R-Tree

- An R-tree is a depth-balanced tree
- Each node corresponds to a disk page
- Leaf node: an array of leaf entries
- A leaf entry: (mbb, oid)
- Non-leaf node: an array of node entries
- A node entry: (dr, nodeid)

Properties

- The number of entries of a node (except for the root) in the tree is between m and M where $m \in[0, M / 2]$
$-M$: the maximum number of entries in a node, may differ for leaf and non-leaf nodes $M=\lfloor\operatorname{size}(P) / \operatorname{size}(E)\rfloor \quad P$: disk page E : entry - The root has at least 2 entries unless it is a leaf
- All leaf nodes are at the same level
- An R-tree of depth d indexes at least m^{d+1} objects and at most M^{d+1} objects, in other words, $\left\lfloor\log _{M} N-1\right\rfloor \leq d \leq\left\lfloor\log _{m} N-1\right\rfloor$

Search with R-tree

- Given a point q, find all mbbs containing q
- A recursive process starting from the root result = \varnothing
For a node N if N is a leaf node, then result $=$ result $\cup\{N\}$ else // N is a non-leaf node for each child N ' of N
if the rectangle of N ' contains q then recursively search N^{\prime}

Time complexity of search

- If mbbs do not overlap on q, the complexity is $\mathrm{O}\left(\log _{m} N\right)$.
- If mbbs overlap on q, it may not be logarithmic, in the worst case when all mbbs overlap on q, it is $\mathrm{O}(N)$.

Insertion - choose a leaf node

- Traverse the R-tree top-down, starting from the root, at each level
- If there is a node whose directory rectangle contains the mbb to be inserted, then search the subtree
- Else choose a node such that the enlargement of its directory rectangle is minimal, then search the subtree
- If more than one node satisfy this, choose the one with smallest area,
- Repeat until a leaf node is reached

Insertion - insert into the leaf node

- If the leaf node is not full, an entry [mbb, oid] is inserted
- Else // the leaf node is full
- Split the leaf node
- Update the directory rectangles of the ancestor nodes if necessary

Split - goal

- The leaf node has M entries, and one new entry to be inserted, how to partition the $M+1$ mbbs into two nodes, such that
-1 . The total area of the two nodes is minimized
- 2. The overlapping of the two nodes is minimized
- Sometimes the two goals are conflicting
- Using 1 as the primary goal

Split - solution

- Optimal solution: check every possible partition, complexity $\mathrm{O}\left(2^{M+1}\right)$
- A quadratic algorithm:
- Pick two "seed" entries e_{1} and e_{2} far from each other, that is to maximize $\operatorname{area}\left(\operatorname{mbb}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)\right)-\operatorname{area}\left(\mathrm{e}_{1}\right)-\operatorname{area}\left(\mathrm{e}_{2}\right)$ here $\mathrm{mbb}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ is the mbb containing both e_{1} and e_{2}, complexity $\mathrm{O}\left((M+1)^{2}\right)$
- Insert the remaining ($M-1$) entries into the two groups

Quadratic split cont.

- A greedy method
- At each time, find an entry e such that e expands a group with the minimum area, if tie
- Choose the group of small area
- Choose the group of fewer elements
- Repeat until no entry left or one group has ($M-m+1$) entries, all remaining entries go to another group
- If the parent is also full, split the parent too. The recursive adjustment happens bottom-up until the tree satisfies the properties required. This can be up to the root.

