Representation Learning for Text and Applications

"a word is defined by the company it keeps" (Firth, 1957)

M. Vazirgiannis

Ecole Polytechnique \& AUEB

Scholar: https://tinyurl.com/y7ulzoqt
November 2019

Language model

- Goal: determine $\mathrm{P}\left(\mathrm{s}=\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{k}}\right)$ in some domain of interest

$$
P(s)=\prod_{i=1}^{k} P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)
$$

e.g., $P\left(w_{1} w_{2} w_{3}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1} w_{2}\right)$

- Traditional n-gram language model assumption:
"the probability of a word depends only on context of $n-1$ previous words"

$$
\Rightarrow \widehat{\mathrm{P}}(\mathrm{~s})=\prod_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-\mathrm{n}+1} \ldots \mathrm{w}_{\mathrm{i}-1}\right)
$$

- Typical ML-smoothing learning process (e.g., Katz 1987):

1. compute $\widehat{P}\left(w_{i} \mid w_{i-n+1} \ldots w_{i-1}\right)=\frac{\# w_{i-n+1} \ldots w_{i-1} w_{i}}{\# w_{i-n+1} \cdots w_{i-1}}$ on training corpus
2. smooth to avoid zero probabilities

Representing Words

> One-hot vector

- high dimensionality
- sparse vectors
- dimensions=|V| (10^6<|V|)
- unable to capture semantic similarity between words

> Distributional vector

- words that occur in similar contexts, tend to have similar meanings
- each word vector contains the frequencies of all its neighbors
- dimensions=|V|
- computational complexity for ML algorithms

Representing Words

$>$ Word embeddings

- store the same contextual information in a lowdimensional vector
- densification (sparse to dense)
- compression
- dimensionality reduction
- dimensions=m
$100<m<500$

eat										

- able to capture semantic similarity between words
- learned vectors (unsupervised)
- Learning methods
- SVD
- word2vec
- GloVe

Example

- We should assign similar probabilities (discover similarity) to Obama speaks to the media in Illinois and the President addresses the press in Chicago
- This does not happen because of the "one-hot" vector space representation

One hot
$\left.\begin{array}{rl}\text { obama } & =\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & \ldots & 0 & 1\end{array}\right)\end{array}\right]$

Word embeddings

- Dimensionality reduction on co-occurrence matrix
- Create a $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ word co-occurrence matrix X
- Apply SVD $X=U S V^{T}$
- Take first k columns of U
- Use the k-dimensional vectors as representations for each word
- Able to capture semantic and syntactic similarity

SVD application - Latent Structure in documents

-Documents are represented based on the Vector Space Model
-Vector space model consists of the keywords contained in a document.
-In many cases baseline keyword based performs poorly - not able to detect synonyms.
-Therefore document clustering is problematic
-Example where of keyword matching with the query: "IDF in computerbased information look-up"

| | access | document | retrieval | information | theory | database | indexing | computer |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Doc1 | x | x | x | | | x | x | |
| Doc2 | | | | x | x | | | |
| Doc3 | | | | x | | | | |

Latent Semantic Indexing (LSI) -I

- Finding similarity with exact keyword matching is problematic.
- Using SVD we process the initial document-term document.
- Then we choose the k larger singular values. The resulting matrix is of order k and is the most similar to the original one based on the Frobenius norm than any other k-order matrix.

Latent Semantic Indexing (LSI) - II

- The initial matrix is SVD decomposed as: $\mathrm{A}=\mathrm{ULV}^{\top}$
- Choosing the top-k singular values from L we have:
$A_{k}=U_{k} L_{k} V_{k}^{\top}$,
- L_{k} square $k x k$ - top-k singular values of the diagonal in matrix L,
- $\mathrm{U}_{\mathrm{k},}$ mxk matrix - first k columns in U (left singular vectors)
- $\mathrm{V}_{\mathrm{k}}{ }^{\top}$, kxn matrix - first k lines of V^{\top} (right singular vectors)

Typical values for $\kappa \sim 200-300$ (empirically chosen based on experiments appearing in the bibliography)

LSI capabilities

- - Term to term similarity: $A_{k} A_{k}{ }^{\top}=U_{k} L_{k}{ }^{2} U_{k}{ }^{\top}$
- Where $A k=U k L$ LVt
- - Document-document similarity: $\mathrm{A}_{\mathrm{k}}{ }^{\top} \mathrm{A}_{\mathrm{k}}=\mathrm{V}_{\mathrm{k}} \mathrm{L}_{\mathrm{k}}{ }^{2} \mathrm{~V}_{\mathrm{k}}{ }^{\top}$
- - Term document similarity (as an element of the transformed - document matrix)
- - Extended query capabilities transforming initial query q to $q_{n} \quad q_{n}=q^{\top} U_{k} L_{k}{ }^{-1}$
- - Thus q_{n} can be regarded a line in matrix V_{k}

LSI - an example

LSI application on a term - document matrix

C1: Human machine Interface for Lab ABC computer application
C2: A survey of user opinion of computer system response time
C3: The EPS user interface management system
C4: System and human system engineering testing of EPS
C5: Relation of user-perceived response time to error measurements
M1: The generation of random, binary unordered trees
M2: The intersection graph of path in trees
M3: Graph minors IV: Widths of trees and well-quasi-ordering
M4: Graph minors: A survey

- The dataset consists of 2 classes, 1st: "human - computer interaction" (c1-c5) 2nd: related to graph (m1-m4). After feature extraction the titles are represented as follows.

LSI - an example

	C 1	C 2	C 3	C 4	C 5	M 1	M 2	M 3	M 4
human	1	0	0	1	0	0	0	0	0
Interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
User	0	1	1	0	1	0	0	0	0
System	0	1	1	2	0	0	0	0	0
Response	0	1	0	0	1	0	0	0	0
Time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
Survey	0	1	0	0	0	0	0	0	1
Trees	0	0	0	0	0	1	1	1	0
Graph	0	0	0	0	0	0	1	1	1
Minors	0	0	0	0	0	0	0	1	1

LSI - an example

$\mathrm{A}=\mathrm{ULV}{ }^{\top}$

$A=$| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

LSI - an example

$A=U L V^{\top}$

$U=$	0.22	-0.11	0.29	-0.41	-0.11	-0.34	0.52	-0.06	-0.41			
0.20	-0.07	0.14	-0.55	0.28	0.50	-0.07	-0.01	-0.11				
0.24	0.04	-0.16	-0.59	-0.11	-0.25	-0.30	0.06	0.49	0	0		
0.40	0.06	-0.34	0.10	0.33	0.38	0.00	0.00	0.01	0	0	0	
0.64	-0.17	0.36	0.33	-0.16	-0.21	-0.17	0.03	0.27	0	0	0	
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05				
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05				
0.30	-0.14	0.33	0.19	0.11	0.27	0.03	-0.02	-0.17				
0.21	0.27	-0.18	-0.03	-0.54	0.08	-0.47	-0.04	-0.58				
0.01	0.49	0.23	0.03	0.59	-0.39	-0.29	0.25	-0.23	0			
0.04	0.62	0.22	0.00	-0.07	0.11	0.16	-0.68	0.23	0	0		
0.03	0.45	0.14	-0.01	-0.30	0.28	0.34	0.68	0.18				
0	0	0	0									
0	0	0	0									
0	0	0										

LSI - an example

$\mathrm{A}=\mathrm{ULV}{ }^{\top}$

$L=$| 3.3
 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2.54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 2.35 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1.64 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1.50 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1.31 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0.85 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.56 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.36 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

LSI - an example

$\mathrm{A}=\mathrm{ULV}{ }^{\top}$

$\mathbf{V}=$| 0.20 | -0.06 | 0.11 | -0.95 | 0.05 | -0.08 | 0.18 | -0.01 | -0.06 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.61 | 0.17 | -0.50 | -0.03 | -0.21 | -0.26 | -0.43 | 0.05 | 0.24 |
| 0.46 | -0.13 | 0.21 | 0.04 | 0.38 | 0.72 | -0.24 | 0.01 | 0.02 |
| 0.54 | -0.23 | 0.57 | 0.27 | -0.21 | -0.37 | 0.26 | -0.02 | -0.08 |
| 0.28 | 0.11 | -0.51 | 0.15 | 0.33 | 0.03 | 0.67 | -0.06 | -0.26 |
| 0.00 | 0.19 | 0.10 | 0.02 | 0.39 | -0.30 | -0.34 | 0.45 | -0.62 |
| 0.01 | 0.44 | 0.19 | 0.02 | 0.35 | -0.21 | -0.15 | -0.76 | 0.02 |
| 0.02 | 0.62 | 0.25 | 0.01 | 0.15 | 0.00 | 0.25 | 0.45 | 0.52 |
| 0.08 | 0.53 | 0.08 | -0.03 | -0.60 | 0.36 | 0.04 | -0.07 | -0.45 |

LSI - an example

Choosing the 2 largest singular values we have

LSI (2 singular values)

$\mathrm{A}_{\mathrm{k}}=$| | C 1 | C 2 | C 3 | C 4 | C 5 | M 1 | M 2 | M 3 | M 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| human | 0.16 | 0.40 | 0.38 | 0.47 | 0.18 | -0.05 | -0.12 | -0.16 | -0.09 |
| Interface | 0.14 | 0.37 | 0.33 | 0.40 | 0.16 | -0.03 | -0.07 | -0.10 | -0.04 |
| Computer | 0.15 | 0.51 | 0.36 | 0.41 | 0.24 | 0.02 | 0.06 | 0.09 | 0.12 |
| User | 0.26 | 0.84 | 0.61 | 0.70 | 0.39 | 0.03 | 0.08 | 0.12 | 0.19 |
| System | 0.45 | 1.23 | 1.05 | 1.27 | 0.56 | -0.07 | -0.15 | -0.21 | -0.05 |
| Response | 0.16 | 0.58 | 0.38 | 0.42 | 0.28 | 0.06 | 0.13 | 0.19 | 0.22 |
| Time | 0.16 | 0.58 | 0.38 | 0.42 | 0.28 | 0.06 | 0.13 | 0.19 | 0.22 |
| EPS | 0.22 | 0.55 | 0.51 | 0.63 | 0.24 | -0.07 | -0.14 | -0.20 | -0.11 |
| Survey | 0.10 | 0.53 | 0.23 | 0.21 | 0.27 | 0.14 | 0.31 | 0.44 | 0.42 |
| Trees | -0.06 | 0.23 | -0.14 | -0.27 | 0.14 | 0.24 | 0.55 | 0.77 | 0.66 |
| Graph | -0.06 | 0.34 | -0.15 | -0.30 | 0.20 | 0.31 | 0.69 | 0.98 | 0.85 |
| Minors | -0.04 | 0.25 | -0.10 | -0.21 | 0.15 | 0.22 | 0.50 | 0.71 | 0.62 |

LSI Example

- Query: "human computer interaction" retrieves documents: $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{4}$ but not c_{3} and c_{5}.
- If we submit the same query (based on the transformation shown before) to the transformed matrix we retrieve (using cosine similarity) all $c_{1}-c_{5}$ even if c_{3} and c_{5} have no common keyword to the query.
- According to the transformation for the queries we have:

Query transformation

	query
human	1
Interface	0
computer	1
User	0
System	0
Response	0
Time	0
EPS	0
Survey	0
Trees	0
Graph	0
Minors	0

$q=$| 1 |
| :--- |
| 0 |
| 1 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |

Query transformation

$U_{\mathrm{k}}=$| 0.22 | -0.11 |
| :--- | :--- |
| 0.20 | -0.07 |
| 0.24 | 0.04 |
| 0.40 | 0.06 |
| 0.64 | -0.17 |
| 0.27 | 0.11 |
| 0.27 | 0.11 |
| 0.30 | -0.14 |
| 0.21 | 0.27 |
| 0.01 | 0.49 |
| 0.04 | 0.62 |
| 0.03 | 0.45 |

$$
\begin{gathered}
L_{k}=\begin{array}{|l|l|}
\hline 0.334 & 0 \\
\hline 0 & 0.254 \\
\hline
\end{array} \\
\mathrm{q}_{\mathrm{n}}=\mathrm{q}^{\top} \mathrm{U}_{\mathrm{k}} \mathrm{~L}_{\mathrm{k}}=\begin{array}{|l|l|}
\hline 0.138 & -0.0273 \\
\hline
\end{array}
\end{gathered}
$$

Query transformation

$$
\mathrm{q}_{\mathrm{n}} \mathrm{~L}_{\mathrm{k}}=\begin{array}{|l|l|}
\hline 0.138 & -0.0273 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 3.34 & 0 \\
\hline 0 & 2.54 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 0.46 & -0.069 \\
\hline
\end{array}
$$

Query transformation

- The cosine similarity matrix of query vector to the documents is:

SVD problems

- The dimensions of the matrix change when dictionary changes
- The whole decomposition must be re-calculated when we add a word
- Sensitive to the imbalance in word frequency
- Very high dimensional matrix
- Not suitable for millions of words and documents
- Quadratic cost to perform SVD
- Solution: Directly calculate a low-dimensional representation

Word analogy

- Words with similar meaning end up laying close to each other
- Words that share similar contexts may be analogous
- Synonyms
- Antonyms
- Names
- Colors
- Places
- Interchangeable words
- Vector arithmetics to work with analogies
- i.e. king - man + woman = queen

https://Iamyiowce.github.io/word2viz/

But why?

- what's an analogy?

$$
\frac{p\left(w^{\prime} \mid \text { man }\right)}{p\left(w^{\prime} \mid \text { woman }\right)} \approx \frac{p\left(w^{\prime} \mid \text { king }\right)}{p\left(w^{\prime} \mid \text { queen }\right)}
$$

Assume PMI is approximated by a low rank approximation of the co-occurrence matrix.

1. $\operatorname{PMI}\left(w^{\prime}, w\right) \approx v_{w} v_{w^{\prime}}{ }^{*}$ inner product*
2. Isotropic: $E_{w^{\prime}}\left[\left(v_{w^{\prime}} v_{u}\right)\right]^{2}=\left\|v_{u}\right\|^{2}$

Then
3. $\operatorname{argmin}_{w} E_{w^{\prime}}\left[\ln \frac{p\left(w^{\prime} \mid w\right)}{p\left(w^{\prime} \mid \text { queen }\right)}-\ln \frac{p\left(w^{\prime} \mid \text { man }\right)}{p\left(w^{\prime} \mid \text { woman }\right)}\right]^{2}$
4. $\operatorname{argmin}_{w} E_{w^{\prime}}\left[\left(P M I\left(w^{\prime} \mid w\right)-P M I\left(w^{\prime} \mid q u e e n\right)\right)-\left(P M I\left(w^{\prime} \mid \text { man }\right)-P M I\left(w^{\prime} \mid \text { woman }\right)\right)\right]^{2}$
5. $\operatorname{argmin}_{w}| |\left(v_{w}-v_{\text {queen }}\right)-\left(v_{\text {man }}-v_{\text {woman }}\right) \|^{2}$
6. $v_{w} \approx v_{\text {queen }}-v_{\text {woman }}+v_{\text {man }}$ which is an analogy!

- Arora et al (ACL 2016) shows that if (2) holds then (1) holds as well
- So we need to construct vectors from co-occurrence that satisfy (2)
- $\mathrm{d} \ll|\mathrm{V}|$ in order to have isotropic vectors

Learning Word Vectors

Corpus containing a sequence of T training words
$>$ Objective: $\mathrm{f}\left(w_{t}, \ldots, w_{t-n+1}\right)=$ $\widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \ldots \mathrm{w}_{\mathrm{t}-1}\right)$
$>$ Decomposed in two parts:

$>$ Mapping C (1-hotv => lower dimensions)
$>$ Mapping any \mathbf{g} s.t. (estimate prob $\mathrm{t}+1 \mid \mathrm{t}$ previous)
$\mathrm{f}\left(w_{t-1}, \cdots, w_{t-n+1}\right)=\mathrm{g}\left(\mathrm{C}\left(w_{t-1}\right), \cdots, \mathrm{C}\left(w_{t-n+1}\right)\right)$

- $\mathrm{C}(\mathrm{i})$ is the i -th word feature vector
(Word embedding)
$>$ Objective function: $J=\frac{1}{T} \sum \mathrm{f}\left(w_{t}, \ldots, w_{t-n+1}\right)$

Bengio, Yoshua, et al. "A neural probabilistic language model." The Journal of Machine Learning Research 3 (2003): 1137-1155.

Neural Net Language Model

For each training sequence: input $=($ context, target $)$ pair: $\left(w_{t-n+1} \ldots w_{t-1}, w_{t}\right)$ objective: minimize $\mathrm{E}=-\log \widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \ldots \mathrm{w}_{\mathrm{t}-1}\right)$

OUTPUT
LAYER

HIDDEN
LAYER
nonlinear

PROJECTION LAYER
linear

INPUT LAYER

input context:

$$
\text { softmax. } \quad i^{\text {th }} \text { output }=\widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \cdots \mathrm{w}_{\mathrm{t}-1}\right)
$$

$\mathrm{w}_{\mathrm{t}-\mathrm{n}+1}$
$\stackrel{\uparrow}{\mathrm{w}_{\mathrm{t}-2}}$

Objective function

- $\mathrm{E}=-\log \widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \cdots \mathrm{w}_{\mathrm{t}-1}\right)$
- a probability between 0 and 1.
- On this support, the log is negative =>-log term positive.
- makes sense to try to minimize it.
- Probability of word given the context be as high as possible (1 for a perfect prediction).
- case the error is equal to 0 (global minimum).

\mathbf{p}	$\log (\mathbf{p})$	$-\log (\mathbf{p})$
0,7	$-0,15490196$	0,15490196
0,2		

NNLM Projection layer

> Performs a simple table lookup in $\mathrm{C}_{|\mathrm{VV}| \mathrm{m}}$: concatenate the rows of the shared mapping matrix $\mathrm{C}_{|\mathrm{V}| \mathrm{m}}$ corresponding to the context words

Example for a two-word context $\mathrm{w}_{\mathrm{t}-2} \mathrm{w}_{\mathrm{t}-1}$:

Concatenate (1) and (2) \rightarrow C $\left(\mathrm{w}_{\mathrm{t}-2}\right) \quad \mathrm{C}\left(\mathrm{w}_{\mathrm{t}-1}\right)$
$>\mathrm{C}_{\mid \mathrm{VV}, \mathrm{m}}$ is critical: it contains the weights that are tuned at each step. After training, it contains what we're interested in: the word vectors

NNLM hidden/output layers and training

> Softmax (log-linear classification model) is used to output positive numbers that sum to one (a multinomial probability distribution):
for the $i^{\text {th }}$ unit in the output layer: $\widehat{P}\left(w_{i}=w_{t} \mid w_{t-n+1} \ldots w_{t-1}\right)=\frac{e^{y w_{i}}}{\sum_{i^{\prime}=1}^{\mid V_{1}} e^{y w_{i^{\prime}}}}$
Where:
$-y=b+U \cdot \tanh (d+H . x)$

- tanh : nonlinear squashing (link) function
-x : concatenation C(w) of the context weight vectors seen previously
- b : output layer biases (|V| elements)
- d : hidden layer biases (h elements). Typically $500<\mathrm{h}<1000$
$-\mathrm{U}:|\mathrm{V}|$ * h matrix storing the hidden-to-output weights
$-\mathrm{H}:(\mathrm{h} *(\mathrm{n}-1) \mathrm{m})$ matrix storing the projection-to-hidden weights
$\rightarrow \boldsymbol{\theta}=(\boldsymbol{b}, \boldsymbol{d}, \boldsymbol{U}, \boldsymbol{H}, \boldsymbol{C})$
- Complexity per training sequence: $\mathrm{n} * \mathrm{~m}+\mathrm{n} * \mathrm{~m} * \mathrm{~h}+\mathbf{h} *|\mathbf{V}|$ computational bottleneck: nonlinear hidden layer ($\mathrm{h} *|\mathrm{~V}|$ term)
> Training is performed via stochastic gradient descent (learning rate ε):

$$
\theta \leftarrow \theta+\varepsilon \cdot \frac{\partial \mathrm{E}}{\partial \theta}=\theta+\varepsilon \cdot \frac{\partial \log \widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \cdots \mathrm{w}_{\mathrm{t}-1}\right)}{\partial \theta}
$$

(weights are initialized randomly, then updated via backpropagation)

NNLM facts

- tested on Brown (1.2M words, $|\mathrm{V}| \cong 16 \mathrm{~K}$) and AP News (14M words, $|\mathrm{V}| \cong 150 \mathrm{~K}$ reduced to 18K) corpuses
- Brown: $\mathrm{h}=100, \mathrm{n}=5, \mathrm{~m}=30$
- AP News: $\mathrm{h}=60, \mathrm{n}=6, \mathrm{~m}=100,3$ week training using 40 cores
- 24% and 8% relative improvement (resp.) over traditional smoothed n -gram LMs
- in terms of test set perplexity: geometric average of $1 / \widehat{P}\left(w_{t} \mid w_{t-n+1} \ldots w_{t-1}\right)$
- Due to complexity, NNLM can't be applied to large data sets \rightarrow poor performance on rare words
- Bengio et al. (2003) initially thought their main contribution was a more accurate LM. They let the interpretation and use of the word vectors as future work
- On the opposite, Mikolov et al. (2013) focus on the word vectors

Word2Vec

$>$ Mikolov et al. in 2013
$>$ Key idea of word2vec: achieve better performance not by using a more complex model (i.e., with more layers), but by allowing a simpler (shallower) model to be trained on much larger amounts of data
$>$ no hidden layer (leads to 1000X speedup)
$>$ projection layer is shared (not just the weight matrix) - C
$>$ context: words from both history \& future:

- Two algorithms for learning words vectors:
- CBOW: from context predict target
- Skip-gram: from target predict context

Continuous Bag-of-Words (CBOW)

$>$ continuous bag-of-words
$>$ continuous representations whose order is of no importance
$>$ uses the surrounding words to predict the center word
$>$ n-words before and after the target word

Continuous Bag-of-Words (CBOW)

For each training sequence: input $=($ context, target $)$ pair: $\left(w_{t-\frac{n}{2}} \ldots W_{t-1} W_{t+1} \ldots w_{t+\frac{n}{2}}, W_{t}\right)$
objective: minimize $-\log \widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \ldots \mathrm{w}_{\mathrm{t}-1}\right)$

Weight updating

$>$ For each (context, target $=w_{\mathrm{t}}$) pair, only the word vectors from matrix C corresponding to the context words are updated
$>$ Recall that we compute $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{t}} \mid\right.$ context $) \forall \mathrm{w}_{\mathrm{i}} \in \mathrm{V}$. We compare this distribution to the true probability distribution (1 for $w_{t}, 0$ elsewhere)

Back propagation

If $P\left(w_{i}=w_{t} \mid\right.$ context $)$ is overestimated (i.e., >0, happens in potentially $|V|-1$ cases), some portion of $\mathrm{C}^{\prime}\left(\mathrm{w}_{\mathrm{i}}\right)$ is subtracted from the context word vectors in C , proportionally to the magnitude of the error

Reversely, if $P\left(w_{i}=w_{t}\right.$ I context) is underestimated (<1, happens in potentially 1 case), some portion of $C^{\prime}\left(w_{i}\right)$ is added to the context word vectors in C
\rightarrow at each step the words move away or get closer to each other in the feature space \rightarrow clustering

input \rightarrow projection weight matrix
constant adjustments

$$
\mathrm{C}^{\prime}\left(\mathrm{w}_{1}\right)
$$

$$
\text { projection } \rightarrow \text { output }
$$

1
weight matrix

Skip-gram

$>$ skip-gram uses the center word to predict the surrounding words
$>$ instead of computing the probability of the target word w_{t} given its previous words, we calculate the probability of the surrounding word w_{t+j} given w_{t}
$>\mathrm{p}\left(w_{t+j} \mid w_{t}\right)=\frac{\exp \left(v_{w_{t}}^{T} v_{w_{t+j}}^{\prime}\right)}{\sum_{w \in V} \exp \left(v_{w_{t}}^{T} v_{w_{t+j}}^{\prime}\right)}$
$>\boldsymbol{v}^{T}{ }_{w t}$ is a column of $\boldsymbol{W}_{V x N}$ and $\boldsymbol{v}_{\boldsymbol{w}_{t+j}}^{\prime}$ is a column of

$W^{\prime}{ }_{N x V}$

$$
J=\frac{1}{T} \sum_{t=1}^{T} \sum_{-n \leq j \leq n} \log \mathrm{p}\left(w_{t+j} \mid w_{t}\right)
$$

Word2vec facts

$>$ Complexity is $\mathbf{n} * \mathbf{m}+\mathbf{m} * \log |\mathbf{V}|$ (Mikolov et al. 2013a)
$>\mathrm{n}$:size of the context window (~ 10) $\mathbf{n x m}$: dimensions of the projection layer, $|\mathrm{V}|$ size of the vocabulary
$>$ On Google news 6B words training corpus, with $|\mathbf{V}| \sim 10^{6}$:

- CBOW with $\mathrm{m}=1000$ took 2 days to train on 140 cores
- Skip-gram with m = 1000 took 2.5 days on 125 cores
- NNLM (Bengio et al. 2003) took 14 days on 180 cores, for $m=100$ only!
(note that $\mathrm{m}=1000$ was not reasonably feasible on such a large training set)
> word2vec training speed $\cong 100 \mathrm{~K}-5 \mathrm{M}$ words/s
$>$ Quality of the word vectors:
- 7 significantly with amount of training data and dimension of the word vectors (m), with diminishing relative improvements
- measured in terms of accuracy on 20K semantic and syntactic association tasks.
e.g., words in bold have to be returned:

Capital-Country	Past tense	Superlative	Male-Female	Opposite
Athens: Greece	walking: walked	easy: easiest	brother: sister	ethical: unethical

$>$ Best NNLM: 12.3\% overall accuracy. Word2vec (with Skip-gram): 53.3\%
> References: http://www.scribd.com/doc/285890694/NIPS-DeepLearning Workshop-NNforText\#scribd https://code.google.com/p/word2vec/

GloVe

Probability and Ratio	$k=$ solid	$k=$ gas	$k=$ water	$k=$ fashion
$P(k \mid$ ice $)$	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
$P(k \mid$ steam $)$	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mid$ ice $) / P(k \mid$ steam $)$	8.9	8.5×10^{-2}	1.36	0.96

- Ratio of co-occurrence probabilities best distinguishes relevant words
$F\left(w_{i}, w_{j}, \tilde{w}_{k}\right)=\frac{P_{i k}}{P_{j k}} \quad \square \quad w_{i}^{T} \tilde{w}_{k}+b_{i}+\tilde{b}_{k}=\log \left(X_{i k}\right)$
- Cast this into a lease square problem:
- X co-occurrence matrix
- f weighting function,

$$
\begin{aligned}
& J=\sum_{i, j=1}^{V} f\left(X_{i j}\right)\left(w_{i}^{T} \tilde{w}_{j}+b_{i}+\tilde{b}_{j}-\log X_{i j}\right)^{2} \\
& f(x)=\left\{\begin{array}{cc}
\left(x / x_{\max }\right)^{\alpha} & \text { if } x<x_{\max } \\
1 & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

- b biasterms
- $w_{i}=$ word vector
- $\widetilde{w_{j}}=$ context vector
model that utilizes
- count data
- bilinear prediction-based methods like word2vec

Which is better?

- Open question
- SVD vs word2vec vs GloVe
- All based on co-occurrence
- Levy, O., Goldberg, Y., \& Dagan, I. (2015)
- SVD performs best on similarity tasks
- Word2vec performs best on analogy tasks
- No single algorithm consistently outperforms the other methods
- Hyperparameter tuning is important
- 3 out of 6 cases, tuning hyperparameters is more beneficial than increasing corpus size
- word2vec outperforms GloVe on all tasks
- CBOW is worse than skip-gram on all tasks

Applications

- Word analogies
- Find similar words
- Semantic similarity
- Syntactic similarity
- POS tagging
- Similar analogies for different languages
- Document classification

https://lamyiowce.github.io/word2viz/

Applications

$>$ High quality word vectors boost performance of all NLP tasks, including document classification, machine translation, information retrieval...
> Example for English to Spanish machine translation:

About 90\% reported accuracy (Mikolov et al. 2013c)

Mikolov, T., Le, Q. V., \& Sutskever, I. (2013). Exploiting similarities among languages for machine translation. arXiv preprintarXiv:1309.4168.

Remarkable properties of word vectors

regularities between words are encoded in the difference vectors e.g.,there is a constant country-capital difference vector

Mikolov et al. (2013b)
Distributed representations of
words and phrases and their

Remarkable properties of word vectors

Remarkable properties of word vectors

constant male-female difference vector

constant singular-plural difference vector
> Vector operations are supported and make intuitive sense:

$$
\begin{array}{rr}
w_{\text {king }}-w_{\text {man }}+w_{\text {woman }} \cong w_{\text {queen }} & w_{\text {einstein }}-w_{\text {scientist }}+w_{\text {painter }} \cong w_{\text {picasso }} \\
w_{\text {paris }}-w_{\text {france }}+w_{\text {italy }} \cong w_{\text {rome }} & w_{\text {his }}-w_{\text {he }}+w_{\text {she }} \cong w_{\text {her }} \\
w_{\text {windows }}-w_{\text {microsoft }}+w_{\text {google }} \cong w_{\text {android }} & w_{c u}-w_{\text {copper }}+w_{\text {gold }} \cong w_{\text {au }}
\end{array}
$$

$>$ Online demo (scroll down to end of tutorial)

Distributed Representations of Sentences and Documents

- Doc2vec
- Paragraph or document vectors
- Capable of constructing representations of input sequences of variable length
- Represent each document by a dense vector
- Trained to predict words in the document
- paragraph vector and word vectors are averaged or concatenated to predict the next word in a context
- can be thought of as another word shared across all contexts in document

Model	Error rate (Positive/ Negative)	Error rate (Fine- grained)
Naïve Bayes (Socher et al., 2013b)	18.2%	59.0%
SVMs (Socher et al., 2013b)	20.6%	59.3%
Bigram Naïve Bayes (Socher et al., 2013b)	16.9%	58.1%
Word Vector Averaging (Socher et al., 2013b)	19.9%	67.3%
Recursive Neural Network (Socher et al., 2013b)	17.6%	56.8%
Matrix Vector-RNN (Socher et al., 2013b)	17.1%	55.6%
Recursive Neural Tensor Network (Socher et al., 2013b)	14.6%	54.3%
Paragraph Vector	$\mathbf{1 2 . 2 \%}$	$\mathbf{5 1 . 3 \%}$

Word Mover's distance

- "Edit" distance of 2 documents
- Based on word embedding representations
- Incorporate semantic similarity between individual word pairs into the document distance metric
- Based on "travel cost" between two words
- Calculates the cost of moving d to d'
- hyper-parameterfree
- highly interpretable
- high retrieval accuracy

document 1
Obama speaks to the media in Illinois

Word Mover's distance example

With the BOW
representation D_{1} and D_{2} are at equal distance from D_{0}. Word embeddings allow to capture the fact that D_{1} is closer.

Kusner, M. J., Sun, E. Y., Kolkin, E. N. I., \& EDU, W. From Word Embeddings To Document Distances. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015. JMLR: W\&CP volume 37.

Word Mover's distance computation

$d_{i}=\frac{c_{i}}{\sum_{j=1}^{n} c_{j}}:$ Normalized frequency of word \boldsymbol{i}
$c(i, j)=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}$ the word embed dings distance among words $\boldsymbol{i}, \boldsymbol{j}$

- Assume documents d,d’.
- Assume each word ifrom d can be transformed into any word j in d^{\prime}
- $\boldsymbol{T} i j \geq \mathbf{0}$ denotes how much of word \boldsymbol{i} in \boldsymbol{d} travels to word j in \boldsymbol{d}^{\prime}.
- To transform \boldsymbol{d} entirely into \boldsymbol{d}^{\prime} : entire outgoing flow from word \boldsymbol{i} equals $\boldsymbol{d}_{\boldsymbol{i}}$: .
- Transportation problem:

$$
\begin{aligned}
\min _{\mathbf{T} \geq 0} & \sum_{i, j=1}^{n} \mathbf{T}_{i j} c(i, j) \\
\text { subject to: } & \sum_{j=1}^{n} \mathbf{T}_{i j}=d_{i} \quad \forall i \in\{1, \ldots, n\} \\
& \sum_{i=1}^{n} \mathbf{T}_{i j}=d_{j}^{\prime} \quad \forall j \in\{1, \ldots, n\} .
\end{aligned}
$$

- Learn parameters $\boldsymbol{T}_{i j}$ then the distance is: $\sum_{i, j=1}^{n} \mathbf{T}_{i j} c(i, j)$

Representation Learning for Greek

- Prototype and resources
http://archive.aueb.gr:7000
- Paper: Word Embeddings from Large-Scale Greek Web Content
https://arxiv.org/abs/1810.06694

EYXAPIITIEL ...!

Google Scholar: https://bit.ly/2rwmvQU
Twitter: @mvazirg

References

- Bengio, Y., Ducharme, R., Vincent, P., \& Janvin, C. (2003). A Neural Probabilistic Language Model. The Journal of Machine Learning Research, 3, 11371155. http://doi.org/10.1162/153244303322533223
- Mikolov, T., Corrado, G., Chen, K., \& Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. Proceedings of the International Conference on Learning Representations (ICLR 2013), 1-12.
- Mikolov, T., Chen, K., Corrado, G., \& Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS, 1-9.
- Collobert, R., \& Weston, J. (2008). A unified architecture for natural language processing. Proceedings of the 25th International Conference on Machine Learning - ICML'08, 20(1), 160167. http://doi.org/10.1145/1390156.1390177
- Kim, Y., Jernite, Y., Sontag, D., \& Rush, A. M. (2016). Character-Aware Neural Language Models. AAAI. Retrieved from http://arxiv.org/abs/1508.06615
- Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., \& Wu, Y. (2016). Exploring the Limits of Language Modeling. Retrieved from http://arxiv.org/abs/1602.02410
- Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., \& Kuksa, P. (2011). Natural Language Processing (almost) from Scratch. Journal of Machine Learning Research, 12 (Aug), 24932537. Retrieved from http://arxiv.org/abs/1103.0398
- Chen, W., Grangier, D., \& Auli, M. (2015). Strategies for Training Large Vocabulary Neural Language Models, 12. Retrieved from http://arxiv.org/abs/1512.04906

Wore References

- Levy, O., Goldberg, Y., \& Dagan, I. (2015). Improving Distributional Similarity with Lessons Learned from Word Embeddings. Transactions of the Association for Computational Linguistics, 3, 211-225. Retrieved from https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570
- Pennington, J., Socher, R., \& Manning, C. D. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 15321543. http://doi.org/10.3115/v1/D14-1162
- Baroni, M., Dinu, G., \& Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. ACL, 238-

247. http://doi.org/10.3115/v1/P14-1023

- Levy, O., \& Goldberg, Y. (2014). Neural Word Embedding as Implicit Matrix Factorization. Advances in Neural Information Processing Systems (NIPS), 2177-2185. Retrieved from http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization
- Hamilton, W. L., Clark, K., Leskovec, J., \& Jurafsky, D. (2016). Inducing Domain-Specific Sentiment Lexicons from Unlabeled Corpora. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Retrieved from http://arxiv.org/abs/1606.02820
- Hamilton, W. L., Leskovec, J., \& Jurafsky, D. (2016). Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. arXiv Preprint arXiv:1605.09096.

References- blogs

- Sebastian Ruder blog series on Word Embeddings, http://sebastianruder.com/
- Andy Jones blog on word2vec, http://andyljones.tumblr.com/post/111299309808/why-word2vec-works
- Arora et al, https://arxiv.org/pdf/1502.03520v7.pdf
- Piotr Migdał, http://p.migdal.pl/2017/01/06/king-man-woman-queen-why.html

References and online resources

- Artificial neural networks: A tutorial, AK Jain, JMao, KM Mohiuddin - Computer, 1996
- introduction from a coder's perspective: http://karpathy.github.io/neuralnets/
- http://cs231n.github.io/
- online book: http://neuralnetworksanddeeplearning.com/index.html
- history of neural nets: http://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-neural-network-and-a-deep-neural-network
- nice blog post on neural nets applied to NLP: http://colah.github.io/posts/2014-07-NLP-RNNsRepresentations/
- A Primer on Neural Network Models for Natural Language Processing, Y. Goldberg, u.cs.biu.ac.il/~yogo/nnlp.pdf

