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Stream analysis

• Stream: Continuous flow of data
• Challenges:

– Volume: Not possible to store all the data
– One-time access: Not possible to process the data using multiple 

passes
– Real-time analysis: Certain applications need real-time analysis of 

the data
– Temporal Locality: Data evolves over time, so model should be 

adaptive.



• Stream mining algorithms (I will not talk about)
– How many distinct elements appear in a stream-

provide an estimate (Flajolet-Martin)
– Estimate the number of 1’ in a window (DGIM)
– Estimate frequency moments (AMS)
– Finding the most popular elements in the stream 

(Decaying windows – assign more weight to newer 
elements)

– Identify of an element’s presence in a set (Bloom 
filters)



Clustering of streaming data
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Stream Clustering

The problem of data stream clustering is defined as: 

Input: a sequence of n points in metric space and an integer k.

Output: k centers in the set of the n points so as to minimize the sum of distances   
from data points to their closest cluster centers. 



Stream Clustering

• Online Phase
• Summarize the data 

into memory-efficient 
data structures

• Offline Phase 
• Use a clustering 

algorithm to find the 
data partition



Stream Clustering Algorithms

Data Structures Examples

Prototypes Stream, Stream Lsearch

CF-Trees Scalable k-means, single pass k-means

Microcluster Trees ClusTree, DenStream, HP-Stream

Grids D-Stream, ODAC

Coreset Tree StreamKM++



Prototypes: STREAM
• Guha, Mishra, Motwani and O'Callaghan (2000) 
• Achieves a constant factor approximaIon for the k-Median problem in a 

single pass and using small space. 
• Small-Space: 

– a divide-and-conquer algorithm that divides the data, S, into 𝑙 pieces, clusters each 
one of them (using k-means) and then clusters the centers obtained.

• Algorithm Small-Space (S):
1. Divide S into 𝑙 disjoint pieces X1,…,X𝑙
2. For each i, find O(k) centers in Xi. Assign each point in Xi to its closest center.
3. Let X’ be the O(𝑙k) centers obtained in (2), where each center c is weighted by the 
number of points assigned to it.
4. Cluster X’ to find k centers.

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm


STREAM

• Problem with Small-Space:
– number of subsets 𝑙 is limited, since it has to store in memory the 

intermediate medians in X. 
– If M is the size of memory we need to partition S into 𝑙 subsets 

such that each subset fits in memory, (n/ 𝑙) and so that the 
weighted 𝑙𝑘 centers also fit in memory, 𝑙𝑘<M. 

– But such an 𝑙 may not always exist!

• STREAM algorithm solves the problem of storing 
intermediate medians and achieves better running time 
and space requirements.



STREAM

1. Input the first m points; using the randomized algorithm reduce 
these to O(k) (say 2k) points.

2. Repeat the above till we have seen m2/(2k) of the original data 
points. We now have m intermediate medians.

3. Using a local search algorithm, cluster these m first-level medians 
into 2k second-level medians and proceed.

4. In general, maintain at most m level-i medians, and, on seeing m, 
generate 2k level-i+ 1 medians, with the weight of a new median as 
the sum of the weights of the intermediate medians assigned to it.

5. When we have seen all the original data points, we cluster all the 
intermediate medians into k final medians, using the primal dual 
algorithm



CF-Trees 

Summarize the data in each CF-
vector
• N: Number of points 
• LS: Linear sum of data points
• SS: Squared sum of data points 

BIRCH, Scalable k-means, Single pass k-
means



BIRCH
• BΙRCH: Balanced Iterative Reducing and Clustering using 

Hierarchies,  by Zhang, Ramakrishnan, Livny (SIGMOD’96)

• Received the SIGMOD 10 year test of time award in 2006

• Incrementally construct a CF (Clustering Feature) tree, a 
hierarchical data structure for multiphase clustering

– Phase 1: scan DB to build an initial in-memory CF tree 

• a multi-level compression of the data that tries to preserve the 
inherent clustering structure of the data 

– Phase 2: use an arbitrary clustering algorithm to cluster the 
leaf nodes of the CF-tree 



BIRCH
• Strengths: 

– Scales linearly: finds a good clustering with a single scan and improves 
the quality with a few additional scans

– It is local in that each clustering decision is made without scanning all 
data points and currently existing clusters. 

– It exploits the fact that data space is not usually uniformly occupied and 
not every data point is equally important. 

– It makes full use of available memory to derive the finest possible sub-
clusters while minimizing I/O costs. 

– It is also an incremental method that does not require the whole data 
set in advance

• Weakness: handles only numeric data and is sensitive to the order of the 
data record.



Clustering Feature Vector
Clustering Feature: CF = (N, LS, SS)

N: Number of data points

LS: åNi=1Xi
SS: åNi=1(Xi)2

Clustering features are additive
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CF Tree
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Calculations
Given CF = (N, LS, SS) the same measures can be calculated without the 
knowledge of the underlying actual values

Subtracting good approximations to two nearby numbers may yield a very bad 
approximation to the difference of the original numbers -> Catastrophic 
cancellation

Use BETULA cluster features (N, μ, S) instead where N is the count, μ the 
mean and S the sum of squared deviations (based on numerically more reliable 
online algorithms to calculate variance).



Microclusters
CF-Trees with “time” element

CluStream
• Linear sum and square sum of timestamps
• Delete old microclusters/merging 

microclusters if their timestamps are close to 
each other

Sliding Window Clustering
• Timestamp of the most recent data point 

added to the vector
• Maintain only the most recent T 

microclusters

DenStream
• Microclusters are associated with weights

based on recency
• Outliers detected by creating separate 

microcluster

ClusTree
• Allows real-time clustering



Grids

D-Stream

• Assign the data to grids
• Grids are weighted by recency of 

points added to them
• Each grid associated with a label

DGClust

• Distributed clustering of sensor data 
• Sensors maintain local copies of the  

grid and communicate updates to the 
grid to a central site



StreamKM++ (Coresets)

Ø A weighted set S is a (𝑘, 𝜀) coreset for a data set D if the clustering of S 
approximates the clustering of D with an error margin of 𝜀

• 1 − 𝜀 ∗ 𝑑𝑖𝑠𝑡 𝐷, 𝐶 ≤ 𝑑𝑖𝑠𝑡! 𝑆, 𝐶 ≤ (1 + 𝜀) ∗ dist D, C

Ø Maintain data in buckets  
𝐵!, 𝐵"…𝐵#.

Ø Buckets 𝐵" to 𝐵# contain either 
exactly 0 or m points.

Ø 𝐵! can have any number of 
points between 0 to m points. 

Ø Merge data in buckets using 
coreset tree.

StreamKM++: A Clustering Algorithm for Data Streams, Ackermann, Journal of 
Experimental Algorithmics 2012

Computes a small weighted sample of the data stream and solves the problem on 
the sample using k-means++  *

(k-means++: seeding procedure for k-means guaranteing a solution with certain quality, needs random access)

merge & reduce



StreamKM++ (Coresets)

merge & reduce

With each node u of coreset tree T we store:

• a point set Pu: the cluster associated with node u
• a representative point qu from Pu: obtained  by sampling according to d2 from Pu
• an integer size(u): # of points in set Pu and 
• a value cost(u): 

– If u is a leaf node, cost(Pu , qu) = sum of squared distances over all points in Pu to qu
– If u is an inner node, cost(u) = sum of cost of its children



CLASSIFICATION IN DATA STREAMS

Problems In Changing Environment



Introduction
• Example Problem: "Finding polarity in feeds from Twitter messages 

in real time"

• Find text polarity à Text emotion analysis à Text categorization 
problem 
• Find text polarity à Problem categorizing text into "positive" or 

"negative" 

• Text feeds à System works in real time à Categorize feeds 

Ø So, the two main branches of the problem: 

• Text emotion analysis 
• Categorization/classification of data streams 



Data Stream Classifica1on – Challenges

• Concept drift à dynamic environment à adaptation to changes , model update
– Changes in the description of classes – targets
– Changes in the data distribution

• Novel Classes à new classes appear à automated detection
– Unlabeled data à Outlier detection

• Limited storage space à infinite length of data streams, huge amount of data
• Limited processing time à high data flow rate à one pass through the data

Ø Solutions:  incremental learning or learning with multiple classifiers



Issues: Concept Drift

• Concept Drift: The first and foremost problem in classifiers with 
changing environments 
– The problem is defined differently as time passes. 
– New features are entering the old space, new features are more 

important.
– Distributions change:

- Prior probabilities for the c classes, P(ω1),…….P(ωc)
- Class- conditional probability distributions, P(x|ωi), i= 1,..,c 
- Posterior probabilities P(ωi|x), i=1,…,c

• Two techniques for dealing with Concept Drift
– Incremental Learning
– Ensemble Learning



Incremental Learning (or Online Learning)
• ONLY ONE classifier - enters the learning process every time new 

data arrives 

• Various Incremental Learning Classifiers:

– Incremental decision tree, Incremental Bayesian algorithm, 
Incremental SVM, Online Neural Network etc.

• New data arrive instance-by-instance or block-by-block (batches 
logic is followed)

• Initially the classifier is trained with the first batch of data that 
arrives



Incremental Learning (or Online Learning)
• As new batches arrive

– space of features grows (space of classes remains constant)

– new features enter the space

– new description of the classes -> concept drift

• Naive probabilities are updated

• As new unlabeled data arrive for testing in batches (from classes 
already seen, NOT new classes)

- They are classified

- We choose the ones that give us the most information (for dealing with 
Concept Drift)

- Update the classifier if the system accuracy is at the desired levels 



Ensemble Learning
• Μultiple learners combining their predictions

• Many online ensemble techniques proposed for changing 
environments:

– Dynamic Combiners: 
• individual classifiers trained from the beginning
• changes in the environment -> changes in the combination rule 

(Horse Racing Ensemble Classifiers)
Cons: Classifiers do not re-train, so they do not adapt to  
the ever-changing environment



Ensemble Learning (cont’d)

– Updating the Ensemble Members: οnline classifiers updated 
incrementally in batch mode as new data arrives 
• Same logic with Incremental Learning - there are many classifiers here

– Ensemble can be derived from different algorithms:
» Incremental SVM, Incremental Bayes, Incremental decision tree..

– Or be separated based on the batches, e.g., if the batches come once a 
day there may be an ensemble for each day.

– Dynamic Changes of the line-up of Ensemble:
• Individual classifiers dynamically evaluated
• Worst classifier replaced by a new which has been trained with the latest batch.

Cons: Constantly forgets past data, at some point the old classifiers     

will all have been replaced and the old knowledge will have been lost.



Ensemble vs Incremental Learning

• For massive data streams we are interested in models that 
are simplistic 
– Not enough time to run and renew an ensemble

• depends on the Incremental algorithm to be used, eg an ensemble 
classifier is faster than an Online Decision Tree

• When time is not so important and accuracy is required then an 
Ensemble Classifier is the best solution



Unlabeled Data

• Incremental Classifiers & Online Ensembles: incoming 
Unlabeled Data can be exploited and information extracted

– New Unlabeled Data is essentially testing data
• This data is classified and fed back to the classifier to address the 

concept drift problem

• Unlabeled Data are different snapshots of the classes that the 
Classifier already knows
– Q: New class? How to detect? 
• Novelty Detection: find outliers



Learn To Forget
• Based on Incremental logic the classifier has the ability to be 

constantly updated (learn on-line)
– Any time we stop the classifier we must have the best possible 

accuracy
• As new data comes in they define the problem differently and old 

data should contribute less.

• The rate at which the classifier will forget the old data must be 
chosen correctly 
– match the rate and type of changes made as new data arrives



Learn To Forget
• Use of Windows

- Forgetting By Ageing at a Constant Rate: Forgets at a steady pace, 
replacing old with new data 

- Forgetting By Ageing at a Variable Rate: When a change is detected then 
the window size changes

• Without the use of windows
– Integrate age in each instance

• The more time passes, the less it contributes to the final result 

• The classifier remembers all data with different weights each 



INCREMENTAL NAÏVE BAYES

Example: Online Classification of Tweets



Preprocessing of Data
• Tweets: 160 characters long
• Come in batches of 10 sec 

– In each tweet of a batch of data we apply the followins:
- Remove stop words e.g. ‘and’, ‘the’, ‘she’ , etc
- Remove punctuation marks, hashtags etc
- Stemming  using Stanford Core NLP , e.g. “looooovee” and “loved” after stemming 

become “love”
- Remove duplicate tokens
- Maintain emotion-based tokens based on SentiWordNet Lexicon

• Example (batch of tweets)

– Before preprocessing
“@Mike, I HATE dental clinics , are so scary places.”
“@Gabriel#cinema My friends and I loved the movie yesterday. It was amazing!!!.”
“I love the nerdy Stanford human biology videos - makes me miss school.”

– After Preprocessing
hate dental clinics scary places
friend love movie yesterday amazing
love nerdy human biology video make miss school



Feature ExtracKon
• After preprocessing features are extracted
• Follow bag of words logic

– Extract n-grams from each tweet that has been pre-processed
• 1-gram and 2-grams (to treat cases such as "not love", "not hate" 

• The vectors used for the training of the classifier follow binary valued logic:
– 1: if the feature exists in the specific tweet
– 0: otherwise.



Feature Extraction
• Suppose the following batch of Tweets arrives as a stream. 

Tweet 1: “@Mike, I HATE dental clinics, are so scary places.”
Tweet 2: “@Gabriel#cinema My friends and I didn’t like the movie yesterday!!!!”
Tweet 3: “I love the nerdy Stanford human biology videos -makes me miss school.”

• After Preprocessing:
Tweet 1: hate dental clinic scary place
Tweet 2: friend like_NOT movie__NOT
Tweet 3: love nerdy human biology video make miss school

Features for the batch



Recap: Classification of Data Streams -
Μethods

• Incremental Learning à we do not have all the data from the beginning 
– Constantly updated as new data arrive (Any time learning) 
– Lossless classifier 
– Learn to forget
– Decision trees, Naive Bayes, SVMs -> easily adapt to incremental logic 
(Fast, simple)

• Ensemble Learning à multiple classifiers, combination of predictions
• Dynamic combination à training a priori, changes in the environment are 

reflected as changes in the combination rules
• Updated training set à classifiers are updated or new are created

– Reusing stream data (Online Bagging and Boosting) 
– Filtering stream data
– Selecting chunks of data from the stream

• Update of members of the ensemble model 
• Structural changes of the ensemble model à replace older or obsolete
• Introduction of new features

(Time consuming process, better accuracy)



Incremental Naïve Bayes
(labeled data)

• As new labeled data arrive
– The feature space grows when new batches of tweets come with new features

Example: New tweet in new batch “ @elis#travel…I really like traveling!!!!

Feature space before the new batch

New feature space: 2 new features were added. Retain all previous features too.

– Update prior and conditional probabilities every time new batches arrive
• Multinomial distribution

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17

hate dental clinic scary place friend love movie yesterday amazing nerdy human biology video make miss school

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19

hate dental clinic scary place friend love movie yesterday amazing nerdy human biology video make miss school like travel



Incremental Naïve Bayes (unlabeled 
data)

• Unlabeled data that arrive are considered as testing data and 
they also come in batch format

– IMPORTANT: they belong to classes that the classifier has already seen 
during the training process, they simply appear because they define the 
problem in a different way (concept drift) and we want to export this 
information

– Once the unlabeled data arrives (One of the suggested solutions)
• Calculate the probability of each element belonging to all possible 

classes of the classifier

• If the probability of the two most probable classes satisfies the 
requirements then the class to which the item belongs is identified by the 
classifier

• Otherwise use knn to find the class in conjunction with Naïve Bayes



Concept Drift Management

• Data is streamed -> Naive Bayes requires update of attribute 
and class statistics

Ø Choose an incremental Naive Bayes
– No prior knowledge of the data in the stream
– New Tweets constantly arrive -> new words that describe equally well 

the two classes arrive -> the description of the target class changes 
• The classifier must detect and adapt to changes in real time

Ø Choose a dynamic feature space
– New predictive features are added every time new Tweets arrive
– Feature space high dimensional -> use “learn to forget” idea



Concept Drift Management
• Let us assume that a new batch with one Tweet arrives:

Tweet 4: “@elis#travel…I really like traveling!!!!”
• After Preprocessing:

Tweet 4: really like travel



Naïve Bayes: Three versions

• Incremental Nave Bayes with dynamic feature space 
• Self-trained incremental Naive Bayes with dynamic 

feature space
• Co-trained incremental Naive Bayes with dynamic 

feature space



Incremental Naive Bayes
• Based on static Naive Bayes à Assuming multinomial distribution for finding text 

polarity we have:
– The probability of a tweet d belonging to a class c is given by:

• P (tk | c): cond. prob of a token tk to appear in text d of class c.
• P (c): a priori prob. of text to be in class c.
• < t1, t2, . . . , tk > :  tokens of Tweet d, that are parts of the vocabulary used 

in classification.
• nd : # of tokens in a Tweet d.

– Goal is finding the best class for the tweet, i.e, the most probable class
• Maximum a posteriori (MAP) class  Cmap



Incremental Naive Bayes

– Once the first batch with the labeled Tweets arrives and the features 
are extracted, the classifier is trained by calculating the prior and
conditional probabilities:

, 

where Νc is the number of tweets in class C and Ν 
number of total tweets

where Τct is the number of occurrences of token t of 
class C in training tweets 
Ratio: sum of occurrences of each token t of the set 
of features in tweets of class c



Incremental Naive Bayes
• Naive Bayes easily converts to incremental: 

– Renew the following for new data:
• N à Total # of Tweets that have reached the system since the beginning 

of its operation. 
• N c  à # of texts Τον αριθμό των κειμένων belonging to class c, for each 

class. 
• Τ ctà # of occurrences of token t in texts of class c, for each class and each 

token. 
• Vocabulary à feature space is updated with new tokens as new Tweets

arrive.

Ø Therefore, incremental Naive Bayes with dynamic feature space:
– Small space, as long as it remembers the above values in memory
– Updates old values of prior and conditional probabilities with a single pass of 

data 
– Faces concept-drift with dynamic feature space and by updating statistics in 

each iteration
– Simple: just increase the above values for new Tweets
– Does not need to know the correlations of the features



Incremental Naive Bayes-Αrchitecture



Unlabeled Tweets

• So far we assume that data reaching the stream is labelled.. 
– Not true! 

• Tweets arrive in the form of a feed from the Twitter API 
– They are written by individuals on a topic -> they do not contain labels

• Manual categorization of Tweets 
– Time consuming process -> there is no time to process data 
– High cost

Ø Need to find a solution to deal with unlabeled Tweets !!!



Self-trained incremental Naive Bayes

• Combination of incremental logic and semi-supervised learning

• Self-training logic à The classifier uses its own predictions to label Tweets
– Once the data has labels it can be inserted into the training set of the 

incremental classifier and update it
• Problem change: Can the classifier "learn" from the data it classified itself? 

– i.e., how well it can distinguish the class "positive" from "negative”
– Selection of the most reliable predictions based on the model -> in Naive 

Bayes, the class with the highest probability is selected
Ø Most reliable predictions: 

P (positive | tweet) ≥  2 *  P (negative | tweet ) 
or

P (negative | tweet ) ≥  2 *  P (positive | tweet )



Self-trained incremental Naive Bayes-
Αrchitecture



Co-trained incremental Naive Bayes

• Combination of incremental logic and semi-supervised learning 

• Co-training logic à feature space is divided into two independent sets and two independent 
classifiers operate simultaneously
– Incremental Naive Bayes and Self-trained inremental Naive Bayes à 1-gram à fast 

extraction
– Co-training à extraction of 2-grams

• Pairs of words are identified e.g. adjective-noun, adverb-adjective etc.
• Independent set from the 1-grams

• Two incremental Naive Bayes with dynamic feature space are selected to operate 
simultaneously
– First model is based on 1-gram, second on 2-grams 

• For unlabeled Tweets
– Each model makes its own predictions based on characteristics extracted
– Predictions of the two classifiers compared, when agree, introduce into the training set
– Both incremental Naive Bayes renewed.  

Ø Essentially, one classifier learns the other and the decisions are joint



Co-trained incremental Naive Bayes-
Αrchitecture



Experiments
• Simulation of Twitter API

– Data from Sentiment140 . CSV file with > 1.000.000 Tweets with the following fields:
0 – Tweet  polarity (0 = negative, 4 = positive)
1 – Tweet ID (e.g. 2087) 
2 – Tweet date and time (e.g. Sat May 16 23:58:44 UTC 2009) 
3 – the query (π.χ. lyx). If there is no query, then value is NO_QUERY. 
4 – user (e.g. robotickilldozr) 
5 – Tweet text (e.g.. Lyx is cool). 

• All classifiers are trained with a total of 60,000 Tweets that were sampled from the data set -> flow 
is activated -> remaining Tweets enter the flow every 30sec = batch duration

• Evaluation
– Phase 1: After each batch of Tweets reach the stream we evaluate based on the Tweets of the test set that 

exists in Sentiment140
– Phase 2: After each batch we evaluate with next batch that arrives -> results depend on time t and the 

order that the batches arrive 
– Thus we randomly select a time point t and we 

perform the experiment for up to t + 10 batches



Experiments: Evaluation

– TP (True Positives), FP (False Positives), TΝ (True Negatives), FΝ (False
Negatives) 

– Time duration in sec from the moment a new batch reaches the flow until the 
model is renewed by this new batch

Ø All three classifiers are trained offline with the dateset of 60.000 Tweets. 
Then: 
Ø The incremental Naïve Bayes accepts batches of labeled Tweets
Ø The Self-trained and Co-trained accept batches of unlabeled Tweets



Results

Phase 1 Phase 2



Results



Results



Conclusions
• Best performance Incremental Naïve Bayes, then Co-trained Incremental

Naïve Bayes, then Self-trained Naïve Bayes
• Incremental Naïve Bayes and Co-trained incremental Naïve Bayes

– consistent behavior
– good class separation
– good selection of confident items for Co-trained incremental Naïve 

Bayes over Self-trained 
• Incremental Naïve Bayes and Co-trained incremental Naïve Bayes remember 

what they have learned as time passes and new knowledge arrives (1st 
phase of experiment) 
– Not the same for Self-trained Naïve Bayes



Conclusions
• Incremental Naïve Bayes and Co-trained incremental Naïve Bayes try to adapt to the 

changes, adapt to the concept drift not so good as the accuracy does not increase (2nd 
phase of experiment)
– The choice and the large space of the features are responsible and not the system
– Self-trained Naïve Bayes can not learn new information

• Nature of the system responsible, an error in prediction has major effect in 
subsequent iterations

• Incremental Naïve Bayes and Co-trained incremental Naïve Bayes similar performance
– Co-trained incremental Naïve Bayes has similar performance with a classifier trained 

on labeled data
– Incremental Naïve Bayes has issues on feature selection and number of features
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Classification of data streams:
EEG, stock trend classification

G. Dimitropoulos, E. Papagianni and V. Megalooikonomou, 2017



Classification



• Exact incremental learning and adaption of SVM classifiers [Poggio et al. 2001], 
[Diehl et al. 2003], [Syed et al. 1999]. 
– able to learn and unlearn manifold examples

– adapt the current SVM to changes in regularization and kernel parameters and 
evaluate generalization performance 

• Several applications (e.g., medical and macroeconomic environments)
– Classification/recognition of certain events in EEG or ECG [Mporas et al. 2015]

– Classification/recognition of stock trends [Edwards et al. 2007]

– SVMs for the prediction of trend of the daily Korea Composite Stock Price Index 
(KOSPI) [Kim 2003]

• This work: improves classification accuracy accomplished by Kim (2003) on the 
KOSPI dataset by employing the incremental SVM learning algorithm proposed 
by Diehl et al. (2003) 

Classification



• Incremental SVM learning algorithm [Diehl et al. 2003]
• Model adapts to upcoming data 
• Model maintains its existing knowledge through the adaptation of the 

hyperplane of separation. 
• The test set becomes part of the current training set -> increase of 

model’s knowledge. 

Data Stream Classification



• Model for stock trend prediction involves as second step feature extraction 
(12 technical indicators used in [Shin, 2005], [Kim, 2003] etc). 

• The classification model is used to predict the trend (upward or downward) 
the index will have in the next days 

• Microsoft StreamInsight (2016) was used to create and handle the streams;  
Matlab was used to implement the rest of the functions

• Incremental SVM learning algorithm proposed by Diehl et al. 2003 used 
through the library Diehl (2011) implemented in Matlab

Data Stream Classification
- Stock trends



Incremental SVM: trained on the first 3000 examples then increased its knowledge with 
feedback from the next 3000 examples (window of size 10 examples). Achieves 71% accuracy on 
the first half, 77% on the second 

Classic SVM: trained with the same first set of 3000 examples and then tested with the next 
3000 examples 
Static incremental SVM: uses the same training and test sets of 3000 samples each. It uses the 
SVM incremental learning algorithm instead of the classic SVM. It is only trained once.
Online SVM: trained with the same first 3000 examples; then increases the initial training set 
with the following 3000 samples; Re-trained every time a new instance arrives 

ALGORITHM ACCURACY
Classic SVM 52% 

Static Incremental SVM 60%
Online SVM 62%

Incremental SVM 74%

Stock trend classification results 
(streams) 



• Incremental SVM learning algorithm for high accuracy 
classification of streams of data 

• Future work: 
– look at classification and clustering of streams where the 

number of classes/clusters change dynamically

Conclusions 



Mining of complex time-stamped 
events

Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, M. Yoshikawa, 2012, 2015



Motivation



Motivation

• Q: Are there any topics?
• -news, tech, media, sports, etc.?

• e.g., CNN, CNET -> news,  YouTube -> media



Motivation

• Q: Are there any topics?
• -news, tech, media, sports, etc.?

• e.g., CNN & CNET (related to news)
• Smith & Johnson (related to news)



Motivation

• Web click events – can we see any trends?
• Original access counts for each URL
– 100 random users
– 1 week (window size 1 hour)

We cannot see any trend! Noisy, Sparse, Bursty



M-way analysis

• Complex time-stamped events



M-way analysis

• Decompose to a set of 3 topic vectors:



M-way analysis

• Decompose to a set of 3 topic vectors:



M-way analysis

• Tensors with multiple window sizes:



M-way analysis

• Tensors with multiple window sizes:



Data Stream Management



Sensor

Sensor

Sensor

Sensor

Data Management,
Data Processing

and 
Decision Making

Storage

Notification 
Receiver

Notification 
Receiver

Notification 
Receiver

Queries

Data Stream Management

Alerts
Summarization
Prediction
Pattern discovery



Data stream characteristics and 
requirements

¨ High data transfer rates 
¨ Transfer Rates different for each sensor
¨ Fast increase of volume of data

Basic requirements in data stream management:
¨ Efficient processing of recent data
¨ Efficient retrieval of past data
¨ Efficient storage/compression of data



Data stream management goal

Efficient support of the data analytics algorithms

Use of algorithms with the following characteristics:
¨ Low complexity
¨ As high accuracy as possible
¨ Utilization of information from various sources of 

data considering parallel evolution



Data Stream Management

¨ Why not traditional DBMSs;
¤ Goal of DBMSs: data storage for applications 

consisting of the followings four steps:
1. Data storage
2. Data retrieval
3. Data Processing
4. Data Storage

Data source

Query

Process

Store



¨ Instead, typical applications on data streams 
consists of the following steps:
1. Data entering the application
2. Data processing
3. Data storage

Processing of data usually occurs 

before storage
Store

Process

Data In

Data Stream Management



Data stream management – Queries

¨ Many data stream applications require the 
execution of SQL queries 

¨ The queries are executed on data that are updated 
continuously

¨ Key features / types of Queries:
• Time Based Queries
• Continuous Queries
• Short Term Queries
• Long Term Queries

Classic DBMSs do not support these operations.. or rather they 
are not optimized for these operations!



Databases – Queries Static vs 
Continuous

¨ Return the number of 
students with GPA above 
8.5/10.0

¨ Return the mean value of 
the pollution indicator
(+ time constraints)

Static Query Continuous Query

In addition:
• The output of a continuous query can be a new stream
• The continuous queries can consist of subqueries as in traditional 
DBs



Continuous Query -Example

The following query (Linq) is being executed 
continuously and produces a new stream

sensorstream Query (above) PollutionSensorValue

int id;
double value;

double value;

var polutionSensorValue = from e in sensorstream
where e.id == 312343 

              select e.value;



Issues in data stream management

Some additional problems..
¨ When query starts, not all data may be available 
¨ The size of a stream is unlimited 
¨ The frequencies/rates at which data from different 

streams arrive are not the same 
¨ It is not clear: 

¤ When is the output of a query ready? 
¤ In what order do the data arrive? 
¤ How long should we wait for new data?



Management Systems
Data Base vs Data Stream

¨ Static Data 
¨ On-Demand execution 

of queries 
¨ Exact results 
¨ Disk storage

¨ Continuous Data 
¨ Continuous Execution 

of Queries 
¨ Results: Usually 

Approximate 
¨ Storage in main 

memory

DBMS DSMS



DSMS: Data Stream Management 
Systems

¨ DSMS General Architecture [GO03]



DSMS - Queries
Blocking Operators
Problem
The operations:
¨ Sort
¨ Join
¨ Group
are blocking…

Solutions
¨ Random Subsets
¨ Fixed and Sliding Windows
¨ Punctuation



w3 w4 w5 w6 w7w2w1

DSMS – Windows
Hopping Window

value

time

Basic Parameters:

•Window Size
•Hop Size

¨ In most applications that process data streams, calculations are performed on 
data that involve continuous time intervals (e.g. calculation of the lake level 
every 5 minutes)

¨ Basic function of DSMSs: the ability to process data in time windows defined 
by developers

Types of windows:

•Time-based (e.g., 15 secs)
•Count-based (e.g., 50 samples)



DSMS - Queries
Query Scheduler

¨ Στο “Query Repository” υπάρχουν τα queries που 
έχουν τεθεί

¨ Βασικό πρόβλημα είναι η σειρά με την οποία θα 
τρέξουν τα ερωτήματα αυτά

¨ Optimization Πρόβλημα:
¤ Ελάχιστος χρόνος εκτέλεσης
¤ Ελάχιστη μνήμη



DSMS - Queries
Query Scheduler, Load Shedding

Four dimensions of the problem [SLC08]
¨ Setting goals and implementing policies for their 

implementation (eg, minimum latency, less memory) 
¨ Window-Based CQs - launch complex queries such as joins 
¨ Performance optimization utilizing common sub-queries 
¨ Scheduler implementation in an optimal way - necessary for 

online systems

When system is overloaded and not all data can be 
processed, a DSMS must provide a strategy to "cut" some of 
the load with the least loss of accuracy (Tatbul et al., 2003] 
and [Babcock et al. ., 2004]).



DSMS - Storage

¨ Good organization of the historic data necessary 
for long term queries 
¤ mainly for data warehouses 

¨ Classic methods such as B-Trees support many data 
types 

¨ For time series?
¨ Temporary Storage?



DSMS - Systems and Query Languages

¨ Aqsios [SCLP08]
¨ AQuery [LS03]
¨ Aurora [AC+03]
¨ CQL/STREAM [ABW06]
¨ XStream [GMN+08]
¨ DataDepot [GJSS09]
¨ StreaQuel
¨ Tribeca

They differ mainly in: 
¨ applications in which they are oriented 
¨ the operators they support



DSMS - Systems and Query Languages



Example DSMS: Microsoft StreamInsight

¨ Data Inputs:
¤ Input/Output Adapters
¤ Observable and Enumerable sources/sinks.

¨ Processing within StreamInsight™ is commonly 
performed by writing queries in Linq (Language 
Integrated Query)

¨ User Defined Operators (UDOs), User Defined Functions 
(UDFs) and User Defined Aggregates (UDAs)

¨ StreamInsight™ offers different types of windows, such 
as hopping, count and snapshot



Microsoft StreamInsight™

StreamInsight™

Input Adapter

Input Adapter

Input Adapter

Input Adapter

Output Adapter

Output Adapter

Query Logic

Query Logic

Query Logic

Event Sources Event Targets

Devices

Sensors

Databases

Monitoring 
Devices

Databases



XStream DSMS [GMN+08]

¨ Signal Oriented DSMS
¨ Basic characteristics

¤ WaveScript programming language 
¤ SigSeg data type
¤ Unified Query Language
¤ Memory Management
¤ Query Plans
¤ Query Optimization
¤ High Performance
¤ Distributed Execution Engine
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Spark-Architecture
Ø Unified pile à Multiple correlated levels
• Spark Core à basic functionality à scheduling of tasks, memory management, failure recovery, etc
• Spark SQL à management and storage of structured data
• Spark Streaming  à management of streams in real time
• Mllib à libraries for Machine Learning
• GraphX à graph management
• Cluster Managers à efficient scaling from one to hundreds of computing nodes (Standalone Scheduler,  

Hadoop YARN, Apache Mesos)

Ø Creating applications that combine different processing models



Spark- programming model
• Main abstract programming entity à RDDs (resilient distributed data-sets) à

distributed set of objects that are in different computational nodes
• Basic functionalities of RDDs 

– Transformations (lazy) à construct new RDDs from existing
– Actions à compute results based on the running RDD

Ø Basically, RDDs give us the capability of parallel execution



Spark- model of execution
Ø Distributed execution à master/slave architecture 
Ø Spark driver  à central coordinator, communicates with the distributed workers (Executors)

– Conversion of user program to Tasks
– Scheduling of Tasks to Executors

• Executors à worker processes, perform tasks, memory
• Spark driver and Executors à Spark application à starts on a set of engines using an 

external service “cluster manager”



Spark Streaming API
• Management of data streams in real time
• “micro batch” architecture à data from input sources are organized in batches 
• As time passes new batches are generated in regular time intervals à each batch is 

essentially an RDD
• The smaller the batch (time wise) the more we approximate the Streaming logic

Ø Abstract programming entity of Spark Streaming  à discretized stream (DStream) = a 
sequence of RDDs, each RDD contains a segment of time from data stream



Putting streaming data 
management and analytics to work
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Online Seizure Detection concept
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Online Seizure Detection

• Based on EEG, ECG data
• Seizure Model: binary SVM-model

– subject-specific model
– trained off-line

115



Online Seizure Detection: features used
• EEG data

– Time domain features
• min, max, mean, variance, std, percentiles, interquartiles
• range, skewness, kyrtosis, energy, zero-crossing rate
• Shannon entropy, log-energy entropy

– Frequency domain features
• AR-coefficients (6)
• power spectral density
• max/min frequency
• {δ , θ , α,  β, γ} band energy
• 8 DWT-based band energies (daubechies-16)

• ECG data
– RR statistics (HRV): min, max, mean, standard deviation, variance, percentiles, 

interquartile range, mean absolute deviation, range
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Online Seizure Detection
• Performance

– Data
• CHB-MIT Scalp EEG+ECG Database
• Subject: 04

– Detection Accuracy (96.31 %)
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Classified as → Seizure Not

Seizure 94.74 % 05.26 %

Not 03.68 % 96.32 %



Online Seizure Detection
• Performance

– Data
• St. Thomas recordings EEG+ECG,  Subjects: 07, 08, 09

– Subject 07: Accuracy (99.85%)

– Subject 08: Accuracy (99.79%)

– Subject 09: Accuracy (99.13%)
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Classified as → Seizure Not

Seizure 92.31 07.69

Not 0.09 99.91

Classified as → Seizure Not

Seizure 77.78 22.22

Not 00.16 99.84

Classified as → Seizure Not

Seizure 85.71 14.29

Not 00.76 99.24



Online Seizure Detection
• Performance

– Data: St. Thomas recordings EEG+ECG,    Subjects: 07, 08, 09
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Subject SVM MLP C4.5 IBk
sub-07 96.11 92.93 81.91 91.67
sub-08 88.81 82.37 76.02 80.61
sub-09 92.48 87.50 79.34 84.86
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FrailSafe offers hi-tech, clinically usable tools that lead to an earlier identification of
frailty or pre-frail conditions, and makes feasible the application of early
interventions to prevent worsening or reverse this condition

Frailsafe vs Conventional Geriatric Assessment



Frailsafe
• A real life sensing (physical, cognitive, psychological, social) 

platform

• Better understanding of frailty and its relation to co-morbidities

• Quantitative and qualitative measures of frailty (through 
advanced data mining approaches on multiparametric data)

• Prediction of short and long-term outcome and risk of frailty

• An intervention (guidelines, real-time feedback, AR serious 
games) platform offering personalized physiological reserve and 
external challenges

• A safe, unobtrusive and acceptable system for the ageing 
population 



System features 
for the older person

Older person

smart 
garment

indoor and outdoor 
monitoring

mobile and augmented 
reality games

Dashboard

Third parties’ 
devices



Measurable parameters and units of 
measurement

Sensorized vest/strap  with 
9 DoF IMUs

Heart rate, respiration rate, posture 
and/or activity, steps/minute, falls, 
instability

Mobil-o-graph Arterial stiffness

Dynamometer Grip strength

Impedance scale Body Weight / Body Mass Index

Questionnaires Nutrition, Social Interaction, Cognitive 
state

Medical record Co-morbidities, etc

AR Serious Game Cognitive state and Behaviour, 
Physiological state, Motor state

Smartphone Indoor/Outdoor activities, Physiological 
state, Motor state, Social Interaction

Blood pressure monitor Blood pressure

Indoor activities, ….Smart home sensors



FrailSafe Conceptual Philosophy

Older 
Person

Virtual Patient 
Model (VPM)

ClinicianGuidelines

Monitors
Designs Interventions 

(adjustment of 
drugs/drug dosage, 

lifestyle 
recommendations)



Data Acquisition and Management

400+ participants 
(aged 70+)



Big Data Analytics



Decision support and alerts 
generation 

www.frailsafe-project.eu



Multi-parametric analysis towards 
prediction of frailty risk

GPS
Clinical Assessment (eCRF)

Games

Text (social 
media and 

questionnaires)

LingTester

Summarized variables 
(time = 1, 2, 3)

Per-modality analysis 
(time = 1 … T)

IIMUs and WWBS 
(time = 1   . . .   T )

Summarized 
variables

Dynamic prediction of frailty

. . . Machine 
Learning

. . . 



Prediction of adverse events

• If any instance indicates future event (positive class), the rest of the instances 
of the same subject are also considered as positive class

• Multiple Instance Learning (MIL) problem in which the temporal alignment of 
the multiple instances (sessions) was ignored 

• SPEC_MIL: a specializing multi-instance learner that follows a generalization of 
the miSVM (MiSVM applies SVM for MIL)



qChallenges: Different # of frames 
across subjects and different # of 
subjects across classes

.

.

.

.

.

.

Subject 1

Subject 2

Subject 3

Class 
label

Frail

Frail

.

.

.

Frail

Non-Frail

Pre-frail

Pre-frail

Predicting Fried by WWS(X) recordings

EC
G

 R
R

EC
G

 H
R 

va
r.

EC
G

 H
R

br
ea

th
in

g 
ra

te
br

ea
th

in
g 

am
pl

.

ac
ce

le
ra

tio
n

re
sp

. p
ie

zo
 

qMethod: based on PARAFAC 
decomposition, multiple instance 
learning and Quadradic Discriminant 
Analysis classifier (TensMIL)

q After data cleaning we represented the 
data using 3-D tensors. 

q Features were extracted by tensor 
decomposition techniques. 

q Frailty status prediction: Fusion of one 
class SVM models in MIL setting.

Complexity 2019

qData: Concatenation of different signals 
to form a tensor for each subject and 
concatenation of tensors for all subjectss



Predicting Fried by WWS(X) recordings

Deep convolutional neural networks (CNNs) developed for prediction of 
frailty status

Complexity 2019

Convolution   +    Max Pooling

× 4

Frail

Pre-frail

Non-frail

Conv
Pool

Fully 
Connected 

Layer

Input: 
Time window (e.g. 1min) ×

7 channels

RELU 
activation

Softmax
Loss

resp. piezo 
acceleration
breathing ampl.
breathing rate
ECG HR
ECG HR variabil.
ECG RR



Subjects 105

Non-frail 44 (41.9%)

Pre-frail 49 (46.67%)

Frail 12 (11,43%)

Time windows (TW) 10506

TW (Non-frail) 3409 (32.45%)

TW (Pre-frail) 5216 (49.65%)

TW (Frail) 1881 (17.09%)

FrailSafe physiological measurements data 
(available until M24)

Predicting Fried by WWS(X) recordings
StrProxSGD, rank=60

Training and test median accuracy for 10-
fold CV



Visualization of the relationship between 
training subjects using spanning trees: 
illustrates the transition in the profile of non-
frail subjects to frail subjects.

Blue dots: 
non-frail

Orange dots: 
pre-frail

Red dots: 
frail

Predicting Fried by WWS(X) recordings



Results: Prediction of adverse events
Ø Evaluation on 120 subjects
Ø Multiple Instance Learning
Ø Selection of results based on: AUC>0.6 and BAC>=0.64 for features 
combinations and compared always against clinical and Fried only

Raw features AUC Acc. Balanced 
Acc. (BAC)

All (FS+clinical)  0.68 0.69 0.65

All (FS+clinical) 
no GPS or no Games  0.68-0.69 0.69-0.70 0.64-0.65

Clinical 0.60 0.70 0.63

Fried 0.65 0.70 0.57

Delta features AUC Acc. Balanced 
Acc. (BAC)

All (FS+clinical), no GPS 0.71 0.69 0.68

WWSX+Games 0.68 0.71 0.69

Clinical 0.29 0.47 0.39

Fried 0.46 0.61 0.47



TENSMIL: tensor decomposition for MIL 
classification of multidimensional data

Papastergiou, T., E.I. Zacharaki, and V. Megalooikonomou, 2018, 2019. 



TensMIL

TensMIL
Generalized feature 
extraction by tensor 
decomposition
StrProxSGD, ALS

MIL algorithm

Frailty estimation

Efficient both on fully or 
partially (10%) 
observed data 
compared to state-of-
the-art



Multiple Instance Learning (MIL)
• Classic ML: each object represented by a feature 

vector

• MIL: each object represented by a collection of 
feature vectors

• We only know the annotation of the bags (objects)

• The feature vectors of each object: instances

• Class labels only for the objects

• MIL methods
– In the space of instances

• MI-SVM (Andrews et al. 2002)
– In the space of objects

• (Gärtner et al. 2002 )
– In nested space

• MILES (Chen et al. 2006) , JC2MIL (Sikka et al. 2015)

Multi-channel 
physiological signals



TensMIL1: Method overview

1. Data representation and feature extraction
– Computation of a multidimensional dictionary with the 

CANDECOMP/PARAFAC decomposition
2. MIL

– Sequential discrete models n the space of instances and in the space of 
objects

3. Optimization 
– For the learning of hyper-parameters.

1(Papastergiou et al. 2018)



TensMIL

1. Feature extraction
2. Training using only instances 

(with inaccurate labels – we 
know only the labels of the bags 
(whole bag, i.e., person)

3. Fusion of the outcome using 
probabilistic modelling 
(histograms)

4. Classification of the objects

Architecture of TensMIL

U: feature matrix extracted from raw data by 
PARAFAC decomposition
T: score matrix obtained by performing PCA on U
A: matrix containing the bag-level features
f(ˑ): full quadratic regression model
F(ˑ) Quadratic Discriminant Analysis (QDA) classifier.



Experiments: Dataset

´ Physiology signals 
from monitoring of 
older people 
(FrailSafe)

´ Non-overlapping 
windows of 1 
minute (1500 
time points)

´ Τensor: 
19244×1500×7 

Class Number of 
objects

Number of 
instances

Percentage 
of objects

Percentage 
of instances

Non-frail 49 7127 42.24% 37.03%
Pre-frail 54 8803 46.55% 45.74%
Frail 13 3314 11.21% 17.22%
Total 116 19244 100% 100%



Results
Μέθοδος ALS R=60 StrProxSGD R=60

(90% ελλιπείς τιμές)
Acc Bacc Acc Bacc

TensMIL 45.76(0.13) 34.06(0.09) 73.41(0.01) 67.17(0.13)

Μέθοδος ALS R=60 StrProxSGD R=60

(90% ελλιπείς τιμές)
MILES 51.59(0.13) 67.20(0.11)
JC2MIL 56.82(0.07) 55.30(0.08)
MILBoost 50.83(0.15) 54.39(0.15)
MCILBoost 45.46(0.14) 60.91(0.22)
TensMIL 54.02(0.13) 80.83(0.16)

Μέθοδοι Χρόνος
εκπαίδευσης

Χρόνος
ελέγχου

MILES 42 sec 1 sec
JC2MIL 56 sec <1sec
MILBoost 52 sec 5 sec
MCILBoost 309 sec 6 sec
TensMIL 6 sec <1 sec

´ Two class classification problem

´ With partially observable data the balanced accuracy is 13.63% - 26.44% more efficient

´ Three class classification problem

´ With partially observable data the balanced accuracy is 33.11% more efficient

´ Training and testing time
´ Feature extraction : ~2.5 hours

´ Training time TensMIL: 7 – 72 times faster

´ Test time TensMIL: < 1 sec
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