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What this talk is about 

• Parallel Computing 

– Breaking a problem into sub-problems that can be 

solved concurrently 

• The Cloud 

– On-demand computing resources 

• Heterogeneous Computing 

– Systems consist of different types of processors / 

cores 
 

Alternative title:  

“Computational/Cloud support in the era of data-intensive applications” 



What this talk is about 

• Parallel Computing 

– Breaking a problem into sub-problems that can be 

solved concurrently 

• Big Data 

– Dealing with the analysis of large data sets 

• Industry 4.0 

– Take advantage of the abundance of data to make 

‘smart’ decisions in industrial processes 
 

Alternative title:  

“Parallel Computing in the era of Big Data and Industry 4.0” 



“What’s in a name?  

That which we call a rose by 
any other name would smell 

as sweet” 

 

William Shakespeare 
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  Cholera outbreak 1854 – John Snow 



Today we call it Data Science… 

“Data science is an interdisciplinary field 

that uses scientific methods, processes, 

algorithms and systems to extract 

knowledge and insights from data in 

various forms, both structured and 

unstructured, similar to data mining.” 

 

(source: Wikipedia) 



What this talk is about  
(another way of viewing it) 

• There is rarely a single way 

to define ‘best’.  

• The answer often depends 

on what aspect we are 

interested in and how we 

weigh different aspects! 

• But, sometimes, there are 

relatively ‘bad’ choices in 

every possible aspect. 

• All the above (and more…) 

in the context of Cloud 

resource provisioning for 

parallel applications. 

 



Some background… 



Parallel Computing 101 (1) 

• Parallel Computing is about breaking a problem 

into sub-problems that can be solved 

concurrently. 

• The concept existed even before digital 

computers (L. F. Richardson, “Weather 

Prediction by Numerical Process”, 1922) 

• In early years it was rather specialized with the 

first parallel computers (‘supercomputers’) 

based on special-purpose architectures and 

processors trying to cope for the needs of a few 

computationally-demanding applications. 
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Parallel Computing 101 (2) 

• Since the 1990s it was believed that “advances in 

High-End Computing find their way to the desktop” 

(PITAC report, 1999). 

• Developments in microprocessors allowed the use of 

commodity parts. Developments in network 

technologies gave rise to the notion of Grid 

Computing from which Utility and Cloud 

Computing evolved. 

• Today we live the ‘triumph of parallel computing’ 

(Schreiber, JPDC2014) as it has become mainstream: 

multicore, GPUs, data centers, MapReduce, etc… 

and lots of applications that can benefit! 
11 



“Parallel computing is generally 

concerned with reducing the 

amount of time necessary to 

perform a computational task” 

 
Encyclopedia of Parallel Computing, page 1125 

(D. Padua EiC, published in 2011) 
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Such a reduction in time would be presented in different ways… 
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…and would drive our understanding 

• Understand the inherent limitations of 

applications when parallelizing them: 

– Amdahl’s law (or total work vs critical path) 

• Classify the performance of the most 

powerful computers: 

– Top 500 

http://www.top500.org/ 
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For many years, parallel computing had a single 
way to define ‘best’: minimize execution time 

…but at the same time there is a cost to pay 

– and we cannot keep ignoring it! 
 

• Modern parallel machines/platforms are 

becoming too expensive to run. 

– Energy 

• Heterogeneity increases the complexity of 

parallelization (and the search space) 

– Not simply ‘as many processors’ any more 

– There is a need to differentiate between more 

costly and less costly solutions 15 



E.g., choose from fast/slow CPUs & GPUs  
(x% fast CPUs, y% slow CPUs, z% GPUs) 

The curve of performance (y-axis) vs #processors (x-axis) 

differs – and we can get lots of different graphs! 
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90% CPU, 10% GPU 

70% CPU, 30% GPU 50% CPU, 50% GPU 

100% CPU 



Assessing the cost of different options 

We can merge all options (points in space) into 

one graph: 
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‘cost’ 

Execution time 
Low(fast) High(slow) 



Assessing the cost of different options 

Then, ‘best’ solutions are given by a Pareto front 
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‘cost’ 

Execution time 
Low(fast) High(slow) 



Is the current state-of-art in 
parallel/distributed computing 
research in a good position to 

assess such trade-offs and find a 
Pareto front?  

The search space can be huge and 

we may have to limit it substantially! 

Assumes a widely agreed cost model! 
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A problem (motivated by Cloud providers) 

20 



You pay depending on the CPU frequency you choose 

…even if you pay 0.01CHF extra for 1 MHz more! 



Price vs CPU frequency chosen (per time unit) 

2.5 

12.24 

1.0 

4.90 
0 

frequency 

price to pay 



The problem 

Say that you know you are going to use 4 CPUs 

for your application (to run in parallel). 
 

Are you going to choose:  

 4 CPUs at, say, 2GHz? 

 or: 1 at 2.2 GHz, 2 at 2 GHz, 1 at 1.8 GHz? 

 or: 1 at 2.4 GHz, 1 at 2.2 GHz, 1 at 1.8 GHz, 1 at 1.6 GHz? 

 and the list goes on with a huge number of 

combinations that cost the same per time unit… 

…but could some configurations lead to faster 

execution time, which will make them cheaper? 



Setting the scene 
Configurations with the same per unit time cost (equiv. to 

same average CPU frequency in the previous problem) 

may lead to different execution times: how can we find 

the fastest/cheapest? (or at least avoid too expensive?) 

• Work 

– Scientific workflows (essentially Directed Acyclic Graphs) 

• DAG (nodes: computation, edges: communication) 

• Resources 

– Cloud Computing resources at different frequencies 

• Objective 

– Complete execution of a workflow by assigning (=scheduling) 
tasks onto multiple resources in a way that strikes a balance 
between cost and performance (find the Pareto front).  

[ Cost has two aspects: client and provider. The former are interested in monetary 
costs, the latter are interested in the cost of the infrastructure (energy) ] 



25 

A Scientific Workflow is typically a Directed 
Acyclic Graph (DAG) 

• A well-known 

abstraction in 

Computer Science 

• Nodes (tasks or jobs) 

denote computation 

• Edges denote data 

transfer 

(communication) 

• Dependences 

between nodes 

(tasks) must be 

respected 
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Scientific Workflows 

Many interesting (scientific) applications can be represented by DAGs 

I. Taylor, E. Deelman, 

D. Gannon: Workflows 

for e-Science. Springer, 

2007 
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Example: the Montage Workflow 

• Montage: Generating science-grade mosaics of 

the sky (Caltech, Berriman et al.) 

• http://montage.ipac.caltech.edu/ 

 

 

BgModel
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Slide courtesy: Ewa Deelman  



From http://montage.ipac.caltech.edu/ 

The Pleiades: http://montage.ipac.caltech.edu/images/DSS_pleiades_mosaic_thumb.jpg 



First announced in 2016… 
https://www.ligo.caltech.edu/news/ligo20160211 
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The computational aspects (from https://pegasus.isi.edu/application-showcase/ligo/) 



Lots of (data- & compute-intensive) 
scientific workflow applications 

available for research 

https://confluence.pegasus.isi.edu/display/pegasus/

WorkflowGenerator 

 

31 



The resources 

• Cloud Computing resources 

• How many?  Let’s assume the user has already made a decision 

on the number of nodes/slots using some performance modelling 

32 I. Pietri, G. Juve, E. Deelman, R.Sakellariou. A Performance Model to Estimate 

Execution Time of Scientific Workflows on the Cloud. In 9th WORKS @ SC14, 2014.  



The objective 

• Cost versus Performance 

– Client/User: for the least amount of 

money, finish as quickly as possible 

– Provider: meet user requirements at the 

same time minimizing the cost of 

running the infrastructure.  

Minimizing energy is a good target for cost 

from the provider’s point of view. 
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Scheduling workflows (DAGs) 
The problem: assuming a number of (possibly heterogeneous) 

machines, how do we decide what task to assign where (=what 

machine) and when to complete execution as soon as possible? 

Task execution times and communication times are assumed to be known; 

HEFT is a well-known heuristic that makes use of average values to compute a 

weight for each node and determine a scheduling order 

• NP-Complete problem 

• Key: follow the critical path 

• More than 20 heuristics in the 

literature for heterogeneous 

machines. 

• Common idea: prioritize tasks 

with some criterion and try to 

allocate optimally (locally) by 

following this priority order. 
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Two schedules for two different schemes using HEFT 
                       Worst {0, 3, 5, 2, 1, 4, 7, 8, 6, 9}   Mean {0, 3, 5, 1, 2, 4, 7, 8, 6, 9} 
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H.Zhao,R.Sakellariou. An experimental study of the rank function of HEFT. Euro-Par’03. 

An old observation: even small changes in the 
order may make a big impact on makespan 
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A DAG, a schedule, and an old idea 
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Many (but not all) 

tasks can delay without 

an impact on overall 

execution time (e.g., 1, 

7, 8, but also 2, etc) 

(slack/spare time) 

R.Sakellariou, H.Zhao. A low-cost rescheduling policy for 

efficient mapping of workflows on grid systems. Scientific 

Programming, 12(4), December 2004, pp. 253-262. 



Spare time & Slack (1) 

• Spare time indicates the maximum time that a node, 

i,  may delay without affecting the start time of an 

immediate successor, j (on the DAG or the same 

machine). 

• Slack indicates the maximum time that a node, i, 

may delay without affecting the overall makespan. 

– Slack(i)=min(slack(j)+spare(i,j)), for all successor 

nodes j (both on the DAG and the machine)  

• In the example before:  

– tasks 1, 7 and 8 have some spare time 

– tasks 2 and 4 has some slack  

– tasks 0, 5, 3, 6, 9 have zero spare time / slack.  
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Spare time & Slack (2) 

• Depend on: 

– Structure of the DAG 

– Number of resources 

– Schedule (how we map tasks onto resources) 

– Communication vs Computation 

• However, unless we choose very few resources 

or there is an abundance of parallelism, we’ll 

have some spare time and slack 

• One could think they provide interesting 

opportunities! 
(e.g., use them to slow down without affecting overall completion time) 



Slowing down tasks… 

• If all the tasks allocated on one machine 

have a spare time, which is at least 20% 

of each task’s execution time, then we 

can slow down execution on that 

machine by 20% (this, in theory, means 

we can choose a CPU running at a 

lower frequency, which is cheaper) 

• Overall execution time is not affected 

• DVFS (Dynamic Voltage and Frequency 

Scaling) is now a common technique 

with many architectures. 

39 
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Furthermore… 

• Every task is not affected in the same way if we 

change CPU frequency: 

– CPU-intensive tasks will be affected most 

– Data-intensive tasks will be affected less 

• This can be captured by the following formula, 

which gives runtime at a given frequency f: 

 runtime = (1 +  (fmax / f – 1) )  runtimefmax 

 where   is the CPU boundedness of a task (0 to 1) 

 (from: Etinski, Corbalan, Labarta & Valero, JPDC 2012) 

 

 



This suggests that a mix of rather 
fast and rather slow CPUs may be 
cheaper/faster* than using all CPUs 

running at the same speed 
  

(*assuming the same average frequency overall) 
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A problem… 

• For a given: 

– total amount of CPU frequency 

– overall number of resources 

• How to split the total amount of CPU frequency to 

minimize execution time? 

• E.g., 10GHz with 5 resources can be split: 

– Everything running at 2GHz (naïve approach) 

– Or, say, 3GHz, 2.5GHz, 2GHz, 1.5GHz, 1GHz 

– Or, … 

– (all combinations with same mean frequency) 

42 

T. Ghenez, I. Pietri, R.Sakellariou, L. F. Bittencourt, E. R.M. Madeira. A Particle Swarm 

Optimization Approach for Workflow Scheduling on Cloud Resources Priced by CPU Frequency. 

UCC 2015. 



Significant gains compared to the naïve approach! 

43 
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Keeping the same average 
frequency overall is only part of 

the  search space. 
 

We are interested in examining 
how execution time changes with 

cost and we’d like to find the 
Pareto front! (remember slide 18?) 

 
  



The idea 
− Reduce or increase CPU frequencies iteratively 

• Using the next available frequency in each iteration 

• So that cost is reduced and deadline is met 

(trying iteratively to approximate the Pareto front) 
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Cost-based Stepwise Frequency Selection 
starting at Max Frequency 

46 I. Pietri, R.Sakellariou. Cost-Efficient Provisioning of Cloud Resources priced by CPU 

Frequency. UCC 2014. 



Cost-based Stepwise Frequency Selection 
starting at Min Frequency 

47 I. Pietri, R.Sakellariou. Cost-Efficient CPU Provisioning for Scientific Workflows on the Cloud. 

GECON 2015 (extended version to appear in FGCS) 



LIGO Under Linear Pricing 



Montage under Superlinear Pricing 



Some observations 

• Solutions go for local optima – still they find some 

good mix of suitable (heterogeneous) resources. 

• Approach relies on performance modelling 

• Seems a good strategy to try both algorithms 

• Data-intensive workflows appear to give more 

interesting results 

• Starting from minimum frequency doesn’t perform 

as well – other starting points were even more 

problematic. Lots of scope for other optimization 

approaches. 

• Full results in the GECON2015 paper (also trying 

different pricing models) and FGCS (to appear)  
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Plotting some solutions with 3 CPUresources 

51 



Plotting some solutions with 3 CPUresources 
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Energy Cost vs Performance 

• Monetary cost was easy to model 

(based on pricing model): 

– Essentially taken as charged by provider 

• Instead of (monetary) cost, we can have 

energy 

– Difficult to model energy 

• Reducing frequency requires less power 

but may lead to longer execution times 

(hence will consume more energy). 

53 
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Thanks to Thomas Rauber  
(presentation at the 9th Scheduling for Large-Scale Systems Workshop, Lyon, July 2014 

paper in Concurrency and Computation Practice and Experience, 2015) 
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The idea – an iterative approach 

• Assuming that we need to meet a deadline and 
minimize energy: 

– 1. Start with a schedule running at highest frequency (can 
be easily obtained with HEFT, etc) 

– 2. Identify the most profitable in terms of energy reduction 
tasks (beyond some threshold) 

– 3. Lower to the next available frequency 

– 4. Assess the impact to the whole workflow (DAG)  

– 5. Go to 2 as long as there is overall energy reduction 

– 6. Cleanup and finish. 

 (Energy-aware stepwise frequency scaling – ESFS) 
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The intuition  

• Reduce frequency by one step at a time: (i) trying to 
make sure that what may be the local optimum for every 
task (in the U-curve) is not exceeded, and (ii) assessing 
the overall energy consumption for the workflow. 

energy 

frequency 
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Evaluation 

• Data from 3 workflows, 100 
tasks each 

– LIGO 

– SIPHT 

– Montage 

 

 
 

• Baseline algorithms 

– EES (from CCGRID12) 

– HEFT 

 

• Processor characteristics 

• Pbase=152W 

• Pdif=15.39W 

• Pidle=60%Pfmax 

• Threshold: 0.01% 

Full results in: 
I. Pietri, R. Sakellariou. “Energy-Aware Workflow Scheduling 

Using Frequency Scaling”. ICPP Workshops (PASA), 2014. 
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Discussion of results 

• Different workflows exhibit a different behaviour 

• The iterative approach can produce energy 
savings without missing a deadline 

• Energy savings are rather small. 

• The outcome is sensitive to the parameters 
used in the energy model. Some may be 
difficult to estimate / others change depending 
on the processor, etc. 

• CPU energy is only a fraction of overall energy 

• Simulation results need to be verified with real 
experiments 

I. Pietri, R. Sakellariou. “Energy-Aware Workflow Scheduling 

Using Frequency Scaling”. ICPP Workshops (PASA), 2014. 



Even more trade-offs  

• Anecdotal evidence seems to indicate that even 

when the perceived utilization (based on user 

requests) of a Cloud system is high, the actual 

utilization of the system may be low. 

– Users often request many more resources than actually 

needed. Providers do not particularly care as long as this 

translates to money! 

– Lots of scope for optimization by adjusting utilization to the 

workload characteristics. 

• E.g., reduce CPU frequency for I/O-intensive jobs. 

 
59 Drazen Lucanin, Ilia Pietri, Ivona Brandic and Rizos Sakellariou. A Cloud 

Controller for Performance-Based Pricing. IEEE Cloud 2015 & TCC (to appear) 



Even more trade-offs (I) 

• Combining frequency scaling with VM 

migration/consolidation may lead to useful 

savings (an energy-revenue trade-off) 

• Perceived-performance pricing, applies 

frequency scaling to I/O intensive jobs.  

 

60 Drazen Lucanin, Ilia Pietri, Ivona Brandic and Rizos Sakellariou. A Cloud 

Controller for Performance-Based Pricing. IEEE Cloud 2015 & TCC (to appear).  



Even more trade-offs (II) 

• It has been argued that there 

is a need “to design 

algorithms that communicate 

as little as possible” (a 

communication-computation 

trade-off) 

• Scope for some small extra 

effort in computation if it can 

result in significant 

communication savings 

 
61 Ilia Pietri and Rizos Sakellariou. Scheduling Data-Intensive Scientific 

Workflows with Reduced Communication. In SSDBM’18. 



Controlling the trade-offs 

Virtual to Physical Machine placement (VM to PM) 

• Demand-based: Lots of contention (+overhead of VM 

migration) but better PM utilization 

• Reservation-based: Fewer VM migrations but worse 

PM utilization  

• Idea: have a ‘knob’ to choose between the two 

‘extremes’ (demand- & reservation-based) 

• Challenge: the same little shift of the knob does not 

always lead to the same change (proportionally).  

63 

A. Mosa and R. Sakellariou. Virtual Machine Consolidation for Cloud Data Centers 

Using Parameter-Based Adaptive Allocation, ECBS 2017 & Dynamic Tuning for 

Parameter-Based Virtual Machine Placement, ISPDC 2018.  



• E.g., ARM Big.Little 

• System-on-chip 

– Processors coherently connected 

• ARM Cortex-A15 (Big)  

 high performance 

• ARM Cortex-A7 (Little) 

 power efficiency 

– Frequency selection 

• Freq. range per cluster 

• Individually per core  

 

Problem exists in different settings 

Image credit: https://www.arm.com/products/processors/biglittleprocessing.php 



Ilia Pietri, Sicong Zhuang, Marc Casas, Miquel Moreto and Rizos Sakellariou. 

Evaluating Scientific Workflow Execution on an Asymmetric Multicore Processor. In 

HeteroPar 2017. 

A small case study using Montage 



to recap and consider trade-
offs in the big picture… 
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Lots of trade-offs and excitement… 

Trying to understand and appreciate all the 

trade-offs is a tremendous task. 
 

However, the growing heterogeneity of 

modern platforms and the plethora of different 

configurations suggest that somebody may 

need to deal with many questions involving 

trade-offs, the simplest form of which could be: 

– Shall I choose 50 CPUs at 2GHz or 25 at 2.5GHz 

and 25 at 1.5GHz? 
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Understand the search space… 

…not only part of it!   

(solutions depend on requirements – don’t assume equal weight) 
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The big picture and the challenges 

• The current mindset is geared towards single-

objective optimization (mostly execution time). 

Different objectives are often bundled as one. 

• Cost 
– Cost could be: energy, number of failures, memory usage, storage, etc… 

There are various trade-offs between all these and performance. 

– Rather easy(?) to deal with a pricing model provided by somebody else. 

• The Challenges 
– Extensive Experimentation to understand different trade-offs 

– Good Performance Models / (or at least some good Rules of Thumb) 

– Optimization Techniques (multi-criteria optimization is challenging, 

especially under uncertainty) 

– Software approaches that take into account different trade-offs. 

 

 



More trade-offs in relation to 
user/business requirements 

with thanks to …  
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Industry 4.0: Background 

• Next transformational change in industrial 

processes. 

• Take advantage of the abundance of data to 

make ‘smart decisions’ in manufacturing  

(‘smart manufacturing’). 

• Builds upon: 

– Cyber-Physical and Advanced Embedded Systems 

– Internet-of-Things 

– Data analytics 

– Cloud & High-Performance Computing 
72 



Current State 
• Significant reliance on human experts 

• Isolated computer systems 

• Issues: 

– Systems do not scale 

– Central points of failure 

– Difficult to manage complexity 

• Key challenge: 

– “System-of-systems” (different software / hardware 

components need to collaborate for the same goal) 

– Different trade-offs: computation, energy, storage, … 
73 



DISRUPT project 

• http://www.disrupt-project.eu/ 

• End-users: 
– CR FIAT, ARCELIK 

• Technology Providers: 
– Software AG, ATC SA, BOC GMBH, SIMPLAN AG 

• Universities/Research Institutes: 
– CNR, AUEB, UNIMAN 

• Research & Innovation Action (FOF), ~€3.5M, 
2016-2019. 

• Key goal: move the boundaries towards the 
Industry 4.0 vision with a specific focus on 
disruptions in production. 
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http://www.disrupt-project.eu/
http://www.disrupt-project.eu/
http://www.disrupt-project.eu/


Use Cases 
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Management of 

Inbound Logistics 
CRF, 

Automotive 

Event-enabled Production 

Planning and Control 
CRF, 

Automotive 

Reconfiguration Scaling 

and Optimisation 

ARCELIK,  

Home 

Appliances 



Flattening the pyramid/hierarchy  
(adjacency not necessary for data exchange) 
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Some observations re: compute-intensive aspects 

• Computation-on-demand 

– Specific events may require significant compute 
capacity that needs to be made available at short 
notice. 

– Demands are tightly linked to the state of the system. 

• Data is a bottleneck (this is not new!) 

– Adjust the rate of data production in relation to state 
(and anticipated risks) in the system. 

• Continuous hardware/software re-configuration 

– Not only a question of achieving ‘best’ performance but 
a question of accommodating various user and system 
constraints striking a balance between different criteria. 
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‘Adjustable’ computation 
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[Motivated by CFD 

and Lagrangian / 

Eulerian Simulations] 

 
Source: R. F. da Silva 

et al, “A 

Characterization of 

Workflow Management 

Systems for Extreme-

Scale Applications”, 

FGCS, 2018 



Adjustable data production rate 

• Publishers p1,... produce 
data at a rate r1,… 

• Subscribers s1,… aim to 
achieve a certain level of 
satisfaction 

• Machines m1,… have a 
certain amount of 
bandwidth b1,… 

• Goal: adjust rate of 
production to maximize 
satisfaction. 

79 Thomas Lambert and Rizos Sakellariou. Allocation of Publisher/Subscriber Data Links 

on a Set of Virtual Machines. In IEEE CLOUD 2018. 



Finally… 
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• With the growing heterogeneity and conflicting costs, the 

challenge is to look more carefully into the cost one has to pay 

to achieve a certain target objective: 

– Suboptimal solutions exist, which hide some high-cost 

• This affects both providers and consumers 

– Pareto front – multi-objective optimization to take into account all aspects 

– Many examples here were shown in 2-dimensional space, in reality the 

problem relates to an n-dimensional space 

• Need to go beyond one-fits-all approaches 

• Implications for: 

– Cloud, Fog, Edge, High-Performance Computing 

– Optimization theory 

– Software engineering, practice and education 

– …and beyond! 

Conclusion 



Thank you! 

Acknowledgements: all past students 

and collaborators and people who 

influenced thinking over the years! 
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