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Abstract—Sensors are used to monitor certain aspects of the
physical or virtual world and databases are typically used to
store the data that these sensors provide. The use of sensors is
increasing, which leads to an increasing demand on sensor data
storage platforms. Some sensor monitoring applications need
to automatically add new databases as the size of the sensor
network increases. Cloud computing and virtualization are key
technologies to enable these applications. A key issue therefore
becomes the performance of virtualized databases and how
this relates to physical ones. Traditional SQL databases have
been used for a long time and have proven to be reliable tools
for all kinds of applications. NoSQL databases have gained
momentum in the last couple of years however, because of
growing scalability and availability requirements. This paper
compares three databases on their relative performance with
regards to sensor data storage: one open source SQL database
(PostgreSQL) and two open source NoSQL databases (Cas-
sandra and MongoDB). A comparison is also made between
running these databases on a physical server and running them
on a virtual machine. A minimal sensor data structure is used
and tested using four operations: a single write, a single read,
multiple writes in one statement and multiple reads in one
statement.

Keywords-Sensor Data; Data Storage; Performance; SQL;
NoSQL; Physical Server; Virtual Machine.

I. INTRODUCTION

The last decade has seen a large increase in sensor usage.
Sensors have become cheaper, smaller and easier to use,
leading to a growing demand on storage and processing of
sensor data. Typical applications include sensing of physical
structures to detect anomalies [1], monitoring the energy grid
to match the production and consumption of energy [2], the
internet of things [3] and smart environments such as smart
homes and buildings [4].

The aforementioned sensor systems have in common such
features as storing and processing of large amounts of data.
Scaling these systems becomes an increasingly difficult task
as both the amount of sensors and the number of clients
accessing these systems grows rapidly. The CAP theorem [5]
states that you can obtain at most two out of three properties
in such a shared data system: consistency (C), availability
(A) and tolerance to network partitions (P). SQL and NoSQL
databases often make two different choices out of these three
properties.

SQL databases are often chosen to store and query large

amounts of data. This is mainly due to developers being
familiar with them and because of the stability of these
databases. However, distributing SQL databases to a very
large scale is difficult. Because these databases are built
for the support of consistency and availability, there is less
tolerance for network partitions, which makes it difficult to
scale SQL databases horizontally. Adding more capacity to
such a database thus boils down to adding more processing
and storage power to a single machine.

NoSQL databases try to solve some of the problems tra-
ditional SQL databases pose. By relaxing either consistency
or availability, NoSQL databases can perform quite well in
circumstances where these constraints are not necessary [6].
For example, NoSQL databases often provide weak con-
sistency guarantees, such as eventual consistency [7]. This
relaxation of a certain constraint may be good enough for
a whole array of applications. By doing so, these databases
can become tolerant to network partitions, which makes it
possible to add servers to the setup when the number of
sensors or clients increases, instead of adding more capacity
to a single server.

This paper discusses the possibilities to use NoSQL
databases in large-scale sensor data systems and provides
a performance comparison to the use of a traditional SQL
database for such purposes. PostgreSQL is chosen as a
representative of SQL databases, because it is a widely used
and powerful open source database supporting the majority
of the SQL 2008 standard. Cassandra and MongoDB are
chosen as representatives of NoSQL databases, because they
are both powerful open source databases with a growing
community developing and supporting them. In addition,
the same tests are performed on a physical server and
on a virtual machine to assess the performance impact of
virtualization.

Related work includes papers aimed at the design or use of
benchmarking suites to assess the performance of a system
under test. Some of this work is general in nature [8], while
others are aimed specifically at database performance [9]
[10] [11] or aimed specifically at the impact of virtualization
on performance [12] [13]. This paper differs from these
benchmarking approaches because of a focus on sensor
data storage and a combination of comparisons between
databases and virtualization.

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.18

431

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.18

431



Sensor 1

Sensor n

Storage
Platform

Analysis

Visualisation

Regular
small writes

Bursty
large reads

Figure 1. Regular small writes and bursty large reads

II. SENSOR DATA

Sensors typically output their measurements at regular
intervals. For example, a temperature sensor might transmit
its sensed value every 30 seconds. The data associated with
that temperature measurement is typically a few bytes. If no
or little buffering is used, the sensor data system therefore
receives fairly small write requests at regular intervals.

Analysis and visualization components are typical con-
sumers of data from the sensor data system. An analysis
component might take the values of a 24 hour period and
calculate the average, and a visualization component might
visualize the same 24 hour period in a graph. These read
requests are more ad-hoc and contain more than one value.

As we can see in Fig. 1, the read requests from these
components are more bursty in nature and contain more than
one value, while the sensors output single values at regular
intervals.

Sensors take measurements of their surroundings at some
interval. Each measured value is stored in the sensor data
system along with an identifier of the sensor and a timestamp
that signifies at what date and time the value was sensed.
This is the minimum amount of information a general
purpose sensor data system needs. Other information may
be added as well, e.g. the location of the sensor at the time
of measurement.

III. TEST SUBJECTS

A. SQL versus NoSQL

Traditional SQL databases and more recent NoSQL
databases differ in some significant aspects. SQL database
use fixed table structures and offer the ability to select data
from these tables with a structured query language. Using
the join operation, it is possible to select data that spans
multiple tables. An SQL database typically scales well in a
vertical manner, i.e. by upgrading the single server it runs
on. However, it scales worse in a horizontal manner, i.e. by
adding a server to a cluster.

NoSQL databases on the other hand typically use key-
value stores, where data is stored and retrieved by key. There
is no fixed data structure and a less powerful query language
is available to retrieve the stored data. In return, the NoSQL
database is often easier to scale horizontally, which makes
it easy to add capacity at the moment it is needed.

NoSQL databases are also attributed higher performance,
because they are easier to design and implement. In chap-
ter IV we test this claim for the sensor data case, using

three open source databases: one traditional SQL database
and two NoSQL databases.

Cassandra [14] [15] is an open source NoSQL database.
It exists since 2008 and is designed to cope with very large
amounts of data spread out across many commodity servers.
It provides a structured key-value store using the mechanism
of eventual consistency [16]. Cassandra uses Thrift [17] for
its external client-facing API. Although Thrift can be used
as-is, it is recommended by the authors to use a higher-level
client. In this paper, we use Hector [18] as the Java client
library to connect to Cassandra.

MongoDB [19] [20] is an open source NoSQL database.
It exists since 2007 and provides a key-value store that
manages collections of BSON (binary JSON) documents
[21]. It is designed to run on one or a few commodity
servers and includes a powerful query language that allows
for regular expressions and Javascript functions to be passed
in as checks for matching keys and values.

PostgreSQL [22] [23] is a traditional open source SQL
database. It exists since 1995 and can be seen as a heavily
used representative of SQL databases. It is designed to
support the majority of the SQL 2008 standard, is ACID-
compliant (Atomicity, Consistency, Isolation, Durability)
and is fully transactional.

B. Physical versus Virtual

Cloud computing and more specifically virtualization of
resources is gaining in popularity. Virtualization can pro-
vide better utilization of resources because they are shared
between several applications and users. This means that
the cost of computing can be lower, it is easier to move
computation from one physical location to another location,
and designing for scalability becomes easier. Virtualization
also has a negative side, however, because the virtualization
layer itself imposes an impact on performance.

The raw performance impact has been measured in other
works such as [24] and [25], but we focus here on the
specific impact for databases that store sensor data. The
databases present real-life workloads on the systems which
may be quite different from (synthetic) workloads used by
benchmark suites.

In our comparative overview we use a physical server
and a virtual machine running on exactly the same physical
server, but then with a virtual machine monitor (VMM)
installed on it. In this test we use XenServer [26], one of the
most widely used virtualization solutions. It supports both
fully virtualized guest operating systems, unaware that they
are running on a virtual machine, and para-virtualized guest
operating systems with specific XenServer drivers.

IV. TEST SETUP

Fig. 2 shows the setup that is used to test the performance
of the different databases. A single client machine running
a Java program connects to a single server machine running
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Figure 2. Test setup

Table I
DATA STRUCTURE

Name Type
sensor identifier uuid
sensed timestamp long
sensed value double

one of three databases. The Java program uses threads to
simulate multiple clients. The databases each run on a single
machine, no duplication and/or distribution is used.

Each test in this paper measures the time it takes to
write data to the database or read data from it. This time is
measured from the client that performs the test. Any setup
work that needs to be performed, e.g. creating a table, is
not measured. Each test starts with an empty database, write
tests are performed of a certain size and then read tests of
the same size are performed.

A. Data structure

The basic data structure for storing the sensor data can
be seen in table I. This is the minimal set of columns for a
general purpose sensor system. It contains an identifier of the
sensor, which is necessary if there is more than one sensor.
It also contains the time the measurement was performed,
and the actual value of the measurement.

B. Operations

Four types of operations are performed on the databases:
∙ A single write in one statement. In this case a single

measurement is inserted into the database, with one
sensor identifier, one timestamp and one value.

∙ A single read in one statement. In this case a single
measurement is read from the database, specifying the
sensor identifier and the timestamp of the measurement.

Table II
HARDWARE

Server Client
CPU type AMD Opteron Intel Xeon
CPU cores 24 2
CPU speed 2.2 GHz 3.0 GHz
Memory size 64 GB 4 GB
Disk size 2 x 2.0 TB 250 GB
Disk rotations 7200 RPM 7200 RPM
Disk cache 64 MB 8 MB
Network speed 1 Gb/s 1 Gb/s

Table III
SOFTWARE

Server Client
OS CentOS 6.2 x86 64 CentOS 6.2 x86 64
JDK Oracle 1.6.0 30 Oracle 1.6.0 30
Cassandra 1.0.7 Hector core 1.0-3
MongoDB 2.0.2 Java driver 2.7.3
PostgreSQL 9.1.2 JDBC4 9.1-901

∙ Multiple writes in one statement. In this case 1,000
measurements are inserted at once into the database,
with one sensor identifier and multiple timestamp +
value combinations.

∙ Multiple reads in one statement. In this case 1,000
measurements are read from the database, specifying
the sensor identifier and a begin and end timestamp.

When multiple operations are performed in one statement,
the given possibilities of each database are used. In case of
PostgreSQL, a concatenated SQL query is constructed. In
case of MongoDB the batch option of the client library and
for Cassandra the batch option of the Hector client is used.

This paper focuses on sensor data and therefore the results
of the single write and multiple read operations are most
interesting, but the other operations are included as well to
be of more general use.

C. Hardware and software

Table II lists the hardware and table III lists the software
that was used for the tests. In addition, XenServer 6.0.0
software was used for hosting a para-virtualized virtual
machine. This virtual machine contains drivers (guest tools)
with speed and management advantages compared to normal
drivers that are provided by the operating system.

D. Configuration

The server machine contains two hard disks. Each
database is configured to make use of one hard disk for its
data and the other hard disk for logging and caching. This
allows the databases to write log files and perform caching
without a large impact on data write and read performance.

The server and client machines are connected through
a dedicated network connection between them, i.e. a UTP
cable directly connecting them. This ensures that there is no
other network traffic that might disturb the tests, but does
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account for the fact that database servers and clients are
typically connected through a network.

1) Cassandra: The Cassandra configuration file cassan-
dra.yaml is changed from the default to set directories for
data, log and cache files, and specify network parameters:

data_file_directories:
- /data1/cassandra/data

commitlog_directory:
/data2/cassandra/commitlog

saved_caches_directory:
/data2/cassandra/saved_caches

listen_address: 10.0.0.1
rpc_address: 10.0.0.1
seeds: "10.0.0.1"

2) MongoDB: The MongoDB configuration file mon-
god.conf is changed from the default to set directories for
data and log files:

dbpath=/data1/mongo/data
logpath=/data2/mongo/log/mongod.log

3) PostgreSQL: The PostgreSQL initialization script
postgresql-9.1 is changed from the default to set directories
for data and log files:

PGDATA=/data1/postgres/data
PGLOG=/data2/postgres/log/pgstartup.log

The configuration file postgresql.conf is changed from the
default to specify network parameters:

listen_addresses=’10.0.0.1’

The configuration file pg hba.conf is changed from the
default to allow non-local clients to connect:

host all all 10.0.0.0/24 md5

V. RESULTS

The results are split up into five different categories:

∙ The presence of indexes (section V-A).
∙ A single client with a single read or write operation in

one statement (section V-B).
∙ A single client with multiple read or write operations

in one statement (section V-C).
∙ Multiple clients with a single read or write operation

in one statement (section V-D).
∙ Multiple clients with multiple read or write operations

in one statement (section V-E).

For each of these five categories the results are presented
for the physical server case and the virtual machine case.

A. Use Of Indexes

MongoDB and PostgreSQL can be used with or without
indexes. In these databases, the user is responsible for
defining one or more keys or unique constraints that can be

Figure 3. Use of indexes in MongoDB

Figure 4. Use of indexes in PostgreSQL

used by the database to create indexes and thereby speed up
locating data. Cassandra always uses the type of the key the
user defines, e.g. integer or long, to create its own indexes.

See Fig. 3 and Fig. 4 for a comparison between reads with
and without an index for MongoDB and PostgreSQL. The
speed difference between writes with and without indexes is
very low, so they are not shown in the figures.

The presence of an index has a tremendous effect on
performance both for MongoDB and PostgreSQL. If no
index is present, they need to perform scans to reach the data
the client asks for. This is a very slow operation, especially
for large data structures. Because using indexes has such a
tremendous positive effect on reads and such a low overhead
on writes, we use indexes in the remainder of this paper.

The difference between a physical server and a virtual
machine running the databases is quite high in the case with
indexes and low in the case without indexes.

B. Single Client, Single Operation

Fig. 5 shows the performance of a single client issuing
single write requests to the database. There is a huge
difference between the three databases in this case, as
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Figure 5. Single client, single write

Figure 6. Single client, single read

MongoDB performs very well, Cassandra scores moderately
and PostgreSQL performs very poorly.

Fig. 6 shows the performance of a single client issuing
single read requests to the database. The order is the same
as with writes, but the difference between the three databases
is much less when reading.

The difference between a physical server and a virtual
machine running these databases is remarkable. The read
performance is affected about equally between the databases,
but the write performance is quite different. The physical
server wins in the case of Cassandra and MongoDB, but in
the case of PostgreSQL the virtual machine is a lot faster
than the physical server.

C. Single Client, Multiple Operations

Fig. 7 shows the performance of a single client issuing
multiple write requests to the database. Cassandra is the clear
winner in this case, MongoDB is second and PostgreSQL is
third again.

Fig. 8 shows the performance of a single client issuing
multiple read requests to the database. PostgreSQL takes

Figure 7. Single client, multiple writes

Figure 8. Single client, multiple reads

the lead here and MongoDB is a close second. Cassandra
performs poorly in this test as the number of operations per
second drops significantly when the number of operations is
increased.

The difference between a physical server and a virtual
machine running these databases is not very high. Cassandra
seems to be a bit more affected by virtualization in the write
case than MongoDB and PostgreSQL.

D. Multiple Clients, Single Operation

Fig. 9 shows the performance of multiple clients issuing
single write requests to the database. MongoDB is very fast
when a single client is used, but decreases slowly when
clients are added. Cassandra initially benefits from multiple
clients, as the number of operations per second increases
from 1 client to 12 clients, but decreases again when the
number of clients is increased further. Although PostgreSQL
is quite slow here, it benefits even more from multiple
clients, as the number of operations per second increases
steadily from 1 client to 16 clients.

Fig. 10 shows the performance of multiple clients issuing
single read requests to the database. All databases benefit
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Figure 9. Multiple clients, single write

Figure 10. Multiple clients, single read

from multiple clients when reading data. The number of
operations per second rises steadily for MongoDB and
PostgreSQL from 1 client to 16 clients. Cassandra shows
the same behavior for reads as for writes, as the number of
operations per second increases from 1 client to 12 clients
and decreases again when more clients are used.

The performance difference between a physical server and
a virtual machine is quite remarkable for both write and
read operations. The physical server wins in the case of
writing to MongoDB and Cassandra, but the virtual machine
is faster when writing to PostgreSQL. The impact on read
performance is very high for MongoDB and Cassandra, the
virtual machine is more than ten times slower than the
physical server in this case.

E. Multiple Clients, Multiple Operations

Fig. 11 shows the performance of multiple clients issuing
multiple write requests to the database. MongoDB and
Cassandra both do not benefit from multiple clients. The
number of operations per second stays roughly the same
between 1 and 16 clients. PostgreSQL does benefit from

Figure 11. Multiple clients, multiple writes

Figure 12. Multiple clients, multiple reads

multiple clients as the number of operations per second rises
steadily from 1 client to 16 clients.

Fig. 12 shows the performance of multiple clients issuing
multiple read requests to the database. The number of
operations per second for MongoDB stays the same from 1
client to 16 clients. Both Cassandra and PostgreSQL benefit
strongly from multiple clients in the read case.

The impact on write performance of virtualization is quite
low for all three databases. The impact on read performance
is about the same for PostgreSQL and MongoDB, but
Cassandra is quite different as the performance on the virtual
machine is much higher than on the physical server.

F. Discussion

Table IV summarizes the results of the previous sections
for single write and read operations. Table V does the same
for multiple write and read operations.

Cassandra performs well overall, but is heavily influenced
by virtualization, both positively and negatively. Its multi
client single read performance drops by a factor of 16
when a virtual machine is used instead of a physical server.
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Table IV
NUMBER OF SINGLE OPERATIONS PER SECOND (GREY IS HIGHEST)

Single Write Single Read
Single
Client

Multi
Client

Single
Client

Multi
Client

Cassandra
- physical 3,200 15,000 3,200 16,000
- virtual 1,000 14,000 1,000 1,000
MongoDB
- physical 34,000 23,000 3,600 25,000
- virtual 21,000 6,500 1,300 2,000
PostgreSQL
- physical 120 930 2,800 26,000
- virtual 400 2,100 1,000 15,000

Table V
NUMBER OF MULTIPLE OPERATIONS PER SECOND (GREY IS HIGHEST)

Multi Write Multi Read
Single
Client

Multi
Client

Single
Client

Multi
Client

Cassandra
- physical 120,000 95,000 13,000 69,000
- virtual 53,000 79,000 11,000 560,000
MongoDB
- physical 47,000 41,000 99,000 98,000
- virtual 41,000 26,000 64,000 83,000
PostgreSQL
- physical 27,000 73,000 130,000 410,000
- virtual 24,000 55,000 95,000 360,000

Multiple reads in one statement on the other hand benefit
from virtualization by a factor of 8.

MongoDB performs very well when a single client is
used. Especially in the single write case it outperforms
the other two databases significantly. Virtualization has a
smaller impact on MongoDB than on Cassandra, but it is
still visible. In the multi client single read case the physical
server outperforms the virtual machine by a factor of 12.

PostgreSQL performs well when multiple clients are used.
The impact of virtualization is lower for PostgreSQL than
the other two databases. It even has a positive effect on
single writes, the virtual machine outperforms the physical
server with a factor of 3 here.

We ran each of the three databases on the same single
machine and used another single machine as a client. This
may have hurt Cassandra more than the other databases,
because Cassandra was built from the ground up to run on
multiple machines for robustness and scalability. We still
chose this setup because it allowed the best comparison
between the three databases.

In section II we concluded that sensors write small pieces
of data to the storage system, and analysis and visualization
components read large pieces of data from it. The ideal
database would therefore be one that performs well in these
areas. However, from tables IV and V we can see that there
is no clear winner on both fronts.

VI. CONCLUSIONS AND FUTURE WORK

A database that performs well on single writes and mul-
tiple reads would be the ideal candidate for storing sensor
data. Of the three databases we tested, there is no single
database that performs best in both cases as MongoDB
wins at single writes and PostgreSQL wins at multiple
reads. It therefore depends on the requirements of the sensor
application which database is better at the task.

Virtualization has an impact on the performance of the
databases we tested, but not always as one might expect. A
lot of tests showed that performance is lower when using a
virtual machine instead of a physical server. However, there
are also several tests which showed that performance may
be positively affected by virtualization. We assume this is
due to caching by the virtual machine monitor (VMM).

Comparing the uses of the three databases, we can con-
clude the following:

∙ Cassandra is the best choice for large critical sensor
applications as it was built from the ground up to scale
horizontally. Its read performance is heavily affected by
virtualization, both positively and negatively.

∙ MongoDB is the best choice for a small or medium-
sized non-critical sensor application, especially when
write performance is important. There is a moderate
performance impact when using virtualization.

∙ PostgreSQL is the best choice when very flexible query
capabilities are needed or read performance is impor-
tant. Small writes are slow, but are positively affected
by virtualization.

This paper uses only one machine to run the databases
on. As future work we plan to distribute the databases
across multiple machines. We also intend to add other types
of databases to the test, such as those offered by cloud
computing providers. Another important future work will be
going into more detail on the positive performance impact
of virtualization.
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