## IMPARTIAL SELECTION, ADDITIVE APPROXIMATION GUARANTEES, AND PRIORS

Ioannis Caragiannis iannis.dk





#### **OVERVIEW OF THE TALK**

Impartial selection: definition, examples, previous work Additive approximation guarantees

• C., Christodoulou, & Protopapas (2019)

Using prior information

• C., Christodoulou, & Protopapas (2021)









#### Story:

- the members of a society wish to give their annual award to one of the members
- each member can vote (any number of) any other member(s)

Goal: give the award to the most distinguished member





#### PFA MEN'S PLAYERS' PLAYER OF THE YEAR

"the ultimate accolade to be voted for by your fellow professionals", John Terry, 2005 Awardee (BBC sport)









#### Story:

- the members of a society wish to give their annual award to one of the members
- each member can vote (any number of) any other member(s)

Goal: give the award to the most distinguished member

Other examples: selecting the chair of a committee, scientific grants/awards, Papal conclave, many more

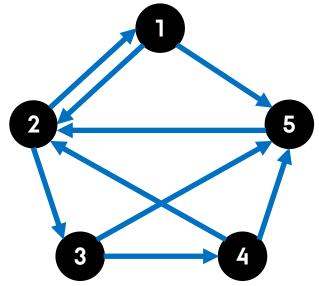
Major requirement: impartiality

 Agents should not be able to increase their chance of being selected by acting strategically





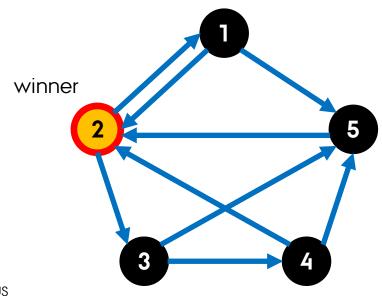
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win





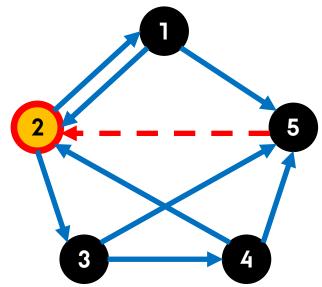


- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win





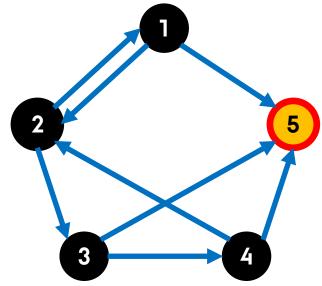
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







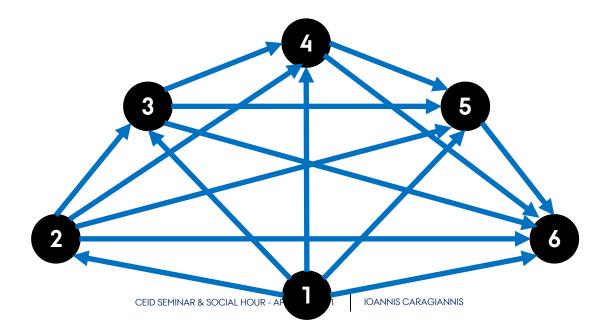
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







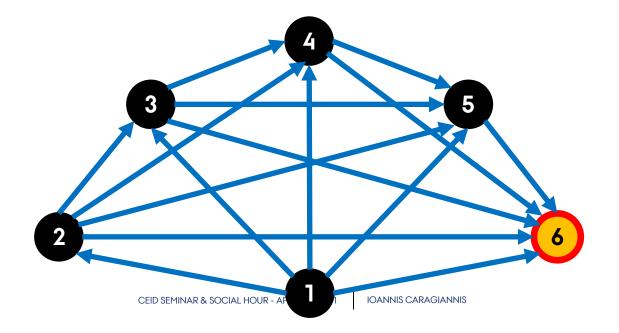
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







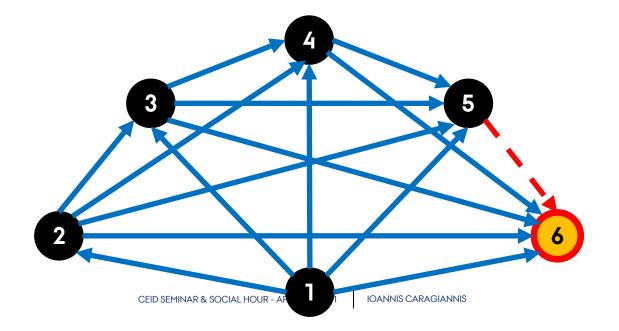
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







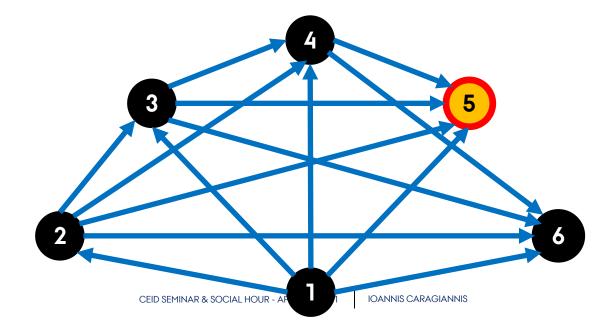
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







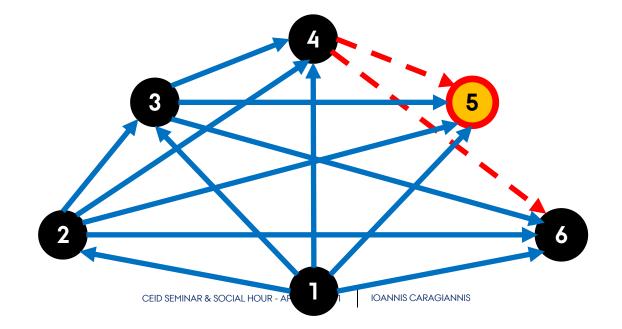
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







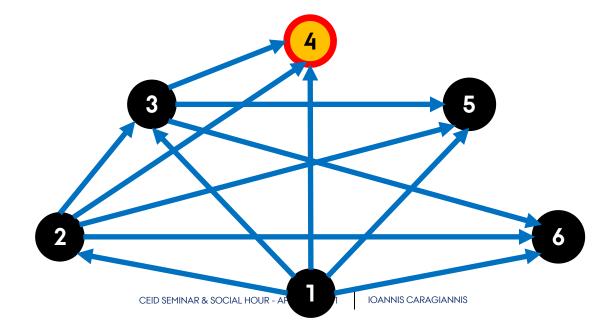
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







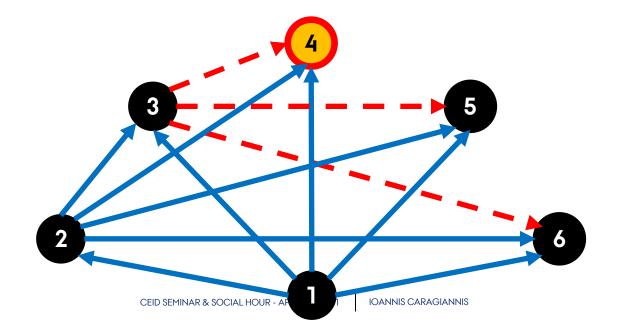
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







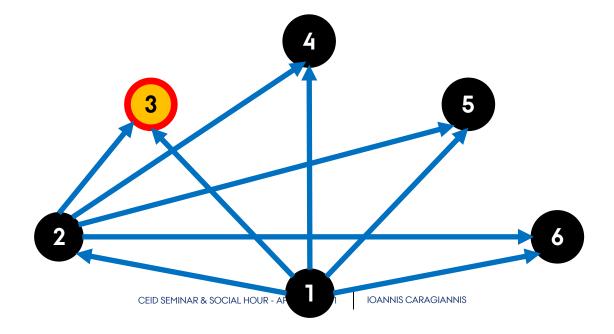
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







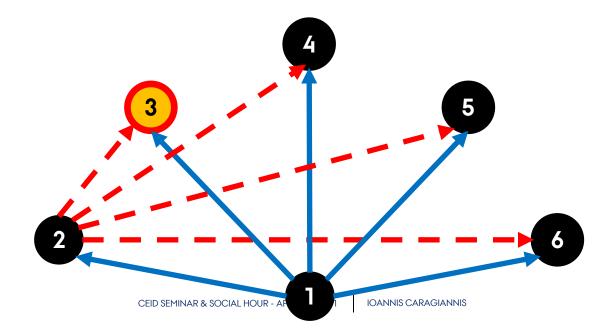
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







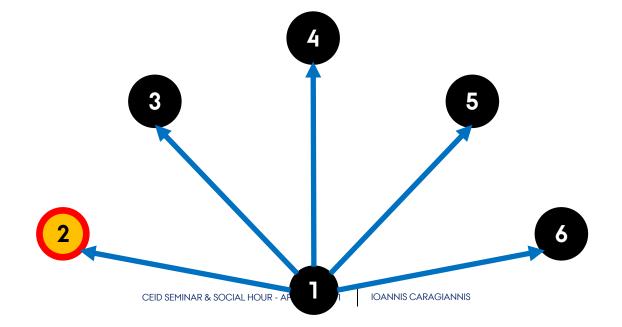
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







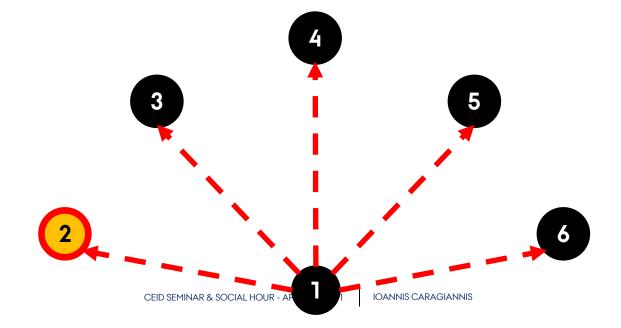
- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win







- The **highest-degree** node wins
- In case of ties, lowest id wins
- Each node wants to win

3 5







• Goal: design an impartial selection algorithm with good approximation ratio





- Goal: design an impartial selection algorithm with good approximation ratio
- Randomization is important here!

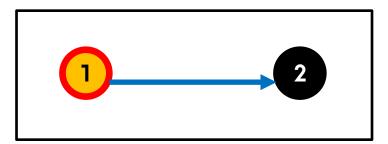






- Goal: design an impartial selection algorithm with good approximation ratio
- Randomization is important here!









- Goal: design an impartial selection algorithm with good approximation ratio
- Randomization is important here!





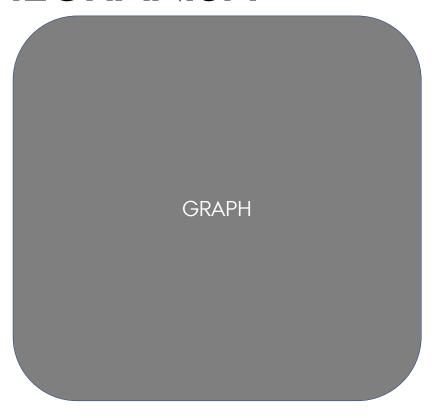








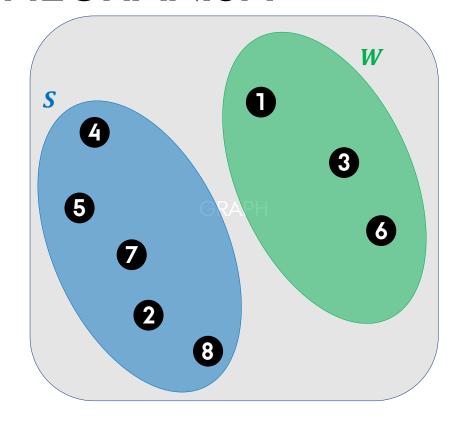
- Randomly partition the nodes into two sets S
  and W
- 2. The node of set W with the **highest number** of **incoming edges from set** S wins







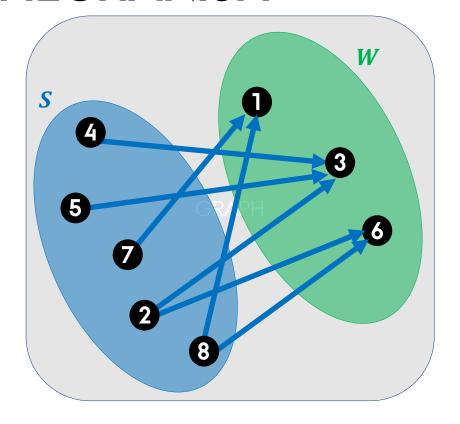
- Randomly partition the nodes into two sets S
  and W
- 2. The node of set W with the **highest number** of **incoming edges from set** S wins







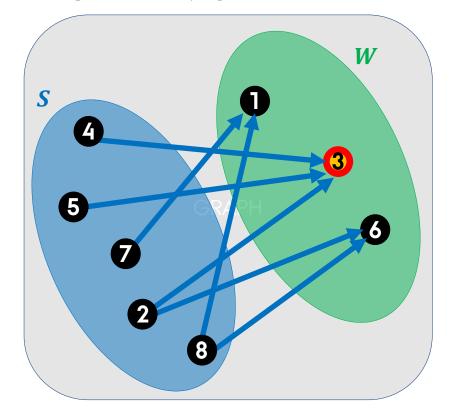
- Randomly partition the nodes into two sets S
  and W
- 2. The node of set W with the **highest number** of **incoming edges from set** S wins







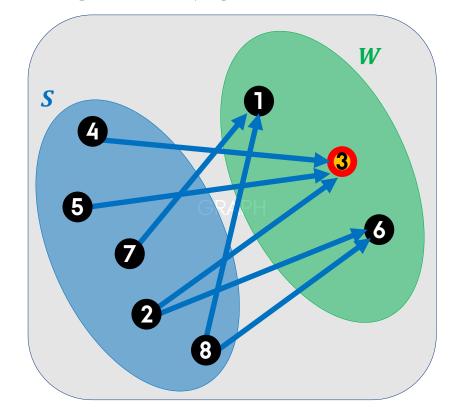
- Randomly partition the nodes into two sets S
  and W
- 2. The node of set W with the **highest number** of **incoming edges from set** S wins







- Randomly partition the nodes into two sets S
  and W
- The node of set W with the highest number of incoming edges from set S wins
   Impartiality:
  - A node of S cannot win
  - Edges from nodes in W are not taken into account





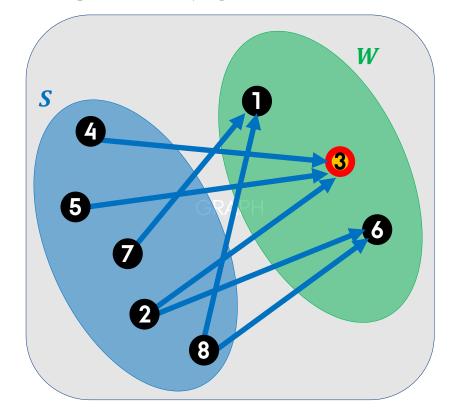


Alon, Fischer, Procaccia, & Tennenholz (2011) Input: a directed graph

- Randomly partition the nodes into two sets S
  and W
- The node of set W with the highest number of incoming edges from set S wins
   Impartiality:
  - A node of S cannot win
  - Edges from nodes in W are not taken into account

#### Approximation ratio:

- The highest degree node  $u^*$  belongs to set W with probability 1/2
- ullet Then, its expected in-degree from edges originating from set  $oldsymbol{S}$  is **half** the total in-degree





#### **OPTIMAL RESULTS**

#### Lower bound of 2

- Alon, Fischer, Procaccia, & Tennenholz (2011)
- 2-approximate impartial selection mechanism
  - Fischer and Klimm (2015)
  - Extends the random partition method

#### Other results

- Holzman & Moulin (2013)
- Busquet, Norin, & Vetta (2014)
- Bjalde, Fischer, & Klimm (2017)





# ADDITIVE APPROXIMATION GUARANTEES





#### WHY ADDITIVE APPROXIMATION?

Worst-case scenario for approximation ratio is for small graphs

• Fischer & Klimm (2015)

If the maximum degree is large, approximation ratio is nearly optimal

Bousquet, Norin, & Vetta (2014)

Definition: a mechanism yields an  $\delta(n)$ -additive approximation if for every n-node graph, maximum degree – expected degree of the winner  $\leq \delta(n)$ 

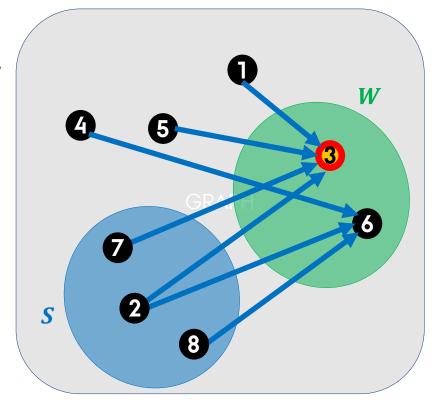


#### SAMPLE MECHANISMS

- 1. Given an input graph, select a sample set of nodes S
- 2. Let W be the **nodes nominated** by the nodes in S
- 3. Select the winner from set W

#### **Strong** sample mechanisms

select the sample set impartially







#### **OUR RESULTS**

Upper bounds: two randomized strong sample mechanisms

- $O(\sqrt{n})$ -additive approximation when each node has out-degree 1 (single nomination)
- $O(n^{2/3}\ln^{1/3}n)$ -additive approximation in general

**Lower bounds** on the additive approximation of strong sample mechanisms in the single-nomination model:

- n-2 for deterministic sample mechanisms
- $\Omega(\sqrt{n})$  for randomized sample mechanisms

General lower bound of 3



#### A SIMPLE K-SAMPLE MECHANISM

- 1. Form a sample set S by repeating k node selections uniformly at random with replacement
- 2. The node of set W with highest in-degree from edges originating from S wins





# A SIMPLE K-SAMPLE MECHANISM (ANALYSIS)

- 1. Form a sample set S by repeating k node selections uniformly at random with replacement
- 2. The node of set W with highest in-degree from edges originating from S wins Analysis idea:
  - For every node v,  $\deg_S(v)$  is a sum of Bernoulli random variables with expectation  $\frac{k}{n}\deg(v)$
  - Let  $u^*$  be a node of highest degree  $\Delta$
  - A node of degree at least  $\Delta k$  wins (at least) when
    - ullet node  $u^*$  is not selected in the sample and
    - gets more incoming edges than any node of degree less than  $\Delta k$





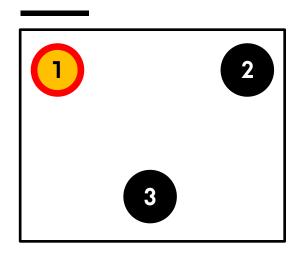
# A SIMPLE K-SAMPLE MECHANISM (ANALYSIS)

- 1. Form a sample set S by repeating k node selections uniformly at random with replacement
- 2. The node of set W with **highest in-degree from edges originating from** S wins Analysis idea:
  - For every node v,  $\deg_S(v)$  is a sum of Bernoulli random variables with expectation  $\frac{k}{n}\deg(v)$
  - Let  $u^*$  be a node of highest degree  $\Delta$
  - A node of degree at least  $\Delta k$  wins (at least) when
    - node  $u^*$  is not selected in the sample and [so, k should be small]
    - gets more incoming edges than any node of degree less than  $\Delta k$  [so, k should be large, analysis using a Hoeffding bound]

An  $O(n^{2/3}\ln^{1/3}n)$ -additive approximation follows by setting  $k = \Theta(n^{2/3}\ln^{1/3}n)$ 

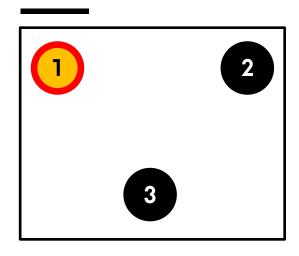


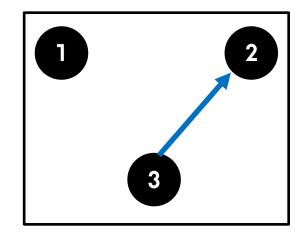


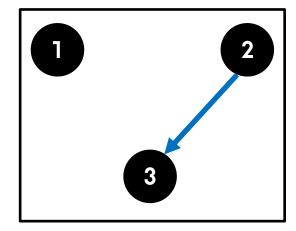






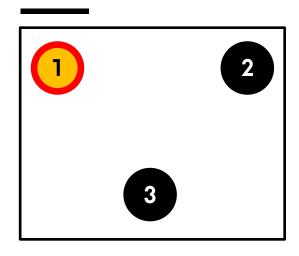


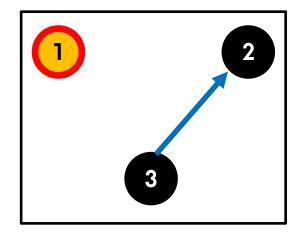


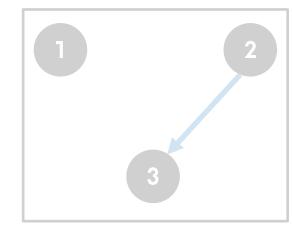






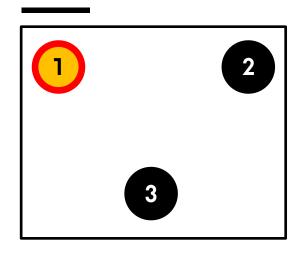


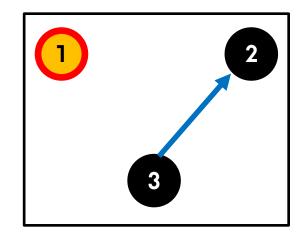


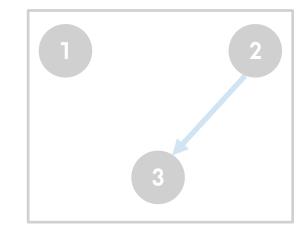


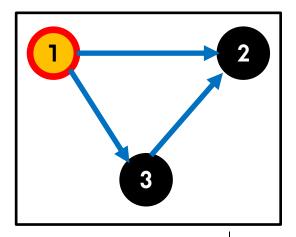






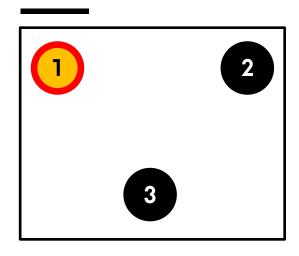


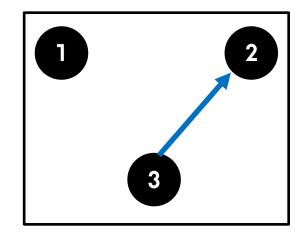


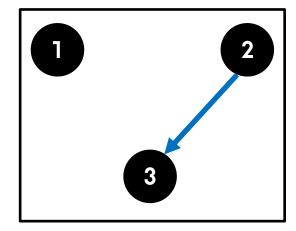






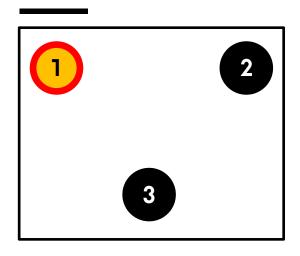


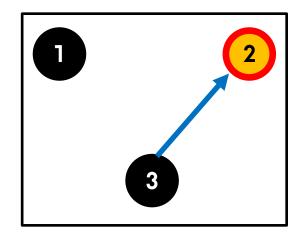


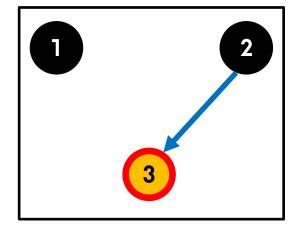






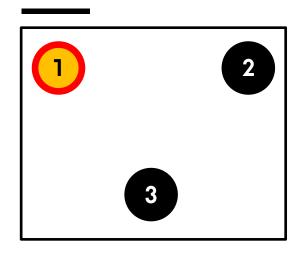


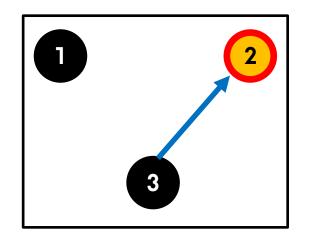


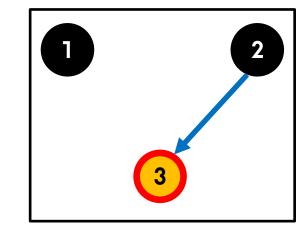


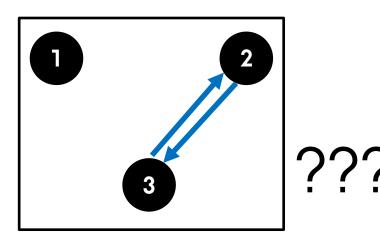
















#### **OPEN PROBLEMS**

Close the gap between 3 and n-1 for deterministic mechanisms Improve the  $O(n^{2/3}\ln^{1/3}n)$  bound for randomized mechanisms Is O(1)-additive approximation possible?





# USING PRIOR INFORMATION





#### THE MODEL

Input: random n-node graph, selected according to a probability distribution P

Main assumption: voter independence

Objective: given (information about) **P**, design an impartial mechanism with as **low expected additive approximation** as possible

Hierarchy of distributions (models):

- Opinion poll: each node v selects its set of outgoing edges according to a probability distribution  $\mathbf{P}_v$
- A priori popularity: node v has popularity  $p_v \in [0,1]$  and the edge (u,v) exists independently with probability  $p_v$
- Uniform: a priori popularity with  $p_v = 1/2$





## THE CONSTANT MECHANISM

Return a fixed node

E.g., return the node of highest expected degree according to P



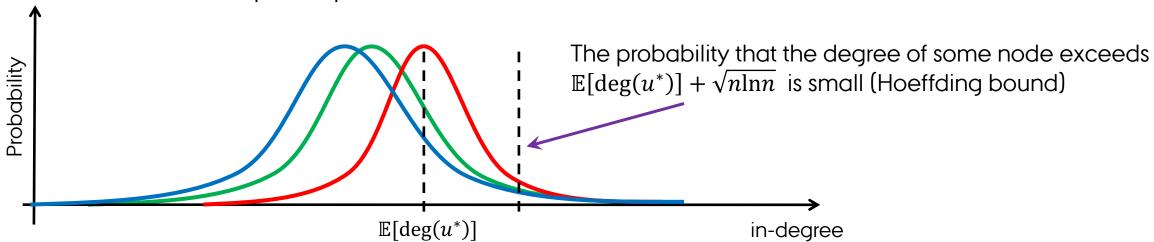


# THE CONSTANT MECHANISM (ANALYSIS)

Return a **fixed** node

E.g., return the node of **highest expected degree** according to **P** 

Analysis: Due to voter independence, the in-degree of each node is a sum of Bernoulli trials, even in the opinion poll model





#### APPROVAL VOTING WITH DEFAULT

Mechanism **AVD** 

Extends a mechanism by Holzman & Moulin (2013)

Informal definition:

- The highest-degree node wins, if it is unique
- In case of ties, a preselected default node t wins





#### APPROVAL VOTING WITH DEFAULT

#### Mechanism AVD

Extends a mechanism by Holzman & Moulin (2013)

#### Informal definition:

- The highest-degree node wins, if it is unique
- In case of ties, a preselected default node t wins

#### Formal definition:

- Compare the degrees of two nodes u and v, ignoring the edges between them and the edges originating from the default node t
- If there is a node that beats all other nodes in their pairwise comparison, it is the winner
- Otherwise, the default node wins



#### AVD HAS EXPECTED ADDITIVE APPROXIMATION ...

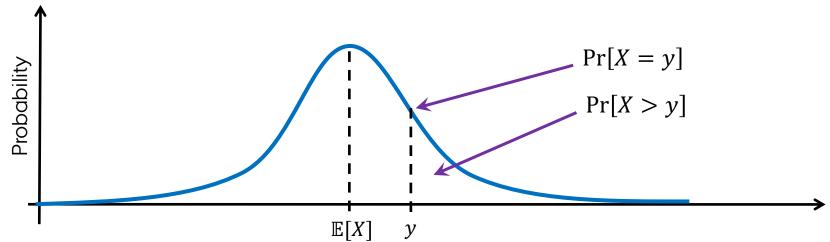
- $O(\ln^2 n)$  in the a priori popularity model
- $\Omega(\ln n)$  on uniform instance
- Unfortunately, as bad as  $\Theta(\sqrt{n \ln n})$  in the opinion poll model





#### A FEW WORDS ABOUT THE ANALYSIS

- Node degrees follow the **binomial** probability distribution  $\mathbf{B}(n, p_k)$
- A node of (almost) highest degree wins unless there is a "tie at the top"
- Bounding the expected additive approximation strongly depends on bounding the hazard rate  $\Pr[X = y] / \Pr[X > y]$  of a random variable  $X \sim \mathbf{B}(n, p_k)$
- Theorem: The hazard rate of a binomial r.v. X is  $\Theta\left(\sqrt{\frac{\ln n}{\min\{\mathbb{E}[X], n-\mathbb{E}[X]\}}}\right)$  for values of y close to  $\mathbb{E}[X]$





#### **OPEN PROBLEMS**

Polylogarithmic or constant expected additive approximation in the opinion poll model? Variations of AVD?

What if prior information is **not accurate**?

- Rough estimates of the highest expected degree are enough to get the  $O(\sqrt{n \ln n})$  bound.
- Can we recover the polylogarithmic result?



# THANK YOU!



