# Temporal Vertex Cover with a Sliding Time Window

George B. Mertzios Durham University

These results have been presented in ICALP 2018

Joint work with:

Eleni C. Akrida, Durham University,
Paul G. Spirakis, University of Liverpool & University of Patras,
Viktor Zamaraev, University of Liverpool

Research Seminar
Computer Engineering and Informatics Department (CEID)
University of Patras, Greece
December 2019

# Static and Temporal Graphs

#### Modern networks are highly dynamic:

- Social networks: friendships are added/removed, individuals leave, new ones enter
- Transportation networks: transportation units change with time their position in the network
- Physical systems: e.g. systems of interacting particles

#### The common characteristic in all these applications:

- the graph topology is subject to discrete changes over time
- ⇒ the notion of vertex adjacency must be appropriately re-defined (by introducing the time dimension in the graph definition)

## Various graph concepts (e.g. reachability, connectivity):

• crucially depend on the exact temporal ordering of the edges

## Formally:

## Definition (Temporal Graph)

A temporal graph is a pair  $(G, \lambda)$  where:

- ullet G=(V,E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$  is a discrete time-labeling function.

## Formally:

## Definition (Temporal Graph)

A temporal graph is a pair  $(G, \lambda)$  where:

- G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$  is a discrete time-labeling function.

temporal graph:

1,4 2,4

temporal instances:

0

0

Formally:

# Definition (Temporal Graph)

A temporal graph is a pair  $(G, \lambda)$  where:

- $\bullet$  G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$  is a discrete time-labeling function.

temporal graph:

1,4 2,4

temporal instances:



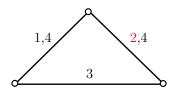
Formally:

## Definition (Temporal Graph)

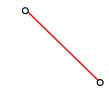
A temporal graph is a pair  $(G, \lambda)$  where:

- $\bullet$  G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$  is a discrete time-labeling function.

temporal graph:



temporal instances:



Formally:

## Definition (Temporal Graph)

A temporal graph is a pair  $(G, \lambda)$  where:

- $\bullet$  G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$  is a discrete time-labeling function.

temporal graph:

1,4 2,4

temporal instances:

0

o\_\_\_\_\_

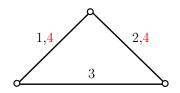
## Formally:

## Definition (Temporal Graph)

A temporal graph is a pair  $(G, \lambda)$  where:

- $\bullet$  G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$  is a discrete time-labeling function.

## temporal graph:



## temporal instances:



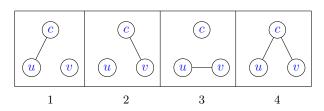
## Formally:

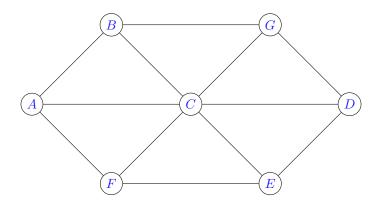
## Definition (Temporal Graph)

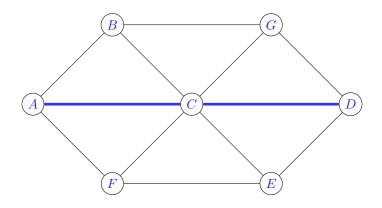
A temporal graph is a pair  $(G, \lambda)$  where:

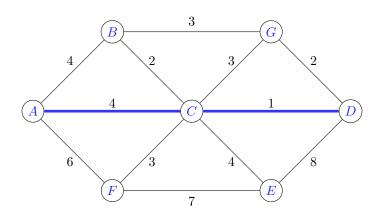
- $\bullet$  G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$  is a discrete time-labeling function.

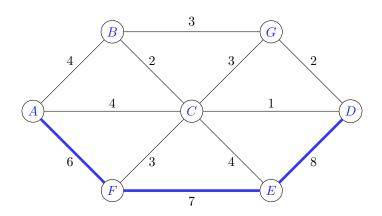
Alternatively, we can view it as a sequence of static graphs, the snapshots:











#### Overview

- Basic definitions
- Temporal vertex cover
- Temporal vertex cover with a sliding time window
- Open problems

#### Basic definitions I

To specify a temporal graph class, we can:

- either restrict the underlying graph G,
- ullet or restrict the labeling  $\lambda:E o 2^{\mathbb{N}}$  (or both)

#### Basic definitions I

To specify a temporal graph class, we can:

- ullet either restrict the underlying graph G,
- ullet or restrict the labeling  $\lambda:E o 2^{\mathbb{N}}$  (or both)

## Definition (Temporal Graph Classes)

For a class  $\mathcal X$  of static graphs we say that a temporal graph  $(G,\lambda)$  is

- $\mathcal{X}$  temporal, if  $G \in \mathcal{X}$ ;
- always  $\mathcal{X}$  temporal, if  $G_i \in \mathcal{X}$  for every  $i \in [T] = \{1, 2, \dots, T\}$ .

## Basic definitions I

To specify a temporal graph class, we can:

- either restrict the underlying graph G,
- or restrict the labeling  $\lambda: E \to 2^{\mathbb{N}}$  (or both)

## Definition (Temporal Graph Classes)

For a class  ${\mathcal X}$  of static graphs we say that a temporal graph  $(G,\lambda)$  is

- $\mathcal{X}$  temporal, if  $G \in \mathcal{X}$ ;
- always  $\mathcal{X}$  temporal, if  $G_i \in \mathcal{X}$  for every  $i \in [T] = \{1, 2, \dots, T\}$ .

## Definition (Temporal Vertex Subset)

A pair  $(u,t) \in V \times [T]$  is called the appearance of vertex u at time t. A temporal vertex subset of  $(G,\lambda)$  is a set  $\mathcal{S} \subseteq V \times [T]$  of vertex appearances in  $(G,\lambda)$ .

## Basic definitions II

## Definition (Edge is Temporally Covered)

A vertex appearance (w, t) temporally covers an edge e if:

- (i) w covers e, i.e.  $w \in e$ , and
- (ii)  $t \in \lambda(e)$ , i.e. the edge e is active during the time slot t.

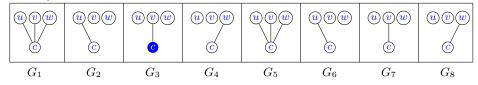
## Basic definitions II

## Definition (Edge is Temporally Covered)

A vertex appearance (w, t) temporally covers an edge e if:

- (i) w covers e, i.e.  $w \in e$ , and
- (ii)  $t \in \lambda(e)$ , i.e. the edge e is active during the time slot t.

#### Example:



- -(c,3) temporally covers edge cv, but
- -(c,3) temporally covers neither cu, nor cw.

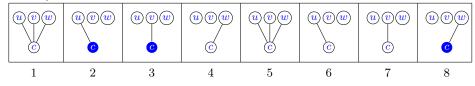
## Definition (Temporal Vertex Cover)

A temporal vertex cover of  $(G,\lambda)$  is a temporal vertex subset  $\mathcal S$  of  $(G,\lambda)$  such that every edge  $e\in E(G)$  is temporally covered by at least one vertex appearance in  $\mathcal S$ .

## Definition (Temporal Vertex Cover)

A temporal vertex cover of  $(G,\lambda)$  is a temporal vertex subset  $\mathcal S$  of  $(G,\lambda)$  such that every edge  $e\in E(G)$  is temporally covered by at least one vertex appearance in  $\mathcal S$ .

#### Example

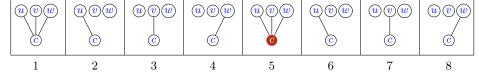


 $-\{(c,2),(c,3),(c,8)\}$  is a Temporal Vertex Cover

## Definition (Temporal Vertex Cover)

A temporal vertex cover of  $(G,\lambda)$  is a temporal vertex subset  $\mathcal S$  of  $(G,\lambda)$  such that every edge  $e\in E(G)$  is temporally covered by at least one vertex appearance in  $\mathcal S$ .

## Example

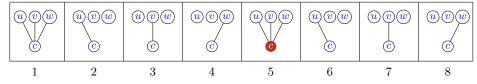


- $-\{(c,2),(c,3),(c,8)\}$  is a Temporal Vertex Cover
- $-\{(c,5)\}$  is a minimum Temporal Vertex Cover

## Definition (Temporal Vertex Cover)

A temporal vertex cover of  $(G,\lambda)$  is a temporal vertex subset  $\mathcal S$  of  $(G,\lambda)$  such that every edge  $e\in E(G)$  is temporally covered by at least one vertex appearance in  $\mathcal S$ .

#### Example



### TEMPORAL VERTEX COVER (TVC)

**Input:** A temporal graph  $(G, \lambda)$ .

**Output:** A temporal vertex cover S of  $(G, \lambda)$  with the minimum |S|.

## Definition (Time Windows)

• For every time slot  $t \in [1, T - \Delta + 1]$ : the time window  $W_t = [t, t + \Delta - 1]$  is the sequence of the  $\Delta$  consecutive time slots  $t, t + 1, \ldots, t + \Delta - 1$ .

## Definition (Time Windows)

- For every time slot  $t \in [1, T \Delta + 1]$ : the time window  $W_t = [t, t + \Delta 1]$  is the sequence of the  $\Delta$  consecutive time slots  $t, t + 1, \ldots, t + \Delta 1$ .
- ②  $E[W_t] = \bigcup_{i \in W_t} E_i$  is the union of all edges appearing at least once in the time window  $W_t$ .

## Definition (Time Windows)

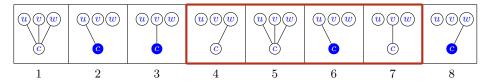
- For every time slot  $t \in [1, T \Delta + 1]$ : the time window  $W_t = [t, t + \Delta 1]$  is the sequence of the  $\Delta$  consecutive time slots  $t, t + 1, \ldots, t + \Delta 1$ .
- ②  $E[W_t] = \bigcup_{i \in W_t} E_i$  is the union of all edges appearing at least once in the time window  $W_t$ .
- ③  $S[W_t] = \{(w,t) \in S : t \in W_t\}$  is the restriction of the temporal vertex subset S to the window  $W_t$ .

## Definition (Sliding $\Delta$ -Window Temporal Vertex Cover)

A sliding  $\Delta$ -window temporal vertex cover of  $(G, \lambda)$  is a temporal vertex subset S of  $(G, \lambda)$  such that:

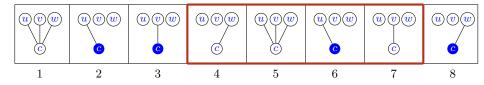
- ullet for every time window  $W_t$  and for every edge  $e \in E[W_t]$ ,
- e is temporally covered by at least one vertex appearance  $(w,t) \in \mathcal{S}[W_t]$ .

#### Example $(\Delta = 4)$

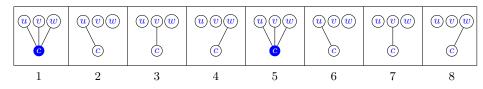


-  $\{(c,2),(c,3),(c,6),(c,8)\}$  is not a sliding  $\Delta$ -window temporal vertex cover, as edges  $cv,cw \in E[W_4]$  are not temporally covered in window  $W_4$ .

## Example $(\Delta = 4)$



 $-\{(c,2),(c,3),(c,6),(c,8)\}$  is not a sliding  $\Delta$ -window temporal vertex cover, as edges  $cv,cw\in E[W_4]$  are not temporally covered in window  $W_4$ .



 $-\{(c,1),(c,5)\}$  is a sliding  $\Delta$ -window temporal vertex cover.

## SLIDING WINDOW TEMPORAL VERTEX COVER (SW-TVC)

**Input:** A temporal graph  $(G,\lambda)$  with lifetime T, and an integer  $\Delta \leq T$ . **Output:** A sliding  $\Delta$ -window temporal vertex cover  $\mathcal S$  of  $(G,\lambda)$  with the minimum  $|\mathcal S|$ .

#### Motivation:

- (static) Vertex Cover:
   network surveillance (e.g. CCTV cameras etc.)
- Temporal Vertex Cover: network surveillance in a dynamic network
- Sliding Window Temporal Vertex Cover: dynamic surveillance in every possible  $\Delta$ -time window (e.g. for crimes that need time  $\Delta$  to be performed)

#### Overview

- Basic definitions
- Temporal vertex cover
- Temporal vertex cover with a sliding time window
- Open problems

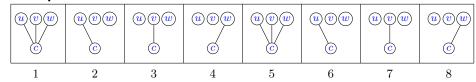
#### Lemma

TVC on star temporal graphs is equivalent to SET COVER.

- leafs of the underlying star  $\leftrightarrow$  ground set of the SET COVER instance
- $\bullet$  each snapshot graph  $\leftrightarrow$  a set in the SET COVER instance

Goal: Choose sets (snapshots) to cover all elements (leafs' edges)

### Example:



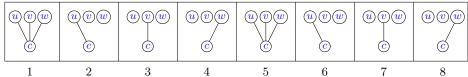
#### Lemma

TVC on star temporal graphs is equivalent to SET COVER.

- ullet leafs of the underlying star  $\leftrightarrow$  ground set of the SET COVER instance
- each snapshot graph ↔ a set in the SET COVER instance

Goal: Choose sets (snapshots) to cover all elements (leafs' edges)

### Example:



- Universe:  $\{u, v, w\}$
- **2** Sets:  $S_1 = \{u, v, w\}$ ,  $S_2 = \{u\}$ ,  $S_3 = \{v\}$ ,  $S_4 = \{w\}$ , ...

#### Lemma

TVC on star temporal graphs is equivalent to SET COVER.

#### Lemma

TVC on star temporal graphs is equivalent to HITTING SET.

#### Lemma

TVC on star temporal graphs is equivalent to SET COVER.

#### Lemma

TVC on star temporal graphs is equivalent to HITTING SET.

#### **Consequences:**

- **1** TVC is NP-complete even on star temporal graphs.
- ② For any  $\varepsilon < 1$ , TVC on star temporal graphs cannot be optimally solved in  $O(2^{\varepsilon T})$  time, unless SETH fails (due to Hitting Set).

#### Lemma

TVC on star temporal graphs is equivalent to SET COVER.

#### Lemma

TVC on star temporal graphs is equivalent to HITTING SET.

#### **Consequences:**

- **1** TVC is NP-complete even on star temporal graphs.
- ② For any  $\varepsilon < 1$ , TVC on star temporal graphs cannot be optimally solved in  $O(2^{\varepsilon T})$  time, unless SETH fails (due to Hitting Set).
- **TVC** does not admit a polynomial-time  $(1 \varepsilon) \ln n$ -approximation algorithm, unless NP has  $n^{O(\log \log n)}$ -time deterministic algorithms.

# Temporal Vertex Cover: the star temporal case

### Lemma

TVC on star temporal graphs is equivalent to SET COVER.

### Lemma

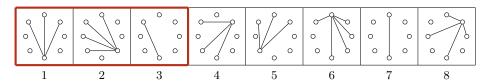
TVC on star temporal graphs is equivalent to HITTING SET.

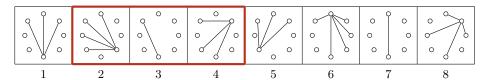
### **Consequences:**

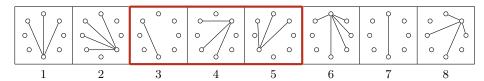
- **1** TVC is NP-complete even on star temporal graphs.
- ② For any  $\varepsilon < 1$ , TVC on star temporal graphs cannot be optimally solved in  $O(2^{\varepsilon T})$  time, unless SETH fails (due to Hitting Set).
- **TVC** does not admit a polynomial-time  $(1 \varepsilon) \ln n$ -approximation algorithm, unless NP has  $n^{O(\log \log n)}$ -time deterministic algorithms.
- **TVC** on star temporal graphs can be  $\ln n$ -approximated in polynomial time.
- **5** For general graphs:  $2 \ln n$ -approximation algorithm by a similar reduction from TVC to SET COVER

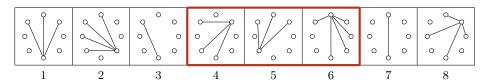
### Overview

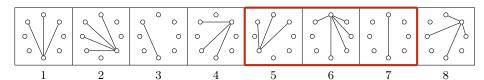
- Basic definitions
- Alternative models
- Temporal vertex cover
- Temporal vertex cover with a sliding time window
- Open problems

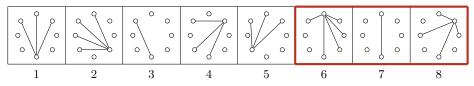




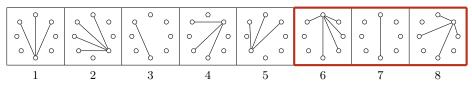




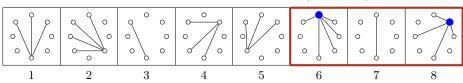




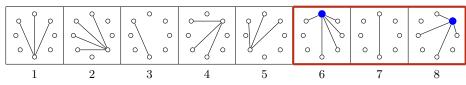
- On always star temporal graphs, a minimum size SW-TVC contains at most one vertex (the star center) in each snapshot
- $\Rightarrow$  we assign a Boolean variable  $x_i \in \{0,1\}$  for the snapshot at time i



- On always star temporal graphs, a minimum size SW-TVC contains at most one vertex (the star center) in each snapshot
- $\Rightarrow$  we assign a Boolean variable  $x_i \in \{0,1\}$  for the snapshot at time i
  - For variables  $x_1, x_2, \ldots, x_{\Delta}$  we define  $f(t; x_1, x_2, \ldots, x_{\Delta})$  to be the smallest cardinality of a sliding  $\Delta$ -window temporal vertex cover  $\mathcal S$  of  $(G, \lambda)|_{[1, t + \Delta 1]}$ , such that the solution at times  $t, t + 1, \ldots, t + \Delta 1$  is defined by the variables  $x_1, x_2, \ldots, x_{\Delta}$ .



- On always star temporal graphs, a minimum size SW-TVC contains at most one vertex (the star center) in each snapshot
- $\Rightarrow$  we assign a Boolean variable  $x_i \in \{0,1\}$  for the snapshot at time i
  - For variables  $x_1, x_2, \ldots, x_{\Delta}$  we define  $f(t; x_1, x_2, \ldots, x_{\Delta})$  to be the smallest cardinality of a sliding  $\Delta$ -window temporal vertex cover  $\mathcal S$  of  $(G, \lambda)|_{[1, t + \Delta 1]}$ , such that the solution at times  $t, t + 1, \ldots, t + \Delta 1$  is defined by the variables  $x_1, x_2, \ldots, x_{\Delta}$ .



- On always star temporal graphs, a minimum size SW-TVC contains at most one vertex (the star center) in each snapshot
- $\Rightarrow$  we assign a Boolean variable  $x_i \in \{0,1\}$  for the snapshot at time i
- For variables  $x_1, x_2, \ldots, x_{\Delta}$  we define  $f(t; x_1, x_2, \ldots, x_{\Delta})$  to be the smallest cardinality of a sliding  $\Delta$ -window temporal vertex cover  $\mathcal S$  of  $(G, \lambda)|_{[1,t+\Delta-1]}$ , such that the solution at times  $t, t+1, \ldots, t+\Delta-1$  is defined by the variables  $x_1, x_2, \ldots, x_{\Delta}$ .

## Lemma (dynamic programming)

$$f(t; x_1, x_2, \dots, x_{\Delta}) = x_{\Delta} + \min_{y \in \{0,1\}} \{ f(t-1; y, x_1, x_2, \dots, x_{\Delta-1}) \}$$

#### SW-TVC

## Theorem (always star temporal graphs)

SW-TVC on always star temporal graphs can be solved in  $O(T\Delta(n+m) \cdot 2^{\Delta})$  time.

#### SW-TVC

## Theorem (always star temporal graphs)

SW-TVC on always star temporal graphs can be solved in  $O(T\Delta(n+m) \cdot 2^{\Delta})$  time.

## Theorem (the general case)

SW-TVC on general temporal graphs can be solved in  $O(T\Delta(n+m)\cdot 2^{n(\Delta+1)})$  time.

### SW-TVC

## Theorem (always star temporal graphs)

SW-TVC on always star temporal graphs can be solved in  $O(T\Delta(n+m)\cdot 2^{\Delta})$  time.

## Theorem (the general case)

SW-TVC on general temporal graphs can be solved in  $O(T\Delta(n+m) \cdot 2^{n(\Delta+1)})$  time.

#### Main idea:

- for each of the  $\Delta$  snapshots in the (currently) last  $\Delta$ -window, we enumerate all  $2^n$  vertex subsets,
- ullet instead of just enumerating over the truth values of  $\Delta$  Boolean variables ("always star" case)

## SW-TVC: Optimality under ETH

#### Theorem

For any two (arbitrarily growing) functions  $f:\mathbb{N}\to\mathbb{N}$  and  $g:\mathbb{N}\to\mathbb{N}$ , there exists a constant  $\varepsilon\in(0,1)$  such that  $\mathrm{SW}\text{-}\mathrm{TVC}$  cannot be solved in  $f(T)\cdot 2^{\varepsilon n\cdot g(\Delta)}$  time assuming ETH.

# SW-TVC: Optimality under ETH

### Theorem

For any two (arbitrarily growing) functions  $f: \mathbb{N} \to \mathbb{N}$  and  $g: \mathbb{N} \to \mathbb{N}$ , there exists a constant  $\varepsilon \in (0,1)$  such that SW-TVC cannot be solved in  $f(T) \cdot 2^{\varepsilon n \cdot g(\Delta)}$  time assuming ETH.

### Proof (idea):

- reduction from VERTEX COVER
- $T = \Delta = 2$
- $G_1 = G$ ;  $G_2$  is an independent set
- ullet given f and g, choose appropriate arepsilon

# SW-TVC: Optimality under ETH

#### Theorem

For any two (arbitrarily growing) functions  $f: \mathbb{N} \to \mathbb{N}$  and  $g: \mathbb{N} \to \mathbb{N}$ , there exists a constant  $\varepsilon \in (0,1)$  such that SW-TVC cannot be solved in  $f(T) \cdot 2^{\varepsilon n \cdot g(\Delta)}$  time assuming ETH.

### Proof (idea):

- reduction from VERTEX COVER
- $\bullet$   $T = \Delta = 2$
- $G_1 = G$ ;  $G_2$  is an independent set
- ullet given f and g, choose appropriate arepsilon

## Corollary

Our  $O(T\Delta(n+m)\cdot 2^{n(\Delta+1)})$ -time algorithm is asymptotically almost optimal (assuming ETH).

## SW-TVC: always bounded vertex cover number temporal graphs

Let  $C_k$  be the class of graphs with vertex cover number at most k.

#### Theorem

SW-TVC on always  $C_k$  temporal graphs can be solved in  $O(T\Delta(n+m) \cdot n^{k(\Delta+1)})$  time.

## SW-TVC: always bounded vertex cover number temporal graphs

Let  $C_k$  be the class of graphs with vertex cover number at most k.

#### Theorem

SW-TVC on always  $C_k$  temporal graphs can be solved in  $O(T\Delta(n+m) \cdot n^{k(\Delta+1)})$  time.

#### Main idea:

- ullet in the optimal solution, the choice at step i is a subset of a minimum vertex cover at this snapshot
- $\Rightarrow$  for each of the  $\Delta$  last snapshots, enumerate all  $n^k$  vertex subsets (candidates for vertex cover at snapshot i)

### $\Delta$ -TVC

If the parameter  $\Delta$  (the size of a sliding window) is fixed, we refer to SW-TVC as  $\Delta$ -TVC (i.e.  $\Delta$  is a part of the problem name).

### $\Delta$ -TVC

If the parameter  $\Delta$  (the size of a sliding window) is fixed, we refer to SW-TVC as  $\Delta$ -TVC (i.e.  $\Delta$  is a part of the problem name).

### Observation

 $(\Delta + 1)$ -TVC is at least as hard as  $\Delta$ -TVC.

### $\Delta$ -TVC

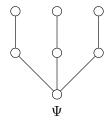
If the parameter  $\Delta$  (the size of a sliding window) is fixed, we refer to SW-TVC as  $\Delta$ -TVC (i.e.  $\Delta$  is a part of the problem name).

#### Observation

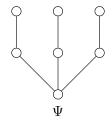
 $(\Delta + 1)$ -TVC is at least as hard as  $\Delta$ -TVC.

$$\begin{bmatrix} G_1 & G_2 & \cdots & G_{\Delta} & \emptyset & G_{\Delta+1} & \cdots & G_{2\Delta} & \emptyset & \cdots & \cdots & \cdots \\ t = 1 & t = 2 & t = \Delta & \uparrow & t = \Delta + 2 & t = 2\Delta + 1 & \uparrow & t = T + \lfloor \frac{T}{\Delta} \rfloor \\ & & & & & & & & & & & & & & & & \\ t = \Delta + 1 & & & & & & & & & & & \\ \end{bmatrix}$$

Let  $\mathcal X$  be the class of graphs whose connected components are induced subgraphs of graph  $\Psi.$ 

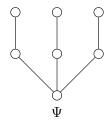


Let  $\mathcal X$  be the class of graphs whose connected components are induced subgraphs of graph  $\Psi.$ 



Clearly, VERTEX COVER is linearly solvable on graphs from  $\mathcal{X}$ .

Let  $\mathcal X$  be the class of graphs whose connected components are induced subgraphs of graph  $\Psi$ .



Clearly, VERTEX COVER is linearly solvable on graphs from  $\mathcal{X}$ .

#### Theorem

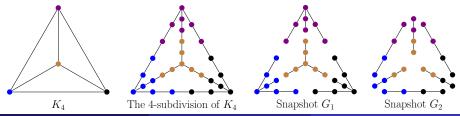
There is no PTAS for 2-TVC on always  $\mathcal{X}$  temporal graphs.

#### Theorem

There is no PTAS for 2-TVC on always  $\mathcal X$  temporal graphs.

### Proof (sketch):

- Let  $\mathcal{Y}$  be the class of graphs which can be obtained from cubic graphs by subdividing every edge exactly 4 times.
- 2 There is no PTAS for VERTEX COVER on  $\mathcal{Y}$ .
- **3** Reduce VERTEX COVER on  $\mathcal Y$  to 2-TVC on always  $\mathcal X$  temporal graphs such that optimal solutions of both problems have same size.



Reduction from SW-TVC to SET COVER.

24 / 38

Reduction from SW-TVC to SET COVER.

**1** The universe: the set of all pairs  $(e,t) \in E \times [T-\Delta+1]$  such that e appears (and so must be temporally covered) within window  $W_t$ .

#### Reduction from SW-TVC to SET COVER.

- The universe: the set of all pairs  $(e,t) \in E \times [T-\Delta+1]$  such that e appears (and so must be temporally covered) within window  $W_t$ .
- ② The sets: for every vertex appearance (v,s) we define  $C_{v,s}$  to be the set of elements (e,t) in the universe, such that (v,s) temporally covers e in window  $W_t$ .

### Reduction from SW-TVC to SET COVER.

- The universe: the set of all pairs  $(e,t) \in E \times [T-\Delta+1]$  such that e appears (and so must be temporally covered) within window  $W_t$ .
- ② The sets: for every vertex appearance (v,s) we define  $C_{v,s}$  to be the set of elements (e,t) in the universe, such that (v,s) temporally covers e in window  $W_t$ .

### Consequences:

•  $O(\ln n + \ln \Delta)$ -approximation (every set  $C_{v,s}$  has at most  $n\Delta$  elements  $\Rightarrow$  approximation factor  $H_{n\Delta} - \frac{1}{2} \approx \ln n + \ln \Delta$ )

### Reduction from SW-TVC to SET COVER.

- The universe: the set of all pairs  $(e,t) \in E \times [T-\Delta+1]$  such that e appears (and so must be temporally covered) within window  $W_t$ .
- ② The sets: for every vertex appearance (v,s) we define  $C_{v,s}$  to be the set of elements (e,t) in the universe, such that (v,s) temporally covers e in window  $W_t$ .

### Consequences:

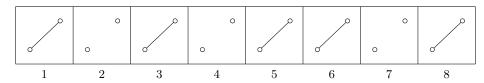
- $O(\ln n + \ln \Delta)$ -approximation (every set  $C_{v,s}$  has at most  $n\Delta$  elements  $\Rightarrow$  approximation factor  $H_{n\Delta} - \frac{1}{2} \approx \ln n + \ln \Delta$ )
- 2 k-approximation, where k is the maximum edge  $\Delta$ -frequency (just take both vertex appearances for every appearance of an edge)

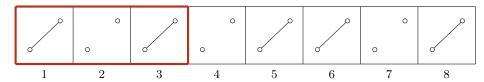
### Reduction from SW-TVC to SET COVER.

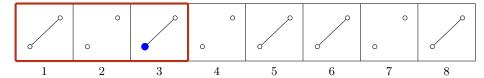
- The universe: the set of all pairs  $(e,t) \in E \times [T-\Delta+1]$  such that e appears (and so must be temporally covered) within window  $W_t$ .
- ② The sets: for every vertex appearance (v,s) we define  $C_{v,s}$  to be the set of elements (e,t) in the universe, such that (v,s) temporally covers e in window  $W_t$ .

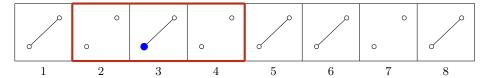
### Consequences:

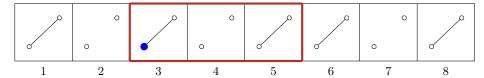
- $O(\ln n + \ln \Delta)$ -approximation (every set  $C_{v,s}$  has at most  $n\Delta$  elements  $\Rightarrow$  approximation factor  $H_{n\Delta} - \frac{1}{2} \approx \ln n + \ln \Delta$ )
- 2 k-approximation, where k is the maximum edge  $\Delta$ -frequency (just take both vertex appearances for every appearance of an edge)
- $\Rightarrow 2\Delta$ -approximation

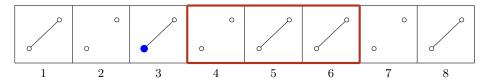


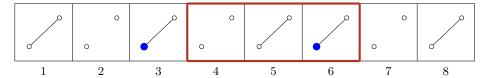


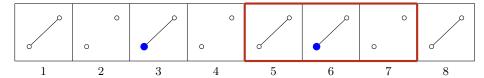


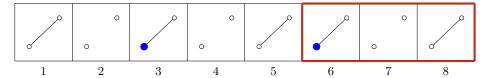












#### Single-edge temporal graph: exact algorithm

#### Algorithm SW-TVC on single-edge temporal graphs

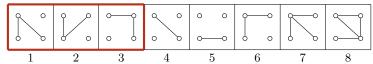
```
Input: A temporal graph (G, \lambda) of lifetime T with V(G) = \{u, v\}; and \Delta \leq T.
Output: A minimum-cardinality sliding \Delta-window temporal vertex cover \mathcal{S} of (G, \lambda).
 1: \mathcal{S} \leftarrow \emptyset
 2: t = 1
 3: while t \leq T - \Delta + 1 do
 4:
          if \exists r \in [t, t + \Delta - 1] such that uv \in E_r then
 5:
              choose maximum such r and add (u,r) to S
 6:
              t \leftarrow r + 1
 7:
      else
 8.
              t \leftarrow t + 1
     return S
```

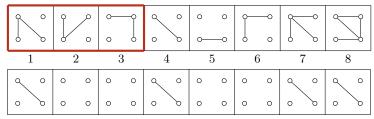
- greedy algorithm
- linear time

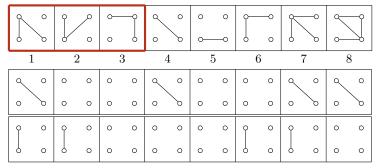
Always degree at most d temporal graphs: d-approx. algorithm

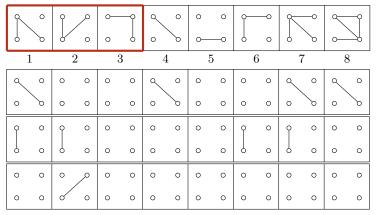
#### Main idea:

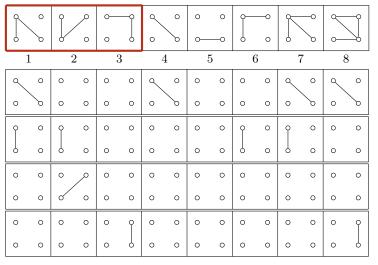
- solve independently each single-edge subgraph of G
- take the union of the solutions

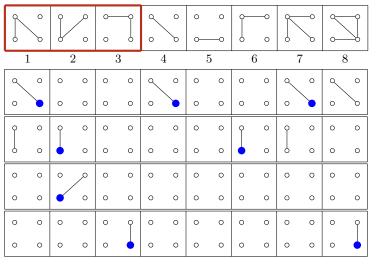












## Always degree at most d temporal graphs: d-approx. algorithm

**Algorithm** d-approximation of SW-TVC on always degree at most d temporal graphs

**Input:** An always degree at most d temporal graph  $(G, \lambda)$  of lifetime T, and  $\Delta \leq T$ . **Output:** A sliding  $\Delta$ -window temporal vertex cover S of  $(G, \lambda)$ .

- 1: **for** every edge  $uv \in E(G)$  **do**
- 2: Compute an optimal solution  $S_{uv}$  of the problem for  $(G[\{u,v\}],\lambda)$ ]
- 3:  $S \leftarrow S \cup S_{uv}$  return S

#### Lemma

The above algorithm is a O(mT)-time d-approximation algorithm for SW-TVC on always degree at most d temporal graphs.

## Always degree at most d temporal graphs: d-approx. algorithm

 $\textbf{Algorithm} \ \textit{d}\text{-approximation of } \textcolor{red}{\text{SW-TVC}} \ \text{on always degree at most} \ \textit{d} \ \text{temporal graphs}$ 

**Input:** An always degree at most d temporal graph  $(G, \lambda)$  of lifetime T, and  $\Delta \leq T$ . **Output:** A sliding  $\Delta$ -window temporal vertex cover S of  $(G, \lambda)$ .

- 1: for every edge  $uv \in E(G)$  do
- 2: Compute an optimal solution  $S_{uv}$  of the problem for  $(G[\{u,v\}],\lambda)$ ]
- 3:  $\mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{S}_{uv}$

return  $\mathcal{S}$ 

#### Lemma

The above algorithm is a O(mT)-time d-approximation algorithm for SW-TVC on always degree at most d temporal graphs.

#### Corollary

SW-TVC can be optimally solved in O(mT) time on the class of always degree at most 1 (matching) temporal graphs.

#### Overview

- Basic definitions
- Alternative models
- Temporal vertex cover
- Temporal vertex cover with a sliding time window
- Open problems

#### Problem 1

Determine the complexity status of  $\Delta$ -TVC on degree at most 2 temporal graphs.

**1**  $\Delta$ -TVC on always degree at most 1 can be solved in linear time.

#### Problem 1

Determine the complexity status of  $\Delta$ -TVC on degree at most 2 temporal graphs.

- $\bullet$   $\Delta$ -TVC on always degree at most 1 can be solved in linear time.
- $extstyle \Delta extstyle TVC$  on always degree at most 3: no PTAS

#### Problem 1

Determine the complexity status of  $\Delta$ -TVC on degree at most 2 temporal graphs.

- **①**  $\Delta$ -TVC on always degree at most 1 can be solved in linear time.
- $extstyle \Delta$ -TVC on always degree at most 3: no PTAS, even when:
  - 1 the underlying graph has degree at most 3; and
  - 2 connected components of snapshots have at most 7 vertices.

#### Problem 1

Determine the complexity status of  $\Delta$ -TVC on degree at most 2 temporal graphs.

- **1**  $\Delta$ -TVC on always degree at most 1 can be solved in linear time.
- $extstyle \Delta$ -TVC on always degree at most 3: no PTAS, even when:
  - the underlying graph has degree at most 3; and
  - connected components of snapshots have at most 7 vertices.

#### Problem 2

Can  $\Delta$ -TVC on general graphs be approximated within a factor better than  $2\Delta$ ?

#### Problem 1

Determine the complexity status of  $\Delta$ -TVC on degree at most 2 temporal graphs.

- **1**  $\Delta$ -TVC on always degree at most 1 can be solved in linear time.
- $extstyle \Delta$ -TVC on always degree at most 3: no PTAS, even when:
  - the underlying graph has degree at most 3; and
  - connected components of snapshots have at most 7 vertices.

#### Problem 2

Can  $\Delta$ -TVC on general graphs be approximated within a factor better than  $2\Delta$ ?

#### Problem 3

Can  $\triangle$ -TVC on always degree at most d temporal graphs be approximated within a factor better than d?

# Thank you!