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Abstract. Recent advances in data acquisition and sharing have made available 

large quantities of complex data in which features may have complex 

interrelationships or may not be scalar. For such datasets, the traditional matrix 

model is no longer appropriate and may fail to capture relationships between 

features or fail to discover the underlying concepts that features represent. 

These datasets are better modeled using tensors, which are high-order 

generalizations of matrices. However, naive tensor algorithms suffer from poor 

efficiency and may fail to consider spatiotemporal neighborhood relationships 

in analysis. To surmount these difficulties, we propose TWave, a wavelet and 

tensor-based methodology for automatic summarization, classification, concept 

discovery, clustering, and compression of complex datasets. We also derive 

TWaveCluster, a novel high-order clustering approach based on WaveCluster, 

and compare our approach against WaveCluster and k-means. The efficiency of 

our method is competitive with WaveCluster and significantly outperforms k-

means. TWave consistently outperformed competitors in both speed and 

accuracy on a 9.3 GB medical imaging dataset. Our results suggest that a 

combined wavelet and tensor approach such as TWave may be successfully 

employed in the analysis of complex high-order datasets.  
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1   Introduction 

The traditional approach to data representation utilizes a matrix structure, with 

observations in the rows and features in the columns. Although this model is 

appropriate for many datasets, it is not always a natural representation because it 

assumes the existence of a single target variable and lacks a means of modeling 

dependencies between other features. Additionally, such a structure assumes that 

observed variables are scalar quantities by definition. This assumption may not be 

valid in certain domains, such as diffusion tensor imaging, where higher-order 

features predominate. 
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Traditionally, these problems have been solved by reducing the features to scalars 

and fitting the dataset to a matrix structure. However, as well as potentially losing 

information, this strategy also employs a questionable approach from a philosophical 

standpoint: attempting to fit the data to an imprecise model rather than attempting to 

accurately model the existing structure of the data. Finally, while it may be possible to 

model dependencies between features by making many runs, each with a different 

target variable, this yields suboptimal performance and may not be computationally 

feasible when real-time performance is required or when the dataset is very large. 

To address these issues, we propose to model such datasets using tensors, which 

are generalizations of matrices corresponding to r-dimensional arrays, where r is 

known as the order of the tensor. Using a combination of wavelet and tensor analysis 

tools, we propose a framework for summarization, classification, clustering, concept 

discovery, and compression, which we call TWave. Applying our technique to 

analysis of the MNIST digit recognition dataset [6] and a large real-world 

spatiotemporal dataset, we compare the performance of TWave against voxelwise, 

SVD-based, wavelet-only, and tensor-only techniques and demonstrate that TWave 

achieves superior results and reduces computation time vs. competing methodologies. 

2   Background 

2.1   Tensor Tools 

Tensors are defined within the context of data mining as multidimensional arrays. 

The number of indices required to index the tensor is referred to as the rank or order 

of the tensor, while each individual dimension is referred to as a mode. The number of 

elements defined on each mode is referred to as the mode’s dimensionality. The 

dimensionality of a tensor is written in the same manner as the dimensionality of a 

matrix; for example, 20x50x10. Tensors represent generalizations of scalars, vectors, 

and matrices, which are respectively orders 0, 1, and 2. 

An important operation applicable to our analysis is the tensor product (also the 

outer product). This product generalizes from the Kronecker product, but results in 

another tensor rather than a block matrix. Given order r and s tensors � and ℬ, their 

tensor product � ⊗ ℬ is a tensor of order � + �: �� ⊗ ℬ�	
,	�,…,	�,�
,��,…,�� = �	
,	�,…,	� ∗ ℬ�
,��,…,�� 
Singular value decomposition (SVD) is a unique factorization by which an � × � 

matrix is decomposed into two projection matrices and a core matrix, as follows: � = � × � × �� 
where � is an � × � matrix, � is an � × � column-orthonormal projection 

matrix, � is an � × � column-orthonormal projection matrix, and � is a diagonal � × � core matrix, where � is the (matrix) rank of matrix �. 

SVD is used in Latent Semantic Analysis (LSA), an unsupervised summarization 

technique [1]. Here � is treated as a term-document matrix. In this context, singular 

value decomposition automatically derives a user-specified number of latent concepts 

from the given terms, each representing a linear combination. The projection matrices 



                              

 � and � contain term-to-concept and document-to-concept similarities, respectively. 

Thus, SVD can be used to provide simple yet powerful automatic data summarization. 

The natural extensions of singular value decomposition to tensors are the Tucker 

and PARAFAC decompositions [2,3]. Let � be an order-r tensor. Tucker 

decomposition is a factorization into a core tensor � and projection matrices �	: � = � × �� × �� × … × ��  
Though the Tucker decomposition provides SVD-like data summarization, 

evaluating it requires computing �’s covariance matrix. This can come at a memory 

cost of Ω����, which, for large datasets such as ours, may be prohibitive. Fortunately, 

PARAFAC avoids this problem. PARAFAC is a generalization of PCA [2] and forms 

the basis of our tensor analysis approach. Given a user-specified number of concepts 

c, PARAFAC decomposes an order-r tensor � into a columnwise sum of the tensor 

product of � projection matrices, denoted ���� … ����, as follows: 
� =  λ"�:,	��� ⊗ �:,	��� ⊗ … ⊗ �:,	���$

"%�  

Where the � matrices represent projection matrices containing mode-to-concept 

similarities and & represents a c-element scaling vector, in which each element 

represents the strength of a concept. The notation �:,	 refers to the ith column of �. 

Both the Tucker and PARAFAC decompositions may be computed using 

alternating least squares (ALS) [Error! Reference source not found.], as shown below: 

 

1. Given an order-� tensor �, declare projection matrices ����, ����, … , ����. 
2. Let ' = 1. 

3. Holding all other matrices constant, solve the following equation for ��	�: 
��	� = ��	� ) *  ����

�%�..� ∧�.	 / ) 0 1����23����
�%�..� ∧�.	 /

∗
 

Where ⨀ represents the n-ary Khatri-Rao product, * represents the Moore-

Penrose pseudoinverse, and ��	� represents � matricized [4] on mode i. 

4. Repeat for all ' from 1 to � until convergence is attained. 

The resulting PARAFAC decomposition is illustrated in Figure 2 below: 

 

Fig. 2: Illustration of a third-order PARAFAC decomposition. 
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3   Proposed Method 

3.1   Overview 

Our methodology makes use of both wavelets and tensors. Because spatiotemporal 

data tends to exhibit a high degree of spatial locality, the spatiotemporal modes of the 

dataset are first preprocessed using an m-dimensional discrete wavelet transform 

(obtained through cascading), where m is the number of spatiotemporal modes. For 

applications other than clustering, we utilize the Daubechies-4 wavelet; clustering 

itself is optimally paired with a hat-shaped wavelet such as the (2,2) biorthogonal 

wavelet, as these wavelets boost the strengths of dense clusters of points while 

suppressing outliers. We then linearize the wavelet coefficients to form a vector 

representing all spatiotemporal voxels in the dataset, reducing the order of the tensor 

by d-1; this overcomes many of the performance issues associated with a high-order 

pure tensor approach and allows us to threshold the discovered wavelet coefficients, 

storing the results in a sparse matrix to achieve a significant compression rate. 

PARAFAC is then performed using alternating least squares and the resulting 

projection matrices are stored and analyzed, either by direct inspection or as input to a 

classifier. This method provides a general framework for further tensor and wavelet 

analysis, including concept discovery, compression, clustering, and classification. 

3.2   Other Methods 

It is also possible to analyze data using wavelets and tensors alone, or by using 

neither preprocessing method (the voxelwise approach). Singular value 

decomposition run on the dataset in matrix representation additionally provides a 

benchmark for comparison of the tensor model and techniques. 

We performed voxelwise classification by linearizing each image in the dataset and 

using the normalized values of an image’s voxels as a feature vector in classification. 

Similarly, we performed wavelet classification by using each image’s linearized 3-

level wavelet coefficient vector (using the Daubechies-4 wavelet) as a feature vector 

representing that image. Both approximation and detail coefficients at each resolution 

were included in this analysis. 

3.3   Classification 

To perform classification using TWave, we wavelet-transform the dataset, run a 

tensor decomposition such as PARAFAC or Tucker, and directly use each wavelet 

coefficient’s similarity to each concept as an element in the feature vector. We then 

perform k-nearest neighbor classification, which assigns a class to each image based 

on the majority class of that image’s k nearest neighbors (using Euclidean distance). 

When classifying on a variable other than the principal variable of the dataset, we 

subtract the mean of the principal variable from the dataset. We have empirically 

observed this to boost accuracy. 



                              

 

3.4   TWaveCluster 

We extended the WaveCluster algorithm to use the PARAFAC decomposition 

rather than a connected component algorithm to grow the clusters, calling our 

algorithm TWaveCluster. Our approach exhibits a number of advantages, including 

the ability to create a fuzzy clustering (where each voxel’s degree of membership in 

cluster c is its similarity to concept c in the decomposed tensor), the ability to cluster 

noncontiguous voxels based on patterns in the projected concept space, and even the 

ability to discover clusters that extend across modes of the tensor. Our approach also 

has the advantage of simple cluster validation, as the terms in the & vector 
automatically represent cluster variance. 

The first few steps of our algorithm are identical to WaveCluster: 

• Quantize data, using the counts of each grid cell in place of the original data. 

• Apply a wavelet transformation using a hat-shaped wavelet (such as the (2,2) 

or (4,2) biorthogonal wavelets), retaining the approximation coefficients. 

• Threshold cells in the transformed space. Cells with values above a user 

specified density threshold are considered “significant”. 

However, the remaining steps in our algorithm differ: 

• Model significant cells as a tensor 9 ∈ ℜ<
×<�×…×<� . 
• For a user-specified k, run a k-concept PARAFAC-ALS analysis on 9: 9 = ∑ λ"�:,	��� ⊗ �:,	��� ⊗ … ⊗ �:,	���>	%� . 

• For each ? from 1 to k, recompose a tensor using only column ? of each 

projection. The resulting tensor 9@  contains voxel similarities to concept c: 9@ = λ$�:,@��� ⊗ �:,@��� ⊗ … ⊗ �:,@���
 

• Assign every voxel the cluster label of its most similar concept: �∀B ∈ 9� ℒD = arg max�J@J>�9@�D 

4   Results 

4.1   Dataset 

We analyzed each approach on a high-order motor task fMRI dataset consisting of 

11 subjects performing 4 simple motor tasks: left finger-to-thumb, left squeeze, right 

finger-to-thumb, and right squeeze. Classification was also performed on 10,000 

randomly-sampled observations from the low-order MNIST digit recognition dataset, 

split into 5,000 element training and test sets [6]. Acquisition of the fMRI dataset took 

place using one scanner and one common set of acquisition parameters. Data was 

acquired from each subject over 120 time points, each 3 seconds long. The period of 

each task was 30 seconds. Each acquired volume consisted of 79 × 95 × 69 voxels. 
Thus, the dataset was most easily represented as a 6th order tensor of dimensionality 79 × 95 × 69 × 120 × 4 × 11, of which the first four modes were spatiotemporal 

and the remaining two were categorical. 
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4.2   Discovered Concepts 

When summarizing the data using a 2-concept TWave analysis, we noticed two 

outliers among the subject-to-concept similarities, which we found corresponded 

exactly to the 2 left-handed subjects in the dataset. This pattern was made even more 

explicit when subtracting the subject means from each subject’s set of images, 

suggesting that the task residuals discriminate better between left and right handed 

subjects than when task activations are biased by subjects’ means. The results of 

TWave using the Daubechies-4 wavelet and mean subtraction are shown in Figure 3. 

These results suggest that PARAFAC may be employed as a powerful concept-

discovery and feature extraction tool on complex datasets, though we caution that a 

larger dataset may be necessary to adequately confirm these findings.  

 
Fig. 3: A 2-concept projection using TWave. The two rightmost points are left-handed. 

4.3   Classification 

Use of wavelets in particular greatly improved subject classification accuracies, 

given a complex enough wavelet (to 98% using the Daubechies-4 wavelet but only to 

82% for the Haar wavelet). We were able to threshold up to the weakest 98% of 

wavelet coefficients without any loss of subject or task classification accuracy, greatly 

improving time and space costs while preserving the discriminative power of the 

classifier. Further compression is possible in the decomposed tensor through 

truncation of weak concepts (though computation of these concepts is expensive). 

Task classification was more difficult because the intra-subject between-task 

variance (R� = 179.29) was less than the between-subject variance (R� = 9066.85). 
Initial results yielded only 2% accuracy for voxelwise analysis and 27% accuracy for 

wavelet-based analysis. However, by subtracting the voxelwise mean of each subject 

across all tasks, we were able to improve classification substantially. Use of 

MPCA+LDA [7] as a preprocessing step further improved accuracy. As the sampled 

MNIST digit recognition dataset is a dense low-order dataset, less difference is seen 

between low and high-order approaches than in the fMRI dataset, though wavelet 

preprocessing still did significantly boost accuracy. 

4.4   Clustering 

We analyzed two subjects on all four spatiotemporal modes of the fMRI tensor 

using the k-means (k=4) and TWaveCluster (k=5, density threshold=85th percentile) 

approaches. Average running times for each method were 53 seconds and 23 seconds, 



                              

 

respectively. Discovered clusters are shown in Figure 4. A demarcation can be seen 

between the frontal and temporal regions of the brain in the TWaveCluster results; 

this distinction is less clear in k-means. The clusters discovered by TWaveCluster 

show a greater degree of symmetry and homogeneity than the k-means clusters, and 

also yield a clustering in-line with domain expectations. 

 
          (a)             (b)                 (c) 

Fig. 4: (a) Activation in a right-handed subject performing a left finger-to-thumb task and the 

clusters discovered by (b) k-means and (c) TWaveCluster. Only significant voxels are shown. 

4.5   Speed and Summary of Results 

Runtime was assessed for the voxelwise, wavelet-based, and TWAVE approaches on 

a dual-processor 2.2 GHz Opteron system with 4 GB of memory. The SVD and pure 

tensor approaches were measured on an 8 processor (16 core) 2.6 GHz Opteron 

supercomputer with 128 GB of memory. Despite running on a much more powerful 

system, the tensor and SVD approaches still took significantly longer to complete 

than other approaches, as shown in Tables 1 and 2: 

Table 1: High-order fMRI dataset runtimes, subject and task classification accuracies, 

compressed dataset size, and ability to automatically identify left-handed subjects. 

 Voxels Wavelets SVD PARAFAC TWave TWave+MPCA/LDA 

Runtime 95 min 112 min 3 days 8 days 117 min 130 min 

Subjects 52% 98% 80% 88% 96% 100% 

Tasks 34% 68% 56% 52% 72% 93% 

Size 9.3 GB 181 MB 9.3 GB 9.3 GB 181 MB 181 MB 

Lefties? No No No Yes Yes N/A 

Table 2: Low-order MNIST digit recognition dataset runtimes and classification accuracies 

(after random sampling to training set size = 5000, test set size = 5000. k=2 in all cases). 

 Voxels Wavelets SVD PARAFAC TWave 

Runtime 250 sec 422 sec 20 min 25.3 min 512 sec 

Accuracy 47% 88% 53% 53% 88% 

5   Conclusions 

From these results, we may conclude that the combination of wavelets and tensor 

tools in the analysis of fMRI motor task datasets yields better performance in space, 

time, and accuracy than the voxelwise approach or either technique alone, achieving 

benefits such as sensitivity to locality while avoiding the prohibitive space and time 

costs of using only tensors. Additionally, such an approach provides powerful 
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automatic data summarization techniques, as demonstrated through discovery of left-

handed subjects in our dataset. Potential avenues for future research include use of 

different wavelet functions, extension of our methods to streaming and sparse tensor 

data, and applications to high-order datasets in other fields.  
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