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1 kNN:k-Nearest Neighbor  2 AkNN: All k-Nearest Neighbor or kNN Join  



Nearest-Neighbor(s) (NN) Query 

 Example: 

 key=Salary: retrieve the employee whose salary 

is closest to $50,000 (i.e., 1-NN). 

 key=Age: retrieve the 5 employees whose age is         

closest to 40 (i.e., k-NN, k=5). 
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ID  Name  Age  Salary  #Children    



Nearest Neighbor(s) Query 

 What is the closest restaurant to my hotel? 
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Nearest Neighbor(s) Query (cont’d) 

 Find the 4 closest restaurants to my hotel 
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Nearest Neighbor Query in High Dimensions 

 Very important and practical problem!  

 Image retrieval 
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(f1,f2, .., fk) 

find N closest  

matches (i.e., N  

nearest neighbors) 



Nearest Neighbor Query in High Dimensions 

 Face recognition  
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find closest match 

(i.e., nearest neighbor) 



Scene Completion Problem  
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[Hays and Efros, SIGGRAPH 2007] 



Scene Completion Problem  
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[Hays and Efros, SIGGRAPH 2007] 



10 nearest neighbors from a collection of 20,000 images 

Scene Completion Problem  
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[Hays and Efros, SIGGRAPH 2007] 



10 nearest neighbors from a collection of 2 million images 

Scene Completion Problem  
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[Hays and Efros, SIGGRAPH 2007] 

10 nearest neighbors 
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Privacy Preserving Spatio-Temporal Databases 
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ML, AI and Data Mining: kNN 

Classifier  
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Nearest Neighbor (NN) Search 

 Given: a set P of n points in Rd 

 Goal: find the nearest neighbor  p of q in P 
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Euclidean distance metric 

 

d(p, q)  0   for all p and q  

d(p, q) = d(q, p) (Symmetry) 

d(p, r)  d(p, q) + d(q, r)  

(Triangular Inequality) 

 



Minkowski distance metric 
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r = 1.  City block 
(Manhattan, taxicab, L1 
norm) distance 
f.e. hamming distance 

 

r = 2.  Euclidean Distance 
 

r  .  “supremum” (Lmax 

norm, L norm) distance.  
 

r parameter 

n dimensions 



Απόσταση Minkowski 

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4



Mahalanobis distance metric 
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Mahal(A,B) = 5 

Mahal(A,C) = 4  



For Spatial kNN we will use … 

 Quadtrees 

 KD-trees 

 Range trees (R-trees) 
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Interpreting Queries Geometrically 

 Multi-dimensional keys can be thought as 

“points” in high dimensional spaces. 

 

 

Queries about records  Queries about points  
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Nearest Neighbor Search -Variations 

r-search: the distance tolerance 

is specified. 

k-nearest-neighbor-queries: the 

number of close matches is specified. 



 Naïve approach 

 Compute the distance from the query point to 

every other point in the database, keeping track of 

the "best so far".  

 Running time is O(n). 

Nearest Neighbor (NN) Search 

q 

p 



Array (Grid) Structure 

(1) Subdivide the plane into a grid of M x N square cells (same size) 

 

(2) Assign each point to the cell that contains it. 

 

(3) Store as a 2-D (or N-D in general) array:  

           “each cell contains a link to a list of points stored in that cell” 

p1,p2 
p1 

p2 



Algorithm 
 

  * Look up cell holding query point. 
 

  * First examine the cell containing the query,  

     then the cells adjacent to the query 

 (i.e., there could be points in adjacent  

 cells that are closer).  

 

Comments 
 

* Uniform grid inefficient if points unequally distributed. 

        - Too close together: long lists in each grid, serial search. 

           - Too far apart: search large number of neighbors. 

     

* Multiresolution grid can address some of these issues. 

Array (Grid) Structure 

q 
p1 

p2 



• A tree in which each internal node has up 
to four children.  

 

• Every node in the quadtree corresponds to 

a square.  

 

• The children of a node v correspond to the 

four quadrants of the square of v.  

 

 

• The children of a node are labelled NE, 

NW, SW, and SE to indicate to which 

quadrant they correspond. 

 

Quadtree 
N 

W E 

S 



Quadtree Construction 

Input: point set P 

     while Some cell C contains 

more than “k” points do 

               Split cell C 

     end 
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(data stored at leaves) 

SW SE NW NE 



Quadtree – Nearest Neighbor Query 

X 

Y 

X1,Y1 

X2,Y2 

SW 
NE 

SE NW 



Quadtree – Nearest Neighbor Query 

X 

Y 

X1,Y1 

X2,Y2 

NW 
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Quadtree –  Nearest Neighbor Query 

X 

Y 

X1,Y1 

X2,Y2 

NW 

SW 

SE 

NE 

SW 

NW SE NE 



 

Algorithm 
 

Initialize range search with large r 

Put the root on a stack 

Repeat 

 Pop the next node T from the stack 

 For each child C of T 

 if C intersects with a circle (ball) of radius r 

around q, add C to the stack  

 if C is a leaf, examine point(s) in C and 

   update (boost)  r 

 

 

 

•  Whenever a point is found, update r (i.e., current minimum) 

•  Only investigate nodes with respect to current r. 

Quadtree –  Nearest Neighbor Search 

 

q 



 Simple data structure. 

 

 Easy to implement. 

 

 But, it might not be efficient for skew data: 

 

 A quadtree could have a lot of empty cells. 

 If the points form sparse clouds, it takes a while to reach nearest 

neighbors.  

 

 No guaranteed complexity for bad (zipfian or power law) 

distributions 

 Guaranteed complexity for uniform distributions only!!! 

 S(n)=O(n), T(n)=O(log4n+ k) 

 

Quadtree (cont’d) 



Oct Tree for 3D 

31 

Left: Recursive subdivision of a cube into octants.  

Right: The corresponding octree. 

https://en.wikipedia.org/wiki/File:Octree2.svg
https://en.wikipedia.org/wiki/Octant_(solid_geometry)


KD Tree (NN search – Range Search)  
• Data stored at the leaves 

• Every node (except leaves) represents a hyperplane 

that divides the space into two parts. 

• Points to the left (right) of this hyperplane represent the 

left (right) sub-tree of that node. 

 

Pleft Pright 



KD Tree  

As we move down the tree, we divide the space along 

alternating (but not always) axis-aligned hyperplanes: 

 Split by x-coordinate: split by a vertical line that 

 has (ideally) half the points left or on, and half 

 right. 

 

 Split by y-coordinate: split by a horizontal line 

 that has (ideally) half the points below or on 

 and half above. 



KD Tree - Example  

x 

Split by x-coordinate: split by a vertical line that 

has approximately half the points left or on, and 

half right. 



KD Tree - Example  

x 

y 

Split by y-coordinate: split by a horizontal line that 

has half the points below or on and half above. 

y 



KD Tree - Example  

x 

y 

x 

Split by x-coordinate: split by a vertical line that 

has half the points left or on, and half right. 

y 

x x x 



KD Tree - Example  

x 

y 

x 

y 

Split by y-coordinate: split by a horizontal line that 

has half the points below or on and half above. 

y 

x x x 

y 



 The region region(v) corresponding to a node  

v is a rectangle, which is bounded by splitting 

lines stored at ancestors of v. 

KD Tree – Region of a node 

***A point is stored in the subtree rooted at node v if and only if it lies in region(v). 



KD Trees – MBR Range Search 

 

 Need only search nodes 
whose region intersects 
query region. 
 Report all points in subtrees 

whose regions are entirely 
contained in query range. 

 If a region is partially 
contained in the query range 
check points. 

 

MBR query range 



Example – MBR Range Search 

1.Node marked with * corresponds to a region that is entirely inside the 

query rectangle. Report all leaves in this subtree.  

2.All other nodes visited (i.e., gray) correspond to regions   

that are only partially inside the query rectangle.  

 - Report points p6 and p11 only 

 - Do not report points p3, p12 and p13 

 

* 

Query region: gray rectangle 

 

Gray nodes are the nodes visited in this example. 



Nearest Neighbor with KD Trees 

Traverse the tree, looking for the rectangle that contains 

the query. 



Explore the branch of the tree that is closest to the query 

point first. 

Nearest Neighbor with KD Trees 



Explore the branch of the tree that is closest to the query 

point first. 

Nearest Neighbor with KD Trees 



When we reach a leaf, compute the distance to each 

point in the node. 

Nearest Neighbor with KD Trees 



When we reach a leaf, compute the distance to each 

point in the node. 

Nearest Neighbor with KD Trees 



Then, backtrack and try the other branch at each node 

visited. 

Nearest Neighbor with KD Trees 



Each time a new closest node is found, we can update 

the distance bounds. 

Nearest Neighbor with KD Trees 



Each time a new closest node is found, we can update 

the distance bounds. 

Nearest Neighbor with KD Trees 



Using the distance bounds and the bounds of the data 

below each node, we can prune parts of the tree that 

could NOT include the nearest neighbor. 

Nearest Neighbor with KD Trees 



Using the distance bounds and the bounds of the data 

below each node, we can prune parts of the tree that 

could NOT include the nearest neighbor. 

Nearest Neighbor with KD Trees 



Using the distance bounds and the bounds of the data 

below each node, we can prune parts of the tree that 

could NOT include the nearest neighbor. 

Nearest Neighbor with KD Trees 
Space requirements: O(n)  

 
Query requirements: O(n1-1/d + k)  



2D MBR Range Tree 

 Store a primary 1D range tree for all the points 

based on x-coordinate. 

 For each node, store a secondary 1D range tree based 

on y-coordinate. 
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2D MBR Range Search 
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Space requirements: O(nlogn) 

Range Tree 



2D Range Search (cont’d) 

 Search using the x-coordinate only. 

 How to restrict to points with proper y-coordinate? 
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2D Range Search (cont’d) 

 Recursively search within each subtree using 

the y-coordinate. 
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MBR Range Search in d dimensions 

+Filtering on the fly 
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O(logn + k)  

O(log2n + k)  

1D query time: 

2D query time: 

d dimensions: 

Fractional Cascading Technique achieves better query time complexity: 

O(k+logd-1n) + filtering on the fly 

If needed (less than k neighbors have been reported)  

Boost R (or expand the MBR) 



Big Data Version: Efficient processing of all-k-

nearest-neighbor (aknn) queries in the 

Map-Reduce programming framework 
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• Numerous modern applications, like Geographical Information Systems 

(GIS), facilities management, location-based services, smart-cities 

services, etc., need efficient processing of queries on big spatial data. 

 

• One such query is the All 𝑘 Nearest Neighbor Query (A𝑘NNQ, or 𝑘NN 

Join).  

 

• Given two point datasets, 𝑄 (Query) and 𝑇 (Training), the A𝑘NNQ finds 

the 𝑘 nearest neighbors of 𝑇 for each point of 𝑄, according to a certain 

distance metric. 



kNN vs AkNN 
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Definition 1 (𝑘NN). Given a point 𝑝, a dataset 𝑆 and an integer 𝑘, the 𝑘 nearest 

neighbors of 𝑝 from 𝑆, denoted as 𝑘𝑁𝑁(𝑝, 𝑆), is a set of k points from 𝑆 such 

that, ∀𝑟 ∈ 𝑘𝑁𝑁(𝑝, 𝑆), ∀𝑞 ∈ 𝑆 − 𝑘𝑁𝑁(𝑝, 𝑆), 𝑑𝑖𝑠𝑡(𝑝, 𝑟) ≤ 𝑑𝑖𝑠𝑡(𝑝, 𝑞). 

 

Definition 2 (A𝑘NNQ). Given two datasets 𝑅 and 𝑆 and an integer 𝑘, the result 

of the All 𝑘 Nearest Neighbors Query of 𝑅 from 𝑆, denoted as 𝐴𝑘𝑁𝑁𝑄(𝑅, 𝑆), is 

the set of pairs {(𝑟, 𝑠) ∶ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑘𝑁𝑁(𝑟, 𝑆)}. 

 

A naive approach to find the 𝑘 nearest neighbors of two datasets would be 

to calculate the distances of every point of the one dataset, 𝑅, to every 

point of the other dataset, 𝑆, and sort the results by distance. Of course 

this would be highly inefficient as it would lead to a huge number of 

calculations, in the order of 𝑂(|𝑅| × |𝑆|). 



akNN processing….  
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Decomposition of data space 

into small equal hyper-cells 

and afterwards the merging of 

some neighboring cells, if they 

do not contain 𝑘 points, 

or more in total….. 

R=Q=I 

S=T 



akNN processing….  
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Map-Reduce AkNN Computation  (Simple Approach with 4 cells) 

Map Shuffle & Sort Cell-Reduce Output Input T, I 

(x,y,z) 

(x,y,z) 

(x,y,z) 

Map 

Map 

Map 

Reduce 

kNN list 

Map 
(x,y,z) 

Reduce 

Reduce 

Based on pre-defined  

Hyper-Cell  Bounds of T 

kNN list 

kNN list 
Reduce 

kNN list 
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(id1,x1,y1,z1) (id1,x1,y1,z1, C000 ) 

(id2, x2,y2,z2) (id2, x2,y2,z2, C100 ) 

(id3,x3,y3,z3) (id3, x3,y3,z3, C200 ) 

(id4, x4,y4,z4) (id4,x4,y4,z4, C000 ) 

(id5, x5,y5,z5) (id5, x5,y5,z5,C100) 

………………………………………………. 

Map1 
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(id6,x6,y6,z6) (id6,x6,y6,z6, C000 ) 

(id7, x7,y7,z7) (id7, x7,y7,z7, C100 ) 

(id8,x8,y8,z8) (id8, x8,y8,z8, C200 ) 

(id9, x9,y9,z9) (id9,x9,y9,z9, C000 ) 

(id10, x10,y10,z10) (id10, x10,y10,z10,C100) 

………………………………………………. 

Map2 
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(id11,x11,y11,z11) (id11,x11,y11,z11, C000 ) 

(id12, x12,y12,z12) (id12, x12,y12,z12, C100 ) 

(id13,x13,y13,z13) (id13, x13,y13,z13, C200 ) 

(id14, x14,y14,z14) (id14,x14,y14,z14, C000 ) 

(id15, x15,y15,z15) (id15, x15,y15,z15,C100) 

………………………………………………. 

Map3 
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(id16,x16,y16,z16) (id16,x16,y16,z16, C000 ) 

(id17, x17,y17,z17) (id17, x17,y17,z17, C100 ) 

(id18,x18,y18,z18) (id18, x18,y18,z18, C200 ) 

(id19, x19,y19,z19) (id19,x19,y19,z19, C000 ) 

(id20, x20,y20,z20) (id20, x20,y20,z20,C100) 

………………………………………………. 

Map4 
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(id1,id4,id6,id9,id11,id14,id16,id19,C000) AkNN_Compute(I1,C000) 

Reduce1 
I1 I2 I3 

(id2,id5,id7,id10,id12,id15,id17,id20,C100) 

(id3,id8,id13,id18,C200) 

Reduce2 

Reduce3 

AkNN_Compute(I2,C100) 

AkNN_Compute(I3,C200) 



MAP REDUCE JOBS (better approach) 
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MAP REDUCE JOBS 
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1st Improvement: 

Sweep Line in each 

cell….(assume cells 

with many points) 
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2nd  Improvement: Quad-Tree Mappers (or Oct Tree Mappers) 

70 

1. A first sample of T 

set will be used for 

quad-tree 

construction in one 

machine (VM). 

 

2. The decomposition 

of each cell to 

quadrants stops if 

the number of 

inside points is  

     <= threshold. 

 

3. Radius boost is 

    driven by the Quad 

    tree structure 

4. Better Load 

    Balancing 
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Dimensionality Reduction? 
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Idea: Find a mapping T to reduce the dimensionality 

of the data. 

Drawback: May not be able to find all similar objects 

(i.e., distance relationships might not be preserved) 



Locality Sensitive Hashing? 

 It works well for documents (SET of n-grams).. 

 What about spatio-temporal coordinates???  
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• A family H of functions h: Rd
U is called (P1,P2,r,cr)-sensitive if 

for any p,q: 

if D(p,q)≤r, then Pr[h(p)=h(q)] ≥ P1 

If D(p,q)≥ cr, then Pr[h(p)=h(q)] ≤ P2 

• P1 > P2 



Implementation of optimal high-dimensional main memory 

data structures in SPARK RDDs ?? 
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f.e.. Optimal 

Range Trees? 

Optimal M-trees? 

IEEE/ACM CCGRID 2019 



Thank you!!!!! 
 

Questions??? 
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