

SFI Norwegian Centre for

Cybersecurity in Critical

Sectors

Integrating IT and OT: Cybersecurity challenges in industry 4.0

Sokratis K. Katsikas sokratis.katsikas@ntnu.no

Agenda

- Who are we?
- IT and OT convergence: Industry 4.0, IIoT, CPS
- The NIST framework for improving CI cybersecurity
- IIoT security: state of affairs, trends, and challenges
- Experimental cybersecurity
- Conclusions

- Main profile in science and technology
- Headquarters in Trondheim with campuses in Gjøvik and Ålesund
- 8 faculties, 55 departments and NTNU University Museum
- More than 42 000 students (2020)
- 406 doctoral degrees (2020)
- Budget of NOK 9.6 billion

NORCICS

of which NOK 2.7 billion from external sources

NTNU Department of Information Security and Communication Technology Main Norwegian supplier of research-based competence in information security and communication technology providing effective, robust and secure communication networks, information systems and digital services.

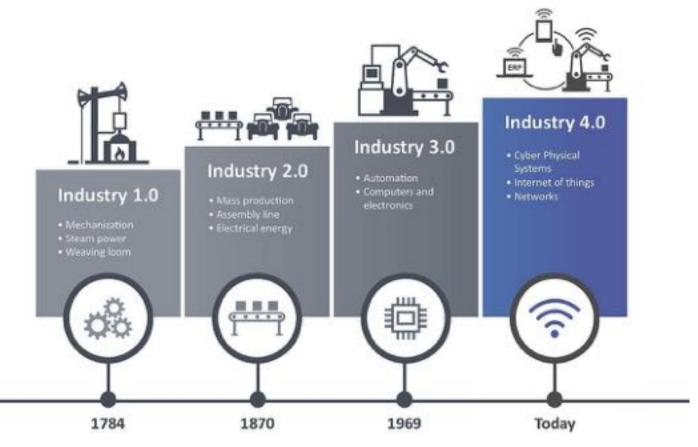
Our research groups

Our partners

NC-SPECTRUM

The Critical Infrastructure Security and Resilience (CISaR) Group

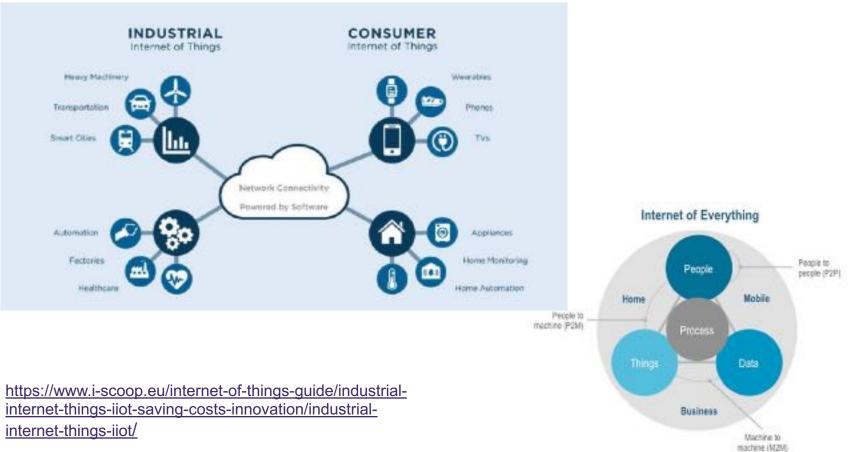
https://www.ntnu.edu/iik/cisar

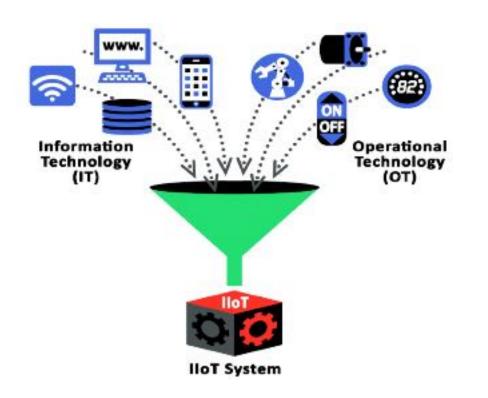

Areas of research interest

- Cyber security of the energy infrastructure
- Maritime cyber security and resilience
- Cyber security of cyber physical systems
- Blockchain technology for securing cyberphysical systems
- Cyber security of the IoT and of the industrial IoT
- Cyber security of digital twins
- SDN security
- Security Awareness

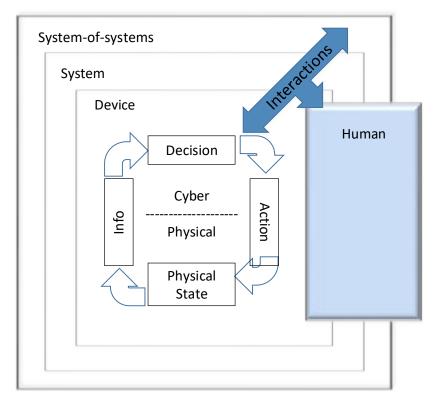
- 6 H2020 projects
- 6 NFR-funded projects
- 7 NTNU-funded projects
- 3 projects with Norsk
 Industri

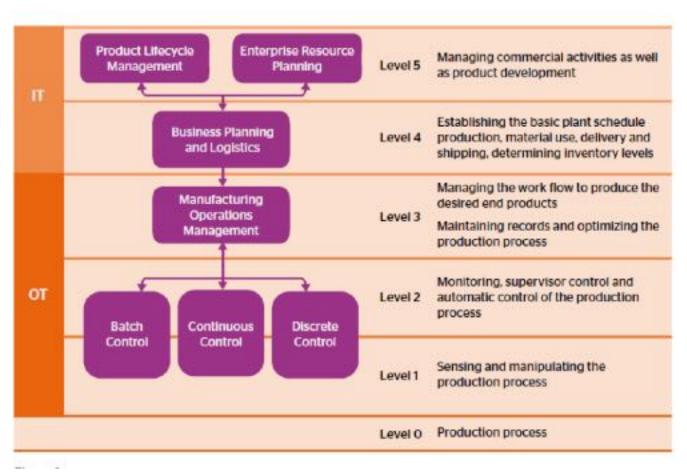
https://dzone.com/articles/industry-40-the-top-9-trends-for-2018



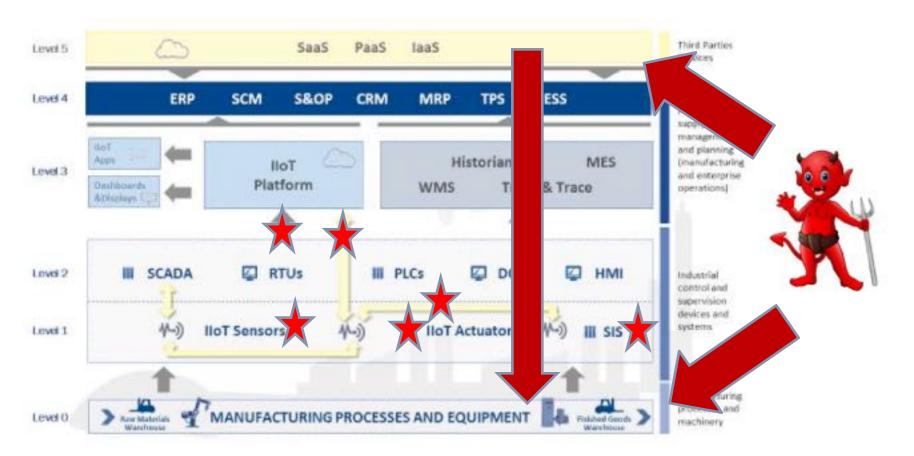


ENISA report: Good Practices for Security of Internet of Things in the context of Smart Manufacturing




Industrial Internet Consortium, Industrial Internet of Things Volume G4: Security Framework

NORCICS


NIST Special Publication 1500-201: Framework for Cyber-Physical Systems: Volume 1, Overview

Ascent, The convergence of IT and operational technology – ISA '95

ENISA report: Good Practices for Security of Internet of Things in the context of Smart Manufacturing

ACK SCENARIOS		SEVERITY
1.	Against the connection between the controller (e.g. DCS, PLC) and the actuators	High
2.	Against sensors (modification of measured values / states, their reconfiguration, etc.)	High
3.	Against actuators (suppressing their state, modifying the configuration)	High - Crucisl
4.	Against the information transmitted via the network	High - Crucial
5.	Against IIoT gateways	High - Crucial
6.	Manipulation of remote controller devices (e.g. operating panels, smartphones)	High
7.	Against the Safety Instrumented Systems (SIS)	Crucial
8.	Malware	High
9.	DDoS attack using (IoT) botnets	Medium - High
10.	Stepping stones attacks (e.g. against the Cloud)	Medium
11.	Human error-based and social engineering attacks	High
12	Highly personalised attacks using Artificial Intelligence Technologies	Medium - High

ENISA report: Good Practices for Security of Internet of Things in the context of Smart Manufacturing

Distinctive characteristics

- Resilience
- Safety
- Systems-of-Systems nature
- Extreme scalability
- Interaction with the physical world
- Time-aware and deadlinesensitive processes
- Vulnerable components
- Increased connectivity
- Supply chain complexity
- Legacy ICSs

- Resource constrained platforms
- Need to accommodate the inplace business processes
- "Always on" requirement
- Dynamic domain of use
- Difference in lifecycle between IT and OT systems
- Insecure protocols
- Unused functionalities
- Organizational and behavioral changes

Security properties: Beyond CIA

Controllability

Ability to bring the process into a desired state

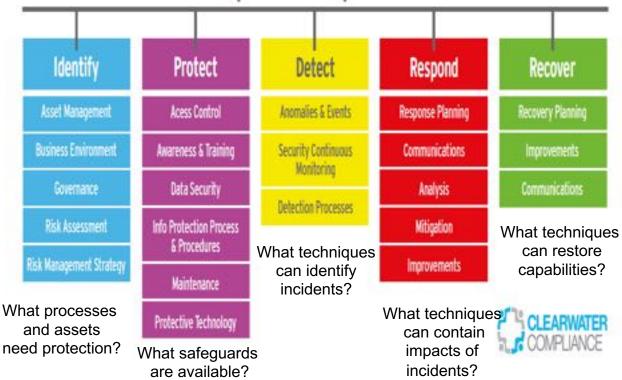
- Feasibility
- The process in a controllable state (there is a control sequence which can bring process into an intended state)
- Awareness
 - The sequence of the control commands known to the operator

Observability

Ability to determine process state and maintain situational awareness

- Data quality and availability
- Data trustworthiness (veracity)
- Integrity and availability of data in transit and storage
- Sufficiency
 - Measuring all necessary quantities at the right locations
 - Ability to interpret the measurements

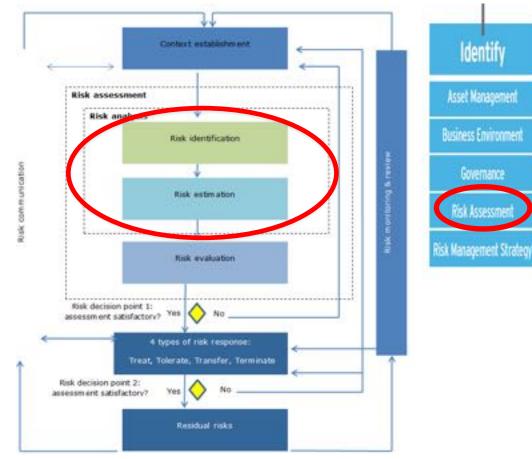
Operability


Ability of the plant to achieve acceptable operations

- Resilience
- Ability to maintain optimal operations under attack
- Survivability
 - Ability to maintain operations at suboptimal level
- Graceful degradation
- Ability to maintain limited plant functionality to achieve safe shut down

M. Krotofil, K. Kursawe, and D. Gollmann, "Securing Industrial Control Systems", in Cristina Alcaraz (Ed.), *Security and Privacy Trends in the Industrial Internet of Things*, Springer, 2019.

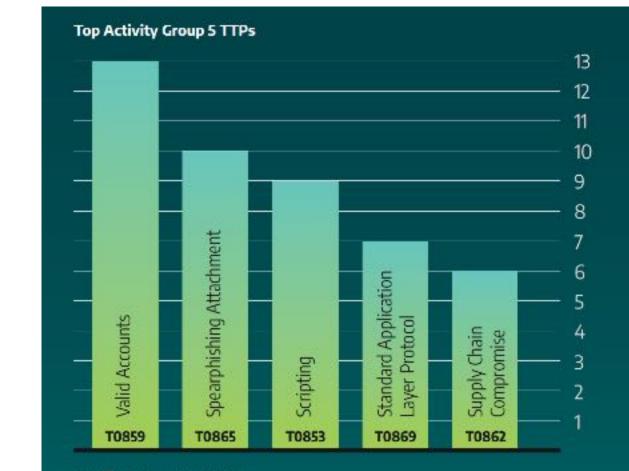
NIST Cyber Security Framework



Risk assessment

- Threats, vulnerabilities, impact
- Quantitative qualitative
- Domain specific
- Safety & Security requirements

Vulnerabilities


Identify Asset Management Business Environment Governance Risk Assessment Risk Management Strategy

NORCICS

- Most vulnerabilities resided deep within the ICS network, meaning they apply to equipment on Levels 0 to 3 of the Purdue Model. This includes engineering workstations, PLCs, sensors, and industrial controllers. These vulnerabilities require access to a control system network to exploit, offering some mitigation for organizations provided they implement proper network segmentation.
- With the increasing connectivity in organizations, this security control is diminishing in value and should be enhanced with efforts such as network monitoring, and where possible, Multi-Factor Authentication (MFA) for remote sessions.

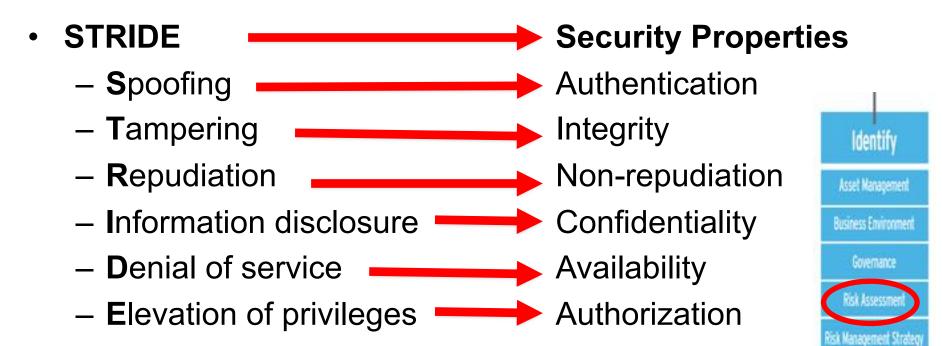
Dragos ICS CYBERSECURITY Report 2020

DRAG C INSCREPSICE AT VIEW NEW 2020

Identify

Asset Management

Business Environment


Governance

Assessmen

Risk Management Strategy

The STRIDE Method

The DREAD Method

- DREAD
 - Damage
 - Reproducibility
 - Exploitability
 - Affected
 - Discoverability

https://doi.org/10.3390/fi11100207, 2019

Analysis for Smart Homes"

, Future Internet,

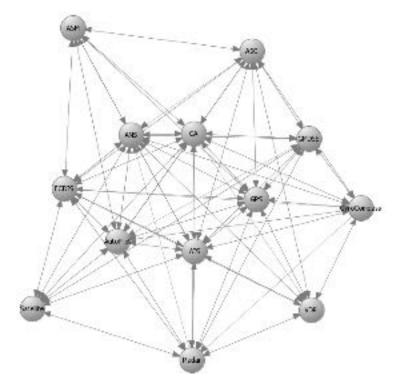
11(10), 207;

G. Kavallieratos, N. Chowdhury, S. Katsikas,

V. Gkioulos, S. Wolthusen, "Threat

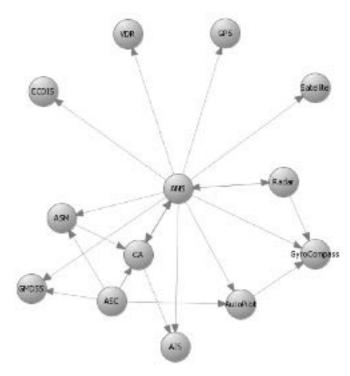
Threat analysis: The STRIDE Method

Tampering 1. An adversary may exploit known vulnerabilities in unpatched devices	default other
2. An adversary may tamper IoT Device and extract cryptographic key ma	aterial
from it 3. An adversary may execute unknown code on IoT Field Gateway 4. An adversary may tamper the OS of a device and launch offline attacks	8
Repudiation 1. An adversary can deny actions on Field Gateway due to lack of auditing	g
Disclosure 1. An adversary may eavesdrop the communication between the device the field gateway	e and
Denial of N/A Service	
Elevation of Privileges1.An adversary may gain unauthorized access to privileged features of Device2.An adversary may exploit unused services or features in IoT Field Gate 3.3.An adversary may trigger unauthorized commands on the field gateway	eway


NORCICS

nwomen

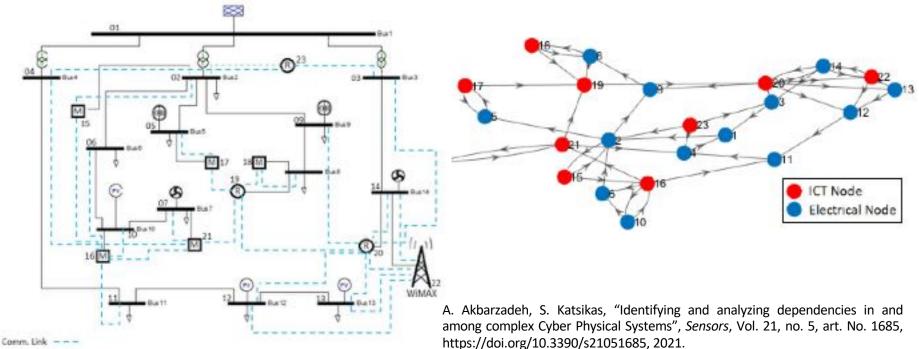
mance


NTNU

Risk propagation and aggregation

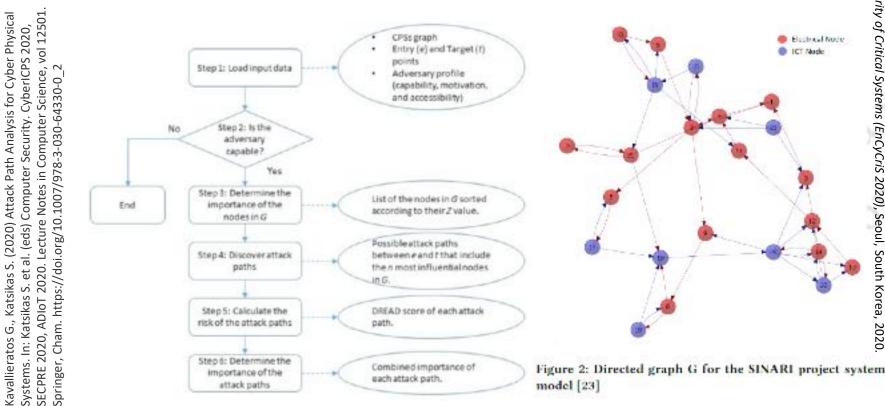
Autonomous ship - information flows

NORCICS



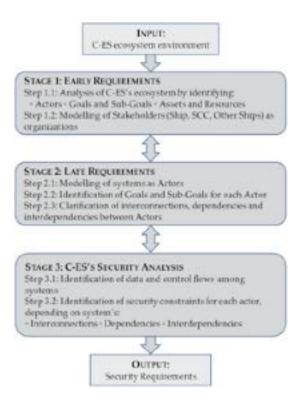
Autonomous ship - control flows

2021 systems optimal ഹ Kavallieratos, selection Sensors Ģ Sol. ç Spathoulas, cybersecurity 21, no. 1691, Ś Katsikas, controls https://doi.org/10.3390/s21051691 for Cyber risk propagation and complex cyberphysica


Dependency analysis

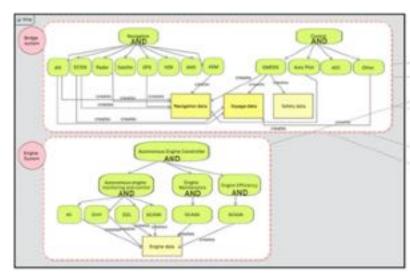
PowerLine -

Critical nodes and attack paths

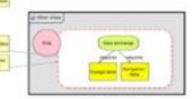


Physical Systems" Cybersecurity of Critical Systems (EnCyCriS 2020), Seoul, South Korea, 2020. Akbarzadeh and Ś Ξ. Katsikas, Proceedings, "Identifying Critical Components in Large Scale Cyber 1st International Workshop р Engineering and

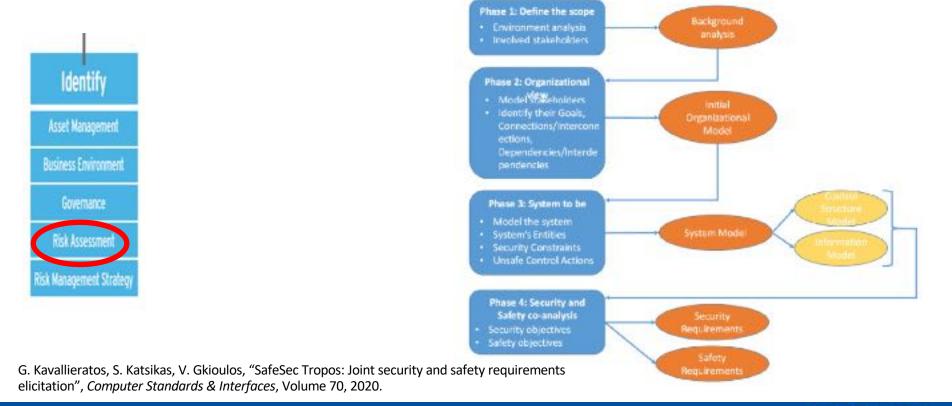
₽

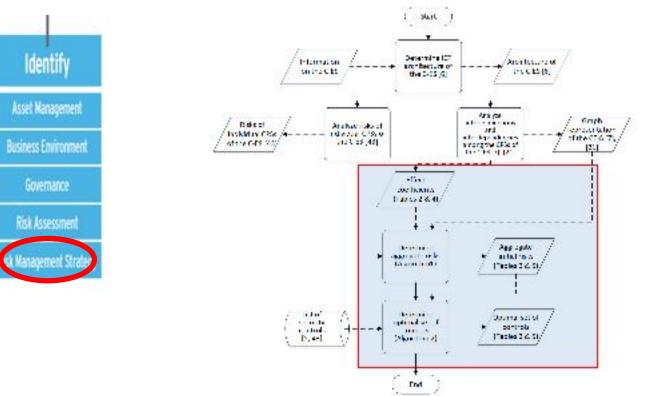

D NTNI

Security requirements elicitation


NORCICS

G. Kavallieratos, V. Diamantopoulou, S. Katsikas, "Shipping 4.0: Security requirements for the Cyber-Enabled Ship", *IEEE Transactions on Industrial Informatics*, Vol. 16, issue 10, pp. 6617-6625, 2020doi: 10.1109/TII.2020.2976840.

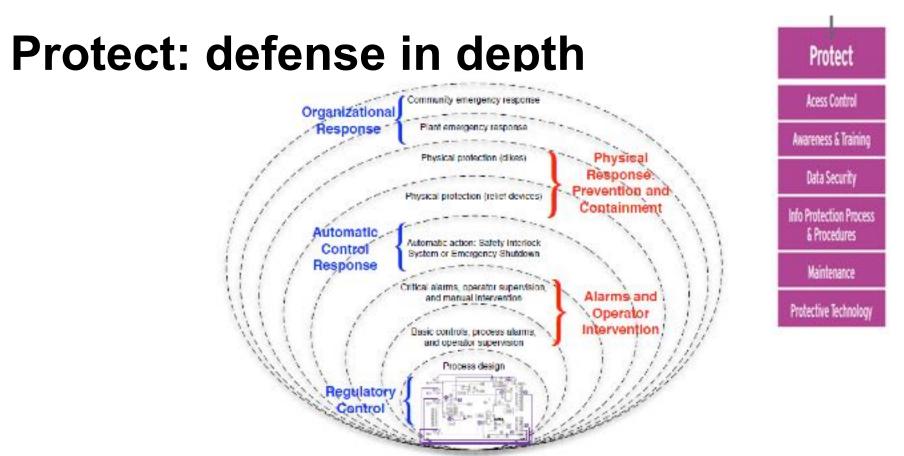




Combined safety and security requirements elicitation: SafeSecTropos

Optimal control selection

2021. optimal selection systems", Sensors, Ģ Kavallieratos, Ģ q Vol. 21, no. 1691, https://doi.org/10.3390/s21051691 Spathoulas, cybersecurity Ś Katsikas, controls "Cyber risk propagation and for complex cyberphysical


Protect

Encryption

- Hardware security measures
 - Secure execution environment
 - IoT Trusted Execution Environment for Edge Devices (IoTEED)
 - Near Field Communication (NFC)
- Communication channels security
 - Use of a 5G radio access network for the industrial and tactile Internet of Things
 - Use of the Message Queuing Telemetry Transport (MQTT)
 - Network tunneling (Virtual Private Network VPN)
- General protection approaches
 - A one-size-fits-all approach is usually not efficient, and there is no unique methodology that can
 protect all different IIoT installations
 - Flexible encryption algorithms, that enable more options than just encrypting and decrypting data
 - Blockchain technology

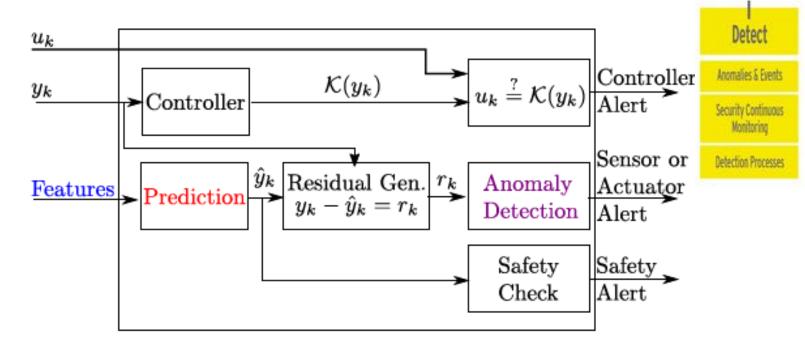
Awais Rashid, Howard Chivers, George Danezis, Emil Lupu, Andrew Martin, The Cyber Security Body of Knowledge, 2019.

Detect

- Intrusion detection for industrial control systems
 - Machine learning
 - Physical Process Monitoring (PPM)
 - Closed Control Loops (CCL)
 - Attack Sophistication (AS)
 - Legacy Technology (LT)
 - Knowledge-based designs are not effective on their own
 - Large storage requirement
 - Frequent dictionary updates needed
 - Unable to detect unknown attacks
 - Behavior-based designs are more effective
 - Behavior-specification-based designs are more effective
 - Physics-based/Process-aware IDS
 - Adaptive IDS

adversarial perturbation

88% tabby cat


A Simple Explanation for the Existence of Adversarial Examples with Small Hamming Distance

Adi Shamir¹, Itay Safran¹, Fyal Benne², and Orr Dunkelman³

² Computer Science Department, The Weizmonn Inditure, Rehovet, Ersel ⁴ Computer Science Department, Tel Avis, University, Tel Aviv, Israel ⁵ Computer Science Department, University of Haife, Israel

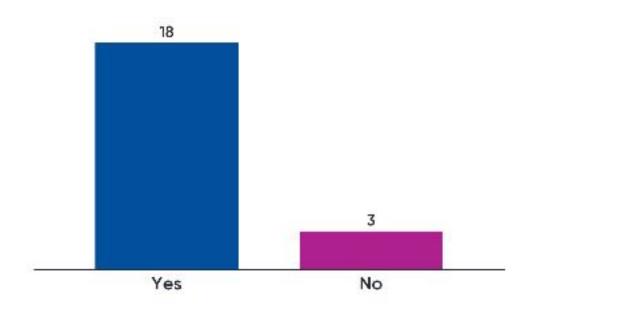
Physics-Based Attack Detection in Control Systems (3)

Nils Ole Tippenhauer, Justin Ruths, Richard Candell, Henrik Sandberg, Survey and New Directions for Physics-Based Attack Detection in Control Systems, NIST GCR 16-010, 2016.

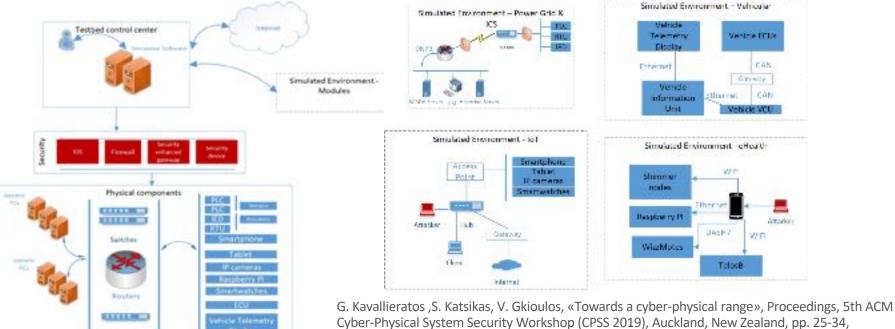
Is cybersecurity a science?

Hint: Science, any system of knowledge that is concerned with the physical world and its phenomena and that entails unbiased observations and systematic experimentation. In general, a science involves a pursuit of knowledge covering general truths or the operations of fundamental laws.

https://www.britannica.com/science/science


Go to www.menti.com and use the code 9238 6396

Is cybersecurity a science?



IIOT security research: testbed requirements —Flexibility -Scalability -Isolation —Interoperability IIOT security testbed \rightarrow —Cost-Effectiveness cyber-physical range —Built in monitoring —Easy access —Adaptability -Shareability

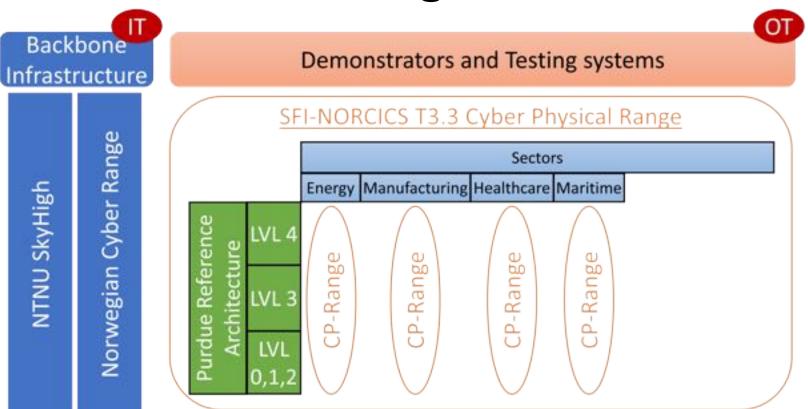
IIOT security research: testbed reference architecture

NORCICS

Coleways

The Norwegian Cyber Range

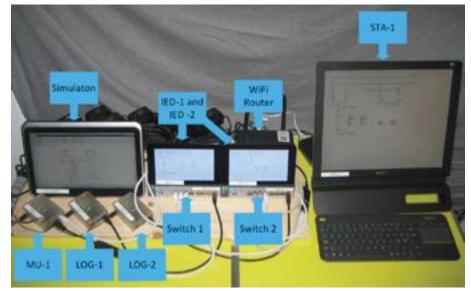
- A digital cyber arena for:
- Research
- Education
- Training and exercise
- Testing


NCR and Cyber Security Challenges

- NCR runs the Norwegian Cyber Security Challenge
- Picks team for the European Cyber Security Challenge
- NCR will host ECSC in 2022
- Working on plans for A Nordic and Baltic CSC
 - Might run in late August

NCR <-> CP-Range

CP-Range (Energy-1)



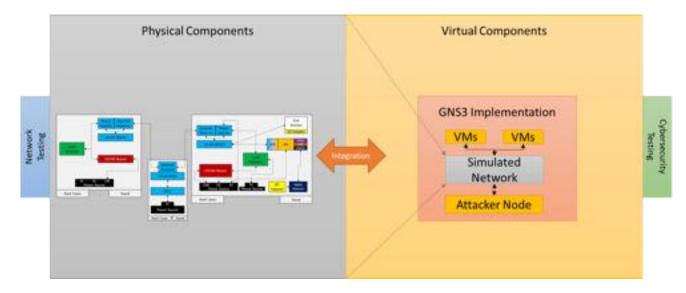
CP-Range (Energy-2)

- NVE and KraftCert have supported the establishment of a SCADA laboratory at NTNU
 - S7-1500 systems are used as main CPU
 - This is augmented with Simatic TP1500 HMIs
- Activities in the lab

- Construction of Emulated IEDs
- Attacks against substations and regional control
- Impact of migration to SDN substrate on IEC 61850 GOOSE/SV

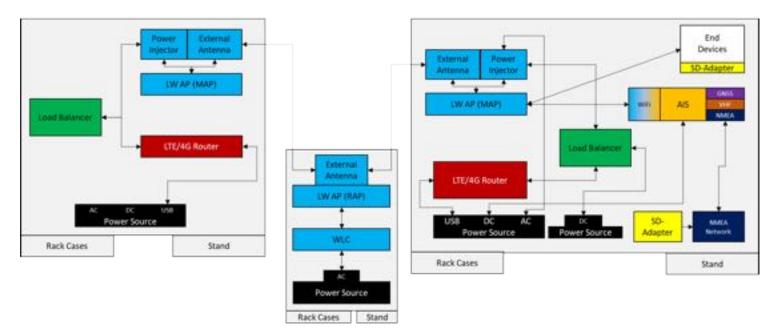
CP-Range (Manufacturing)

 In collaboration with Manulab and SINTEF manufacturing we are expanding existing FESTO infrastructure to support activities on Networks and IT security in the context of Industry 4.0



CP-Range (Maritime)

We are currently developing a laboratory setup for system security testing of both conventional and autonomous ships



CP-Range (Maritime)

Testbed Architecture: Physical

CP-Range (Maritime)

 We collaborate with NTNU Ålesund maritime simulators to support activities on Networks and IT security in the context of Shipping 4.0

NORCICS SFI

- Funding for 5(+3) years
- Total budget: 215,645,000 NOK
- Funding: 96,000,000
 NOK NFR (41.9%)
- Coordinator (NTNU) + 18 partners (4 research, 14 user)
- Sectors represented: Energy, Manufacturing, Oil & Gas, Security, Healthcare, Police, Process industry

Annual workplan 2021 (extract)

Task/WP#	Title	Task leader	Start - End
WP2 - T2.2	Modelling distributed subversion attacks in cyber physical systems	Stephen Wolthusen (NTNU)	07.2021 – 06.2024
WP2 - T2.3	Digital Twin Security Models and Mechanisms	Vasileios Gkioulos (NTNU)	07.2021 – 06.2024
WP2 - T2.4	Human side of secure Industry 4.0	Halvor Holtskog (NTNU)	01.2021 - 12.2023
WP3 – T3.1.1	Assessing 5G and beyond as an element of critical services	Bjarne Helvik (NTNU)	04.2021 – 03.2024
WP3 - T3.1.2	Autonomous Adaptive Security for 5G-enabled IoT	Habtamu Abie (NR)	01.2021 – 12.2023
WP3 - T3.3.2	Reverse engineering lab	Geir Olav Dyrkolbotn (NTNU)	01.2021 – 12.2022
WP3 – T3.4	Humanised deep Learning & Big-data Analytics	Christian Walter Peter Omlin (UiA)	01.2021 – 12.2023
WP3 - T3.5.1	Codes for sub-millisecond latencies in 5G and beyond	Danilo Gligoroski (NTNU)	01.2021 – 12.2024
WP3 - T3.5.2	Secure broadcasting in wireless critical systems	Sigurd Eskeland (NR)	01.2021 – 12.2023

Conclusions

- IT-OT convergence gives rise to serious security challenges
- Simply porting security solutions from IT security paradigm does not suffice
- Securing legacy systems is equally important to securing modern (and future) architectures
- Several (exciting) open research problems exist
- (In)security situation is likely to continue for some time

Thank you!

"Collaboration = innovation"

