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Abstract
With the increasing amounts of electronic health data being constantly generated in med-
ical examinations and by sensors and mobile applications, data visualization methods can
assist medical professionals and researchers in exploring and making sense of the data. Two
important challenges faced by data visualization are large data volume and protection of
sensitive data. In this paper, we propose a graph-based method that allows the exploration of
a patient dataset, while also naturally allowing the summarization of large amounts of data,
making it applicable to large datasets and sensitive data. A graph is constructed from the
raw data, encoding local similarities among patients, and is visualized on the screen, pro-
ducing a visual map of the patient distribution. Multidimensional glyphs are put in place of
the nodes, revealing the properties that characterize each graph area. The graph construction
method is extended to an incremental scheme, allowing federated graph formation. The pro-
posed method is demonstrated in three use cases, regarding frailty in older adults, Sjögren’s
Syndrome patients, and a large-size diabetes dataset.
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1 Introduction

With the increased availability of large amounts of medical data, methods that allow med-
ical personnel and researchers to explore and make sense of them are necessary. Medical
data are increasingly being gathered in Electronic Health Record (EHR) databases, collected
either manually by medical personnel, through clinical examinations, laboratory tests, ques-
tionnaires, etc., or automatically, through the use, by the patient, of real-time data collection
devices (wearable or not), mobile self-management applications, or other types of applica-
tions, such as games, that implicitly collect health-related information. The large amounts
of collected data pose challenges regarding the presentation of raw data and analysis results
to the medical professionals so that they can easily explore them and discern interesting
structures, but also regarding the need to protect sensitive information in large multi-cohort
analyses.

While the underlying structure of the data can be effectively uncovered by modern statis-
tical modeling and machine learning methods, data visualization still remains an important
tool for medical professionals and researchers in understanding the data at hand. Automated
methods for patient clustering, summarization and outlier detection can quite effectively
compute groups of similar patients with their centroids and show outliers; however, it is
with the visualization of a patient distribution or progress through time that this informa-
tion can be most easily understood by a human and linked to individual patterns or cases
that can be further examined. Exploiting the high capacity of the human visual perception,
visualization methods can present all individual cases (e.g. patients) at once, leaving the
task of pattern detection to the human eye, or facilitate pattern detection after some pre-
processing or analysis. However, in critical applications, care should be taken not to reveal
sensitive information about individuals, which is especially relevant for multi-cohort stud-
ies, where data from multiple patient cohorts need to be examined by researchers who may
not be authorized to view individual data from all cohorts. In the machine learning litera-
ture, this problem is currently being addressed by federated learning methods, a high-level
trained model is updated sequentially by each protected dataset, without ever the data of all
datasets being processed at the same time or place. Data visualization can borrow from this
paradigm to create federated visualization methods which would be advantageous in cases
of very large data volumes, where summaries are more appropriate, or in cases of sensitive
medical information.

In this paper, a graph-based approach is presented for the visualization of one or multiple
patient cohorts, focusing on the visualization of the patient distribution with respect to mul-
tiple parameters of interest. A graph, i.e. a network of patients, is constructed from the raw
data to encode the similarities among patients and is positioned on the screen using force-
directed methods, which consider nodes of the graph as repelling charges and edges between
nodes as attractive springs, creating a visual map of the patients that reveals their similari-
ties. The individual characteristics of each patient are presented using multivariate glyphs,
i.e. small visual representations of multi-dimensional vectors, for each node, which allow
the determination of the type of patients occupying the different areas of the graph. The pro-
posed graph-based approach extends naturally to federated scenarios, by maintaining and
updating a high-level graph structure based on graph partitioning methods.

An example of the proposed graph-based procedure is displayed in Fig. 1, for a dataset
of 400 patients. Figure 1a is the graph of all patients, with each patient being a node and
where different groups of patients becoming apparent. In federated usage, what the user
would see is the reduced graph of Fig. 1b, where each group of patients is represented by a
single node, after graph partitioning. The characteristics of each group are summarized by
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Fig. 1 Example of the proposed graph-based method for a dataset of 400 patients. (a) The graph of all
patients. (b) The reduced graph, using bar chart glyphs. (c) The reduced graph, using radar chart glyphs

the node glyphs, here small bar charts. The end-user can select different types of glyphs for
the group nodes, according to the clarity of the displayed information. For instance, Fig. 1c
shows the same reduced graph, but using radar chart glyphs. The reduced graph can be
further combined with additional datasets, to create an incremental representation of data
from several cohorts. The applicability of the proposed glyph-enhanced and federated graph
visualization is further demonstrated below in three relevant use cases, regarding frailty in
older adults, Sjögren’s Syndrome and a large-size diabetes dataset.

The rest of this paper is organized as follows. Section 2 reviews related works of the
literature regarding graph- and glyph-based visualizations. Section 3 presents the proposed
visualization, providing details about the graph construction and positioning, the glyph
specification and the federated incremental graph construction procedure. Section 4 demon-
strates and discusses the presented method in the context of three relevant use cases, while
Section 5 concludes the paper, providing directions for future extensions.

2 Related work

Graph or network layouts have been extensively used in the literature to visualize pair-
wise relationships among objects of interest, such as social interactions among people,
communication among network nodes, gene expression among proteins and disease spread
among infected people. Graphs are usually depicted in a two-dimensional layout, using
force-directed or other techniques [1], e.g. for social network exploration and community
detection [12], although there exist non-planar layouts, such as 3D graph visualizations [13]
or spherical graph layouts [15]. Following a different planar layout approach, the BioFabric
method [30] displays the graph nodes as horizontal lines and the edges as vertical lines con-
necting nodes. This allows interesting patterns, such as nodes with similar connectivity, to be
easily identified. The recently proposed Parallel Aggregated Ordered Hypergraph (PAOH)
[27] method extends the BioFabric method by allowing edges to connect more than one
nodes, making it suitable for visualizing hypergraphs (i.e. graphs where each edge connects
more than two nodes) and their evolution in time. Another similar extension is DyNetVis
[17], where the nodes, each again corresponding to a horizontal line, are restricted to occupy
a single column, resulting in a compact representation of the graph. Several such columns
are then put next to each other to visualize the evolution of the graph through time.
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In the health domain, graph-based data representations have been used to visualize pair-
wise relationships between patients, patients and medical outcomes, disease spread, etc. For
instance, bipartite graphs have been used to visualize cytokines, by representing patients and
cytokines with two distinct node groups, while edges exist only between a patient node and
a cytokine node, corresponding to a cytokine expression [2]. An extension of this concept is
using k-partite graphs, connecting multiple sets of nodes, which have been used to visualize
dominant values and common associations between parameters in general-purpose datasets
[6]. In a similar manner, a graph-based visualization has been used for visualizing the rela-
tionships between Somatic Hypermutation (SHM) associations and Chronic Lymphocytic
Leukemia (CLL) patients [23]. Graph visualization has also been used to present the evolu-
tion of patients through time [29]. In this case, a node represents a group of patients, while
an edge that links two nodes to each other shows a correlation. Positioning the nodes so
that the horizontal axis represents time is able to reveal progress through time. Moreover,
graph-based visualizations have been used for discovering suspicious activities, such as
fraud or waste in the healthcare sector [18]. The multi-objective visualization method [14]
constructs a graph by merging multiple Minimum Spanning Trees from multiple modal-
ities of the available data, and positions the nodes using force-directed graph placement
algorithms, revealing multimodal similarities among objects of interest. Graph-based visual-
izations based on multi-objective method have been implemented for visualizing healthcare
data [21, 22].

Graphs of pairwise similarities between patients can reveal patient groups of specific
characteristics that can be beneficial for clinical predictions. In such cases, each node rep-
resents a patient, a group of patients or some other object of interest, while edges connect
patients that are similar in some application-specific manner. In addition, visual attributes
of the nodes and edges, such as color, size, thickness, etc., can be used to provide addi-
tional information, such as gender or connection type. Such a setup has been used, e.g, for
prediction of lung cancer risk [20], uncovering subtypes of diabetes [16] and analysis of
treatments for nasopharyngeal carcinoma [24].

Methods such as the above represent the graph nodes by simple visual objects, such as
circles, while using the color, size or other attributes of these objects to encode additional
information, such as a numerical or categorical variable per node. This additional informa-
tion can be valuable for the viewer, as it shows the distribution of certain attributes across the
mapping provided by the graph structure, possibly providing hints and explanations about
why particular nodes have been placed at specific positions, or uncovering isomorphisms
between the distribution of certain attributes and the graph structure constructed using other
attributes. However, using primitive shapes such as circles, rectangles, etc., limit the num-
ber of variables that can be encoded in the visual characteristics of the shape, e.g. the color
and size of a circle, or the color, width and height of a rectangle. Glyphs instead provide a
way to encode multiple attributes in a single visual object.

A glyph is a compact visual object consisting of several primitive shapes, such as rect-
angles, polygons, circles, etc., composed in a structure that can be easily processed by the
human eye. The individual properties of the glyph’s primitive components can be varied
according to multiple data attributes, enabling the visualization of high dimensional data [3,
28]. A wealth of glyph designs have been proposed in the literature and have been catego-
rized in terms of their use of position, color and orientation [10]. Different types of glyphs
may be more appropriate for different tasks, e.g. reading values from the visualization vs.
performing a visual search over an entire set of glyphs [19]. Glyph-based visualizations
have been used in medical applications, especially in 3D imaging, where 3-dimensional
glyphs are superimposed on 3D models of human organs to provide additional multi-variate
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information [25]. The family of Z-Glyphs [4] visualize z-score normalized vectors in linear
or circular layouts, which has the effect that “normal” vectors are visualized close to regu-
lar shapes, such as straight lines or perfect circles, making outliers stand out as deviations
from regularity, similar to the interactive stacked histogram visualization of [5].

3 Graph-based patient visualization

In this paper, we propose a graph-based method for visualizing a patient cohort, targeting the
visualization of neighborhoods of similar patients, creating a visual map for the exploration
of the available data. The contributions of the proposed method with respect to the state-of-
the-art can be summarized in the following:

– The enhancement of graph-based visualizations with node glyphs, which can visually
indicate the characteristics of each graph area, making the graph visualization a com-
prehensive visual map of the entities of interest (here patients). The resulting visual map
can be of value to end-users (e.g. clinicians or researchers) since it can facilitate data
exploration, understanding of patterns and detection of outliers, in an intuitive manner
(i.e. similar to viewing a geographical map).

– The proposition of an incremental graph construction procedure based on an iteration of
graph partitioning and merging, that can be used to summarize arbitrarily large graphs
by iteratively building from smaller components. The proposed procedure can be used
to summarize large clinical datasets stored in federated databases, in use cases where
personal data of individual patients of a cohort need to be protected from exposure to
end-users of other cohorts.

In this section, the proposed method is presented in detail.

3.1 Graph construction

Graph-based visualizations can be used for visualizing the relationships among entities (e.g.
persons), or, in our case, patients. Here, we consider that each node of the graph is a patient,
while edges encode pairwise similarities between the patients in terms of the data collected
for them. Such a graph can lead to the visual separation of a cohort of patients into sub-
groups. Patients who belong to a specific sub-group present some similarities, while patients
that do not belong to any sub-group may be outliers.

In order to construct such a similarity graph, we have to compute the differences between
patients. Each patient can be considered as a numerical vector

x = (x1, x2, . . . , xm) ∈ R
m,

where xj is the value of a specific attribute, e.g. blood pressure, or existence of lymphoma.
To facilitate computations, categorical variables taking two values, such as lymphoma exis-
tence with two categories (“yes” or “no”), are encoded as numerical variables, e.g. assigning
the value 1 to “yes”, and 0 to “no”. Categorical variables with more than two categories can
be encoded in an one-hot encoding manner, in order to be processed numerically. A patient
can now be considered as a point in an m-dimensional space. Data from all patients in a
cohort form a matrix X ∈ R

n×m, where n is the number of patients and each element xij is
the value of attribute j for patient i.

X ∈ R
n×m, xi = (xi1, xi2, . . . , xim), i ∈ {1, . . . , n}.
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In order to prevent attributes of large scales to dominate others, which would affect the
subsequent distance computation, we normalize all dimensions using z-score normalization,
before proceeding to distance computations.

We can compute the distance of the corresponding high-dimensional points in order to
compute the difference between two patients, using an appropriate distance metric (e.g.
Euclidean, L1, cosine) in order to compute the distance. In this work, we have used the L1
metric which is defined as the sum of the absolute differences between vector elements:

dL1(xp, xq) =
m∑

j=1

|xpj − xqj |.

The choice of the distance metric is application-specific and different metrics can lead to
different results. The L1 metric is less sensitive to outlier values and in the considered use
cases has shown satisfactory results. However, the presented method can be used with any
distance metric between vectors.

Taking into account the distance metric between a pair of patients, we create a pairwise
distance matrix D which contains the distances between all pairs of patients:

D ∈ R
n×n, Dpq = dL1(xp, xq).

This distance matrix encodes relationships between patients that can be used for the
construction of the similarity graphs.

We use two methods for graph construction according to the distance matrix: k-nearest
neighbours and Minimum Spanning Trees. In a k-nearest neighbours graph, each node is
linked to another node if the second one is among the k nearest neighbours of the first one,
based on the distance matrix. Two nodes that are connected to each other represent nearby
points in the high-dimensional space.

According to Minimum Spanning Tree (MST) method, the distance matrix is regarded as
the weighted adjacency matrix of a complete graph, in which all nodes are connected to each
other and the edge weights depend on the corresponding elements of the distance matrix.
This complete matrix is then reduced to its Minimum Spanning Tree, which is a tree (i.e. no
cycles) that visits all nodes and has the minimum possible total edge weight. Two nodes that
are connected in the MST represent nearby points in the high-dimensional space, as in the
nearest neighbors method, but here the number of edges is much less, leading to less clutter.
If multiple sets of attributes are available per object (e.g. one set of attributes for blood-
related measurements and another for activity measurements), then multiple MSTs can be
constructed and merged, in order to construct a multimodal graph. In this graph, cycles may
exist owing to the fact that its edge set is a concatenation of multiple trees. In this case
node proximity depends on multiple sets of attributes, thus semantic groups depending on
multiple diverse parameters may be easier to form. The individual MSTs can be visualized
separately next to the merged tree, in order to show attribute-specific connectivity.

After the construction of the graph structure encoding the similarities among patients,
we can embed the nodes on the two-dimensional plane in order to visualize the graph struc-
ture on the screen. We have used a force-directed graph placement method, where nodes are
considered as repelling charged particles and edges as attractive springs connecting pairs
of nodes. An additional force towards the center of the viewpoint has also been imposed
to limit large layouts in a compact region, utilizing as much of the available space as pos-
sible. Examples of graph visualizations can be found in Fig. 2a and b, using the k-nearest
neighbours and the MST methods, respectively. We can observe that, e.g. in the k-nearest
neighbor case, some clusters of nodes have been created. These clusters represent groups
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Fig. 2 Graph visualizations of the same dataset. (a) Using k-nearest neighbors. (b) Using a Minimum
Spanning Tree (MST)

of patients that are similar to each other, as demonstrated in Fig. 3, where the data of some
representative patients (nodes) are presented in bar charts. The two patients at the top clus-
ter have similar values for the four attributes considered, while the other two patients, in
two different clusters, have quite dissimilar vectors. Similar bar charts could be generated
for the groups of patients, instead of individual patients, as can be seen further below, in the
use cases section.

3.2 Graph node glyphs

The positioning of the graph nodes on the plane according to the above procedure already
reveals a lot of information about the set of patients. The user can see areas of patients with
similar characteristics, visually spot patient clusters and detect outliers as isolated nodes.
However, no information about the kind of patients that each area represents is revealed. To
add this information on the chart, we choose to replace each node with a glyph.

A glyph is a compact visual representation of a multidimensional item, e.g. a numerical
vector, where each dimension in encoded in a different visual element of the glyph, such as
the position, size, color, etc. of lines, rectangles, or other shapes. Combining glyphs with
a graph-based positioning provides a spatial mapping of the glyphs that allows the user to
understand why patients have been positioned in the specific areas, why a node is isolated,
etc., by inspecting the visual characteristics of the glyph and its neighbours. It should be
noted however that when dealing with graphs with many nodes (e.g. 500 nodes or more),
using a glyph for each of the nodes makes the overall visualization quite cluttered and
difficult to read. In these cases, it is advised that glyphs are only used for a representative
sample of the graph nodes, or only for a summary of the total graph, as is e.g. seen in the
use case of Fig. 13.
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Fig. 3 Nodes that are close to each other correspond to patients that are similar to each other

In the present work, we have considered glyphs based on bar charts and radar plots,
in an attempt to see their capacity in terms of compactness and clarity of the visualized
information.

3.2.1 Bar chart glyph

A bar chart is a common type of chart that is usually used for displaying the distribution of
categorical variables. A bar chart consists of a number of bars, with each bar representing a
category. The height of each bar is proportional to the value of the corresponding category.
A bar chart can be used as a glyph for each node of the graph, by considering the multiple
attributes of a patient as categories of the horizontal axis and the values for each attribute as
the height of the bars on the vertical axis.

In Fig. 4a, a bar chart glyph example is presented. For more intuitive representation,
the height of the bars encodes the z-score normalized values for each attribute, computed
considering all values of each attribute in the dataset. In this way, all attributes are in the
same scale, with the height of the bars representing the deviation from the average, in the
positive or negative direction. The color of the bars is an additional indication for being
higher or lower than the average. A blue bar shows that the value of the patient for the
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Fig. 4 (a) Bar chart glyph with four attributes. (b) Radar chart glyph with six attributes

corresponding attribute is greater than the average value of all patients, whereas a red bar
means that the value of patient is lower than the average value.

As an additional feature of the glyph, the background color is used to optionally encode
another variable, usually a categorical one, which may be of special interest. For example,
the color could encode the existence or not of lymphoma, while the bars encode attributes
that could be related to lymphoma. The vertical limits of the background rectangle are put
at the +2 and −2 units of standard deviation, so that very large or very low values compared
to the average can be distinguished by the corresponding bars exceeding the limits of the
background rectangle.

The color used for the background of the bar glyph or the fill of the radar glyph can
encode both categorical variables (e.g. the existence or not of lymphoma) and numerical
variables (e.g. average body temperature). In case of categorical variables, color is appro-
priate if the number of groups is small, i.e. smaller than 10 or maybe 20, since the human
perception of color cannot distinguish very similar colors. If, however, the values to be dis-
played can be ordered (e.g. a hypothetical questionnaire response scale with many degrees
from strongly disagree to strongly agree), then a sequential discrete color scale can be used,
since the viewer does not have to match exactly a color to its interpretation, but can get a
rough estimate by the overall color tone. In its extreme, this would approach a numerical
variable, for which a continuous color scale would be appropriate.

3.2.2 Radar chart glyph

The radar chart can be used for visualizing high-dimensional data. Each dimension occupies
an axis which may have its own scale. Moreover, each axis starts at the intersection of the
axes. The values of the multi-dimensional object in each axis form a polygon whose shape
is characteristic of the individual object. The comparison of the polygons allows the user to
understand easier the differences between two or more datasets. An example can be found
in Fig. 4b. The values of the axes are z-score normalized as in the bar chart glyph. The zero-
mean level is indicated by the circle around the center of the chart, i.e. this circle indicates
the values of the average person. However, the circle has been omitted in the visualizations
of Section 4, since they led to more cluttered displays.

Similar to the background of the bar chart glyph, the color of the polygon’s area can be
used to encode additional information, such as a categorical variable whose distribution on
the graph structure is of interest.
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Compared to the bar chart glyph, the radar chart glyph is more appropriate when several
attributes are present, as increasing the number of bars in a constrained space makes the
chart less readable. However, when few attributes are used, the bar chart may be more
appropriate, as it is more familiar to the users. Bar charts are also more appropriate than
radar charts in cases where the user needs to read the attribute values from the glyph, since
humans can perceive relative position and size better than angular position. The choice of
when to use one type of glyph or another can be guided by the above principle, but otherwise
it is often the result of trial and error, as one type of glyph may reveal specific patterns
that another cannot. In interactive systems, the user should be encouraged to select among
different glyph types to see the data from different angles.

As the number of attributes increases, e.g. beyond 10-20, it becomes difficult to discern
specific attributes by looking at either the bar or the radar glyph. In such cases, ordering
the attributes in some manner can help, since the user does not only rely on the absolute
position of an attribute in the glyph, but can approximately locate it in its surroundings.
Such an ordering can e.g. be accomplished if the horizontal axis of a bar chart is the ordered
bins of a histogram. Regardless of the number of bins used, the histogram will show the
approximate distribution of the population represented by the glyph, which makes the bar
chart (or the radar chart, by ordering its axes in similar cases) appropriate even for large
numbers of bins. This applies also to the color used for the background of the bar glyph
and the fill of the radar glyph. Nevertheless, when the attributes cannot be ordered, other
types of glyphs may be more appropriate, e.g. ones utilizing other visual properties, such as
orientation, transparency, shape patterns, etc.

It should be noted that the two types of glyphs used here are only indicative: different
types of glyphs can be used if they are more appropriate for an application. One glyph may
be more appropriate when the number of attributes is high, compared to another (e.g. we
have chosen the radar chart to show more attributes, because the resulting shape is more
compact and clear compared to the bar chart). The choices made for the presented glyphs,
e.g. the use of color in the background of the bar chart glyph or for the fill of the radar chart,
are meant to demonstrate the possibilities that glyphs can offer. The designer of a glyph can
choose to use the available visual characteristics (position, size, color, orientation, etc.) in
novel ways in order to achieve clarity and comprehension.

3.3 Incremental graph construction

In the presented graph visualizations, each node represents an individual patient. This allows
the visualization of patients that belong to one cohort. However, we may need an extension
of the method if we have to visualize patients data that come from different cohorts, since
in this case the use, e.g. a clinician, may have access only to data from individual patients
of only one of the cohorts. We can implement the graph visualization method in a federated
operation mode in order to address this problem. The concept is that only summarized infor-
mation of a cohort is revealed to other cohorts. Thus, no sensitive information of individual
patients is exposed.

The main idea is that a summarized graph can be constructed from data of one cohort,
containing only aggregated information about the patient types appearing. This graph can be
presented to an unauthorized user with no risk of revealing sensitive information. The user
can merge this graph with data of individual patients for which they have access, in order to
see how their patients fit within the overall population of patients. Furthermore, the aggre-
gated graph can be updated with the new data, to construct a more accurate representation
of the distribution of the whole population. This concept is similar to federated learning in
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the machine learning literature, where a central model is updated using individual datasets
that are never stored at the same place. In our case, the aggregated graph corresponds to
the federated model and is incrementally updated with data from multiple patient cohorts.
Such an approach can also be used to visualize data of a single cohort that change over
time. In this case, the federated model would need to maintain aggregated data from a speci-
fied time window, discarding old measurements, in order to track the overall pattern change
through time. Such a consideration is not included in the current paper and is left for future
work.

A description of the federated graph construction method follows. Figure 5 depicts the
whole procedure for an example of two cohorts. The graph of Fig. 5a visualizes data from
patients who belong to cohort #1. Initially, each node represents an individual patient. The
graph is divided into groups, with the use of a spectral graph partitioning method. Spectral
graph partitioning is a graph partitioning method, i.e. one that splits the graph into compo-
nents so that they are connected between them with as few edges as possible. The problem
of graph partitioning is generally hard to solve (NP-hard), so usually approximations or

Fig. 5 Constructing a graph incrementally. (a)-(c) Reduced graph constructed from cohort #1. (d)-(f) The
reduced graph is merged with cohort #2 to construct a total reduced graph
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heuristics are used instead. Spectral graph partitioning is a commonly used approximation
that achieves sufficient quality for several cases. Spectral graph partitioning splits the graph
by first constructing an embedding of its nodes in a vector space, so that nearby vectors
correspond to nodes that are connected with several edges. Applying common clustering
methods to such an embedding is equivalent to splitting the graph into loosely connected
components. Although the resulting partition is not optimal, the constructed embedding fol-
lows the structure of the graph so that the split is a good approximation, sufficient for our
purposes of graph summarization.

According to spectral graph partitioning, the nodes inside a group are connected to each
other with many edges, while there are few edges among different groups. Taking into
account the graph adjacency matrix A ∈ {0, 1}n×n, where aij = 1, if nodes i and j are
connected with an edge, spectral graph partitioning creates the following graph Laplacian
matrix L:

L = DA − A,

where DA is a diagonal matrix in which element dii is the degree of node i. The degree of
the node is the sum of the corresponding row in the adjacency matrix.

The eigenvectors of L with the smallest eigenvalues constitute an embedding of the graph
nodes in a space of low dimensionality. Nearby nodes in this space are also close to each
other in the graph structure, according to geodesic distances. The points on the space are
then clustered with the use of clustering methods such as k-means, dividing the graph into
groups. With the use of spectral clustering, the graph of our example is partitioned, as shown
in Fig. 5b, where each group has its own color.

Each group consists of nodes that are similar to each other, while nodes which belong to
different groups do not have enough similarities. For each group Ck , the following summary
statistics are computed:

– The cardinality of the group, which is the number of nodes (patients) in the group.

nk =
∑

i∈Ck

1

– The group centroid, which is a representative (albeit artificial) patient of the group. This
representative patient has the average value of the group in each attribute. Regarding
binary attributes with values in {0, 1} a decimal value that belongs in [0,1] is calculated.

xk = (xk1, xk2, . . . , xkm), xkj = 1

nk

∑

i∈Ck

xij

– The group standard deviation, which is a vector of the standard deviations of all
attributes from the group nodes.

sk = (sk1, sk2, . . . , skm), skj =
√√√√ 1

nk − 1

∑

i∈Ck

(
xij − xkj

)2

This summary does not reveal sensitive information about individual patients data due to
the fact that it is cumulative in the group level. Each group can be represented by a single
node that has the above collective statistics. This single node that represents the whole
group can be merged with the nodes of another graph in an incremental way. Taking into
consideration the above statistics, we can say that the nodes of the initial graph may be
considered as “groups” that have cardinality 1. In this case, the group centroid is equal to
the vector with the patient values, while the vector of standard deviations is the zero vector.
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The group centroid is relatively robust to outliers, since if a point is far from the other
points in a group, it would probably have been assigned to a different component of the
graph partition. However, there may still be cases where the graph partitioning leaves groups
that contain outliers (e.g. a point that does not fit to any component, yet is not assigned to a
separate component on its own). The existence of such outliers may affect the group centroid
so that it no longer is representative of the majority of points. In such cases, the definition of
the group centroid above can be modified, e.g. leaving out points that are further than 2 or
3 times the standard deviation from the center (a common straightforward outlier detection
technique), or using more advanced outlier detection techniques (e.g. Local Outlier Factor).

To complete the graph construction, we need information about connectivity between
groups as well. An edge between two groups exists if there is at least one edge between any
nodes of the two groups. One more parameter, the edge multiplicity wkl , is calculated for
the edge connecting groups k and l. This parameter counts the number of edges between
the group nodes. The 1/2 factor is necessary owing to the fact that the adjacency matrix A

is symmetric.

wkl = 1

2

∑

i∈Ck

∑

j∈Cl

Aij

The multiplicity of an edge that exists between two individual patients is considered as 1.
Taking into account the above notions, the partitioned graph can be transformed into a

reduced graph that contains only the group nodes, associated with their summarized statis-
tics, and the group edges with their multiplicities. The reduced graph visualization for the
example can be found in Fig. 5c. Each node has the colour of the corresponding group. The
size of each node depends on the cardinality of each group, while the thickness of the edges
depends on the multiplicity of the reduced edges. The length of the edges, resulting from
the force-directed layout, implicitly denotes the amount of similarity between two nodes:
nodes that are connected with long edges are put far apart from each other due to their low
similarity. It should also be noted that in Fig. 5c and f, the forces of the force-directed lay-
out have been suppressed, to keep the group nodes in roughly the same positions as their
corresponding graphs in their previous screenshots, for ease of reference.

The reduced graph provides collective information about the cohort. In this example, it
consists of 6 nodes, meaning that the cohort can be divided into 6 groups or sub-cohorts.
Each group is represented by a group centroid. The similarities among them are represented
by the graph edges. The reduced graph introduces, of course, a loss of information. Not all
information of the original data is preserved in the reduced graph, which is, as already men-
tioned, beneficial for de-identifying individual patients. The amount of information loss can
be controlled by modifying the number of components in which to split the original graph.
A larger number of components leads to a fine-grained graph containing several nodes, each
representing a small group of patients. In principle, this is similar to data quantization and
compression methods (e.g. Self-Organizing Maps), where the original data are reduced in
size, without losing much information about the overall structure of the data. On the other
hand, a small number of components leads to a coarse graph with only a few nodes, each
representing a large group of patients. This is similar in principle to clustering methods,
where the goal is to split the data to a handful of groups that characterize large areas of
the input space. Allowing the user to choose the reduced graph granularity is beneficial in
understanding the structure of the available data.

The reduced graph of one cohort is ready to be merged with the nodes of another cohort,
without exposing any sensitive patient data. The merged graph consists of the individual
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patient nodes of the new cohort and the group nodes of the previous cohort. For the cal-
culation of the edges, we take into account both individual and grouped nodes and we
consider them as patient vectors. We use the centroid vectors for the group nodes. A distance
matrix is calculated, followed by the calculation of the graph edges. Any edges between the
group nodes are replaced by the edges of the reduced graph, to maintain the multiplicity
information.

The merged graph resulting from this procedure can be seen in Fig. 5d. The gray nodes
represent the individual patients of the new cohort, while the coloured nodes are the group
nodes of Fig. 5c. The merged graph presents a comparison between the new patient nodes
and the group nodes. Some new nodes present similarities with the group nodes of cohort
#1. These nodes are located near the corresponding group nodes to which they are similar.
Moreover, some new nodes are located far away from all group nodes, which shows that the
corresponding patients are not similar to the groups of cohort #1.

The merged graph can itself be partitioned, taking into account all types of nodes (both
individual and group nodes). Figure 5e depicts the result of the partitioning. Note that the
colors of the nodes do not correspond to the colors of the previous partitioning (i.e. the one
in Fig. 5b-d. This happens because a new partitioning is generated, using only the structure
of the graph at stage (d). The algorithm does not try to match new groups with old ones,
since there is no one-to-one correspondence: new groups may be created that did not exist,
or groups may be merged into larger groups. In the example of Fig. 5e, we can observe that
most nodes that were close to group nodes belong to the same partition. However, there is a
case in which two group nodes belong now to the same partition (blue nodes), as well as a
case in which groups of individual nodes of cohort #2 have created their own partition (pink
nodes). The explanation is that the additional data cause the update of the distribution of
nodes in the partitions. Finally, this partitioned graph can be itself reduced, in case it has to
be merged with other cohorts. This final reduced graph visualization can be seen in Fig. 5f.

3.4 Implementation details

The implementation of the above incremental graph construction method in a federated
health data analysis platform (e.g. in the platform of the HarmonicSS project) can be per-
formed in the following workflow, depicted in Fig. 6. The user requests that a collective
graph of the patients of n cohorts, C1, . . . , Cn, is constructed and presented. The algorithm
starts at cohort C1, running on the local computing space and database of this cohort and

Fig. 6 Workflow of the proposed method in a federated setting, as part of a clinical platform
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constructs a reduced graph G1. The graph G1 is stored in a cloud repository, and since it
is reduced, no data about individual patients are exposed. The algorithm then moves on to
cohort C2, running on its local database, using graph G1 as a starting point and building a
patient graph around it, and producing graph G2 by merging the summarized information of
G1 with the information of C2. The procedure is repeated with the algorithm moving from
cohort to cohort, gradually building a cumulative graph containing all information avail-
able in the cohorts. The resulting graph G is returned to the user, at which point it may be
inspected as it is or merged with per-patient information of the cohort for which the user
has full access to. The user can guide the procedure by specifying parameters such as the
number of nearest neighbors for graph construction, the granularity of the partitioning (i.e.
the number of groups to partition the graph into), etc. The user can also select among the
available types of glyphs for the final graph nodes, in order to inspect the characteristics
of the displayed patients. At no point throughout the whole procedure is information about
individual patients of a cohort exposed to the premises of other cohorts, ensuring confiden-
tiality. The only information stored in the cloud, i.e. available to all cohorts, is the reduced
summary graphs.

Regarding the technologies used, the proposed method has been implemented as a web
application that can be imported in relevant health platforms. The implementation consists
of two main parts:

– Back-end graph construction and incremental update: The construction of the graph
from the raw data, either in k-nearest neighbours or MST formats, has been imple-
mented as a set of web services in a Node.js1 server, written in JavaScript and Python.
The web services expose a RESTful JSON-based interface, where a user or application
can call the service providing the data to be analyzed and a set of options required by
each method, e.g. the number of components of the graph partitioning.

– Front-end graph and glyph visualizations: The force-directed graph positioning and
visualization, as well as the glyphs for the nodes have been implemented in D32. D3
is a JavaScript library for generating data-driven documents and is commonly used in
conjunction with SVG graphics to create custom interactive visualizations. The flex-
ibility provided by D3 facilitated the creation of the glyph-based visualizations, with
easily interchangeable (and extensible) types of glyphs.

The web application will be released as part of the data analytics platform of the
HarmonicSS project [8].

The current presentation of the proposed methods focuses on their functional components
of graph partitioning, incremental graph construction and glyph-based visualization. The
interactive usage of these components by the end-user in a final product will enhance the
data exploration value of the proposed method in the context of a clinical platform, towards
the discovery of groups of similar patients and relationships in their characteristics. In a
typical course of work of an analyst (researcher or decision maker), the user would interact
with the visualization by specifying the cohorts to combine, the attributes to use for graph
construction, the properties of the graph construction procedure (MST or k-nearest neigh-
bors, number of nearest neighbors), the granularity of graph partitioning, the type of glyphs
to use and the attributes to show on the glyphs. Furthermore, the usage of widely used web
libraries in the implementation (D3) allows the easy integration of the proposed methods in

1https://nodejs.org/
2https://d3js.org/
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a clinical or visual analytics platform, and the implementation of richer means of interac-
tion, e.g. providing further details for selected patients or groups of patients, brushing and
linking selections on the graph with other types of visualizations, etc.

4 Use cases

The developed methods have been evaluated in the context of three use cases. The first
two deal with the visualization of older adults in relation to frailty status, and visualization
of Sjögren’s Syndrome patients. The goal in both use cases is to explore the distribution
of persons within the data, to understand the different types of users present and detect
interesting patterns and outliers. The third use case deals with diabetic patients, while the
focus is on how the proposed method can handle a larger dataset.

4.1 Visualization of older adults

The first use case considered deals with the visualization of older adults with regard to their
frailty status. Frailty is a condition of reduced functioning present usually in older adults
that is related to the physiological and cognitive status of a person.

The data used in this use case have been collected during the course of the European
project FrailSafe [7, 31]. The dataset consists of 200 persons, each described by a multitude
of attributes related to physiological, cognitive, activity, psychological, etc., characteristics.
The data were collected using wearable and ambient sensors, as well as through adminis-
tered questionnaires. Not all persons have information for all attributes. For the purposes
of the current demonstration, we have focused on activity and cognitive characteristics,
for which almost all persons have values, collected using wearable sensors and question-
naires, and how they relate to the frailty status of the individual. In particular, the following
attributes have been used:

– MMSE score: The Mini-Mental State Examination (MMSE) score, evaluating cogni-
tive functionality.

– Depression score: The score achieved in a depression questionnaire.
– Gait speed: The measured gait speed at a short walking distance.
– IADL grade: The Instrumental Activity of Daily Living (IADL) score, collected

trhough questionnaires.
– Katz: The Katz Index of Independence in Activities of Daily Living, collected through

questionnaires.
– BMI: The Body Mass Index (BMI), measured using scales.
– Frailty status: The frailty status of the individual, measured using the Fried scale [9].

The attribute takes three values: “Non-frail”, “Pre-frail”, “Frail”.

Not all parameters are used in all the visualizations that follow. In each visualization, the
parameters used are shown in the legend.

Figure 7 depicts the visualization of all persons of the FrailSafe dataset (excluding cases
with missing data for the attributes of interest), using the proposed graph-based method.
Each graph node corresponds to an older adult. The connections among them and their
positions are computed based on the method described in Section 3, using the attributes
that appear at the legend, having numerical values. The number of nearest neighbors for the
graph construction has been experimentally set to 5, in an attempt to achieve a compromise
between a disconnected graph and a very compact graph, both of which would fail to show
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Fig. 7 Visualization of the FrailSafe dataset, using bar chart glyphs

much structure in the data. The above attributes have also been used to create the glyph for
each node. The categorical “frailty status” attribute has been used to color the background
of each glyph according to the value for each user: green for non-frail, orange for pre-frail
and red for frail individuals.

The overall structure of the graph reflects the distribution of the older adults with respect
to the considered attributes. The far right area contains mostly non-frail users, who, from
the node glyphs, appear to have large values in cognitive-related scores and in the activity-
related index. Moving to the left, the middle part of the graph is mostly occupied by pre-frail
individuals, with rather average values for all attributes. Various substructures are apparent
in this area, such as the cluster at the very top, consisting of persons with relatively high
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cognitive and activity scores, as reflected by their glyphs. The bottom left part of the graph
is covered mostly by frail individuals, with lower than average cognitive and activity scores.
This overview might indicate to an end-user that persons with low cognitive ability and low
activity are probably indicators of frailty, and could lead to further investigation of such a
relationship, to see if it is of statistical significance. Or it might indicate that a person of
interest, for whom there is no frailty status available, is positioned in a place where nearby
patients are frail, so there is a higher probability that this person might suffer from frailty as
well.

Three cases stand out at the bottom (at the zoomed area) with their unusual glyphs show-
ing very high values for the gait-related attributes. Although not spatially separated from
the rest of the graph, the glyphs of these cases denote that they are quite different from their
nearest neighbors. The very large gait values, significantly larger than two standard devia-
tions, might be attributed to malfunction of the sensors, or some other cause. Other cases
of interest might include frail adults appearing among many non-frail individuals, as in the
top part of the graph. In all cases, the viewer of the visualization can be alerted from their
presence, to investigate them further.

Figure 8 shows a visualization of the FrailSafe dataset using radar glyphs. Radar glyphs
are most appropriate when there are more attributes, so we have considered two additional
attributes: Katz index and BMI score. We have used the MST graph construction method in
this case. The different areas of the graph have different characteristic shapes for the radar
glyphs, which reflect the profiles of the corresponding patients. We can see, for example,

Fig. 8 Visualization of the FrailSafe dataset, using radar chart glyphs and the MST graph construction
method
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that the left and top parts of the graph, which are mostly occupied by frail people (red color)
tend to have shapes that divert from the average shape, with low values for MMSE score
(left part of the graph) and low values for IADL grade (top part of the graph).

Figure 9 shows an example of a federated graph visualization using the incremental graph
construction presented in Section 3.3. The available data have been split in two cohorts. The
first set is visualized using a k-nearest neighbors graph, in Fig. 9a. This graph is partitioned
and reduced to the graph of Fig. 9b. Each node corresponds to a group of patients, and the
corresponding glyphs describe the average values of each group. The size of the glyphs is
determined by the number of patients in each group, while the edge thickness is determined
by the number of edges between the corresponding patient groups. The colors for the glyphs
represent the most frequent value for the fried score variable in each group. The group nodes
correspond to the different areas in the graph of individual patients, in Fig. 9a. The reduced
graph does not include information for any individual patient, but only aggregated infor-
mation. This federated graph can be merged with the data of another cohort, as depicted in
Fig. 9c. The group nodes appear in a gray border. The individual patients of the new cohort
are mostly positioned near the existing group nodes, denoting that the new cohort patients

Fig. 9 Incremental graph construction for the FrailSafe dataset. (a-b) Graph of cohort #1. (c-d) Merging
cohort #1 with cohort #2
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follow roughly a similar distribution. However, there are several nodes at the bottom, corre-
sponding to several frail people existing in the second cohort, which seem to be far from the
group nodes. Further reducing this graph in Fig. 9d shows that the federated groups have
been updated, with the previous groups aggregating most of the new patients, while there
two new group nodes at the bottom, corresponding to the new group of frail patients that has
appeared in the second cohort. This is an expected behaviour for the update of the federated
graph, whenever new types of patients are added.

4.2 Visualization of Sjögren’s Syndrome patients

The second use case concerns the visualization of patients with Sjögren’s Syndrome.
Sjögren’s Syndrome is a disorder of the immune system, causing mostly dryness in the
eyes and mouth of the patients, while it is also associated with cancer of the lymph nodes
(lymphoma).

The data used in this case have been collected during the European project HarmonicSS
[8]. The data consist of 200 patients, each described with a variety of clinical and laboratory
measurements. Not all patients have information for all attributes. For the purposes of the
current demonstration, we have used the following attributes:

– SGE: The Salivary Gland Echography measurement.
– Lymphadenopathy: Whether the person has lymphadenopathy.
– C3: Concentration of Complement C3 proteins.
– C4: Concentration of Complement C4 proteins.
– Dryness upper resp.: Dryness of the upper respiratory system, as subjectively qualified

by the patient.
– Reynaud: Existence of Reynaud’s disease.
– Lymphoma: A binary categorical variable, indicating whether the person has lym-

phoma, i.e. cancer of the lymph nodes.

Not all parameters are used in all the visualizations that follow. In each visualization, the
parameters used are shown in the legend.

The visualization of the HarmonicSS dataset is depicted in Fig. 10. All the above
attributes, apart from “lymphoma” have been used for the graph construction and the node
glyphs. The number of nearest neighbors for the graph construction has been set to 7, sim-
ilar to the FrailSafe use case. The “lymphoma” attribute has been used to color the glyphs:
red for presence of lymphoma and green for its absence. The most apparent characteristic
of the visualization is the separation of the patients in three clusters. As deduced from the
node glyphs, the large cluster at the right consists of patients with low SGE values (left-most
bar), while the other two clusters are separated based on the lymphadenopathy values, with
the bottom cluster consisting of people with high lymphadenopathy values. With regard to
the lymphoma scores, the bottom cluster contains most of the lymphoma cases, relatively to
its size, but individual lymphoma cases can also be seen in the other clusters, especially in
areas of low C3 and C4 values (top left of left cluster and top of right cluster).

Figure 11 shows another visualization of the whole HarmonicSS dataset, using radar
glyphs. Similar to the FrailSafe scenario, we have added two extra attributes for this case:
dryness of the upper respiratory system and Raynaud’s index. The various areas and visual
clusters formed correspond to different patient profiles, as denoted by the characteristic
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Fig. 10 Visualization of the HarmonicSS dataset, using bar chart glyphs and the nearest neighbors graph
construction method

shapes of the glyphs. As examples, the middle part of the graph consists mostly of average
users, with regular polygon shapes, while the top left and bottom right part consist of rather
irregular shapes, elongated in the C3 and lymphadenopathy directions (top left) and the
respiratory system dryness direction (bottom right). Such an overview could provide an
indication to a medical professional that e.g. people with non-zero SGE values (top right
part of the graph) seem to have an increased chance of developing lymphoma, since there are
more persons with lymphoma among them compared to the middle part of the graph, whose
glyphs differ mostly in their SGE axis. This can lead an end-user to further investigation,
using statistical methods to see if such a relationship is significant.

Similar to the FrailSafe use case, we also demonstrate an incremental graph construc-
tion scenario, in Fig. 12. The dataset has been split to two cohorts, in order to construct a
federated graph from one cohort and update it using the other. The graph of the first cohort
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Fig. 11 Visualization of the HarmonicSS dataset, using radar chart glyphs and the nearest neighbors graph
construction method

in Fig. 12a is partitioned to the graph of Fig. 12b, where the group nodes correspond to the
various areas of the original graph. Since there are only a few patients with lymphoma, all
group nodes are colored in green, since the majority of patients in each group does not have
lymphoma. This situation is changed when the second cohort is introduced, in Fig. 12c.
There are several patients with lymphoma in this cohort (red nodes), creating their own
group in the updated federated graph of Fig. 12d.

4.3 Visualization of a large-scale diabetes dataset

As a final use case, we examine how the proposed method can handle large datasets of
thousands of patients. The dataset used is a subset of the data used for a 2014 study for
the effect of haemoglobin measurements on hospital readmission rate [26], available on
Kaggle3. We have used a subset of the original data, i.e. the patients for whom there is an

3https://www.kaggle.com/brandao/diabetes
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Fig. 12 Incremental graph construction for the HarmonicSS dataset, using a k-nearest neighbors graph.
(a-b) Graph of cohort #1. (c-d) Merging cohort #1 with cohort #2

HbA1C measurement available. The size of this subset is 17000 patients. The attributes used
for this use case are the following:

– Age: The age of the patient in years, binned into ten-year wide bins.
– Time at hospital: The hospitalization duration, in days.
– HbA1C value: The result of the HbA1C measurement of the patient.
– Readmission: Whether or not the patient is known to have been readmitted to the

hospital.

The current implementation of the proposed method allows for the visualization of
graphs of up to about 2000 nodes without significant overhead in time or memory con-
sumption. As an example, Fig. 13a shows the visualization of the first 2000 patients of the
dataset, using the k-nearest neighbors method with k = 150, while Fig. 13b shows the result
of graph partitioning using 20 components. In the glyphs, the age, hospitalization time and
HbA1C values were used for the glyph bars (as well as for the graph construction), while
the readmission value was used for the background color (red for readmission, green for no
readmission).
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Fig. 13 Visualization of the first 2000 patients of the diabetes dataset. (a) The graph of all patients. (b) The
partitioned graph

However, moving to graph sizes beyond 2000 nodes requires large amounts of memory
and computational time to process, making it hard to produce a direct visualization of the
whole dataset. The bottlenecks in the computation are the graph construction using the
pairwise distance matrix, the placement of the graph on the 2D plane using force-directed
methods and the computation of the spectral embedding, requiring the eigendecomposition
of the Laplacian matrix. Modifications of the proposed method can be applied in order to
address these bottlenecks:

– The construction of the graph using k-nearest neighbors consists of the computation
of the pairwise distance matrix, which requires O(N2) time (the dimensionality of the
points is considered constant, for simplicity of presentation), and the computation of the
k nearest neighbors for each point, which, using a naive linear search, requires O(kN2)

time, for a total complexity of O(kN2). Using k −d trees as a data structure for storing
the points of the data space, this can be reduced to an average of O(kNlogN), which
is much faster for large numbers of points.

– The force-directed placement of a large graph can be achieved efficiently using layout
algorithms such as the Fast Multipole Multilayer Method (FMMM) [11], which are
able to visualize graphs of several thousands or millions of nodes in a small amount of
time (∼5min).

– The Laplacian matrix is a symmetric matrix that is sparse for small enough values of k,
for a k-nearest neighbour graph. The fact that it is sparse can be exploited to optimize
the storage memory required and the computation time for spectral decomposition.
Moreover, not all eigenvectors of the Laplacian are needed, but only those correspond-
ing to the smallest eigenvalues. Fast algorithms such as Chebyshev–Davidson [32] can
be used to efficiently compute the graph embedding.
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Fig. 14 Visualization of the partitioning of the whole diabetes dataset of 17000 records

Nevertheless, the incremental graph construction procedure presented in Section 3.3,
allows for an alternative approach to the problem. Instead of visualizing and partitioning the
whole graph, we can split the dataset into smaller batches and construct the graph and its
partitioning incrementally, taking each batch in sequence. In this manner, we can summa-
rize arbitrarily large graphs with only a time latency due to the repeated application of the
algorithms in each batch.

To create a partitioning of the whole diabetes dataset, we split the 17000 patients into
17 batches of 1000 patients each, and performed incremental graph construction in each
batch in sequence, building the graph of one batch around the reduced graph of the previ-
ous batch. Each graph was built using the k-nearest neighbor method with k = 75 and 20
components were used for graph partitioning. Figure 14 shows the partitioned graph result-
ing from the final step of this procedure. Nearby nodes correspond to similar groups of
patients, so the end-user can distinguish the different types of users that exist in the whole
dataset. For instance, the bottom part of the graph corresponds to people of low HbA1C
values, indicated by the third column of the bar chart glyphs. These patients tend to have
higher probabilities of readmission, indicated by the red background color, although other
areas of the graph have high readmission rates as well (e.g. the top-left part). A clinician
can use such a visualization of a large dataset to have an overview of the kinds of patients
in it. Interaction can also be used to allow the end-user to select the attributes to use for the
bars and the color of the glyphs, facilitating exploration.

5 Conclusion

In this paper, a graph-based method for visualizing a set of patients has been presented.
In the proposed method, a graph is constructed that encodes local similarities among the
patients in a high-dimensional space determined by a set of health parameters of interest.
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The graph is presented on the two dimensional screen using force-directed placement meth-
ods, forming a visual map of the manifold spanned by the patients and allowing the visual
detection of neighborhoods and clusters of similar characteristics. In addition, the graph
nodes are visualized using glyphs able to depict multiple attributes for each single patient,
thus providing visual cues for the type of patients present in each graph area and for the rea-
son that certain patients are put near or away each other. The graph construction procedure is
further extended in an incremental graph construction procedure, where a high-level graph
of groups of nodes can be sequentially updated with data from new patient cohorts. This
high-level representation is valuable in case of very large volumes of raw data, where sum-
marized information is more appropriate, as well as in cases of sensitive data visualization,
where access to individual patients is restricted. The proposed method has been demon-
strated in three use cases, where the end results provide insight in the raw data, allowing the
detection of patterns and outliers.

The envisioned end-users of the proposed method are decision makers and researchers of
a domain of interest. The above presentation has been focused on health applications, where
the end-users are clinicians and medical researchers. The value of the proposed method for
the end-users is that it aims to assist in data exploration and comprehension, by providing a
two-dimensional “map” of entities of interest (e.g. patients), that can serve as an overview
of the available dataset and a guide towards further investigation. The entities of interest are
positioned according to their similarities, which allows the formation of regions of interest,
corresponding to different types of entities present in the data. On top of this, the node
glyphs allow the end-user to see which features characterize each area. A clinician, for
instance, can locate a patient in this map and find similar patients or groups of patients, that
can in turn lead to selection of appropriate medication or intervention strategy. Or they can
spot patients that do not belong in one of the coarse categories identified, which may be a
hint for an abnormality requiring special attention.

Part of the presented work, related to the visualization of the raw graph of patients, prior
to any reduction procedure, has been evaluated by medical professionals and researchers
in the context of the FrailSafe project [31]. The feedback collected by the end-users was
positive in terms of the usefulness and usability of the developed approach, which was
an incentive to improve and extend the original approach. The evaluation of the complete
method, involving the construction of the incremental graph and the addition of node glyphs,
will be performed in the context of the currently running HarmonicSS project [8]. Since
the outcome of the methods is a set of visualizations with the aim to assist the end-users
in their analyses, the evaluation will be mostly based on feedback by the end-users. The
evaluation process will involve the presentation of the methods to the end-users (clinicians
and clinical researchers) in the context of an integrated platform, the usage of the methods
by the end-users for an indicative period of time (e.g. a week) and the collection of feedback
through questionnaires regarding the usefulness and usability of the methods. Through the
questionnaires, we will focus on parts of the methods that might be novel to the end-users,
such as the graph presentation of patients or the use of glyphs, and on how they could
potentially be improved. The goal of the evaluation will be to identify the strong and weak
points of the proposed solutions and to try to address the shortcomings in future releases
and evaluations.

The presented method is a work in progress. The usage of the method in real-world
scenarios will dictate the directions for future improvements. In any case, future work will
also be directed towards testing and fine-tuning different types of glyphs that may provide
more information while also leading to less clutter. Variations of the force-directed node
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positioning methods will also be considered, in an attempt to exploit all available space,
possibly by forcing the nodes to lie on a two-dimensional grid. Effort will also be put to
enhance the federated graph construction scheme with better handling of vectors of both
numerical and categorical data.
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