NMavemioTnuio MNMNarpwv

[Ipoywpnueva Ocpata oe
Katavepnueva Zoompata

GFS / HDFS

Google File System (GFS)

[Mpoxwpnuéva Oféuata oe Kartavepnuéva ZuoThpaTta 19/5/2017

Overview

O Main functionalities of a distributed filesystem
® Naming
® Load Distribution
m Persistent Storage
B File operations

O Should provide:
m Consistency
Reliability
Availability
Scalability
Security
Transparency

O Inthe Cloud
m Storage and management of Big Data!
m Data produced and consumed at highly diverse geographic locations
m Hardware failures are very frequent
m Files are of enormous sizes

>1Upog BouAyapng — MavetmiotApio MNatpwv 3

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

GFS: Google File System

O Google’s scalable, distributed filesystem for large distributed data-intensive
applications.

O It provides fault tolerance while running on inexpensive commodity hardware.

O It delivers high aggregate performance to a large number of clients

>1Upog BouAyapng — MavetmiotApio MNatpwv 4

[Mpoxwpnuéva Oféuata oe Kartavepnuéva ZuoThpaTta 19/5/2017

Design Assumptions

O GFS has been designed with the following assumptions in mind:
m High frequency of failures
m Files are huge, typically multi-GB
B Two types of reads:
O Large streaming reads
O Small random reads
® Once written, files are seldom modified
O Modifications are mostly done by appending
O Random writes are supported, but inefficient

O Targeted towards data analytics

m Typically huge files
® High sustained bandwidth more important than low latency

>1Upog BouAyapng — MavetmiotApio MNatpwv 5

Filesystem Interface

O create/delete
O open/close
O read/write

O Snapshot

B Creates a copy of a file or directory almost instantaneously, masking current
mutations that may be going on.

O Record Append
B Append some data (a “record”) at the end of a file
B Many record appends may be taking place concurrently
m There is no guarantee about the offset where each record will be written
|

The only guarantee is that each record will be written at a contiguous part of
the file

B The actual offset where the record was finally placed is returned at the end of
the operation

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Architecture

O Three types of nodes:
® One master node
B Multiple chunkservers
® Multiple clients

M. (file name, chunk index) _ GFS master - /foo/bar
GFS client . File namespace " chunk 2ef0
(chunk handle, /
chunk locations) Legend:
mmmsdp Data messages
Instructions to chunkserver l - Control messages
(chunk handle, byte range) _ |1 Chunkserver state |
GFS chunkserver GFS chunkserver

chunk data Linux file system Linux file system

O O -

Figure 1: GFS Architecture

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Architecture

O Chunks
m Fixed size -- 64MB
O Smaller file system structures
O Lower network load
B Each chunk has a unique 64-bit ID
® Chunks divided in 1024 blocks of 64KB each
O Each block has a 32-bit checksum

O No caching below the filesystem interface
B Most operations read data once!

>1Upog BouAyapng — MavetmiotApio MNatpwv 8

[Mpoxwpnuéva Oféuata oe Kartavepnuéva ZuoThpaTta 19/5/2017

Master Node

O The master nodes maintains:
B The namespace
m Access control information
m Mapping: file 2 chunk IDs
m Mapping: chunk ID 2 chunk location

O Periodically the master sends heartbeats to each chunkserver to receive updates
on its state.

O The master also

® s in charge of chunk placement and chunk replication
m keeps track of chunk leases

>1Upog BouAyapng — MavetmiotApio MNatpwv 9

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara

Consistency Model

A file can be in one of the following states:

O Consistent
B Data is consistent across all replicas

O Defined
m Data is consistent across all replicas
B The latest mutation is complete (and available to clients)

O Inconsistent
m When a mutation has failed

>1Upog BouAyapng — MavetmiotApio MNatpwv

19/5/2017

[Mpoxwpnuéva Oféuata oe Kartavepnuéva ZuoThpaTta 19/5/2017

Leases and Mutations

O Mutation = an update of a file

O Mutations (updates) are applied on all replicas in the same order

O One of the replicas of a chunk is given a lease, appointing it as the primary replica.

O The primary replica decides on the order of the mutations.

O The client copies data to all replicas (including the primary one) in a pipeline route,
respecting the relative proximity (for efficiency).

>1Upog BouAyapng — MavetmiotApio MNatpwv

[Mpoxwpnuéva Oféuata oe Kartavepnuéva ZuoThpaTta 19/5/2017

Data flow during a write

_ Current lease holder?
Write request

step | _
o Chient | Master

l 3a. data 2 identity of primary

location of replicas

‘ Secondary [#—— (cached by client)
Operation completed Replica A g Operation completed
or Error report 3b. data - | |
L Primary assign s/n to mutations
‘ ! Primary - ?pphesdlt |
Replica 2 Forward write request
l 3c. data \
Secondary | 6 Operation completed

Replica B

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Locking

O Read lock
m Prevents a file/directory from being deleted, renamed, or snapshotted

O Write lock
B Prevents a file from being modified by someone else

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Replica Placement

O The master node is responsible for replica placement

O Replicate data for
m Reliability / availability
m Scalability (maximize network bandwidth utilization in reads)

O Number of replicas
m By default 3
® User may ask for more

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Load balancing

O As we said, the master node is responsible for replica placement

O Allocates a new chunk on a chunkserver whose utilization is below average

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Garbage collection

O Mechanism similar to a Recycle Bin.

O A deleted file is renamed to a hidden filename

O Periodically, hidden names are considered for purging (permanent deletion).
m Purged only after 3 days have passed since deletion.

>1Upog BouAyapng — MavetmiotApio MNatpwv

Hadoop Distributed File System
(HDEFES)

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Hadoop HDFS

O The primary storage FS used by Hadoop applications
O Splits up files in blocks (similar to GFS chunks)
O Strong points:

® Block replication

B Locality of data access

O Started as an open source implementation of GFS.

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara

HDFES advantages

Very large scale storage
® 10,000 nodes

® 100,000,000 files
m 10PB storage space

Based on inexpensive commodity hardware
m Replication used to address failures
® Fault detection

Optimized for batch processing
B Data location is visible to the application
® Computation can be transferred where the data is
m Very high aggregate bandwidth

Storage may rely on heterogeneous underlying operating systems

>1Upog BouAyapng — MavetmiotApio MNatpwv

19/5/2017

[Mpoxwpnuéva Oféuata oe Kartavepnuéva ZuoThpaTta 19/5/2017

HDFS principles

O Namespace is universal for the whole cluster

O Takes care of consistency
B Write-once-read-many
B Append is the only supported write operation

O Files are split into blocks
m Fixed size — 128 MB
® Each block replicated on multiple DataNodes

O Based on smart clients
m Clients know the location of blocks
m Clients access data directly from Data Nodes

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

HDFS architecture

Cluster Membership

e

Cluster Membership

NameNode : Maps a file to a file-id and list of MapNodes
DataNode : Maps a block-id to a physical location on disk
SecondaryNameNode: Periodic merge of Transaction log

>1Upog BouAyapng — MavetmiotApio MNatpuwv

[Mpoxwpnuéva Oféuata oe Kartavepnuéva ZuoThpaTta 19/5/2017

NameNode - DataNode

NameNode

O Metadatain RAM
® No paging!

O Metadata types
List of files
Mapping: file 2 blocks

DataNode

O Stores blocks

m Data + CRC stored on local FS
(e.g., EXT3)

m Serves data to clients

O Block Reports

blocks’ state to the NameNode

0
O
m Mapping: block = DataNode m Periodically sends a report on
O

File attributes

O Logging

m File creations, deletions, etc.

O Helps with pipelining data

®m For transferring data to other
nodes

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Write Data Pipelining

O The Client receives a list of Data Nodes that will serve as replicas of a given block

O Client streams data to the first DataNode

O The first DataNode streams data to the next DataNode, etc.

>1Upog BouAyapng — MavetmiotApio MNatpwv

[Mpoxwpnuéva Oféuata oe Kartavepnuéva ZuoThpaTta 19/5/2017

Block Replication Policy

O Replication Policy

m A replica on the local node
® Another replica on another

Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {1,2,4}, ...

] node of the same rack

®m A third replica on a node of
a different rack

2 5] m Extra replicas on random

other nodes

Datanodes
]
g m| H

O Clients read from the
closest replica

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Replication

Datanodes

>1Upog BouAyapng — MavetmiotApio MNatpuwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara 19/5/2017

Checksums

O Use of CRC32 during file creation
B CRC32 per 512 bytes
m DataNodes store the checksums

O When reading data
m If the client detects a checksum error, it tries a different replica DataNode

>1Upog BouAyapng — MavetmiotApio MNatpwv

Mpoxwpnuéva Oéuata oe Katavepunuéva ZuoThuara

NameNode failures

A single point of failure
Operation log is stored on different local filesystems

In case of failure, a new NameNode may be started to continue where the failed
NameNode left off.

>1Upog BouAyapng — MavetmiotApio MNatpwv

19/5/2017

