
kNN1 and AkNN2 Searching in High

Dimensions: Foundations, Applications

and New Challenges

Prof. Spyros Sioutas

CEID@Upatras

1 kNN:k-Nearest Neighbor 2 AkNN: All k-Nearest Neighbor or kNN Join

Nearest-Neighbor(s) (NN) Query

 Example:

 key=Salary: retrieve the employee whose salary

is closest to $50,000 (i.e., 1-NN).

 key=Age: retrieve the 5 employees whose age is

closest to 40 (i.e., k-NN, k=5).

2

ID Name Age Salary #Children

Nearest Neighbor(s) Query

 What is the closest restaurant to my hotel?

3

Nearest Neighbor(s) Query (cont’d)

 Find the 4 closest restaurants to my hotel

4

Nearest Neighbor Query in High Dimensions

 Very important and practical problem!

 Image retrieval

5

(f1,f2, .., fk)

find N closest

matches (i.e., N

nearest neighbors)

Nearest Neighbor Query in High Dimensions

 Face recognition

6

find closest match

(i.e., nearest neighbor)

Scene Completion Problem

7

[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem

8

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 20,000 images

Scene Completion Problem

9

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 2 million images

Scene Completion Problem

10

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors

2-D Buffer and Boundary Trajectories y’

and y’’ of mobile user A

Trajectory poly-lines and k-Anonimity

(Privacy Preserving Spatio-Temporal

Databases)

B C

D
E

B

F

G

H

Privacy Preserving Spatio-Temporal Databases

12

ML, AI and Data Mining: kNN

Classifier

13

Nearest Neighbor (NN) Search

 Given: a set P of n points in Rd

 Goal: find the nearest neighbor p of q in P

q

p

1 1 2 2

2 2

1 2 1 2

(,) (,)

() ()

p x y q x y

d x x y y

Euclidean distance metric

d(p, q) 0 for all p and q

d(p, q) = d(q, p) (Symmetry)

d(p, r) d(p, q) + d(q, r)

(Triangular Inequality)

Minkowski distance metric

1

1

(| |)
n

r r
k k

k

d p q

r = 1. City block
(Manhattan, taxicab, L1
norm) distance
f.e. hamming distance

r = 2. Euclidean Distance

r . “supremum” (Lmax

norm, L norm) distance.

r parameter

n dimensions

Απόσταση Minkowski

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

Mahalanobis distance metric
Tqpqpqpsmahalanobi)()(),(1

n

i

kikjijkj XXXX
n 1

,))((
1

1

= Covariance Matrix of data Χ

Covariance Matrix:

3.02.0

2.03.0

B

A

C
A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5

Mahal(A,C) = 4

For Spatial kNN we will use …

 Quadtrees

 KD-trees

 Range trees (R-trees)

18

Interpreting Queries Geometrically

 Multi-dimensional keys can be thought as

“points” in high dimensional spaces.

Queries about records Queries about points

19

Nearest Neighbor Search -Variations

r-search: the distance tolerance

is specified.

k-nearest-neighbor-queries: the

number of close matches is specified.

 Naïve approach

 Compute the distance from the query point to

every other point in the database, keeping track of

the "best so far".

 Running time is O(n).

Nearest Neighbor (NN) Search

q

p

Array (Grid) Structure

(1) Subdivide the plane into a grid of M x N square cells (same size)

(2) Assign each point to the cell that contains it.

(3) Store as a 2-D (or N-D in general) array:

 “each cell contains a link to a list of points stored in that cell”

p1,p2
p1

p2

Algorithm

 * Look up cell holding query point.

 * First examine the cell containing the query,

 then the cells adjacent to the query

 (i.e., there could be points in adjacent

 cells that are closer).

Comments

* Uniform grid inefficient if points unequally distributed.

 - Too close together: long lists in each grid, serial search.

 - Too far apart: search large number of neighbors.

* Multiresolution grid can address some of these issues.

Array (Grid) Structure

q
p1

p2

• A tree in which each internal node has up
to four children.

• Every node in the quadtree corresponds to

a square.

• The children of a node v correspond to the

four quadrants of the square of v.

• The children of a node are labelled NE,

NW, SW, and SE to indicate to which

quadrant they correspond.

Quadtree
N

W E

S

Quadtree Construction

Input: point set P

 while Some cell C contains

more than “k” points do

 Split cell C

 end

j k f g l d a b

c e i h

X

400

100 0

h

b

i

a

c
d e

g f

k
j

Y

l

X 25, Y 300

X 50, Y 200

X 75, Y 100

(data stored at leaves)

SW SE NW NE

Quadtree – Nearest Neighbor Query

X

Y

X1,Y1

X2,Y2

SW
NE

SE NW

Quadtree – Nearest Neighbor Query

X

Y

X1,Y1

X2,Y2

NW

NW SE

NE SW

Quadtree – Nearest Neighbor Query

X

Y

X1,Y1

X2,Y2

NW

SW

SE

NE

SW

NW SE NE

Algorithm

Initialize range search with large r

Put the root on a stack

Repeat

 Pop the next node T from the stack

 For each child C of T

 if C intersects with a circle (ball) of radius r

around q, add C to the stack

 if C is a leaf, examine point(s) in C and

 update (boost) r

• Whenever a point is found, update r (i.e., current minimum)

• Only investigate nodes with respect to current r.

Quadtree – Nearest Neighbor Search

q

 Simple data structure.

 Easy to implement.

 But, it might not be efficient for skew data:

 A quadtree could have a lot of empty cells.

 If the points form sparse clouds, it takes a while to reach nearest

neighbors.

 No guaranteed complexity for bad (zipfian or power law)

distributions

 Guaranteed complexity for uniform distributions only!!!

 S(n)=O(n), T(n)=O(log4n+ k)

Quadtree (cont’d)

Oct Tree for 3D

31

Left: Recursive subdivision of a cube into octants.

Right: The corresponding octree.

https://en.wikipedia.org/wiki/File:Octree2.svg
https://en.wikipedia.org/wiki/Octant_(solid_geometry)

KD Tree (NN search – Range Search)
• Data stored at the leaves

• Every node (except leaves) represents a hyperplane

that divides the space into two parts.

• Points to the left (right) of this hyperplane represent the

left (right) sub-tree of that node.

Pleft Pright

KD Tree

As we move down the tree, we divide the space along

alternating (but not always) axis-aligned hyperplanes:

 Split by x-coordinate: split by a vertical line that

 has (ideally) half the points left or on, and half

 right.

 Split by y-coordinate: split by a horizontal line

 that has (ideally) half the points below or on

 and half above.

KD Tree - Example

x

Split by x-coordinate: split by a vertical line that

has approximately half the points left or on, and

half right.

KD Tree - Example

x

y

Split by y-coordinate: split by a horizontal line that

has half the points below or on and half above.

y

KD Tree - Example

x

y

x

Split by x-coordinate: split by a vertical line that

has half the points left or on, and half right.

y

x x x

KD Tree - Example

x

y

x

y

Split by y-coordinate: split by a horizontal line that

has half the points below or on and half above.

y

x x x

y

 The region region(v) corresponding to a node

v is a rectangle, which is bounded by splitting

lines stored at ancestors of v.

KD Tree – Region of a node

***A point is stored in the subtree rooted at node v if and only if it lies in region(v).

KD Trees – MBR Range Search

 Need only search nodes
whose region intersects
query region.
 Report all points in subtrees

whose regions are entirely
contained in query range.

 If a region is partially
contained in the query range
check points.

MBR query range

Example – MBR Range Search

1.Node marked with * corresponds to a region that is entirely inside the

query rectangle. Report all leaves in this subtree.

2.All other nodes visited (i.e., gray) correspond to regions

that are only partially inside the query rectangle.

 - Report points p6 and p11 only

 - Do not report points p3, p12 and p13

*

Query region: gray rectangle

Gray nodes are the nodes visited in this example.

Nearest Neighbor with KD Trees

Traverse the tree, looking for the rectangle that contains

the query.

Explore the branch of the tree that is closest to the query

point first.

Nearest Neighbor with KD Trees

Explore the branch of the tree that is closest to the query

point first.

Nearest Neighbor with KD Trees

When we reach a leaf, compute the distance to each

point in the node.

Nearest Neighbor with KD Trees

When we reach a leaf, compute the distance to each

point in the node.

Nearest Neighbor with KD Trees

Then, backtrack and try the other branch at each node

visited.

Nearest Neighbor with KD Trees

Each time a new closest node is found, we can update

the distance bounds.

Nearest Neighbor with KD Trees

Each time a new closest node is found, we can update

the distance bounds.

Nearest Neighbor with KD Trees

Using the distance bounds and the bounds of the data

below each node, we can prune parts of the tree that

could NOT include the nearest neighbor.

Nearest Neighbor with KD Trees

Using the distance bounds and the bounds of the data

below each node, we can prune parts of the tree that

could NOT include the nearest neighbor.

Nearest Neighbor with KD Trees

Using the distance bounds and the bounds of the data

below each node, we can prune parts of the tree that

could NOT include the nearest neighbor.

Nearest Neighbor with KD Trees
Space requirements: O(n)

Query requirements: O(n1-1/d + k)

2D MBR Range Tree

 Store a primary 1D range tree for all the points

based on x-coordinate.

 For each node, store a secondary 1D range tree based

on y-coordinate.

52

2D MBR Range Search

53

Space requirements: O(nlogn)

Range Tree

2D Range Search (cont’d)

 Search using the x-coordinate only.

 How to restrict to points with proper y-coordinate?

54

2D Range Search (cont’d)

 Recursively search within each subtree using

the y-coordinate.

55

MBR Range Search in d dimensions

+Filtering on the fly

56

O(logn + k)

O(log2n + k)

1D query time:

2D query time:

d dimensions:

Fractional Cascading Technique achieves better query time complexity:

O(k+logd-1n) + filtering on the fly

If needed (less than k neighbors have been reported)

Boost R (or expand the MBR)

Big Data Version: Efficient processing of all-k-

nearest-neighbor (aknn) queries in the

Map-Reduce programming framework

57

• Numerous modern applications, like Geographical Information Systems

(GIS), facilities management, location-based services, smart-cities

services, etc., need efficient processing of queries on big spatial data.

• One such query is the All 𝑘 Nearest Neighbor Query (A𝑘NNQ, or 𝑘NN

Join).

• Given two point datasets, 𝑄 (Query) and 𝑇 (Training), the A𝑘NNQ finds

the 𝑘 nearest neighbors of 𝑇 for each point of 𝑄, according to a certain

distance metric.

kNN vs AkNN

58

Definition 1 (𝑘NN). Given a point 𝑝, a dataset 𝑆 and an integer 𝑘, the 𝑘 nearest

neighbors of 𝑝 from 𝑆, denoted as 𝑘𝑁𝑁(𝑝, 𝑆), is a set of k points from 𝑆 such

that, ∀𝑟 ∈ 𝑘𝑁𝑁(𝑝, 𝑆), ∀𝑞 ∈ 𝑆 − 𝑘𝑁𝑁(𝑝, 𝑆), 𝑑𝑖𝑠𝑡(𝑝, 𝑟) ≤ 𝑑𝑖𝑠𝑡(𝑝, 𝑞).

Definition 2 (A𝑘NNQ). Given two datasets 𝑅 and 𝑆 and an integer 𝑘, the result

of the All 𝑘 Nearest Neighbors Query of 𝑅 from 𝑆, denoted as 𝐴𝑘𝑁𝑁𝑄(𝑅, 𝑆), is

the set of pairs {(𝑟, 𝑠) ∶ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑘𝑁𝑁(𝑟, 𝑆)}.

A naive approach to find the 𝑘 nearest neighbors of two datasets would be

to calculate the distances of every point of the one dataset, 𝑅, to every

point of the other dataset, 𝑆, and sort the results by distance. Of course

this would be highly inefficient as it would lead to a huge number of

calculations, in the order of 𝑂(|𝑅| × |𝑆|).

akNN processing….

59

Decomposition of data space

into small equal hyper-cells

and afterwards the merging of

some neighboring cells, if they

do not contain 𝑘 points,

or more in total…..

R=Q=I

S=T

akNN processing….

60

Map-Reduce AkNN Computation (Simple Approach with 4 cells)

Map Shuffle & Sort Cell-Reduce Output Input T, I

(x,y,z)

(x,y,z)

(x,y,z)

Map

Map

Map

Reduce

kNN list

Map
(x,y,z)

Reduce

Reduce

Based on pre-defined

Hyper-Cell Bounds of T

kNN list

kNN list
Reduce

kNN list

62

(id1,x1,y1,z1) (id1,x1,y1,z1, C000)

(id2, x2,y2,z2) (id2, x2,y2,z2, C100)

(id3,x3,y3,z3) (id3, x3,y3,z3, C200)

(id4, x4,y4,z4) (id4,x4,y4,z4, C000)

(id5, x5,y5,z5) (id5, x5,y5,z5,C100)

……………………………………………….

Map1

63

(id6,x6,y6,z6) (id6,x6,y6,z6, C000)

(id7, x7,y7,z7) (id7, x7,y7,z7, C100)

(id8,x8,y8,z8) (id8, x8,y8,z8, C200)

(id9, x9,y9,z9) (id9,x9,y9,z9, C000)

(id10, x10,y10,z10) (id10, x10,y10,z10,C100)

……………………………………………….

Map2

64

(id11,x11,y11,z11) (id11,x11,y11,z11, C000)

(id12, x12,y12,z12) (id12, x12,y12,z12, C100)

(id13,x13,y13,z13) (id13, x13,y13,z13, C200)

(id14, x14,y14,z14) (id14,x14,y14,z14, C000)

(id15, x15,y15,z15) (id15, x15,y15,z15,C100)

……………………………………………….

Map3

65

(id16,x16,y16,z16) (id16,x16,y16,z16, C000)

(id17, x17,y17,z17) (id17, x17,y17,z17, C100)

(id18,x18,y18,z18) (id18, x18,y18,z18, C200)

(id19, x19,y19,z19) (id19,x19,y19,z19, C000)

(id20, x20,y20,z20) (id20, x20,y20,z20,C100)

……………………………………………….

Map4

66

(id1,id4,id6,id9,id11,id14,id16,id19,C000) AkNN_Compute(I1,C000)

Reduce1
I1 I2 I3

(id2,id5,id7,id10,id12,id15,id17,id20,C100)

(id3,id8,id13,id18,C200)

Reduce2

Reduce3

AkNN_Compute(I2,C100)

AkNN_Compute(I3,C200)

MAP REDUCE JOBS (better approach)

67

MAP REDUCE JOBS

68

1st Improvement:

Sweep Line in each

cell….(assume cells

with many points)

69

2nd Improvement: Quad-Tree Mappers (or Oct Tree Mappers)

70

1. A first sample of T

set will be used for

quad-tree

construction in one

machine (VM).

2. The decomposition

of each cell to

quadrants stops if

the number of

inside points is

 <= threshold.

3. Radius boost is

 driven by the Quad

 tree structure

4. Better Load

 Balancing

71

Relevant Publications
 Panagiotis Moutafis, George Mavrommatis, Michael Vassilakopoulos, Spyros Sioutas:

Efficient processing of all-k-nearest-neighbor queries in the MapReduce programming framework. Data

Knowl. Eng. 121: 42-70,Elsevier (2019)

 Elias Dritsas, Maria Trigka, Panagiotis Gerolymatos, Spyros Sioutas:

Trajectory Clustering and k-NN for Robust Privacy Preserving Spatiotemporal Databases. Algorithms

11(12): 207 (2018)

 Nikolaos Nodarakis, Evaggelia Pitoura, Spyros Sioutas, Athanasios K. Tsakalidis, Dimitrios Tsoumakos,

Giannis Tzimas:

kdANN+: A Rapid AkNN Classifier for Big Data. Trans. Large-Scale Data- and Knowledge-Centered

Systems 24: 139-168, Springer (2016)

 Nikolaos Nodarakis, Angeliki Rapti, Spyros Sioutas, Athanasios K. Tsakalidis, Dimitrios Tsolis, Giannis

Tzimas, Yannis Panagis: (A)kNN Query Processing on the Cloud: A Survey. ALGOCLOUD 2016: 26-40

(Springer)

 Nikolaos Nodarakis, Spyros Sioutas, Athanasios K. Tsakalidis, Giannis Tzimas:

Large Scale Sentiment Analysis on Twitter with Spark. EDBT/ICDT 2016

 Nikolaos Nodarakis, Evaggelia Pitoura, Spyros Sioutas, Athanasios K. Tsakalidis, Dimitrios Tsoumakos,

Giannis Tzimas:

Efficient Multidimensional AkNN Query Processing in the Cloud. DEXA (1) 2014: 477-491.

 Spyros Sioutas, Emmanouil Magkos, Ioannis Karydis, Vassilios S. Verykios:

Uncertainty for Privacy and 2-Dimensional Range Query Distortion. JCSE 5(3): Special Issue of ICDM

2011, 210-222 (2011).

 Spyros Sioutas, Emmanouil Magkos, Ioannis Karydis, Vassilios S. Verykios:

Uncertainty for Anonymity and 2-Dimensional Range Query Distortion. Privacy in Statistical Databases

2010: 85-96 (Springer).

72

https://dblp.uni-trier.de/pers/hd/m/Moutafis:Panagiotis
https://dblp.uni-trier.de/pers/hd/m/Mavrommatis:George
https://dblp.uni-trier.de/pers/hd/v/Vassilakopoulos:Michael
https://dblp.uni-trier.de/db/journals/dke/dke121.html#MoutafisMVS19
https://dblp.uni-trier.de/db/journals/dke/dke121.html#MoutafisMVS19
https://dblp.uni-trier.de/db/journals/dke/dke121.html#MoutafisMVS19
https://dblp.uni-trier.de/pers/hd/d/Dritsas:Elias
https://dblp.uni-trier.de/pers/hd/t/Trigka:Maria
https://dblp.uni-trier.de/pers/hd/g/Gerolymatos:Panagiotis
https://dblp.uni-trier.de/db/journals/algorithms/algorithms11.html#DritsasTGS18
https://dblp.uni-trier.de/db/journals/algorithms/algorithms11.html#DritsasTGS18
https://dblp.uni-trier.de/db/journals/algorithms/algorithms11.html#DritsasTGS18
https://dblp.uni-trier.de/db/journals/algorithms/algorithms11.html#DritsasTGS18
https://dblp.uni-trier.de/db/journals/algorithms/algorithms11.html#DritsasTGS18
https://dblp.uni-trier.de/pers/hd/n/Nodarakis:Nikolaos
https://dblp.uni-trier.de/pers/hd/p/Pitoura:Evaggelia
https://dblp.uni-trier.de/pers/hd/t/Tsakalidis:Athanasios_K=
https://dblp.uni-trier.de/pers/hd/t/Tsoumakos:Dimitrios
https://dblp.uni-trier.de/pers/hd/t/Tzimas:Giannis
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/db/journals/tlsdkcs/tlsdkcs24.html#NodarakisPSTTT16
https://dblp.uni-trier.de/pers/hd/n/Nodarakis:Nikolaos
https://dblp.uni-trier.de/pers/hd/r/Rapti:Angeliki
https://dblp.uni-trier.de/pers/hd/t/Tsakalidis:Athanasios_K=
https://dblp.uni-trier.de/pers/hd/t/Tsolis:Dimitrios
https://dblp.uni-trier.de/pers/hd/t/Tzimas:Giannis
https://dblp.uni-trier.de/pers/hd/t/Tzimas:Giannis
https://dblp.uni-trier.de/pers/hd/p/Panagis:Yannis
https://dblp.uni-trier.de/db/conf/algocloud/algocloud2016.html#NodarakisRSTTTP16
https://dblp.uni-trier.de/db/conf/algocloud/algocloud2016.html#NodarakisRSTTTP16
https://dblp.uni-trier.de/pers/hd/n/Nodarakis:Nikolaos
https://dblp.uni-trier.de/pers/hd/t/Tsakalidis:Athanasios_K=
https://dblp.uni-trier.de/pers/hd/t/Tzimas:Giannis
https://dblp.uni-trier.de/db/conf/edbt/edbtw2016.html#NodarakisSTT16
https://dblp.uni-trier.de/db/conf/edbt/edbtw2016.html#NodarakisSTT16
https://dblp.uni-trier.de/pers/hd/n/Nodarakis:Nikolaos
https://dblp.uni-trier.de/pers/hd/p/Pitoura:Evaggelia
https://dblp.uni-trier.de/pers/hd/t/Tsakalidis:Athanasios_K=
https://dblp.uni-trier.de/pers/hd/t/Tsoumakos:Dimitrios
https://dblp.uni-trier.de/pers/hd/t/Tzimas:Giannis
https://dblp.uni-trier.de/db/conf/dexa/dexa2014-1.html#NodarakisPSTTT14
https://dblp.uni-trier.de/db/conf/dexa/dexa2014-1.html#NodarakisPSTTT14
https://dblp.uni-trier.de/db/conf/dexa/dexa2014-1.html#NodarakisPSTTT14
https://dblp.uni-trier.de/db/conf/dexa/dexa2014-1.html#NodarakisPSTTT14
https://dblp.uni-trier.de/pers/hd/m/Magkos:Emmanouil
https://dblp.uni-trier.de/pers/hd/k/Karydis:Ioannis
https://dblp.uni-trier.de/pers/hd/v/Verykios:Vassilios_S=
https://dblp.uni-trier.de/db/journals/jcse/jcse5.html#SioutasMKV11
https://dblp.uni-trier.de/db/journals/jcse/jcse5.html#SioutasMKV11
https://dblp.uni-trier.de/db/journals/jcse/jcse5.html#SioutasMKV11
https://dblp.uni-trier.de/db/journals/jcse/jcse5.html#SioutasMKV11
https://dblp.uni-trier.de/db/journals/jcse/jcse5.html#SioutasMKV11
https://dblp.uni-trier.de/pers/hd/m/Magkos:Emmanouil
https://dblp.uni-trier.de/pers/hd/k/Karydis:Ioannis
https://dblp.uni-trier.de/pers/hd/v/Verykios:Vassilios_S=
https://dblp.uni-trier.de/db/conf/psd/psd2010.html#SioutasMKV10
https://dblp.uni-trier.de/db/conf/psd/psd2010.html#SioutasMKV10

Dimensionality Reduction?

73

Idea: Find a mapping T to reduce the dimensionality

of the data.

Drawback: May not be able to find all similar objects

(i.e., distance relationships might not be preserved)

Locality Sensitive Hashing?

 It works well for documents (SET of n-grams)..

 What about spatio-temporal coordinates???

74

• A family H of functions h: Rd
U is called (P1,P2,r,cr)-sensitive if

for any p,q:

if D(p,q)≤r, then Pr[h(p)=h(q)] ≥ P1

If D(p,q)≥ cr, then Pr[h(p)=h(q)] ≤ P2

• P1 > P2

Implementation of optimal high-dimensional main memory

data structures in SPARK RDDs ??

75

f.e.. Optimal

Range Trees?

Optimal M-trees?

IEEE/ACM CCGRID 2019

Thank you!!!!!

Questions???

76

