

Rizos Sakellariou

with thanks to Ilia Pietri and many other students and

collaborators over the years

Parallel Computing
in the era of the

Cloud and Heterogeneous Computing

What this talk is about

• Parallel Computing

– Breaking a problem into sub-problems that can be

solved concurrently

• The Cloud

– On-demand computing resources

• Heterogeneous Computing

– Systems consist of different types of processors /

cores

Alternative title:

“Computational/Cloud support in the era of data-intensive applications”

What this talk is about

• Parallel Computing

– Breaking a problem into sub-problems that can be

solved concurrently

• Big Data

– Dealing with the analysis of large data sets

• Industry 4.0

– Take advantage of the abundance of data to make

‘smart’ decisions in industrial processes

Alternative title:

“Parallel Computing in the era of Big Data and Industry 4.0”

“What’s in a name?

That which we call a rose by
any other name would smell

as sweet”

William Shakespeare

5

6

 Cholera outbreak 1854 – John Snow

Today we call it Data Science…

“Data science is an interdisciplinary field

that uses scientific methods, processes,

algorithms and systems to extract

knowledge and insights from data in

various forms, both structured and

unstructured, similar to data mining.”

(source: Wikipedia)

What this talk is about
(another way of viewing it)

• There is rarely a single way

to define ‘best’.

• The answer often depends

on what aspect we are

interested in and how we

weigh different aspects!

• But, sometimes, there are

relatively ‘bad’ choices in

every possible aspect.

• All the above (and more…)

in the context of Cloud

resource provisioning for

parallel applications.

Some background…

Parallel Computing 101 (1)

• Parallel Computing is about breaking a problem

into sub-problems that can be solved

concurrently.

• The concept existed even before digital

computers (L. F. Richardson, “Weather

Prediction by Numerical Process”, 1922)

• In early years it was rather specialized with the

first parallel computers (‘supercomputers’)

based on special-purpose architectures and

processors trying to cope for the needs of a few

computationally-demanding applications.
10

Parallel Computing 101 (2)

• Since the 1990s it was believed that “advances in

High-End Computing find their way to the desktop”

(PITAC report, 1999).

• Developments in microprocessors allowed the use of

commodity parts. Developments in network

technologies gave rise to the notion of Grid

Computing from which Utility and Cloud

Computing evolved.

• Today we live the ‘triumph of parallel computing’

(Schreiber, JPDC2014) as it has become mainstream:

multicore, GPUs, data centers, MapReduce, etc…

and lots of applications that can benefit!
11

“Parallel computing is generally

concerned with reducing the

amount of time necessary to

perform a computational task”

Encyclopedia of Parallel Computing, page 1125

(D. Padua EiC, published in 2011)

12

Such a reduction in time would be presented in different ways…

13

…and would drive our understanding

• Understand the inherent limitations of

applications when parallelizing them:

– Amdahl’s law (or total work vs critical path)

• Classify the performance of the most

powerful computers:

– Top 500

http://www.top500.org/

14

For many years, parallel computing had a single
way to define ‘best’: minimize execution time

…but at the same time there is a cost to pay

– and we cannot keep ignoring it!

• Modern parallel machines/platforms are

becoming too expensive to run.

– Energy

• Heterogeneity increases the complexity of

parallelization (and the search space)

– Not simply ‘as many processors’ any more

– There is a need to differentiate between more

costly and less costly solutions 15

E.g., choose from fast/slow CPUs & GPUs
(x% fast CPUs, y% slow CPUs, z% GPUs)

The curve of performance (y-axis) vs #processors (x-axis)

differs – and we can get lots of different graphs!

16

90% CPU, 10% GPU

70% CPU, 30% GPU 50% CPU, 50% GPU

100% CPU

Assessing the cost of different options

We can merge all options (points in space) into

one graph:

17

‘cost’

Execution time
Low(fast) High(slow)

Assessing the cost of different options

Then, ‘best’ solutions are given by a Pareto front

18

‘cost’

Execution time
Low(fast) High(slow)

Is the current state-of-art in
parallel/distributed computing
research in a good position to

assess such trade-offs and find a
Pareto front?

The search space can be huge and

we may have to limit it substantially!

Assumes a widely agreed cost model!

19

A problem (motivated by Cloud providers)

20

You pay depending on the CPU frequency you choose

…even if you pay 0.01CHF extra for 1 MHz more!

Price vs CPU frequency chosen (per time unit)

2.5

12.24

1.0

4.90
0

frequency

price to pay

The problem

Say that you know you are going to use 4 CPUs

for your application (to run in parallel).

Are you going to choose:

 4 CPUs at, say, 2GHz?

 or: 1 at 2.2 GHz, 2 at 2 GHz, 1 at 1.8 GHz?

 or: 1 at 2.4 GHz, 1 at 2.2 GHz, 1 at 1.8 GHz, 1 at 1.6 GHz?

 and the list goes on with a huge number of

combinations that cost the same per time unit…

…but could some configurations lead to faster

execution time, which will make them cheaper?

Setting the scene
Configurations with the same per unit time cost (equiv. to

same average CPU frequency in the previous problem)

may lead to different execution times: how can we find

the fastest/cheapest? (or at least avoid too expensive?)

• Work

– Scientific workflows (essentially Directed Acyclic Graphs)

• DAG (nodes: computation, edges: communication)

• Resources

– Cloud Computing resources at different frequencies

• Objective

– Complete execution of a workflow by assigning (=scheduling)
tasks onto multiple resources in a way that strikes a balance
between cost and performance (find the Pareto front).

[Cost has two aspects: client and provider. The former are interested in monetary
costs, the latter are interested in the cost of the infrastructure (energy)]

25

A Scientific Workflow is typically a Directed
Acyclic Graph (DAG)

• A well-known

abstraction in

Computer Science

• Nodes (tasks or jobs)

denote computation

• Edges denote data

transfer

(communication)

• Dependences

between nodes

(tasks) must be

respected

 0

 6

 5 4 3 2 1

 8 7

 9

26

Scientific Workflows

Many interesting (scientific) applications can be represented by DAGs

I. Taylor, E. Deelman,

D. Gannon: Workflows

for e-Science. Springer,

2007

27

Example: the Montage Workflow

• Montage: Generating science-grade mosaics of

the sky (Caltech, Berriman et al.)

• http://montage.ipac.caltech.edu/

BgModel

Project

Project

Project

Diff

Diff

Fitplane

Fitplane

Background

Background

Background

Add

Image1

Image2

Image3

Slide courtesy: Ewa Deelman

From http://montage.ipac.caltech.edu/

The Pleiades: http://montage.ipac.caltech.edu/images/DSS_pleiades_mosaic_thumb.jpg

First announced in 2016…
https://www.ligo.caltech.edu/news/ligo20160211

29

The computational aspects (from https://pegasus.isi.edu/application-showcase/ligo/)

Lots of (data- & compute-intensive)
scientific workflow applications

available for research

https://confluence.pegasus.isi.edu/display/pegasus/

WorkflowGenerator

31

The resources

• Cloud Computing resources

• How many? Let’s assume the user has already made a decision

on the number of nodes/slots using some performance modelling

32 I. Pietri, G. Juve, E. Deelman, R.Sakellariou. A Performance Model to Estimate

Execution Time of Scientific Workflows on the Cloud. In 9th WORKS @ SC14, 2014.

The objective

• Cost versus Performance

– Client/User: for the least amount of

money, finish as quickly as possible

– Provider: meet user requirements at the

same time minimizing the cost of

running the infrastructure.

Minimizing energy is a good target for cost

from the provider’s point of view.

33

34

0

6

5 4 3 2 1

8 7

9

Scheduling workflows (DAGs)
The problem: assuming a number of (possibly heterogeneous)

machines, how do we decide what task to assign where (=what

machine) and when to complete execution as soon as possible?

Task execution times and communication times are assumed to be known;

HEFT is a well-known heuristic that makes use of average values to compute a

weight for each node and determine a scheduling order

• NP-Complete problem

• Key: follow the critical path

• More than 20 heuristics in the

literature for heterogeneous

machines.

• Common idea: prioritize tasks

with some criterion and try to

allocate optimally (locally) by

following this priority order.

35

Two schedules for two different schemes using HEFT
 Worst {0, 3, 5, 2, 1, 4, 7, 8, 6, 9} Mean {0, 3, 5, 1, 2, 4, 7, 8, 6, 9}
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 Makespan: 143 Makespan: 164

 0

 8

 1

 2

 3

 9

 4

 7

 6

 5

 0

 8

 2

 1

 3

 9

 4

 7 6

 5

H.Zhao,R.Sakellariou. An experimental study of the rank function of HEFT. Euro-Par’03.

An old observation: even small changes in the
order may make a big impact on makespan

36

 M0 M1 M2

 0

 20

 40

 60

 80

 100

 120

 140

 0

1 4

5

7

2

3

6

9

8

A DAG, a schedule, and an old idea

0

6

5 4 3 2 1

8 7

9

Many (but not all)

tasks can delay without

an impact on overall

execution time (e.g., 1,

7, 8, but also 2, etc)

(slack/spare time)

R.Sakellariou, H.Zhao. A low-cost rescheduling policy for

efficient mapping of workflows on grid systems. Scientific

Programming, 12(4), December 2004, pp. 253-262.

Spare time & Slack (1)

• Spare time indicates the maximum time that a node,

i, may delay without affecting the start time of an

immediate successor, j (on the DAG or the same

machine).

• Slack indicates the maximum time that a node, i,

may delay without affecting the overall makespan.

– Slack(i)=min(slack(j)+spare(i,j)), for all successor

nodes j (both on the DAG and the machine)

• In the example before:

– tasks 1, 7 and 8 have some spare time

– tasks 2 and 4 has some slack

– tasks 0, 5, 3, 6, 9 have zero spare time / slack.

37

Spare time & Slack (2)

• Depend on:

– Structure of the DAG

– Number of resources

– Schedule (how we map tasks onto resources)

– Communication vs Computation

• However, unless we choose very few resources

or there is an abundance of parallelism, we’ll

have some spare time and slack

• One could think they provide interesting

opportunities!
(e.g., use them to slow down without affecting overall completion time)

Slowing down tasks…

• If all the tasks allocated on one machine

have a spare time, which is at least 20%

of each task’s execution time, then we

can slow down execution on that

machine by 20% (this, in theory, means

we can choose a CPU running at a

lower frequency, which is cheaper)

• Overall execution time is not affected

• DVFS (Dynamic Voltage and Frequency

Scaling) is now a common technique

with many architectures.

39

A

B

C

A

B

C

40

Furthermore…

• Every task is not affected in the same way if we

change CPU frequency:

– CPU-intensive tasks will be affected most

– Data-intensive tasks will be affected less

• This can be captured by the following formula,

which gives runtime at a given frequency f:

 runtime = (1 + (fmax / f – 1)) runtimefmax

 where is the CPU boundedness of a task (0 to 1)

 (from: Etinski, Corbalan, Labarta & Valero, JPDC 2012)

This suggests that a mix of rather
fast and rather slow CPUs may be
cheaper/faster* than using all CPUs

running at the same speed

(*assuming the same average frequency overall)

41

A problem…

• For a given:

– total amount of CPU frequency

– overall number of resources

• How to split the total amount of CPU frequency to

minimize execution time?

• E.g., 10GHz with 5 resources can be split:

– Everything running at 2GHz (naïve approach)

– Or, say, 3GHz, 2.5GHz, 2GHz, 1.5GHz, 1GHz

– Or, …

– (all combinations with same mean frequency)

42

T. Ghenez, I. Pietri, R.Sakellariou, L. F. Bittencourt, E. R.M. Madeira. A Particle Swarm

Optimization Approach for Workflow Scheduling on Cloud Resources Priced by CPU Frequency.

UCC 2015.

Significant gains compared to the naïve approach!

43

44

Keeping the same average
frequency overall is only part of

the search space.

We are interested in examining
how execution time changes with

cost and we’d like to find the
Pareto front! (remember slide 18?)

The idea
− Reduce or increase CPU frequencies iteratively

• Using the next available frequency in each iteration

• So that cost is reduced and deadline is met

(trying iteratively to approximate the Pareto front)

45

Cost-based Stepwise Frequency Selection
starting at Max Frequency

46 I. Pietri, R.Sakellariou. Cost-Efficient Provisioning of Cloud Resources priced by CPU

Frequency. UCC 2014.

Cost-based Stepwise Frequency Selection
starting at Min Frequency

47 I. Pietri, R.Sakellariou. Cost-Efficient CPU Provisioning for Scientific Workflows on the Cloud.

GECON 2015 (extended version to appear in FGCS)

LIGO Under Linear Pricing

Montage under Superlinear Pricing

Some observations

• Solutions go for local optima – still they find some

good mix of suitable (heterogeneous) resources.

• Approach relies on performance modelling

• Seems a good strategy to try both algorithms

• Data-intensive workflows appear to give more

interesting results

• Starting from minimum frequency doesn’t perform

as well – other starting points were even more

problematic. Lots of scope for other optimization

approaches.

• Full results in the GECON2015 paper (also trying

different pricing models) and FGCS (to appear)

50

Plotting some solutions with 3 CPUresources

51

Plotting some solutions with 3 CPUresources

52

Energy Cost vs Performance

• Monetary cost was easy to model

(based on pricing model):

– Essentially taken as charged by provider

• Instead of (monetary) cost, we can have

energy

– Difficult to model energy

• Reducing frequency requires less power

but may lead to longer execution times

(hence will consume more energy).

53

54

Thanks to Thomas Rauber
(presentation at the 9th Scheduling for Large-Scale Systems Workshop, Lyon, July 2014

paper in Concurrency and Computation Practice and Experience, 2015)

55

The idea – an iterative approach

• Assuming that we need to meet a deadline and
minimize energy:

– 1. Start with a schedule running at highest frequency (can
be easily obtained with HEFT, etc)

– 2. Identify the most profitable in terms of energy reduction
tasks (beyond some threshold)

– 3. Lower to the next available frequency

– 4. Assess the impact to the whole workflow (DAG)

– 5. Go to 2 as long as there is overall energy reduction

– 6. Cleanup and finish.

 (Energy-aware stepwise frequency scaling – ESFS)

56

The intuition

• Reduce frequency by one step at a time: (i) trying to
make sure that what may be the local optimum for every
task (in the U-curve) is not exceeded, and (ii) assessing
the overall energy consumption for the workflow.

energy

frequency

57

Evaluation

• Data from 3 workflows, 100
tasks each

– LIGO

– SIPHT

– Montage

• Baseline algorithms

– EES (from CCGRID12)

– HEFT

• Processor characteristics

• Pbase=152W

• Pdif=15.39W

• Pidle=60%Pfmax

• Threshold: 0.01%

Full results in:
I. Pietri, R. Sakellariou. “Energy-Aware Workflow Scheduling

Using Frequency Scaling”. ICPP Workshops (PASA), 2014.

58

Discussion of results

• Different workflows exhibit a different behaviour

• The iterative approach can produce energy
savings without missing a deadline

• Energy savings are rather small.

• The outcome is sensitive to the parameters
used in the energy model. Some may be
difficult to estimate / others change depending
on the processor, etc.

• CPU energy is only a fraction of overall energy

• Simulation results need to be verified with real
experiments

I. Pietri, R. Sakellariou. “Energy-Aware Workflow Scheduling

Using Frequency Scaling”. ICPP Workshops (PASA), 2014.

Even more trade-offs

• Anecdotal evidence seems to indicate that even

when the perceived utilization (based on user

requests) of a Cloud system is high, the actual

utilization of the system may be low.

– Users often request many more resources than actually

needed. Providers do not particularly care as long as this

translates to money!

– Lots of scope for optimization by adjusting utilization to the

workload characteristics.

• E.g., reduce CPU frequency for I/O-intensive jobs.

59 Drazen Lucanin, Ilia Pietri, Ivona Brandic and Rizos Sakellariou. A Cloud

Controller for Performance-Based Pricing. IEEE Cloud 2015 & TCC (to appear)

Even more trade-offs (I)

• Combining frequency scaling with VM

migration/consolidation may lead to useful

savings (an energy-revenue trade-off)

• Perceived-performance pricing, applies

frequency scaling to I/O intensive jobs.

60 Drazen Lucanin, Ilia Pietri, Ivona Brandic and Rizos Sakellariou. A Cloud

Controller for Performance-Based Pricing. IEEE Cloud 2015 & TCC (to appear).

Even more trade-offs (II)

• It has been argued that there

is a need “to design

algorithms that communicate

as little as possible” (a

communication-computation

trade-off)

• Scope for some small extra

effort in computation if it can

result in significant

communication savings

61 Ilia Pietri and Rizos Sakellariou. Scheduling Data-Intensive Scientific

Workflows with Reduced Communication. In SSDBM’18.

Controlling the trade-offs

Virtual to Physical Machine placement (VM to PM)

• Demand-based: Lots of contention (+overhead of VM

migration) but better PM utilization

• Reservation-based: Fewer VM migrations but worse

PM utilization

• Idea: have a ‘knob’ to choose between the two

‘extremes’ (demand- & reservation-based)

• Challenge: the same little shift of the knob does not

always lead to the same change (proportionally).

63

A. Mosa and R. Sakellariou. Virtual Machine Consolidation for Cloud Data Centers

Using Parameter-Based Adaptive Allocation, ECBS 2017 & Dynamic Tuning for

Parameter-Based Virtual Machine Placement, ISPDC 2018.

• E.g., ARM Big.Little

• System-on-chip

– Processors coherently connected

• ARM Cortex-A15 (Big)

 high performance

• ARM Cortex-A7 (Little)

 power efficiency

– Frequency selection

• Freq. range per cluster

• Individually per core

Problem exists in different settings

Image credit: https://www.arm.com/products/processors/biglittleprocessing.php

Ilia Pietri, Sicong Zhuang, Marc Casas, Miquel Moreto and Rizos Sakellariou.

Evaluating Scientific Workflow Execution on an Asymmetric Multicore Processor. In

HeteroPar 2017.

A small case study using Montage

to recap and consider trade-
offs in the big picture…

66

Lots of trade-offs and excitement…

Trying to understand and appreciate all the

trade-offs is a tremendous task.

However, the growing heterogeneity of

modern platforms and the plethora of different

configurations suggest that somebody may

need to deal with many questions involving

trade-offs, the simplest form of which could be:

– Shall I choose 50 CPUs at 2GHz or 25 at 2.5GHz

and 25 at 1.5GHz?

67

Understand the search space…

…not only part of it!

(solutions depend on requirements – don’t assume equal weight)

68

cost

Execution time
Low(fast) High(slow)

Low

(cheap)

High

(expensive)

The big picture and the challenges

• The current mindset is geared towards single-

objective optimization (mostly execution time).

Different objectives are often bundled as one.

• Cost
– Cost could be: energy, number of failures, memory usage, storage, etc…

There are various trade-offs between all these and performance.

– Rather easy(?) to deal with a pricing model provided by somebody else.

• The Challenges
– Extensive Experimentation to understand different trade-offs

– Good Performance Models / (or at least some good Rules of Thumb)

– Optimization Techniques (multi-criteria optimization is challenging,

especially under uncertainty)

– Software approaches that take into account different trade-offs.

More trade-offs in relation to
user/business requirements

with thanks to …

71

Industry 4.0: Background

• Next transformational change in industrial

processes.

• Take advantage of the abundance of data to

make ‘smart decisions’ in manufacturing

(‘smart manufacturing’).

• Builds upon:

– Cyber-Physical and Advanced Embedded Systems

– Internet-of-Things

– Data analytics

– Cloud & High-Performance Computing
72

Current State
• Significant reliance on human experts

• Isolated computer systems

• Issues:

– Systems do not scale

– Central points of failure

– Difficult to manage complexity

• Key challenge:

– “System-of-systems” (different software / hardware

components need to collaborate for the same goal)

– Different trade-offs: computation, energy, storage, …
73

DISRUPT project

• http://www.disrupt-project.eu/

• End-users:
– CR FIAT, ARCELIK

• Technology Providers:
– Software AG, ATC SA, BOC GMBH, SIMPLAN AG

• Universities/Research Institutes:
– CNR, AUEB, UNIMAN

• Research & Innovation Action (FOF), ~€3.5M,
2016-2019.

• Key goal: move the boundaries towards the
Industry 4.0 vision with a specific focus on
disruptions in production.

 74

http://www.disrupt-project.eu/
http://www.disrupt-project.eu/
http://www.disrupt-project.eu/

Use Cases

75

Management of

Inbound Logistics
CRF,

Automotive

Event-enabled Production

Planning and Control
CRF,

Automotive

Reconfiguration Scaling

and Optimisation

ARCELIK,

Home

Appliances

Flattening the pyramid/hierarchy
(adjacency not necessary for data exchange)

76

Some observations re: compute-intensive aspects

• Computation-on-demand

– Specific events may require significant compute
capacity that needs to be made available at short
notice.

– Demands are tightly linked to the state of the system.

• Data is a bottleneck (this is not new!)

– Adjust the rate of data production in relation to state
(and anticipated risks) in the system.

• Continuous hardware/software re-configuration

– Not only a question of achieving ‘best’ performance but
a question of accommodating various user and system
constraints striking a balance between different criteria.

 77

‘Adjustable’ computation

78

[Motivated by CFD

and Lagrangian /

Eulerian Simulations]

Source: R. F. da Silva

et al, “A

Characterization of

Workflow Management

Systems for Extreme-

Scale Applications”,

FGCS, 2018

Adjustable data production rate

• Publishers p1,... produce
data at a rate r1,…

• Subscribers s1,… aim to
achieve a certain level of
satisfaction

• Machines m1,… have a
certain amount of
bandwidth b1,…

• Goal: adjust rate of
production to maximize
satisfaction.

79 Thomas Lambert and Rizos Sakellariou. Allocation of Publisher/Subscriber Data Links

on a Set of Virtual Machines. In IEEE CLOUD 2018.

Finally…

81

• With the growing heterogeneity and conflicting costs, the

challenge is to look more carefully into the cost one has to pay

to achieve a certain target objective:

– Suboptimal solutions exist, which hide some high-cost

• This affects both providers and consumers

– Pareto front – multi-objective optimization to take into account all aspects

– Many examples here were shown in 2-dimensional space, in reality the

problem relates to an n-dimensional space

• Need to go beyond one-fits-all approaches

• Implications for:

– Cloud, Fog, Edge, High-Performance Computing

– Optimization theory

– Software engineering, practice and education

– …and beyond!

Conclusion

Thank you!

Acknowledgements: all past students

and collaborators and people who

influenced thinking over the years!

83

