Deploying DNNs in the Embedded Space: Challenges and Opportunities

Christos-Savvas Bouganis

About myself

Intelligent Digital Systems Lab

The team

Aditya Rajagopal Machine Learning

Alexander Montgomerie Hardware Acceleration for Machine Learning

Zhewen Yu Machine Learning

Machine Learning,

Machine Learning

Petros Toupas

Machine Learning

Robotics

Diederik Vink Machine Learning

Mudhar Bin Rabieah

Giorog Zampokas Computer Vision,

Machine Learning


```
Welcome to the Intelligent Digital
Systems Lab at Imperial College
```

TOP LINES. Our research Dr. Ehristen Bouganis tein eur lab CNN-to-FPGA Banchmark Solta fogation/tent

The IOSL lab is part of the Electrical and Electronic Engineering Department of Imperial College London.

1.46111

Our vision

To research and develop intelligent autonomous systems

"see"

"understand" "process"

Imperial College Íntelligent Digital Systems Lab London Some of our work **Autonomous Navigation Hunan Pose Estimation** SMMC-10 SEQUENCE 20 Multi-CNN fpgaConvNet Deployment **Localisation and Mapping Traffic Detection** Time-Data-Driven constrained CNN LSTM Inference Inference Imperial College London intelligent Digital Systems Lab

his demo is based on the work of Engel et al. (LSD-SLAM), for which (DSL has developed a curitors FPGA-based hardware architectur

A bit of history: Artificial Intelligence - Machine Learning – Deep Neural Networks

Time		Artificial Intelligence
<1950s	Statistical Model	Machine Learning
1950s	The term "Machine Learning" was used	Deep Neural Networks
1990s	Shift from a knowledge-driven to data-driven approach	CNNs
2000s	Supervised ML methods (SVM, Kernel Methods)	
2009	Power of many and real-world examples - ImageNet is created	ImageNet Challenge
2010s	Deep Neural Networks – Performance improvement with data	IMAGENET
		 1,000 object classes 1,000 object classes

(categories).
 Images:

1.2 M train
 100k test.

Convolutional Neural Networks

a.

Imperial College London Models – Where we are today

- Number of models trading-off complexity vs accuracy
- Top-1 accuracy 82% (increase of 30 pp)
- 20x higher computational complexity

Íntelligent Digital Systems Lab

DNNs in the Embedded Space – Variability in Performance Requirements

M. Horowitz, "1.1 Computing's energy problem (and what we can do about it)," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 10-14,

Efficiency comes from customisation

Intelligent Digital Systems Lab

Íntelligent Digital Systems Lab

Putting things in perspective – What customization buys you

Impact on LSTM-based Image Captioning – Computations tailored to the architecture

Input Image

- A. Kouris, S. Venieris, M. Rizakis and C.S. Bouganis, "Approximate LSTMs for Time-Constrained Inference: Enabling Fast Reaction in Self-Driving Cars",
- B. in IEEE Consumer Electronics Magazine, 2019

Imperial College London Algorithm-Hardware Co-design

Íntelligent Digital Systems Lab

CNN acceleration through an FPGA

Íntelligent Digital Systems Lab

Characteristics

- Custom datapath
- Custom memory subsystem
- Programmable interconnections

- Reconfigurability
- Heterogeneous
- Difficult to program

The Challenge of the Mapping Problem

Parameters	Value
LC	2M
BRAMS (36kbits)	1,880
DSPs	3,360

Specifications

- Latency
- Throughput
- Power consumption

Challenges:

- Diversity of operations in modern NN
- Diversity and resources of modern FPGAs
- Competition (or need for performance)
- Large number of parameters in the target architecture

Challenge #1: Automated CNN-to-FPGA Toolflow

- ConvNet Inference
 - Tailored to images and data with spatial patterns
 - Built as a sequence of layers (Convolutional, Nonlinearity and Pooling Layer)

fpgaConvNet – Streaming Architecture for CNNs

fpgaConvNet – Streaming Architecture for CNNs

CNN Hardware SDF Graph Sliding Window Sliding Nonlin Pool Unit Fork Unit Window Sliding Nonlin Sliding Conv Pool Unit Fork Unit Unit Window Window Sliding Sliding Nonlin Sliding Pool Unit Fork Window Window Fork Uni Window Sliding Sliding Conv Nonlin Pool Unit Fork Window Unit Unit Window

Complex Model \rightarrow Bottlenecks:

- Limited compute resources
- Limited on-chip memory capacity for model parameters
- Limited off-chip memory bandwidth

Define a set of **graph transformations** to traverse the design space in **fast** and **principled** way

Transformation 3: Graph Partitioning with Reconfiguration

Transformation 4: Weights Reloading

- Synchronous Dataflow Modelling
 - Capture hardware mappings as matrices
 - Transformations as *algebraic operations*
 - Analytical *performance model*
 - Cast design space exploration as a mathematical optimisation problem

$$t_{total}(B, N_P, \mathbf{\Gamma}) = \sum_{i=1}^{N_P} t_i(B, \mathbf{\Gamma}_i) + (N_P - 1) \cdot t_{reconfig.}$$

Intelligent Digital Systems Lab

Íntelligent Digital Systems Lab

Challenge #2: Multi-CNN Systems – Autonomous Drones

Imperial College London Challenge #2: Multi-DNN System

Intelligent Digital Systems Lab

Key characteristics

- Latency is relevant: Reconfiguration is not an option
- One hardware engine per CNN highly customisable
- Hardware scheduler to control memory access schedule

Multi-CNN Hardware Architecture

Íntelligent Digital Systems Lab

Key characteristics

- One hardware engine per CNN highly customisable
- Hardware scheduler to control memory access schedule

Proposed Design Space Exploration Method

- Memory contention
 - Problem 1: Performance model != Actual performance (scheduler)
 - Problem 2: Not full utilization of the memory bandwidth
- CNN inference over a stream of inputs
 - Cast to a cyclic scheduling problem
 - Search for a periodic solution
- Optimal ILP scheduler has very high runtimes for large-sized problems
- Develop a heuristic Resource Constrained List Scheduler (RCLS).
- Key points:
 - Scheduler exposed in the engine design optimization process
 - Introduce slow-down => fine control over bandwidth

Imperial College London The effect of slow-downs

Scheduler Scheduler + slow downs Available Memory Bandwidth: 2 GB/s Bandwidth Requirement: 1.2 GB/s Bandwidth Requirement: 1.5 GB/s Slowdown1_1: 0.8x CONV7 CONV7 ReLU MAX POOL MAX POOL ReLU ┢ ┢ x7 x7 Exec Time: 0.05 ms CNN1 - Subgraph 1 Exec Time: 0.062 ms CNN1 - Subgraph 1 Slowdown2_1: 0.8x Bandwidth Requirement: 0.2 GB/s Bandwidth Requirement: 0.25 GB/s CONV5 CONV5 MAX POOL ReLU MAX POOL ⊢► ReLU x5 x5 CNN2 - Subgraph 1 Exec Time: 0.031 ms CNN2 - Subgraph 1 Exec Time: 0.025 ms Bandwidth Requirement: 0.56 GB/s Bandwidth Requirement: 0.75 GB/s Slowdown3 1: 0.75x CONV CONV ReLU ReLU 5x5 5x5 Exec Time: 0.02 ms CNN3 - Subgraph 1 Exec Time: 0.026 ms CNN3 - Subgraph 1 2 GB/s 2 GB/s 3 1 2 3 2 0.07 ms 0.0625 ms time time

Comparison with Embedded GPUs

- Latency-driven scenario \rightarrow batch size of 1
- Up to 19.09× speedup with an average of 6.85× (geo. mean)

Performance-per-Watt: f-CNN^x vs. TX1

- Latency-driven scenario \rightarrow batch size of 1
- Up to 9.61× speedup with an average of 2.76× (geo. mean)

Íntelligent Digital Systems Lab

- Customisation is key, but also a challenge in the design of DNN systems
- We need toolflows to support deployment of DNN on the embedded space
 - Many choices, high-dimensional space
- Exposing the hardware capabilities to the algorithm can lead to performance gains
 - Challenging task
 - Rethink current approaches to fully utilise the underlying hardware

customisation

Imperial College London What we are looking into...

Íntelligent Digital Systems Lab

Íntelligent Digital Systems Lab

Co-optimise topology and hardware architecture

HW architecture (latency, throughput, resources)

Íntelligent Digital Systems Lab

Adversarial attacks to DNNs and how to prevent them

Tesla "sees" 85

McAfee Advanced Threat Research (ATR). Feb 2020

Imperial College London Opportunities at Imperial

Íntelligent Digital Systems Lab

- MSc Programmes
 - Analogue and Digital Integrated Circuit Design
 - Applied Machine Learning
 - Communications and Signal Processing
 - Control and Optimisations
 - Future Power Networks
- PhD Programme
 - Scholarships available for top students

Questions

Íntelligent Digital Systems Lab

Research

Christon-Servas Bouganity Alexandrics Kovern Stylianis I. Vesseria Dept. of Electrical and Electronic Eng. Thept. of Electrical and Electronic Eng. Dept. of Electrical and Electronic Eng. Imperial College London Imperial College London Imported College London a briefs baby or ok are lisses remission in the part of shainton arreas hongoninglic as als

ABSTRACT

1 INTRODUCTION

"Bur wish process Canada" NN at animated tealling that pulse the quantitation limits of any given CNN model, to perform high throughput informs for exploiting the computation time security trade-off. Without the south a networking, a two-stage architecture tailored for any pivos HYGA device is processed, comming of a low- and a high-precision unit. A confidence real-axism and is employed between them to identify minimated cases at ton there and forward there to the high precision and or technicale computation. Experiments doministrate that Consult/XW atheness is preformation based of up to TFE for VEEL ID and XPE for SizeNet over the baseline design for the same resource budget and accesses.

While Convolutional Neural Networks are becoming the specific and the Cartel and Cartel

fidence realization inclusion and generate the cocouled loss and

high processor processing with-

St. Washington

