calculate parts of various views that are expected to be needed in the future
and maintain “partial materialized views” in a distributed manner.

Figure 4 depicts all the possible combinations of the values of the query (a1,b2,c1),
relative to Figure 3. The attributes participating correspond to levels {`01, `12, `31} re-
spectively. Each combination of values consists of a subset of attribute values in {d0,d1,
d2} ordered according to the priorities of dimensions in decreasing order. A possible
combination of values that can be queried is mapped to a “view identifier” comprising
of the respective values. When a view identifier (or combination respectively) is “mate-
rialized”, then the result for this combination of queried values is computed and stored
for future use. For example, the view identifier (a1,c1) in Figure 4 stores the results of
the query (a1,∗,c1). Moreover, each view identifier in the i-th level of the tree structure
in Figure 4 is deduced by its successor view identifier in (i-1)-th level by omitting the
participation of one dimension each time. When a value of a dimension is omitted in
a view identifier, then it is considered that its value is a ‘*’-value. The identifiers that
have already registered on the left-side of this tree are omitted.

Let Si ⊂ S be the subset of view identifiers that start with the attribute value defined
in dimension di. The subset of the specific view identifiers is called Partitiondi and the
dimension that participates in all identifiers of the dimension as Rootdi . In Figure 4,
Partition0 comprises of all view identifiers that contain a1, which is the Root0, while a1
does not appear in any identifier of the remaining partitions.

According to the strategy followed during flooding, all the nodes with trees con-
taining the found value used for the resolution of the query (hence reference value) are
definitely contacted. Thus, it can be concluded with certainty that there exist no extra
nodes with tuples containing the reference value. This assumption is not valid for the
rest of the values included in the query. This observation is significant for determining
which combinations can be materialized and stored for future queries in a distributed
manner:
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Query:(a1 ,b2 ,c1)      
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Fig. 4. All possible view identifiers for a query combining values in 3 dimensions.

Let S be the set of all the 2d identifiers. It can be deduced that only a subset Spartial ⊂
S of the view identifiers can be fully materialized, namely only the identifiers of the
combinations including the reference value. In the example of Figure 4, let us assume
that the flooded query for the combination (a1,b2,c1) reaches Nod3 and the reference
value is b2. The query will be forwarded to Nod1 and it will be resolved. Nevertheless,
it is not ensured that there are no other nodes storing tuples with a1 or c1. Thus, Spartial
comprises of the view identifiers in the non-grey boxes, which can be materialized.

In more detail, the calculation of the partial views occurs among the nodes of
LinkedPeers as follows: each peer that returns a found aggregated fact in a flooded
query, also calculates the available view identifiers in Spartial stored in its local database.
Due to the flooding strategy, every peer with trees containing the reference value will be
definitely contacted. According to this procedure, the following conclusions are made:

– The Spartial may comprise only of identifiers belonging to Partitiond0 ,Partitiond1 , ..,
Partitiondre f , where the Rootdre f of Partitiondre f is the reference value used for the
resolution of the flooded query.

– If the query is flooded in all the nodes of the network, then all the combinations of
the queried values can be calculated resulting in 2d−1 combinations (‘ALL’ is not
materialized), if the query does not contain any ‘*’-value. In case of ‘*’-values, the
number of view identifiers is 2d−n−1, where n is the number of ‘*’-values. If the
described strategy for minimizing the visited nodes during the flood of a query is
enforced, then only the combinations that contain the reference value can be cal-
culated. Nevertheless, taking into account the type of the inserted dataset (number
of dimensions, number of tuples), the type of the query workload (average number
of ‘*’-values per query) and the specifications of the system (i.e., bandwidth con-
sumption, storage capacity) various policies can be defined to limit the number of
calculated aggregated results.

Upon the reception of all the results, the coordinator merges the returned aggre-
gated facts for each view identifier. Afterwards, it calculates the hash value of each
Rootd j and inserts each Partitiond j ( j ∈ [0,dre f ]) to the overlay. The node responsi-
ble for the Rootdre f also creates indices towards the locations of its tree structures to
forward any query that cannot be resolved by the stored materialized views. The idea
behind the splitting of the partitions is that the stored combinations need to be located
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with the minimum message cost, namely with the primitive DHT lookup. Since a query
is dissembled in its elements and the queries are issued according to the priority of the
dimensions, each identifier is stored to the dimension with the highest priority of its
values.

Although any approach of existing relational schemas for storing views could be
utilized to store the aggregated facts, simple ‘linked-listed’ structures are maintained in
LinkedPeers storing the different view identifiers, along with the corresponding facts.
As shown in Figure 5, the materialized view identifiers of Figure 4 are stored to the
nodes responsible for the values appearing in the ‘dark grey’ boxes. All the queries
arriving at the node responsible for Root0 (namely a1) should also include the Rootdre f ,
which is b2. The combination of value(s) that a query should at least include so as to be
resolved by one view identifier of such a group is marked with red boxes. It may also
include the value(s) contained in the white boxes. For instance, the queries (a1,b2,∗)
and (a1,b2,c1) can be directly answered by the calculated results stored in the node
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Fig. 5. Distribution of materialized view identifiers among the nodes of LinkedPeers

responsible for the Partition0, as shown in Figure 4. The key used by the DHT for
assigning these two view identifiers to the appropriate node is the hashed value of a1.

The created indices and views are soft-state in order to minimize the redundant
information. This means that they expire after a predefined period of time (Time-to-Live
or TTL). Each time that an existing index is used, its TTL is renewed. This constraint
ensures that changes in the system (e.g., data location, node departures, etc) will not
result in stale indices, affecting the validity of the lookup mechanism. Finally, we pose
a limit to the maximum number of indices held by each node. Overall, the system tends
to preserve the most “useful” indices towards the most frequently queried data items.

During the update procedure, there are different alternatives that can be considered
for updating the materialized combinations, since their aggregated facts may change.
On one hand, it can be assumed that since the partial materialized views are soft-state,
it can be avoided to explicitly update their values and rely on the fact that after their
expiration, the new values will be taken into account. On the other hand, if the returned
results need to be accurate and there are strict constraints on this, then a strategy can be
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enforced that lookups about the values of the new tuple(s) and updates any materialized
combinations of values appropriately.

3.4 Indexed Queries

When a query reaches a node holding an index, then the stored view identifiers (if any)
are searched for the combination of values included in the query. If the combination is
found, the aggregated value is returned to the initiator. In the case that the combination
does not exist, but the index is aware of the nodes with the pivot keys for the specific
value, the query is forwarded to the respective pivot keys. If the query is simple or the
found value belongs to the primary dimension, then the aggregated facts for the query
are returned. Otherwise, the reached nodes return the locations of the primary ring that
are correlated with the indexed value. The query is forwarded to these nodes contacting
their local database. After an indexed query which has not been resolved with the use of
a stored view identifier, the procedure for materializing all the possible view identifiers
described in the Section above is followed.

The nodes with actual tuples of the indexed value need to know the existence of an
index. The bidirectionallity of the indices is introduced only to ensure data consistency,
despite of them being soft-state. During re-indexing operations, the locations of stored
tuples change and indices correlated to these tuples need either to be updated or erased,
preventing the existence of stale indices. It has been chosen to erase them, so as to avoid
increasing the complexity of the system. Detailed information for an existing index is
not essential for the node, where the tuples are stored. A simple mark for each indexed
value is adequate in order to erase its index, if needed. In this case, some redundant
operations for erasing expired indices may occur. If there are no memory restrictions
and local processing is preferable to bandwidth consumption, indexed values can be
marked with a time-stamp. Every lookup for an indexed value renews the TTL in both
sides of the index and only valid indices are erased during re-indexing operations. The
created views holding the data for the calculated combinations are not aware of the
locations of the trees and for this reason views are only soft-stated.

4 Adaptive Query-driven Re-indexing

A significant feature of our system is that it dynamically adapts its indexing level on a
per node basis to incoming queries. To achieve this, two re-indexing operations regard-
ing the selection of pivot level are introduced: Roll-up towards more general levels of
the hierarchy and drill-down to levels lower than the pivot level.

The idea behind the decision procedure is based on the fact that a node is more
capable of detecting if the values for a level `i j > pivotlevel (where pivotlevel denotes
the pivot level of a specific hierarchy in the i-th dimension) of a tree are queried at most
and thus to proceed to re-indexing operation. On the contrary, it has to cooperate with
the rest of the nodes storing a value for a level `i j < pivotlevel to obtain a global view
and decide if a re-indexing operation towards this level for the involved trees would
be beneficial. Therefore, the node has sufficient information to decide if a drill-down
will be favorable for the values of this tree. A roll-up towards a level `i j < pivotlevel is
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decided by all the involved nodes storing trees with the specific value in this level. The
decision for a possible re-indexing operation is made according to statistics collected
by the incoming queries in the trees responsible for the specific value used during the
resolution of a query. Since some queries are resolved by the node holding an index
and are not further forwarded to the node(s) with the actual tree structure(s), some
statistical information is maintained in these nodes. This information is pushed to the
referred nodes and merged with their maintained records, as soon as another query
needs to be forwarded to these nodes by the index. The queries answered with the use of
view identifiers are not counted in the decisions for re-indexing, since they are resolved
directly by the node holding them and the query processing is not encumbered. The
goal is to increase the number of queries answered as exact matches in each dimension.

Each time that a value of a tree structure is looked up, then the maintained statistical
information is updated. The decision process for a possible re-indexing operation can be
triggered after an indexed query resolved without using a materialized view or a flooded
query and only for the reference value. As far as the indexed queries are concerned, a
node holding the tree with the specific value checks for a re-indexing operation after a
number of indexed queries has been received by the specific node. When a tree struc-
ture is searched during the resolution of a flood or indexed query, then the respective
statistical information is checked to find out if a re-indexing operation is indicated. If
a drill-down is decided or a roll-up seems probable, then this alarm is included to the
answer of the node. Since only the tree structures for the reference value are definitely
visited, a re-indexing decision is examined only for this value and not all the values con-
tained in the query. The procedure for deciding if a re-indexing operation is advisable
is performed according to the algorithms proposed in [2]. Nevertheless, major enhance-
ments have been made for the customization of the re-indexing operations in multiple
dimensions due to the requirements arisen from the existing links among the rings. If
a re-indexing operation is not needed after a flood query, then no action is taken other
than the creation of the soft-state indices and materialization of the view identifiers.
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Fig. 6. Re-organization of the tree structures of dim1 after a roll-up operation towards `0



14 Athanasia Asiki, Dimitrios Tsoumakos, and Nectarios Koziris

Roll-up: In general, if a node detects that the demand on a value above the pivot
level relatively exceeds the demand for the other levels, it initiates the procedure to
decide if a roll-up towards this level would be beneficial (by communicating with the
other nodes holding this value). For this reason, it sends a remark to the node collect-
ing the results that a possible roll-up operation towards the queried level needs to be
examined. When the coordinator (if a flood operation occurs) or the node that holds the
index is informed about the requisite of a possible roll-up towards the queried level, it
starts the collection of statistical information from all trees containing the queried value.
Afterwards, it decides if a roll-up operation is needed and a positive decision leads to
the re-insertion of all trees containing the specific value with the new hash value in the
overlay and the trees with the old pivot value are deleted. During a roll-up, one or more
nodes re-insert their trees, which end up in one node responsible for the new pivot key.
If the roll-up value belongs to a primary dimension, then all the relative tuples in the
local database are transferred to the new node. Each node also informs the root key
about the pivot key(s) to be erased and the new pivot key to replace it (them) and erases
all the soft-state indices towards any value of the re-indexed trees. The root key waits to
receive the messages for updating its list of pivot keys from all the nodes participating
in the roll-up operation and afterwards replaces the old pivot keys and nodes with the
new ones. In the meantime, queries concerning any value of the trees participating in
a roll-up operation are answered by the nodes responsible for the old pivot keys. The
stored view identifiers containing any of these values in other rings are not affected,
since the relocation of the trees does not influence the stored, aggregated facts. The
final step is the update of the links among the primary and the secondary rings, since
the links need to be valid for the resolution of future queries. If the roll-up operation is
performed in the primary ring, then the entries in the Linked Tables containing the old
pivot keys need to be updated. Each tuple in the local databases stores also the pivot
levels of the secondary dimensions. Thus, the node responsible for the new pivot key
finds the pivot keys of the secondary dimensions from its tuples along with their leaf
values and informs them about its new pivot key, so as to update their links towards the
primary dimension. When the roll-up is performed in a secondary ring, then the pivot
levels stored in the tuples containing the new pivot key need to be updated as well. For
this reason, the node responsible for the new tree, sends its pivot level along all of its
different links towards the primary dimension.

In Figure 6, the outcome of a roll-up operation towards `0 in the secondary ring
of dim1 is shown. The involved tree structures storing the value b0 before the roll-up
operation are shown in Figure 3. It can be assumed that an indexed query for the value
b0 triggered a roll-up operation resulting in the re-insertion of the trees with pivot keys
b1 and b′1 respectively. The node responsible for the new pivot key b0 informs also
the node responsible for the primary key a2 that the new pivot level for all the tuples
containing the value b0 in dim1 is `0.

Drill-down: The drill-down procedure is less complex, due to the fact that only one
node holds the unique tree with values for this level. Thus, the node answering the
query can locally decide if the drill-down is needed and proceed to the required actions.
Afterwards, it splits the tree to tuples grouped by the new pivot key and re-inserts them
in LinkedPeers. In case that the queried value belongs to the primary dimension, the
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tuples of the local database are transfered to the nodes responsible for the new pivot keys
as well. After the re-insertion of the relative trees is completed, the node responsible
for the old pivot key informs also the root key about the new pivot keys and the new
locations of the trees and all existing indices towards the values of the old tree are
erased. Finally, the node that decided the drill-down updates the links among itself and
the rest of the rings as described for the roll-up procedure.
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Tuples in a local database of Nod25:
Primary Dim         Dim1            Dim2  Fact
(a0,a1,a2,a''3)   (b0,b'1,b''2)     null     f4

Fig. 7. Re-organization of the tree structures and the local databases in the primary dimension
after a drill-down operation towards `3

Figure 7 exhibits the placement of the tuples in the primary dimension after a drill-
down towards `3 of the tree with pivot key a2 shown in Figure 3. A flood query for
the value a3 will end up in the node responsible the pivot key a2 and will trigger the
procedure for deciding if a drill-down is needed towards `3. If this is the case, the
node re-inserts the tuples of the specific tree with the new pivot keys a3, a′3 and a′′3
respectively. The specific node informs also the root key a0 about the new pivot keys
and the pivot keys of the secondary dimensions that is linked to. For example, the entry
b2→ a2 in the Linked Table of the pivot key b1 is now replaced with the entry b2→ a3.

Group-Drill-down: When a roll-up is examined towards a queried level above the
pivot level, it is also examined if a drill-down of the involved trees to a level li j ≥
MaxPivotLevel is needed. It is possible to find a level `i j ≥ MaxPivotLevel to be the
most popular but this tendency not to appear in the partial views of the involved nodes
and for this reason the trees have not already performed a drill-down towards this level.
In this case, the coordinator informs the involved nodes that a drill-down to this level
is needed. This procedure is called Group-Drill-down, since more than one nodes
participate in the drill-down. All the trees with the queried value drill-down to the new
pivot level. If the new pivot level is equal to the MaxPivotLevel, the trees already in the
MaxPivotLevel do not perform any action.
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5 Use Case: Indexing and Searching Web Data

Recently, most of the web sources have adopted general standards to publish their data
enabling the integration and combination of different content. A well-established effort
is the “Linked Data Principles” paradigm [3] defining a group of rules for publishing
data on the Web and linking content among different resources targeting the creation
of a signle global data space. These efforts mainly follow the Resource Description
Framework (RDF) [4], which has been widely introduced for the representation and
exchange of such information, since it provides a flexible way to describe things in
the world (e.g., people, locations or abstract concepts) and their relationships. RDF
data is, in essence, a collection of statements represented as triples: 〈subject, property,
object〉. Each property in the triple states the relation between the subject and the object.
Moreover, the current trend for sources publishing data of the described form is to make
them available through SPARQL endpoints [5] responsible for the evaluation of the
queries posed by the users.

It has been observed that many of these sources exploit standards such as the RDFS
and the Web Ontology Language OWL to represent the semantic knowledge, i.e., to
express entities, facts, relations between facts and properties of relations. Moreover, the
instances (or individuals) are usually described by concepts (e.g., countries, cities, orga-
nizations, people). These concepts can be arranged in a hierarchical manner through the
use of taxonomies or category hierarchies. For instance, in the DBpedia project [6], a
cross-domain manually created ontology extracted from the infoboxes within Wikipedia
is utilized to describe all individuals (or instances). We refer to both individuals and con-
cepts as entities in the rest of this discussion. It is considered that each entity can appear
as a subject in a triple and as an object in another triple. The classes of these ontologies
can be used to build trees according to the rdfs:subClassOf relation, which is used
to state that one class is a subclass of another and this information is utilized for the
ordering of concepts among the levels of the trees.

The proposed mechanisms for interlinking multidimensional data in LinkedPeers
can be customized so as to provide a P2P infrastructure for storing and indexing data
published in such forms. In this platform, new entities are inserted and end up in the
nodes responsible of the pivot value of their trees. The distribution of data among the
nodes of the overlay occurs in a manner that preserves the ontology-specific information
of each entity, while it also interlinks different entities according to their properties. The
queries concerning entities at any level can be performed in a unified manner due to the
organization of data in hierarchical structures. Moreover, the adaptation of the indexing
granularity among different levels of entities and classes is performed according to the
incoming queries.

To serve the needs of the investigated application, two virtual overlays are con-
structed according to the logic of the LinkedPeers architecture: one primary ring storing
the entity appearing as subject in the triple and a secondary ring indexing the entities
appearing as objects. As a result of constructing these two rings, only the queries about
entities can be resolved by the developed mechanisms. If a query is about a specific
property, then it can be only resolved through flooding and evaluation among all the
nodes of the system. The creation of indices for the properties is disabled due to the fact
that properties usually do not adhere to hierarchical relationships. As described in [7],
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it can be expected that queries may contain at least the type of the subject or the object.
If this is the case, the query resolution starts from this value and follows the links main-
tained in the system until it is resolved. Nevertheless, if the system is required to serve
mostly queries about properties, then an additional secondary ring can be added as the
one for indexing the objects without requiring further modifications.

During data insertion, the following assumption is made: when two new entities and
their among relationships are inserted, then the all relevant information regarding the
“full path” of the hierarchy of classes describing the specific entities is provided. For ex-
ample, the triple <NTUA, campus, Athens> states that the entities NTUA and Athens
are linked with the relationship campus. When this triple containing the above entities
is inserted, all the triples describing the semantic information about these entities need
to be provided, i.e., all the classes (defining the corresponding concepts) related to the
specific entities. In the described example, all the triples provided during the insertion
form the following tuple:

〈Organization, Institution, University, NTUA,
Place, City,Administrative Region, Athens,campus〉

In this tuple, the emphasized values denote the actual entities appearing in the discussed
triple and their relationship. The rest of the values correspond to the instances of the
classes that the entities belong to and are ordered according to the utilized categorical
ontology.

The insertion of these tuples occurs as described in Section 2.2. Nevertheless, the
local databases may store RDF triples representing the information contained in the
above assumed tuple, thus enabling the reasoning and other ontology related operations.
The only prerequisite related to the creation of the tree structures is that all the branches
of the same root value have the same number of levels so as the re-indexing operations
to take place. Since, in a real-world ontology, a different number of levels below each
node may exist, we fill the missing levels above the leaf value with “pseudo” values.

The queries are resolved according to the described strategies which locate the
stored entities of any level. Since the same entity may appear in the primary and the
secondary dimension at the same time, this fact is taken into account during the resolu-
tion of a query. If the queried entity is searched as a subject, then the query is handled as
described in the cases of the primary dimension; otherwise the appropriate procedures
of forwarding the query along the maintained links are performed. The same approach
is followed during the re-indexing operations: The update of the links among the pri-
mary dimension and the secondary dimension occurs in both direction for the same tree,
namely both the pivot levels for the secondary dimension in the tuples of the database
and the records of the Linked Tables are updated.

6 Experimental Results

6.1 Simulation Setup

A comprehensive evaluation of LinkedPeers is presented. The performance results are
based on a heavily modified version of the FreePastry [8] using its simulator for the
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network overlay, although any DHT implementation could be used as a substrate. The
network size is 256 nodes, all of which are randomly chosen to initiate queries.

The synthetic data are trees (one per dimension) with each value having a single
parent and a constant number of mul children. The tuples of the fact table to be stored
are created from combinations of the leaf values of each dimension tree plus a randomly
generated numerical fact. By default, our data comprise of 1M tuples, organized in
a 4-dimensional, 3-level hierarchy. The number of distinct values of the top level is
base = 100 with mul=10. The level of insertion is, by default, `1 in all dimensions.
For the query workloads, a 3-step approach is followed: At first, the part of the initial
database (i.e., tuple) the query will target (TupleDist) is identified. Next, the probability
of a dimension d not being included (i.e., a ‘*’ in the respective query) is Pd∗. Finally,
for included dimensions, the level is chosen that the query will target according to
the levelDist distribution. In the presented experiments, a different bias is expressed
using the uniform, 80/20 and 90/10 distributions for TupleDist and levelDist, while
Pd∗ increases gradually from 0.1 for the primary dimension to 0.8 for the last utilized
dimension. Generated queries arrive at an average rate of 1 query

time unit , in a 50k time units
total simulation time.

This section is intended to demonstrate the performance of the system for differ-
ent types of inserted data and query workloads. The experimental results focus on the
achieved precision (i.e., the percentage of queries which are answered without being
flooded) and cost in terms of messages per query.

6.2 Performance Under Different Number of Dimensions and Levels

In these experiments, the behavior of the system under data workloads containing tu-
ples with various number of dimensions or tuples with variable number of levels per
dimension is identified. The queries target uniformly any tuple of the dataset and any
level of the hierarchies in each dimension.

In the first set of the experiments, the number of dimensions varies, while each di-
mension is further annotated by a 3-level concept hierarchy. Figure 8 demonstrates the
percentage of the queries in the workload including at least one pivot value (denoted
as Pivot Level Queries), the percentage of the queries resolved as exact match
queries in LinkedPeers (denoted as Exact Match) and the achieved precision. The
precision for non-flooded queries remains above 85% for all types of datasets, despite
the number of dimensions. Queries that are not directed towards the pivot level are
answered with the use of an index or a materialized combination assuring that the pre-
cision remains high. The difference among the exact matches and the pivot level queries
is due to the fact that in the utilized strategy followed during the resolution of queries, it
is preferred to use an index of a higher dimension than continue looking up for a pivot
value in the dimensions with lower priorities.

In Figure 9, the results for 4-dimensional workloads with varying number of levels
in the hierarchies are demonstrated. The decrease in the precision (from 99% to about
70%) is due to the fact that the increase of levels has a negative impact on the probability
of a query to include one pivot value for at least one of the dimensions. Thus, the
percentage of the Pivot Level Queries decreases and consequently the same
happens to the percentage of the Exact Match queries, as shown in the first pairs
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of columns in Figure 9. The increase of levels also influences the querying of a value
that it is already indexed. For this reason, the deviation between the Pivot Level
Queries and the Exact Match is bigger for two levels, where all queries including
a value in the primary dimension are resolved with the use of the pivot key or the root
index according to the proposed strategy for the query processing.
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6.3 Query Resolution for Different Types of Datasets

In this experiment, the achieved precision of LinkedPeers for various types of datasets
is demonstrated in Figure 10. The number of distinct values in the top level base
and the number of children mul varies resulting in the change of the density for the
dataset. Base and mul influence the connections among primary and secondary rings,
the number of distinct values in each level and in general the dataset density. As shown
in Figure 10, as mul increases, a decrease in the precision is observed. The same trend
is also shown for workloads generated with the same value for mul parameter, but
with different values for the base. Nevertheless, LinkedPeers achieves to resolve the
majority of queries without flooding.

The percentage of exact match queries in the primary dimension (Exact PR) re-
mains stable for all datasets as shown in Figure 11, since it depends on the query work-
load. Nevertheless, the exact matches in the secondary rings (Exact SR) increase as
the indexed queries decrease, since the indices of the primary dimension are used less,
and more queries are resolved by the secondary rings.

6.4 Precision for Skewed Workloads

The adaptive behavior of LinkedPeers is identified in this set of experiments by testing
the system under a variety of query loads. In more detail, the first set of experiments
is about query loads biased towards the higher levels of the hierarchies, while different
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values of TupleDist are utilized for their generation. The number of queries directed to
each level depends on the value of levelDist. The results of these experiments are shown
in Figure 12 focusing on the achieved precision and the percentage of Exact Match
queries. In this Figure, it is also depicted the percentage of queries including at least
one value belonging to `0 and at least one value belonging to `1, which are denoted
as Queries L0 and Queries L1 respectively. As shown in the Figure, the more
biased the query load towards the higher levels, the higher the precision becomes and
remarkably results (close to 100%) are observed. In the biased loads, the percentage
of Queries L0 is significant bigger that the one of Queries L1 and it is easier
for the system to decide the required roll-up operations towards `0 in each dimension.
Thus, even if the selection of `1 is not appropriate for the resolution of queries without
flooding, the system manages to adjust the pivot levels of the queried hierarchies and
resolve a large portion of the queries as exact matches (denoted as Exact Match),
proving that the re-indexing mechanisms are highly effective.
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Figure 13 depicts the respective measurements, when the query loads favour the
lower levels of the hierarchies. A decrease is noticed in the precision of loads, where the
levelDist becomes more biased for the same TupleDist. This is due to the fact that lower
levels of the hierarchy have a considerably larger number of values. As the number of
queries targeting the lower levels increases, the probability of queries targeting non-
indexed values is higher until the re-indexing mechanisms adapt the pivot levels of the
popular trees appropriately. Since the percentage of Queries L1 and Queries L2
does not indicate clearly which level is a a more appropriate selection as pivot level,the
percentage of exact matches is lower in the biased loads compared to the achieved one
in the first set of experiments (see Figure 12).

6.5 Testing against Partial Materialization

Apart from the re-indexing operations, the materialized combinations can be also uti-
lized to minimize the query cost. In the next experiment, the method is tested against
query workloads targeting the dataset either uniformly or biased (90/10) (TupleDist)
with uniform and biased (90/10) skew (levelDist) towards the higher levels (denoted as
UP) and towards the lower levels (DOWN).
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Fig. 14. Utilization of materialized combinations
compared to queries resolved as indexed
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Fig. 15. Utilization of identifiers over time com-
pared to other queries for the UNI query load

As shown in Figure 14, the percentage of queries resolved with the utilization of
a precomputed combination (ViewQ) increase in the query loads with 90/10 as Tu-
pleDist compared to the percentage of the corresponding loads with UNI TupleDist for
the same values of levelDist. This happens due to the following fact: if a part of the
dataset is queried at most, then the probability of asking a calculated combination of
values increases as well. Thus, more queries are resolved with the use of combinations.
Moreover, the percentage of retrieving an answer from a stored combination is higher
for uniform (UNI) levelDist. In this case, the re-indexing mechanisms cannot adjust the
pivot levels to all the incoming queries and the indexed queries are more often resulting
in the utilization of more identifiers.
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Figure 15 depicts how queries are resolved during the simulation of the query load
that targets mostly a specific part of the dataset and uniformly all the levels of the hierar-
chy in Figure 14. The total number of queries has increased to 100k and the percentage
of queries answered with the use of a materialized combination is not included in the
percentage of the indexed queries. It can be observed that the utilization of view identi-
fiers increases over time and less queries needs to be forwarded across the indices.

6.6 Cost of the Various Types of Query Resolution

The cost of a query is considered as the messages that need to be issued for its resolu-
tion. A query resolved as exact match in the primary dimension utilizes only the DHT
lookup mechanism. Figure 16 depicts the average number of messages only for exact
queries resolved by secondary dimensions (Exact SR), which number is significantly
smaller (less than 20% of all queries in all cases) and indexed queries (Indexed). The
average number of messages for Exact SR depends on the type of dataset, namely the
number of links among secondary pivot keys and primary pivot keys. When the query
workload is skewed towards the higher levels (UP), then the messages decrease due to
the fact that popular trees roll-up towards `0. Thus, the secondary keys are connected
to a smaller number of primary keys. The opposite observation is valid for the (DOWN)
query workloads.
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Fig. 16. Average number of messages for exact matches in secondary rings and indexed queries

6.7 Performance for dataset of the APB benchmark

The adaptiveness of the system is also tested using some realistic data. For this reason,
we generated query sets with the APB-1 benchmark [9]. APB-1 creates a database struc-
ture with multiple dimensions and generates a set of business operations reflecting basic
functionality of OLAP applications. The generated data are described by 4-dimensions.
The customer dimension (C) is 100 times the number of members in the channel di-
mension and comprises of 2 levels. The channel dimension (Ch) has one level and 10
members. The product (P) dimension is a steep hierarchy with 6 levels and 10.000
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members. Finally, the time dimension (T) is described by a 3-level dimension and made
up of two years. The dataset is sparse (0.1 density) and comprises of 1.3M tuples. Fig-
ure 17 shows the percentage of exact match queries resolved in primary and secondary
rings compared to all exact match queries of a 25K query workload and for different
combinations of ordering of dimensions. For all orderings, the precision of non-flooded
queries is over 98%. The selection of the primary dimension influences the number of
exact match queries in the primary ring.

Figure 18 presents the average number of messages for exact matches resolved by
a secondary ring and indexed queries, since only a DHT lookup is performed for ex-
act match queries in the primary ring. The average number of messages is small for
both exact and indexed queries, apart from the case that the customer dimension has
been selected as a primary dimension. In the rest of the cases, the resolution of the
queries occurs with a very low cost in terms of additional nodes to visit, even though
the majority of the exact queries are resolved by a secondary dimension, as shown in
Figure 17. The increase of messages for the CPChT dataset is due to the large number of
distinct values used as pivot keys and thus each node responsible for a pivot key stores
smaller portion of the total dataset in its local database. For all combinations of datasets,
the overhead of the additional indexing structures needed by LinkedPeers such as tree
structures, root indices, links and indices and statistical information is up to 1%. Thus,
LinkedPeers can be considered as a lightweight solution for indexing multidimensional
hierarchical data.

ChCPT PCChT TPCCh CPChT
0

20

40

60

80

100

p
er
ce
n
ta
g
e

Exact_PR
Exact_SR
Precision

Fig. 17. Precision for APB query workload in
LinkedPeers

ChCPT PCChT TPCCh CPChT
0

50

100

150

200

A
v
g
. 
M

sg
s

Exact_SR
Indexed

Fig. 18. Average number of messages for exact
match and indexed queries

6.8 Performance Evaluation for Web Data

In this section, we exhibit the performance of the proposed setup for hosting hierarchical
data coming from Web sources following the discussion of Section 5. The presented
response times are measured in a real testbed consisting of 16 physical machines with
a Xeon processor at 2GHz with 8GB of memory running a 64-bit Debian Linux kernel.
The nodes communicate through FreePastry sockets using Gigabit Ethernet.
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The local databases for each node are setup with SQLite [10]. The schema used is
a single table; a more sophisticated schema may also be used to improve the retrieval
performance. Yet, the purpose is to showcase the advantages of a unified distributed
indexing scheme for multiple RDF repositories. Further performance improvements in
the storage of such data in the local databases is outside the scope of our evaluation.
Moreover, the functionality of pre-computing aggregated facts of various combinations
for future use has been disabled for the specific experiment.

The proposed approach is compared to a setup consisting of a central repository
(denoted as VirtStore in the Figures) built with the use of Virtuoso Open-Source
Edition version 6.1 [11], which is a centralized triple store for RDF data. The specific
store is a popular open-source solution for storing RDF data. The default configura-
tion provided during the Debian repository installation is utilized. Queries to the store
are posed from a client hosted on a different machine. Queries are executed using the
Virtuoso Jena provider [12], a fully operational Native Graph Model Storage Provider
enabling Semantic Web applications to directly query the Virtuoso RDF store. Before
the execution of a set of queries, the system is forced to drop all filesystem caches;
the database is also rebooted to clear any internal caches. During the execution of a
queryset, the database creates and uses its internal caches.

The comparison dataset in the presented experiments is created using the Lehigh
University benchmark (LUBM) [13]. The specific benchmark generates synthetic data-
sets of any size that commit to a single realistic ontology and models information en-
countered in the academic domain. The LUBM ontology, while not a large one, has
the distinctive property of having a small number of different values in the most generic
level while being extremely wide in the level of the leaves. For the experimental evalua-
tion, a dataset featuring 100 universities with 18 different predicates has been generated
resulting in a dataset of 13.5M triples. By default, `2 is chosen as the pivot level.

The benchmark also includes a set of different query categories with various levels
of complexity and selectivity. A significant characteristic of these queries is that some
of the categories assume the rdfs:subClassOf relationship among the concepts.
This property is handled transparently by the proposed platform. A set of nine mean-
ingful queries is included in order to provide direct comparison between the proposed
scheme and the centralized store. These queries do not particularly favor any specific
storage scheme and require no complex execution plan. Each category of query is now
described in detail:

Query 1 (LQ1): This query aims to find any person whose type is Graduate-
Student and is related to a specific course (e.g., GraduateCourse0) according to
the relationship takesCourse. The resolution of this query starts with the lookup of
the value GraduateStudent. If no results are found, then the value of the course is
looked up and if it is not a pivot key or indexed value, then the query is flooded.

Query 2 (LQ2): This query refers to all publications related through the publica-
tionAuthor property to a specific professor (e.g., AssociateProfessor0). The
difference with LQ1 is that the class Publication has a wide hierarchy.

Query 3 (LQ3): This query targets the retrieval of all the information related to a
professor that worksFor for a specific university’s department (i.e. Department0).
It also queries about multiple properties of a single class and most of these proper-
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ties do not link the subject with other entities: For this reason, they are only stored
locally in the node of the specific professor (i.e., the property about the name and the
emailAddress).

Query 4 (LQ4): This query searches for all Professors that work for any de-
partment of a specific university (e.g., University0)) and selects someone only if
she is Chair of the department.

Query 5 (LQ5): This query is about all the persons that are memberOf of a specific
department of a university (e.g., Department0). The execution of this query can be
done in parallel if splitted into two queries corresponding to the subClasses of Person.
In fact, it has been eliminated the Person from the root level. The majority of entities
included in the LUBM dataset inherit the Person class and thus the purpose was to
avoid the creation of a very steep hierarchy. The results for each query are returned
back to the node that initiated the query and their union is presented to the user.

Query 6 (LQ6): This query searches for all the members of the class Student or
the members of one of its subclasses, for example the members of Undergraduate-
Student.

Query 7 (LQ7): The purpose of this query is to find all Students that are related
through takesCourse to the courses taught by a specific professor (e.g., Associate-
Professor0). In this query, Course always appears as an object in the subqueries.

Query 8 (LQ8): This query resembles the previous category but it is characterized
by increased complexity. It searches for all the Students that are members of all the
Departments, which in their turn are subOrganization of a specific university.
In this complex query, the department appears both as a subject and an object in the
relative triples stored and indexed in the system.

Query 9 (LQ9): This query searches for all the students that takesCourse a
specific course (e.g., GraduateCourse0).

At first, we present the query response times in Figures 19 and 20 for all categories
of the defined queries for the LUBM dataset. In the generated queries, we vary the
values of the constants (e.g., GraduateCourse0, AssociateProfessor0, etc)
choosing uniformly among the children that adhere to the type defined by the query
and average the response times over 1,000 iterations. A single client poses queries to
both systems, waiting until the answer(s) are received before posing a new query. For
VirtStore, we also register the maximum response time per query: this corresponds to
the time required for the first answer, since the system performs some main memory
result caching to respond faster to the consequent queries.

Figure 19 depicts the response time for the categories of queries that are mainly of
the (?s, o, p) format, where the subject is required to be of a specific type. Moreover,
these categories of queries have small input and high selectivity. In Figure 20, the cate-
gories of queries become more complex and return a large number of rows. The average
number of returned triples per query is shown in the respective tables above the figures.
The results show that LinkedPeers achieves better response times for all categories of
queries.

Even as the complexity of the queries increases, our system manages to resolve the
queries efficiently as shown for queries LQ7 and LQ8, which are path queries and in-
volve more joins. Moreover, each node holds a smaller portion of the whole dataset con-
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tributing to its faster processing. Moreover, due to the fact that our system incorporates
the whole hierarchy information, we perform less lookups to discover if a found entity
is of the requested type. These queries are resolved 2.7 and 1.8 times faster compared
to the VirtStore. LQ5 is another category which is strongly favoured by our distributed
approach, since the query is split into two different subqueries executed in parallel,
resulting in a faster response time of the order of 15 times. A significant speedup is
achieved for LQ6 as well, which is the simplest query that can be posed to our system:
It can be directly resolved by the maintained tree structures.

Query LQ1 LQ2 LQ3 LQ4
Avg. # of rows 4 14 29 20

Query LQ5 LQ6 LQ7 LQ8 LQ9
Avg. # of rows 625 956711 44 11532 20
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Fig. 19. Performance comparison of the re-
sponse time(ms) for query categories 1–4 of the
LUBM benchmark
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Fig. 20. Performance comparison of the average
response time(ms) for query categories 5–9 of
the LUBM benchmark

We also test the performance of both systems under increased load posed from con-
current users, as is the case in most web applications hosting linked data. To achieve
this goal, we generate a query workload of 2500 randomly chosen queries from all
LUBM categories. First, we send the queries to the systems using a single client. The
average response times are shown in Figure 21. Our system outperforms the central-
ized approach by answering the queries almost 5 times faster on average, which is a
consistent result to the achieved response times of each category. In Figure 22, the av-
erage response times are registered when the same workload is applied by 5 concurrent
clients. Our system manages to maintain its faster response rates at almost the same lev-
els observed in Figure 21. The distribution of data among multiple nodes in our system
contributes to this fact due to the parallel processing of multiple queries from different
nodes concurrently (even though in our implementation each node processes a single
query per time). Moreover, each node holds a smaller portion of data which can be
processed in less time.

7 Related Work

Various research works investigate how the effectiveness of P2P systems to handle large
volumes of data can be further exploited for the creation of scalable platforms providing
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egories and with 5 clients

advanced indexing and search functionalities. Distributed Hash Tables (hence DHTs)
are significant candidates for the design of distributed systems for data-intensive appli-
cations, since DHT-based overlays present logarithmic search path lengths compared to
the network size in most cases. Nevertheless, the imposed indexing does not support
complex queries and more advanced indexing schemes according to the structure of the
data and the types of the queries are needed.

A major category under consideration is the one of Peer Database Management Sys-
tems (PDMSs) emphasizing on storing relational data and supporting operators such as
selection, projection, union, etc. PIER [14] falls into this category and utilized a DHT-
based overlay for the insertion of self-describing tuples. The query resolution mainly
relies on an additional tree like structure implemented on top of the DHT-based overlay.
Piazza [15] is another effort focusing on XML data and achieves better search perfor-
mance by reformulating queries and pre-computing semantic paths. In PeerDB [16]
system, the limitation of an existing predefined schema is surpassed and agents are re-
sponsible for the processing of queries. In all these cases, the systems are based on a
global indexing for all stored tuples and this act results in a costly procedure in terms
of bandwidth consumption and time as the volume of data and the number of schemas
and attributes increases, especially when high update and churn rates are observed. A
more dynamic solution for the creation of a peer-based data management system that
indexes only a portion of the stored tuples is PISCES [17]. The partial index is built
upon approximate information gathered by a histogram based approach about the to-
tal number of nodes, the total query number, the query distribution and nodes’ arrivals
and departures. Nevertheless, this approach targets mainly to support queries regarding
relational data and does not handle the special case of hierarchies over multidimen-
sional dataset and the computation of aggregate queries. As far as the latest aspect is
concerned, the online processing of aggregate queries is described is the Distributed
Online Aggregation (DOA) Scheme [18]. In this case, the calculation of results is ap-
proximate and multiple iterations take place: in each iteration a small set of random
samples are retrieved from data sites and assigned to available nodes for processing.
The random sampling among the distributed nodes may bias the calculated result and
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premises that each node must provide an interface for picking random sample from its
database. Apart from this fact, all data need to be mapped to a global schema, which
many times is not feasible and introduces complexity to the system.

Another category of approaches coping with the indexing of data items described
by multiple items in P2P systems introduces the replacement of the hash function of
DHTs overlays with functions taking into account the values of the attributes during
the assignment of the items among the nodes. For this reason, Space Filling Curves
(hence SFCs) are used for the generation of keys, since it is highly probable to produce
locality preserving mappings of the values of multiple attributes to a single key. Towards
this direction, various P2P systems can be found in the literature, such as Squid [19],
CISS [20], SCRAP [21]. In these systems, the resolution of range queries is mainly
studied by mapping the ranges in the values of attributes to ranges of keys and retrieving
them from the DHT. In CISS, the problem of hierarchical attributes is also considered.
Nevertheless, it is assumed that the full path from the most general level towards a
detailed level is known and the values for all attributes are defined in the query, so as
a small number of resultant key ranges to retrieved by issuing consecutive lookups.
The type of queries studied in this work does not meet this requirement and such an
approach would result in flooding at most cases.

In the case of semi-structured data published according to the RDF model, many
approaches combine techniques from the relational databases to build large central-
ized repositories that index and query such data, as it has been discussed in [22]. The
most representative categories are the triple stores and vertically partitioned tables. In
most cases, the triple stores such as Virtuoso [11], 3store [23] and RDF-3X [24] store
RDF triples in a simple relational table. A followed methodology is to collect large
dumps of data (possible through crawling), to preprocess and to load these dumps in a
centralized resource so as to enable querying of the merged data locally. Although cen-
tralized solutions are advantageous during query processing by providing access to the
whole dataset, these solutions are vulnerable to the growth of the data size ( [25], [26])
and the synchronization of local copies in the centralized repositories, especially when
the data sources change frequently or the RDF instances are created on-the-fly. As the
growing volume of data cannot be handled efficiently in centralized solutions, various
distributed approaches have been proposed in the literature. As far as structured P2P
systems are concerned, the majority of efforts focuses on distributing RDF data among
multiple peers. RDFPeers [27] was one of the first efforts to store triples on top of a
MAAN overlay [28] by hashing the subject, the object and the property and insert the
same triple with three different keys in the overlay. ATLAS [29] uses also RDFpeers for
querying RDF data. GridVine [30] follows a similar approach to RDFPeers for inserting
RDF triples in a P-Grid overlay and storing them in the local database of the node. All
these efforts may easily lead to overloaded nodes with poor performance for popular
triples (i.e. the node responsible for the key of rdf:type). Also, they cannot exploit the
semantic information included in this kind of data and they are forced to build addi-
tional semantic layers or interfere to the organization of the overlay according to the
semantics of (e.g. [31], [32]) or extend the RDF model. These modifications add more
complexity and increase the cost for maintenance of the external structures and during
update procedures. Also, all these approaches encounter all the problems of distributing
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query processing, where large volumes of data need to be fetched in the query initiator
and joined before they proceed to the evaluation of the rest of the parts of the query.

8 Conclusions

In this work, we described the system called LinkedPeers, a distributed infrastructure
for storing and processing multi-dimensional hierarchical data. Our scheme distributes
large amount of partially-structured data over a DHT overlay in a way that hierarchy
semantics and correlations among dimensions are preserved. Each data item can be de-
scribed by an arbitrary number of dimensions and aggregate queries are resolved in
a fully distributed manner. Re-indexing and pre-computation mechanisms are triggered
dynamically during the resolution of queries. Our experimental evaluation over multiple
and challenging workloads confirmed our premise: Our system manages to efficiently
answer the large majority of queries using very few messages. It adds small overhead
in storing hierarchical data and provides a lightweight indexing scheme, resolves effi-
ciently aggregated queries and adapts to sudden shifts in skew by enabling re-indexing
operations. The objective of efficient management of such data is analyzed for the use
case of RDF data published by web sources and the experimental results also verify that
the resultant system appears as a viable solution for storing and organizing such data
compared to centralized approaches.

References
1. L. Data, “Connect Distributed Data across the Web,” http://linkeddata.org/.
2. A. Asiki, D. Tsoumakos, and N. Koziris, “Distributing and searching concept hierarchies: an

adaptive dht-based system,” Cluster Computing, vol. 13, pp. 257–276, 2010.
3. C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So Far,” Int. Journal on

Semantic Web and Information Systems (IJSWIS), 2009.
4. RDF, “Resource Description Framework(RDF),” http://www.w3.org/RDF/.
5. SPARQL, “SPARQL Query Language for RDF,” http://www.w3.org/TR/rdf-sparql-query/.
6. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann,

“Dbpedia - a crystallization point for the web of data,” Web Semant., vol. 7, pp. 154–165,
September 2009.

7. H. Halpin, “A query-driven characterization of linked data,” in LDOW, 2009.
8. FreePastry, http://freepastry.rice.edu/FreePastry.
9. apb, OLAP Council APB-1 OLAP Benchmark, http://www.olapcouncil.org/research/resrchly.htm.

10. SQLite, “http://www.sqlite.org/.”
11. O.-S. E. Virtuoso, “Version 6.1,” http://www.openlinksw.com/wiki/main/Main.
12. JenaProvider, “Virtuoso jena provider,” http://www.openlinksw.com/dataspace/dav/wiki/

Main/VirtJenaProvider.
13. Y. Guo, Z. Pan, and J. Heflin, “An evaluation of knowledge base systems for large owl

datasets,” in International Semantic Web Conference, 2004, pp. 274–288.
14. R. Huebsch, J. Hellerstein, N. L. Boon, T. Loo, S. Shenker, and I. Stoica, “Querying the

Internet with PIER,” in VLDB, 2003.
15. I. Tatarinov and A. Halevy, “Efficient query reformulation in peer data management sys-

tems,” in Proceedings of the 2004 ACM SIGMOD international conference on Management
of data, ser. SIGMOD ’04. New York, NY, USA: ACM, 2004, pp. 539–550.

16. B. C. Ooi, K.-L. Tan, A. Zhou, C. H. Goh, Y. Li, C. Y. Liau, B. Ling, W. S. Ng, Y. Shu,
X. Wang, and M. Zhang, “Peerdb: Peering into personal databases,” in SIGMOD Conference,
2003, p. 659.

17. S. Wu, J. Li, B. C. Ooi, and K.-L. Tan, “Just-in-time query retrieval over partially indexed
data on structured p2p overlays,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’08. New York, NY, USA: ACM, 2008,
pp. 279–290.



30 Athanasia Asiki, Dimitrios Tsoumakos, and Nectarios Koziris

18. S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan, “Distributed online aggregations,” Proc. VLDB
Endow., vol. 2, pp. 443–454, August 2009.

19. C. Schmidt and M. Parashar, “Enabling flexible queries with guarantees in p2p systems,”
IEEE Internet Computing, vol. 8, pp. 19–26, May 2004.

20. J. Lee, H. Lee, S. Kang, S. M. Kim, and J. Song, “CISS: An efficient object clustering
framework for DHT-based peer-to-peer applications,” Computer Networks, vol. 51, no. 4,
pp. 1072–1094, 2007.

21. P. Ganesan, B. Yang, and H. Garcia-Molina, “One torus to rule them all: multi-dimensional
queries in p2p systems,” in Proceedings of the 7th International Workshop on the Web and
Databases: colocated with ACM SIGMOD/PODS 2004, ser. WebDB ’04. New York, NY,
USA: ACM, 2004, pp. 19–24.

22. K. Hose, R. Schenkel, M. Theobald, and G. Weikum, “Database foundations for scalable
rdf processing.” in Reasoning Web, ser. Lecture Notes in Computer Science, A. Polleres,
C. d’Amato, M. Arenas, S. Handschuh, P. Kroner, S. Ossowski, and P. F. Patel-Schneider,
Eds., vol. 6848. Springer, 2011, pp. 202–249.

23. S. Harris and N. Gibbins, “3store: Efficient bulk RDF storage,” in Proceedings of the 1st
International Workshop on Practical and Scalable Semantic Systems (PSSS’03). Citeseer,
2003, pp. 1–20.

24. T. Neumann and G. Weikum, “The rdf-3x engine for scalable management of rdf data,” The
VLDB Journal, vol. 19, pp. 91–113, February 2010.
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