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Preface to the Hardcover Edition

As its title suggests, this book investigates reasoning about knowledge, in particular,
reasoning about the knowledge of agents who reason about the world and each other’s
knowledge. This is the type of reasoning one often sees in puzzles or Sherlock Holmes
mysteries, where we might have reasoning such as this:

If Alice knew that Bob knew that Charlie was wearing a red shirt,
then Alice would have known that Bob would have known that Charlie
couldn’t have been in the pantry at midnight. But Alice didn’t know
this . . .

As we shall see, this type of reasoning is also important in a surprising number of
other contexts. Researchers in a wide variety of disciplines, from philosophy to
economics to cryptography, have all found that issues involving agents reasoning
about other agents’ knowledge are of great relevance to them. We attempt to provide
here a framework for understanding and analyzing reasoning about knowledge that
is intuitive, mathematically well founded, useful in practice, and widely applicable.

The book is almost completely self-contained. We do expect the reader to be
familiar with propositional logic; a nodding acquaintance with distributed systems
may be helpful to appreciate some of our examples, but it is not essential. Our hope
is that the book will be accessible to readers from a number of different disciplines,
including computer science, artificial intelligence, philosophy, and game theory.
While proofs of important theorems are included, the non-mathematically-oriented
reader should be able to skip them, while still following the main thrust of the book.

We have tried to make the book modular, so that, whenever possible, separate
chapters can be read independently. At the end of Chapter 1 there is a brief overview
of the book and a table of dependencies. Much of this material was taught a number
of times by the second author in one-quarter courses at Stanford University and
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by the third author in one-semester courses at the Weizmann Institute of Science.
Suggestions for subsets of material that can be covered can also be found at the end
of Chapter 1.

Many of the details that are not covered in the main part of the text of each
chapter are relegated to the exercises. As well, the exercises cover material somewhat
tangential—but still of interest!—to the main thrust of the chapter. We recommend
that the reader at least look over all the exercises in each chapter. Far better, of
course, would be to do them all (or at least a reasonable subset). Problems that are
somewhat more difficult are marked with ∗, and even more difficult problems are
marked with ∗∗.

Each chapter ends with a section of notes. These notes provide references to
the material covered in each chapter (as well as the theorems that are stated but not
proved) and, occasionally, more details on some points not covered in the chapter.
The references appearing in the notes are to the latest version of the material we could
find. In many cases, earlier versions appeared in conference proceedings. The dates
of the references that appear in the notes therefore do not provide a chronological
account of the contributions to the field. While we attempt to provide reasonably
extensive coverage of the literature in these notes, the field is too large for our coverage
to be complete. We apologize for the inadvertent omission of relevant references.

The book concludes with a bibliography, a symbol index, and an index.
Many people helped us in many ways in the preparation of this book, and we are

thankful to all of them. Daphne Koller deserves a very special note of thanks. She
did a superb job of proofreading the almost-final draft of the book. Besides catching
many typographical errors, she gave us numerous suggestions on improving the pre-
sentation in every chapter. We are very grateful to her. We would also like to thank
Johan van Benthem, Adam Grove, Vassos Hadzilacos, Lane Hemaspaandra and the
students of CS 487 at the University of Rochester, Wil Janssen, Hector Levesque,
Murray Mazer, Ron van der Meyden, Jan Pachl, Karen Rudie, Ambuj Singh, Elias
Thijsse, Mark Tuttle, and Lenore Zuck, for their useful comments and criticisms;
Johan van Benthem, Brian Chellas, David Makinson, and Krister Segerberg for their
help in tracking down the history of modal logic; and T. C. Chen and Brian Coan for
pointing out the quotations at the beginning of Chapters 2 and 3, respectively. Finally,
the second and third authors would like to thank the students of CS 356 (at Stanford
in the years 1984–1989, 1991–1992, and 1994), CS 2422S (at Toronto in 1990) and
the course on Knowledge Theory (at the Weizmann Institute of Science in the years
1987–1995), who kept finding typographical errors and suggesting improvements to
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the text (and wondering if the book would ever be completed), especially Gidi Avra-
hami, Ronen Brafman, Ed Brink, Alex Bronstein, Isis Caulder, Steve Cummings,
John DiMarco, Kathleen Fisher, Steve Friedland, Tom Henzinger, David Karger,
Steve Ketchpel, Orit Kislev, Christine Knight, Ronny Kohavi, Rick Kunin, Sherry
Listgarten, Carlos Mendioroz, Andres Modet, Shahid Mujtaba, Gal Nachum, Leo
Novik, Raymond Pang, Barney Pell, Sonne Preminger, Derek Proudian, Omer Rein-
gold, Tselly Regev, Gil Roth, Steve Souder, Limor Tirosh-Pundak-Mintz, Maurits
van der Veen, Orli Waarts, Scott Walker, and Liz Wolf.

Finally, we wish to thank the institutions that supported this work for many years;
the work of the first, second, and fourth authors was done at the IBM Almaden Re-
search Center, and the work of the third author was done at the Weizmann Institute
of Science, and while on sabbatical at the Oxford University Computing Labora-
tory. The work of the third author was supported in part by a Sir Charles Clore
Post-Doctoral Fellowship, by an Alon Fellowship, and by a Helen and Milton A.
Kimmelman Career Development Chair.



Preface to the Paperback Edition

Relatively few changes have been made for this edition of the book. For the most part,
this involved correcting typos and minor errors and updating references. Perhaps the
most significant change involved moving material from Chapter 7 on a notion called
“nonexcluding contexts” back to Chapter 5, and reworking it. This material is now
used in Chapter 6 to refine the analysis of the interaction between common knowledge
and agreement protocols.

The effect of teaching a number of classes using the hardcover edition of the
book can be seen in this edition. The second author would like to thank the students
of CS 676 (at Cornell in the years 1996, 1998, and 2000) for their comments and
suggestions, especially Wei Chen, Francis Chu, David Kempe, Yoram Minsky, Nat
Miller, and Suman Ganguli. The third author would like to thank the students of the
course “Knowledge and Games in Distributed Systems” (at the Technion EE dept.
in the years 1998, 2000, and 2002) for their comments and suggestions, especially
Tomer Koll, Liane Levin, and Alex Sprintson. We would also like to thank Jelle
Gerbrandy for pointing a minor bug in Chapter 3, and Rohit Parikh for pointing out
minor bugs in Chapters 1 and 2.

The second and third authors changed institutions between the hardcover and
paperback editions. The fourth author moved shortly before the hardcover edition
appeared. The second author is now at Cornell University, the third author is at the
Technion, and the fourth author is at Rice University. We would like to thank these
institutions for their support of the work on the paperback edition.



 

Chapter 1

Introduction and Overview

An investment in knowledge pays the best interest.

Benjamin Franklin, Poor Richard’s Almanac, c. 1750

Epistemology, the study of knowledge, has a long and honorable tradition in philos-
ophy, starting with the early Greek philosophers. Questions such as “What do we
know?” “What can be known?” and “What does it mean to say that someone knows
something?” have been much discussed in the philosophical literature. The idea of a
formal logical analysis of reasoning about knowledge is somewhat more recent, but
goes back at least to von Wright’s work in the early 1950’s. The first book-length
treatment of epistemic logic—the logic of knowledge—is Hintikka’s seminal work
Knowledge and Belief, which appeared in 1962. The 1960’s saw a flourishing of
interest in this area in the philosophy community. The major interest was in try-
ing to capture the inherent properties of knowledge. Axioms for knowledge were
suggested, attacked, and defended.

More recently, researchers in such diverse fields as economics, linguistics, AI
(artificial intelligence), and theoretical computer science have become interested in
reasoning about knowledge. While, of course, some of the issues that concerned the
philosophers have been of interest to these researchers as well, the focus of attention
has shifted. For one thing, there are pragmatic concerns about the relationship
between knowledge and action. What does a robot need to know in order to open a
safe, and how does it know whether it knows enough to open it? At what point does
an economic agent know enough to stop gathering information and make a decision?
When should a database answer “I don’t know” to a query? There are also concerns
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about the complexity of computing knowledge, a notion we can now quantify better
thanks to advances in theoretical computer science. Finally, and perhaps of most
interest to us here, is the emphasis on considering situations involving the knowledge
of a group of agents, rather than that of just a single agent.

When trying to understand and analyze the properties of knowledge, philosophers
tended to consider only the single-agent case. But the heart of any analysis of a
conversation, a bargaining session, or a protocol run by processes in a distributed
system is the interaction between agents. The focus of this book is on understanding
the process of reasoning about knowledge in a group and using this understanding
to help us analyze complicated systems. Although the reader will not go far wrong
if he or she thinks of a “group” as being a group of people, it is useful to allow a
more general notion of “group,” as we shall see in our applications. Our agents may
be negotiators in a bargaining situation, communicating robots, or even components
such as wires or message buffers in a complicated computer system. It may seem
strange to think of wires as agents who know facts; however, as we shall see, it is
useful to ascribe knowledge even to wires.

An agent in a group must take into account not only facts that are true about
the world, but also the knowledge of other agents in the group. For example, in a
bargaining situation, the seller of a car must consider what the potential buyer knows
about the car’s value. The buyer must also consider what the seller knows about
what the buyer knows about the car’s value, and so on. Such reasoning can get rather
convoluted. Most people quickly lose the thread of such nested sentences as “Dean
doesn’t know whether Nixon knows that Dean knows that Nixon knows that McCord
burgled O’Brien’s office at Watergate.” But this is precisely the type of reasoning
that is needed when analyzing the knowledge of agents in a group.

A number of states of knowledge arise naturally in a multi-agent situation that do
not arise in the one-agent case. We are often interested in situations in which everyone
in the group knows a fact. For example, a society certainly wants all drivers to know
that a red light means “stop” and a green light means “go.” Suppose we assume that
every driver in the society knows this fact and follows the rules. Will a driver then
feel safe? The answer is no, unless she also knows that everyone else knows and is
following the rules. For otherwise, a driver may consider it possible that, although
she knows the rules, some other driver does not, and that driver may run a red light.

Even the state of knowledge in which everyone knows that everyone knows is
not enough for a number of applications. In some cases we also need to consider the
state in which simultaneously everyone knows a fact ϕ, everyone knows that everyone
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knows ϕ, everyone knows that everyone knows that everyone knows ϕ, and so on.
In this case we say that the group has common knowledge of ϕ. This key notion was
first studied by the philosopher David Lewis in the context of conventions. Lewis
pointed out that in order for something to be a convention, it must in fact be common
knowledge among the members of a group. (For example, the convention that green
means “go” and red means “stop” is presumably common knowledge among the
drivers in our society.) John McCarthy, in the context of studying common-sense
reasoning, characterized common knowledge as what “any fool” knows; “any fool”
knows what is commonly known by all members of a society.

Common knowledge also arises in discourse understanding. Suppose that Ann
asks Bob “What did you think of the movie?” referring to a showing of Monkey
Business they have just seen. Not only must Ann and Bob both know that “the
movie” refers to Monkey Business, but Ann must know that Bob knows (so that
she can be sure that Bob will give a reasonable answer to her question), Bob must
know that Ann knows that Bob knows (so that Bob knows that Ann will respond
appropriately to his answer), and so on. In fact, by a closer analysis of this situation,
it can be shown that there must be common knowledge of what movie is meant in
order for Bob to answer the question appropriately.

Finally, common knowledge also turns out to be a prerequisite for achieving
agreement. This is precisely what makes it such a crucial notion in the analysis of
interacting groups of agents.

At the other end of the spectrum from common knowledge is distributed knowl-
edge. A group has distributed knowledge of a fact ϕ if the knowledge of ϕ is
distributed among its members, so that by pooling their knowledge together the
members of the group can deduce ϕ, even though it may be the case that no member
of the group individually knows ϕ. For example, if Alice knows that Bob is in love
with either Carol or Susan, and Charlie knows that Bob is not in love with Carol,
then together Alice and Charlie have distributed knowledge of the fact that Bob is in
love with Susan, although neither Alice nor Charlie individually has this knowledge.
While common knowledge can be viewed as what “any fool” knows, distributed
knowledge can be viewed as what a “wise man”—one who has complete knowledge
of what each member of the group knows—would know.

Common knowledge and distributed knowledge are useful tools in helping us
understand and analyze complicated situations involving groups of agents. The
puzzle described in the next section gives us one example.
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1.1 The “Muddy Children” Puzzle

Reasoning about the knowledge of a group can involve subtle distinctions between
a number of states of knowledge. A good example of the subtleties that can arise is
given by the “muddy children” puzzle, which is a variant of the well known “wise
men” or “cheating wives” puzzles.

Imagine n children playing together. The mother of these children has
told them that if they get dirty there will be severe consequences. So,
of course, each child wants to keep clean, but each would love to see
the others get dirty. Now it happens during their play that some of the
children, say k of them, get mud on their foreheads. Each can see the
mud on others but not on his own forehead. So, of course, no one says a
thing. Along comes the father, who says, “At least one of you has mud
on your forehead,” thus expressing a fact known to each of them before
he spoke (if k > 1). The father then asks the following question, over
and over: “Does any of you know whether you have mud on your own
forehead?” Assuming that all the children are perceptive, intelligent,
truthful, and that they answer simultaneously, what will happen?

There is a “proof” that the first k − 1 times he asks the question,
they will all say “No,” but then the kth time the children with muddy
foreheads will all answer “Yes.”

The “proof” is by induction on k. For k = 1 the result is obvious:
the one child with a muddy forehead sees that no one else is muddy.
Since he knows that there is at least one child with a muddy forehead,
he concludes that he must be the one. Now suppose k = 2. So there
are just two muddy children, a and b. Each answers “No” the first time,
because of the mud on the other. But, when b says “No,” a realizes that
he must be muddy, for otherwise b would have known the mud was on
his forehead and answered “Yes” the first time. Thus a answers “Yes”
the second time. But b goes through the same reasoning. Now suppose
k = 3; so there are three muddy children, a, b, c. Child a argues as
follows. Assume that I do not have mud on my forehead. Then, by the
k = 2 case, both b and c will answer “Yes” the second time. When they
do not, he realizes that the assumption was false, that he is muddy, and
so will answer “Yes” on the third question. Similarly for b and c.

The argument in the general case proceeds along identical lines.
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Let us denote the fact “at least one child has a muddy forehead” by p. Notice
that if k > 1, that is, more than one child has a muddy forehead, then every child
can see at least one muddy forehead, and the children initially all know p. Thus, it
would seem that the father does not provide the children with any new information,
and so he should not need to tell them that p holds when k > 1. But this is false!
In fact, as we now show, if the father does not announce p, the muddy children are
never able to conclude that their foreheads are muddy.

Here is a sketch of the proof: We prove by induction on q that, no matter what
the situation is, that is, no matter how many children have a muddy forehead, all
the children answer “No” to the father’s first q questions. Clearly, no matter which
children have mud on their foreheads, all the children answer “No” to the father’s
first question, since a child cannot tell apart a situation where he has mud on his
forehead from one that is identical in all respects except that he does not have a
muddy forehead. The inductive step is similar: By the inductive hypothesis, the
children answer “No” to the father’s first q questions. Thus, when the father asks his
question for the (q + 1)st time, child i still cannot tell apart a situation where he has
mud on his forehead from one that is identical in all respects except that he does not
have a muddy forehead, since by the induction hypothesis, the children will answer
“No” to the father’s first q questions whether or not child i has a muddy forehead.
Thus, again, he does not know whether his own forehead is muddy.

So, by announcing something that the children all know, the father somehow
manages to give the children useful information! How can this be? Exactly what
is the role of the father’s statement? Of course, the father’s statement did enable
us to do the base case of the induction in the proof, but this does not seem to be
a terribly satisfactory answer. It certainly does not explain what information the
children gained as a result of the father’s statement.

We can answer these questions by using the notion of common knowledge de-
scribed in the previous section. Let us consider the case of two muddy children in
more detail. It is certainly true that before the father speaks, everyone knows p. But
it is not the case that everyone knows that everyone knows p. If Alice and Bob are the
only children with muddy foreheads, then before the father speaks, Alice considers
it possible that she does not have mud on her forehead, in which case Bob does not
see anyone with a muddy forehead and so does not know p. After the father speaks,
Alice does know that Bob knows p. After Bob answers “No” to the father’s first
question, Alice uses her knowledge of the fact that Bob knows p to deduce that her
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own forehead is muddy. (Note that if Bob did not know p, then Bob would have said
“No” the first time even if Alice’s forehead were clean.)

We have just seen that if there are only two muddy children, then it is not the case
that everyone knows that everyone knows p before the father speaks. However, if
there are three muddy children, then it is the case that everyone knows that everyone
knows p before the father speaks. If Alice, Bob, and Charlie have muddy foreheads,
then Alice knows that Bob can see Charlie’s muddy forehead, Bob knows that Charlie
can see Alice’s muddy forehead, etc. It is not the case, however, that everyone knows
that everyone knows that everyone knows p before the father speaks. In general, if we
let Ekp represent the fact that everyone knows that everyone knows . . . (k times) p,
and let Cp represent the fact that p is common knowledge, then we leave it to the
reader to check that if exactly k children have muddy foreheads, then Ek−1p holds
before the father speaks, but Ekp does not. It turns out that when there are k muddy
children, Ekp suffices to ensure that the children with muddy foreheads will be able
to figure it out, while Ek−1p does not. The father’s statement actually converts the
children’s state of knowledge from Ek−1p to Cp. With this extra knowledge, they
can deduce whether their foreheads are muddy.

The careful reader will have noticed that we made a number of implicit assump-
tions in the preceding discussion over and above the assumption made in the story
that “the children are perceptive, intelligent, and truthful.” Suppose again that Alice
and Bob are the only children with muddy foreheads. It is crucial that both Alice
and Bob know that the children are intelligent, perceptive, and truthful. For example,
if Alice does not know that Bob is telling the truth when he answers “No” to the
father’s first question, then she cannot answer “Yes” to the second question (even if
Bob is in fact telling the truth). Similarly, Bob must know that Alice is telling the
truth. Besides its being known that each child is intelligent, perceptive, and truthful,
we must also assume that each child knows that the others can see, that they all hear
the father, that the father is truthful, and that the children can do all the deductions
necessary to answer the father’s questions.

Actually, even stronger assumptions need to be made. If there are k children
with muddy foreheads, it must be the case that everyone knows that everyone knows
. . . (k − 1 times) that the children all have the appropriate attributes (they are per-
ceptive, intelligent, all hear the father, etc.). For example, if there are three muddy
children and Alice considers it possible that Bob considers it possible that Charlie
might not have heard the father’s statement, then she cannot say “Yes” to the fa-
ther’s third question (even if Charlie in fact did hear the father’s statement and Bob
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knows this). In fact, it seems reasonable to assume that all these attributes are com-
mon knowledge, and, indeed, this assumption seems to be made by most people on
hearing the story.

To summarize, it seems that the role of the father’s statement was to give the
children common knowledge of p (the fact that at least one child has a muddy
forehead), but the reasoning done by the children assumes that a great deal of common
knowledge already existed in the group. How does this common knowledge arise?
Even if we ignore the problem of how facts like “all the children can see” and “all
the children are truthful” become common knowledge, there is still the issue of how
the father’s statement makes p common knowledge.

Note that it is not quite correct to say that p becomes common knowledge because
all the children hear the father. Suppose that the father had taken each child aside
individually (without the others noticing) and said “At least one of you has mud on
your forehead.” The children would probably have thought it a bit strange for him
to be telling them a fact that they already knew. It is easy to see that p would not
become common knowledge in this setting.

Given this example, one might think that the common knowledge arose because
all the children knew that they all heard the father. Even this is not enough. To see
this, suppose the children do not trust each other, and each child has secretly placed
a miniature microphone on all the other children. (Imagine that the children spent
the previous summer at a CIA training camp.) Again the father takes each child
aside individually and says “At least one of you has a muddy forehead.” In this case,
thanks to the hidden microphones, all the children know that each child has heard
the father, but they still do not have common knowledge.

A little more reflection might convince the reader that the common knowledge
arose here because of the public nature of the father’s announcement. Roughly speak-
ing, the father’s public announcement of p puts the children in a special situation,
one with the property that all the children know both that p is true and that they
are in this situation. We shall show that under such circumstances p is common
knowledge. Note that the common knowledge does not arise because the children
somehow deduce each of the facts Ekp one by one. (If this were the case, then
arguably it would take an infinite amount of time to attain common knowledge.)
Rather, the common knowledge arises all at once, as a result of the children being in
such a special situation. We return to this point in later chapters.
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1.2 An Overview of the Book

The preceding discussion should convince the reader that the subtleties of reasoning
about knowledge demand a careful formal analysis. In Chapter 2, we introduce a
simple, yet quite powerful, formal semantic model for knowledge, and a language for
reasoning about knowledge. The basic idea underlying the model is that of possible
worlds. The intuition is that if an agent does not have complete knowledge about
the world, she will consider a number of worlds possible. These are her candidates
for the way the world actually is. The agent is said to know a fact ϕ if ϕ holds at all
the worlds that the agent considers to be possible. Using this semantic model allows
us to clarify many of the subtleties of the muddy children puzzle in quite an elegant
way. The analysis shows how the children’s state of knowledge changes with each
response to the father’s questions, and why, if there are k muddy children altogether,
it is only after the children hear the answer to the (k − 1)st question that the ones
with muddy foreheads can deduce this fact.

We should emphasize here that we do not feel that the semantic model we present
in the next chapter is the unique “right” model of knowledge. We spend some time
discussing the properties of knowledge in this model. A number of philosophers have
presented cogent arguments showing that some of these properties are “wrong.” Our
concerns in this book are more pragmatic than those of the philosophers. We do not
believe that there is a “right” model of knowledge. Different notions of knowledge
are appropriate for different applications. The model we present in the next chapter is
appropriate for analyzing the muddy children puzzle and for many other applications,
even if it is not appropriate for every application. One of our goals in this book is to
show how the properties of “knowledge” vary with the application.

In Chapter 3, we give a complete characterization of the properties of knowledge
in the possible-worlds model. We describe two approaches to this characterization.
The first approach is proof-theoretic: we show that all the properties of knowledge
can be formally proved from the properties discussed in Chapter 2. The second
approach is algorithmic: we study algorithms that can determine whether a given
property holds under our definition of knowledge, and consider the computational
complexity of doing this.

One of the major applications we have in mind is using knowledge to analyze
multi-agent systems, be they systems of interacting agents or systems of computers in
a network. In Chapter 4 we show how we can use our semantic model for knowledge
to ascribe knowledge to agents in a multi-agent system. The reason that we use the
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word “ascribe” here is that the notion of knowledge we use in the context of multi-
agent systems can be viewed as an external notion of knowledge. There is no notion
of the agent computing his knowledge, and no requirement that the agent be able to
answer questions based on his knowledge. While this may seem to be an unusual
way of defining knowledge, we shall argue that it does capture one common usage
of the word “know.” Moreover, we give examples that show its utility in analyzing
multi-agent systems.

In Chapter 5 we extend the model of Chapter 4 to consider actions, protocols,
and programs. This allows us to analyze more carefully how changes come about in
multi-agent systems. We also define the notion of a specification and consider what
it means for a protocol or program to satisfy a specification.

In Chapter 6 we show how useful a knowledge-based analysis of systems can be.
Our focus in this chapter is common knowledge, and we show how fundamental it
is in various contexts. In particular, we show that it is a prerequisite for agreement
and simultaneous coordinated action.

In Chapter 7 we extend our notions of programs to consider knowledge-based
programs, which allow explicit tests for knowledge. Knowledge-based programs
can be viewed as giving us a high-level language in which to program or specify
a system. We give a number of examples showing the usefulness of thinking and
programming at the knowledge level.

In Chapter 8 we consider the properties of knowledge and time, focusing on how
knowledge evolves over time in multi-agent systems. We show that small changes
in the assumptions we make about the interactions between knowledge and time in
a system can have quite subtle and powerful effects on the properties of knowledge.

As we show in Chapter 2, one property that seems to be an inherent part of
the possible-worlds model of knowledge is that agents are logically omniscient.
Roughly speaking, this means they know all tautologies and all logical consequences
of their knowledge. In the case of the muddy children puzzle we explicitly make
the assumption that each child can do all the reasoning required to solve the puzzle.
While this property may be reasonable for some applications, it certainly is not
reasonable in general. After all, we cannot really hope to build logically omniscient
robots. In Chapter 9 we describe several approaches for constructing abstract models
that do not have the logical omniscience property.

As we have already discussed, our notion of knowledge in multi-agent systems
is best understood as an external one, ascribed by, say, the system designer to the
agents. We do not assume that the agents compute their knowledge in any way, nor
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Figure 1.1 Dependency diagram
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do we assume that they can necessarily answer questions based on their knowledge.
In a number of applications that we are interested in, agents need to act on their
knowledge. In such applications, external knowledge is insufficient; an agent that
has to act on her knowledge has to be able to compute this knowledge. The topic of
knowledge and computation is the subject of Chapter 10.

In Chapter 11, we return to the topic of common knowledge. We suggested in
the previous section that common knowledge arose in the muddy children puzzle
because of the public nature of the father’s announcement. In many practical set-
tings such a public announcement, whose contents are understood simultaneously
by many agents, is impossible to achieve. We show that, in a precise sense, common
knowledge cannot be attained in these settings. This puts us in a somewhat para-
doxical situation, in that we claim both that common knowledge is a prerequisite for
agreement and coordinated action and that it cannot be attained. We examine this
paradox in Chapter 11 and suggest two possible resolutions. The first makes use
of the observation that if we model time at a sufficiently coarse level of granularity,
then we often can and do attain common knowledge. The question then becomes
when and whether it is appropriate to model time in this way. The second involves
considering close approximations of common knowledge that are often attainable,
and suffice for our purposes.

Although a considerable amount of the material in this book is based on previ-
ously published work, a number of elements are new. These include much of the
material in Chapters 5, 7, 10, and some of Chapter 11. Specifically, the notions of
contexts and programs in Chapter 5, and of knowledge-based programs and their
implementation in Chapter 7, are new. Moreover, they play a significant role in the
way we model and analyze knowledge and action in multi-agent systems.

We have tried as much as possible to write the book in a modular way, so that
material in the later chapters can be read without having to read all the preceding
chapters. Figure 1.1 describes the dependencies between chapters. An arrow from
one chapter to another indicates that it is necessary to read (at least part of) the first
chapter in order to understand (at least part of) the second. We have labeled the
arrow if it is not necessary to read all of the first chapter to understand all of the
second. For example, the label 9.1→10, 9.3.3→10.3 on the arrow from Chapter 9
to Chapter 10 indicates that the only sections in Chapter 9 on which Chapter 10
depends are 9.1 and 9.3.3 and, moreover, the only section in Chapter 10 that depends
on Section 9.3.3 is Section 10.3. Similarly, the label 5 → 11.4 on the arrow from
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Chapter 5 to Chapter 11 indicates that Section 11.4 is the only section in Chapter 11
that depends on Chapter 5, but it depends on the whole chapter.

Certain material can be skipped without losing a broad overview of the area. In
particular, this is the case for Sections 3.3, 3.4, 4.5, 6.7, and 7.7. The second author
covered a substantial portion of the remaining material (moving at quite a rapid pace)
in a one-quarter course at Stanford University. A course designed to focus on the
application of our approach to distributed systems could cover Chapters 1, 2, 4, 5,
6, 7, 10, and 11. Each chapter ends with exercises and bibliographic notes; these
could be useful in a course based on this book. As we mentioned in the preface, we
strongly recommend that the reader at least look over the exercises.

Exercises

1.1 The aces and eights game is a simple game that involves some sophisticated
reasoning about knowledge. It is played with a deck consisting of just four aces and
four eights. There are three players. Six cards are dealt out, two to each player. The
remaining two cards are left face down. Without looking at the cards, each of the
players raises them up to his or her forehead, so that the other two players can see
them but he or she cannot. Then all of the players take turns trying to determine
which cards they’re holding (they do not have to name the suits). If a player does not
know which cards he or she is holding, the player must say so. Suppose that Alice,
Bob, and you are playing the game. Of course, it is common knowledge that none
of you would ever lie, and that you are all perfect reasoners.

(a) In the first game, Alice, who goes first, holds two aces, and Bob, who goes
second, holds two eights. Both Alice and Bob say that they cannot determine
what cards they are holding. What cards are you holding? (Hint: consider
what would have happened if you held two aces or two eights.)

(b) In the second game, you go first. Alice, who goes second, holds two eights.
Bob, who goes third, holds an ace and an eight. No one is able to determine
what he or she holds at his or her first turn. What do you hold? (Hint: by
using part (a), consider what would have happened if you held two aces.)

(c) In the third game, you go second. Alice, who goes first, holds an ace and an
eight. Bob, who goes third, also holds an ace and an eight. No one is able to
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determine what he or she holds at his or her first turn; Alice cannot determine
her cards at her second turn either. What do you hold?

* 1.2 Show that in the aces and eights game of Exercise 1.1, someone will always be
able to determine what cards he or she holds. Then show that there exists a situation
where only one of the players will be able to determine what cards he or she holds,
and the other two will never be able to determine what cards they hold, no matter
how many rounds are played.

1.3 The wise men puzzle is a well-known variant of the muddy children puzzle.
The standard version of the story goes as follows: There are three wise men. It is
common knowledge that there are three red hats and two white hats. The king puts
a hat on the head of each of the three wise men, and asks them (sequentially) if they
know the color of the hat on their head. The first wise man says that he does not
know; the second wise man says that he does not know; then the third wise man says
that he knows.

(a) What color is the third wise man’s hat?

(b) We have implicitly assumed in the story that the wise men can all see. Suppose
we assume instead that the third wise man is blind and that it is common
knowledge that the first two wise men can see. Can the third wise man still
figure out the color of his hat?

Notes

The idea of a formal logical analysis of reasoning about knowledge seems to have first
been raised by von Wright [1951]. As we mentioned in the text, Hintikka [1962] gave
the first book-length treatment of epistemic logic. Lenzen [1978] gives an overview
of the work in epistemic logic done in the 1960’s and 1970’s. He brings out the
arguments for and against various axioms of knowledge. The most famous of these
arguments is due to Gettier [1963], who argued against the classical interpretation
of knowledge as true, justified belief; his work inspired many others. Gettier’s
arguments and some of the subsequent papers are discussed in detail by Lenzen
[1978]. For recent reviews of the subject, see the works by Halpern [1986, 1987,
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1995], by Meyer, van der Hoek, and Vreeswijk [1991a, 1991b] (see also [Meyer and
Hoek 1995]), by Moses [1992], and by Parikh [1990].

As we mentioned, the original work on common knowledge was done by Lewis
[1969] in the context of studying conventions. Although McCarthy’s notion of what
“any fool” knows goes back to roughly 1970, it first appears in a published paper in
[McCarthy, Sato, Hayashi, and Igarishi 1979]. The notion of knowledge and common
knowledge has also been of great interest to economists and game theorists, ever since
the seminal paper by Aumann [1976]. Knowledge and common knowledge were first
applied to multi-agent systems by Halpern and Moses [1990] and by Lehmann [1984].
The need for common knowledge in understanding a statement such as “What did
you think of the movie?” is discussed by Clark and Marshall [1981]; a dissenting
view is offered by Perrault and Cohen [1981]. Clark and Marshall also present an
example of nested knowledge based on the Watergate scandal, mentioning Dean
and Nixon. The notion of distributed knowledge was discussed first, in an informal
way, by Hayek [1945], and then, in a more formal way, by Hilpinen [1977]. It was
rediscovered and popularized by Halpern and Moses [1990]. They initially called
it implicit knowledge, and the term “distributed knowledge” was suggested by Jan
Pachl.

The muddy children puzzle is a variant of the “unfaithful wives” puzzle discussed
by Littlewood [1953] and Gamow and Stern [1958]. Gardner [1984] also presents a
variant of the puzzle, and a number of variants of the puzzle are discussed by Moses,
Dolev, and Halpern [1986]. The version given here is taken almost verbatim from
[Barwise 1981]. The aces and eights game in Exercise 1.1 is taken from [Carver
1989]. Another related puzzle is the so-called “Conway paradox”, which was first
discussed by Conway, Paterson, and Moscow [1977], and later by Gardner [1977].
It was analyzed in an epistemic framework by van Emde Boas, Groenendijk, and
Stokhof [1980]. An extension of this puzzle was considered by Parikh [1992].
The wise men puzzle discussed in Exercise 1.3 seems to have been first discussed
formally by McCarthy [1978], although it is undoubtedly much older. The well-
known surprise test paradox, also known as the surprise examination paradox, the
hangman’s paradox, or the unexpected hanging paradox, is quite different from the
wise men puzzle, but it too can be analyzed in terms of knowledge. Binkley [1968]
does an analysis that explicitly uses knowledge; Chow [1998] gives a more up-to-date
discussion. Halpern and Moses [1986] give a slightly different logic-based analysis,
as well as pointers to the literature.



 

Chapter 2

A Model for Knowledge

Chuangtse and Hueitse had strolled onto the bridge over the Hao, when
the former observed, “See how the small fish are darting about! That
is the happiness of the fish.” “You are not a fish yourself,” said Hueitse.
“How can you know the happiness of the fish?” “And you not being I,”
retorted Chuangtse, “how can you know that I do not know?”

Chuangtse, c. 300 B.C.

2.1 The Possible-Worlds Model

As we said in Chapter 1, our framework for modeling knowledge is based on possible
worlds. The intuitive idea behind the possible-worlds model is that besides the true
state of affairs, there are a number of other possible states of affairs or “worlds”.
Given his current information, an agent may not be able to tell which of a number
of possible worlds describes the actual state of affairs. An agent is then said to
know a fact ϕ if ϕ is true at all the worlds he considers possible (given his current
information). For example, agent 1 may be walking on the streets in San Francisco
on a sunny day but may have no information at all about the weather in London.
Thus, in all the worlds that the agent considers possible, it is sunny in San Francisco.
(We are implicitly assuming here that the agent does not consider it possible that
he is hallucinating and in fact it is raining heavily in San Francisco.) On the other
hand, since the agent has no information about the weather in London, there are
worlds he considers possible in which it is sunny in London, and others in which
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it is raining in London. Thus, this agent knows that it is sunny in San Francisco,
but he does not know whether it is sunny in London. Intuitively, the fewer worlds
an agent considers possible, the less his uncertainty, and the more he knows. If the
agent acquires additional information—such as hearing from a reliable source that
it is currently sunny in London—then he would no longer consider possible any of
the worlds in which it is raining in London.

In a situation such as a poker game, these possible worlds have a concrete inter-
pretation: they are simply all the possible ways the cards could have been distributed
among the players. Initially, a player may consider possible all deals consistent with
the cards in her hand. Players may acquire additional information in the course of
the play of the game that allows them to eliminate some of the worlds they consider
possible. Even if Alice does not know originally that Bob holds the ace of spades,
at some point Alice might come to know it, if the additional information she obtains
allows her to eliminate all the worlds (distributions of cards among players) where
Bob does not hold the ace of spades.

Another example is provided by the muddy children puzzle we discussed in
the previous chapter. Suppose that Alice sees that Bob and Charlie have muddy
foreheads and that all the other children do not have muddy foreheads. This allows
her to eliminate all but two worlds: one in which she, Bob, and Charlie have muddy
foreheads, and no other child does, and one in which Bob and Charlie are the only
children with muddy foreheads. In all (i.e., both) of the worlds that Alice considers
possible, Bob and Charlie have muddy foreheads and all the children except Bob,
Charlie, and herself have clean foreheads. Alice’s only uncertainty is regarding her
own forehead; this uncertainty is reflected in the set of worlds she considers possible.
As we shall see in Section 2.3, upon hearing the children’s replies to the father’s first
two questions, Alice will be able to eliminate one of these two possible worlds and
will know whether or not her own forehead is muddy.

To make these ideas precise, we first need a language that allows us to express
notions of knowledge in a straightforward way. As we have already seen, English is
not a particularly good language in which to carry out complicated reasoning about
knowledge. Instead we use the language of modal logic.

Suppose that we have a group consisting of n agents, creatively named 1, . . . , n.
For simplicity, we assume that these agents wish to reason about a world that can be
described in terms of a nonempty set � of primitive propositions, typically labeled
p, p′, q, q ′, . . . These primitive propositions stand for basic facts about the world
such as “it is sunny in San Francisco” or “Alice has mud on her forehead”. To
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express a statement like “Bob knows that it is sunny in San Francisco”, we augment
the language by modal operators K1, . . . , Kn (one for each agent). A statement like
K1ϕ is then read “agent 1 knows ϕ”.

Technically, a language is just a set of formulas. We can now describe the set
of formulas of interest to us. We start with the primitive propositions in �, and
form more complicated formulas by closing off under negation, conjunction, and the
modal operators K1, . . . , Kn. Thus, if ϕ and ψ are formulas, then so are ¬ϕ, (ϕ∧ψ),
and Kiϕ, for i = 1, . . . , n. For the sake of readability, we omit the parentheses in
formulas such as (ϕ ∧ ψ) whenever it does not lead to confusion. We also use
standard abbreviations from propositional logic, such as ϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ),
ϕ ⇒ ψ for ¬ϕ ∨ ψ , and ϕ ⇔ ψ for (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ). We take true to be an
abbreviation for some fixed propositional tautology such as p ∨ ¬p, and take false
to be an abbreviation for ¬true.

We can express quite complicated statements in a straightforward way using this
language. For example, the formula

K1K2p ∧ ¬K2K1K2p

says that agent 1 knows that agent 2 knows p, but agent 2 does not know that agent 1
knows that agent 2 knows p.

We view possibility as the dual of knowledge. Thus, agent 1 considers ϕ possible
exactly if he does not know ¬ϕ. This situation can be described by the formula
¬K1¬ϕ. A statement like “Dean doesn’t know whether ϕ” says that Dean considers
both ϕ and ¬ϕ possible. Let’s reconsider the sentence from the previous chapter:
“Dean doesn’t know whether Nixon knows that Dean knows that Nixon knows that
McCord burgled O’Brien’s office at Watergate”. If we take Dean to be agent 1,
Nixon to be agent 2, and p to be the statement “McCord burgled O’Brien’s office at
Watergate”, then this sentence can be captured as

¬K1¬(K2K1K2p) ∧ ¬K1¬(¬K2K1K2p).

Now that we have described the syntax of our language (that is, the set of well-
formed formulas), we need semantics, that is, a formal model that we can use to
determine whether a given formula is true or false. One approach to defining se-
mantics is, as we suggested above, in terms of possible worlds, which we formalize
in terms of (Kripke) structures. (In later chapters we consider other approaches to
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giving semantics to formulas.) A Kripke structure M for n agents over � is a tuple
(S, π, K1, . . . , Kn), where S is a nonempty set of states or possible worlds, π is an
interpretation which associates with each state in S a truth assignment to the primi-
tive propositions in � (i.e., π(s) : � → {true, false} for each state s ∈ S), and Ki

is a binary relation on S, that is, a set of pairs of elements of S.
The truth assignment π(s) tells us whether p is true or false in state s. Thus, if

p denotes the fact “It is raining in San Francisco”, then π(s)(p) = true captures
the situation in which it is raining in San Francisco in state s of structure M . The
binary relation Ki is intended to capture the possibility relation according to agent i:
(s, t) ∈ Ki if agent i considers world t possible, given his information in world s.
We think of Ki as a possibility relation, since it defines what worlds agent i considers
possible in any given world. Throughout most of the book (in particular, in this
chapter), we further require that Ki be an equivalence relation on S. An equivalence
relation K on S is a binary relation that is (a) reflexive, which means that for all
s ∈ S, we have (s, s) ∈ K, (b) symmetric, which means that for all s, t ∈ S, we
have (s, t) ∈ K if and only if (t, s) ∈ K, and (c) transitive, which means that for
all s, t, u ∈ S, we have that if (s, t) ∈ K and (t, u) ∈ K, then (s, u) ∈ K. We take
Ki to be an equivalence relation since we want to capture the intuition that agent i

considers t possible in world s if in both s and t agent i has the same information
about the world, that is, the two worlds are indistinguishable to the agent. Making Ki

an equivalence relation seems natural, and turns out to be the appropriate choice for
many applications. For example, as we shall see in the next section, it is appropriate
in analyzing the muddy children puzzle, while in Chapters 4 and 6 we show that it
is appropriate for many multi-agent systems applications. We could equally well,
however, consider possibility relations with other properties (for example, reflexive
and transitive, but not symmetric), as we in fact do in Chapter 3.

We now define what it means for a formula to be true at a given world in a structure.
Note that truth depends on the world as well as the structure. It is quite possible that
a formula is true in one world and false in another. For example, in one world agent
1 may know it is sunny in San Francisco, while in another he may not. To capture
this, we define the notion (M, s) |= ϕ, which can be read as “ϕ is true at (M, s)” or
“ϕ holds at (M, s)” or “(M, s) satisfies ϕ”. We define the |= relation by induction
on the structure of ϕ. That is, we start with the simplest formulas—primitive
propositions—and work our way up to more complicated formulas ϕ, assuming that
|= has been defined for all the subformulas of ϕ.
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The π component of the structure gives us the information we need to deal with
the base case, where ϕ is a primitive proposition:

(M, s) |= p (for a primitive proposition p ∈ �) iff π(s)(p) = true.

For conjunctions and negations, we follow the standard treatment from proposi-
tional logic; a conjunction ψ ∧ ψ ′ is true exactly if both of the conjuncts ψ and ψ ′
are true, while a negated formula ¬ψ is true exactly if ψ is not true:

(M, s) |= ψ ∧ ψ ′ iff (M, s) |= ψ and (M, s) |= ψ ′

(M, s) |= ¬ψ iff (M, s) �|= ψ .

Note that the clause for negation guarantees that the logic is two-valued. For every
formula ψ , we have either (M, s) |= ψ or (M, s) |= ¬ψ , but not both.

Finally, we have to deal with formulas of the form Kiψ . Here we try to capture
the intuition that agent i knows ψ in world s of structure M exactly if ψ is true at all
worlds that i considers possible in s. Formally, we have

(M, s) |= Kiψ iff (M, t) |= ψ for all t such that (s, t) ∈ Ki .

These definitions are perhaps best illustrated by a simple example. One of the
advantages of a Kripke structure is that it can be viewed as a labeled graph, that
is, a set of labeled nodes connected by directed, labeled edges. The nodes are the
states of S; the label of state s ∈ S describes which primitive propositions are true
and false at s. We label edges by sets of agents; the label on the edge from s to t

includes i if (s, t) ∈ Ki . For example, suppose that � = {p} and n = 2, so that our
language has one primitive proposition p and there are two agents. Further suppose
that M = (S, π, K1, K2), where S = {s, t, u}, p is true at states s and u, but false
at t (so that π(s)(p) = π(u)(p) = true and π(t)(p) = false), agent 1 cannot
distinguish s from t (so that K1 = {(s, s), (s, t), (t, s), (t, t), (u, u)}), and agent 2
cannot distinguish s from u (so that K2 = {(s, s), (s, u), (t, t), (u, s), (u, u)}). This
situation can be captured by the graph in Figure 2.1. Note how the graph captures
our assumptions about the Ki relations. In particular, we have a self-loop at each
edge labeled by both 1 and 2 because the relations K1 and K2 are reflexive, and the
edges have an arrow in each direction because K1 and K2 are symmetric.

If we view p as standing for “it is sunny in San Francisco”, then in state s it is
sunny in San Francisco but agent 1 does not know it, since in state s he considers both
s and t possible. (We remark that we used the phrase “agent 1 cannot distinguish s
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Figure 2.1 A simple Kripke structure

from t”. Of course, agent 1 realizes perfectly well that s and t are different worlds.
After all, it is raining in San Francisco in s, but not in t . What we really intend
here is perhaps more accurately described by something like “agent 1’s information
is insufficient to enable him to distinguish whether the actual world is s or t”. We
continue to use the word “indistinguishable” in the somewhat looser sense throughout
the book.) On the other hand, agent 2 does know in state s that it is sunny, since in
both worlds that agent 2 considers possible at s (namely, s and u), the formula p is
true. In state t , agent 2 also knows the true situation, namely, that it is not sunny. It
follows that in state s agent 1 knows that agent 2 knows whether or not it is sunny in
San Francisco: in both worlds agent 1 considers possible in state s, namely, s and t ,
agent 2 knows what the weather in San Francisco is. Thus, although agent 1 does not
know the true situation at s, he does know that agent 2 knows the true situation. (And
so, assuming that agent 2 were reliable, agent 1 knows that he could find out the true
situation by asking agent 2.) By way of contrast, although in state s agent 2 knows
that it is sunny in San Francisco, she does not know that agent 1 does not know this
fact. (In one world that agent 2 considers possible, namely u, agent 1 does know
that it is sunny, while in another world agent 2 considers possible, namely s, agent
1 does not know this fact.) All of this relatively complicated English discussion can
be summarized in one mathematical statement:

(M, s) |= p ∧ ¬K1p ∧ K2p ∧ K1(K2p ∨ K2¬p) ∧ ¬K2¬K1p.

Note that in both s and u, the primitive proposition p (the only primitive propo-
sition in our language) gets the same truth value. One might think, therefore, that s

and u are the same, and that perhaps one of them can be eliminated. This is not true!
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A state is not completely characterized by the truth values that the primitive propo-
sitions get there. The possibility relation is also crucial. For example, in world s,
agent 1 considers t possible, while in u he does not. As a consequence, agent 1 does
not know p in s, while in u he does.

We now consider a slightly more complicated example, which might provide a
little more motivation for making the Ki’s equivalence relations. Suppose that we
have a deck consisting of three cards labeled A, B, and C. Agents 1 and 2 each get
one of these cards; the third card is left face down. A possible world is characterized
by describing the cards held by each agent. For example, in the world (A, B), agent 1
holds card A and agent 2 holds card B (while card C is face down). There are clearly
six possible worlds: (A, B), (A, C), (B, A), (B, C), (C, A), and (C, B). Moreover,
it is clear that in a world such as (A, B), agent 1 thinks two worlds are possible:
(A, B) itself and (A, C). Agent 1 knows that he has card A, but considers it possible
that agent 2 could hold either card B or card C. Similarly, in world (A, B), agent
2 also considers two worlds: (A, B) and (C, B). In general, in a world (x, y),
agent 1 considers (x, y) and (x, z) possible, while agent 2 considers (x, y) and (z, y)

possible, where z is different from both x and y.
From this description, we can easily construct the K1 and K2 relations. It is easy

to check that they are indeed equivalence relations, as required by the definitions.
This is because an agent’s possibility relation is determined by the information he
has, namely, the card he is holding. This is an important general phenomenon: in
any situation where an agent’s possibility relation is determined by his information
(and, as we shall see, there are many such situations), the possibility relations are
equivalence relations.

The structure in this example with the three cards is described in Figure 2.2,
where, since the relations are equivalence relations, we omit the self loops and the
arrows on edges for simplicity. (As we have observed, if there is an edge from state s

to state t , there is bound to be an edge from t to s as well by symmetry.)
This example points out the need for having worlds that an agent does not consider

possible included in the structure. For example, in the world (A, B), agent 1 knows
that the world (B, C) cannot be the case. (After all, agent 1 knows perfectly well
that his own card is an A.) Nevertheless, because agent 1 considers it possible that
agent 2 considers it possible that (B, C) is the case, we must include (B, C) in the
structure. This is captured in the structure by the fact that there is no edge from
(A, B) to (B, C) labeled 1, but there is an edge labeled 1 to (A, C), from which
there is an edge labeled 2 to (B, C).
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Figure 2.2 The Kripke structure describing a simple card game

We still have not discussed the language to be used in this example. Since we are
interested in reasoning about the cards held by agents 1 and 2, it seems reasonable
to have primitive propositions of the form 1A, 2A, 2B, and so on, which are to
be interpreted as “agent 1 holds card A”, “agent 2 holds card A”, “agent 2 holds
card B”, and so on. Given this interpretation, we define π in the obvious way,
and let Mc be the Kripke structure describing this card game. Then, for example,
we have (Mc, (A, B)) |= 1A ∧ 2B. We leave it to the reader to check that we
also have (Mc, (A, B)) |= K1(2B ∨ 2C), which expresses the fact that if agent 1
holds an A, then she knows that agent 2 holds either B or C. Similarly, we have
(Mc, (A, B)) |= K1¬K2(1A): agent 1 knows that agent 2 does not know that agent 1
holds an A.

This example shows that our semantics does capture some of the intuitions we
naturally associate with the word “knowledge”. Nevertheless, this is far from a com-
plete justification for our definitions, in particular, for our reading of the formula Kiϕ

as “agent i knows ϕ”. The question arises as to what would constitute a reasonable
justification. We ultimately offer two justifications, which we hope the reader will
find somewhat satisfactory. The first is by further examples, showing that our defi-
nitions correspond to reasonable usages of the word “know”. One such example is
given in Section 2.3, where we analyze the muddy children puzzle and show that the
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formula Kiϕ does capture our intuition regarding what child i knows. The second
justification can be found in Section 2.4, where we consider some of the properties of
this notion of knowledge and show that they are consistent with the properties that the
knowledge of a perfect reasoner with perfect introspection might have. Of course,
this does not imply that there do not exist other reasonable notions of knowledge.
Some of these are considered in later chapters.

We have also restricted attention here to propositional modal logic. We do not
have first-order quantification, so that we cannot easily say, for example, that Alice
knows the governors of all states. Such a statement would require universal and
existential quantification. Roughly speaking, we could express it as ∀x(State(x) ⇒
∃y(KAliceGovernor(x, y)): for all states x, there exists y such that Alice knows
that the governor of x is y. We restrict to propositional modal logic throughout most
of this book because it is sufficiently powerful to capture most of the situations we
shall be interested in, while allowing us to avoid some of the complexities that arise
in the first-order case. We briefly consider the first-order case in Section 3.7.

2.2 Adding Common Knowledge and Distributed Knowledge

The language introduced in the previous section does not allow us to express the no-
tions of common knowledge and distributed knowledge that we discussed in Chap-
ter 1. To express these notions, we augment the language with the modal operators
EG (“everyone in the group G knows”), CG (“it is common knowledge among the
agents in G”), and DG (“it is distributed knowledge among the agents in G”) for
every nonempty subset G of {1, . . . , n}, so that if ϕ is a formula, then so are EGϕ,
CGϕ, and DGϕ. We often omit the subscript G when G is the set of all agents. In
this augmented language we can make statements like K3¬C{1,2}p (“agent 3 knows
that p is not common knowledge among agents 1 and 2”) and Dq ∧ ¬Cq (“q is
distributed knowledge, but it is not common knowledge”).

We can easily extend the definition of truth to handle common knowledge and
distributed knowledge in a structure M . Since EGϕ is true exactly if everyone in the
group G knows ϕ, we have

(M, s) |= EGϕ iff (M, s) |= Kiϕ for all i ∈ G.

The formula CGϕ is true if everyone in G knows ϕ, everyone in G knows that
everyone in G knows ϕ, etc. Let E0

Gϕ be an abbreviation for ϕ, and let Ek+1
G ϕ be
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an abbreviation for EGEk
Gϕ. In particular, E1

Gϕ is an abbreviation for EGϕ. Then
we have

(M, s) |= CGϕ iff (M, s) |= Ek
Gϕ for k = 1, 2, . . .

Our definition of common knowledge has an interesting graph-theoretical inter-
pretation, which turns out to be useful in many of our applications. Define a state t

to be G-reachable from state s in k steps (k ≥ 1) if there exist states s0, s1, . . . , sk
such that s0 = s, sk = t and for all j with 0 ≤ j ≤ k − 1, there exists i ∈ G such
that (sj , sj+1) ∈ Ki . We say t is G-reachable from s if t is G-reachable from s in
k steps for some k ≥ 1. Thus, t is G-reachable from s exactly if there is a path in
the graph from s to t whose edges are labeled by members of G. In the particular
case where G is the set of all agents, we say simply that t is reachable from s. Thus,
t is reachable from s exactly if s and t are in the same connected component of the
graph.

Lemma 2.2.1

(a) (M, s) |= Ek
Gϕ if and only if (M, t) |= ϕ for all t that are G-reachable from

s in k steps.

(b) (M, s) |= CGϕ if and only if (M, t) |= ϕ for all t that are G-reachable from s.

Proof Part (a) follows from a straightforward induction on k, while part (b) is
immediate from part (a). Notice that this result holds even if the Ki’s are arbitrary
binary relations; we do not need to assume that they are equivalence relations.

A group G has distributed knowledge of ϕ if the “combined” knowledge of the
members of G implies ϕ. How can we capture the idea of combining knowledge in
our framework? In the Kripke structure in Figure 2.1, in state s agent 1 considers
both s and t possible but does not consider u possible, while agent 2 considers s and
u possible, but not t . Someone who could combine the knowledge of agents 1 and 2
would know that only s was possible: agent 1 has enough knowledge to eliminate
u, and agent 2 has enough knowledge to eliminate t . In general, we combine the
knowledge of the agents in group G by eliminating all worlds that some agent in G

considers impossible. Technically, this is accomplished by intersecting the sets of
worlds that each of the agents in the group considers possible. Thus we define

(M, s) |= DGϕ iff (M, t) |= ϕ for all t such that (s, t) ∈ ∩i∈GKi .
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Returning to our card game example, let G = {1, 2}; thus, G is the group
consisting of the two players in the game. Then it is easy to check (using
Lemma 2.2.1) that (Mc, (A, B)) |= CG(1A ∨ 1B ∨ 1C): it is common knowl-
edge that agent 1 holds one of the cards A, B, and C. Perhaps more interesting is
(Mc, (A, B)) |= CG(1B ⇒ (2A ∨ 2C)): it is common knowledge that if agent 1
holds card B, then agent 2 holds either card A or card C. More generally, it can be
shown that any fact about the game that can be expressed in terms of the propositions
in our language is common knowledge.

What about distributed knowledge? We leave it to the reader to check that, for
example, we have (Mc, (A, B)) |= DG(1A ∧ 2B). If the agents could pool their
knowledge together, they would know that in world (A, B), agent 1 holds card A

and agent 2 holds card B.
Again, this example does not provide complete justification for our definitions.

But it should at least convince the reader that they are plausible. We examine the
properties of common knowledge and distributed knowledge in more detail in Sec-
tion 2.4.

2.3 The Muddy Children Revisited

In our analysis we shall assume that it is common knowledge that the father is truthful,
that all the children can and do hear the father, that all the children can and do see
which of the other children besides themselves have muddy foreheads, that none
of the children can see his own forehead, and that all the children are truthful and
(extremely) intelligent.

First consider the situation before the father speaks. Suppose that there are n

children altogether. As before, we number them 1, . . . , n. Some of the children have
muddy foreheads, while the rest do not. We can describe a possible situation by an
n-tuple of 0’s and 1’s of the form (x1, . . . , xn), where xi = 1 if child i has a muddy
forehead, and xi = 0 otherwise. Thus, if n = 3, then a tuple of the form (1, 0, 1)

would say that precisely child 1 and child 3 have muddy foreheads. Suppose that
the actual situation is described by this tuple. What situations does child 1 consider
possible before the father speaks? Since child 1 can see the foreheads of all the
children besides himself, his only doubt is about whether he has mud on his own
forehead. Thus child 1 considers two situations possible, namely, (1, 0, 1) (the actual
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situation) and (0, 0, 1). Similarly, child 2 considers two situations possible: (1, 0, 1)

and (1, 1, 1). Note that in general, child i has the same information in two possible
worlds exactly if they agree in all components except possibly the ith component.

We can capture the general situation by a Kripke structure M consisting of 2n

states, one for each of the possible n-tuples. We must first decide what propositions
we should include in our language. Since we want to reason about whether or not a
given child’s forehead is muddy, we take � = {p1, . . . , pn, p}, where, intuitively, pi

stands for “child i has a muddy forehead”, while p stands for “at least one child has
a muddy forehead”. Thus, we define π so that (M, (x1, . . . , xn)) |= pi if and only if
xi = 1, and (M, (x1, . . . , xn)) |= p if and only if xj = 1 for some j . Of course, p is
equivalent to p1 ∨ . . . ∨ pn, so its truth value can be determined from the truth value
of the other primitive propositions. There is nothing to prevent us from choosing a
language where the primitive propositions are not independent. Since it is convenient
to add a primitive proposition (namely p) describing the father’s statement, we do
so. Finally, we must define the Ki relations. Since child i considers a world possible
if it agrees in all components except possibly the ith component, we take (s, t) ∈ Ki

exactly if s and t agree in all components except possibly the ith component. Notice
that this definition makes Ki an equivalence relation. This completes the description
of M .

While this Kripke structure may seem quite complicated, it actually has an elegant
graphical representation. Suppose that we ignore self-loops and the labeling on the
edges for the moment. Then we have a structure with 2n nodes, each described by an
n-tuple of 0’s and 1’s, such that two nodes are joined by an edge exactly if they differ
in one component. The reader with a good imagination will see that this defines an
n-dimensional cube. The case n = 3 is illustrated in Figure 2.3 (where again we
omit self-loops and the arrows on edges).

Intuitively, each child knows which of the other children have muddy fore-
heads. This intuition is borne out in our formal definition of knowledge. For
example, it is easy to see that when the actual situation is (1, 0, 1), we have
(M, (1, 0, 1)) |= K1¬p2, since when the actual situation is (1, 0, 1), child 2 does
not have a muddy forehead in both worlds that child 1 considers possible. Similarly,
we have (M, (1, 0, 1)) |= K1p3: child 1 knows that child 3’s forehead is muddy.
However, (M, (1, 0, 1)) |= ¬K1p1. Child 1 does not know that his own forehead is
muddy, since in the other world he considers possible—(0,0,1)—his forehead is not
muddy. In fact, it is common knowledge that every child knows whether every other
child’s forehead is muddy or not. Thus, for example, a formula like p2 ⇒ K1p2,
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Figure 2.3 The Kripke structure for the muddy children puzzle with n = 3

which says that if child 2’s forehead is muddy then child 1 knows it, is common
knowledge. We leave it to the reader to check that C(p2 ⇒ K1p2) is true at every
state, as is C(¬p2 ⇒ K1¬p2).

In the world (1,0,1), in which there are two muddy children, every child knows
that at least one child has a muddy forehead even before the father speaks. And sure
enough, we have (M, (1, 0, 1)) |= Ep. It follows, however, from Lemma 2.2.1 that
(M, (1, 0, 1)) |= ¬E2p, since p is not true at the world (0, 0, 0) that is reachable in
two steps from (1, 0, 1). The reader can easily check that in the general case, if we
have n children of whom k have muddy foreheads (so that the situation is described
by an n-tuple exactly k of whose components are 1’s), then Ek−1p is true, but Ekp is
not, since each world (tuple) reachable in k − 1 steps has at least one 1 (and so there
is at least one child with a muddy forehead), but the tuple (0, . . . , 0) is reachable in
k steps.
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Before we go on, the reader should note that there are a number of assumptions
implicit in our representation. The fact that we have chosen to represent a world as an
n-tuple in this way is legitimate if we can assume that all the information necessary
for our reasoning already exists in such tuples. If there were some doubt as to whether
child 1 was able to see, then we would have to include this information in the state
description as well. Note also that the assumption that it is common knowledge that
all the children can see is what justifies the choice of edges. For example, if n = 3
and if it were common knowledge that child 1 is blind, then, for example, in the
situation (1, 1, 1), child 1 would also consider (1, 0, 0) possible. He would not know
that child 2’s forehead is muddy (see Exercises 2.1 and 2.2).

In general, when we choose to model a given situation, we have to put into the
model everything that is relevant. One obvious reason that a fact may be “irrelevant”
is because it does not pertain to the situation we are analyzing. Thus, for example,
whether child 1 is a boy or a girl is not part of the description of the possible world.
Another cause of irrelevance is that a fact may be common knowledge. If it is
common knowledge that all the children can see, then there is no point in adding this
information to the description of a possible world. It is true at all the possible worlds
in the picture, so we do not gain anything extra by mentioning it. Thus, common
knowledge can help to simplify our description of a situation.

We remark that throughout the preceding discussion we have used the term
“common knowledge” in two slightly different, although related, senses. The first
is the technical sense, where a formula ϕ in our language is common knowledge at
a state s if it is true at all states reachable from s. The second is a somewhat more
informal sense, where we say a fact (not necessarily expressible in our language) is
common knowledge if it is true at all the situations (states) in the structure. When we
say it is common knowledge that at least one child has mud on his or her forehead,
then we are using common knowledge in the first sense, since this corresponds to the
formula Cp. When we say that it is common knowledge that no child is blind, we
are using it in the second sense, since we do not have a formula q in the language that
says that no child is blind. There is an obvious relationship between the two senses
of the term. For example, if we enrich our language so that it does have a formula q

saying “no child is blind”, then Cq actually would hold at every state in the Kripke
structure. Throughout this book, we continue to speak of common knowledge in
both senses of the term, and we hope that the reader can disambiguate if necessary.

Returning to our analysis of the puzzle, consider what happens after the father
speaks. The father says p, which, as we have just observed, is already known to all
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the children if there are two or more children with muddy foreheads. Nevertheless,
the state of knowledge changes, even if all the children already know p. Going back
to our example with n = 3, in the world (1, 0, 1) child 1 considers the situation
(0, 0, 1) possible. In that world, child 3 considers (0, 0, 0) possible. Thus, in the
world (1, 0, 1), before the father speaks, although everyone knows that at least one
child has a muddy forehead, child 1 thinks it possible that child 3 thinks it possible
that none of the children has a muddy forehead. After the father speaks, it becomes
common knowledge that at least one child has a muddy forehead. (This, of course,
depends on our assumption that it is common knowledge that all the children can and
do hear the father.) We can represent the change in the group’s state of knowledge
graphically (in the general case) by simply removing the point (0, 0, . . . , 0) from the
cube, getting a “truncated” cube. (More accurately, what happens is that the node
(0, 0, . . . , 0) remains, but all the edges between (0, 0, . . . , 0) and nodes with exactly
one 1 disappear, since it is common knowledge that even if only one child has a
muddy forehead, after the father speaks that child will not consider it possible that
no one has a muddy forehead.) The situation is illustrated in Figure 2.4.
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Figure 2.4 The Kripke structure after the father speaks

We next show that each time the children respond to the father’s question with
a “No”, the group’s state of knowledge changes and the cube is further truncated.
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Consider what happens after the children respond “No” to the father’s first question.
We claim that now all the nodes with exactly one 1 can be eliminated. (More
accurately, the edges to these nodes from nodes with exactly two 1’s all disappear
from the graph.) Nodes with one or fewer 1’s are no longer reachable from nodes with
two or more 1’s. The reasoning parallels that done in the “proof” given in the story. If
the actual situation were described by, say, the tuple (1, 0, . . . , 0), then child 1 would
initially consider two situations possible: (1, 0, . . . , 0) and (0, 0, . . . , 0). Since once
the father speaks it is common knowledge that (0, 0, . . . , 0) is not possible, he would
then know that the situation is described by (1, 0, . . . , 0), and thus would know
that his own forehead is muddy. Once everyone answers “No” to the father’s first
question, it is common knowledge that the situation cannot be (1, 0, . . . , 0). (Note
that here we must use the assumption that it is common knowledge that everyone is
intelligent and truthful, and so can do the reasoning required to show (1, 0, . . . , 0) is
not possible.) Similar reasoning allows us to eliminate every situation with exactly
one 1. Thus, after all the children have answered “No” to the father’s first question,
it is common knowledge that at least two children have muddy foreheads.

Further arguments in the same spirit can be used to show that after the children
answer “No” k times, we can eliminate all the nodes with at most k 1’s (or, more
accurately, disconnect these nodes from the rest of the graph). We thus have a
sequence of Kripke structures, describing the children’s knowledge at every step in
the process. Essentially, what is going on is that if, in some node s, it becomes
common knowledge that a node t is impossible, then for every node u reachable
from s, the edge from u to t (if there is one) is eliminated. (This situation is even
easier to describe once we add time to the picture. We return to this point in Chapter 7;
see in particular Section 7.2.)

After k rounds of questioning, it is common knowledge that at least k+1 children
have mud on their foreheads. If the true situation is described by a tuple with exactly
k+1 1’s, then before the father asks the question for the (k+1)st time, those children
with muddy foreheads will know the exact situation, and in particular will know their
foreheads are muddy, and consequently will answer “Yes”. Note that they could not
answer “Yes” any earlier, since up to this point each child with a muddy forehead
considers it possible that he or she does not have a muddy forehead.

There is actually a subtle point that should be brought out here. Roughly speak-
ing, according to the way we are modeling “knowledge” in this context, a child
“knows” a fact if the fact follows from his or her current information. But we could
certainly imagine that if one of the children were not particularly bright, then he
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might not be able to figure out that he “knew” that his forehead was muddy, even
though in principle he had enough information to do so. To answer “Yes” to the
father’s question, it really is not enough for it to follow from the child’s information
whether the child has a muddy forehead. The child must actually be aware of the
consequences of his information—that is, in some sense, the child must be able to
compute that he has this knowledge—in order to act on it. Our definition implicitly
assumes that (it is common knowledge that) all reasoners are logically omniscient,
that is, that they are smart enough to compute all the consequences of the information
that they have, and that this logical omniscience is common knowledge.

Now consider the situation in which the father does not initially say p. We claim
that in this case the children’s state of knowledge never changes, no matter how many
times the father asks questions. It can always be described by the n-dimensional cube.
We have already argued that before the father speaks the situation is described by the
n-dimensional cube. When the father asks for the first time “Does any of you know
whether you have mud on your own forehead?”, clearly all the children say “No”,
no matter what the actual situation is, since in every situation each child considers
possible a situation in which he does not have mud on his forehead. Since it is
common knowledge before the father asks his question that the answer will be “No”,
no information is gained from this answer, so the situation still can be represented
by the n-dimensional cube. Now a straightforward induction on m shows that it is
common knowledge that the father’s mth question is also answered “No” (since at
the point when the father asks this question, no matter what the situation is, each
child will consider possible another situation in which he does not have a muddy
forehead), and the state of knowledge after the father asks the mth question is still
described by the cube.

This concludes our analysis of the muddy children puzzle.

2.4 The Properties of Knowledge

In the first part of this chapter we described a language with modal operators such
as Ki and defined a notion of truth that, in particular, determines whether a formula
such as Kiϕ is true at a particular world. We suggested that Kiϕ should be read
as “agent i knows ϕ”. But is this a reasonable way of reading this formula? Does
our semantics—that is, Kripke structures together with the definition of truth that we
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gave—really capture the properties of knowledge in a reasonable way? How can we
even answer this question?

We can attempt to answer the question by examining what the properties of
knowledge are under our interpretation. One way of characterizing the properties
of our interpretation of knowledge is by characterizing the formulas that are always
true. More formally, given a structure M = (S, π, K1, . . . , Kn), we say that ϕ is
valid in M , and write M |= ϕ, if (M, s) |= ϕ for every state s in S, and we say that
ϕ is satisfiable in M if (M, s) |= ϕ for some state s in S. We say that ϕ is valid, and
write |= ϕ, if ϕ is valid in all structures, and that ϕ is satisfiable if it is satisfiable in
some structure. It is easy to check that a formula ϕ is valid (resp. valid in M) if and
only if ¬ϕ is not satisfiable (resp. not satisfiable in M).

We now list a number of valid properties of our definition of knowledge and
provide a formal proof of their validity. We then discuss how reasonable these
properties are. As before, we assume throughout this section that the possibility
relations Ki are equivalence relations.

One important property of our definition of knowledge is that each agent knows
all the logical consequences of his knowledge. If an agent knows ϕ and knows that
ϕ implies ψ , then both ϕ and ϕ ⇒ ψ are true at all worlds he considers possible.
Thus ψ must be true at all worlds that the agent considers possible, so he must also
know ψ . It follows that

|= (Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ.

This axiom is called the Distribution Axiom since it allows us to distribute the Ki

operator over implication. It seems to suggest that our agents are quite powerful
reasoners.

Further evidence that our definition of knowledge assumes rather powerful agents
comes from the fact that agents know all the formulas that are valid in a given structure.
If ϕ is true at all the possible worlds of structure M , then ϕ must be true at all the
worlds that an agent considers possible in any given world in M , so it must be the case
that Kiϕ is true at all possible worlds of M . More formally, we have the following
Knowledge Generalization Rule

For all structures M , if M |= ϕ then M |= Kiϕ.

Note that from this we can deduce that if ϕ is valid, then so is Kiϕ. This rule is
very different from the formula ϕ ⇒ Kiϕ, which says that if ϕ is true, then agent i
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knows it. An agent does not necessarily know all things that are true. (For example,
in the case of the muddy children, it may be true that child 1 has a muddy forehead,
but he does not necessarily know this.) However, agents do know all valid formulas.
Intuitively, these are the formulas that are necessarily true, as opposed to the formulas
that just happen to be true at a given world.

Although an agent may not know facts that are true, it is the case that if he knows
a fact, then it is true. More formally, we have

|= Kiϕ ⇒ ϕ.

This property, occasionally called the Knowledge Axiom or the Truth Axiom (for
knowledge), has been taken by philosophers to be the major one distinguishing
knowledge from belief. Although you may have false beliefs, you cannot know
something that is false. This property follows because the actual world is always
one of the worlds that an agent considers possible. If Kiϕ holds at a particular world
(M, s), then ϕ is true at all worlds that i considers possible, so in particular it is true
at (M, s).

The last two properties we consider say that agents can do introspection regarding
their knowledge. They know what they know and what they do not know:

|= Kiϕ ⇒ KiKiϕ,

|= ¬Kiϕ ⇒ Ki¬Kiϕ.

The first of these properties is typically called the Positive Introspection Axiom, while
the second is called the Negative Introspection Axiom.

The following theorem provides us with formal assurance that all the properties
just discussed hold for our definition of knowledge.

Theorem 2.4.1 For all formulas ϕ and ψ , all structures M where each possibility
relation Ki is an equivalence relation, and all agents i = 1, . . . , n,

(a) M |= (Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ ,

(b) if M |= ϕ then M |= Kiϕ,

(c) M |= Kiϕ ⇒ ϕ,

(d) M |= Kiϕ ⇒ KiKiϕ,

(e) M |= ¬Kiϕ ⇒ Ki¬Kiϕ.
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Proof

(a) If (M, s) |= Kiϕ ∧ Ki(ϕ ⇒ ψ), then for all states t such that (s, t) ∈ Ki , we
have both that (M, t) |= ϕ and (M, t) |= ϕ ⇒ ψ . By the definition of |=, we
have that (M, t) |= ψ for all such t , and therefore (M, s) |= Kiψ .

(b) If M |= ϕ, then (M, t) |= ϕ for all states t in M . In particular, for any fixed
state s in M , it follows that (M, t) |= ϕ for all t such that (s, t) ∈ Ki . Thus,
(M, s) |= Kiϕ for all states s in M , and hence M |= Kiϕ.

(c) If (M, s) |= Kiϕ, then for all t such that (s, t) ∈ Ki , we have (M, t) |= ϕ.
Since Ki is reflexive, it follows that (s, s) ∈ Ki , so in particular (M, s) |= ϕ.

(d) Suppose that (M, s) |= Kiϕ. Consider any t such that (s, t) ∈ Ki and any
u such that (t, u) ∈ Ki . Since Ki is transitive, we have (s, u) ∈ Ki . Since
(M, s) |= Kiϕ, it follows that (M, u) |= ϕ. Thus, for all t such that (s, t) ∈ Ki ,
we have (M, t) |= Kiϕ. It now follows that (M, s) |= KiKiϕ.

(e) Suppose that (M, s) |= ¬Kiϕ. Then for someuwith (s, u) ∈ Ki , we must have
(M, u) |= ¬ϕ. Suppose that t is such that (s, t) ∈ Ki . Since Ki is symmetric,
(t, s) ∈ Ki , and since Ki is transitive, we must also have (t, u) ∈ Ki . Thus it
follows that (M, t) |= ¬Kiϕ. Since this is true for all t such that (s, t) ∈ Ki ,
we obtain (M, s) |= Ki¬Kiϕ.

The collection of properties that we have considered so far—the Distribution
Axiom, the Knowledge Axiom, Positive and Negative Introspection Axioms, and
the Knowledge Generalization Rule—has been studied in some depth in the litera-
ture. For historical reasons, these properties are sometimes called the S5 properties.
(Actually, S5 is an axiom system. We give a more formal definition of it in the next
chapter.) How reasonable are these properties? The proof of Theorem 2.4.1 shows
that, in a precise sense, the validity of the Knowledge Axiom follows from the fact
that Ki is reflexive, the validity of the Positive Introspection Axiom follows from
the fact that Ki is transitive, and the validity of the Negative Introspection Axiom
follows from the fact that Ki is symmetric and transitive. While taking Ki to be an
equivalence relation seems reasonable for many applications we have in mind, one
can certainly imagine other possibilities. As we show in Chapter 3, by modifying the
properties of the Ki relations, we can get notions of knowledge that have different
properties.
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Two properties that seem forced on us by the possible-worlds approach itself are
the Distribution Axiom and the Knowledge Generalization Rule. No matter how we
modify the Ki relations, these properties hold. (This is proved formally in the next
chapter.) These properties may be reasonable if we identify “agent i knowsϕ” with “ϕ
follows from agent i’s information”, as we implicitly did when modeling the muddy
children puzzle. To the extent that we think of knowledge as something acquired by
agents through some reasoning process, these properties suggest that we must think
in terms of agents who can do perfect reasoning. While this may be a reasonable
idealization in certain circumstances (and is an assumption that is explicitly made in
the description of the muddy children puzzle), it is clearly not so reasonable in many
contexts. In Chapters 9 and 10 we discuss how the possible-worlds model can be
modified to accommodate imperfect, “non-ideal” reasoners.

The reader might wonder at this point if there are other important properties
of our definition of knowledge that we have not yet mentioned. While, of course, a
number of additional properties follow from the basic S5 properties defined above, in
a precise sense the S5 properties completely characterize our definition of knowledge,
at least as far as the Ki operators are concerned. This point is discussed in detail in
Chapter 3.

We now turn our attention to the properties of the operators EG, CG, and DG.
Since EGϕ is true exactly if every agent in G knows ϕ, we have

|= EGϕ ⇔
∧

i∈G

Kiϕ.

Recall that we said common knowledge could be viewed as what “any fool”
knows. Not surprisingly, it turns out that common knowledge has all the properties
of knowledge; axioms analogous to the Knowledge Axiom, Distribution Axiom, Pos-
itive Introspection Axiom, and Negative Introspection Axiom all hold for common
knowledge (see Exercise 2.8). In addition, it is easy to see that common knowledge
among a group of agents implies common knowledge among any of its subgroups,
that is, CGϕ ⇒ CG′ϕ if G ⊇ G′ (again, see Exercise 2.8). It turns out that all these
properties follow from two other properties, two properties that in a precise sense
capture the essence of common knowledge. We discuss these properties next.

Recall from Chapter 1 that the children in the muddy children puzzle acquire
common knowledge of the fact p (that at least one child has a muddy forehead) be-
cause the father’s announcement puts them in a situation where all the children know
both that p is true and that they are in this situation. This observation is generalized
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in the following Fixed-Point Axiom, which says that ϕ is common knowledge among
the group G if and only if all the members of G know that ϕ is true and is common
knowledge:

|= CGϕ ⇔ EG(ϕ ∧ CGϕ).

Thus, the Fixed-Point Axiom says that CGϕ can be viewed as a fixed point of the
function f (x) = EG(ϕ ∧ x), which maps a formula x to the formula EG(ϕ ∧ x).
(We shall see a formalization of this intuition in Section 11.5.)

The second property of interest gives us a way of deducing that common knowl-
edge holds in a structure.

For all structures M , if M |= ϕ ⇒ EG(ψ ∧ ϕ), then M |= ϕ ⇒ CGψ .

This rule is often called the Induction Ruleinference rule!RC1 (Induction Rule) The
proof that it holds shows why: the antecedent gives us the essential ingredient for
proving, by induction on k, that ϕ ⇒ Ek(ψ ∧ ϕ) is valid for all k.

We now prove formally that these properties do indeed hold for the operators EG

and CG.

Theorem 2.4.2 For all formulas ϕ and ψ , all structures M , and all nonempty
G ⊆ {1, . . . , n}:

(a) M |= EGϕ ⇔ ∧
i∈G Kiϕ,

(b) M |= CGϕ ⇔ EG(ϕ ∧ CGϕ),

(c) if M |= ϕ ⇒ EG(ψ ∧ ϕ) then M |= ϕ ⇒ CGψ .

Proof Part (a) follows immediately from the semantics of EG. To prove the other
parts, we use the characterization of common knowledge provided by Lemma 2.2.1,
namely, that (M, s) |= CGϕ iff (M, t) |= ϕ for all states t that are G-reachable from
s. We remark for future reference that the proof we are about to give does not make
use of the fact that the Ki’s are equivalence relations; it goes through without change
even if the Ki’s are arbitrary binary relations.

For part (b), suppose that (M, s) |= CGϕ. Thus (M, t) |= ϕ for all states
t that are G-reachable from s. In particular, if u is G-reachable from s in one
step, then (M, u) |= ϕ and (M, t) |= ϕ for all t that are G-reachable from u.
Thus (M, u) |= ϕ ∧ CGϕ for all u that are G-reachable from s in one step, so
(M, s) |= EG(ϕ ∧ CGϕ). For the converse, suppose that (M, s) |= EG(ϕ ∧ CGϕ).
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Suppose that t is G-reachable from s and s′ is the first node after s on a path from
s to t whose edges are labeled by members of G. Since (M, s) |= EG(ϕ ∧ CGϕ),
it follows that (M, s′) |= ϕ ∧ CGϕ. Either s′ = t or t is reachable from s′. In the
former case, (M, t) |= ϕ since (M, s′) |= ϕ, while in the latter case, (M, t) |= ϕ

using Lemma 2.2.1 and the fact that (M, s′) |= CGϕ. Since (M, t) |= ϕ for all t that
are G-reachable from s, it follows that (M, s) |= CGϕ.

Finally, for part (c), suppose that M |= ϕ ⇒ EG(ψ ∧ ϕ) and (M, s) |= ϕ. We
show by induction on k that for all k we have (M, t) |= ψ ∧ ϕ for all t that are G-
reachable from s in k steps. Suppose that t is G-reachable from s in one step. Since
M |= ϕ ⇒ EG(ψ ∧ϕ), we have (M, s) |= EG(ψ ∧ϕ). Since t is G-reachable from
s in one step, by Lemma 2.2.1, we have (M, t) |= ψ ∧ ϕ as desired. If k = k′ + 1,
then there is some t ′ that is G-reachable from s in k′ steps such that t is G-reachable
from t ′ in one step. By the induction hypothesis, we have (M, t ′) |= ψ ∧ ϕ. Now
the same argument as in the base case shows that (M, t) |= ψ ∧ ϕ. This completes
the inductive proof. Since (M, t) |= ψ for all states t that are G-reachable from s, it
follows that (M, s) |= CGψ .

Finally, we consider distributed knowledge. We mentioned in Chapter 1 that
distributed knowledge can be viewed as what a “wise man” would know. So it
should not be surprising that distributed knowledge also satisfies all the properties of
knowledge. Distributed knowledge has two other properties that we briefly mention
here. Clearly, distributed knowledge of a group of size one is the same as knowledge,
so we have:

|= D{i}ϕ ⇔ Kiϕ.

The larger the subgroup, the greater the distributed knowledge of that subgroup:

|= DGϕ ⇒ DG′ϕ if G ⊆ G′.

The proof that all these properties of distributed knowledge are indeed valid is
similar in spirit to the proof of Theorem 2.4.1, so we leave it to the reader (Exer-
cise 2.10). We also show in Chapter 3 that these properties of common knowledge
and distributed knowledge in a precise sense completely characterize all the relevant
properties of these notions.
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2.5 An Event-Based Approach

The approach to modeling knowledge presented in Section 2.1 has two components.
It uses Kripke structures as a mathematical model for situations involving many
agents, and it uses a logical language to make assertions about such situations. This
language is based on a set of primitive propositions and is closed under logical oper-
ators. Thus, knowledge is expressed syntactically, by modal operators on formulas.
We call this the logic-based approach. It is the approach that traditionally has been
taken in philosophy, mathematical logic, and AI.

In this section, we describe an alternate approach to modeling knowledge, one
that is typically used in the work on knowledge in game theory and mathematical
economics. We call this the event-based approach. It differs from the logic-based
approach in two respects. First, rather than using Kripke structures as the underlying
mathematical model, the event-based approach uses closely related structures that
we call Aumann structures. Second, and more important, in the spirit of probability
theory, the event-based approach focuses on events, which are sets of possible worlds,
and dispenses completely with logical formulas. Knowledge here is expressed as an
operator on events. We now review the event-based approach and discuss its close
relationship to the logic-based approach.

As in the logic-based approach of Section 2.1, we start out with a universe S of
states. An event is a set e ⊆ S of states. We can talk, for example, about the event
of its raining in London, which corresponds to the set of states where it is raining in
London. We say that event e holds at state s if s ∈ e. Thus, if eL is the event of its
raining in London, then eL holds at state s precisely if s is one of the states where it
is raining in London. The conjunction of two events is given by their intersection.
For example, the event of its raining in London and being sunny in San Francisco is
the intersection of eL with the event of its being sunny in San Francisco. Similarly,
the negation of an event is given by the complement (with respect to S).

As we have mentioned, Aumann structures are used to provide a formal model
for the event-based approach. Aumann structures are like Kripke structures, with
two differences: The first is that there is no analogue to the π function, since in the
event-based approach, there are no primitive propositions. The second difference is
that, rather than using a binary relation Ki to define what worlds agent i considers
possible, in Aumann structures there is a partition Pi of S for each agent i. (A
partition of a set S is a set {S1, . . . , Sr} of subsets of S such that the Sj ’s are disjoint
and such that the union of the Sj ’s is the set S.) If Pi = {S1, . . . , Sr}, then the sets
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Sj are called the cells of the partition Pi , or the information sets of agent i. The
intuition is that if Sj is an information set of agent i, and if s ∈ Sj , then the set
of states that agent i considers possible (which corresponds to the information of
agent i) is precisely Sj .

Formally, an Aumann structure A is a tuple (S, P1, . . . , Pn), where S is the
set of states of the world and Pi is a partition of S for every agent i. We denote
by Pi (s) the cell of the partition Pi in which s appears. Since Pi is a partition,
follows that for every agent i and every pair s, t ∈ S of states, either Pi (s) = Pi (t)

or Pi (s) ∩ Pi (t) = ∅. Intuitively, when s, t are in the same information set of
agent i, then in state s agent i considers the state t possible. As we have already
remarked, unlike a Kripke structure, in an Aumann structure there is no function
π that associates with each state in S a truth assignment to primitive propositions.
(Using terminology we introduce in the next chapter, this means that an Aumann
structure is really a frame.)

How do we define knowledge in the event-based approach? Since the objects
of interest in this approach are events, it should not be surprising that knowledge is
defined in terms of events. Formally, given an Aumann structure (S, P1, . . . , Pn),
we define knowledge operators Ki : 2S → 2S , for i = 1, . . . , n, as follows:

Ki (e) = {s ∈ S | Pi (s) ⊆ e};

Ki (e) is called the event of i knowing e. Here 2S is the set of all subsets of S. (Note
that we use sans serif font for the knowledge operator Ki , in contrast to the italic
font that we use for the modal operator Ki , and the script font we use for the binary
relation Ki .) It is easy to see that Ki (e) is the union of the information sets of agent i

that are contained in e. The intuition is that agent i knows e at state s if e holds at
every state that agent i considers possible at state s (namely, at all states of Pi (s)).
Thus, agent i knows that no matter what the actual state is, the event e holds there.

The event of everyone in a group G knowing e is captured by an operator
EG : 2S → 2S defined as follows:

EG(e) =
⋂

i∈G

Ki (e).

We can iterate the EG operator, defining E1
G(e) = EG(e) and Ek+1

G (e) = EG(Ek
G(e))

for k ≥ 1. Common knowledge of an event e among the agents in a group G, denoted
CG(e), is the event of the players all knowing e, all knowing that all know it, and so
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on ad infinitum. Formally, we define

CG(e) =
∞⋂

k=1

Ek
G(e).

Finally, distributed knowledge of an event e among the agents in a group G,
denoted DG(e), is defined by

DG(e) = {s ∈ S | (
⋂

i∈G

Pi (s)) ⊆ e}.

Intuitively, event e is distributed knowledge if e holds at all of the states that remain
possible once we combine the information available to all of the agents.

Given two partitions P and P ′ of a set S, the partition P is said to be finer than P ′
(and P ′ to be coarser than P) if P(s) ⊆ P ′(s) holds for all s ∈ S. Intuitively, if
partition P is finer than partition P ′, then the information sets given by P give at least
as much information as the information sets given by P ′ (since considering fewer
states possible corresponds to having more information). The meet of partitions P
and P ′, denoted P � P ′, is the finest partition that is coarser than P and P ′; the join
of P and P ′, denoted P �P ′, is the coarsest partition finer than P and P ′. In the next
proposition, we make use of the meet and the join to give nice characterizations of
common knowledge and distributed knowledge.

Proposition 2.5.1 Let A = (S, P1, . . . , Pn) be an Aumann structure, let G ⊆
{1, . . . , n} be a group of agents, and let e ⊆ S. Then

(a) s ∈ CG(e) iff (�i∈GPi )(s) ⊆ e.

(b) s ∈ DG(e) iff (�i∈GPi )(s) ⊆ e.

Proof See Exercise 2.15.

It follows that the meet of the agents’ partitions characterizes their common
knowledge, and the join of the agents’ partitions characterizes their distributed knowl-
edge. Notice that Proposition 2.5.1(a) implies that verifying whether an event e is
common knowledge at a given state s can be done by one simple check of inclusion
between two well-defined sets; it is unnecessary to use the definition of common
knowledge, which involves an infinitary intersection.



2.5 An Event-Based Approach 41

There is a close connection between the logic-based approach and the event-
based approach, which we now formalize. There is a natural one-to-one correspon-
dence between partitions on S and equivalence relations on S. Given a partition
P of S, the corresponding equivalence relation R is defined by (s, s′) ∈ R iff
P(s) = P(s′). Similarly, given an equivalence relation R on S, the correspond-
ing partition {S1, . . . , Sr} of S is obtained by making each equivalence class of R
into a cell Sj of the partition; that is, two states s, t are in the same cell of the partition
precisely if (s, t) ∈ R. It is thus easy to convert back and forth between the partition
viewpoint and the equivalence relations viewpoint (see Exercise 2.16).

Assume now that we are given a Kripke structure M = (S, π, K1, . . . , Kn),
where each Ki is an equivalence relation. We define the corresponding Aumann
structure AM = (S, P1, . . . , Pn) (with the same set S of states) by taking Pi to be
the partition corresponding to the equivalence relation Ki . We want to show that
M and AM have the same “semantics”. The semantics in M is defined in terms of
formulas. The intension of a formula ϕ in structure M , denoted ϕM , is the set of
states of M at which ϕ holds, that is, ϕM = {s | (M, s) |= ϕ}. The semantics in AM

is defined in terms of events. For each primitive proposition p, define eM
p to be the

event that p is true; that is, eM
p = {s | (M, s) |= p}. We can now define an event

evM(ϕ) for each formula ϕ by induction on the structure of ϕ:

• evM(p) = eM
p

• evM(ψ1 ∧ ψ2) = evM(ψ1) ∩ evM(ψ2)

• evM(¬ψ) = S − evM(ψ)

• evM(Kiψ) = Ki (evM(ψ))

• evM(CGψ) = CG(evM(ψ))

• evM(DGψ) = DG(evM(ψ))

Intuitively, evM(ϕ) is the event that ϕ holds. The following proposition shows that
this intuition is correct, that is, that the formula ϕ holds at state s of the Kripke
structure M iff evM(ϕ) holds at state s of the Aumann structure AM .

Proposition 2.5.2 Let M be a Kripke structure where each possibility relation Ki is
an equivalence relation, and let AM be the corresponding Aumann structure. Then
for every formula ϕ, we have evM(ϕ) = ϕM .
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Proof See Exercise 2.17.

We have just shown how to go from a Kripke structure to a corresponding Aumann
structure. What about the other direction? Let A = (S, P1, . . . , Pn) be an Aumann
structure. We want to define a corresponding Kripke structure (S, π, K1, . . . , Kn)

(with the same set S of states). Defining the Ki’s is no problem: we simply take
Ki to be the equivalence relation corresponding to the partition Pi . What about the
set � of primitive propositions and the function π that associates with each state in
S a truth assignment to primitive propositions? Although an Aumann structure does
not presuppose the existence of a set of primitive propositions, in concrete examples
there typically are names for basic events of interest, such as “Alice wins the game”
or “the deal is struck”. These names can be viewed as primitive propositions. It is
also usually clear at which states these named events hold; this gives us the function
π . To formalize this, assume that we are given not only the Aumann structure A

but also an arbitrary set � of primitive propositions and an arbitrary function π that
associates with each state in S a truth assignment to primitive propositions in �.
We can now easily construct a Kripke structure MA,π , which corresponds to A and
π . If A = (S, P1, . . . , Pn), then MA,π = (S, π, K1, . . . , Kn), where Ki is the
partition corresponding to Pi , for i = 1, . . . , n. It is straightforward to show that
the Aumann structure corresponding to MA,π is A (see Exercise 2.18). Thus, by
Proposition 2.5.2, the intensions of formulas in MA,π and the events corresponding
to these formulas in A coincide.

Proposition 2.5.2 and the preceding discussion establish the close connection
between the logic-based and event-based approaches that we claimed previously.

Exercises

2.1 Suppose that it is common knowledge that all the children in the muddy children
puzzle are blind. What would the graphical representation be of the Kripke structure
describing the situation before the father speaks? What about after the father speaks?

* 2.2 Consider the following variant of the muddy children puzzle. Suppose that it is
common knowledge that all the children except possibly child 1 are paying attention
when the father speaks. Moreover, suppose that the children have played this game
with the father before, and it is common knowledge that when he speaks he says
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either “At least one of you has mud on your forehead” or a vacuous statement such
as “My, this field is muddy”. (Thus it is common knowledge that even if child 1 did
not hear the father, he knows that the father made one of those statements.)

(a) Describe the situation (i.e., the Kripke structure) after the father’s statement.
(Hint: each possible world can be characterized by an (n + 2)-tuple, where n

is the total number of children.) Draw the Kripke structure for the case n = 2.

(b) Can the children figure out whether or not they are muddy? (Hint: first consider
the case where child 1 is not muddy, then consider the case where he is muddy
and hears the father, and finally consider the case where he is muddy and does
not hear the father.)

(c) Can the children figure out whether or not they are muddy if the father says at
the beginning “Two or more of you have mud on your forehead”?

2.3 (Yet another variant of the muddy children puzzle:) Suppose that the father says
“Child number 1 has mud on his forehead” instead of saying “At least one of you has
mud on your forehead”. However, it should not be too hard to convince yourself that
now the children (other than child 1) cannot deduce whether they have mud on their
foreheads. Explain why this should be so (i.e., why the children cannot solve the
puzzle in a situation where they apparently have more information). This example
shows that another assumption inherent in the puzzle is that all relevant information
has been stated in the puzzle, and in particular, that the father said no more than “At
least one of you has mud on your forehead”.

* 2.4 (A formalization of the aces and eights game from Exercise 1.1:)

(a) What are the possible worlds for this puzzle if the suit of the card matters?
How many possible worlds are there?

(b) Now suppose that we ignore the suit (so, for example, we do not distinguish
a hand with the ace of clubs and the ace of hearts from a hand with the ace
of spades and the ace of hearts). How many possible worlds are there in this
case? Since the suit does not matter in the puzzle, we still get an adequate
representation for the puzzle if we ignore it. Since there are so many fewer
possible worlds to consider in this case, it is certainly a worthwhile thing to
do.
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(c) Draw the Kripke structure describing the puzzle.

(d) Consider the situation described in part (a) of Exercise 1.1. Which edges dis-
appear from the structure when you hear that Alice and Bob cannot determine
what cards they have?

(e) Now consider the situation described in part (b) of Exercise 1.1 and show
which edges disappear from the structure.

* 2.5 (A formalization of the wise men puzzle from Exercise 1.3:)

(a) Consider the first version of the puzzle (as described in part (a) of Exercise 1.3).
Draw the Kripke structure describing the initial situation. How does the struc-
ture change after the first wise man says that he does not know the color of the
hat on his head? How does it change after the second wise man says that he
does not know?

(b) How does the initial Kripke structure change if the third wise man is blind?

2.6 Show that G-reachability is an equivalence relation if the Ki relations are re-
flexive and symmetric.

2.7 Show that if t is G-reachable from s, then (M, s) |= CGϕ iff (M, t) |= CGϕ,
provided that the Ki relation is reflexive and symmetric.

2.8 Show that the following properties of common knowledge are all valid, using
semantic arguments as in Theorems 2.4.1 and 2.4.2:

(a) (CGϕ ∧ CG(ϕ ⇒ ψ)) ⇒ CGψ ,

(b) CGϕ ⇒ ϕ,

(c) CGϕ ⇒ CGCGϕ,

(d) ¬CGϕ ⇒ CG¬CGϕ,

(e) CGϕ ⇒ CG′ϕ if G ⊇ G′.

As is shown in Exercise 3.11, these properties are actually provable from the prop-
erties of knowledge and common knowledge described in this chapter.
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2.9 Show that if M |= ϕ ⇒ ψ , then

(a) M |= Kiϕ ⇒ Kiψ ,

(b) M |= CGϕ ⇒ CGψ .

2.10 Show that the following properties of distributed knowledge are all valid:

(a) (DGϕ ∧ DG(ϕ ⇒ ψ)) ⇒ DGψ ,

(b) DGϕ ⇒ ϕ,

(c) DGϕ ⇒ DGDGϕ,

(d) ¬DGϕ ⇒ DG¬DGϕ,

(e) D{i}ϕ ⇔ Kiϕ,

(f) DGϕ ⇒ DG′ϕ if G ⊆ G′.

2.11 Prove using semantic arguments that knowledge and common knowledge dis-
tribute over conjunction; that is, prove that the following properties are valid:

(a) Ki(ϕ ∧ ψ) ⇔ (Kiϕ ∧ Kiψ),

(b) CG(ϕ ∧ ψ) ⇔ (CGϕ ∧ CGψ).

It can also be shown that these properties follow from the properties described for
knowledge and common knowledge in the text (Exercise 3.31).

2.12 Prove that the following formulas are valid:

(a) |= ¬ϕ ⇒ Ki¬Kiϕ,

(b) |= ¬ϕ ⇒ Ki1 . . . Kik¬Kik . . . Ki1ϕ for any sequence i1, . . . , ik of agents,

(c) |= ¬Ki¬Kiϕ ⇔ Kiϕ.

These formulas are also provable from the S5 properties we discussed; see Exer-
cise 3.14.
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2.13 Let A = (S, P1, . . . , Pn) be an Aumann structure and let G ⊆ {1, . . . , n}. If
s and t are states, we say that t is G-reachable from s in A if t is reachable from s

in a Kripke structure MA,π corresponding to A. Prove that t ∈ (�i∈GPi )(s) iff t is
G-reachable from s.

2.14 Let A = (S, P1, . . . , Pn) be an Aumann structure and let G ⊆ {1, . . . , n}.
Prove that t ∈ (�i∈GPi )(s) iff for every agent i we have t ∈ Pi (s).

2.15 Prove Proposition 2.5.1. (Hint: you may either prove this directly, or use
Exercises 2.13 and 2.14.)

2.16 Show that the correspondence we have given between partitions and equiva-
lence relations and the correspondence defined in the other direction are inverses.
That is, show that R is the equivalence relation that we obtain from a partition P iff
P is the partition that we obtain from the equivalence relation R.

2.17 Let M be a Kripke structure where each possibility relation Ki is an equivalence
relation, and let A be the corresponding Aumann structure.

(a) Prove that

(i) s ∈ Ki (ev(ϕ)) holds in A iff (M, s) |= Kiϕ,

(ii) s ∈ DG(ev(ϕ)) holds in A iff (M, s) |= DGϕ,

(iii) s ∈ CG(ev(ϕ)) holds in A iff (M, s) |= CGϕ.

(b) Use part (a) to prove Proposition 2.5.2.

2.18 Show that the Aumann structure corresponding to the Kripke structure MA,π

is A.

Notes

Modal logic was discussed by several authors in ancient times, notably by Aristo-
tle in De Interpretatione and Prior Analytics, and by medieval logicians, but like
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most work before the modern period, it was nonsymbolic and not particularly sys-
tematic in approach. The first symbolic and systematic approach to the subject
appears to be the work of Lewis beginning in 1912 and culminating in the book
Symbolic Logic with Langford [1959]. Carnap [1946, 1947] suggested using possi-
ble worlds to assign semantics to modalities. Possible-worlds semantics was further
developed independently by several researchers, including Bayart [1958], Hintikka
[1957, 1961], Kanger [1957b], Kripke [1959], Meredith [1956], Montague [1960],
and Prior [1962] (who attributed the idea to P. T. Geach), reaching its current form
(as presented here) with Kripke [1963a]. Many of these authors also observed that
by varying the properties of the Ki relations, we can obtain different properties of
knowledge.

The initial work on modal logic considered only the modalities of possibility
and necessity. As we mentioned in the bibliographic notes of Chapter 1, the idea of
capturing the semantics of knowledge in this way is due to Hintikka, who also first
observed the properties of knowledge discussed in Section 2.4.

The analysis of the muddy children puzzle in terms of Kripke structures is due to
Halpern and Vardi [1991]. Aumann structures were defined by Aumann [1976]. Au-
mann defines common knowledge in terms of the meet; in particular, the observation
made in Proposition 2.5.1(a) is due to Aumann. A related approach, also defining
knowledge as an operator on events, is studied by Orlowska [1989]. Yet another
approach, pursued in [Brandenburger and Dekel 1993; Emde Boas, Groenendijk,
and Stokhof 1980; Fagin, Geanakoplos, Halpern, and Vardi 1999; Fagin, Halpern,
and Vardi 1991; Fagin and Vardi 1985; Heifetz and Samet 1999; Mertens and Zamir
1985], models knowledge directly, rather than in terms of possible worlds. The key
idea there is the construction of an infinite hierarchy of knowledge levels. The rela-
tion between that approach and the possible-world approach is discussed in [Fagin,
Halpern, and Vardi 1991].



 

Chapter 3

Completeness and Complexity

There are four sorts of men:
He who knows not and knows not he knows not: he is a fool—shun him;
He who knows not and knows he knows not: he is simple—teach him;
He who knows and knows not he knows: he is asleep—wake him;
He who knows and knows he knows: he is wise—follow him.

Arabian proverb

In Chapter 2 we discussed the properties of knowledge (as well as of common knowl-
edge and distributed knowledge). We attempted to characterize these properties in
terms of valid formulas. All we did, however, was to list some valid properties. It
is quite conceivable that there are additional properties of knowledge that are not
consequences of the properties listed in Chapter 2. In this chapter, we give a com-
plete characterization of the properties of knowledge. We describe two approaches
to this characterization. The first approach is proof-theoretic: we show that all the
properties of knowledge can be formally proved from the properties listed in Chap-
ter 2. The second approach is algorithmic: we study algorithms that recognize the
valid properties of knowledge. We also consider the computational complexity of
recognizing valid properties of knowledge. Doing so will give us some insight into
what makes reasoning about knowledge difficult.

When analyzing the properties of knowledge, it is useful to consider a somewhat
more general framework than that of the previous chapter. Rather than restrict atten-
tion to the case where the possibility relations (the Ki’s) are equivalence relations,
we consider other binary relations as well. Although our examples show that taking
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the Ki’s to be equivalence relations is reasonably well-motivated, particularly when
what an agent considers possible is determined by his information, there are certainly
other choices possible. The real question is what we mean by “in world s, agent i

considers world t possible.”
Let us now consider an example where reflexivity might not hold. We can easily

imagine an agent who refuses to consider certain situations possible, even when they
are not ruled out by his information. Thus, Fred might refuse to consider it possible
that his son Harry is taking illegal drugs, even if Harry is. Fred might claim to “know”
that Harry is drug-free, since in all worlds Fred considers possible, Harry is indeed
drug-free. In that case, Fred’s possibility relation would not be reflexive; in world s

where Harry is taking drugs, Fred would not consider world s possible. To see why
symmetry might not hold, consider poor Fred again. Suppose that in world s, Fred’s
wife Harriet is out visiting her friend Alice and told Fred that she would be visiting
Alice. Fred, however, has forgotten what Harriet said. Without reflecting on it too
much, Fred considers the world t possible, where Harriet said that she was visiting
her brother Bob. Now, in fact, if Harriet had told Fred that she was visiting Bob,
Fred would have remembered that fact, since Harriet had just had a fight with Bob
the week before. Thus, in world t , Fred would not consider world s possible, since
in world t , Fred would remember that Harriet said she was visiting Bob, rather than
Alice. Perhaps with some introspection, Fred might realize that t is not possible,
because in t he would have remembered what Harriet said. But people do not always
do such introspection.

By investigating the properties of knowledge in a more general framework, as we
do here, we can see how these properties depend on the assumptions we make about
the possibility relations Ki . In addition, we obtain general proof techniques, which
in particular enable us to characterize in a precise sense the complexity of enable us
to characterize in a precise sense the complexity of reasoning about knowledge.

This chapter is somewhat more technical than the previous ones; we have high-
lighted the major ideas in the text, and have left many of the details to the exercises.
A reader interested just in the results may want to skip many of the proofs. However,
we strongly encourage the reader who wants to gain a deeper appreciation of the
techniques of modal logic to work through these exercises.
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3.1 Completeness Results

As we said before, we begin by considering arbitrary Kripke structures, without
the assumption that the possibility relations Ki are equivalence relations. Before
we go on, we need to define some additional notation. Let Ln(�) be the set of
formulas that can be built up starting from the primitive propositions in �, using
conjunction, negation, and the modal operators K1, . . . , Kn. Let LD

n (�) (resp.,
LC

n (�)) be the language that results when we allow in addition the modal operators
DG (resp., operators EG and CG), where G is a nonempty subset of {1, . . . , n}. In
addition, we consider the language LCD

n (�), where formulas are formed using all
the operators CG, DG, and EG. Let Mn(�) be the class of all Kripke structures
for n agents over � (with no restrictions on the Ki relations). Later we consider
various subclasses of Mn(�), obtained by restricting the Ki relations appropriately.
For example, we consider Mrst

n (�), the Kripke structures where the Ki relation is
reflexive, symmetric, and transitive (i.e., an equivalence relation); these are precisely
the structures discussed in the previous chapter. For notational convenience, we take
the set � of primitive propositions to be fixed from now on and suppress it from the
notation, writing Ln instead of Ln(�), Mn instead of Mn(�), and so on.

If A is a set, define |A| to be the cardinality of A (i.e., the number of elements
in A). We define |ϕ|, the length of a formula ϕ ∈ LCD

n , to be the number of symbols
that occur in ϕ; for example, |p ∧ E{1,2}p| = 9. In general, the length of a formula
of the form CGψ , EGψ , or DGψ is 2 + 2 |G| + |ψ |, since we count the elements
in G as distinct symbols, as well as the commas and set braces in G. We also define
what it means for ψ to be a subformula of ϕ. Informally, ψ is a subformula of ϕ if it
is a formula that is a substring of ϕ. The formal definition proceeds by induction on
the structure of ϕ: ψ is a subformula of ϕ ∈ Ln if either (a) ψ = ϕ (so that ϕ and ψ

are syntactically identical), (b) ϕ is of the form ¬ϕ′, Kiϕ
′, CGϕ′, DGϕ′, or EGϕ′,

and ψ is a subformula of ϕ′, or (c) ϕ is of the form ϕ′ ∧ ϕ′′ and ψ is a subformula
of either ϕ′ or ϕ′′. Let Sub(ϕ) be the set of all subformulas of ϕ. We leave it to the
reader to check that |Sub(ϕ)| ≤ |ϕ|; that is, the length of ϕ is an upper bound on the
number of subformulas of ϕ (Exercise 3.1).

Although we have now dropped the restriction that the Ki’s be equivalence rela-
tions, the definition of what it means for a formula ϕ in LCD

n (or any of its sublan-
guages) to be true at a state s in the Kripke structure M ∈ Mn remains the same,
as do the notions of validity and satisfiability. Thus, for example, (M, s) |= Kiϕ

(i.e., agent i knows ϕ at state s in M) exactly if ϕ is true at all the states t such that
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(s, t) ∈ Ki . We say that ϕ is valid with respect to Mn, and write Mn |= ϕ, if ϕ

is valid in all the structures in Mn. More generally, if M is some subclass of Mn,
we say that ϕ is valid with respect to M, and write M |= ϕ, if ϕ is valid in all the
structures in M. Similarly, we say that ϕ is satisfiable with respect to M if ϕ is
satisfied in some structure in M.

We are interested in characterizing the properties of knowledge in Kripke struc-
tures in terms of the formulas that are valid in Kripke structures. Note that we should
expect fewer formulas to be valid than were valid in the Kripke structures consid-
ered in the previous chapter, for we have now dropped the restriction that the Ki’s
are equivalence relations. The class Mrst

n of structures is a proper subclass of Mn.
Therefore, a formula that is valid with respect to Mn is certainly valid with respect
to the more restricted class Mrst

n . As we shall see, the converse does not hold.
We start by considering the language Ln; we deal with common knowledge

and distributed knowledge later on. We observed in the previous chapter that the
Distribution Axiom and the Knowledge Generalization Rule hold no matter how we
modify the Ki relations. Thus, the following theorem should not come as a great
surprise.

Theorem 3.1.1 For all formulas ϕ, ψ ∈ Ln, structures M ∈ Mn, and agents
i = 1, . . . , n,

(a) if ϕ is an instance of a propositional tautology, then Mn |= ϕ,

(b) if M |= ϕ and M |= ϕ ⇒ ψ then M |= ψ ,

(c) Mn |= (Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ ,

(d) if M |= ϕ then M |= Kiϕ.

Proof Parts (a) and (b) follow immediately from the fact that the interpretation of
∧ and ¬ in the definition of |= is the same as in propositional logic. The proofs of
part (c) and (d) are identical to the proofs of parts (a) and (b) of Theorem 2.4.1.

We now show that, in a precise sense, these properties completely characterize
the formulas of Ln that are valid with respect to Mn. To do so, we have to consider
the notion of provability. An axiom system AX consists of a collection of axioms
and inference rules. An axiom is a formula, and an inference rule has the form “from
ϕ1, . . . , ϕk infer ψ ,” where ϕ1, . . . , ϕk, ψ are formulas. We are actually interested
in (substitution) instances of axioms and inference rules (so we are really thinking
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of axioms and inference rules as schemes). For example, the formula K1q ∨ ¬K1q

is an instance of the propositional tautology p ∨ ¬p, obtained by substituting K1q

for p. A proof in AX consists of a sequence of formulas, each of which is either
an instance of an axiom in AX or follows by an application of an inference rule. (If
“from ϕ1, . . . , ϕk infer ψ” is an instance of an inference rule, and if the formulas
ϕ1, . . . , ϕk have appeared earlier in the proof, then we say that ψ follows by an
application of an inference rule.) A proof is said to be a proof of the formula ϕ if
the last formula in the proof is ϕ. We say ϕ is provable in AX, and write AX � ϕ,
if there is a proof of ϕ in AX.

Consider the following axiom system Kn, which consists of the two axioms and
two inference rules given below:

A1. All tautologies of propositional calculus

A2. (Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ , i = 1, . . . , n (Distribution Axiom)

R1. From ϕ and ϕ ⇒ ψ infer ψ (modus ponens)

R2. From ϕ infer Kiϕ, i = 1, . . . , n (Knowledge Generalization)

Recall that we are actually interested in instances of axioms and inference rules. For
example,

(K1(p ∧ q) ∧ K1((p ∧ q) ⇒ ¬K2r)) ⇒ K1¬K2r

is a substitution instance of the Distribution Axiom.
As a typical example of the use of Kn, consider the following proof of the formula

Ki(p ∧ q) ⇒ Kip. We give the axiom used or the inference rule applied and the
lines it was applied to in parentheses at the end of each step:

1. (p ∧ q) ⇒ p (A1)

2. Ki((p ∧ q) ⇒ p) (1,R2)

3. (Ki(p ∧ q) ∧ Ki((p ∧ q) ⇒ p)) ⇒ Kip (A2)

4. ((Ki(p ∧ q) ∧ Ki((p ∧ q) ⇒ p)) ⇒ Kip)

⇒ (Ki((p ∧ q) ⇒ p) ⇒ (Ki(p ∧ q) ⇒ Kip))

(A1, since this is an instance of the propositional tautology
((p1 ∧ p2) ⇒ p3) ⇒ (p2 ⇒ (p1 ⇒ p3)) )
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5. Ki((p ∧ q) ⇒ p) ⇒ (Ki(p ∧ q) ⇒ Kip) (3,4,R1)

6. Ki(p ∧ q) ⇒ Kip (2,5,R1)

This proof already shows how tedious the proof of even simple formulas can be.
Typically we tend to combine several steps when writing up a proof, especially those
that involve only propositional reasoning (A1 and R1).

The reader familiar with formal proofs in propositional or first-order logic should
be warned that one technique that works in these cases, namely, the use of the de-
duction theorem, does not work for Kn. To explain the deduction theorem, we
need one more definition. We generalize the notion of provability by defining ϕ

to be provable from ψ in the axiom system AX, written AX, ψ � ϕ, if there is a
sequence of steps ending with ϕ, each of which is either an instance of an axiom
of AX, ψ itself, or follows from previous steps by an application of an inference
rule of AX. The deduction theorem is said to hold for AX if AX, ψ � ϕ implies
AX � ψ ⇒ ϕ. Although the deduction theorem holds for the standard axiomatiza-
tions of propositional logic and first-order logic, it does not hold for Kn. To see this,
observe that for any formula ϕ, by an easy application of Knowledge Generalization
(R2) we have Kn, ϕ � Kiϕ. However, we do not in general have Kn � ϕ ⇒ Kiϕ: it
is certainly not the case in general that if ϕ is true, then agent i knows ϕ. It turns out
that the Knowledge Generalization Rule is essentially the cause of the failure of the
deduction theorem for Kn. This issue is discussed in greater detail in Exercises 3.8
and 3.29.

We return now to our main goal, that of proving that Kn characterizes the set of
formulas that are valid with respect to Mn. An axiom system AX is said to be sound
for a language L with respect to a class M of structures if every formula in L provable
in AX is valid with respect to M. The system AX is complete for L with respect to M
if every formula in L that is valid with respect to M is provable in AX. We think of
AX as characterizing the class M if it provides a sound and complete axiomatization
of that class; notationally, this amounts to saying that for all formulas ϕ, we have
AX � ϕ if and only if M |= ϕ. Soundness and completeness provide a tight
connection between the syntactic notion of provability and the semantic notion of
validity.

We plan to show that Kn provides a sound and complete axiomatization for Ln

with respect to Mn. We need one more round of definitions in order to do this.
Given an axiom system AX, we say a formula ϕ is AX-consistent if ¬ϕ is not
provable in AX. A finite set {ϕ1, . . . , ϕk} of formulas is AX-consistent exactly if the
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conjuction ϕ1 ∧ . . .∧ϕk of its members is AX-consistent. As is standard, we take the
empty conjunction to be the formula true, so the empty set is AX-consistent exactly
if true is AX-consistent. An infinite set of formulas is AX-consistent exactly if all
of its finite subsets are AX-consistent. Recall that a language is a set of formulas.
A set F of formulas is a maximal AX-consistent set with respect to a language L
if (1) it is AX-consistent, and (2) for all ϕ in L but not in F , the set F ∪ {ϕ} is not
AX-consistent.

Lemma 3.1.2 Suppose that the language L consists of a countable set of formulas
and is closed with respect to propositional connectives (so that if ϕ and ψ are in the
language, then so are ϕ∧ψ and ¬ϕ). In a consistent axiom system AX that includes
every instance of A1 and R1 for the language L, every AX-consistent set F ⊆ L can
be extended to a maximal AX-consistent set with respect to L. In addition, if F is a
maximal AX-consistent set, then it satisfies the following properties:

(a) for every formula ϕ ∈ L, exactly one of ϕ and ¬ϕ is in F ,

(b) ϕ ∧ ψ ∈ F iff ϕ ∈ F and ψ ∈ F ,

(c) if ϕ and ϕ ⇒ ψ are both in F , then ψ is in F ,

(d) if ϕ is provable in AX, then ϕ ∈ F .

Proof Let F be an AX-consistent subset of formulas in L. To show that F can be ex-
tended to a maximal AX-consistent set, we first construct a sequence F0, F1, F2, . . .

of AX-consistent sets as follows. Because L is a countable language, let ψ1, ψ2, . . .

be an enumeration of the formulas in L. Let F0 = F , and inductively construct
the rest of the sequence by taking Fi+1 = Fi ∪ {ψi+1} if this set is AX-consistent
and otherwise by taking Fi+1 = Fi . It is easy to see that each set in the sequence
F0, F1, . . . is AX-consistent, and that this is a nondecreasing sequence of sets. Let
F = ∪∞

i=0Fi . Each finite subset of F must be contained in Fj for some j , and
thus must be AX-consistent (since Fj is AX-consistent). It follows that F itself is
AX-consistent. We claim that in fact F is a maximal AX-consistent set. For suppose
ψ ∈ L and ψ /∈ F . Since ψ is a formula in L, it must appear in our enumeration, say
as ψk . If Fk ∪ {ψk} were AX-consistent, then our construction would guarantee that
ψk ∈ Fk+1, and hence that ψk ∈ F . Because ψk = ψ /∈ F , it follows that Fk ∪ {ψ}
is not AX-consistent. Hence F ∪ {ψ} is also not AX-consistent. It follows that F is
a maximal AX-consistent set.
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To see that maximal AX-consistent sets have all the properties we claimed,
let F be a maximal AX-consistent set. If ϕ ∈ L, we now show that one of
F ∪ {ϕ} and F ∪ {¬ϕ} is AX-consistent. For assume to the contrary that nei-
ther of them is AX-consistent. It is not hard to see that F ∪ {ϕ ∨ ¬ϕ} is then also
not AX-consistent (Exercise 3.2). So F is not AX-consistent, because ϕ ∨ ¬ϕ is a
propositional tautology. This gives a contradiction. If F ∪{ϕ} is AX-consistent, then
we must have ϕ ∈ F since F is a maximal AX-consistent set. Similarly, if F ∪{¬ϕ}
is AX-consistent then ¬ϕ ∈ F . Thus, one of ϕ or ¬ϕ is in F . It is clear that we
cannot have both ϕ and ¬ϕ in F , for otherwise F would not be AX-consistent. This
proves (a).

Part (a) is enough to let us prove all the other properties we claimed. For example,
if ϕ ∧ψ ∈ F , then we must have ϕ ∈ F , for otherwise, as we just showed, we would
have ¬ϕ ∈ F , and F would not be AX-consistent. Similarly, we must have ψ ∈ F .
Conversely, if ϕ and ψ are both in F , we must have ϕ ∧ ψ ∈ F , for otherwise we
would have ¬(ϕ ∧ ψ) ∈ F , and, again, F would not be AX-consistent. We leave
the proof that F has properties (c) and (d) to the reader (Exercise 3.3).

We can now prove that Kn is sound and complete.

Theorem 3.1.3 Kn is a sound and complete axiomatization with respect to Mn for
formulas in the language Ln.

Proof Using Theorem 3.1.1, it is straightforward to prove by induction on the length
of a proof of ϕ that if ϕ is provable in Kn, then ϕ is valid with respect to Mn (see
Exercise 3.4). It follows that Kn is sound with respect to Mn.

To prove completeness, we must show that every formula in Ln that is valid with
respect to Mn is provable in Kn. It suffices to prove that

Every Kn-consistent formula in Ln is satisfiable with respect to Mn. (∗)

For suppose we can prove (∗), and ϕ is a valid formula in Ln. If ϕ is not provable in
Kn, then neither is ¬¬ϕ, so, by definition, ¬ϕ is Kn-consistent. It follows from (∗)
that ¬ϕ is satisfiable with respect to Mn, contradicting the validity of ϕ with respect
to Mn.

We prove (∗) using a general technique that works for a wide variety of modal
logics. We construct a special structure Mc ∈ Mn, called the canonical structure
for Kn. Mc has a state sV corresponding to every maximal Kn-consistent set V .
Then we show
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(Mc, sV ) |= ϕ iff ϕ ∈ V. (∗∗)

That is, we show that a formula is true at a state sV exactly if it is one of the formulas
in V . Note that (∗∗) suffices to prove (∗), for by Lemma 3.1.2, if ϕ is Kn-consistent,
then ϕ is contained in some maximal Kn-consistent set V . From (∗∗) it follows that
(Mc, sV ) |= ϕ, and so ϕ is satisfiable in Mc. Therefore, ϕ is satisfiable with respect
to Mn, as desired.

We proceed as follows. Given a setV of formulas, defineV/Ki = {ϕ | Kiϕ ∈ V }.
For example, if V = {K1p, K2K1q, K1K3p ∧ q, K1K3q}, then V/K1 = {p, K3q}.
Let Mc = (S, π, K1, . . . , Kn), where

S = {sV | V is a maximal Kn-consistent set}

π(sV )(p) =
{

true if p ∈ V

false if p /∈ V

Ki = {(sV , sW ) | V/Ki ⊆ W }.
We now show that for all sv ∈ S we have (Mc, sV ) |= ϕ iff ϕ ∈ V . We proceed

by induction on the structure of formulas. More precisely, assuming that the claim
holds for all subformulas of ϕ, we also show that it holds for ϕ.

If ϕ is a primitive proposition p, this is immediate from the definition of π(sV ).
The cases where ϕ is a conjunction or a negation are simple and left to the reader (Ex-
ercise 3.5). Assume that ϕ is of the form Kiψ and that ϕ ∈ V . Then ψ ∈ V/Ki

and, by definition of Ki , if (sV , sW ) ∈ Ki , then ψ ∈ W . Thus, using the induction
hypothesis, (Mc, sW ) |= ψ for all W such that (sV , sW ) ∈ Ki . By the definition of
|=, it follows that (Mc, sV ) |= Kiψ .

For the other direction, assume (Mc, sV ) |= Kiψ . It follows that the set
(V/Ki)∪{¬ψ} is not Kn-consistent. For suppose otherwise. Then, by Lemma 3.1.2,
it would have a maximal Kn-consistent extension W and, by construction, we would
have (sV , sW ) ∈ Ki . By the induction hypothesis we have (Mc, sW ) |= ¬ψ , and so
(Mc, sV ) |= ¬Kiψ , contradicting our original assumption. Since (V/Ki) ∪ {¬ψ}
is not Kn-consistent, there must be some finite subset, say {ϕ1, . . . , ϕk, ¬ψ}, which
is not Kn-consistent. Thus, by propositional reasoning (Exercise 3.6), we have

Kn � ϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .)).

By R2, we have

Kn � Ki(ϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .))).
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By induction on k, together with axiom A2 and propositional reasoning, we can show
(Exercise 3.7)

Kn � Ki(ϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .))

⇒ (Kiϕ1 ⇒ (Kiϕ2 ⇒ (. . . ⇒ (Kiϕk ⇒ Kiψ) . . .)).

Now from R1, we get

Kn � Kiϕ1 ⇒ (Kiϕ2 ⇒ (. . . ⇒ (Kiϕk ⇒ Kiψ) . . .)).

By part (d) of Lemma 3.1.2, it follows that

Kiϕ1 ⇒ (Kiϕ2 ⇒ (. . . ⇒ (Kiϕk ⇒ Kiψ) . . .)) ∈ V.

Because ϕ1, . . . , ϕk ∈ V/Ki , we must have Kiϕ1, . . . , Kiϕk ∈ V . By part (c) of
Lemma 3.1.2, applied repeatedly, it follows that Kiψ ∈ V , as desired.

We have thus shown that Kn completely characterizes the formulas in Ln that are
valid with respect to Mn, where there are no restrictions on the Ki relations. What
happens if we restrict the Ki relations? In Chapter 2, we observed that we do get
extra properties if we take the Ki relations to be reflexive, symmetric, and transitive.
These properties are the following:

A3. Kiϕ ⇒ ϕ, i = 1, . . . , n (Knowledge Axiom)

A4. Kiϕ ⇒ KiKiϕ, i = 1, . . . , n (Positive Introspection Axiom)

A5. ¬Kiϕ ⇒ Ki¬Kiϕ, i = 1, . . . , n (Negative Introspection Axiom)

We remarked earlier that axiom A3 has been taken by philosophers to capture
the difference between knowledge and belief. From this point of view, the man we
spoke of at the beginning of the chapter who “knew” his son was drug-free should
really be said to believe his son was drug-free, but not to know it. If we want to model
such a notion of belief, then (at least according to some philosophers) we ought to
drop A3, but add an axiom that says that an agent does not believe false:

A6. ¬Ki(false), i = 1, . . . , n (Consistency Axiom)
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It is easy to see that A6 is provable from A3, A1, and R1 (see Exercise 3.9).
Historically, axiom A2 has been called K, A3 has been called T, A4 has been

called 4, A5 has been called 5, and A6 has been called D. We get different modal
logics by considering various subsets of these axioms. These logics have typically
been named after the significant axioms they use. For example, in the case of one
agent, the system with axioms and rules A1, A2, R1, and R2 has been called K, since
its most significant axiom is K. Similarly, the axiom system KD45 is the result of
combining the axioms K, D, 4, and 5 with A1, R1, and R2, and KT4 is the result of
combining the axioms K, T, and 4 with A1, R1, and R2. Some of the axiom systems
are commonly called by other names as well. The K is quite often omitted, so that
KT becomes T, KD becomes D, and so on; KT4 has traditionally been called S4 and
KT45 has been called S5. (The axioms K, T, 4, and 5, together with rule R2, are
what we called the S5 properties in Chapter 2.) We stick with the traditional names
here for those logics that have them, since they are in common usage, except that
we use the subscript n to emphasize the fact that we are considering systems with
n agents rather than only one agent. Thus, for example, we speak of the logics Tn

or S5n. We occasionally omit the subscript if n = 1, in line with more traditional
notation.

Philosophers have spent years arguing which of these axioms, if any, best captures
the knowledge of an agent. We do not believe that there is one “true” notion of
knowledge; rather, the appropriate notion depends on the application. As we said
in Chapter 2, for many of our applications the axioms of S5 seem most appropriate
(although philosophers have argued quite vociferously against them, particularly
axiom A5). Rather than justify these axioms further, we focus here on the relationship
between these axioms and the properties of the Ki relation, and on the effect of this
relationship on the difficulty of reasoning about knowledge. (Some references on the
issue of justification of the axioms can be found in the bibliographic notes at the end of
the chapter.) Since we do not have the space to do an exhaustive study of all the logics
that can be formed by considering all possible subsets of the axioms, we focus on some
representative cases here, namely Kn, Tn, S4n, S5n, and KD45n. These provide a
sample of the logics that have been considered in the literature and demonstrate some
of the flexibility of this general approach to modeling knowledge. Kn is the minimal
system, and it enables us to study what happens when there are in some sense as few
restrictions as possible on the Ki operator, given our possible-worlds framework.
The minimal extension of Kn that requires that what is known is necessarily true is
the system Tn. Researchers who have accepted the arguments against A5 but have
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otherwise been happy with the axioms of S5n have tended to focus on S4n. On
the other hand, researchers who were willing to accept the introspective properties
embodied by A4 and A5, but wanted to consider belief rather than knowledge, have
tended to consider KD45 or K45. For definiteness, we focus on KD45 here, but all
our results for KD45 carry over with very little change to K45.

Theorem 3.1.3 implies that the formulas provable in Kn are precisely those that
are valid with respect to Mn. We want to connect the remaining axioms with various
restrictions on the possibility relations Ki . We have already considered one possi-
ble restriction on the Ki relations (namely, that they be reflexive, symmetric, and
transitive). We now consider others. We say that a binary relation K on a set S is
Euclidean if, for all s, t, u ∈ S, whenever (s, t) ∈ K and (s, u) ∈ K, then (t, u) ∈ K;
we say that K is serial if, for all s ∈ S, there is some t such that (s, t) ∈ K.

Some of the relationships between various conditions we can place on binary
relations are captured in the following lemma, whose proof is left to the reader
(Exercise 3.12).

Lemma 3.1.4

(a) If K is reflexive and Euclidean, then K is symmetric and transitive.

(b) If K is symmetric and transitive, then K is Euclidean.

(c) The following are equivalent:

(i) K is reflexive, symmetric, and transitive.

(ii) K is symmetric, transitive, and serial.

(iii) K is reflexive and Euclidean.

Let Mr
n (resp., Mrt

n ; Mrst
n ; Melt

n ) be the class of all structures for n agents
where the possibility relations are reflexive (resp., reflexive and transitive; reflexive,
symmetric, and transitive; Euclidean, serial, and transitive). As we observed earlier,
since an equivalence relation is one that is reflexive, symmetric, and transitive, Mrst

n

is precisely the class of structures we considered in Chapter 2.
The next theorem shows a close connection between various combinations of

axioms, on the one hand, and various restrictions on the possibility relations Ki ,
on the other hand. For example, axiom A3 (the Knowledge Axiom Kiϕ ⇒ ϕ)
corresponds to reflexivity of Ki . To demonstrate one part of this correspondence,
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we now show that axiom A3 is valid in all structures in Mr
n. If s is a world in a

structure M ∈ Mr
n, then agent i must consider s to be one of his possible worlds in s.

Thus, if agent i knows ϕ in s, then ϕ must be true in s; that is, (M, s) |= Kiϕ ⇒ ϕ.
Therefore, Tn is sound with respect to Mr

n. We might hope that, conversely, every
structure that satisfies all instances of axiom A3 is in Mr

n. Unfortunately, this is not
the case (we return to this point a little later). Nevertheless, as we shall see in the
proof of the next theorem, axiom A3 forces the possibility relations in the canonical
structure to be reflexive. As we shall see, this is sufficient to prove that Tn is complete
with respect to Mr

n.

Theorem 3.1.5 For formulas in the language Ln:

(a) Tn is a sound and complete axiomatization with respect to Mr
n,

(b) S4n is a sound and complete axiomatization with respect to Mrt
n ,

(c) S5n is a sound and complete axiomatization with respect to Mrst
n ,

(d) KD45n is a sound and complete axiomatization with respect to Melt
n .

Proof We first consider part (a). We already showed that Tn is sound with respect
to Mr

n. For completeness, we need to show that every Tn-consistent formula is satisfi-
able in some structure in Mr

n. This is done exactly as in the proof of Theorem 3.1.3.
We define a canonical structure Mc for Tn each of whose states corresponds to a
maximal Tn-consistent set V of formulas. The Ki relations are defined as in the
proof of Theorem 3.1.3, namely, (sV , sW ) ∈ Ki in Mc exactly if V/Ki ⊆ W , where
V/Ki = {ϕ | Kiϕ ∈ V }. A proof identical to that of Theorem 3.1.3 can now be
used to show that ϕ ∈ V iff (Mc, sV ) |= ϕ, for all maximal Tn-consistent sets V .
Furthermore, it is easy to see that every maximal Tn-consistent set V contains every
instance of axiom A3. Therefore, all instances of axiom A3 are true at sV . It follows
immediately that V/Ki ⊆ V . So by definition of Ki , it follows that (sV , sV ) ∈ Ki .
So Ki is indeed reflexive, and hence Mc ∈ Mr

n. Assume now that ϕ is a Tn-consistent
formula. As in the proof of Theorem 3.1.3, it follows that ϕ is satisfiable in Mc.
Since, as we just showed, Mc ∈ Mr

n, it follows that ϕ is satisfiable in some structure
in Mr

n, as desired. This completes the proof of part (a).
To prove part (b), we show that just as axiom A3 corresponds to reflexivity,

similarly axiom A4 corresponds to transitivity. It is easy to see that A4 is valid in
all structures where the possibility relation is transitive. Moreover, A4 forces the
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possibility relations in the canonical structure to be transitive. To see this, suppose
that (sV , sW ), (sW , sX) ∈ Ki and that all instances of A4 are true at sV . Then if
Kiϕ ∈ V , by A4 we have KiKiϕ ∈ V , and, by the construction of Mc, we have
Kiϕ ∈ W and ϕ ∈ X. Thus, V/Ki ⊆ X and (sV , sX) ∈ Ki , as desired. That means
that in the canonical structure for S4n, the possibility relation is both reflexive and
transitive, so the canonical structure is in Mrt

n . The proof is now very similar to that
of part (a).

The proof of parts (c) and (d) go in the same way. Here the key correspondences
are that axiom A5 corresponds to a Euclidean possibility relation and axiom A6
corresponds to a serial relation (Exercise 3.13).

We say that a structure M is a model of Kn if every formula provable in Kn is
valid in M . We can similarly say that a structure is a model of Tn, S4n, S5n, and
KD45n. The soundness part of Theorem 3.1.5 shows that every structure in Mr

n

(resp., Mrt
n , Mrst

n , Melt
n ) is a model of Tn (resp., S4n, S5n, KD45n). We might be

tempted to conjecture that the converse also holds, so that, for example, if a structure
is a model of S5n, then it is in Mrst

n . This is not quite true, as the following example
shows. Suppose that n = 1 and � = {p}, and let M be the structure consisting of
two states s and t , such that π(s)(p) = π(t)(p) = true and K1 = {(s, t), (t, t)}, as
shown in Figure 3.1.

� ��
���
��

s

p

t

p

Figure 3.1 A model of S51 that is not in Mrst
1

The structure M is not in Mr
1, let alone Mrst

1 , but it is easy to see that it is a
model of S51 and a fortiori a model of S41 and T1 (Exercise 3.15). Nevertheless, the
intuition behind the conjecture is almost correct. In fact, it is correct in two senses.
If s is a state in a Kripke structure M , and s′ is a state in a Kripke structure M ′, then
we say that (M, s) and (M ′, s′) are equivalent, and write (M, s) ≡ (M ′, s′), if they
satisfy exactly the same formulas in the language Ln. That is, (M, s) ≡ (M ′, s′) if,
for all formulas ϕ ∈ Ln, we have (M, s) |= ϕ if and only if (M ′, s′) |= ϕ. One sense
in which the previous conjecture is correct is that every model M of Tn (resp., S4n,
S5n, KD45n) can effectively be converted to a structure M ′ in Mr

n (resp., Mrt
n , Mrst

n ,
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Melt
n ) with the same state space, such that (M, s) ≡ (M ′, s) for every state s (see

Exercise 3.16).
The second sense in which the conjecture is correct involves the notion of a frame.

We define a frame for n agents to be a tuple (S, K1, . . . , Kn), where S is a set of states
and K1, . . . , Kn are binary relations on S. Thus, a frame is like a Kripke structure
without the function π . Notice that the Aumann structures defined in Section 2.5 can
be viewed as frames. We say that the Kripke structure (S, π, K1, . . . , Kn) is based
on the frame (S, K1, . . . , Kn). A formula ϕ is valid in frame F if it is valid in every
Kripke structure based on F . It turns out that if we look at the level of frames rather
than at the level of structures, then we get what can be viewed as a partial converse to
Theorem 3.1.5. For example, the Ki’s in a frame F are reflexive if and only if every
instance of the Knowledge Axiom A3 is valid in F . This suggests that the axioms
are tied more closely to frames than they are to structures. Although we have shown
that, for example, we can find a structure that is a model of S5n but is not in Mrst

n (or
even Mr

n), this is not the case at the level of frames. If a frame is a model of S5n,
then it must be in F rst

n . Conversely, if a frame is in F rst
n , then it is a model of S5n.

See Exercise 3.17 for more details.
The previous results show the connection between various restrictions on the

Ki relations and properties of knowledge. In particular, we have shown that A3
corresponds to reflexive possibility relations, A4 to transitive possibility relations,
A5 to Euclidean possibility relations, and A6 to serial possibility relations.

Up to now we have not considered symmetric relations. It is not hard to check
(using arguments similar to those used previously) that symmetry of the possibility
relations corresponds to the following axiom:

A7. ϕ ⇒ Ki¬Ki¬ϕ, i = 1, . . . , n

Axiom A7 can also easily be shown to be a consequence of A3 and A5, together
with propositional reasoning (Exercise 3.18). This corresponds to the observation
made in Lemma 3.1.4 that a reflexive Euclidean relation is also symmetric. Since
a reflexive Euclidean relation is also transitive, the reader may suspect that A4 is
redundant in the presence of A3 and A5. This is essentially true. It can be shown
that A4 is a consequence of A1, A2, A3, A5, R1, and R2 (see Exercise 3.19). Thus
we can obtain an axiom system equivalent to S5n by eliminating A4; indeed, by
using the observations of Lemma 3.1.4, we can obtain a number of axiomatizations
that are equivalent to S5n (Exercise 3.20).
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The preceding discussion is summarized by Table 3.1, which describes the cor-
respondence between the axioms and the properties of the Ki relations.

Axiom Property of Ki

A3. Kiϕ ⇒ ϕ reflexive
A4. Kiϕ ⇒ KiKiϕ transitive
A5. ¬Kiϕ ⇒ Ki¬Kiϕ Euclidean
A6. ¬Ki false serial
A7. ϕ ⇒ Ki¬Ki¬ϕ symmetric

Table 3.1 The correspondence between axioms and properties of Ki

We conclude this section by taking a closer look at the single-agent case of S5
and KD45. The following result shows that in the case of S5 we can further restrict
our attention to structures where the possibility relation is universal; that is, in every
state, all states are considered possible. Intuitively, this means that in the case of
S5 we can talk about the set of worlds the agent considers possible; this set is the
same in every state and consists of all the worlds. Similarly, for KD45 we can
restrict attention to structures with one distinguished state, which intuitively is the
“real” world, and a set of states (which does not in general include the real world)
corresponding to the worlds that the agent thinks possible in every state.

Proposition 3.1.6

(a) Assume that M ∈ Mrst
1 and s is a state of M . Then there is a structure

M ′ = (S′, π ′, K′
1), where K′

1 is universal, that is, K′
1 = {(s, t) | s, t ∈ S′}, and

a state s′ of M ′ such that (M, s) ≡ (M ′, s′).

(b) Assume that M ∈ Melt
1 and s0 is a state of M . Then there is a structure

M ′ = ({s0}∪S′, π ′, K′
1), where S′ is nonempty and K′

1 = {(s, t) | s ∈ {s0}∪S′
and t ∈ S′}, and a state s′ of M ′ such that (M, s0) ≡ (M ′, s′).

Proof We first consider part (b). Assume that M = (S, π, K1) ∈ Melt
1 and that

s0 ∈ S. Let K1(s0) = {t | (s0, t) ∈ K1}. Since K1 is serial, K1(s0) must be nonempty.
It is also easy to check that since K1 is Euclidean, we have (s, t) ∈ K1 for all
s, t ∈ K1(s0). Finally, since K1 is transitive, if s ∈ K1(s0) and (s, t) ∈ K1, then
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t ∈ K1(s0). Let M ′ = ({s0} ∪ K1(s0), π
′, K′

1), where π ′ is the restriction of π

to {s0} ∪ K1(s0), and K′
1 = {(s, t) | s ∈ {s0} ∪ K1(s0) and t ∈ K1(s0)}. By the

previous observations, K′
1 is the restriction of K1 to {s0} ∪ K1(s0). Note that K′

1 is
serial (because K1(s0) is nonempty), Euclidean, and transitive. A straightforward
induction on the structure of formulas now shows that for all s ∈ {s0} ∪ K1(s0) and
all formulas ϕ ∈ Ln, we have (M, s) |= ϕ iff (M ′, s) |= ϕ. We leave details to the
reader (Exercise 3.21).

For part (a), we proceed in the same way, except that we start with a structure
M ∈ Mrst

1 . Using the fact that K1 is now reflexive, it is easy to show that the
relation K′

1 we construct is universal. The rest of the proof proceeds as before.

It follows from Proposition 3.1.6 that we can assume without loss of generality
that models of S5 have a particularly simple form, namely (S, π), where we do not
mention the K1 relation but simply assume that (s, t) ∈ K1 for all s, t ∈ S. Similarly,
we can take models of KD45 to have the form (s0, S, π), where, as already discussed,
the intuition is that s0 is the “real” world, and S is the set of worlds that the agent
considers possible. As we shall see, this simple representation of models for S5 and
KD45 has important implications when it comes to the difficulty of deciding whether
a formula is provable in S5 or KD45.

There is a similar simple representation for models of K45 (Exercise 3.22).
We cannot in general get such simple representations for the other logics we have
considered, nor can we get them even for S5n or KD45n if n > 1, that is, if we have
two or more agents in the picture. For more information on the single-agent case of
S5, see Exercise 3.23.

3.2 Decidability

In the preceding section we showed that the set of valid formulas of Mn is indeed
characterized by Kn, and that the valid formulas of various interesting subclasses
of Mn are characterized by other systems, such as Tn, S4n, and S5n. Our results,
however, were not constructive; they gave no indication of how to tell whether a
given formula was indeed provable (and thus also valid in the appropriate class of
structures).

In this section, we present results showing that the question of whether a formula
is valid is decidable; that is, there is an algorithm that, given as input a formula ϕ,
will decide whether ϕ is valid. (It is beyond the scope of this book to give a formal
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definition of decidability; references are provided in the notes at the end of the
chapter.) An algorithm that recognizes valid formulas can be viewed as another
characterization of the properties of knowledge, one that is complementary to the
characterization in terms of a sound and complete axiom system.

A situation in which recognizing valid formulas is useful is where we have an
agent whose information is characterized by a collection of formulas whose con-
junction is ϕ. If the agent wants to know whether a formula ψ follows from the
information he has, then he has to check whether ϕ ⇒ ψ is valid. An example of
this type of situation is if we take the agent to be a knowledge base. A knowledge
base can draw conclusions about the state of the world based on the logical conse-
quences of the information it has been told. (See Sections 4.4.1, 7.3, and 9.3.3 for
further discussion of knowledge bases.)

A formula ϕ is valid in a certain class of Kripke structures if it is true in all
states in all structures of that class. Thus, before examining the algorithmic aspects
of validity, we consider the algorithmic aspects of truth. We refer to the problem
of deciding if a formula is true in a given state of a given Kripke structure as the
model-checking problem.

There is no general procedure for doing model checking in an infinite Kripke
structure. Indeed, it is not even possible to represent arbitrary infinite structures
effectively. On the other hand, in finite Kripke structures, model checking is relatively
straightforward. Given a finite Kripke structure M = (S, π, K1, . . . , Kn), define
||M||, the size of M , to be the sum of the number of states in S and the number of
pairs in Ki , for i = 1, . . . , n. In the following proposition (and in later results), we
use the notation O(f ), read “order of f ” or “(big) O of f ” for a function f . This
denotes some function g such that for each argument a, we have g(a) ≤ cf (a) for
some constant c independent of a. Thus, for example, when we say that the running
time of an algorithm is O(||M|| × |ϕ|), this means that there is some constant c,
independent of the structure M and the formula ϕ, such that for all structures M and
formulas ϕ the time to check if ϕ is satisfied in M is at most c × ||M|| × |ϕ|.
Proposition 3.2.1 There is an algorithm that, given a structure M , a state s of M ,
and a formula ϕ ∈ Ln, determines, in time O(||M|| × |ϕ|), whether (M, s) |= ϕ.

Proof Let ϕ1, . . . , ϕm be the subformulas of ϕ, listed in order of length, with ties
broken arbitrarily. Thus we have ϕm = ϕ, and if ϕi is a subformula of ϕj , then i < j .
There are at most |ϕ| subformulas of ϕ (Exercise 3.1), so we must have m ≤ |ϕ|.
An easy induction on k shows that we can label each state s in M with ϕj or ¬ϕj ,
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for j = 1, . . . , k, depending on whether or not ϕj is true at s, in time O(k||M||).
The only nontrivial case is if ϕk+1 is of the form Kiϕj , where j < k + 1. We label a
state s with Kiϕj iff each state t such that (s, t) ∈ Ki is labeled with ϕj . Assuming
inductively that each state has already been labeled with ϕj or ¬ϕj , this step can
clearly be carried out in time O(||M||), as desired.

Observe that this result holds independent of the number of agents. It continues
to hold if we restrict attention to particular classes of structures, such as Mrt

n or Mrst
n .

The result can be easily extended to get a polynomial-time model-checking algo-
rithm even if we have distributed knowledge or common knowledge in the language
(Exercise 3.24). Finally, note that the algorithm can be easily modified to check
whether ϕ holds at a particular state s in M .

It should be noted that Proposition 3.2.1 implicitly assumes a “reasonable” rep-
resentation for Kripke structures. In particular, it assumes that, given a state s and a
primitive proposition p, we can determine in constant time whether π(s) assigns to p

the truth value true or the truth value false. Such an assumption is not always appro-
priate. If s corresponds to a position in a chess game and p corresponds to “white can
win from this position,” then π(s)(p) may be quite difficult to compute. Similarly,
Proposition 3.2.1 requires some assumption on the time to “traverse” the edges of
the Kripke structure; for example, it is sufficient to assume that given a state s where
there are m edges (s, t) ∈ Ki , we can find in time O(m) all the states t such that
(s, t) ∈ Ki . These assumptions are fairly natural if we think of Kripke structures as
labeled graphs, and we can read off the Ki relations and the states where the primi-
tive propositions are true from the diagram describing the graph. Whenever we use
a Kripke structure to model a specific situation, however, then we must reexamine
these assumptions. In the case of the Kripke structure for the muddy children puzzle
described in Chapter 2, it is easy to tell if a proposition pi is true at a given state, and
it is easy to compute the Ki relations from the descriptions of the states; in general,
it may not be. We return to this issue in Chapter 10.

We now turn our attention to the problem of checking whether a given formula
is provable. We start with Kn. Our first step is to show that if a formula is Kn-
consistent, not only is it satisfiable in some structure (in particular, the canonical
structure constructed in the proof of Theorem 3.1.3), but in fact it is also satisfiable
in a finite structure (which the canonical structure is certainly not!). The proof is
actually just a slight variant of the proof of Theorem 3.1.3. The idea is that rather
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than considering maximal Kn-consistent subsets of Ln when trying to construct a
structure satisfying a formula ϕ, we restrict attention to sets of subformulas of ϕ.

Theorem 3.2.2 If ϕ ∈ Ln is Kn-consistent, then ϕ is satisfiable in an Mn structure
with at most 2|ϕ| states.

Proof Let Sub+(ϕ) consist of all the subformulas of ϕ and their negations, that
is, Sub+(ϕ) = Sub(ϕ) ∪ {¬ψ | ψ ∈ Sub(ϕ)}. Let Con(ϕ) be the set of maximal
Kn-consistent subsets of Sub+(ϕ). A proof almost identical to that of Lemma 3.1.2
can be used to show that every Kn-consistent subset of Sub+(ϕ) can be extended
to an element of Con(ϕ). Moreover, a member of Con(ϕ) contains either ψ or ¬ψ

for every formula ψ ∈ Sub(ϕ) (but not both, for otherwise it would not be Kn-
consistent). So the cardinality of Con(ϕ) is at most 2|Sub(ϕ)|, which is at most 2|ϕ|,
since |Sub(ϕ)| ≤ |ϕ|.

We now construct a structure Mϕ = (Sϕ, π, K1, . . . , Kn). The construction is
essentially that of Theorem 3.1.3, except that we take Sϕ = {sV | V ∈ Con(ϕ)}. We
can now show that if V ∈ Con(ϕ), then for all ψ ∈ Sub+(ϕ) we have (Mϕ, sV ) |= ψ

iff ψ ∈ V . The proof is identical to that of Theorem 3.1.3, and so is omitted here.

From Theorem 3.2.2, we can get an effective (although not particularly effi-
cient) procedure for checking if a formula ϕ is Kn-consistent (or equivalently, by
Theorem 3.1.3, satisfiable with respect to Mn). We simply construct every Kripke
structure with 2|ϕ| states. (The number of such structures is finite, albeit very large.)
We then check if ϕ is true at some state of one of these structures. The latter check
is done using the model-checking algorithm of Proposition 3.2.1. If ϕ is true at
some state in one of these structures, then clearly ϕ is satisfiable with respect to Mn.
Conversely, if ϕ is satisfiable with respect to Mn, then by Theorem 3.2.2 it must be
satisfiable in one of these structures.

As a consequence, we can now show that the validity problem for Mn (or equiv-
alently, by Theorem 3.1.3, the provability problem for Kn) is decidable.

Corollary 3.2.3 The validity problem for Mn and the provability problem for Kn

are decidable.

Proof Since ϕ is provable in Kn iff ¬ϕ is not Kn-consistent, we can simply check
(using the aforementioned procedure) if ¬ϕ is Kn-consistent.

Note that by Corollary 3.2.3 we have a way of checking whether a formula is provable
in Kn without deriving a single proof using the axiom system! (Actually, with some
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additional effort we can extend the ideas in the proof of Theorem 3.2.2 so that if a
formula is provable in Kn, then we can effectively find a proof of it; see Exercise 3.25
for details.)

We can extend the arguments of Theorem 3.2.2 to the other logics we have been
considering.

Theorem 3.2.4 If ϕ is Tn- (resp., S4n-, S5n-, KD45n-) consistent, then ϕ is satisfi-
able in a structure in Mr

n (resp., Mrt
n , Mrst

n , Melt
n ) with at most 2|ϕ| states.

Proof The proof in the case of Tn is identical to that of Theorem 3.2.2, except
that we consider maximal Tn-consistent subsets of Sub+(ϕ) rather than maximal
Kn-consistent subsets of Sub+(ϕ). Note that in the case of Tn, the axiom Kiϕ ⇒ ϕ

guarantees that V/Ki ⊆ V , so we get reflexivity of Ki even if we restrict attention
to subsets of Sub+(ϕ).

The obvious modification of the proof of Theorem 3.2.2 does not work for S4n,
since the Ki relations may not be transitive if we define (sV , sW ) ∈ Ki iff V/Ki ⊆ W .
For example, if ϕ is the formula K1p, then the maximal S4n-consistent subsets of
Sub+(ϕ) are V1 = {K1p, p}, V2 = {¬K1p, p}, and V3 = {¬K1p, ¬p}. Note that
V1/K1 ⊆ V2 and V2/K1 ⊆ V3, but V1/K1 ⊆ V3. Although V1/K1 ⊆ V2, intuitively
it should be clear that we do not want to have (sV1, sV2) ∈ K1. The reason is that every
maximal S4n-consistent extension of V1 contains K1K1p; in such an extension, no
S4n-consistent extension of V2 would be considered possible.

In the case of S4n, we deal with this problem as follows: We repeat the con-
struction of Theorem 3.2.2, except that we take Ki to be {(sV , sW ) | V/Ki ⊆ W/Ki}.
Clearly this definition guarantees that Ki is transitive. For S5n, we take Ki to consist
of {(sV , sW ) | V/Ki = W/Ki}. This guarantees that Ki is an equivalence relation.
In the case of S4n and S5n, the axiom Kiϕ ⇒ ϕ guarantees that if V/Ki ⊆ W/Ki ,
then V/Ki ⊆ W , which we make use of in the proof. For KD45n we do not have
this axiom, so we take Ki to consist of {(sV , sW ) | V/Ki = W/Ki, V/Ki ⊆ W }.
We leave it to the reader to check that with this definition, Ki is Euclidean, transitive,
and serial. The proof in all cases now continues along the lines of Theorem 3.1.3;
we leave details to the reader (Exercise 3.26).

Just as in the case of Kn, we can use this result to give us an effective technique
for deciding whether a formula is provable in Tn (resp., S4n, S5n, KD45n).
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Corollary 3.2.5 The validity problem for Mr
n (resp., Mrt

n , Mrst
n , Melt

n ) and the
provability problem for Tn (resp., S4n, S5n, KD45n) are decidable.

It turns out that in fact there are more efficient ways of checking whether a formula
is provable than those suggested by the results we have just proved; we discuss this
issue later in the chapter.

3.3 Incorporating Common Knowledge

We now turn our attention to axiomatizing the operators EG and CG. The operator CG

is “infinitary” in that it is defined as an infinite conjunction. This might suggest that we
will not be able to characterize it with a finite set of axioms. Somewhat surprisingly,
this turns out to be false. The axioms for common knowledge provided in Chapter 2
are complete, as we now show. This suggests that the characterization of common
knowledge as a fixed point is somehow more fundamental than its characterization
as an infinite conjunction. We return to this point in Chapter 11.

Let KC
n (resp., TC

n , S4C
n , S5C

n , KD45C
n ) consist of all the axioms of Kn (resp., Tn,

S4n, S5n, KD45n) together with the following two axioms and inference rule taken
from Chapter 2:

C1. EGϕ ⇔ ∧
i∈G Kiϕ

C2. CGϕ ⇒ EG(ϕ ∧ CGϕ)

RC1. From ϕ ⇒ EG(ψ ∧ ϕ) infer ϕ ⇒ CGψ (Induction Rule)

As the following result shows, C1, C2, and RC1 completely characterize common
knowledge.

Theorem 3.3.1 For formulas in the language LC
n :

(a) KC
n is a sound and complete axiomatization with respect to Mn,

(b) TC
n is a sound and complete axiomatization with respect to Mr

n,

(c) S4C
n is a sound and complete axiomatization with respect to Mrt

n ,

(d) S5C
n is a sound and complete axiomatization with respect to Mrst

n ,

(e) KD45C
n is a sound and complete axiomatization with respect to Melt

n .



3.3 Incorporating Common Knowledge 71

Proof We consider the case of KC
n here. We can get all the other cases by modifying

the proof just as we modified the proof of Theorem 3.1.3 to prove Theorem 3.1.5.
The validity of axioms C1 and C2 with respect to Mrst

n , and the fact that RC1
preserves valid formulas with respect to Mrst

n , was shown in Theorem 2.4.2. Although
that proof was done in the context of Mrst

n , as we remarked in the proof, the proof
did not make use of the fact that the possibility relations were reflexive, symmetric,
and transitive, and therefore it goes through without change even if we drop this
assumption. So soundness follows.

For completeness, we proceed as in the proof of Theorem 3.1.3 to show that
if ϕ is KC

n -consistent, then ϕ is satisfiable in some structure in Mn. For technical
reasons that are explained below, we need to restrict to finite structures as is done in
Theorem 3.2.2.

We define SubC(ϕ) to consist of all subformulas of ϕ together with the formulas
EG(ψ ∧ CGψ), ψ ∧ CGψ , and Ki(ψ ∧ CGψ) for each subformula CGψ of ϕ and
i ∈ G, and the formulas Kiψ for each subformula EGψ of ϕ and i ∈ G. We define
Sub+

C(ϕ) to consist of all the formulas in SubC(ϕ) and their negations, and define
ConC(ϕ) to consist of all maximal KC

n -consistent subsets of Sub+
C(ϕ). Let Mϕ =

(Sϕ, π, K1, . . . , Kn), where Sϕ consists of {sV | V ∈ ConC(ϕ)}, π(sV )(p) = true
iff p ∈ V , and Ki = {(sV , sW ) | V/Ki ⊆ W }, i = 1, . . . n. Clearly Sϕ is finite; in
fact, it is not hard to show that

∣∣Sϕ

∣∣ ≤ 2|ϕ| (see Exercise 3.27).
We again want to show that for every formula ϕ′ ∈ Sub+

C(ϕ), we have
(Mϕ, sV ) |= ϕ′ iff ϕ′ ∈ V . We proceed by induction on the structure of formu-
las. The argument in the case that ϕ′ is a primitive proposition, a conjunction, a
negation, or of the form Kiψ is essentially identical to that used in Theorem 3.1.3;
we do not repeat it here.

Suppose that ϕ′ is of the form EGψ . Assume that ϕ′ ∈ V . Since V is a
maximal KC

n -consistent subset of Sub+
C(ϕ), and since Sub+

C(ϕ) includes (by defi-
nition) all formulas Kiψ for i ∈ G, by C1 we get that Kiψ ∈ V for all i ∈ G.
So by the induction hypothesis, (Mϕ, sV ) |= Kiψ for each i ∈ G. Therefore,
(Mϕ, sV ) |= EGψ . We have shown that if EGψ ∈ V , then (Mϕ, sV ) |= EGψ . The
proof of the converse is very similar.

Finally, we must consider the case that ϕ′ is of the form CGψ . That is, we need
to prove that CGψ ∈ V iff (Mϕ, sV ) |= CGψ . We begin with the “only if” direction.
If CGψ ∈ V , we show by induction on k that if sW is G-reachable from sV in k

steps, then both ψ and CGψ are in W . For k = 1, observe that axiom C2 and the fact
that V ∈ ConC(ϕ) together imply that EG(ψ ∧ CGψ) ∈ V . Now our construction
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guarantees that if sW is G-reachable from sV in one step (so that (sV , sW ) ∈ Ki for
some i ∈ G), we have (ψ ∧ CGψ) ∈ W . Since W ∈ ConC(ϕ), it follows that
both ψ and CGψ are in W . Now assume that the claim holds for k; we prove it
for k + 1. If sW is G-reachable from sV in k + 1 steps, then there exists W ′ such
that sW ′ is G-reachable from sV in k steps, and sW is reachable from sW ′ in one
step. By the induction hypothesis, both ψ and CGψ are in W ′. The argument for
the base case now shows that both CGψ and ψ are in W . Our argument shows that,
in particular, ψ ∈ W for all W such that sW is G-reachable from sV . By our main
induction hypothesis, (Mϕ, sW ) |= ψ for all sW that are G-reachable from sV . Thus,
(Mϕ, sV ) |= CGψ .

The proof of the converse, that if (Mϕ, sV ) |= CGψ then CGψ ∈ V , is the hardest
part of the proof. Assume that (Mϕ, sV ) |= CGψ . We can describe each state sW of
Mϕ by the conjunction of the formulas in W . This conjunction, which we denote by
ϕW , is a formula in LC

n , since W is a finite set. Here we make crucial use of the fact
that we restrict to formulas in Sub+

C(ϕ), a finite set, rather than consider maximal
KC

n -consistent subsets of LC
n , which would have been the straightforward analogue to

the proof of Theorem 3.1.3. Let W = {W ∈ ConC(ϕ) | (Mϕ, sW ) |= CGψ}. Define
ϕW to be

∨
W∈W ϕW . Thus, ϕW is the disjunction of the description of all of the

states sW where CGψ holds, and can be thought of as the formula that characterizes
these states. Since the set W is finite, it follows that ϕW is a formula in LC

n . The key
step in the proof is to make use of the Induction Rule (RC1), where ϕW plays the
role of ϕ. In Exercise 3.28, we prove that

KC
n � ϕW ⇒ EG(ψ ∧ ϕW). (3.1)

Therefore, by the Induction Rule, we obtain

KC
n � ϕW ⇒ CGψ.

Since V ∈ W , we have KC
n � ϕV ⇒ ϕW , so

KC
n � ϕV ⇒ CGψ. (3.2)

It follows that CGψ ∈ V , as desired. For if CGψ /∈ V , then ¬CGψ ∈ V , and it is
easy to see that this, together with (3.2), would imply that V is not KC

n -consistent, a
contradiction.

Notice that our proof shows that if a formula ϕ is satisfiable at all, it is satisfiable
in a finite structure (in fact, with at most 2|ϕ| states.) Thus, using the techniques of
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the previous section, we again get that the validity problem for KC
n (resp., TC

n , S4C
n ,

S5C
n , KD45C

n ) is decidable.

3.4 Incorporating Distributed Knowledge

The last operator we would like to axiomatize is DG. The major new properties of
distributed knowledge were discussed in Chapter 2:

D1. D{i}ϕ ⇔ Kiϕ, i = 1, . . . , n

D2. DGϕ ⇒ DG′ϕ if G ⊆ G′

In addition, the DG operator has all the properties of the knowledge operator. What
these are depends on the system we consider. Thus, for example, in all cases A2
applies to DG, so that the following axiom is valid:

(DGϕ ∧ DG(ϕ ⇒ ψ)) ⇒ DGψ.

If in addition we take the Ki relations to be reflexive, so that knowledge satisfies A3,
then so does distributed knowledge; that is, we get in addition the axiom DGϕ ⇒ ϕ.
Similar remarks hold for A4 and A5. This, however, is not the case for A6; it is easy
to see that even if the Ki relations are serial, their intersection may be empty. Let KD

n

(resp., TD
n , S4D

n , S5D
n ) KD45D

n ) be the system that results from adding axioms D1,
D2 to Kn (resp., Tn, S4n, S5n, KD45n), and assuming that all of the other axioms
apply to the modal operators DG (except for A6 in the case of KD45D

n ) as well as
Ki . Thus, for example, S4D

n includes the axiom DGϕ ⇒ DGDGϕ.

Theorem 3.4.1 For formulas in the language LD
n

(a) KD
n is a sound and complete axiomatization with respect to Mn,

(b) TD
n is a sound and complete axiomatization with respect to Mr

n,

(c) S4D
n is a sound and complete axiomatization with respect to Mrt

n ,

(d) S5D
n is a sound and complete axiomatization with respect to Mrst

n ,

(e) KD45D
n is a sound and complete axiomatization with respect to Melt

n .
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Proof The proof of soundness is straightforward (see Exercise 2.10). Although
the basic ideas of the completeness proof are similar to those we have encountered
before, the details are somewhat technical. We just sketch the main ideas here,
leaving the details to the exercises. We consider only the case of KD

n here.
We start with a canonical structure constructed just as in the proof of Theo-

rem 3.1.3, treating the distributed knowledge operators DG exactly like the Ki oper-
ators. That is, for each maximal KD

n -consistent set V , we define the set V/DG in the
obvious way and define binary relations KG on S via (sV , sW ) ∈ KG iff V/DG ⊆ W .
From axiom D1 it follows that K{i} (the binary relation derived using DG, where G

is the singleton set {i}) is equal to Ki (the binary relation derived using Ki). It can
be shown that KG ⊆ ⋂

i∈G Ki ; however, in general, equality does not hold. By
making multiple copies of states in the canonical structure that are in

⋂
i∈G Ki and

not in KG, it is possible to construct a structure at which the same formulas are true
in corresponding states, and in which

⋂
i∈G Ki and KG coincide. This gives us the

desired structure. (See Exercise 3.30 for further details.)

We have considered axiom systems for the languages LC
n and LD

n . It is not too
hard to show that we can get sound and complete axiomatizations for the language
LCD

n , which has modal operators for common knowledge and distributed knowledge,
by combining the axioms for common knowledge and distributed knowledge. It can
also be shown that the validity problem is decidable. There are no interesting new
ideas involved in doing this, so we shall not carry out that exercise here.

3.5 The Complexity of the Validity Problem

In earlier sections, we have shown that the validity problem for the various logics
we have been considering is decidable. In this section, we examine the issue more
carefully. In particular, we attempt to completely characterize the inherent difficulty
of deciding validity for all the logics we consider. This will give us some insight
into which features of a logic make deciding validity difficult. We characterize the
“inherent difficulty” of a problem in terms of computational complexity. We briefly
review the necessary notions here.

Formally, we view everything in terms of the difficulty of determining member-
ship in a set. Thus, the validity problem is viewed as the problem of determining
whether a given formula ϕ is an element of the set of formulas valid with respect to a
class of structures. The difficulty of determining set membership is usually measured
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by the amount of time and/or space (memory) required to do this, as a function of
the input size. Since the inputs we consider in this section are formulas, we will
typically be interested in the difficulty of determining whether a formula ϕ is valid
or satisfiable as a function of |ϕ|.

We are usually most interested in deterministic computations, where at any point
in a computation, the next step of the computation is uniquely determined. However,
thinking in terms of nondeterministic computations—ones where the program may
“guess” which of a finite number of steps to take—has been very helpful in classifying
the intrinsic difficulty of a number of problems. A deterministic algorithm must
conclude by either accepting the input (intuitively, saying “Yes, the formula that is
the input is valid”) or rejecting the input (intuitively, saying “No, the formula that is
the input is not valid”). A nondeterministic algorithm is said to accept an input if it
accepts for some appropriate sequence of guesses.

The complexity classes we are most concerned with here are P, NP, PSPACE, EX-
PTIME, and NEXPTIME: those sets such that determining whether a given element x
is a member of the set can be done in deterministic polynomial time, nondeterminis-
tic polynomial time, deterministic polynomial space, deterministic exponential time
(where exponential in n means in time 2dn for some constant d), and nondetermin-
istic exponential time, respectively (as a function of the size of x). It is not hard to
show that P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME . It is also known that
P = EXPTIME and that NP = NEXPTIME . While it is conjectured that all the
other inclusions are strict, proving this remains elusive. The P = NP problem is
currently considered the most important open problem in the field of computational
complexity. Interestingly, it is known that nondeterminism does not add any power
at the level of polynomial space: nondeterministic polynomial space is equivalent to
deterministic polynomial space.

Given a complexity class C, the class co-C consists of all of the sets whose
complement is a member of C. Notice that if we have a deterministic algorithm A
for deciding membership in a set A, then it is easy to convert it to an algorithm A′
for deciding membership in the complement of A that runs in the same space and/or
time bounds: A′ accepts an input x iff A rejects. It follows that C = co-C must
hold for every deterministic complexity class C, in particular, for P, PSPACE and
EXPTIME. This is not necessarily the case for a nondeterministic algorithm. There
is no obvious way to construct an algorithm A′ that will accept an element of the
complement of A by an appropriate sequence of guesses. Thus, in particular, it is not
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known whether NP = co-NP. Clearly, if P = NP, then it would immediately follow
that NP = co-NP, but it is conjectured that in fact NP = co-NP.

Roughly speaking, a set A is said to be hard with respect to a complexity class C
(e.g., NP -hard, PSPACE -hard, etc.) if every set in C can be efficiently reduced to A;
that is, for every set B in C, an algorithm deciding membership in B can be easily
obtained from an algorithm for deciding membership in A. A set is complete with
respect to a complexity class C, or C-complete if it is both in C and C-hard.

The problem of determining whether a formula of propositional logic is satisfiable
(i.e., the problem of determining whether a given propositional formula is in the set of
satisfiable propositional formulas) is NP -complete. In particular, this means that if
we could find a polynomial-time algorithm for deciding satisfiability for propositional
logic, we would also have polynomial-time algorithms for all other NP problems.
This is considered highly unlikely.

What about the complexity of determining validity? Notice that satisfiability
and validity are complementary problems. A formula ϕ is valid exactly if ¬ϕ is
not satisfiable. Thus, if the satisfiability problem for a logic is complete for some
complexity class C, then the validity problem must be complete for co-C. In particular,
this means that the validity problem for propositional logic is co-NP -complete.

The complexity of the satisfiability and validity problem for numerous logics
other than propositional logic has been studied. It is remarkable how many of these
problems can be completely characterized in terms of the complexity classes dis-
cussed here. In particular, this is true for the logics we consider here. (We remark
that when we speak of a logic, we typically mean an axiom system together with
a corresponding class of structures. We usually refer to a logic by the name of the
axiom system. Thus, when we speak of “the satisfiability problem for (the logic)
S4n,” we mean the problem of determining if a formula ϕ ∈ Ln is satisfiable with
respect to Mrt

n or, equivalently, the problem of determining if ϕ is S4n-consistent.)
The situation is summarized in Table 3.2. The results in the table are stated in terms
of the satisfiability problem. Since ϕ is valid iff ¬ϕ is not satisfiable, a solution to
the validity problem quickly leads to a solution to the satisfiability problem, and vice
versa. In particular, in those cases where the satisfiability problem is PSPACE - or
EXPTIME -complete, the validity problem has the same complexity as the satisfi-
ability problem. In the cases where the satisfiability problem is NP -complete, the
validity problem is co-NP -complete.

As can be seen from the table, without common knowledge in the language,
the satisfiability problem is in general PSPACE -complete. In the case of S42, for
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S51, KD451 Kn, Tn, S4n, n ≥ 1; KC
n , TC

n , n ≥ 1;
S5n, KD45n, n ≥ 2 S4C

n , S5C
n , KD45C

n , n ≥ 2

NP -complete PSPACE -complete EXPTIME -complete

Table 3.2 The complexity of the satisfiability problem for logics of knowledge

example, this means that there is an algorithm for deciding whether a formula is
satisfiable with respect to Mrt

2 (or, equivalently, whether it is S42-consistent) that
runs in polynomial space, and every PSPACE problem can be efficiently reduced to
the satisfiability problem for S42. The only exception to the PSPACE result is in the
case of S5 and KD45 (for only one agent), where the satisfiability problem is NP -
complete. This says that in the case of S5 and KD45, going from one agent to many
agents increases the complexity of the logic (provided that PSPACE = NP ). Adding
common knowledge causes a further increase in complexity, to EXPTIME -complete.

We remark that we do not mention languages involving distributed knowledge
in our table. This is because adding distributed knowledge to the language does not
affect the complexity. Thus, for example, the complexity of the satisfiability problem
for S5n is the same as that for S5D

n . We also do not mention the single-agent case
for S4C , S5C , and KD45C , because in these cases common knowledge reduces to
knowledge.

In the next section, we prove NP -completeness for S5 and KD45 in detail. The
proofs for the PSPACE upper and lower bounds are quite technical and are beyond
the scope of this book. (See the notes for references.) We remark that our lower
bounds suggest that we cannot hope for automatic theorem provers for these logics
that are guaranteed to work well (in the sense of providing the right answer quickly)
for all inputs.

It is interesting to compare the results mentioned in the table with those proved in
Section 3.2. The results there give us a nondeterministic exponential time algorithm
for deciding satisfiability: given a formula ϕ, we simply guess an exponential-sized
structure satisfying ϕ (if ϕ is satisfiable, then there must be such a structure by
the results of Section 3.2) and then verify (using the model-checking algorithm)
that the structure indeed satisfies ϕ. Since the structure is exponential-sized, the
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model-checking can be done in exponential time. The algorithm is in nondetermin-
istic exponential time because of the guess made at the beginning. Because, as we
mentioned earlier, it is strongly suspected that exponential time, and hence nonde-
terministic exponential time, is worse than polynomial space, this suggests that the
algorithm of Section 3.2 is not optimal.

3.6 NP -Completeness Results for S5 and KD45

In this section, we focus on the single-agent case of S5n and KD45n, namely S5 and
KD45. It is clear that the satisfiability problem for S5 and KD45 must be at least
NP -hard, since it is at least as hard as the satisfiability problem for propositional
logic. It is somewhat surprising that reasoning about knowledge in this case does
not add any further complexity. We start with S5 here.

Theorem 3.6.1 The satisfiability problem for S5 is NP -complete (and thus the va-
lidity problem for S5 is co-NP -complete).

The key step in the proof of Theorem 3.6.1 lies in showing that satisfiable S5
formulas can be satisfied in structures with very few states.

Proposition 3.6.2 An S5 formula ϕ is satisfiable if and only if it is satisfiable in a
structure in Mrst

1 with at most |ϕ| states.

Proof Suppose that (M, s) |= ϕ. By Proposition 3.1.6, we can assume without
loss of generality that M = (S, π, K1), where K1 is a universal relation, so that
(t, t ′) ∈ K1 for all t, t ′ ∈ S. Let F be the set of subformulas of ϕ of the form
K1ψ for which (M, s) |= ¬K1ψ ; that is, F is the set of subformulas of ϕ that
have the form K1ψ and are false at the state s. For each formula K1ψ ∈ F ,
there must be a state sψ ∈ S such that (M, sψ) |= ¬ψ . Let M ′ = (S′, π ′, K′

1),
where (a) S′ = {s} ∪ {sψ | ψ ∈ F }, (b) π ′ is the restriction of π to S′, and (c)
K′

1 = {(t, t ′) | t, t ′ ∈ S′}. Since |F | < |Sub(ϕ)| ≤ |ϕ|, it follows that
∣∣S′∣∣ ≤ |ϕ|.

We now show that for all states s′ ∈ S′ and for all subformulas ψ of ϕ (including
ϕ itself), (M, s′) |= ψ iff (M ′, s′) |= ψ . As usual, we proceed by induction on the
structure of ψ . The only nontrivial case is when ψ is of the form K1ψ

′. Suppose
that s′ ∈ S′. If (M, s′) |= K1ψ

′, then (M, t) |= ψ ′ for all t ∈ S, so, in particular,
(M, t) |= ψ ′ for all t ∈ S′. By the induction hypothesis, (M ′, t) |= ψ ′ for all
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t ∈ S′, so (M ′, s′) |= K1ψ
′. For the converse, suppose that (M, s′) |= K1ψ

′. Then
(M, t) |= ¬ψ ′ for some t ∈ S. Because K1 is the universal relation, it follows
that (s, t) ∈ K1, so (M, s) |= ¬K1ψ

′. But then it follows that K1ψ
′ ∈ F , and

(M, sψ ′) |= ¬ψ ′. By construction, sψ ′ ∈ S′, and by the induction hypothesis, we
also have (M ′, sψ ′) |= ¬ψ ′. Because (s′, sψ ′) ∈ K′

1, we have (M ′, s′) |= ¬K1ψ
′,

and so (M ′, s′) |= K1ψ
′ as desired. This concludes the proof that (M, s′) |= ψ

iff (M ′, s′) |= ψ for all subformulas ψ of ϕ and all s′ ∈ S′. Since s ∈ S′ and
(M, s) |= ϕ by assumption, we also have (M ′, s) |= ϕ.

Proof of Theorem 3.6.1 As we have already mentioned, S5 satisfiability is clearly
NP -hard. We now give an NP algorithm for deciding S5 satisfiability. Intuitively,
given a formula ϕ, we simply guess a structure M ∈ Mrst

n with a universal possibility
relation and at most |ϕ| states, and verify that ϕ is satisfied in M . More formally,
we proceed as follows. Given a formula ϕ, where |ϕ| = m, we nondeterministically
guess a structure M = (S, π, K1), where S is a set of k ≤ m states, (s, t) ∈ K1 for
all s, t ∈ S, and for all s ∈ S and all primitive propositions p not appearing in ϕ,
we have π(s)(p) = false. (Note that the only “guessing” that enters here is the
choice of k and the truth values π(s)(q) that the primitive propositions q appearing
in ϕ have in the k states of S.) Since at most m primitive propositions appear in ϕ,
guessing such a structure can be done in nondeterministic time O(m2) (i.e., at most
cm2 steps for some constant c). Next, we check whether ϕ is satisfied at some state
s ∈ S. By Proposition 3.2.1, this can be done deterministically in time O(m3). By
Proposition 3.6.2, if ϕ is satisfiable, it must be satisfiable in one of the structures of
the kind we guessed. (Of course, if ϕ is not satisfiable, no guess will be right.) Thus,
we have a nondeterministic O(m3) algorithm for deciding if ϕ is satisfiable.

We can prove essentially the same results for KD45 as for S5. Using Proposi-
tion 3.1.6, we can show the following:

Proposition 3.6.3 A KD45 formula ϕ is satisfiable iff it is satisfiable in a structure
in Melt

1 with at most |ϕ| states.

Proof See Exercise 3.34.

Using Proposition 3.6.3 just as we used Proposition 3.2.1, we can now prove the
following theorem:

Theorem 3.6.4 The satisfiability problem for KD45 is NP -complete (and thus the
validity problem for KD45 is co-NP -complete).
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Proof See Exercise 3.34.

We remark that results similar to Proposition 3.6.3 and Theorem 3.6.4 can also
be proved for K45 (Exercise 3.35).

3.7 The First-Order Logic of Knowledge

So far, we have considered only propositional modal logic. That is, the formulas
we have allowed contain only primitive propositions, together with propositional
connectives such as ∧ and ¬, and modal operators such as Ki and C. First-order logic
has greater expressive power than propositional logic. It allows us to reason about
individuals in a domain and properties that they have. Among other things, first-order
logic allows us to express properties that all individuals have and that some individuals
have, by using a universal quantifier (∀, or “for all”) and an existential quantifier (∃,
or “there exists”). For example, we can say that Pete is the governor of California
using a formula such as Governor(California, Pete). To say that every state has a
governor, we might write the first-order formula ∀x(State(x) ⇒ ∃yGovernor(x, y)):
for all states x, there exists y such that the governor of x is y. First-order logic is,
in a precise sense, expressive enough to capture all of propositional modal logic
(see Exercise 3.37). By combining the quantifiers of first-order logic and the modal
operators of propositional modal logic, we get a yet more expressive logic, first-order
modal logic. For example, neither in first-order logic nor in propositional modal logic
can we say that Alice knows that California has a governor. We can, however, say
this in first-order modal logic with the formula

KAlice∃yGovernor(California, y).

There are some subtleties involved in combining first-order quantifiers with
modal operators. We briefly discuss them in this section, to give the reader a feeling
for the issues that arise.

Despite its additional power, we make relatively little use of first-order modal
logic in the rest of the book, both because most of the examples that we discuss can
be expressed using propositional modal logic and because most of the issues that we
are interested in already arise in the propositional case. Nevertheless, the first-order
case may well be important for more complex applications.
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3.7.1 First-Order Logic

In this section we briefly review first-order logic. The reader familiar with first-order
logic may still want to skim this section to get acquainted with our notation.

In propositional logic, we start with a set � of primitive propositions. In first-
order logic, we start with a set T of relation symbols, function symbols, and constant
symbols. Each relation symbol and function symbol has some arity, which intuitively
corresponds to the number of arguments it takes. If the arity is k, then we refer to the
symbol as k-ary. In our earlier example, the relation symbol Governor has arity 2:
that is, Governor(x, y) has two arguments, x and y. A function symbol Gov, where
intuitively Gov(x) = y means that the governor of state x is person y, has arity 1,
since it takes only one argument, namely x. We refer to the set of relation symbols,
function symbols, and constant symbols as the vocabulary.

We assume an infinite supply of variables, which we usually write as x and y,
possibly along with subscripts. Constant symbols and variables are both used to
denote individuals in the domain. We can also form more complicated terms denoting
individuals by using function symbols. Formally, the set of terms is formed by starting
with variables and constant symbols, and closing off under function application, so
that if f is a k-ary function symbol, and if t1, . . . , tk are terms, then f (t1, . . . , tk) is
a term. We need terms to define formulas. An atomic formula is either of the form
P(t1, . . . , tk), where P is a k-ary relation symbol and t1, . . . , tk are terms, or of the
form t1 = t2, where t1 and t2 are terms. As in propositional logic, if ϕ and ψ are
formulas, then so are ¬ϕ and ϕ ∧ ψ . In addition, we can form new formulas using
quantifiers. If ϕ is a formula and x is a variable, then ∃xϕ is also a formula. We use
the same abbreviations as we did in the propositional case. For example, ϕ1 ∨ ϕ2 is
an abbreviation for ¬(¬ϕ1 ∧ ¬ϕ2). Furthermore, we write ∀xϕ as an abbreviation
for ¬∃x¬ϕ.

We give semantics to first-order formulas using relational structures. Roughly
speaking, a relational structure consists of a domain of individuals and a way of as-
sociating with each of the elements of the vocabulary corresponding entities over the
domain. Thus, a constant symbol is associated with an element of the domain, a func-
tion symbol is associated with a function on the domain, and so on. More precisely,
fix a vocabulary T . A relational T -structure (which we sometimes simply call a re-
lational structure or just a structure) A consists of a nonempty set, denoted dom(A),
called the domain, an assignment of a k-ary relation P A ⊆ dom(A)k to each k-ary re-
lation symbol P of T , an assignment of a k-ary function f A : dom(A)k → dom(A)
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to each k-ary function symbol f of T , and an assignment of a member cA of the
domain to each constant symbol c. We refer to P A as the interpretation of P in A,
and similarly for function symbols and constant symbols.

As an example, suppose that T consists of one binary relation symbol E. In that
case, a T -structure is simply a graph. (Recall that a graph consists of a set of nodes,
some of which are connected by edges.) The domain is the set of nodes of the graph,
and the interpretation of E is the edge relation of the graph, so that there is an edge
from a1 to a2 exactly if (a1, a2) ∈ EA.

Notice that a relational structure does not provide an interpretation of the vari-
ables. Technically, it turns out to be convenient to have a separate function that does
this. A valuation V on a structure A is a function from variables to elements of
dom(A). Recall that we suggested that terms are intended to represent members of
the domain of a structure A. Given a structure A and a valuation V on A, we can
inductively extend V in a straightforward way to a function, denoted V A (although
we frequently omit the superscript A when it is clear from context), that maps terms
to elements of dom(A), as follows. Define V A(c) = cA for each constant sym-
bol c, and then extend the definition by induction on the structure of terms, by taking
V A(f (t1, . . . , tk)) = f A(V A(t1), . . . , V

A(tk)).
With these definitions in hand, we can now define what it means for a formula to be

true in a relational structure. Before we give the formal definition, we consider a few
examples. Let Tall be a unary relation symbol, and let President be a constant symbol.
What does it mean for Tall(President) to be true in the structure A? If we think of the
domain of A as consisting of people, then the interpretation TallA of the Tall relation
can be thought of intuitively as the set of all tall people in the domain. Assume that
PresidentA = Bill, so that, intuitively, the president is Bill. Then Tall(President) is
true in the structure A precisely if Bill is in the relation TallA, that is, intuitively, if Bill
is tall. How should we deal with quantification? In particular, what should it mean
for ∃xTall(x) to be true in the structure A? Intuitively, this formula is true when there
exists a tall person in the domain of A. Formally, ∃xTall(x) is true in the structure A
precisely if the relation TallA is nonempty. Similarly, ∀xTall(x) is true in the struc-
ture A precisely if the relation TallA contains every member of the domain of A, that
is, if everyone is tall. As a final example, consider the formula Governor(c, x), where
c is a constant symbol and x is a variable. It does not make sense to ask whether or
not the formula Governor(c, x) is true in a structure A without knowing what value x

takes on. Here we make use of valuations, which assign to each variable a member
of the domain of the structure. Thus, rather than ask whether Governor(c, x) is
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true in a structure A, we instead ask whether Governor(c, x) is true in a structure A
under a given valuation V . Assume that cA = California and V (x) = Pete, so that
c takes the value California in the structure A and x takes the value Pete under V .
Then we say that Governor(c, x) is true in the structure A under the valuation V

precisely if (V (c), V (x)) = (cA, Pete) = (California, Pete) ∈ GovernorA. Intu-
itively, Governor(c, x) is true in the structure A under the valuation V iff Pete is the
governor of California according to the structure A.

We now give the formal semantics. Fix a relational structure A. For each
valuation V on A and formula ϕ, we define what it means for ϕ to be true in A
under the valuation V , written (A, V ) |= ϕ. If V is a valuation, x is a variable, and
a ∈ dom(A), then let V [x/a] be the valuation V ′ such that V ′(y) = V (y) for every
variable y except x, and V ′(x) = a. Thus, V [x/a] agrees with V , except possibly
on x, and it assigns the value a to x.

(A, V ) |= P(t1, . . . , tk), where P is a k-ary relation symbol and t1, . . . , tk are
terms, iff (V (t1), . . . , V (tk)) ∈ P A

(A, V ) |= (t1 = t2), where t1 and t2 are terms, iff V (t1) = V (t2)

(A, V ) |= ¬ϕ iff (A, V ) |= ϕ

(A, V ) |= ϕ1 ∧ ϕ2 iff (A, V ) |= ϕ1 and (A, V ) |= ϕ2

(A, V ) |= ∃xϕ iff (A, V [x/a]) |= ϕ for some a ∈ dom(A).

Recall that ∀xϕ is taken to be an abbreviation for ¬∃x¬ϕ. It is easy to see that
(A, V ) |= ∀xϕ iff (A, V [x/a]) |= ϕ for every a ∈ dom(A) (Exercise 3.38).

To decide whether the formula Tall(President) is true in the structure A under
the valuation V , the role of V is irrelevant. That is, (A, V ) |= Tall(President) iff
(A, V ′) |= Tall(President), where V and V ′ are arbitrary valuations. A similar
comment applies to the formula ∃xTall(x). However, this is not the case for the
formula Governor(c, x), where c is a constant symbol and x is a variable. There
may be valuations V and V ′ such that (A, V ) |= Governor(c, x) but (A, V ′) |=
Governor(c, x), so that V (x) is the governor of California, but V ′(x) is not.

To understand better what is going on here, we need some definitions. Roughly
speaking, we say that an occurrence of a variable x in ϕ is bound by the quantifier
∀x in a formula such as ∀xϕ or by ∃x in ∃xϕ, and that an occurrence of a variable
in a formula is free if it is not bound. (A formal definition of what it means for an
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occurrence of a variable to be free is given in Exercise 3.39.) A formula in which no
occurrences of variables are free is called a sentence. Observe that x is free in the
formula Governor(c, x), but no variables are free in the the formulas Tall(President)
and ∃xTall(x), so the latter two formulas are sentences. It is not hard to show that
the valuation does not affect the truth of a sentence. That is, if ϕ is a sentence,
and V and V ′ are valuations on the structure A, then (A, V ) |= ϕ iff (A, V ′) |= ϕ

(Exercise 3.39). In other words, a sentence is true or false in a structure, independent
of the valuation used.

3.7.2 First-Order Modal Logic

Just as the syntax of propositional modal logic is obtained from that of propositional
logic by adding the modal operators Ki , we get the syntax of first-order modal logic
from that of first-order logic by adding the modal operators Ki . Thus, we define the
language of first-order modal logic by taking the definition we gave for first-order
formulas and also closing off under the modal operators K1, . . . , Kn, so that if ϕ is
a first-order modal formula, then so is Kiϕ. For example, ∀x(K1Red(x)) is a first-
order modal formula, which intuitively says that for every x, agent 1 knows that x

is red.
The semantics of first-order modal logic uses relational Kripke structures. In

a (propositional) Kripke structure, each world is associated with a truth assignment
to the primitive propositions via the function π . In a relational Kripke structure,
the π function associates with each world a relational structure. Formally, we de-
fine a relational Kripke structure for n agents over a vocabulary T to be a tuple
(S, π, K1, . . . , Kn), where S is a set of states, π associates with each state in S a T -
structure (i.e., π(s) is a T -structure for each state s ∈ S), and Ki is a binary relation
on S.

The semantics of first-order modal logic is, for the most part, the result of com-
bining the semantics of first-order logic and the semantics of modal logic in a straight-
forward way. But there are a few subtleties, as we shall see. We begin with some
examples. Just as in the propositional case, we would like a formula Kiϕ to be true
at a state s of a relational Kripke structure M = (S, π, K1, . . . , Kn) precisely if ϕ

is true at every state t such that (s, t) ∈ Ki . As an example, let ϕ be the formula
Tall(President). In some states t of the relational Kripke structure the president
might be Bill (that is, Presidentπ(t) = Bill), and in some states t the president might
be George. We would like the formula KiTall(President) to be true if the president is
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tall in every world that agent i considers possible, even if the president is a different
person in different worlds. It is quite possible for agent i to know that the president
is tall without knowing exactly who the president is.

What about the formula KiTall(x), where x is a variable? Since x is a variable,
we need a valuation to decide whether this formula is true at a given state. Assume
that V (x) = Bill. For KiTall(x) to be true, we want Bill to be tall in every world
that agent i considers possible. But now there is a problem: although Bill may be a
member of the domain of the relational structure π(s), it is possible that Bill is not
a member of the domain of π(t) for some state t that agent i considers possible at
state s. To get around this problem, we restrict attention for now to common-domain
Kripke structures, that is, relational Kripke structures where the domain is the same
at every state. We discuss the implications of this restriction in more detail later.

Under the restriction to common-domain structures, defining truth of for-
mulas becomes quite straightforward. Fix a relational Kripke structure M =
(S, π, K1, . . . , Kn), where the states have common domain U. A valuation V on M

is a function that assigns to each variable a member of U. This means that V (x) is
independent of the state, although the interpretation of, say, a constant c does depend
on the state. As we shall see, this lets us identify the same individual in the domain
at different states and plays an important role in the expressive power of first-order
modal logic. For a state s of M , a valuation V on M , and a formula ϕ, we define
what it means for ϕ to be true at the state s of M under the valuation V , written
(M, s, V ) |= ϕ. Most of the definitions are just as in the first-order case, where the
role of A is played by π(s). For example,

(M, s, V ) |= P(t1, . . . , tk), where P is a k-ary relation symbol and t1, . . . , tk are
terms, iff (V π(s)(t1), . . . , V

π(s)(tk)) ∈ P π(s).

In the case of formulas Kiϕ, the definition is just as in the propositional case in
Chapter 2:

(M, s, V ) |= Kiϕ iff (M, t, V ) |= ϕ for every t such that (s, t) ∈ Ki .

As we said earlier, first-order modal logic is significantly more expressive than
either first-order logic or propositional modal logic. One important example of its
extra expressive power is that it allows us to distinguish between “knowing that” and
“knowing who.” For example, the formula KAlice∃x(x = President) says that Alice
knows that someone is the president. This formula is valid (since ∃x(x = President)
is valid). In particular, the formula is true even in a world where Alice does not
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know whether Bill or George is the president; she may consider one world possible
where Bill is the president, and consider another world possible where George is the
president. Thus, although Alice knows that there is a president, she may not know
exactly who the president is. To say that Alice knows who the president is, we would
write ∃xKAlice(x = President). Because a valuation is independent of the state, it is
easy to see that this formula says that there is one particular person who is president
in every world that Alice considers possible. Notice that the fact that the valuation is
independent of the state is crucial in allowing us to distinguish “knowing that” from
“knowing who.”

3.7.3 Assumptions on Domains

We restricted attention in the previous section to common-domain Kripke structures.
This means that although we allow the interpretations of relation symbols, of function
symbols, and of constant symbols to vary from state to state in a given relational
Kripke structure, we do not allow the domains to vary. Essentially, this assumption
says that the domain is common knowledge. This assumption is quite reasonable in
many applications. When analyzing a card game, players typically have common
knowledge about which cards are in the deck. Nevertheless, there are certainly
applications where the domain is not common knowledge. For example, although
there are no unicorns in this world, we might like to imagine possible worlds where
unicorns exist. On a more practical level, if our agent is a knowledge base reasoning
about the employees in a company, then the agent may not know exactly how many
employees the company has.

As we saw earlier, this assumption of a common domain arose in response to a
technical problem, that of making sense of the truth value of a formula where a free
variable appears in the scope of a modal operator, such as in the formula KiTall(x).
Without the common-domain assumption, to decide if KiTall(x) is true at a state s

under a valuation V where V (x) = Bill, we have to consider the truth of Tall(x) at
a state t where Bill may not be in the domain. It is not clear what the truth value of
KiTall(x) should be in this case.

We can solve this problem by making a somewhat weaker assumption than the
common-domain assumption. It suffices to assume that if world t is considered
possible in world s, then the domain corresponding to s is a subset of the domain
corresponding to t . Formally, this assumption says that if M = (S, π, K1, . . . , Kn)

is a relational Kripke structure and (s, t) ∈ Ki , then dom(π(s)) ⊆ dom(π(t)).
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Informally, this assumption says that every object that exists in a world s also exists in
every world considered possible at s. We call this the domain-inclusion assumption.

While the domain-inclusion assumption lets us deal with more cases than the
common-domain assumption, and does avoid the technical problems discussed
above, it certainly does not handle all problems. For one thing, an agent cannot
consider possible a world with fewer domain elements. This means that if we take
the Ki’s to be equivalence relations, as we have claimed that we want to do for many
applications, or even just Euclidean relations, then the domain-inclusion assumption
implies that in all worlds considered possible from a given world the domains must
be the same. Thus, with the additional assumption that the relation is Euclidean, we
cannot model in this framework the examples that we mentioned earlier involving
unicorns or employees in a company.

Many solutions have been proposed for how to give a semantics without any
assumptions whatsoever about relationships between domains of worlds within a
relational Kripke structure. Nevertheless, it is fair to say that no solution has been
universally accepted. Each proposed solution suffers from various problems. One
proposed solution and a problem from which it suffers are discussed in Exercise 3.40.

3.7.4 Properties of Knowledge in Relational Kripke Structures

We now consider the properties of knowledge in relational Kripke structures. Just
as before, we do this in terms of the formulas that are valid in relational Kripke
structures. In the first-order case, we say that a formula is valid if it is true at every
state of every relational Kripke structure under every valuation. To simplify the
discussion, we assume a common domain.

In the propositional case, we saw that a sound and complete axiomatization could
be obtained by considering all tautologies of propositional logic, together with some
specific axioms about knowledge. It is easy to see that all the axioms of Kn are
still valid in relational Kripke structures (Exercise 3.41). It is also intuitively clear
that these axioms are not complete. We clearly need some axioms for first-order
reasoning.

We might hope that we can get a complete axiomatization by adding all (substitu-
tion instances of) valid first-order formulas. Unfortunately, this results in an unsound
system. There are two specific axioms of first-order logic that cause problems.

To state them we need a little notation. Suppose that ϕ(x) is a first-order formula
in which some occurrences of x are free. Let t , t1, and t2 be terms, and let ϕ(t) be
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the result of substituting t for all free occurrences of x. Assume for simplicity that
no variable occurring in t , t1, or t2 is quantified in ϕ (so that, for example, for every
variable y in t there is no subformula of ϕ of the form ∃yψ ; without this assumption,
we may have inadvertent binding of the y in t by ∃y). Consider the following two
axioms:

ϕ(t) ⇒ ∃xϕ(x) (3.3)

(t1 = t2) ⇒ (ϕ(t1) ⇔ ϕ(t2)) (3.4)

It is easy to see that both of these axioms are valid in relational structures (Ex-
ercise 3.42). For the first one, if ϕ(t) is true, then there is certainly some
value we can assign to x that makes ϕ(x) true, namely, the interpretation of t .
Axiom (3.4) just says that “equals can be replaced by equals.” As an exam-
ple, taking ϕ(x) to be Governor(California, x), we have that ((x1 = x2) ⇒
(Governor(California, x1)) ⇔ Governor(California, x2)) is valid. Although these
axioms are valid in relational Kripke structures if ϕ(x) is a first-order formula, we
now show that neither axiom is valid if we allow ϕ to be an arbitrary modal formula.

We start with the first axiom. Let ϕ(x) be the modal formula Ki(Tall(x)) and
let t be President. With this substitution, the axiom becomes

Ki(Tall(President)) ⇒ ∃xKi(Tall(x)). (3.5)

As we noted earlier, the left-hand side of (3.5) is true if, intuitively, the president is
tall in every world that agent i considers possible, even if the president is a different
person in different worlds. The right-hand side of (3.5) is, however, false if there is
no one person who is tall in every possible world. Since it is possible simultaneously
for the left-hand side of (3.5) to be true and the right-hand side to be false, it follows
that (3.5) is not valid.

What is going on is that the valuation is independent of the state, and hence
under a given valuation, a variable x is a rigid designator, that is, it denotes the
same domain element in every state. On the other hand, a constant symbol such as
President can denote different domain elements in distinct states. It is easy to see
that (3.3) is valid if we restrict the term t to being a variable. More generally, we can
show that (3.3) is valid if t is a rigid designator (Exercise 3.42).

To see that the second axiom is not valid in relational Kripke structures, let ϕ be
Ki(t1 = x). Then the axiom becomes

(t1 = t2) ⇒ (Ki(t1 = t1) ⇔ Ki(t1 = t2)).
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It is easy to see that Ki(t1 = t1) is valid, so the axiom reduces to

(t1 = t2) ⇒ Ki(t1 = t2). (3.6)

There is a famous example from the philosophical literature that shows that this is
not valid. Because of its brightness, the planet Venus is called the morning star (at
sunrise, when it appears in the east), and it is also called the evening star (at sunset,
when it appears in the west). Ancient astronomers referred to the morning star as
Phosphorus, and the evening star as Hesperus, and were unaware that Phosphorus
and Hesperus were one and the same. Let the constant symbol Phosphorus play the
role of t1 in (3.6), let the constant symbol Hesperus play the role of t2, and let agent i

be an ancient astronomer. Then (3.6) is falsified: although Hesperus and Phosphorus
are equal in the real world, the astronomer does not know this.

Notice that, again, the problem here arises because t1 and t2 may not be rigid
designators. If we restrict attention to terms that are rigid designators, and, in partic-
ular, to variables, then (3.4) is valid in all relational Kripke structures (Exercise 3.42).
It follows that the following special case of (3.6), called Knowledge of Equality, is
valid:

(x1 = x2) ⇒ Ki(x1 = x2). (3.7)

We remark that (3.3) and (3.4) are the only axioms of first-order logic that are
not valid in relational Kripke structures. More precisely, there is a complete ax-
iomatization of first-order logic that includes (3.3) and (3.4) as axioms such that all
substitution instances of all axioms besides (3.3) and (3.4) are valid in relational
Kripke structures.

Suppose that we restrict (3.3) and (3.4) so that if ϕ is a modal formula (that is, it
has occurrences of Ki operators), then the terms t , t1, and t2 must be variables; we
henceforth call these the restricted versions of (3.3) and (3.4). Note that the restricted
versions of (3.3) and (3.4) are valid in relational Kripke structures. We might hope
that by taking (substitution instances of) the axioms of first-order logic, using only
the restricted versions of (3.3) and (3.4), together with the axioms and inference
rules of Kn, we would have a sound and complete axiomatization for knowledge in
first-order relational structures. The resulting system is sound, but it is not complete;
there are two additional axioms we must add.

One new axiom arises because of the interaction between the first-order quanti-
fier ∀ and the modal operator Ki , which can be thought of as a “knowledge quantifier.”
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Consider the following formula, sometimes called the Barcan formula:

∀x1 . . . ∀xkKiϕ ⇒ Ki∀x1 . . . ∀xkϕ.

It is fairly easy to see that the Barcan formula is valid (Exercise 3.43). Its validity,
however, depends crucially on the common-domain assumption. For example,
consider a relational Kripke structure whose common domain consists of precisely
three elements, a1, a2, and a3. Assume that Alice knows that a1 is red, that a2 is red,
and that a3 is red. Then, for all x, Alice knows that x is red; that is, ∀x(KARed(x))

holds. From the Barcan formula it follows that Alice knows that for every x, x is red;
that is, KA(∀xRed(x)) holds. Without the common-domain assumption, we might
argue intuitively that Alice does not know that every object is red, since Alice might
consider it possible that there is a fourth object a4 that is blue. In the presence of the
common-domain assumption, Alice knows that a1, a2, and a3 are the only domain
elements, so this argument cannot be applied. On the other hand, the Barcan formula
is not valid under the domain-inclusion assumption that we discussed earlier, where
there really can be a fourth (non-red) object a4 in another world (Exercise 3.44).

The second new axiom arises because of the interaction between the Ki operator
and equality. This axiom, which is analogous to Knowledge of Equality (3.7), is
called Knowledge of Inequality:

(x1 = x2) ⇒ Ki(x1 = x2). (3.8)

Like Knowledge of Equality, this axiom is valid (Exercise 3.45). Unlike Knowledge
of Equality, this axiom does not follow from the other axioms.

It turns out that no further new axioms beyond the Barcan formula and Knowledge
of Inequality are needed to get a sound and complete axiomatization for the first-
order theory of knowledge. Such an axiomatization (for structures with n agents) is
obtained by combining

(a) the axiom system Kn,

(b) the axiom system for first-order logic referred to previously, except that we
use the restricted versions of (3.3) and (3.4),

(c) the Barcan formula, and

(d) Knowledge of Inequality.
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Notice that if we do not allow function or constant symbols in the vocabulary, then
the only terms are variables, which are rigid designators. In this case, all substitution
instances of axioms (3.3) and (3.4) are valid (in fact, the restricted versions of (3.3)
and (3.4) are identical to the unrestricted versions), so we can simplify the statement
of (b) above.

We have already seen that for Kripke structures (S, π, K1, . . . , Kn), additional
properties of the Ki relations give us additional axioms for knowledge. Not surpris-
ingly, the same is true for relational Kripke structures. For example, if each Ki is an
equivalence relation, then we can modify the sound and complete axiomatizations
we just described by replacing the axiom system Kn by the axiom system S5n. It
is interesting that in this case we do not need to include the Barcan formula or the
Knowledge of Inequality axiom, since they turn out to be consequences of the axioms
of first-order logic, along with S5n (see Exercises 3.43 and 3.45).

Exercises

3.1 Show that |Sub(ϕ)| ≤ |ϕ|.
3.2 Show that if neither F ∪ {ϕ} nor F ∪ {¬ϕ} is AX-consistent, then neither is
F ∪ {ϕ ∨ ¬ϕ}.
3.3 Prove that a maximal AX-consistent set has properties (c) and (d), as claimed
in the statement of Lemma 3.1.2.

3.4 Prove that Kn is sound for Mn, using Theorem 3.1.1.

3.5 In the proof of Theorem 3.1.3, prove that (Mc, sV ) |= ϕ iff ϕ ∈ V , in the case
that ϕ is a conjunction or a negation.

3.6 Show that if {ϕ1, . . . , ϕk, ¬ψ} is not Kn-consistent, then

Kn � ϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .)).

3.7 Prove, using induction on k together with axiom A2 and propositional reasoning,
that

Kn � Ki(ϕ1 ⇒ (ϕ2 ⇒ (. . . ⇒ (ϕk ⇒ ψ) . . .))

⇒ (Kiϕ1 ⇒ (Kiϕ2 ⇒ (. . . ⇒ (Kiϕk ⇒ Kiψ) . . .)).
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* 3.8 Let K′
n be the variant of Kn consisting of one inference rule, modus ponens

(R1), and the following two axioms:

A1′. Ki1 . . . Kikϕ, where ϕ is an instance of a tautology of propositional calcu-
lus, k ≥ 0, and i1, . . . , ik are arbitrary (not necessarily distinct) agents in
{1, . . . , n},

A2′. Ki1 . . . Kik [(Kiϕ∧Ki(ϕ ⇒ ψ)) ⇒ Kiψ], i = 1, . . . , n, where, again, k ≥ 0
and i1, . . . , ik are arbitrary (not necessarily distinct) agents in {1, . . . , n}.

Thus, A1′ and A2′ look just like A1 and A2, except that a string of knowledge
operators has been appended to the beginning of each formula. If we take k = 0 in
each of A1′ and A2′, we get back A1 and A2.

Show that Kn is equivalent to K′
n; that is, show that a formula ϕ is provable in

Kn iff it is provable in K′
n. Then show that the deduction theorem holds for K′

n. Find
similar (equivalent) variants of Tn, S4n, S5n, and KD45n for which the deduction
theorem holds.

This shows that it is essentially R2—Knowledge Generalization—that causes
the deduction theorem to fail for the logics that we have been considering.

3.9 Show that A6 is provable from A3, A1, and R1.

3.10 In this exercise, we consider when an agent can know both ϕ and ¬ϕ, or both ϕ

and the fact that he does not know ϕ.

(a) Show that K1ϕ∧K1¬ϕ is consistent with Kn by constructing a Kripke structure
that satisfies, for example, K1p ∧ K1¬p.

(b) Show that Kn + {A6} � ¬(Kiϕ ∧ Ki¬ϕ). (You may assume that
Kn � Ki(ϕ ∧ ψ) ⇔ (Kiϕ ∧ Kiψ); you are asked to prove this in Exer-
cise 3.31(a).) Show as a consequence that AX � ¬(Kiϕ ∧ Ki¬ϕ) if AX is
any one of Tn, S4n, S5n, or KD45n.

(c) Show that AX � ¬Ki(ϕ ∧ ¬Kiϕ) although ϕ ∧ ¬Kiϕ is consistent with AX,
where AX is any of Tn, S4n, S5n, or KD45n. Thus, although it is consistent in
each of these logics for ϕ to be true but agent i not to know it, it is impossible
for i to know this fact.

* 3.11 Give syntactic proofs of the following properties of common knowledge:
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(a) KC
n � (CGϕ ∧ CG(ϕ ⇒ ψ)) ⇒ CGψ ,

(b) TC
n � CGϕ ⇒ ϕ,

(c) KC
n � CGϕ ⇒ CGCGϕ (note that the analogous axiom A4 is not needed),

(d) S5C
n � ¬CGϕ ⇒ CG¬CGϕ (hint: show S5C

n � ¬CGϕ ⇔ Ki¬CGϕ for all
i ∈ G),

(e) S4C
n � ¬CGϕ ⇒ CG¬CGϕ (hint: show that ¬CGϕ ∧ ¬CG¬CGϕ is satisfi-

able in some structure in Mrt
n ),

(f) KC
n � CGϕ ⇒ CG′ϕ if G ⊇ G′.

3.12 Prove Lemma 3.1.4.

3.13 In this exercise, we focus on the connection between axiom systems and pos-
sibility relations.

(a) Show that axiom A4 is valid in all structures in which the possibility relation
is transitive.

(b) Show that axiom A5 is valid in all structures in which the possibility relation
is Euclidean.

(c) Show that axiom A5 forces the possibility relation in the canonical structure to
be Euclidean; specifically, show that if all instances of A5 are true at a state sV
in the canonical structure and (sV , sW ), (sV , sX) ∈ Ki , then (sW , sX) ∈ Ki .

(d) Show that axiom A6 is valid in all structures in which the possibility relation
is serial.

(e) Show that axiom A6 forces the possibility relation in the canonical structure
to be serial; in particular, show that if all instances of A6 are true at a state sV ,
then there must be some state sW such that (sV , sW ) ∈ Ki .

* 3.14 In this exercise, we show that the formulas proved valid in Exercise 2.12 are
provable in S5n. Give syntactic proofs of the following properties:

(a) S5n � ¬ϕ ⇒ Ki¬Kiϕ,



94 Chapter 3 Completeness and Complexity

(b) S5n � ¬ϕ ⇒ Ki1 . . . Kik¬Kik . . . Ki1ϕ for any sequence i1, . . . , ik of agents,

(c) S5n � ¬Ki¬Kiϕ ⇔ Kiϕ.

(Hint: for part (b), use part (a), induction, the Knowledge Generalization Rule, and
the Distribution Axiom.)

3.15 Prove that the structure M in Figure 3.1 is a model of S51. (Hint: show that
there is a Kripke structure M ′ with a single state s′ such that for every formula
ϕ ∈ L1({p}) we have (M, s) |= ϕ iff (M, t) |= ϕ iff (M ′, s′) |= ϕ.)

3.16 In this exercise, we show that there is a construction that converts a model M of
Tn (resp., S4n, S5n, KD45n) to a model M ′ in Mr

n (resp., Mrt
n , Mrst

n , Melt
n ) that in a

precise sense is equivalent to M . Given a Kripke structure M = (S, π, K1, . . . , Kn),
let Mr = (S, π, Kr

1, . . . , Kr
n), where Kr

i is the reflexive closure of Ki ; that is, Kr
i =

Ki ∪ {(s, s) | s ∈ S}. Similarly, let Mrt (resp., Mrst, Met) be the structure obtained
from M by replacing the Ki relations by their reflexive, transitive closures (resp.,
reflexive, symmetric and transitive closures; Euclidean and transitive closures). Note
that we have Met rather than Melt, since it does not make sense to take the serial
closure.

Prove the following:

(a) Mr ∈ Mr
n; and if M is a model of Tn, then (M, s) ≡ (Mr, s) for all states s

in M .

(b) Mrt ∈ Mrt
n ; and if M is a model of S4n, then (M, s) ≡ (Mrt, s) for all states s

in M .

(c) Mrst ∈ Mrst
n ; and if M is a model of S5n, then (M, s) ≡ (Mrst, s) for all

states s in M .

(d) If M is a model of KD45n, then so is Met; moreover, in this case, Met ∈ Melt
n

and (M, s) ≡ (Met, s) for all states s in M . Note that this case is slightly
different from the previous cases, since it is not necessarily true in general that
Met ∈ Melt

n .

3.17 Let Fn be the class of all Kripke frames. Just as for structures, we can consider
subclasses of Fn such as F r

n , F rt
n , F rst

n , and Felt
n . We say that a frame F is a model

of Tn (resp., S4n, S5n, KD45n) if every structure based on F is a model of Tn (resp.,
S4n, S5n, KD45n). Prove the following:
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(a) F is a model of Tn iff F ∈ F r
n ,

(b) F is a model of S4n iff F ∈ F rt
n ,

(c) F is a model of S5n iff F ∈ F rst
n ,

(d) F is a model of KD45n iff F ∈ Felt
n .

3.18 In this exercise, we take a closer look at axiom A7.

(a) Show that axiom A7 is provable from the system consisting of A1, A3, A5,
and R1.

(b) Show that axiom A7 forces the possibility relation in the canonical structure
to be symmetric.

* 3.19 Show that A4 is provable from the system consisting of A1, A2, A3, A5, R1,
and R2. (Hint: use Exercise 3.18 to show that Kiϕ ⇒ Ki¬Ki¬Kiϕ is provable, and
use A5 and propositional reasoning to show that ¬Ki¬Kiϕ ⇒ Kiϕ is also provable.)

3.20 Prove, using Lemma 3.1.4 and the techniques of Theorem 3.1.5, that the fol-
lowing axiom systems are equivalent (i.e., precisely the same formulas are provable
in all of these systems):

(a) S5n,

(b) the system consisting of {A1,A2,A4,A6,A7,R1,R2},
(c) the system consisting of {A1,A2,A3,A5,R1,R2},
(d) the system consisting of {A1,A2,A3,A4,A7,R1,R2}.

(Note that this exercise gives us an indirect proof of the preceding exercise.)

3.21 Fill in the missing details in the proof of Proposition 3.1.6. In particular, show
that the relation K′

1 defined in the the proof of part (b) has the properties claimed for
it, and show that (M, s) ≡ (M ′, s) for all states s ∈ {s0}∪K′

1(s0) and all formulas ψ .

3.22 Show that an analogue to Proposition 3.1.6(b) holds for K45. (Hint: the only
difference is that we can now take the set S to be empty.)
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* 3.23 The depth of a formula is the depth of nesting of the Ki operators in the
formula. Formally, we define depth by induction on structure of formulas. We define
depth(p) = 0 for a primitive proposition p, depth(¬ϕ) = depth(ϕ), depth(ϕ∧ψ) =
max(depth(ϕ), depth(ψ)), and depth(Kiϕ) = depth(ϕ) + 1.

(a) Show that for every formula ϕ ∈ L1 we can effectively find a formula ϕ′ of
depth 1 such that S5 � ϕ ⇔ ϕ′. That is, for every formula in L1 we can
effectively find an equivalent formula that is a Boolean combination of propo-
sitional formulas and formulas of the form K1ψ , where ψ is propositional.
(Hint: use the fact that K1(ϕ1 ∨ K1ϕ2) ⇔ (K1ϕ1 ∨ K1ϕ2) is valid in Mrst

1 .)

(b) Show that for every formula in L1 of the form K1ϕ we can effectively find
an equivalent formula that is a Boolean combination of formulas of the form
K1ψ , where ψ is propositional.

3.24 Extend Proposition 3.2.1 to deal with formulas in the language LCD
n . (We

remark that once we have common knowledge in the language, the algorithm will
no longer run in time O(||M|| × |ϕ|), but will still run in time polynomial in ||M||
and |ϕ|.)

** 3.25 In this exercise, we sketch the details of how to construct effectively the proof
of a valid formula. (By “construct effectively,” we mean that there is an algorithm that
takes as input a formula ϕ and gives as output a proof of ϕ, if ϕ is valid, and halts, say
with the output “not valid,” if ϕ is not valid.) We work with Kn here, but the proof
can be easily modified to deal with all the other logics we have been considering.
Using the notation of Theorem 3.2.2, let Sub+(ϕ) consist of all the subformulas of ϕ

and their negations. Let V consist of all subsets V of Sub+(ϕ) such that (a) ψ ∈ V

iff ¬ψ /∈ V for each subformula ψ of ϕ and (b) ψ ∧ ψ ′ ∈ V iff ψ, ψ ′ ∈ V .
Let M0 = (S0, π0, K0

1, . . . , K0
n), where S0 = {sV | V ∈ V} and π0, K0

1, . . . , K0
n

are constructed as in the proof of Theorem 3.1.3. We construct inductively, for
k = 0, 1, 2, . . ., a sequence of structures Mk = (Sk, πk, Kk

1, . . . , Kk
n). Suppose that

we have already constructed Mk . Let Sk+1 consist of those states sV ∈ Sk such that
if there is a formula of the form ¬Kiψ ∈ V , then there is a state sW ∈ Sk such
that (sV , sW ) ∈ Kk

i and ¬ψ ∈ W . Let πk+1, Kk+1
1 , . . . , Kk+1

n be the restrictions of
πk, Kk

1, . . . , Kk
1 to Sk+1. Note that this construction is effective. Moreover, since

|S0| ≤ 2|ϕ| and Sk+1 ⊆ Sk , there must be some point, say k0, such that Sk0+1 = Sk0 .



Exercises 97

(a) Prove that ϕ is satisfiable iff for some state sV ∈ Sk0 we have ϕ ∈ V . (Note
that this gives us another proof that if ϕ is satisfiable, it is satisfiable in a finite
structure.)

(b) Let ϕV be the conjunction of all the formulas in the set V . Prove that if
sV ∈ (Sk − Sk+1), then Kn � ¬ϕV ; moreover, show that the proof of ¬ϕV

can be effectively constructed. (Hint: show by induction on k that Kn �∨
sV ∈Sk ϕV , and that the proof of

∨
sV ∈Sk ϕV can be constructed effectively.)

(c) Note that if ϕ is valid, then if we apply the previous construction to ¬ϕ,
eventually we eliminate every state sV such that ¬ϕ ∈ V . Use this observation
and parts (a) and (b) to show that we can effectively construct a proof of ϕ.

3.26 Complete the details of the proof of Theorem 3.2.4.

3.27 In the proof of Theorem 3.3.1, show that
∣∣Sϕ

∣∣ ≤ 2|ϕ|. (Hint: recall that
|CGϕ| = 2 + 2 |G| + |ϕ|.)

* 3.28 In this exercise, we fill in some of the details of the proof of Claim 3.1 in the
proof of Theorem 3.3.1. Assume that (Mϕ, sV ) |= CGψ . Let W be as in the proof
of Theorem 3.3.1. We wish to prove that

KC
n � ϕW ⇒ EG(ψ ∧ ϕW).

(a) Prove that if i ∈ G and W ∈ W , then KC
n � ϕW ⇒ Kiψ . (Hint: assume

that W/Ki = {ϕ1, . . . , ϕk}. Use an argument like that in the proof of Theo-
rem 3.1.3, where W here plays the role that V plays there, and use the fact that
(Mϕ, sW ) |= Kiψ , to show that

KC
n � Kiϕ1 ⇒ (Kiϕ2 ⇒ (. . . ⇒ (Kiϕk ⇒ Kiψ) . . .)).

Now use the fact that Kiϕj ∈ W , for j = 1, . . . , k.)

(b) Define W to be ConC(ϕ) − W . Show that if i ∈ G, W ∈ W , and
W ′ ∈ W , then KC

n � ϕW ⇒ Ki¬ϕW ′ . (Hint: by definition of W , show that
(Mϕ, sW ) |= CGψ and (Mϕ, sW ′) |= CGψ . Conclude that sW ′ is not G-
reachable from sW and, in particular, (sW , sW ′) ∈ Ki . By definition of Ki ,
conclude that W/Ki ⊆ W ′, so there is a formula ψ ′ such that Kiψ

′ ∈ W

and ψ ′ /∈ W ′. Since ψ ′ /∈ W ′, show that KC
n � ψ ′ ⇒ ¬ϕW ′ . From

this, show KC
n � Kiψ

′ ⇒ Ki¬ϕW ′ . Since Kiψ
′ ∈ W , conclude that

KC
n � ϕW ⇒ Ki¬ϕW ′ .)
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(c) Conclude from parts (a) and (b) that

KC
n � ϕW ⇒ Ki

(
ψ ∧

( ∧

W ′∈W

¬ϕW ′
))

.

(d) Prove that

KC
n � ϕW ⇔

( ∧

W ′∈W

¬ϕW ′
)
.

(Hint: first show that KC
n � ∨

W∈ConC(ϕ) ϕW .)

(e) Use parts (c) and (d) to show that KC
n � ϕW ⇒ Ki(ψ ∧ ϕW).

(f) Conclude from part (e) that KC
n � ϕW ⇒ EG(ψ ∧ ϕW).

* 3.29 This exercise provides a weak form of the deduction theorem for languages
with common knowledge. Let G = {1, . . . , n}. Show that if KC

n , ϕ � ψ , then
KC

n � CGϕ ⇒ CGψ . Observe that similar results hold for TC
n , S4C

n , S5C
n , and

KD45C
n .

* 3.30 In this exercise, we fill in some details of the proof of Theorem 3.4.1.

(a) Show that KG ⊆ ⋂
i∈G Ki .

(b) Construct an example where KG = ⋂
i∈G Ki .

(c) Show that the canonical structure (or any other structure for that matter)
can be unwound to get a structure whose graph looks like a tree, in such
a way that the same formulas are true in corresponding states. (More for-
mally, given a structure M = (S, π, K1, . . . , Kn), there is another structure
M ′ = (S′, π ′, K′

1, . . . , K′
n) and a function f : S′ → S such that (i) the graph

of M ′ looks like a tree, in that for all states s′, t ′ in M ′, there is at most one
path from s′ to t ′, and no path from s′ back to itself, (ii) if (s′, t ′) ∈ K′

i then
(f (s′), f (t ′)) ∈ Ki , (iii) π ′(s′) = π(f (s′)), and (iv) f is onto, so that for all
s ∈ S there exists s′ ∈ S′ such thatf (s′) = s. Moreover, we have (M ′, s′) |= ϕ

iff (M, f (s′)) |= ϕ for all states s′ ∈ S′ and all formulas ϕ ∈ LD
n .)

(d) Show that we can unwind the canonical structure in such a way as to get a
structure M ′ where KG = ⋂

i∈G Ki .
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3.31 Prove from the axioms that knowledge distributes over conjunctions. That is,
give syntactic proofs of the following:

(a) Kn � Ki(ϕ ∧ ψ) ⇔ (Kiϕ ∧ Kiψ) (hint: use the observation that ϕ ⇒ (ψ ⇒
(ϕ ∧ ψ)) is a propositional tautology),

(b) KC
n � EG(ϕ ∧ ψ) ⇔ (EGϕ ∧ EGψ),

(c) KC
n � CG(ϕ ∧ ψ) ⇔ (CGϕ ∧ CGψ),

(d) KD
n � DG(ϕ ∧ ψ) ⇔ (DGϕ ∧ DGψ).

3.32 In Chapter 2, we said that distributed knowledge could be viewed as the knowl-
edge the agents would have by pooling their individual knowledge together. This
suggests the following inference rule:

RD1. From (ψ1 ∧ . . . ∧ ψk) ⇒ ϕ infer (Ki1ψ1 ∧ . . . ∧ Kikψk) ⇒ DGϕ, for
G = {i1, . . . , ik}.

Intuitively, RD1 says that if ψ = ψ1 ∧ . . . ∧ ψk implies ϕ, and if each of the agents
in G knows a “part” of ψ (in particular, agent ij knows ψj ), then together they have
distributed knowledge of ψ , and thus distributed knowledge of ϕ.

(a) Prove that RD1 preserves validity with respect to Mn.

(b) Show that RD1 is derivable from axiom A2 (with DG substituted for Ki), D1,
and D2, using propositional reasoning. (Hint: you will also need the results
of Exercise 3.31.)

3.33 We say that ϕ is a pure knowledge formula if ϕ is a Boolean combination of
formulas of the form Kiψ (that is, it is formed from formulas of the form Kiψ using
∧, ¬, and ∨). For example, K2p ∨ (K1¬K3p ∧ ¬K2¬p) is a pure knowledge
formula, but p ∧ ¬K1p is not. Show that if ϕ is a pure knowledge formula, then
KD

n � ϕ ⇒ DGϕ.

3.34 Fill in the details of the proofs of Proposition 3.6.3 and Theorem 3.6.4.

3.35 Prove analogues to Proposition 3.6.3 and Theorem 3.6.4 for K45. (Hint: use
Exercise 3.22.)



100 Chapter 3 Completeness and Complexity

* 3.36 Show that K1ϕ is S4-consistent iff K1ϕ is S5-consistent. Conclude that the
satisfiability problem for S4 for formulas of the form K1ϕ is NP -complete (although
the general satisfiability problem for S4 is PSPACE -complete).

* 3.37 In this exercise, we show that first-order logic is, in a precise sense, expressive
enough to capture propositional modal logic (without common knowledge). Given a
set � of primitive propositions, let the vocabulary �∗ consist of a unary predicate P

corresponding to each primitive proposition p in �, as well as binary predicates
R1, . . . , Rn, one for each agent. We now define a translation from formulas in
Ln(�) to first-order formulas over �∗, so that for every formula ϕ ∈ Ln(�) there is
a corresponding first-order formula ϕ∗ with one free variable x:

• p∗ = P(x) for a primitive proposition p

• (¬ϕ)∗ = ¬(ϕ∗)

• (ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗

• (Kiϕ)∗ = ∀y(Ri(x, y) ⇒ ϕ∗(y)), where y is a new variable not appearing in
ϕ∗ and ϕ∗(y) is the result of replacing all occurrences of x in ϕ∗ by y.

Next, we provide a mapping from a Kripke structure M = (S, π, K1, . . . , Kn) ∈
Mn(�) to a relational �∗-structure M∗. The domain of M∗ is S. For each primitive
proposition p ∈ �, we let P M∗ = {s ∈ S | π(s)(p) = true}, and let RM∗

i = Ki .

(a) Show that (M, s) |= ϕ iff (M∗, V ) |= ϕ∗(x), where V (x) = s. Intuitively, this
says that ϕ∗ is true of exactly the domain elements corresponding to states s

for which (M, s) |= ϕ.

(b) Show that ϕ is valid with respect to Mn(�) iff ∀xϕ∗(x) is a valid first-order
formula. (Hint: use the fact that the mapping from structures in Mn(�) to
relational �∗-structures is invertible.)

(c) Show how to modify this construction to capture validity with respect to struc-
tures in Mr

n (resp., Mrt
n , Mrst

n , Melt
n ).

Given this translation, we might wonder why we should consider propositional modal
logic at all. There are four main reasons for this. First, the syntax of modal logic
allows us to more directly capture the types of statements regarding knowledge
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that we typically want to make. Second, the semantics of modal logic in terms
of possible-worlds structures better represents our intuitions (and, as we shall see,
directly corresponds to a standard representation of a system, one of our major
application areas). Third, the translation fails for common knowledge. (That is,
there is no first-order formula corresponding to common knowledge. This follows
from the fact that transitive closure cannot be expressed in first-order logic.) Finally,
by moving to first-order logic, we lose the nice complexity properties that we have
for propositional modal logic. First-order logic is undecidable; there is no algorithm
that can effectively decide whether a first-order formula is valid.

3.38 Show that (A, V ) |= ∀xϕ iff (A, V [x/a]) |= ϕ for every a ∈ dom(A).

3.39 Inductively define what it means for an occurrence of a variable x to be free
in a formula as follows:

• if ϕ is an atomic formula (P(t1, . . . , tk) or t1 = t2), then every occurrence of x

in ϕ is free,

• an occurrence of x is free in ¬ϕ iff the corresponding occurrence of x is free
in ϕ,

• an occurrence of x is free in ϕ1 ∧ ϕ2 iff the corresponding occurrence of x in
ϕ1 or ϕ2 is free,

• an occurrence of x is free in ∃yϕ iff the corresponding occurrence of x is free
in ϕ and x is different from y.

A sentence is a formula in which no occurrences of variables are free.

(a) Show that if ϕ is a formula, and V and V ′ are valuations that agree on all of
the variables that are free in ϕ, then (A, V ) |= ϕ iff (A, V ′) |= ϕ.

(b) Show that if ϕ is a sentence, and V and V ′ are valuations on the structure A,
then (A, V ) |= ϕ iff (A, V ′) |= ϕ.

3.40 In this exercise, we consider a semantics without any assumptions whatsoever
about relationships between domains of worlds within a relational Kripke structure.
For simplicity, we assume that there are no function symbols. Given a relational
Kripke structure M , we now take a valuation V on M to be a mapping from variables
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to the union of the domains at the states of M . Then, as we saw, to define what
it means for a formula such as KiTall(x) to hold at a state s of a relational Kripke
structure M under a valuation V such that V (x) = Bill, we may have to decide if
Tall(x) is true at a state t such that Bill is not in the domain of the relational structure
π(t). One solution to this problem is to note that if Bill is not in the domain of
π(t), then certainly Bill �∈ Tallπ(t). Therefore, we define a new semantics where we
simply say (M, t, V ) �|= Tall(x) if V (x) is not in the domain of π(t). Similarly, we
say (M, t, V ) �|= x = y if V (x) or V (y) is not in the domain of π(t). Further, we
modify our standard semantics by saying (M, s, V ) |= ∃xϕ iff (M, s, V [x/a]) |= ϕ

for some a ∈ dom(π(s)). Although this semantics has some attractive features, it
has its problems, as we now show.

The universal closure of a formula ϕ is the formula ∀x1 . . . ∀xkϕ, where
x1, . . . , xk are all of the variables that occur free in ϕ. In first-order logic, it is
easy to see that a formula is valid if and only if its universal closure is valid. The next
two parts of the exercise, however, show that this is not the case for the semantics of
this exercise.

(a) Show that ∀x(x = x) is valid under the semantics of this exercise.

(b) Show that x = x is not valid under the semantics of this exercise.

The fact that x = x is not valid in this semantics is certainly undesirable. Of course,
the formula x = x is not a sentence. The next part of this exercise gives an example
of a sentence that is not valid in this logic, which we might hope would be valid,
namely, the universal closure of the Knowledge of Equality axiom.

(c) Show that the formula ∀xKi(x = x) is not valid.

The failure of formulas such as those in (b) and (c) to be valid have led most re-
searchers to reject this semantics as a general solution.

We might hope to solve this problem by redefining (M, t, V ) |= (x = y) iff
V (x) = V (y), irrespective of whether x or y is in domain of π(t). While this change
“solves” the problems of (b) and (c), other problems remain.

(d) Show that under this redefinition, neither ∃y(x = y) nor ∀xKi∃y(x = y) is
valid.

The problems that arise in part (d) are due to the fact that ∃xϕ is true at s if ϕ holds
for some a in dom(π(s)). We could solve this problem by taking ∃xϕ to hold if ϕ
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holds for any a in the union of the domains at all states. This indeed solves all the
problems we have raised but effectively puts us back in the common-domain setting.
The semantics is now equivalent to that which would be obtained by taking the same
domain at all states, namely, the union of all the domains.

3.41 Show that Kn is sound for relational Kripke structures with n agents. Show
that if each Ki is an equivalence relation, then S5n is sound.

3.42 In this exercise, we consider when axioms (3.3) and (3.4) from Section 3.7.4
are valid.

(a) Show that both axioms are valid with respect to relational structures.

(b) We say that a constant, function, or relation symbol is a rigid designator if it
takes on the same value in every state. We say that a term is a rigid designator
if all the constant and function symbols that appear in it are rigid designators.
Show that both axioms are valid with respect to relational Kripke structures
if t , t1, and t2 are rigid designators.

We remark that in certain applications it may be useful to designate some of the
symbols as rigid designators, while others are allowed to vary. For example, we may
want the interpretation of constants such as 0 and 1 and of functions such as + and ×
to be independent of the state.

* 3.43 In this exercise, we consider the Barcan formula.

(a) Show that the Barcan formula is valid.

(b) Show that this axiom is a consequence of the axioms and rules of S5n together
with the axioms and rules of first-order logic. (Hint: first-order logic has
analogues to the Distribution Axiom A2 and the Knowledge Generalization
Rule R2 for universal quantification: (∀xϕ ∧ ∀x(ϕ ⇒ ψ)) ⇒ ∀xψ is an
axiom, and “from ϕ infer ∀xϕ” is an inference rule. In addition, there is the
following axiom:

ϕ ⇒ ∀xϕ if ϕ has no free occurrences of x.

Using these, the restricted version of (3.3), and the axioms of S5n, prove

¬Ki¬∀x1 . . . ∀xkKiϕ ⇒ ∀x1 . . . ∀xkϕ.



104 Chapter 3 Completeness and Complexity

Then show that, using the axioms and rules of S5n, from ¬Ki¬ψ1 ⇒ ψ2 we
can prove ψ1 ⇒ Kiψ2.)

3.44 Show that under the domain-inclusion assumption

(a) the Barcan formula is not valid,

(b) the converse of the Barcan formula, namely

Ki∀x1 . . . ∀xkϕ ⇒ ∀x1 . . . ∀xkKiϕ,

is valid,

(c) if the Ki relations are equivalence relations, then the Barcan formula is valid.

3.45 In this exercise, we consider the Knowledge of Inequality axiom.

(a) Show that the Knowledge of Inequality axiom (3.8) is valid.

(b) Show that this axiom is a consequence of the axioms and rules of S5n together
with the axioms and rules of first-order logic. (Hint: show that Ki(ϕ ⇒
Kiϕ) ⇒ Ki(¬ϕ ⇒ Ki¬ϕ) is valid in S5n, and hence provable in S5n. Now
take ϕ to be x1 = x2, and apply Knowledge of Equality.)

Notes

A discussion of different varieties of modal logic can be found in some of the stan-
dard texts in the area, such as [Hughes and Cresswell 1996], [Chellas 1980], and
[Blackburn, de Rijke, and Venema 2001]. The historical names S4 and S5 are due to
Lewis, and are discussed in his book with Langford [1959]. The names K and T are
due to Lemmon [1977], as is the idea of naming the logic for the significant axioms
used. Arguments for using logics weaker than S5 in game theory can be found in,
for example, [Samet 1987] and [Geanakoplos 1989].

The treatment of completeness and complexity issues in this chapter largely
follows that of [Halpern and Moses 1992]. The technique for proving completeness
using canonical structures seems to have been worked out independently by Makinson
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[1966], Kaplan [1966], and Lemmon and/or Scott [Lemmon 1977]. An algebraic
approach to the semantics of modal logic is described by Lemmon [1977]. Frames
were introduced by Lemmon and Scott [Lemmon 1977], who called them “world
systems.” The term “frame” is due to Segerberg [1968]. The idea of using frames
to characterize axiom systems (as in Exercise 3.17) is well known in modal logic; it
appears, for example, in [Goldblatt 1992] and [Hughes and Cresswell 1984].

Although we restrict our attention in this book to languages L with a countable
set of formulas, this is not really necessary. For example, we make this restriction in
Lemma 3.1.2 only to simplify the proof. Indeed, Lemma 3.1.2 is a standard result in
the model-theoretic literature and is known as Lindenbaum’s Theorem [Chang and
Keisler 1990, Proposition 1.3.11].

As we mentioned in the notes to Chapter 1, Lenzen’s overview article [1978]
has a good discussion and review of philosophers’ arguments for and against various
axioms of knowledge. In the next chapter we present our model of knowledge in
multi-agent systems for which S5n is an appropriate axiomatization. Other axiom
systems for knowledge have been used in various contexts. Moore [1985] uses S4 in
his theory of knowledge and action. Since the knowledge represented in a knowledge
base is typically not required to be true, axiom A3 has been thought inappropriate
for these applications; thus KD45 is considered, for example, by Levesque [1984a].
KD45 has also been considered, for example, by Fagin and Halpern [1988a] and
by Levesque [1984b], to be an appropriate logic for characterizing the beliefs of an
agent, who might believe things that in fact turn out to be false.

There has been a great deal of interest recently in having a system with modal
operators for knowledge and belief where, typically, the belief operator satisfies the
axioms of KD45 and the knowledge operator satisfies the axioms of S5. The focus has
been on the interaction between these operators (for example, if agent i believes ϕ,
does she know that she believes ϕ?) and on defining belief in terms of knowledge.
Further details can be found in [Friedman and Halpern 1997], [Kraus and Lehmann
1988], [Moses and Shoham 1993], and [Voorbraak 1992].

The formula Ki(ϕ∧¬Kiϕ) discussed in part (c) of Exercise 3.10 has been called a
“pragmatically paradoxical formula.” It was first introduced by Moore (see [Hintikka
1962]).

Axioms for common knowledge appear in [Lehmann 1984], [Milgrom 1981],
and [McCarthy, Sato, Hayashi, and Igarishi 1979]. (In these papers, only the modal
operator C, referring to common knowledge of all the agents in the system, was used,
rather than the indexed modal operator CG.) The essential ideas for extending the
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canonical structure technique to languages including common knowledge are due
to Kozen and Parikh [1981], who proved completeness results for the logic PDL
(Propositional Dynamic Logic) in this way. The idea for proving completeness for
the language including distributed knowledge is due to Halpern and Moses [1992];
a formal completeness proof (as in Exercise 3.30) can be found in [Fagin, Halpern,
and Vardi 1992a] and [Hoek and Meyer 1992].

An excellent introduction to complexity theory is given by Hopcroft and Ullman
[1979]. The fact that satisfiability for propositional logic is NP -complete was proved
by Cook [1971], who in fact introduced the notions of NP and NP -completeness.
Ladner [1977] proved that the satisfiability problem for S5 is NP -complete, and that
satisfiability for the logics K, T, and S4 is PSPACE -complete. The results in the
multi-agent case are from [Halpern and Moses 1992]. The exponential time results
for logics involving common knowledge are based on similar results for PDL. The
lower bound for PDL is due to Fischer and Ladner [1979]; the matching upper bound
is due to Pratt [1979]. Details of the proofs of the complexity results not included
here can be found in [Halpern and Moses 1992]. A general framework for studying
the complexity of modal logics is described by Vardi [1989]. For a recent overview
of the complexity of modal logics, see [Blackburn, de Rijke, and Venema 2001].

An excellent introduction to first-order logic is [Enderton 1972]; this book also
provides a nice discussion of issues of decidability and undecidability. The transla-
tion from modal logic to first-order logic (Exercise 3.37) is another notion that seems
to have been developed independently by a number of people. The first treatment
of these ideas in print seems to be due to van Benthem [1974]; details and further
discussion can be found in his book [1985]. The distinction between “knowing that”
and “knowing who” is related to an old and somewhat murky distinction between
knowledge de dicto (literally, “knowledge of words”) and knowledge de re (literally,
“knowledge of things”). Plantinga [1974] discusses these terms in more detail.

The example of the morning star and the evening star is due to Frege [1892],
and its implications for first-order modal logic were first discussed by Quine [1947].
The idea of dealing with the morning-star paradox by restricting substitutions so that
they are not allowed within the scope of knowledge operators Ki is due to Kanger
[1957a], and the idea of using rigid designators is due to Kaplan [1969].

The Barcan formula (or actually, a formula equivalent to it) was introduced by
Barcan [1946]. Prior [1956] showed that the Barcan formula is a consequence of
the axioms of first-order logic, along with S5; see [Hughes and Cresswell 1968,
page 145] for a proof. Prior [1957] also made an early objection to it. Kripke
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[1963b] introduced structures equivalent to relational Kripke structures, but where
the domains of distinct worlds can be unrelated, and so the Barcan formula is violated.
He gave a completeness proof for a first-order modal logic in the S5 case [1959].
Barcan [1947] showed the validity of the Knowledge of Equality axiom.

Detailed discussions of first-order modal logic, along with completeness proofs,
appear in Hughes and Cresswell’s book [1968] and Garson’s article [1984]. Much
of the information we have given about first-order modal logic (including biblio-
graphic references) is from Hughes and Cresswell’s book. They, along with Garson,
discuss and prove sound and complete axiomatizations under a variety of assump-
tions, including cases where formulas involving equality are not allowed. Garson
discusses in detail a number of ways of dealing with what is called the problem of
“quantifying-in”: how to give semantics to a formula such as ∃xKi(P (x)) without
the common domain assumption.

An axiomatization of first-order logic that includes (3.3) and a slightly stronger
version of (3.4) appear in [Enderton 1972]. This stronger version says that if ϕ′ is the
result of replacing some occurrences of t1 in ϕ(t1) by t2, then (t1 = t2) ⇒ (ϕ(t1) ⇔
ϕ(t2)). It is not hard to show that in the presence of the other axioms, this stronger
version is implied by our (3.4). We remark that in [Enderton 1972], the Rule of
Universal Generalization (“from ϕ infer ∀xϕ”) is not used. Instead, all axioms are
viewed as universally quantified. We do assume this rule here. (Alternatively, we
would have to universally quantify all the free variables in the axioms of Kn or S5n.)



 

Chapter 4

Knowledge in Multi-Agent Systems

The following four propositions, which appear to the author to be inca-
pable of formal proof, are presented as Fundamental Postulates upon
which the entire superstructure of General Systemantics . . . is based . . .

1. EVERYTHING IS A SYSTEM.

2. EVERYTHING IS PART OF A LARGER SYSTEM.

3. THE UNIVERSE IS INFINITELY SYSTEMATIZABLE, BOTH UP-
WARD (LARGER SYSTEMS) AND DOWNWARD (SMALLER
SYSTEMS).

4. ALL SYSTEMS ARE INFINITELY COMPLEX. (The illusion of
simplicity comes from focusing attention on one or a few vari-
ables.)

John Gall, Systemantics, 1975

4.1 Runs and Systems

In this chapter we consider one of the major application areas of reasoning about
knowledge: multi-agent systems. We subscribe to the spirit of the quote above:
in this book, we view any collection of interacting agents as a multi-agent system.
For example, we shall view the children (and the father) in the muddy children
puzzle as agents in a multi-agent system. We also want to be able to model a game
such as poker as a multi-agent system. A distributed system consisting of processes
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in a computer network running a particular protocol forms another example of a
multi-agent system. Although we typically call the entities in a multi-agent system
“agents,” we occasionally refer to them as “players” (particularly in the context of
game-theoretic examples) and “processes” or “sites” (particularly in the context of
distributed systems examples).

A good case can be made that, as suggested in the quote at the beginning of
the chapter, systems are extremely complex. It is hard enough to reason about the
behavior of one agent. If we have a system of interacting agents, things get much
worse. Consider, for example, the muddy children puzzle. If we attempt to model the
system in full detail, we would have to include all that happened to each of the children
throughout their lives, a detailed description of their visual and auditory systems and
how they operate, details of the weather, etc.; the list is potentially endless. All of
these factors could, in principle, influence the behavior of the children.

The first step in dealing with the complexity is also suggested by the quote: we
focus attention on only a few of the details, and hope that these cover everything that
is relevant to our analysis. The second step consists of finding good ways to think
about a situation in order to minimize its complexity. Our goal in this chapter (and
in much of the rest of the book) is to show that reasoning about systems in terms of
knowledge can be very helpful in this regard. To do that, we need a formal model
of multi-agent systems. We want a framework that is general enough to allow us to
capture all the important features of multi-agent systems, without getting too bogged
down in details.

One key assumption we make is that if we look at the system at any point in time,
each of the agents is in some state. We refer to this as the agent’s local state, in order
to distinguish it from a global state, which we define shortly. We assume that an
agent’s local state encapsulates all the information to which the agent has access. In
our abstract framework, we do not make any additional assumptions about the state.
In the case of the muddy children, the state of a child might encode what the child
has seen and heard, that is, which of the other children have muddy foreheads and
which do not, the father’s initial statement, and the responses of each of the children
to the father’s questions so far. If we are modeling a poker game, a player’s state
might consist of the cards he currently holds, the bets made by the other players, any
other cards he has seen, and any information he may have about the strategies of the
other players (for example, Bob may know that Alice likes to bluff, while Charlie
tends to bet conservatively).
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As this example already indicates, representing the states of the agents can be
highly nontrivial. The first problem is deciding what to include in the state. Certainly
if the system is made up of interacting people, then it becomes a rather difficult
problem to decide where to draw the line. In the poker example, should we include
the fact that Bob had an unhappy childhood as part of his state? If so, how do we
capture this? Once we have solved the problem of what to include in the state, we
then have to decide how to represent what we do include. If we decide that Bob’s
childhood is relevant, how do we describe the relevant features of his childhood
in a reasonable way? In our abstract framework we sidestep these difficulties, and
simply assume that at each point in time, each agent in the system is in some unique
state. Of course, we do have to confront these difficulties when dealing with concrete
examples. These problems tend to be somewhat easier to solve when dealing with
processes in a distributed system rather than people, but, as we shall soon see, even
in this simpler setting there can be difficult choices to make.

Once we think in terms of each agent having a state, it is but a short step to think
of the whole system as being in some state. The first thought might be to make
the system’s state be a tuple of the form (s1, . . . , sn), where si is agent i’s state.
But, in general, more than just the local states of the agents may be relevant when
analyzing a system. If we are analyzing a message-passing system where processes
send messages back and forth along communication lines, we might want to know
about messages that are in transit or about whether a communication line is up or
down. If we are considering a system of sensors observing some terrain, we might
need to include features of the terrain in a description of the state of the system.

Motivated by these observations, we conceptually divide a system into two
components: the agents and the environment, where we view the environment as
“everything else that is relevant.” In many ways the environment can be viewed
as just another agent, though it typically plays a special role in our analyses. We
define a global state of a system with n agents to be an (n + 1)-tuple of the form
(se, s1, . . . , sn), where se is the state of the environment and si is the local state of
agent i.

A given system can be modeled in many ways. How we divide the system into
agents and environment depends on the system being analyzed. In a message-passing
system, we can view a message buffer, which stores messages not yet delivered,
either as a process (i.e., an agent), and have its state encode which messages have
been sent and not yet delivered, or as part of the environment. Similarly, we can
view a communication line as an agent whose local state might describe (among
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other things) whether or not it is up, or we can have the status of the communication
lines be part of the environment.

A global state describes the system at a given point in time. But a system is not
a static entity; it constantly changes. Since we are mainly interested in how systems
change over time, we need to build time into our model. We define a run to be a
function from time to global states. Intuitively, a run is a complete description of
how the system’s global state evolves over time. In this book, we take time to range
over the natural numbers. Thus, the initial global state of the system in a possible
execution r is r(0), the next global state is r(1), and so on.

Our assumption that time ranges over the natural numbers seems to be quite
a strong one. In particular, it means that time steps are discrete and that time is
infinite. We have made this choice mainly for definiteness, but also because it seems
appropriate for many of our applications. Most of our results and comments hold
with little or no change if we assume instead that time is continuous (and ranges
over, say, the real numbers or the nonnegative real numbers), or if we assume that
time is finite. Although we typically think of time as being continuous, assuming
that time is discrete is quite natural. Computers proceed in discrete time steps, after
all. Even when analyzing situations involving human agents, we can often usefully
imagine that the relevant actions are performed at discrete time instances, as in the
case of the muddy children puzzle. Allowing time to be infinite makes it easier to
model situations where there is no a priori time bound on how long the system will
run. The muddy children puzzle again provides an example of this phenomenon,
since when we start to analyze the puzzle, it is not clear how many steps it will take
the children to figure out whether they have mud on their forehead; indeed, in some
variants of the puzzle, they never figure it out. And if we do want to model a system
that runs for a bounded number of steps, we can typically capture this by assuming
that the system remains in the same global state after it has stopped.

We assume that time is measured on some clock external to the system. We do
not assume that agents in the system necessarily have access to this clock; at time m

measured on the external clock, agent i need not know it is time m. If an agent does
know the time, then this information would be encoded in his local state (we return
to this issue later). This external clock need not measure “real time.” For example,
in the case of the muddy children puzzle, there could be one “tick” of the clock for
every round of questions by the father and every round of answers to the father’s
question. If we are analyzing a poker game, there could be one tick of the clock each
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time someone bets or discards. In general, we model the external clock in whatever
way makes it easiest for us to analyze the system.

A system can have many possible runs, since the system’s global state can evolve
in many possible ways: there are a number of possible initial states and many things
that could happen from each initial global state. For example, in a poker game, the
initial global states could describe the possible deals of the hand, with player i’s
local state si describing the cards held initially by player i. For each fixed deal of the
cards, there may still be many possible betting (and discarding) sequences, and thus
many runs. In a message-passing system, a particular message may or may not be
lost, so again, even with a fixed initial global state, there are many possible runs. To
capture this, we formally define a system to be a nonempty set of runs. Notice how
this definition abstracts our intuitive view of a system as a collection of interacting
agents. Instead of trying to model the system directly, our definition models the
possible behaviors of the system. The requirement that the set of runs be nonempty
captures the intuition that the system we are modeling has some behaviors. Our
approach lets us use the same formal model to describe systems of great diversity;
a computer system and a poker game are modeled similarly. Throughout the book
we will use the term system in two ways: as the “real-life” collection of interacting
agents or as a set of runs. Our precise intention should be clear from the context.

In more detail, we proceed as follows. Let Le be a set of possible states for the
environment and let Li be a set of possible local states for agent i, for i = 1, . . . , n.
We take G = Le × L1 × · · · × Ln to be the set of global states. A run over G is a
function from the time domain—the natural numbers in our case—to G. Thus, a run
over G can be identified with a sequence of global states in G. We refer to a pair (r, m)

consisting of a run r and time m as a point. If r(m) = (se, s1, . . . , sn) is the global
state at the point (r, m), we define re(m) = se and ri(m) = si , for i = 1, . . . , n;
thus, ri(m) is agent i’s local state at the point (r, m). A round takes place between
two time points. We define round m in run r to take place between time m − 1 and
time m. It is often convenient for us to view an agent as performing an action during
a round. (We discuss actions in detail in Chapter 5.) A system R over G is a set of
runs over G. We say that (r, m) is a point in system R if r ∈ R. In practice, the
appropriate set of runs will be chosen by the system designer or the person analyzing
the system, both of whom presumably have a model of what this set should be.

The following simple example describes a scenario that we call the bit-
transmission problem, and to which we shall often return in this chapter as well
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as in Chapters 5 and 7, should give the reader a better feeling for some of these
definitions.

Example 4.1.1 Imagine we have two processes, say a sender S and a receiver R,
that communicate over a communication line. The sender starts with one bit (either 0
or 1) that it wants to communicate to the receiver. Unfortunately, the communication
line is faulty, and it may lose messages in either direction in any given round. That
is, there is no guarantee that a message sent by either S or R will be received. For
simplicity, we assume that a message is either received in the same round that it is
sent, or lost altogether. (Since in this example a message may be received in the
same round it is sent, we are implicitly assuming that rounds are long enough for a
message to be sent and delivered.) We assume that this type of message loss is the
only possible faulty behavior in the system. Because of the uncertainty regarding
possible message loss, S sends the bit to R in every round, until S receives a message
from R acknowledging receipt of the bit. We call this message from R an ack
message. R starts sending the ack message in the round after it receives the bit. To
allow S to stop sending the bit, R continues to send the ack repeatedly from then on.

This informal description gives what we call a protocol for S and R: it is a
specification of what they do at each step. (We discuss protocols in much greater
detail in Chapter 5.) The protocol dictates that S must continue sending the bit to R

until S receives the ack message; roughly speaking, this is because before it receives
the ack message, S does not know whether R received the bit. On the other hand, in
this protocol R never knows for certain that S actually received its acknowledgment.
Note the usage of the word “know” in the two previous sentences. This, of course, is
not an accident. One of our main claims is that this type of protocol is best thought
of in terms of knowledge.

Returning to the protocol, note that R does know perfectly well that S stops
sending messages after it receives an ack message. But even if R does not receive
messages from S for a while, from R’s point of view this is not necessarily because S

received an ack message from R; it could be because the messages that S sent were
lost in the communication channel. We could have S send an ack-ack message—an
acknowledgment to the acknowledgment—so that R could stop sending the acknowl-
edgment once it receive an ack-ack message from S. But this only pushes the problem
up one level: S will not be able to safely stop sending ack-ack messages, since S has
no way of knowing that R has received an ack-ack message. As we show later in this
chapter (Theorem 4.5.4) this type of uncertainty is inherent in systems such as the
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one we have just described, where communication is not guaranteed. For now, we
focus on the protocol that we described, where R continues to send ack messages in
every round, and S stops as soon as it receives one of them.

The situation that we have just described informally can be formalized as a
system. To describe the set of runs that make up this system, we must make a number
of choices regarding how to model the local states of S, R, and the environment. It
seems reasonable to assume that the value of the bit should be part of S’s local state,
and it should be part of R’s local state as soon as R receives a message from S with
the value. Should we include in S’s state the number of times that S has sent the bit
or the number of times that S receives an ack message from R? Similarly, should we
include in R’s state the number of times R has sent the ack message or the number
of times R has received the bit from S? Perhaps we should include in the local state
a representation of the protocol being used? Our choice is to have the local states
of S and R include very little information; essentially, just enough to allow us to
carry out our analysis. On the other hand, as we shall see in Example 4.2.1, it is
useful to have the environment’s state record the events taking place in the system.
Thus, we take LS , the possible local states of S, to be {0, 1, (0, ack), (1, ack)},
where, intuitively, S’s local state is k if its initial bit is k and it has not received
an ack message from R, while S’s local state is (k, ack) if its initial bit is k and
it has received an ack message from R, for k = 0, 1. Similarly, LR = {λ, 0, 1},
where λ denotes the local state where R has received no messages from S, and k

denotes the local state where R received the message k from S, for k = 0, 1. The
environment’s local state is used to record the history of events taking place in the
system. At each round, either (a) S sends the bit to R and R does nothing, (b) S

does nothing and R sends an ack to S, or (c) both S and R send messages. We
denote these three possibilities by (sendbit, �), (�, sendack), (sendbit, sendack)

respectively. Thus, we let the environment’s state be a sequence of elements from
the set {(sendbit, �), (�, sendack), (sendbit, sendack)}. Here the mth member of
the sequence describes the actions of the sender and receiver in round m.

There are many possible runs in this system, but these runs must all satisfy certain
constraints. Initially, the system must start in a global state where nothing has been
recorded in the environment’s state, neither S nor R has received any messages, and
S has an initial bit of either 0 or 1. Thus, the initial global state of every run in the
system has the form (〈 〉, k, λ), where 〈 〉 is the empty sequence and k is either 0 or 1.
In addition, consecutive global states r(m) = (se, sS, sR) and r(m+1) = (s′

e, s
′
S, s′

R)

in a run r are related by the following conditions:
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• If sR = λ, then s′
S = sS , s′

e = se · (sendbit, �) (where se · (sendbit, �) is
the result of appending (sendbit, �) to the sequence se), and either s′

R = λ

or s′
R = sS . (Before R receives a message, it sends no messages; as a result,

S receives no message, so it continues to send the bit and its state does not
change. R may or may not receive the message sent by S in round m + 1.)

• If sS = sR = k, then s′
R = k, s′

e = se · (sendbit, sendack), and either
s′
S = k or s′

S = (k, ack). (After R has received S’s bit, it starts sending
acknowledgments, and its state undergoes no further changes. S continues to
send the bit, and it may or may not receive the acknowledgment sent by R in
round m + 1.)

• if sS = (k, ack), then (a) s′
e = se · (�, sendack), (b) s′

S = sS , and (c) s′
R = sR .

(Once S has received R’s acknowledgment, S stops sending the bit and R

continues to send acknowledgments. The local states of S and R do not
change any more.)

We take the system Rbt describing the bit-transmission problem to consist of all the
runs meeting the constraints just described.

Example 4.1.1 shows how many choices have to be made in describing a system,
even in simple cases. The example also suggests that the process of describing all the
runs in a system of interest can be rather tedious. As we said before, getting a good
representation of a system can be difficult. The process is far more of an art than a
science. We shall return to this point in Chapter 5, where we extend the framework
to deal with protocols and programs. This will give us a relatively straightforward
way of describing systems in many applications of interest.

4.2 Incorporating Knowledge

We already saw in our discussion of the bit-transmission problem (Example 4.1.1)
that we were making statements such as “R does not know for certain that S received
its acknowledgment.” A central thesis of this book is that we often want to think
of an agent’s actions as depending on her knowledge. Indeed, our framework has
been designed so that knowledge can be incorporated in a straightforward way. The
basic idea is that a statement such as “R does not know ϕ” means that, as far as R

is concerned, the system could be at a point where ϕ does not hold. The way we



4.2 Incorporating Knowledge 117

capture that “as far as R is concerned, the system could be at a point where ϕ does
not hold” is closely related to the notion of possible worlds in Kripke structures.
We think of R’s knowledge as being determined by its local state, so that R cannot
distinguish between two points of the system in which it has the same local state,
and it can distinguish points in which its local state differs. We now formalize these
ideas.

As we shall see, a system can be viewed as a Kripke structure except that we have
no function π telling us how to assign truth values to the primitive propositions. (In
the terminology of Section 3.1, a system can be viewed as a frame.) To view a system
as a Kripke structure, we assume that we have a set � of primitive propositions, which
we can think of as describing basic facts about the system. In the context of distributed
systems, these might be such facts as “the value of the variable x is 0,” “process 1’s
initial input was 17,” “process 3 sends the message µ in round 5 of this run,” or “the
system is deadlocked.” (For simplicity, we are assuming that we can describe the
basic properties of the system adequately using propositional logic; the extension of
the framework to use first-order logic is straightforward.) An interpreted system I
consists of a pair (R, π), where R is a system over a set G of global states and π is
an interpretation for the propositions in � over G, which assigns truth values to the
primitive propositions at the global states. Thus, for every p ∈ � and state s ∈ G,
we have π(s)(p) ∈ {true, false}. Of course, π induces also an interpretation over
the points of R; simply take π(r, m) to be π(r(m)). Notice that � and π are not
intrinsic to the system R. They constitute additional structure on top of R that we,
as outside observers, add for our convenience, to help us analyze or understand the
system better. We refer to the points and states of the system R as points and states,
respectively, of the interpreted system I. That is, we say that the point (r, m) is in
the interpreted system I = (R, π) if r ∈ R, and similarly, we say that I is a system
over state space G if R is.

To define knowledge in interpreted systems, we associate with an interpreted
system I = (R, π) a Kripke structure MI = (S, π, K1, . . . , Kn) in a straightforward
way: We simply take S to consist of the points in I, and take K1, . . . , Kn to be some
binary relations on S. Note that there is no possibility relation Ke for the environment;
this is because we are not usually interested in what the environment knows. For
the possibility relation Ki we choose a specific relation, which we now describe. If
s = (se, s1, . . . , sn) and s′ = (s′

e, s
′
1, . . . , s

′
n) are two global states in R, then we say

that s and s′ are indistinguishable to agent i, and write s ∼i s′, if i has the same state
in both s and s′, that is, if si = s′

i . We can extend the indistinguishability relation ∼i to
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points: we say that two points (r, m) and (r ′, m′) are indistinguishable to i, and write
(r, m) ∼i (r ′, m′), if r(m) ∼i r ′(m′) (or, equivalently, if ri(m) = r ′

i (m
′)). Clearly

∼i is an equivalence relation on points. When we speak of knowledge in interpreted
systems, we assume that the Ki relation in MI is defined by ∼i . Intuitively, agent i

considers a state s′ possible in a state s if s and s′ are indistinguishable to agent i.
Thus, the agents’ knowledge is completely determined by their local states.

Recall from Chapter 3 that we denote by Ln(�) the set of formulas obtained
by starting with the primitive propositions in �, and closing off under conjunction,
negation, and the modal operators K1, . . . , Kn, and that we usually omit the � when
it is clear from context, writing just Ln. Similarly, we denote by LC

n , LD
n , and LCD

n

the languages that result by adding, respectively, the modal operators for common
knowledge, distributed knowledge, and both common and distributed knowledge.
We can now define what it means for a formula ϕ ∈ LCD

n to be true at a point (r, m)

in an interpreted system I by applying the definitions of Chapter 2 to the related
Kripke structure MI . Thus, we say that (I, r, m) |= ϕ exactly if (MI, s) |= ϕ,
where s = (r, m). For example, we have

(I, r, m) |= p (for p ∈ �) iff π(r, m)(p) = true, and

(I, r, m) |= Kiϕ iff (I, r ′, m′) |= ϕ for all (r ′, m′) such that (r, m) ∼i (r ′, m′).

The obvious definition of |= for formulas involving common knowledge and dis-
tributed knowledge are left to the reader.

Since π is a function on global states, the truth of a primitive proposition q

at a point (r, m) depends only on the global state r(m). This seems like a natural
assumption; the global state is meant to capture everything that is relevant about the
current situation. Quite often, in fact, the truth of a primitive proposition q of interest
depends, not on the whole global state, but only on the component of some particular
agent. For example, the truth of a statement such as “process 2 received process 1’s
message” might depend only on process 2’s state. In that case, we expect π to respect
the locality of q, that is, if s, s′ ∈ G, and s ∼i s′, then π(s)(q) = π(s′)(q).

We can also imagine statements that depend on more than just the global state.
Consider, for example, a statement such as “eventually (at some later point in the run)
the variable x is set to 5.” There could well be two points (r, m) and (r ′, m′) with the
same global state, such that this statement is true at (r, m) and false at (r ′, m′). Thus,
such a temporal statement cannot be represented by a primitive proposition in our
framework. Indeed, it cannot be represented by any formula in our language; it is
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easy to see that, for every formula ϕ ∈ LCD
n , if r(m) = r ′(m′), then (I, r, m) |= ϕ iff

(I, r ′, m′) |= ϕ (Exercise 4.1). While we could deal with this problem by allowing
the truth of a primitive proposition to depend on the point, and not just the global
state, the more appropriate way to express such temporal statements is to add modal
operators for time into the language. We do this in Section 4.3.

In analogy to our previous definitions, we say that ϕ is valid in the interpreted
system I and write I |= ϕ, if (I, r, m) |= ϕ for all points (r, m) in I. For a class C of
interpreted systems, we say that a formula ϕ is valid in C, and write C |= ϕ, if I |= ϕ

for every interpreted system I ∈ C.
We now have a concrete interpretation for knowledge in multi-agent systems. As

we said in Chapter 1, this interpretation of knowledge is an external one, ascribed
to the agents by someone reasoning about the system. We do not assume that the
agents compute their knowledge in any way, or that they can necessarily answer
questions based on their knowledge. Note that this notion of knowledge satisfies all
the S5 properties as described in Chapter 2, since ∼i is an equivalence relation. In
particular, the Distribution Axiom and the Rule of Knowledge Generalization both
hold: agents know all logical consequences of their knowledge, and they know all
valid formulas. As we observed in Section 2.4, these properties hold in every Kripke
structure. In particular, they would hold no matter how we defined the Ki relation
in MI .

Recall that we allow the agents in our system to be processes in a distributed
system. It may seem strange to view such inanimate agents as possessing knowledge
and, in fact, as being “logically omniscient.” Nevertheless, our usage of the word
“knowledge” is consistent with at least one way it is used in practice. For example,
when someone analyzing a distributed protocol says “process 2 does not know that
process 3 is faulty at the end of round 5 in run r ,” what is often meant is that there is
a point at which process 3 is faulty, which is indistinguishable to process 2 from the
point (r, 5).

We shall see many examples throughout the book where this notion of knowl-
edge is useful for analyzing multi-agent systems. There are certainly applications,
however, for which the externally ascribed knowledge is inappropriate. For example,
later in this chapter we consider an example involving knowledge bases, where it may
be more appropriate to consider the knowledge base’s beliefs, rather than its knowl-
edge. As we shall see, by using a slightly different Ki relation instead of ∼i , we do
get a reasonable notion of belief. Of course, we still have logical omniscience. We
explore techniques for dealing with logical omniscience in later chapters of the book.
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For now we content ourselves with showing how the external notion of knowledge
can be applied to better analyze multi-agent systems.

Example 4.2.1 Consider the bit-transmission problem (Example 4.1.1) again. We
can take � here to consist of six primitive propositions: bit = 0, bit = 1, recbit,
recack, sentbit, and sentack , representing the assertions that the value of S’s initial
bit is 0, the value of S’s initial bit is 1, R has received S’s message, S has received
R’s acknowledgment, S has just sent a message, and R has just sent a message,
respectively. The appropriate interpreted system is Ibt = (Rbt, πbt), where Rbt

consists of the set of runs described in Example 4.1.1, and πbt is such that

• (Ibt, r, m) |= bit = k exactly if rS(m) is either k or (k, ack), for k = 0, 1,

• (Ibt, r, m) |= recbit if rR(m) �= λ,

• (Ibt, r, m) |= recack if rS(m) = (0, ack) or rS(m) = (1, ack),

• (Ibt, r, m) |= sentbit if the last tuple in re(m) is either (sendbit, �) or
(sendbit, sendack), and

• (Ibt, r, m) |= sentack if the last tuple in re(m) is either (�, sendack) or
(sendbit, sendack).

Note that the truth value of all these primitive propositions is completely determined
by the global state, since we assumed the environment’s state records the events
taking place in the system. In fact, it is easy to see that bit = 0, bit = 1, and recack
are local to S—they depend only on S’s local state—whereas recbit is local to R.
For the remainder of our discussion in this example, we need only the primitive
propositions bit = 0 and bit = 1; however, the other primitive propositions will be
useful later. Just as the way we choose to model the local states in the system depends
on the analysis we plan to carry out, so too does the choice of primitive propositions.

Intuitively, after R receives S’s bit, then R knows the value of the bit. And indeed,
it is easy to check that if (r, m) is a point such that rR(m) = k, for k �= λ (so that R

has received S’s bit by that point), then (I, r, m) |= KR(bit = k). This is because at
all other points (r ′, m′), if rR(m) = r ′

R(m′), then S must have initial bit k at (r ′, m′).
Similarly, when S receives R’s ack message, then S knows that R knows the initial
bit. More formally, if rS(m) = (k, ack), then (I, r, m) |= KSKR(bit = k). It is easy
to see that, in this setting, if S stops sending messages to R before S knows that R
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knows the value of the bit, that is, before either KSKR(bit = 0) or KSKR(bit = 1)

holds, then it is possible that R will never receive the bit. Although we do not provide
a formal proof of this fact here, this observation already suggests the power of the
knowledge-based approach. It allows us to relate actions, such as sending a message
or receiving a message, to states of knowledge, and then use the states of knowledge
as a guide to what actions should be performed. We investigate these issues in greater
detail in the next few chapters.

4.3 Incorporating Time

As it stands, our language is not expressive enough to handle conveniently the full
complexity of even the simple situation of Example 4.1.1. For example, we might
well want to make statements like “the receiver eventually knows the sender’s initial
bit.” As we have already observed, we cannot express such temporal statements in
our language.

To be able to make temporal statements, we extend our language by adding
temporal operators, which are new modal operators for talking about time. We focus
attention here on four temporal operators: � (“always”), its dual � (“eventually”),
© (“next time”), and U (“until”). Intuitively, �ϕ is true if ϕ is true now and at all

later points; �ϕ is true if ϕ is true at some point in the future; ©ϕ is true if ϕ is
true at the next step; and ϕUψ is true if ϕ is true until ψ is true. More formally, in
interpreted systems, we have

(I, r, m) |= �ϕ iff (I, r, m′) |= ϕ for all m′ ≥ m,

(I, r, m) |= �ϕ iff (I, r, m′) |= ϕ for some m′ ≥ m,

(I, r, m) |= ©ϕ iff (I, r, m + 1) |= ϕ, and

(I, r, m) |= ϕUψ iff (I, r, m′) |= ψ for some m′ ≥ m and
(I, r, m′′) |= ϕ for all m′′ with m ≤ m′′ < m′.

Note that our interpretation of ©ϕ as “ϕ holds at the next step” makes sense
because our notion of time is discrete. All the other temporal operators make perfect
sense even for continuous notions of time. It is easy to check that �ϕ is equivalent
to trueUϕ, while �ϕ is equivalent to ¬�¬ϕ (see Exercise 4.2); thus, we can take
© and U as our basic temporal operators, and define � and � in terms of U.

We define a temporal formula to be one whose only modal operators are temporal
operators. A knowledge formula is one whose only modal operators are the epistemic
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operators K1, . . . , Kn, CG, and DG. Thus, a knowledge formula is a formula in the
language LCD

n . We saw earlier that if two points (r, m) and (r ′, m′) in an interpreted
system I have the same global state, then they agree on all knowledge formulas;
that is, if r(m) = r ′(m′), then (I, r, m) |= ϕ iff (I, r ′, m′) |= ϕ, for all formulas
ϕ ∈ LCD

n . Once we add time to the language, this is no longer true. For example, it
is easy to construct an interpreted system I and two points (r, m) and (r ′, m′) in I
such that r(m) = r ′(m′), but (I, r, m) |= �p and (I, r ′, m′) |= ¬�p (Exercise 4.3).
On the other hand, the truth of a temporal formula depends only on the run, not on
the system. That is, if ϕ is a temporal formula, then the truth of ϕ at a point (r, m)

in an interpreted system I = (R, π) does not depend on R at all, but only on π , so
we can write (π, r, m) |= ϕ). We say that r satisfies ϕ if (π, r, 0) |= ϕ holds.

In general, temporal operators are used for reasoning about events that hap-
pen along a single run. For example, in the bit-transmission problem, the formula
�(recbit ⇒ �recack) says that if at some point along a run the receiver receives
the bit sent by the sender, then at some point in the future the sender will receive
the acknowledgment sent by the receiver. By combining temporal and knowledge
operators, we can make assertions about the evolution of knowledge in the system.
For example, we mentioned earlier that in the context of the bit-transmission problem
we may want to make statements such as “the receiver eventually knows the sender’s
initial bit.” This statement can now be expressed by the formula

�(KR(bit = 0) ∨ KR(bit = 1)).

Once we have temporal operators, there are a number of important notions that
we can express. We have already seen the usefulness of � and �. We briefly mention
two other useful notions here, obtained by combining � and �:

• The formula ��ϕ is true if ϕ occurs infinitely often; that is, (I, r, m) |= ��ϕ

exactly if the set {m′ | (I, r, m′) |= ϕ} is infinite (Exercise 4.4).

• The formula ��ϕ is true if ϕ is true almost everywhere; that is,
(I, r, m) |= ��ϕ if for some m′ and all m′′ ≥ m′, we have (I, r, m′′) |= ϕ.

The temporal operators that we have defined can talk about events that happen only
in the present or future, not events that happen in the past. While these suffice for
many of our applications, we could certainly add temporal operators for reasoning
about the past, for example, an analogue to � that says “at some time in the past.”
We have not done so here simply to avoid introducing a plethora of new notation.
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4.4 Examples of Systems

At the beginning of this chapter we said that in this book, we view any collection
of interacting agents as a multi-agent system. In this section, we give examples
of systems that arise in a number of different contexts, and show how they can be
modeled in a straightforward way in our framework. In addition, we show how a
number of standard assumptions that are made can be expressed in our framework.

4.4.1 Knowledge Bases

Informally, we can view a knowledge base (KB for short) as a system that is told
facts about an external world, and is asked queries about that world. The standard
approach in the AI community to modeling a KB is just to identify it with a formula,
or set of formulas, that can informally be thought of as describing what the KB
knows. When the KB is asked a query ψ , it computes (using some computational
procedure) whether ψ follows from the information it has been given.

In this section, we model the KB in our framework. As we shall see, this gives us
a number of advantages. For one thing, we describe assumptions about how the KB
obtains its knowledge. For another, we can relate what the KB is told to what is true
in the world. The first step in modeling the KB in our framework is to decide who
the agents are and what the role of the environment is. The KB is clearly an agent
in the system. In addition, we choose to have another agent called the Teller; this is
the agent that tells the KB facts about the external world. We use the environment
to model the external world. It is possible to use the environment to also model the
Teller, but, as we shall see later on, our approach offers certain advantages. We want
to view the environment’s state as providing a complete description of (the relevant
features of) the external world, the local state of the KB as describing the information
that the KB has about the external world, and the local state of the Teller as describing
the information that the Teller has about the external world and about the KB. This
allows us to distinguish what is true (as modeled by the environment’s state) from
what is known to the Teller (as modeled by the Teller’s state) and from what the KB
is told (as modeled by the KB’s state).

That still gives us quite a bit of freedom in deciding how to model the global
states. If we can describe all the relevant features of the external world by using a
set � of primitive propositions, then we can take the environment to be just a truth
assignment to the primitive propositions in �. If, instead, we need to use first-order
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information to describe the world, then we can take the environment to be a relational
structure, as discussed in Section 3.7.

What about the KB’s local state? We want it to represent all the relevant infor-
mation that the KB has learned. One option is to take the local state to consist of
the sequence of facts that the KB has been told and queries that it has been asked.
If we assume that the sequence of queries does not carry any information about the
external world, then we can simplify this representation by including in the local
state only the sequence of facts that the KB has been told, and ignoring the queries.
This is in fact what we do.

Finally, the Teller’s state has to describe the Teller’s information about the ex-
ternal world and about the KB. Note that the Teller has complete information about
the KB, since the Teller is the sole source for the KB’s information. Thus, the Teller’s
local state contains a description of its information about external world as well as
the sequence of facts that the KB has been told.

What does the KB know after it has been told some fact ϕ? Assuming that what
it has been told is true, it may seem reasonable to say that the KB knows ϕ. This
is clearly false, however, if the external world can change. It might well be the
case that ϕ was true when the KB was told it, and is no longer true afterwards. For
definiteness, we assume that the external world is stable. As we shall see, even with
this assumption, if ϕ can include facts about the KB’s knowledge, then ϕ may be
true when the KB is told it, but not afterwards.

To get a feeling for some of the issues involved, we focus first on modeling a fairly
simple concrete situation (where, in particular, it cannot happen that a formula ϕ is
true when the KB is told it, but becomes false later). We consider later what happens
when we weaken these assumptions. We assume that

1. the external world can be described propositionally, using the propositions in
a finite set �,

2. the external world is stable, so that the truth values of the primitive propositions
describing the world do not change over time,

3. the Teller has complete information about the external world,

4. the KB is told facts only about the external world, and not facts about its own
knowledge, and these facts are expressed as propositional formulas,

5. everything the KB is told is true, and
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6. there is no a priori initial knowledge about the external world, or about what
the KB will be told.

The first assumption tells us that we can represent the environment’s state as
a truth assignment α to the primitive propositions in �. The second assumption
tells us that in each run r , the environment’s state re(m) is independent of m; the
environment’s state does not change over time. The third assumption tells us that the
Teller’s state includes the truth assignment α, which describes the external world.
Given that we are representing the KB’s local state as a sequence of facts that it has
been told, the fourth assumption tells us that this local state has the form 〈ϕ1, . . . , ϕk〉,
k ≥ 0, where ϕ1, . . . , ϕk are propositional formulas. We assume that the Teller’s
local state has a similar form, and consists of the truth assignment that describes
the real world, together with the sequence of facts it has told the KB. Thus, we
take the Teller’s local state to be of the form (α, 〈ϕ1, . . . , ϕk〉), where α is a truth
assignment and ϕ1, . . . , ϕk are propositional formulas. Since the Teller’s state is
simply the pair consisting of the environment’s state and the KB’s state, we do not
represent it explicitly, but rather denote a global state by (α, 〈ϕ1, . . . , ϕk〉, ·). The
fifth assumption tells us that everything the KB is told is true. This means that in a
global state of the form (α, 〈ϕ1, . . . , ϕk〉, ·), each of ϕ1, . . . , ϕk must be true under
truth assignment α. The part of the sixth assumption that says that there is no initial
knowledge of the world is captured by assuming that the initial state of every run
has the form (α, 〈 〉, ·), and that for every truth assignment α′, there is some run with
initial global state (α′, 〈 〉, ·). We capture the second half of the sixth assumption—
that there is no knowledge about what information will be given—by not putting any
further restrictions on the set of possible runs. We discuss this in more detail later.

To summarize, we claim our assumptions are captured by the interpreted system
Ikb = (Rkb, πkb), where Rkb consists of all runs r such that for some sequence
ϕ1, ϕ2, . . . of propositional formulas and for some truth assignment α, we have

KB1. r(0) = (α, 〈 〉, ·)
KB2. if r(m) = (α, 〈ϕ1, . . . , ϕk〉, ·), then

(a) either r(m + 1) = r(m), or r(m + 1) = (α, 〈ϕ1, . . . , ϕk, ϕk+1〉, ·),
(b) ϕ1 ∧ . . . ∧ ϕk is true under truth assignment α, and

(c) πkb(r, m) = α, that is, πkb is defined so that the truth assignment at
(r, m) is given by the environment’s state.
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Our assumption that R consists of all runs that satisfy KB1 and KB2 also captures the
assumption that there is no knowledge about what information will be given. This is
perhaps best understood by example. There may be a priori knowledge that, if p is
true, then this is the first thing the KB will be told. This places a restriction on the set
of possible runs, eliminating runs with global states of the form (α, 〈ϕ1, . . . , ϕk〉, ·)
such that k ≥ 1 and p is true under the truth assignment α, but ϕ1 �= p. It is easy to
construct other examples of how what information is given or the order in which it
is given might impart knowledge beyond the facts themselves. By allowing all runs
consistent with KB1 and KB2 in R, we are saying that there is no such knowledge.

Having defined the system Ikb, we can now see how the KB answers queries.
Suppose that at a point (r, m) the KB is asked a query ψ , where ψ is a propositional
formula. Since the KB does not have direct access to the environment’s state, ψ

should be interpreted not as a question about the external world, but rather as a
question about the KB’s knowledge of the external world. Thus, the KB should
answer “Yes” exactly if (Ikb, r, m) |= KKBψ holds (taking KKB to denote “the KB
knows”), “No” exactly if (Ikb, r, m) |= KKB¬ψ holds, and “I don’t know” otherwise.

It turns out that the KB essentially knows precisely the conjunction of what it
has been told. Suppose that the KB is in local state 〈ϕ1, . . . , ϕk〉. We can view the
formula κ = ϕ1 ∧ . . . ∧ ϕk as a summary of its knowledge about the world; the KB
knows only what follows from this. This could be interpreted in two ways: the KB
could answer “Yes” exactly if ψ is a consequence of κ , or if KKBψ is a consequence
of KKBκ . As the following result shows, these two interpretations are equivalent.

Recall from Chapter 3 that Mrst
n consists of all Kripke structures where the Ki

relations are equivalence classes, and we write Mrst
n |= ϕ if ϕ is valid in all Kripke

structures in Mrst
n .

Proposition 4.4.1 Suppose that rKB(m) = 〈ϕ1, . . . , ϕk〉. Let κ = ϕ1 ∧ . . .∧ϕk and
let ψ be a propositional formula. The following are equivalent:

(a) (Ikb, r, m) |= KKBψ .

(b) κ ⇒ ψ is a propositional tautology.

(c) Mrst
n |= KKBκ ⇒ KKBψ .

Proof First, it can be shown that if κ and ψ are arbitrary propositional formulas,
then κ ⇒ ψ is a propositional tautology iff Mrst

n |= Kiκ ⇒ Kiψ (see Exercise 4.5).
This yields the equivalence of (b) and (c).



4.4 Examples of Systems 127

We now show that (b) implies (a). Assume that κ ⇒ ψ is a propositional tau-
tology. If (r, m) ∼KB (r ′, m′), then r ′(m′) = (α′, 〈ϕ1, . . . , ϕk〉, ·) for some α′.
Since everything that the KB is told is true, κ is true under the truth assign-
ment α′, so we must have (Ikb, r ′, m′) |= κ . Since Mrst

n |= κ ⇒ ψ , it follows
that (Ikb, r ′, m′) |= ψ , and thus (Ikb, r, m) |= KKBψ .

Finally, we show that (a) implies (b). Assume that (b) fails, that is, κ ⇒ ψ is not
a propositional tautology. This means that there must be a truth assignment α′ under
which the formula κ ∧ ¬ψ is true. Since R consists of all runs satisfying properties
KB1 and KB2, it is easy to show that there must be a point (r ′, m′) in R such that
r ′(m′) = (α′, 〈ϕ1, . . . , ϕk〉, ·). Since (Ikb, r ′, m′) |= ¬ψ , and (r, m) ∼KB (r ′, m′),
it follows that (Ikb, r, m) �|= KKBψ . So (a) fails.

Thus, Proposition 4.4.1 shows that under our assumptions, we can model the KB
in the standard AI manner: as a formula. Moreover, in order to answer a query, the
KB must compute what follows from the formula that represents its knowledge.

Proposition 4.4.1 characterizes how the KB answers propositional queries. How
should the KB handle non-propositional queries such as (p ⇒ KKBp) (“if p is the
case, then the KB knows it”)? Here also we want the KB to answer “Yes” to a query ϕ

exactly if (Ikb, r, m) |= KKBϕ, “No” exactly if (Ikb, r, m) |= KKB¬ϕ holds, and “I
don’t know” otherwise. When does the formula KKB(p ⇒ KKBp) hold? It is not
hard to show that this formula is equivalent to KKBp ∨KKB¬p, so the answer to this
query already follows from Proposition 4.4.1: the answer is “Yes” if either p follows
from what the KB has been told, or ¬p does, and “I don’t know” otherwise. Note
that it is not possible here for the answer to be “No”, since if ϕ is (p ⇒ KKBp), then
KKB¬ϕ is equivalent to the formula KKB(p ∧ ¬KKBp), which is inconsistent with
S5 (Exercise 3.10).

We are mainly interested in what can be said about formulas that involve only the
KB’s knowledge, because we view the Teller as being in the background here. We
define a KB-formula to be one in which the only modal operator is KKB; a KB-query
is a query which is a KB-formula. For every KB-formula of the form KKBϕ we can
effectively find an equivalent formula that is a Boolean combination of formulas of
the form KKBψ , where ψ is propositional (Exercise 3.23). It follows that the way
that the KB responds to KB-queries can already be determined from how it responds
to propositional queries. The reason is as follows. To decide on its answer to the
query ϕ, we must determine whether KKBϕ holds and whether KKB¬ϕ holds. As
we just noted, we can effectively find a formula equivalent to KKBϕ that is a Boolean
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combination of formulas of the form KKBψ , where ψ is propositional, and similarly
for KKB¬ϕ. We then need only evaluate formulas of the form KKBψ , where ψ

is propositional. Thus, using Proposition 4.4.1, we can compute how the KB will
answer KB-queries from the conjunction of the formulas that the KB has been told
(Exercise 4.6).

There is another way of characterizing how the KB will answer KB-queries.
Given a propositional formula ϕ, let Sϕ consist of all truth assignments α such that ϕ is
true under truth assignment α. Let Mϕ = (Sϕ, π, KKB) be the Kripke structure such
that π(α) = α and KKB is the universal relation (so that for all α, β ∈ Sϕ , we have
(α, β) ∈ KKB). In a sense, we can think of Mϕ as a maximal model of ϕ, since all
truth assignments consistent with ϕ appear in Mϕ . As the following result shows,
if κ is the conjunction of the formulas that the KB has been told, then for an arbitrary
formula ψ , the KB knows ψ exactly if KKBψ holds in the maximal model for κ .
Intuitively, if the KB was told κ , then all that the KB knows is κ . The maximal
model for κ is the model that captures the fact that κ is all that the KB knows.

Proposition 4.4.2 Suppose that rKB(m) = 〈ϕ1, . . . , ϕk〉 and κ = ϕ1 ∧ . . . ∧ ϕk .
Then for all KB-formulas ψ , we have (Ikb, r, m) |= ψ iff (Mκ, re(m)) |= ψ .

Proof See Exercise 4.7.

In particular, Proposition 4.4.2 shows that the KB can answer a KB-query ψ by evalu-
ating whether (Mκ, re(m)) |= KKBψ . Notice that the truth of KKBψ in (Mκ, re(m))

is independent of re(m). Thus, we can still view κ as a representation of the KB’s
knowledge. We remark that the ideas in this proposition can be extended to handle ar-
bitrary non-propositional queries as well, rather than just KB-queries (Exercise 4.10).

Our discussion so far illustrates that it is possible to model a standard type of
knowledge base within our framework. But what do we gain by doing so? For
one thing, it makes explicit the assumptions underlying the standard representation.
In addition, we can talk about what the KB knows regarding its knowledge, as
shown in Proposition 4.4.2. Beyond that, as we now show, it allows us to capture
in a straightforward way some variants of these assumptions. The flexibility of the
model makes it easier to deal with issues that arise when we modify the assumptions.

We begin by considering situations where there is some prior knowledge about
what information will be given. As we observed earlier, the fact that we consider all
runs in which KB1 and KB2 are true captures the assumption that no such knowledge
is available. But, in practice, there may well be default assumptions that are encoded
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in the conventions by which information is imparted. We earlier gave an example of
a situation where there is a convention that if p is true, then the KB will be told p first.
Such a convention is easy to model in our framework: it simply entails a restriction
on the set of runs in the system. Namely, the restriction is that for every point (r, m)

in the system where r(m) = (α, 〈ϕ1, . . . , ϕk〉, ·) for some k ≥ 1, we have ϕ1 = p

precisely when p is true under α. Recall that the order in which the KB is given
information is part of its local state. In a precise sense, therefore, the KB knows what
this order is. In particular, it is straightforward to show that if there is a convention
that the KB will be told p first if it is is true, then the KB either knows p or knows ¬p

once it has been told at least one fact (Exercise 4.8).
In a similar fashion, it is easy to capture the situation where there is some a

priori knowledge about the world, by modifying the set of runs in Ikb appropriately.
Suppose, for example, that it is known that the primitive proposition p must be true.
In this case, we consider only runs r such that re(0) = α for some truth assignment α
that makes p true. An analogue to Proposition 4.4.1 holds: now the KB will know
everything that follows from p and the facts that it has been told (see Exercise 4.9).

Next, let us consider the situation where the Teller does not have complete infor-
mation about the world (though it still has complete information about the KB). We
model this by including in the Teller’s state a nonempty set T of truth assignments.
Intuitively, T is the set of possible external worlds that the Teller considers possible.
The set T replaces the single truth assignment that described the actual external world.
Since we are focusing on knowledge here, we require that α ∈ T ; this means that the
true external world is one of the Teller’s possibilities. The Teller’s state also includes
the sequence of facts that the KB has been told. To avoid redundancy, we denote the
Teller’s state by 〈T , ·〉. Global states now have the form (α, 〈ϕ1, . . . , ϕk〉, 〈T , ·〉).
We still require that everything the KB is told be true; this means that the Teller
should tell ϕ to the KB only if ϕ is true in all the truth assignments in T . It is easy
to see that this means that the Teller says ϕ only if KT ϕ holds (taking KT to denote
“the Teller knows”). Not surprisingly, Propositions 4.4.1 and 4.4.2 continue to hold
in this setting, with essentially no change in proof.

We remark that once we allow the Teller to have incomplete information, it
becomes more interesting to consider situations with several Tellers. This is the
situation that is perhaps most realistic. In practice, there may be several sources of
information for the KB. In fact, in this situation the distinction between the Tellers
and the KB blurs, and each agent may be viewed as both a Teller and a KB. We
discuss this setting further in Section 7.3.
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Up to now we have assumed that the actual world is one of the worlds in T , the
set of worlds that the Teller considers possible. It is but a short step to allow the
Teller to have false beliefs, which amounts to allowing T not to include the actual
world. We would still require that the Teller tell ϕ to the KB only if ϕ is true in all
the truth assignments in T . This means that the Teller only believes ϕ to be the case;
its beliefs may be wrong. We can best capture this situation by using a possibility
relation other than ∼KB, one that corresponds to belief rather than knowledge; we
leave the details to Exercise 4.11.

We have been assuming that the KB is told only propositional facts. Things
get somewhat more complicated if the KB is given information that is not purely
propositional. For example, suppose the KB is told p ⇒ KKBp. This says that
if p is true, then the KB knows it. Such information can be quite useful, assuming
that the KB can actually check what it knows and does not know. In this case, the
KB can check if it knows p; if it does not, it can then conclude that p is false. As
this example shows, once we allow the KB to be given information that relates its
knowledge to the external world, then it may be able to use its introspective abilities
to draw conclusions about the external world.

If the KB is told non-propositional facts, then we can no longer represent the
KB’s knowledge simply by the conjunction of facts that it has been told. In fact, in
the non-propositional case, the KB may be told a fact that was true when it was told,
but does not remain true once the KB is told it. For example, suppose the primitive
proposition p is true of the external world, and the KB has not been given any initial
information. In this situation, the formula p ∧ ¬KKBp is certainly true. But after
the KB is told this, then it is certainly not the case that the KB knows p ∧ ¬KKBp;
indeed, as we noted earlier, KKB(p∧¬KKBp) is inconsistent with S5. Nevertheless,
the KB certainly learns something as a result of being told this fact: it learns that p

is true. As a result, KKBp should hold after the KB is told p ∧ ¬KKBp.
Using our framework, we can still describe the system that results when we allow

the KB to be told facts that include statements about its knowledge. As before, we
take the KB’s local state to consist of a sequence of formulas, except that we now
allow the formulas to be modal formulas, which can talk about the KB’s knowledge,
not just propositional formulas. The only difficulty arises in restricting to runs in
which the KB is told only true formulas. Because we are now interested in formulas
that involve knowledge, it is not clear that we can decide whether a given formula is
true without having the whole system in hand. But our problem is to construct the
system in the first place! Doing this appropriately requires a little more machinery,
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which we present in Chapter 7. We thus defer further discussion of this issue until
then.

4.4.2 Game Trees

The goal of game theory is to understand games and how they should be played.
To a game theorist, a game is an abstraction of a situation where players interact by
making “moves.” Based on the moves made by the players, there is an outcome, or
payoff, to the game. It should be clear that standard games such as poker, chess,
and bridge are games in this sense. For example, the “moves” in bridge consist of
bidding and playing the cards. There are rules for computing how many points each
side gets at the end of a hand of bridge; this is the payoff. The game theorists’ notion
of game, however, encompasses far more than what we commonly think of as games.
Standard economic interactions such as trading and bargaining can also be viewed
as games, where players make moves and receive payoffs.

Games with several moves in sequence are typically described by means of a
game tree. A typical game tree is given in Figure 4.1. In the game G1, there are
two players, 1 and 2, who move alternately. Player 1 moves first, and has a choice
of taking action a1 or a2. This is indicated by labeling the root of the tree with a 1,
and labeling the two edges coming out of the root with a1 and a2 respectively. After
player 1 moves, it is player 2’s turn. In this game, we assume that player 2 knows
the move made by player 1 before she moves. At each of the nodes labeled with a 2,
player 2 can choose between taking action b1 or b2. (In general, player 2’s set of
possible actions after player 1 takes the action a1 may be different from player 2’s
set of possible actions after player 1 takes the action a2.) After these moves have
been made, the players receive a payoff. The leaves of the tree are labeled with the
payoffs. In the game G1, if player 1 takes action a1 and player 2 takes action b1,
then player 1 gets a payoff of 3, while player 2 gets a payoff of 4 (denoted by the
pair (3, 4) labeling this leaf of the tree). A play of the game corresponds to a path in
the game tree, that is, it is a complete sequence of moves by the players from start to
finish.

It should be clear that, at least in principle, chess could also be described by a
game tree. The nodes represent board positions, and the leaves of the tree represent
positions where the game has ended. If we suppose that all games are played to the
end (so no one either resigns or offers a draw), then the moves at each node are the
legal chess moves in that position. There are only three possible outcomes: a win
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Figure 4.1 A game tree for G1

for White (player 1), a win for Black (player 2), or a draw. The plays in this game
tree correspond to the possible (complete) games of chess.

The game represented in Figure 4.1 is called a game of perfect information;
intuitively, every event relevant to the game takes place in public. A player knows
all the moves that have been made before she moves. Chess is another example of a
game with perfect information. By way of contrast, bridge and poker are not games
of perfect information.

One of the key issues studied by game theorists is how the information available
to the players when they move affects the outcome of the game. In particular, game
theorists are quite interested in games where agents do not have perfect information.
Consider, for example, the game tree for the game G2 depicted in Figure 4.2. It is
identical to the game tree in Figure 4.1, except that the two nodes where player 2
moves are enclosed by an oval. This oval is meant to indicate that the two nodes
are indistinguishable to player 2, or, as game theorists would say (see Section 2.5),
they are in the same information set. This means that when player 2 makes her move
in this game, she does not know whether player 1 chose action a1 or a2. (Recall
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that in the first game we assumed that when player 2 made her move, she did know
which action player 1 had chosen.) In general, game theorists use the information
set to represent the information that a player has at a given point in the game. It
is assumed that a player always knows when it is her turn to move, so that there
cannot be two nodes in player i’s information set, such that player i is supposed to
move at one of the nodes and not at the other. (In fact, game theorists are typically
interested in player i’s information sets only at nodes where it is player i’s turn to
move.) Moreover, it is assumed that player i has the same choices of actions at all
the nodes in her information set. It does not make sense for a player to be able to
perform different actions at nodes that she cannot distinguish. As we can see from
Figure 4.2, the set of actions from which player 2 must choose is identical at the two
nodes where she moves. In contrast to game G1, where the set of possible moves
did not have to be identical, here they do.
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Figure 4.2 A game tree for G2

Games in the sense of game theorists are certainly systems in our sense of the
word. Not surprisingly, it is straightforward to model the two games we have de-
scribed as systems according to our formal definition.
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Consider the first game, G1. Perhaps the most obvious way of modeling it as a
system is to have each play correspond to a run. Since we assume that G1 is a game
of perfect information, what happens at each move must be reflected in the players’
states. Each player’s initial state in this game has the form 〈 〉, representing the fact
that nothing has yet happened. After player 1’s move, we assume that both players’
local states encode the move that player 1 has made; thus, the local state has the form
〈ai〉, for i = 1, 2. Finally, after player 2’s move, we assume that both players’ states
include player 2’s move, and the payoff. We can ignore the environment’s state here;
we presume that the players’ local states include all the information of interest to us.
Thus, we take the environment’s state to be λ. (We remark that in a more general
setting, game theorists view “nature,” or the environment, as another player in the
game. In this case it may be appropriate to have a more complicated environment
state.) Call the resulting system R1.

Notice that as we have described R1, both players have identical local states at
all points. This is the formal counterpart to our assumption that G1 is a game of
perfect information. It is straightforward to show that the moves that have taken
place, as well as the payoffs received by the players, are common knowledge once
they take place (Exercise 4.12). In games of perfect information there is very little
uncertainty, which leads to such a simple model. We remark that even in games of
perfect information such as this one, the players usually follow particular strategies,
which are not necessarily common knowledge. Defining strategies and capturing
them in the model will be one of the subjects treated in Chapter 5.

What system does G2 correspond to? Again, we assume that there is a run for
each play of the game, and the player’s initial states have the form 〈 〉. Just as in R1,
we can also assume that player 1’s local state after his move includes the move that he
has made. We do not, however, want player 2’s local state to include this information.
The key difference between G1 and G2 is that player 2 does not know what player 1’s
move is after he has made it. Nevertheless, player 2’s state must encode the fact that
player 1 has moved. Player 2’s state must be different before player 1 moves and
after player 1 moves, for otherwise she would not know that it is her turn to move.
For definiteness, we assume that immediately after player 1’s move, player 2’s state
has the form 〈move〉; essentially, the move is just an indication that it is player 2’s
move. We assume that both players’ states after player 2’s move include the move,
and the payoff. This gives us the system R2.

It is not hard to see that in the system R2, player 2 is guaranteed to discover after
she moves what player 1’s move was. Indeed, we now have the machinery to formally
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prove that at time 2, player 2 knows what move player 1 chose (Exercise 4.13). This,
of course, depends on the fact that we are assuming that the players are notified
after the second move what the final payoffs are. It should be obvious at this point
that we can capture a situation in which players are not informed about the payoffs
immediately, or perhaps that each player is informed of her or his own payoff and
not the other’s. All we need to do is modify what goes into a player’s local state.

The systems R1 and R2 correspond to the games G1 and G2 described by the
game trees in Figures 4.1 and 4.2 in that each play of the game is captured by one
of the runs, and every run captures a possible play of the game. Of course, these
systems are not the only possible representations of these games. For example,
we could have just as well have used the information sets of the agents as local
states. In the next chapter, we consider another possible representation, one that
contains more information, namely, a representation of the strategy being used by the
players.

4.4.3 Synchronous Systems

A standard assumption in many systems is that agents have access to a shared clock,
or that actions take place in rounds or steps, and agents know what round it is at all
times. Put another way, it is implicitly assumed that the time is common knowledge,
so that all the agents are running in synchrony. This assumption has already arisen
in some of the systems we have considered. In particular, we implicitly made this
assumption in our presentation of the muddy children puzzle and of the two games G1

and G2 of Section 4.4.2. Indeed, although synchrony is not a necessary assumption
when modeling games, it is often assumed by game theorists. When linguists analyze
a conversation, it is also typically assumed (albeit implicitly) that the agents share
a clock or that the conversation proceeds in structured steps. In computer science,
many protocols are designed so that they proceed in rounds (where no agent starts
round m + 1 before all agents finish round m).

How can we capture synchrony in our framework? Since an agent’s knowledge is
determined by his local state, his knowledge of the time must be encoded somehow
in the local state. This global clock need not measure “real time.” Formally, R
is a synchronous system if for all agents i and points (r, m) and (r ′, m′) in R, if
(r, m) ∼i (r ′, m′), then m = m′. This captures our intuition that in a synchronous
system, each agent i knows what time it is; at all points that i considers possible
at the point (r, m), the time (on the system’s shared clock) is m. In particular, this
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means that i can distinguish points in the present from points in the future; i has a
different local state at every point (r, m) in a run r . We say that an interpreted system
I = (R, π) is synchronous if R is synchronous.

It is easy to see that the systems R1 and R2 corresponding to the games G1

and G2 discussed in Section 4.4.2 are indeed synchronous in the sense of our formal
definition (Exercise 4.14). Intuitively, it should also be clear that the muddy children
puzzle should be modeled as a synchronous system, since each time the father asks
a question or the children answer can be viewed as starting a new “round.” As we
shall see in Chapter 7, the system that we use to model the muddy children puzzle
is indeed synchronous. On the other hand, the system Ikb that we use to model the
knowledge base is not synchronous. Synchrony was not a major issue in that case.
We could, of course, make it synchronous, either by adding a clock to the KB’s and
Teller’s local states, or assuming that the Teller tells the KB a new formula at every
step (so that the number of formulas in the KB’s and Teller’s local states encodes the
time).

4.4.4 Perfect Recall

According to our definition of knowledge in a system, an agent’s knowledge is
determined by his local state. We might expect that, over time, an agent’s local state
might “grow” to reflect the new knowledge he acquires, while still keeping track of
all the old information he had. We do not require this in our definition. It is quite
possible according to our definition that information encoded in ri(m)—i’s local
state at time m in run r—no longer appears in ri(m + 1). Intuitively, this means that
agent i has lost or “forgotten” this information. There are often scenarios of interest
where we want to model the fact that certain information is discarded. In practice,
for example, an agent may simply not have enough memory capacity to remember
everything he has learned.

While we view the ability to model such forgetting as a feature of our framework,
there are many instances where it is natural to model agents as if they do not forget,
that is, they have perfect recall. Perfect recall is sufficiently common in applications
to warrant a definition and to be studied as a separate property of systems.

Perfect recall means, intuitively, that an agent’s local state encodes everything
that has happened (from that agent’s point of view) thus far in the run. Among
other things, this means that the agent’s state at time m + 1 contains at least as
much information as his state at time m. Put another way, an agent with perfect
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recall should, essentially, be able to reconstruct his complete local history. In the
case of synchronous systems, since an agent’s local state changes with every tick
of the external clock, agent i’s having perfect recall would imply that the sequence
〈ri(0), . . . , ri(m)〉 must be encoded in ri(m+1). In systems that are not synchronous,
however, agents are not necessarily affected by the passage of time on the external
clock. Roughly speaking, an agent can sense that something has happened only when
there is a change in his local state. This motivates the following definitions.

Let agent i’s local-state sequence at the point (r, m) be the sequence of local
states she has gone through in run r up to time m, without consecutive repetitions.
Thus, if from time 0 through time 4 in run r agent i has gone through the sequence
〈si, si, s′

i , si , si〉 of local states, where si �= s′
i , then her local-state sequence at (r, 4)

is 〈si, s′
i , si〉. Process i’s local-state sequence at a point (r, m) essentially describes

what has happened in the run up to time m, from i’s point of view.
Intuitively, an agent has perfect recall if her current local state encodes her whole

local-state sequence. More formally, we say that agent i has perfect recall in system R
if at all points (r, m) and (r ′, m′) in R, if (r, m) ∼i (r ′, m′), then agent i has the same
local-state sequence at both (r, m) and (r ′, m′). Thus, agent i has perfect recall if she
“remembers” her local-state sequence at all times. In a system with perfect recall,
ri(m) encodes i’s local-state sequence in that, at all points where i’s local state is
ri(m), she has the same local-state sequence. Notice that the systems R1 and R2

that we used to model the games G1 and G2 assume perfect recall, since the players
keep track of all the moves that they make (Exercise 4.15). In fact, perfect recall is a
standard assumption made by game theorists. It also holds in Ikb, our representation
of knowledge bases (Exercise 4.16). As we shall see, perfect recall is an assumption
made, either explicitly or implicitly, in a number of other contexts as well.

One might expect that in a system I where agents have perfect recall, if an agent
knows a fact ϕ at a point (r, m), then she will know ϕ at all points in the future, that is,
we might expect that I |= Kiϕ ⇒ �Kiϕ. This is not quite true. One problem arises
with statements talking about the situation “now.” For example, if ϕ is the statement
“it is currently time 0,” then at time 0, an agent i may know ϕ (say, if she has access to
a clock) but agent i will certainly not always know that it is time 0! Another problem
comes from knowledge about ignorance. Suppose that ϕ is the formula ¬K1p. Then
it is not hard to construct a system where agents have perfect recall such that agent 1
initially does not know p, but she later learns p. Thus, we have ¬K1p, and hence
K1¬K1p, holding at time 0, but we certainly do not have K1¬K1p holding at all
times in the future, since, by assumption, eventually K1p holds (see Exercise 4.17).
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So, knowledge about ignorance does not necessarily persist in the presence of perfect
recall. Nevertheless, the intuition that in systems where agents have perfect recall,
once an agent knows ϕ, then she never forgets ϕ, is essentially correct. Namely, it is
true for all stable formulas, where a stable formula is one that, once true, remains true
(see Exercises 4.18 and 4.19 for more details; we return to this issue in Section 8.2).

How reasonable is the assumption of perfect recall? This, of course, depends on
the application we have in mind, and on the model we choose. It is easy to see that
perfect recall requires every agent to have a number of local states at least as large as
the number of distinct local-state sequences she can have in the system. In systems
where agents change state rather infrequently, this may not be too unreasonable. On
the other hand, if we consider systems where there are frequent state changes, or
look at systems over long stretches of time, then perfect recall may require a rather
large (possibly infinite) number of states. This typically makes perfect recall an
unreasonable assumption over long periods of time, although it is often a convenient
idealization, and may be quite reasonable over short time periods.

The simple protocol considered in Example 4.1.1 is one in which the sender and
receiver undergo very few state changes. In the system that models the protocol, the
states of S and R do not reflect every separate sending or receipt of a message. The
states change only when a message is first received. According to our definitions,
both S and R have perfect recall in this case, despite the fact that neither S nor R

remember how many times they have received or sent messages. The point is that S

and R recall everything that was ever encoded in their states.
Often it is not clear until after the fact what information is relevant to an analysis.

Frequently, a simple way to avoid deciding what to include in the state is simply to
have the state record all events that the agent is involved in, and assume that agents
have perfect recall. If we can gain a reasonable understanding of the system under
the assumption of perfect recall, we can then consider to what extent forgetting can
be allowed without invalidating our analysis.

4.4.5 Message-Passing Systems

In many situations, particularly when analyzing protocols run by processes in a
distributed system, we want to focus on the communication aspects of the system.
We capture this in the notion of a message-passing system, where the most significant
actions are sending and receiving messages. In message-passing systems, we view
a process’s local state as containing information about its initial state, the messages
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that it has sent and received, and what internal actions it has taken. Because we
are interested only in the communication aspects of the system, the details of the
internal actions are not relevant here. The internal actions can include such things
as changing the value of a variable or reading or writing a value.

More formally, suppose we fix a set 
i of initial states for process i, a set
INT i of internal actions for i, and a set MSG of messages. Then a history for
process i (over 
i , INT i , and MSG) is a sequence whose first element is in 
i ,
and whose later elements consist of nonempty sets with elements of the form
send(µ, j, i), receive(µ, j, i), or int(a, i), where µ ∈ MSG and a ∈ INT i . We think
of send(µ, j, i) as representing the event “message µ is sent to j by i”; similarly,
receive(µ, j, i) represents the event “message µ is received from j by i”; finally,
int(a, i) represents the event “internal action a is performed by i.” The details of 
i

and INT i are not relevant here. Intuitively, i’s history at (r, m) consists of i’s initial
state, followed by the sequence describing i’s actions up to time m. Thus, at the
point (r, 0), process i’s history consists only of its initial state. If, for example, in
round m > 0 of run r , process i performs the action of sending process j the mes-
sage µ and also performs some internal action a, then i’s history at the point (r, m)

is the result of appending the set {send(µ, j, i), int(a, i)} to its history at (r, m − 1).
Similarly, if i’s only action in round m is that of receiving the message µ′ from j ,
then its history at (r, m) is the result of appending {receive(µ′, j, i)} to its history at
(r, m). If i performs no actions in round m, then its history at (r, m) is the same as its
history at (r, m − 1). (Notice that we are distinguishing performing no action from
performing some kind of null action to indicate that time has passed; a null action
would be modeled as an internal action.)

In message-passing systems, we speak of send(µ, j, i), receive(µ, j, i), and
int(a, i) as events. We say that an event occurs in round m + 1 of run r if it appears
in some process’s history in (r, m + 1), but not in any process’s history in (r, m).
Although, strictly speaking, ri(m) is a sequence of sets of events, we often identify it
with the set consisting of the union of all the events in all the sets in the sequence. We
talk of an event being in ri(m) if it is in this set. This notion of event can be viewed
as a special case of the notion of events that was discussed in Section 2.5, where an
event was simply taken to be a set of possible worlds. Here we can associate with an
event e the set of all points (r, m) where e occurs in round m of run r . For example,
we can identify the event send(µ, j, i) with the set of points (i.e., possible worlds)
where process i sends message µ to j .
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In a message-passing system, the process’s local state at any point is its history.
Of course, if h is the history of process i at the point (r, m), then we want it to be the
case that h describes what happened in r up to time m from i’s point of view. To do
this, we need to impose some consistency conditions on global states. In particular,
we want to ensure that message histories grow (or at least do not shrink) over time,
and that every message received in round m corresponds to a message that was sent
at round m or earlier. Given sets 
i of initial states and INT i of internal actions
for processes 1, . . . , n, and a set MSG of messages, we define a message-passing
system (over 
1, . . . , 
n, INT1, . . . , INTn, and MSG) to be a system such that for
each point (r, m), the following constraints are satisfied:

MP1. ri(m) is a history over 
i , INT i , and MSG,

MP2. for every event receive(µ, j, i) in ri(m) there exists a corresponding event
send(µ, i, j) in rj (m), and

MP3. ri(0) is a sequence of length one (intuitively consisting of process i’s initial
state) and ri(m + 1) is either identical to ri(m) or the result of appending a
set of events to ri(m).

MP1 says that a process’s local state is its history, MP2 guarantees that every message
received at round m corresponds to one that was sent at round m or earlier, and MP3
guarantees that histories do not shrink. We have ignored the environment’s state
up to now. This is with good reason; the details of the environment’s state are not
relevant in this chapter, so we suppress them. The environment’s state will become
more important when we consider protocols in Chapters 5 and 7. We remark that
by making each process’s local state be its history, we ensure that processes have
perfect recall in message-passing systems (see Exercise 4.22). In practice, we may
want to add further requirements. For example, a reliable message-passing system is
one where communication is guaranteed: every message sent is eventually received.
Formally, a reliable message-passing system R is one that satisfies conditions MP1–
MP3 as well as the following additional condition:

MP4. for all processes i, j , and all points (r, m) in R, if send(µ, j, i) is in ri(m),
then there exists an m′ ≥ m such that receive(µ, i, j) is in rj (m

′).

We can easily impose further requirements on message-passing systems, such as
a requirement that messages arrive in the order in which they are sent. We can force
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the system to be synchronous by assuming that ri(m) �= ri(m + 1) for all i. This
forces i to take some action at every step; i can then compute the time by looking at
the length of its local history. Other requirements that we can impose on a system
are discussed in Exercise 4.23. The key point is that the model is flexible enough to
let us capture a wide range of assumptions quite easily.

4.4.6 Asynchronous Message-Passing Systems

In synchronous systems (it is common knowledge that) processes know exactly what
time it is. Although the assumption of synchrony is widespread, it is by no means
universal. While synchrony essentially implies that all processes share a global
clock, in many computer science applications it is inappropriate to assume a global
clock. Indeed, there may be very little information about time; we may not have
any idea (or not be prepared to make any assumptions) about the relative speed of
processes. For example, if a process becomes overloaded with work (and this may
happen in an unpredictable fashion), the process may suddenly slow down relative
to other processes. Similarly, we may not have upper bounds on message delivery
times. To abstract this type of situation, and to understand the role of synchrony,
computer scientists study systems that in some sense are as far away from being
synchronous as possible. To minimize synchrony assumptions, one assumes that
processes may work at arbitrary rates relative to each other and that there is no bound
on message delivery times. We consider such asynchrony in this section, in the
context of message-passing systems.

To capture these assumptions formally, we proceed much as in the previous
section. As before, we assume that each process’s local state consists of its history.
As was the case in the bit-transmission problem, we use the environment’s state to
record the events that have taken place thus far, and the relative order in which they
occur. The exact form of the environment’s state plays only a minor role in this
chapter, so we defer a detailed definition of the environment’s state to Chapter 5. We
also make the two following simplifying assumptions:

• We assume that at each step, at most one event takes place for each process.
This means that we now take a history to be a sequence starting with an initial
state, and followed by events (we blur here the distinction between an event e

and the singleton set {e} containing the event e), rather than sets of events.
This is a reasonable assumption if we model time at a sufficiently fine level of
granularity.
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• We assume that all the events in a given process’s history are distinct. Our
motivation for this is that we want to consider occurrences of events and their
temporal relationship. It makes the exposition much easier if we do not have to
distinguish different occurrences of the same event in a given run. In particular,
this assumption has the effect that a process can never perform the same action
twice in a given run, since if the internal action a is performed by process i both
in round m and in round m′ of run r , where m < m′, then the event int(a, i)

would appear twice in process i’s history at (r, m′). (If we want to consider
systems where a process can perform the same internal action more than once,
we could simply change our representation of the internal event a so that it is
a triple int(k, a, i), where the first component k denotes the kth occurrence of
the internal event a performed by process i. Similar techniques could be used
to deal with the possibility of i receiving the same message from j or sending
the same message to j a number of times.)

In a message-passing system, a process knows at least what is in its history. It
may well know more. For example, in a system where it is common knowledge
that all processes perform an action at every step, a process can certainly deduce
information about progress made by other processes from the amount of progress
it has made. It may also be able to reach conclusions based on knowledge of other
processes’ protocols. For example, if process 1 receives an acknowledgment from
process 2, then process 1 may know that process 2 must have received its message,
because process 1 knows process 2’s protocol. We want to eliminate additional
knowledge that arises from synchrony, but allow the additional knowledge that arises
from knowledge of protocols. To do this, roughly speaking, we require that a system
consist of all runs compatible with a given protocol that satisfy MP1, MP2, and MP3.
We proceed as follows.

Define a set V of histories to be prefix closed if whenever h is a history in V , then
every prefix of h other than the empty sequence is also in V . Let V1, . . . , Vn be sets
of prefix-closed histories for processes 1, . . . , n respectively. Intuitively, Vi consists
of all histories that process i could have that are consistent with its protocol. Thus,
if process i’s protocol requires i to send an acknowledgment to process j only after
receiving a message from process j , then in all histories h ∈ Vi , if process i sends an
acknowledgment to process j in h, then i must have received a message from j in h.
Define R(V1, . . . , Vn) to consist of all runs satisfying MP1, MP2, and MP3 such that
all of process i’s local states are in Vi . We define an asynchronous message-passing
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system (or a.m.p. system, for short) to be one of the form R(V1, . . . , Vn) for some
choice of prefix-closed V1, . . . , Vn.

We can also consider asynchronous systems in which communication is reliable,
which is captured by the fact that all runs satisfy MP4 in addition to MP1–3. Given
sets of prefix-closed histories V1, . . . , Vn, we define the corresponding asynchronous
reliable message-passing system (or a.r.m.p. system, for short) to be the set of all
runs satisfying all four conditions MP1-4, such that all of process i’s local states are
in Vi , for i = 1, . . . , n. We remark that an a.m.p. system in which communication
takes place can never be an a.r.m.p. system. Intuitively, this is because in an a.m.p.

system we must allow for the possibility that a message will never be received,
whereas in an a.r.m.p. system this situation is impossible. To see this, suppose that
R(V1, . . . , Vn) is an a.m.p. system that includes a run r such that i sends j the
message µ in round m of r . Then there must be a run r ′ in R(V1, . . . , Vn) that agrees
with r up to the beginning of round m, process i still sends µ to j in round m of r ′,
but j never receives µ (Exercise 4.26). Because µ is never received in r ′, it follows
that R(V1, . . . , Vn) is not an a.r.m.p. system. In the rest of this section, we focus on
a.m.p. systems.

The fact that a.m.p. systems consist of all runs satisfying MP1–3 for some choice
of V1, . . . , Vn allows us to show that for every run r ∈ R, a number of runs related
to r must also be in R. For example, suppose that r ∈ R and r1 is the run in
which, intuitively, all events in r are stretched out by a factor of two. Thus, in r1,
all processes start in the same initial state as in r , no events occur in odd rounds of
run r1, and, for all m, the same events occur in round 2m of run r1 as in round m

of run r (so that for all times m, we have r1(2m) = r1(2m + 1) = r(m)). It is
easy to check that r1 satisfies conditions MP1–3 (since r does), so r1 must also be
in R. Similarly, any run that is like r except that there are arbitrarily long “silent
intervals” between the events of r is also in R. This shows that in a precise sense
time is meaningless in a.m.p. systems (Exercise 4.24).

As we now show, an a.m.p. system is asynchronous in a strong sense: the only
information a process has about the ordering of events is what follows from the order
in its own history, together with the fact that a message must be sent before it is
received. To make this precise, we define a notion of potential causality between
events. This is intended to capture the intuition that event e might have caused
event e′; in particular, this means that e necessarily occurred no later than e′. For
events e and e′ in a run r , we write e r−→ e′ if either
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1. e′ is a receive event and e is the corresponding send event,

2. for some process i, events e and e′ are both in i’s history at some point (r, m)

and either e = e′ or e precedes e′ (i.e., comes earlier in the history), or

3. for some event e′′ we have e r−→ e′′ and e′′ r−→ e′.

Notice that condition (3) here guarantees that we have the transitive closure of con-
ditions (1) and (2). These three properties together say that the only way that e could
have affected e′ is if either e = e′ or there is a sequence e1, . . . , ek of events such
that e = e1, e′ = ek , and for each consecutive pair eh, eh+1, either eh and eh+1 are
in the history of the same process, with eh preceding eh+1, or eh is a send and eh+1

is the corresponding receive. Note that r−→ is an anti-symmetric relation; we cannot
have both e r−→ e′ and e′ r−→ e (which means that e is a potential cause of e′ and e′
is a potential cause of e) unless e = e′. It is worth pointing out, however, that this
would not be the case if we allowed an event to occur more than once in a history.

The following result makes precise the degree to which an a.m.p. is asynchronous.
It says that the potential causality relation r−→ is the closest we can come in an a.m.p.

system to defining a notion of ordering of events. That is, even if the processes could
combine all their knowledge, they could not deduce any more about the ordering of
events in run r than is implied by the r−→ relation. For the following proposition,
we assume that for each pair of events e and e′, we have a proposition Prec(e, e′)
in �. We say that the interpretation of Prec(e, e′) in the interpreted a.m.p. system
I = (R, π) is standard if π(r(m))(Prec(e, e′)) = true exactly if events e and e′
both occur by round m of run r , and e occurs no later than e′ in r . (Note that our
assumption that the environment keeps track of the events that have occurred means
that π is well defined.)

Proposition 4.4.3 Let G be the group of all processes, let R be an a.m.p. system,
and assume that the interpretation of Prec(e, e′) in I = (R, π) is standard. Then
(I, r, m) |= DG(Prec(e, e′)) iff e and e′ have both occurred by round m of r and
e r−→ e′.

Proof See Exercise 4.25.

Since potential causality captures the information that the agents have about the
ordering of events, a set of pairwise incomparable events in this ordering can, for
all the agents know, be simultaneous. This gives rise to a notion of a consistent cut,
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which is further discussed in Exercise 4.28. As we shall see in the next section, there
are even closer connections between the potential causality ordering and knowledge.

4.5 Knowledge Gain in A.M.P. Systems

Given that the only interaction between the processes in an a.m.p. system is through
sending and receiving messages, it is perhaps not surprising that there is a close
relationship between knowledge and communication in an a.m.p. system. By better
understanding this relationship, we shall be able to prove bounds on the number of
messages required to gain certain levels of knowledge, and hence on the amount of
communication required to achieve certain goals. As we shall see, the relationship
between knowledge and communication is mediated by the causality relationship
r−→ described in Section 4.4.6. Roughly speaking, the only way for process i to

gain knowledge about process j is to receive a message. Although this message
does not have to come directly from process j , it should be the last in a chain of
messages, the first of which was sent by j . The chain may, however, pass through
a number of other processes before it reaches i. This observation motivates the next
definition.

Suppose that i1, . . . , ik is a sequence of processes, with repetitions allowed, r

is a run, and m < m′. We say that 〈i1, . . . , ik〉 is a process chain in (r, m . . m′)
if there exist events e1, . . . , ek in run r such that event e1 occurs at or after round
m + 1 in run r , event ek occurs at or before round m′, event ej is in process ij ’s
history for j = 1, . . . , k, and e1

r−→ · · · r−→ ek . For example, suppose that, in
run r , process 1 sends the message µ to process 2 in round 1, process 2 receives µ in
round 2, process 2 sends the message µ′ to process 1 in round 3, and µ′ is received by
process 1 in round 3. Then 〈1, 2, 2, 1〉 is a process chain in (r, 0 . . 3) (as is 〈1, 2, 1〉).
We say that 〈i1, . . . , ik〉 is a process chain in r if it is a process chain in (r, m . . m′)
for some m < m′.

This example suggests that process chains are intimately linked to the sending
and receiving of messages. It is easy to see that if 〈1, 2, 1〉 is a process chain in run r

corresponding to events e1, e2, and e3 that occur in rounds m1, m2, and m3 respec-
tively, then there must have been a message sent by process 1 between rounds m1

and m2 inclusive (that is, at or after round m1, and at or before round m2) and a
message sent by process 2 between rounds m2 and m3 inclusive. More generally, we
have the following lemma.
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Lemma 4.5.1 Suppose that 〈i1, . . . , ik〉 is a process chain in (r, m . . m′), with
ij �= ij+1 for 1 ≤ j ≤ k − 1. Then there must be a sequence of messages
µ1, . . . , µk−1 sent in r such that µ1 is sent by i1 at or after round m + 1, and
µj is sent by ij strictly after µj−1 is sent by ij−1 for 1 < j ≤ k − 1. In particular, at
least k − 1 messages must be sent in run r between rounds m + 1 and m′ inclusive.

Proof See Exercise 4.27.

Note that it is not necessarily the case that µj is sent by ij to ij+1. There may be
a sequence of messages µj,1, . . . , µj,l such that µj,1 = µj is sent by ij and µj,l is
received by ij+1.

The next definition is the key to relating knowledge and communication. If
i1, . . . , ik is a sequence of processes, we write (r, m) ∼i1,...,ik (r ′, m′), and say
that (r ′, m′) is (i1, . . . , ik)-reachable from (r, m), if there exist points (r0, m0), . . . ,

(rk, mk) such that (r, m) = (r0, m0), (r ′, m′) = (rk, mk), and (rj−1, mj−1) ∼ij

(rj , mj ) for j = 1, . . . , k. Thus (r, m) ∼i1,...,ik (r ′, m′) if at the point (r, m) pro-
cess i1 considers it possible that i2 considers it possible . . . that ik considers it possible
that (r ′, m′) is the current point. (Despite the notation, ∼i1,...,ik is not in general an
equivalence relation if k > 1.) The following lemma tells us that for every run r and
for all times m, m′, either (r, m′) is (i1, . . . , ik)-reachable from (r, m) or 〈i1, . . . , ik〉
is a process chain in (r, m . . m′). Putting this together with Lemma 4.5.1, this says
that message transmission is essentially the only mechanism that blocks reachability.

Lemma 4.5.2 Let R be an a.m.p. system, let r be a run in R, and let m < m′. For
all k ≥ 1 and all sequences i1, . . . , ik of processes, either (r, m) ∼i1,...,ik (r, m′) or
〈i1, . . . , ik〉 is a process chain in (r, m . . m′).

Proof We proceed by induction on k. If k = 1 and 〈i1〉 is not a process chain in
(r, m . . m′), then it must be the case that no events occur in process i1’s history in r

between rounds m+1 and m′ inclusive. It follows that (r, m) ∼i1 (r, m′), as desired.
Suppose that k > 1 and 〈i1, . . . , ik〉 is not a process chain in (r, m . . m′). Let e∗

be the last event in ik’s history at the point (r, m′). We now define a new run r ′.
Intuitively, r ′ consists of all the events that occurred in r up to and including round m,
together with all events that occurred in r after round m that potentially caused e∗.
The run r ′ agrees with r up to time m (so that r ′(m′′) = r(m′′) for 0 ≤ m′′ ≤ m).
For m < m′′ ≤ m′ and each process i, we define r ′

i (m
′′) to be the sequence that

results from appending to r ′
i (m) (in the order they occurred) all events e in ri(m) that

occurred between rounds m + 1 and m′′ (inclusive) such that e r−→ e∗. Finally, we
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take r ′(m′′) = r ′(m′) for m′′ > m′, that is, no event takes place in r ′ after time m′. It
is easy to check that r ′

i (m
′′) is a prefix (not necessarily strict) of ri(m

′′) for all m′′ ≥ 0,
because if e′ occurs in ri(m

′′) before e and e r−→ e∗, then we also have e′ r−→ e∗. It is
now not hard to show that (1) r ′ ∈ R (that is, that r ′ satisfies the conditions MP1–3
in definition of message-passing systems), (2) (r ′, m′) ∼ik (r, m′), (3) (r, m) ∼i1

(r ′, m), and (4) 〈i1, . . . , ik−1〉 is not a process chain in (r ′, m . . m′) (Exercise 4.29).
From (4) and the induction hypothesis it follows that (r ′, m) ∼i1,...,ik−1 (r ′, m′).
Applying (2) and (3) we now immediately get that (r, m) ∼i1,...,ik (r, m′), as desired.

The two conditions in Lemma 4.5.2 are not mutually exclusive. It is possible to
construct a run r such that, for example, 〈1, 2〉 is a process chain in (r, 0 . . 4) and
(r, 0) ∼1,2 (r, 4) (Exercise 4.30).

Lemma 4.5.2 allows us to relate message passing to knowledge in a.m.p. systems.
One direct consequence is stated in the following theorem, which essentially says
that processes can gain or lose knowledge only by sending and receiving messages.

Theorem 4.5.3 Let r be a run in an interpreted a.m.p. system I, and assume that
m < m′.

(a) If (I, r, m) |= ¬Kikϕ and (I, r, m′) |= Ki1 . . . Kikϕ, then 〈ik, . . . , i1〉 is a
process chain in (r, m . . m′).

(b) If (I, r, m) |= Ki1 . . . Kikϕ and (I, r, m′) |= ¬Kikϕ, then 〈i1, . . . , ik〉 is a
process chain in (r, m . . m′).

Proof We prove (b) here; the proof of (a) is similar. Suppose, in order to ob-
tain a contradiction, that 〈i1, . . . , ik〉 is not a process chain in (r, m . . m′). By
Lemma 4.5.2, we have (r, m) ∼i1,...,ik (r, m′). Thus, by definition, there exist
points (r0, m0), . . . , (rk, mk) such that (r, m) = (r0, m0), (r, m′) = (rk, mk), and
for j = 1, . . . , k we have (rj−1, mj−1) ∼ij (rj , mj ). We can now show, by a
straightforward induction on j , that (I, rj , mj ) |= Kij . . . Kikϕ for j = 1, . . . , k. In
particular, it follows that (I, r, m′) |= Kikϕ, a contradiction.

Part (a) of Theorem 4.5.3 seems quite intuitive: it says that knowledge gain
can occur only as the result of receiving messages. Part (b), however, may at first
glance seem somewhat counterintuitive. It says that knowledge loss can occur only
as the result of sending messages. How can processes lose knowledge by sending
messages? To see how this can happen, suppose that process 1 sends process 2 a
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message saying “Hello,” and that this is the first message sent from process 1 to
process 2. Before process 1 sends the message, 1 knows that 2 has not received any
messages from it. After it sends the messages, it loses this knowledge.

More deeply nested knowledge can be lost as well. Consider the following
(somewhat contrived) example. Imagine a database system where at most one process
at a time may have control of the database. (Intuitively, a process having control may
update the database. We do not want more than one process trying to update the
database at a time.) If no process has control, we say that the system is freely
available. Control of our database is handled as follows. Intuitively, when a process
has control, it puts a lock on the database, so no other process can access it. If only
one process has a lock on the database, it can either release the database, so that it
becomes freely available, or pass control on to a second process. That process can
either return control to the first process, or pass control on to a third process, and
so on. In general, a process either returns control to the process that passed control to
it (intuitively, releasing its lock), or passes control on to a new process (after putting
a lock on all the other locks already in place, and passing the information about all
the existing locks to the new process). Since we are considering a.m.p. systems, this
passing on of control is done by sending messages. Let ϕ be the fact “the database
is not freely available.” Suppose that we have a situation where originally process 1
took control of the database, passed control on to process 2, who then passed control
on to process 3. At that point we have K3K2K1ϕ. Process 3 releases control by
sending a message to process 2. Immediately after process 3 sends the message, we
have ¬K3K2K1ϕ. The reason is that because we are in an asynchronous system,
process 3 has no way of knowing how much time has passed, so for all process 3
knows, process 2 got its message and released control to process 1, who then made
the system freely available. In fact, K2K1ϕ continues to hold until process 2 gets
process 3’s message and then sends a message to process 1 releasing control. The
point is that in an asynchronous system, without getting further messages, process 3
has no way of knowing exactly when or whether this happens. Again, knowledge is
lost as the result of sending messages.

There is another way that processes can lose knowledge by sending messages.
It is possible that the knowledge they lose is knowledge about lack of knowledge;
in this case part (b) of Theorem 4.5.3 can really be understood as a special case
of part (a). For example, consider a formula p that intuitively says “the value of
variable x is 0,” where x is a variable local to process 3 (so that it can only be
affected by 3’s internal actions). Suppose that (I, r, 0) |= ¬p, so that at time 0
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in run r , variable x does not have value 0. By the results of Exercise 2.12, we
know that (I, r, 0) |= K1K2¬K2K1p. (The intuitive argument for this is as follows:
Clearly ¬K1p holds, since process 1 cannot know a false fact. Thanks to negative
introspection, we have also have K1¬K1p. By similar reasoning, from ¬K1p, we
can deduce both ¬K2K1p and K2¬K2K1p. But because process 1 knows ¬K1p,
process 1 also knows K2¬K2K1p, that is, K1K2¬K2K1p holds.) Now take ϕ to be
the formula ¬K2K1p. We have just shown that (I, r, 0) |= K1K2ϕ. Suppose that
at some later time, say at the point (r, 6), process 2 knows that process 1 knows p,
that is, we have (I, r, 6) |= K2K1p. By definition of ϕ, we have (I, r, 6) |= ¬ϕ.
Therefore, we also have (I, r, 6) |= ¬K2ϕ, since process 2 cannot know a false
fact. Thus the knowledge loss—from K1K2ϕ at time 0 to ¬K2ϕ at time 6—is just a
knowledge gain in disguise—from ¬K1p at time 0 to K2K1p at time 6. Whether we
apply part (a) or part (b) of the theorem, it follows that there must be a process chain
〈1, 2〉 in (r, 0 . . 6). The same sequence of messages causes the knowledge gain and
the knowledge loss.

One consequence of Theorem 4.5.3 is that common knowledge can be neither
gained nor lost in a.m.p. systems.

Theorem 4.5.4 Suppose that I is an interpreted a.m.p. system, r is a run in I, and G

is a group of processes with |G| ≥ 2. Then for all formulas ϕ and all times m ≥ 0,
we have (I, r, m) |= CGψ iff (I, r, 0) |= CGψ .

Proof Suppose that (I, r, m) |= CGψ and (I, r, 0) |= ¬CGψ . Suppose
that exactly l messages are sent between rounds 1 and m inclusive. Since
(I, r, 0) |= ¬CGψ , there must be some sequence i1, . . . , ik of pairwise distinct
processes in G such that (I, r, 0) |= ¬Kik . . . Ki1ψ . Let i and j be distinct pro-
cesses in G such that j �= ik . (Such processes must exist since |G| ≥ 2.) Since
(I, r, m) |= CGψ , it follows that (I, r, m) |= (KiKj )

lKik . . . Ki1ψ , where we de-
fine (KiKj )

lψ ′ for any formula ψ ′ inductively in the obvious way. By part (a)
of Theorem 4.5.3, where the role of ϕ is played by Kik−1 . . . K1ψ , it follows that
〈ik, j, i . . . , j, i〉 is a process chain in (r, 0 . . m), where there are l occurrences of j, i

in this chain. By Lemma 4.5.1, at least 2l messages must be sent in round r between
rounds 1 and m. But this contradicts our assumption that exactly l messages are sent.
Thus, common knowledge cannot be gained. The proof that common knowledge
cannot be lost proceeds along identical lines, using part (b) of Theorem 4.5.3.

As we shall see in Chapter 6, the fact that common knowledge cannot be gained or
lost in a.m.p. systems has important consequences for the possibility of coordinating
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actions in a.m.p. systems. We remark that Theorem 4.5.3, and hence Theorem 4.5.4,
hold with almost no change in proof for a.r.m.p. systems as well (Exercise 4.32). This
shows that reliability considerations do not play an important role in these results. It
is the fact that there is no bound on message delivery time, rather than the question
of whether the message will be delivered, that is crucial here.

Using Theorem 4.5.3, we can also prove a number of lower bounds on the number
of messages required to solve certain problems. Consider the problem of mutual
exclusion. Intuitively, the situation here is that from time to time a process tries to
access some shared resource that may be accessed by only one process at a time.
(For example, the process may try to change the value of a shared variable.) We say
that the process is in its critical section when it has access to the shared resource. We
say that R is a system with mutual exclusion if in every run of R, no two processes
are simultaneously in their critical sections.

If R is a system with mutual exclusion and r is a run in R in which i1, i2, . . . , ik
(with ij �= ij+1 for 1 ≤ j < k) enter their critical section in sequence, then
〈i1, i2, . . . , ik〉 is a process chain in r . For suppose that ij enters its critical sec-
tion at time mj in r , for j = 1, . . . , k. For each process i, let csi be a primitive
proposition denoting that i is in its critical section. Formally, we consider the in-
terpreted system I = (R, π), where π makes csi true at exactly those global states
where process i is in its critical section. From the assumption that R is a system
with mutual exclusion, it follows that csi ⇒ ¬csj is valid in I if i �= j . Moreover,
because the truth of csi is determined by i’s local state, we must have that both
csi ⇒ Ki(csi) and ¬csi ⇒ Ki(¬csi) are valid in I. Since we have assumed that
process ij enters its critical section at time mj in r , we have (I, r, mj ) |= csij . It
follows from the previous observations and the S5 properties of our definition of
knowledge that for j = 1, . . . , k − 1, we have

(I, r, mj ) |= Kij Kij+1¬csij+1 and

(I, r, mj+1) |= ¬Kij+1¬csij+1

(Exercise 4.34). Thus, by Theorem 4.5.3(b), 〈ij , ij+1〉 is a process chain in
(r, mj . . mj+1). It immediately follows that 〈i1, i2, . . . , ik〉 is a process chain in r .
By Lemma 4.5.1, the existence of this process chain in r implies that at least k − 1
messages are sent in r . This gives us a lower bound on the number of messages
required for mutual exclusion: for k processes to enter their critical sections, at least
k − 1 messages are required.
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Exercises

4.1 Show that for all formulas ϕ ∈ LCD
n and all interpreted systems I, if (r, m)

and (r ′, m′) are points in I such that r(m) = r ′(m′), then (I, r, m) |= ϕ iff
(I, r ′, m′) |= ϕ.

4.2 Prove that (I, r, m) |= �ϕ iff (I, r, m) |= trueUϕ, and (I, r, m) |= �ϕ iff
(I, r, m) |= ¬�¬ϕ.

4.3 Construct an interpreted system I and two points (r, m) and (r ′, m′) in I such
that r(m) = r ′(m′), but (I, r, m) |= �p and (I, r ′, m′) |= ¬�p.

4.4 Show that (I, r, m) |= ��ϕ exactly if the set {m′ | (I, r, m′) |= ϕ} is infinite.

4.5 In this exercise, we fill in some of the missing details in the proof of Propo-
sition 4.4.1 (among other things). Recall from Chapter 3 that Mn consists of all
Kripke structures with no constraints on the Ki relations, while Mrst

n consists of all
Kripke structures where the Ki’s are equivalence relations. We write Mn |= ϕ (resp.,
Mrst

n |= ϕ) if ϕ is valid in all Kripke structures in Mn (resp., in Mrst
n ).

(a) Show that for arbitrary formulas ϕ and ψ , we have Mn |= ϕ ⇒ ψ iff
Mn |= Kiϕ ⇒ Kiψ .

(b) Show that for propositional formulas ϕ and ψ , we have Mrst
n |= ϕ ⇒ ψ iff

Mrst
n |= Kiϕ ⇒ Kiψ . Moreover, show that Mrst

n |= ϕ ⇒ ψ iff ϕ ⇒ ψ is a
propositional tautology.

(c) Show that for arbitrary formulas ϕ and ψ , we have Mrst
n |= ϕ ⇒ ψ im-

plies Mrst
n |= Kiϕ ⇒ Kiψ , but that there exist formulas ϕ and ψ such that

Mrst
n |= Kiϕ ⇒ Kiψ , but Mrst

n �|= ϕ ⇒ ψ .

4.6 Show how to use Proposition 4.4.1 and Exercise 3.23 to compute how the KB
can answer KB-queries from the conjunction of the formulas that the KB has been
told.

4.7 Prove Proposition 4.4.2.
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4.8 Suppose that there is a default rule saying that if p is true, then it is the first fact
the KB is told. Show how Ikb can be modified to take this into account, and prove
that for the appropriate modification, if rKB(m) = 〈ϕ1, . . . , ϕk〉 for some k ≥ 1 and
ϕ1 �= p , then (Ikb, r, m) |= KKB¬p.

4.9 Suppose that the KB has a priori knowledge that the propositional formula ϕ

holds. Show how Ikb can be modified to take this into account, and show that the
analogue of Proposition 4.4.1 holds: the KB will know everything that follows from
what it has been told and ϕ.

* 4.10 Suppose that rKB(m) = 〈ϕ1, . . . , ϕk〉, and let κ = ϕ1 ∧ . . .∧ϕk . By extending
the ideas of Proposition 4.4.2, show how we can construct a Kripke structure (Mκ)+
which has an accessibility relation corresponding to the Teller’s knowledge, as well
as one corresponding to the KB’s knowledge, such that for all formulas ψ , we have
(Ikb, r, m) |= ψ iff ((Mκ)+, re(m)) |= ψ .

4.11 In this exercise, we consider the implications of allowing the the Teller to have
false beliefs. Suppose that, as before, the Teller’s state includes the set T of worlds
that it considers possible, but we allow the real world not to be in T . We require,
however, that T be nonempty and that the Teller tells the KB ϕ only if ϕ is true in
all the truth assignments in T . Rather than use the ∼T relation to define the Teller’s
knowledge in the Kripke structure associated with the system Ikb, suppose we use
the relation KT defined by (r(m), r ′(m′)) ∈ KT if (1) rT (m) = r ′

T (m′) and (2) if
r ′(m′) = (α, 〈ϕ1, . . . , ϕk〉, 〈T , 〈ϕ1, . . . , ϕk〉〉), then α ∈ T . (Note that the real world
α is no longer part of the Teller’s local state.) That is, the only worlds that the Teller
considers possible are ones corresponding to its beliefs as captured by T .

(a) Show that if we define knowledge using the KT relation instead of ∼T , and
the Teller tells ϕ to the KB at the point (r, m), then (Ikb, r, m) |= KT ϕ.

(b) Show that if we define knowledge using the KT relation, then the Teller’s
knowledge satisfies all the S5 properties except the Knowledge Axiom
Kiϕ ⇒ ϕ. Instead, the Teller’s knowledge satisfies the property ¬KT (false)
(and thus is characterized by the axiom system KD45 of Chapter 3). This gives
us a natural way of defining belief in this context.

(c) Suppose that the KB believes that everything it is told is true. Since the Teller
also believes that everything it says is true, we can capture this by using the
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relation KKB defined by (r(m), r ′(m′)) ∈ KKB if (1) rKB(m) = r ′
KB(m′) and

(2) if r ′(m′) = (α, 〈ϕ1, . . . , ϕk〉, 〈T , 〈ϕ1, . . . , ϕk〉〉), then α ∈ T . Notice that
the second condition guarantees that at all points the KB considers possible,
the Teller’s beliefs are correct, so that everything the KB is told is true. Show
that if we use KKB to define the KB’s knowledge, then KKB also satisfies the
axioms of KD45.

(d) Show that analogues to Propositions 4.4.1 and 4.4.2 hold in this context as
well.

4.12 This exercise deals with the game G1 of Section 4.4.2. Let � consist of
primitive propositions of the form acti (a) for each a ∈ {a1, a2, b1, b2} and i ∈ {1, 2}.
Let I1 = (R1, π) be an interpreted system corresponding to the game G1, where R1

is as described in the text and π gives the following interpretation to the primitive
propositions: π(r, m)(acti (a)) = true exactly if i has taken action a in the global
state r(m). Prove that for all runs r ∈ R1 and actions a we have

(a) (I1, r, 1) |= act1(a) ⇔ C(act1(a)),

(b) (I1, r, 2) |= act2(a) ⇔ C(act2(a)).

This shows that, in this game, players’ moves are common knowledge once they take
place.

4.13 This exercise deals with the game G2 of Section 4.4.2. Let � and π be defined
as in Exercise 4.12, and let I2 = (R2, π) be an interpreted system corresponding to
the game G2, where R2 is as described in the text. Prove that for every run r ∈ R2

and actions a ∈ {a1, a2} and b ∈ {b1, b2} we have:

(a) (I2, r, 1) |= ¬K2(act1(a)),

(b) (I2, r, 2) |= act1(a) ⇔ K2(act1(a)),

(c) (I2, r, 2) |= (act1(a) ∧ act2(b)) ⇔ C(act1(a) ∧ act2(b)).

Although, as part (a) shows, the moves of player 1 are not known to player 2 when she
moves (as shown in Exercise 4.12, this is in contrast to the situation in the game G1),
part (c) shows that all the moves made by both players are common knowledge at
the end of every play.
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4.14 Show that, according to our formal definitions, the systems R1 and R2 repre-
senting the games G1 and G2 of Section 4.4.2 are synchronous.

4.15 Show that both players have perfect recall in the systems R1 and R2 repre-
senting the games G1 and G2 of Section 4.4.2.

4.16 Show that in the system Ikb representing a knowledge base, the agents have
perfect recall.

4.17 Show that knowledge of ignorance does not necessarily persist in systems
where agents have perfect recall. In particular, construct an interpreted system I
where agents have perfect recall and a run r in I such that (I, r, 0) |= ¬K1p and
(I, r, m) |= K1p for m > 0.

4.18 A formula ϕ is said to be stable (with respect to the interpreted system I) if
once ϕ is true it remains true, that is, if we have I |= ϕ ⇒ �ϕ. Assume that ϕ1

and ϕ2 are stable.

(a) Show that ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are stable.

(b) If, in addition, I is a system where agents have perfect recall, show that Kiϕ1

and CGϕ1 are stable. Thus, in a system where agents have perfect recall, if an
agent knows a stable formula at some point, then he knows it from then on.

(c) Show that if we assume in addition that the system is synchronous, then DGϕ1

is stable.

* 4.19 This exercise considers whether the stability of formulas is preserved by the
knowledge and distributed knowledge operators.

(a) Show by example that there is an interpreted system where agents have perfect
recall and there is a stable formula ϕ1 where DGϕ1 is not stable. This contrasts
with the situation in Exercise 4.18(c), where we also assume that the system
is synchronous.

(b) Show by example that K1ϕ2 is not necessarily stable (even in synchronous
systems where agents have perfect recall) if ϕ2 is not stable.
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4.20 Let R be a system in which agents have perfect recall.

(a) Show that if r ∈ R and ri(m) = ri(m
′), then ri(m) = ri(m

′′) for all m′′ with
m ≤ m′′ ≤ m′.

(b) We say that agent i considers run r ′ possible at the point (r, m) if (r, m) ∼i

(r ′, m′) for some m′. Show that the set of runs that an agent considers possible
in R does not increase over time; that is, show that if r ∈ R and m′ > m,
then the set of runs agent i considers possible at (r, m′) is a subset of the set
of runs i considers possible at (r, m).

4.21 Consider a synchronous message-passing system with two processes, where
process 1 sends process 2 a message µ1 in round 1 and a message µ2 in round
2. Process 2 does nothing. Describe L1 and L2 and the set of runs in each of the
following situations:

(a) messages are received in the same round that they are sent,

(b) messages are either received in the same round that they are sent or not received
at all,

(c) messages are guaranteed to be received eventually (but there is no upper bound
on message delivery time).

4.22 Show that processes have perfect recall in message-passing systems.

4.23 Show how the following requirements can be imposed on message-passing
systems:

(a) a requirement that agents take some action at least once every k steps,

(b) a requirement that messages arrive within k rounds.

4.24 In this exercise, we show that a.m.p. systems are closed under certain opera-
tions. Suppose that R is an a.m.p. system.

(a) Show that R is closed under single-state stuttering; that is, if r ∈ R, then, for
all m and k, there is a run r ′

mk ∈ R where the mth state of r is repeated k times.
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More precisely, if r ∈ R, let r ′
mk be the run such that

r ′
mk(m

′) =






r(m′) if m′ ≤ m

r(m) if m < m′ ≤ m + k

r(m − k) if m′ > m + k.

Show that r ′
mk ∈ R.

(b) Show that R is closed under limits. More precisely, show that if r is a run all
of whose prefixes are prefixes of runs in R (that is, for all m, there exists a run
rm ∈ R such that r(m′) = rm(m′) for all m′ ≤ m), then r ∈ R.

(c) This part of the exercise generalizes part (a). A function f : N → N is called
a stuttering function if, intuitively, f is a monotone nondecreasing function
that increases by increments of at most 1 at a time. More formally, f is a
stuttering function if f (0) = 0 and f (m + 1) satisfies f (m) ≤ f (m + 1) ≤
f (m) + 1 for all m ≥ 0. For example, a stuttering function might have range
00111223444455 . . .. Given a run r , we say that r ′ is a stuttered version of r

if, for some stuttering function f , we have r ′(m) = r(f (m)) for all m ≥ 0.
Prove that R is closed under stuttering. Namely, show that if r ∈ R and r ′ is
a stuttered version of r , then r ′ ∈ R. (This can be shown directly, or shown
by using part (a), part (b), and induction.)

Note that it immediately follows from part (c) that if r is in R, then so is the
run r1 described in Section 4.4.6 in which r1(2m) = r1(2m + 1) = r(m), so that all
events in r are stretched out by a factor of two. Similarly, any run in which there are
arbitrarily long “silent intervals” between the events of r is also in R.

* 4.25 Part (a) of this exercise, like the previous exercise, involves showing that if a
given run r is in an a.m.p. system, then so are a number of variants of r . This turns
out to be the key step in proving Proposition 4.4.3.

(a) Assume that r is a run in an a.m.p. system R, that e is an event, and that k

is a positive integer. Let r ′ be a run defined intuitively as follows: For every
event e′ occurring in r , if e r−→ e′, then e′ occurs k rounds later in r ′ than in r ,
and otherwise e′ occurs in r ′ in the same round as in r . More formally, let i be
an agent. If there is no event e′ and time mi where e r−→ e′ and e′ is in ri(mi),
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then let r ′
i (m) = ri(m) for every m. Otherwise, let mi be minimal such that

there is an event e′ where e r−→ e′ and e′ is in ri(mi). Then define

r ′
i (m) =






ri(m) if m < mi

ri(mi − 1) if mi ≤ m < mi + k

ri(m − k) if mi + k ≤ m.

Show that r ′ is a run in R.

(b) Prove Proposition 4.4.3. (Hint: showing that if e r−→ e′ and e and e′ have
occurred by time m, then (I, r, m) |= DGPrec(e, e′) is straightforward. For
the converse, if it is not the case that e r−→ e′, use part (a) and Exercise 4.24(a)
to find a run r ′ ∈ R and a time m′ such that (r, m) ∼i (r ′, m′) for all processes i

and (I, r ′, m′) |= ¬Prec(e, e′).)

4.26 Let R be an a.m.p. system and let r be a run in R such that i sends j the
message µ in round m of r . Show that there must be a run r ′ in R that agrees with r

up to the beginning of round m, where process i still sends µ to j in round m of r ′,
but where j never receives µ in r ′. (Hint: use Exercises 4.24 and 4.25(a).)

4.27 Prove Lemma 4.5.1.

* 4.28 Define a consistent cut of a run r ∈ R to be a tuple 〈s1, . . . , sn〉 of local states
such that (a) there exist m1, . . . , mn such that ri(mi) = si , for i = 1, . . . , n (so that
each of these local states appears at some point in run r) and (b) there exists a run
r ′ ∈ R and a time m such that r ′

i (m) = si , for i = 1, . . . , n (so that there exists a
run where all the local states in the consistent cut occur simultaneously). Thus, a
consistent cut is essentially one that could have occurred as a global state at some
point in the system. Show that 〈s1, . . . , sn〉 is a consistent cut of a run r in an a.m.p.

system R iff (a) there exist m1, . . . , mn such that ri(mi) = si , for i = 1, . . . , n and
(b) these states are closed downwards with respect to r−→; that is, if e r−→ e′, and e′ is
an event in the local state si of some process i (this makes sense in an a.m.p. system
since the local states are essentially sequences of events), then e is an event in the
local state sj of some (possibly different) process j .

* 4.29 Fill in the details of the proof of Lemma 4.5.2. In particular, show that r ′
satisfies the four conditions stated near the end of Lemma 4.5.2.
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4.30 Show that there is a run r in an a.m.p. system R such 〈1, 2〉 is a process chain
in (r, 0 . . 4) and (r, 0) ∼1,2 (r, 4).

4.31 This exercise presents a variant of Theorem 4.5.3. Let r be a run in an inter-
preted a.m.p. system I and let m < m′.

(a) Show that if (I, r, m) |= ¬KikKik+1ϕ and (I, r, m′) |= Ki1 . . . KikKik+1ϕ,
then 〈ik+1, ik, . . . , i1〉 is a process chain in (r, m . . m′).

(b) Show that if (I, r, m) |= Ki1 . . . KikKik+1ϕ and (I, r, m′) |= ¬KikKik+1ϕ,
then 〈i1, . . . , ik, ik+1〉 is a process chain in (r, m . . m′).

4.32 Show that Theorems 4.5.3 and 4.5.4 hold for a.r.m.p. systems.

4.33 This exercise considers an alternative proof of Theorem 4.5.4. Show that if R
is an a.m.p. system and G is a group of processes with |G| ≥ 2, then for all points
(r, m) in R, we have that (r, 0) is G-reachable from (r, m). Use this observation,
together with the fact that the same formulas are common knowledge among G at
two states one of which is G-reachable from the other (Exercise 2.7), to provide an
alternative proof of Theorem 4.5.4.

4.34 Prove the claim in the discussion of mutual exclusion in Section 4.5; that is,
for j = 1, . . . , k − 1, prove

(a) (I, r, mj ) |= Kij Kij+1¬csij+1 ,

(b) (I, r, mj+1) |= ¬Kij+1¬csij+1 .

Notes

The first person to talk in terms of ascribing mental qualities such as knowledge and
belief to machines was McCarthy [1979]. Newell [1982] also talks about analyzing
systems at the “knowledge level,” although not quite in the way we do here. The
general framework presented here for ascribing knowledge in multi-agent systems
originated with Halpern and Moses [1990], Moses [1986], and Rosenschein [1985].
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Slight variants of this framework were also introduced by Fischer and Immerman
[1986], Halpern and Fagin [1989], Parikh and Ramanujam [1985], and Rosenschein
and Kaelbling [1986]. Our presentation here is based on that of [Halpern and Fagin
1989], where the reader is referred for more details and further discussion. (We
remark that Halpern and Fagin allowed π to depend on the point, not just the global
state.) Many other approaches to modeling distributed systems have been described
in the literature. Some of the better-known approaches include those of Hoare [1985],
Lamport [1986], Lynch and Fischer [1981], Lynch and Tuttle [1989] (see also [Lynch
1997]), Milner [1980], and Pratt [1985].

We have made a number of significant assumptions in the way we have chosen to
model multi-agent systems. We have already discussed to some extent the implica-
tions of having time range over the natural numbers. One implication that we did not
discuss is that it assumes that time is linear —there is a unique next step—rather than
“branching,” where there may be several possible next steps. This choice between
linear time and branching time has been discussed in the philosophical literature
in some detail (see, for example, [Thomason 1984]); its implications for computer
science have been discussed by Clarke, Emerson, and Sistla [1986], Emerson and
Halpern [1986], Halpern and Vardi [1989], Lamport [1980, 1985], Pnueli [1985],
and Vardi [2001], among others. In our setting we could have chosen time to be
branching, inducing computation trees, rather than linear, inducing runs.

Temporal logic was developed by Prior [1957], who used a branching-time set-
ting, and then imported to computer science by Pnueli [1977], in a linear-time set-
ting, and by Ben-Ari, Manna, and Pnueli [1981] and Clarke and Emerson [1981],
in a branching-time setting. In the branching-time setting, there are many possible
choices of branching temporal operators; this is studied, for example, by Emerson
and Halpern [1985, 1986]. See [Halpern and Vardi 1989] for a discussion of how
branching time operators can be used in the runs and systems framework.) Many other
temporal operators besides the ones we have used here are possible. In particular,
all the operators we have used here involve the future; we could also have past-time
operators, as is done, for example, by Lichtenstein, Pnueli, and Zuck [1985]. An
excellent introduction to temporal logic can be found in [Manna and Pnueli 1992].

Another assumption we have made regarding time is that it is discrete and ranges
over the natural numbers. Our framework changes very little if we allow continuous
time. Knowledge-based analyses in models in which time is assumed to be continu-
ous, ranging over the real numbers, are presented in Brafman, Latombe, Moses, and
Shoham [1997] and in Moses and Bloom [1994].
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Besides our assumptions about time, we have assumed that it makes sense to
talk about the global state of the system, and that the set of agents is fixed and their
names (1, . . . , n) are commonly known. While these assumptions can be relaxed,
doing so adds a number of complexities. Lamport [1985] and Pratt [1982] present
some arguments against the existence of global states. Moses and Roth (see [Roth
1989]) and Grove and Halpern [1993] generalize the framework presented here so
that it can deal with the case where the set of agents is not fixed and is not common
knowledge.

Our examples of systems were taken from a number of different sources. The
notion of a knowledge base that is told facts about the world and is asked queries
was first formalized by Levesque [1984a]. Halpern and Vardi [1991] were the first to
model knowledge bases using our notion of system. Making sense out of “all the KB
knows is κ” can be quite difficult, although it is straightforward if κ is a propositional
formula, as was the case in Proposition 4.4.2. See [Halpern 1997b], [Halpern
and Moses 1984], [Halpern and Lakemeyer 2001], [Levesque 1990], [Parikh 1991],
[Stark 1981], and [Vardi 1985] for further discussion of this issue.

Merritt and Taubenfeld [1991] consider a type of system we have not discussed
here: a shared-memory system. As the name suggests, in such a system, all pro-
cesses have access to a shared memory. Merritt and Taubenfeld present a model
for knowledge in shared-memory systems and show how a number of well-known
results regarding such systems can be generalized by using statements involving the
difficulty of attaining particular states of knowledge in this setting. Parikh and Kra-
sucki [1992] define the notion of a level of knowledge as a set of formulas of the
form KiKj . . . ϕ that are satisfied at a given point. They study the attainable levels
of knowledge under various assumptions regarding the synchrony or asynchrony of
the system.

The notion of game tree is standard in the economics literature. We have provided
only a cursory discussion of game trees here. For more details, and a far more detailed
introduction to ideas of game theory, see, for example, [Fudenberg and Tirole 1991],
[Osborne and Rubinstein 1994], or [Rasmusen 1989]. The two games discussed here
are slight variations of ones considered by Rasmusen [1989]. Halpern [1997a] has
argued that, while game trees are a useful representation of games, the information
sets in game trees do not always capture the agents’ knowledge appropriately, since
there may be more to a state of the world than just what the current node in the
game tree is. The runs and systems framework introduced here has the necessary
expressive power to avoid these problems.
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The formal definition of synchronous systems and of systems where agents have
perfect recall is taken from [Halpern and Vardi 1989]. For a discussion of perfect
recall in the context of game theory, see [Fudenberg and Tirole 1991]. Our definition
of perfect recall is actually not quite the same as that used in game theory; see [Halpern
1997a] for a discussion of the differences. Our discussion of a.m.p. systems is based
on the work of Chandy and Misra [1986] (although their definitions have been slightly
modified to fit our framework, and our presentation follows closely that of Halpern
[1987]).

Lemma 4.5.2 and Theorem 4.5.3 are due to Chandy and Misra [1986], as well
as the application to the mutual exclusion problem. Extensions to Theorem 4.5.3
were proved by Hadzilacos [1987] and Mazer [1990]. Lamport [1978] discusses
the r−→ causality relation. The fact that common knowledge cannot be gained (or
lost) in many multi-agent systems was first shown by Halpern and Moses [1990]; the
observation that, in particular, this is so in a.m.p. systems (Theorem 4.5.4) is due to
Chandy and Misra [1986]. Hadzilacos [1987] considers a number of requirements
that we might impose on a.m.p. systems, and examines the properties of knowledge
that arise as a result of imposing these requirements.

The notion of a consistent cut described in Exercise 4.28 was introduced by
Lamport [1978]. People who feel that global states are inappropriate often consider
consistent cuts to be a more reasonable alternative. Panangaden and Taylor [1992]
present a definition of knowledge with respect to consistent cuts rather than points.
Exercise 4.19(a) shows what can be viewed as an undesirable property of distributed
knowledge: We can have a stable formula ϕ for which DGϕ is not stable. Moses
and Bloom [1994] define an alternative notion they call inherent knowledge, which
they argue is more appropriate than distributed knowledge in systems that are not
synchronous. They use this notion to study real-time systems, where they generalize
Proposition 4.4.3 and use the more general version to discuss clock synchronization.



 

Chapter 5

Protocols and Programs

Think globally, act locally.

René Dubos

In our discussion of runs in Chapter 4 we avoided consideration of where the runs
came from. Starting in some initial global state, what causes the system to change
state? Intuitively, it is clear that this change occurs as a result of actions performed
by the agents and the environment. Furthermore, the agents typically perform their
actions deliberately, according to some protocol, which is often represented as a
program. The study of protocols and programs is the subject of this chapter.

5.1 Actions

We already saw several examples of actions taken by agents in multi-agent systems.
For example, in message-passing systems (Section 4.4.5), the actions include sending
and receiving messages (and possibly some unspecified internal actions). In the
games G1 and G2 of Section 4.4.2, the actions were a1, a2, b1, and b2. In general,
we assume that for each agent i there is a set ACT i of actions that can be performed
by i. For example, in a distributed system, an action send(x, j, i)—intuitively, this
action corresponds to i sending j the value of variable x—might be in ACT i if x is
a local variable of i. On the other hand, if x is not a local variable of i, then it would
usually be inappropriate to include send(x, j, i) in ACT i .

In keeping with our policy of viewing the environment as an agent (albeit one
whose state of knowledge is not of interest), we allow the environment to perform
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actions from a set ACT e. In message-passing systems, it is perhaps best to view
message delivery as an action performed by the environment. If we consider a
system of sensors observing a terrain, we may want to view a thunderstorm as an
action performed by the environment. For both the agents and the environment, we
allow for the possibility of a special null action �, which corresponds to the agents
or the environment performing no action.

Knowing which action was performed by a particular agent is typically not
enough to determine how the global state of the system changes. Actions performed
simultaneously by different agents in a system may interact. If two agents simulta-
neously pull on opposite sides of a door, the outcome may not be easily computed as
a function of the outcomes of the individual actions when performed in isolation. If
two processes try simultaneously to write a value into a register, it is again not clear
what will happen. To deal with potential interaction between actions, we consider
joint actions. A joint action is a tuple of the form (ae, a1, . . . , an), where ae is an
action performed by the environment and ai is an action performed by agent i.

How do joint actions cause the system to change state? We would like to asso-
ciate with each joint action (ae, a1, . . . , an) a global state transformer T , where a
global state transformer is simply a function mapping global states to global states,
that is, T : G → G. Joint actions cause the system to change state via the asso-
ciated global state transformers; if the system is in global state s when the action
(ae, a1, . . . , an) is being performed, then the system changes its state to T (s). Thus,
whenever we discuss actions we will also have a mapping τ that associates with
each joint action (ae, a1, . . . , an), a global state transformer τ(ae, a1, . . . , an). The
mapping τ is called the transition function. Note that our definition requires that
τ(ae, a1, . . . , an)(se, s1, . . . , sn) be defined for each joint action (ae, a1, . . . , an)

and each global state (se, s1, . . . , sn). In practice, not all joint actions and all global
states are going to be of interest when we analyze a multi-agent system, since certain
combinations of actions or certain combinations of local states will never actually
arise. In such cases, we can let τ(ae, a1, . . . , an)(se, s1, . . . , sn) be defined arbi-
trarily. Typically, we define τ(�, . . . , �) to be the no-op transformer ι, where
ι(
e, 
1, . . . , 
n) = (
e, 
1, . . . , 
n).

Example 5.1.1 Let us return to the bit-transmission problem (Example 4.1.1). Re-
call that the sender S either sends its bit or does nothing. Thus, we can take ACTS ,
the set of S’s actions, to be {sendbit, �}. Similarly, the set ACTR is {sendack, �}.
The environment determines whether a message is delivered or lost. Recall that we
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assumed that each message is either received in the same round that it is sent, or else
is lost. Thus, we view the environment as nondeterministically performing one of the
four actions of the form (a, b), where a is either deliverS(current) or �S , while b is
either deliverR(current) or �R . For example, if the environment performs an action
of the form (�S, deliverR(current)), then R receives whatever message S sends in
that round, if there is one, but S does not receive any message, and if R did send
a message in that round, then that message is lost. It is easy to describe formally
the effect of each joint action on the global state so as to capture the intuitions just
described. We leave the details to the reader (Exercise 5.1).

Example 5.1.2 In the previous example, the environment could either deliver the
message currently being sent by either S or R, or it could lose it altogether. In the
asynchronous message-passing systems considered in Section 4.4.6, the environment
has a wider repertoire of possible behaviors. For example, the environment can
decide to deliver a message an arbitrary number of rounds after it has been sent. It is
also useful to think of the environment in an a.m.p. system as doing more than just
deciding when messages will be delivered. Recall that in a.m.p. systems we make
no assumptions on the relative speeds of processes. This means that there may be
arbitrarily long intervals between actions taken by processes. One way to capture
this assumption is to allow the environment to decide when the process is allowed to
take an action.

More formally, in an a.m.p. system we assume that ACT e consists of actions ae

of the form 〈ae1, . . . , aen〉, where aei is either deliveri (current, j), deliveri (µ, j),
goi , or nogoi . (The reader should note that i, j , and µ are parameters, where i and j

range over processes, and µ ranges over messages, whereas current is a dummy
parameter.) Intuitively, deliveri (current, j) has the same effect as deliverR(current)
in Example 5.1.1: any message sent by j to i in that round is received; deliveri (µ, j)

means that i will receive the message µ previously sent by j ; goi means that process i

is allowed to perform an action (either an internal action or sending a message);
finally, nogoi means that i will neither receive a message nor perform an action.
The set ACT i of possible actions for process i consists of send actions of the form
send(µ, j) and all the internal actions in INT i .

Recall that in Chapter 4 we took the state of each process in an a.m.p. system to
be its history, and said that the environment’s state records the events that have taken
place, but we did not describe the environment’s state in detail. Now that we have
formally defined what actions can be performed in a.m.p. systems, we can take the
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environment’s state to be the sequence of joint actions performed thus far. Recall that
a history is a sequence whose first element is an initial state and whose later elements
consist of nonempty sets with events of the form send(µ, j, i), receive(µ, j, i),
or int(a, i), where µ is a message and a is an internal action. We say that the
event send(µ, j, i) corresponds to the action send(µ, j) by process i, and the event
int(a, i) corresponds to the internal action a by process i. The transition function τ

simply updates the processes’ and the environment’s local states to reflect the actions
performed. Suppose that τ(ae, a1, . . . , an)(se, s1, . . . , sn) = (s′

e, s
′
1, . . . , s

′
n), and

ae = (ae1, . . . , aen). Then (s′
e, s

′
1, . . . , s

′
n) must satisfy the following constraints,

for i = 1, . . . , n:

• s′
e is the result of appending (ae, a1, . . . , an) to se,

• if aei = goi and ai is an internal action or a send action send(µ, j), then s′
i is

the result of appending the event corresponding to ai to the history si ,

• if aei = deliveri (current, j), aej = goj , and aj is send(µ, i), then s′
i is the

result of appending receive(µ, j, i) to si ,

• if aei = deliveri (µ, j), then s′
i is the result of appending receive(µ, j, i) to si ,

• in all other cases, s′
i = si .

Notice how the actions in a joint tuple interact. For example, unless aei = goi , the
effect of ai is nullified; and in order for a message sent by j to i to be received by i

in the current round, we must have both aej = goj and aei = deliveri (current, j).
We chose message delivery to be completely under the control of the environment.
We could instead assume that when the environment chooses to deliver a message
from i to j , it puts it into a buffer (which is a component of its local state). In this
case, i would receive a message only if it actually performed a receive action. We
have chosen the simpler way of modeling message delivery, since it suffices for our
examples.

These examples should make it clear how much freedom we have in choosing
how to model a system. The effect of a joint action will, of course, be very dependent
on our choice. For example, in the bit-transmission problem, we chose to record in
the local state of S only whether or not S has received an ack message, and not how
many ack messages S receives; the delivery of an ack message may have no effect
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on S’s state. If we had chosen instead to keep track of the number of messages S

received, then every message delivery would have caused a change in S’s state.
Ideally, we choose a model that is rich enough to capture all the relevant details, but
one that makes it easy to represent state transitions. As Example 5.1.2 shows, by
representing a process’s state in an a.m.p. system as its history, modeling the effect
of a joint action becomes quite straightforward.

5.2 Protocols and Contexts

Agents usually perform actions according to some protocol, which is a rule for
selecting actions. In Example 4.1.1, the receiver’s protocol involves sending an ack
message after it has received a bit from the sender.

Intuitively, a protocol for agent i is a description of what actions agent i may take,
as a function of her local state. We formally define a protocol Pi for agent i to be a
function from the set Li of agent i’s local states to nonempty sets of actions in ACT i .
The fact that we consider a set of possible actions allows us to capture the possible
nondeterminism of the protocol. Of course, at a given step of the protocol, only one
of these actions is actually performed; the choice of action is nondeterministic. A
deterministic protocol is one that maps states to actions, that is, it prescribes a unique
action for each local state. Formally, Pi is deterministic if |Pi(si)| = 1 for each
local state si ∈ Li . We remark that if Pi is deterministic, then we typically write
Pi(si) = a rather than Pi(si) = {a}. If we had wanted to consider probabilistic
protocols (which we do not here, because it would only complicate the exposition),
we would need to put a probability distribution on the set of actions that an agent can
perform at a given state. This would then generate a probability space on the set of
possible runs of the protocol.

Just as it is useful to view the environment as performing an action, it is also
useful to view the environment as running a protocol. We define a protocol for the
environment to be a function from Le to nonempty subsets of ACT e. For example,
in a message-passing system, we can use the environment’s protocol to capture the
possibility that messages are lost or that messages may be delivered out of order. If
all the agents and the environment follow deterministic protocols, then there is only
one run of the protocol for each initial global state. In most of our examples, the
agents follow deterministic protocols, but the environment does not.
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While our notion of protocol is quite general, there is a crucial restriction: a
protocol is a function on local states, rather than a function on global states. This
captures our intuition that all the information that the agent has is encoded in his local
state. Thus, what an agent does can depend only on his local state, and not on the
whole global state. Our definition of protocol is so general that we allow protocols
that are arbitrary functions on local states, including ones that cannot be computed.
Of course, in practice we are typically interested in computable protocols. These
are protocols that are computable functions, that is, protocols for which there is an
algorithm that takes a local state as input and returns the set of actions prescribed by
the protocol in that state. (A full formalization of this notion is beyond the scope of
this book; see the notes at the end of the chapter.)

Processes do not run their protocols in isolation; it is the combination of the
protocols run by all agents that causes the system to behave in a particular way. We
define a joint protocol P to be a tuple (P1, . . . , Pn) consisting of protocols Pi , for
each of the agents i = 1, . . . , n. Note that while we did include the environment’s
action in a joint action, we do not include the environment’s protocol in a joint
protocol. This is because of the environment’s special role; we usually design and
analyze the agents’ protocols, taking the environment’s protocol as a given. In fact,
when designing multi-agent systems, the environment is often seen as an adversary
who may be trying to cause the system to behave in some undesirable way. In other
words, the joint protocol P and the environment protocol Pe can be viewed as the
strategies of opposing players.

The joint protocol P and the environment’s protocol prescribe the behavior of all
“participants” in the system and therefore, intuitively, should determine the complete
behavior of the system. On closer inspection, the protocols describe only the actions
taken by the agents and the environment. To determine the behavior of the system,
we also need to know the “context” in which the joint protocol is executed. What
does such a context consist of? Clearly, the environment’s protocol Pe should be
part of the context, since it determines the environment’s contribution to the joint
actions. In addition, the context should include the transition function τ , because it
is τ that describes the results of the joint actions. Furthermore, the context should
contain the set G0 of initial global states, because this describes the possible states of
the system when execution of the protocol begins. These components of the context
provide us with a way of describing the environment’s behavior at any single step of
an execution.
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There are times when it is useful to consider more global constraints on the
environment’s behavior, ones that are not easily captured by Pe, τ , and G0. To
illustrate this point, recall from Example 5.1.2 that in an a.m.p. system, we allow the
environment to take actions of the form (ae1, . . . , aen), where aei is one of nogoi ,
goi , deliveri (current, j), or deliveri (µ, j). In an a.m.p. system, we can think of the
environment’s protocol as prescribing a nondeterministic choice among these actions
at every step, subject to the requirement that a message is delivered only if it has
been sent earlier, but not yet delivered. (See Example 5.2.4 for further discussion of
this issue.)

Now suppose that we consider an a.r.m.p. system, where all message delivery is
taken to be reliable. Note that this does not restrict the environment’s actions in any
given round; the environment can always postpone message delivery to a later round.
The most straightforward way to model an a.r.m.p. is to leave the environment’s
protocol unchanged, and place an additional restriction on the acceptable behaviors
of the environment. Namely, we require that all messages sent must eventually be
delivered by the environment.

There are a number of ways that we could capture such a restriction on the envi-
ronment’s behavior. Perhaps the simplest is to specify an admissibility condition �

on runs that tells us which runs are “acceptable.” Formally, � is a set of runs; r ∈ �

if r satisfies the condition �. Notice that while the environment’s protocol can be
thought of as describing a restriction on the environment’s behavior at any given
point in time, the reliable delivery of messages is a restriction on the environment’s
“global” behavior, namely, on the acceptable infinite behaviors of the environment.
Indeed, often the admissibility condition � can be characterized by a temporal for-
mula, and the runs in � are those that satisfy this formula. For example, to specify
reliable message-passing systems, we could use the admissibility condition Rel =
{r | all messages sent in r are eventually received}. Let send(µ, j, i) be a proposi-
tion that is interpreted to mean “message µ is sent to j by i” and let receive(µ, i, j)

be a proposition that is interpreted to mean “message µ is received from i by j .”
Then a run r is in Rel precisely if �(send(µ, j, i) ⇒ �receive(µ, i, j)) holds at
(r, 0) (and thus at every point in r) for each message µ and processes i, j . Another
admissibility condition of interest is Fair, where a run is in Fair exactly if every
message that is repeatedly sent in the run is eventually delivered. Thus, a run is in
Fair if it satisfies the formula (��sentbit ⇒ �recbit) ∧ (��sentack ⇒ �recack).
Yet another condition that arises frequently is True, the condition consisting of all
runs; this is the appropriate condition to use if we view all runs as “good.”
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Formally, we define a context γ to be a tuple (Pe, G0, τ, �), where Pe : Le →
2ACTe − {∅} is a protocol for the environment, G0 is a nonempty subset of G, τ is
a transition function, and � is an admissibility condition on runs. (Notice that by
including τ in the context, we are also implicitly including the sets Le, L1, . . . , Ln

of local states as well as the sets ACT e, ACT1, . . . , ACTn of actions, since the set
of joint actions is the domain of τ and the set of global states is the domain of the
transition functions yielded by τ . To minimize notation, we do not explicitly mention
the state sets and action sets in the context. We shall, however, refer to these sets and
to the set G = Le ×L1 ×· · ·×Ln of global states as if they were part of the context.)
It is only in a context that a joint protocol describes the behavior of a system. As we
shall see later on, the combination of a context γ and a joint protocol P for the agents
uniquely determines a set of runs, which we shall think of as the system representing
the execution of the joint protocol P in the context γ .

Contexts provide us with a formal way to capture our assumptions about the
systems under consideration. We give two examples of how this can be done here;
many others appear in the next few chapters.

Example 5.2.1 In the bit-transmission problem (Example 4.1.1) and in a.m.p. sys-
tems (Example 5.1.2), we assumed that the environment keeps track of the sequence
of joint actions that were performed. We can formalize this in terms of contexts. We
say that (Pe, G0, τ, �) is a recording context if

1. the environment’s state is of the form 〈. . . , h, . . .〉, where h is a sequence of
joint actions,

2. in all global states in G0, the sequence h of joint actions in the environment’s
state is the empty sequence 〈 〉 (so that no actions have been performed initially),
and

3. if τ(ae, a1, . . . , an)(se, s1, . . . , sn) = (s′
e, s

′
1, . . . , s

′
n), then the sequence h′ of

joint actions that appears in s′
e is the result of appending (ae, a1, . . . , an) to

the corresponding sequence h of se.

For another example, consider message-passing systems, as discussed in Sec-
tion 4.4.5. Fix a set i of initial states for process i, a set INT i of internal actions for
process i, and a set MSG of messages. A context (Pe, G0, τ, �) is a message-passing
context (over i , INT i , and MSG, for i = 1, . . . , n) if
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1. process i’s actions are sets whose elements are either in INT i or have the form
send(µ, j) for µ ∈ MSG,

2. process i’s local states are histories,

3. for every global state (se, s1, . . . , sn) ∈ G0, we have that si ∈ i for i =
1, . . . , n, and

4. if τ(ae, a1, . . . , an)(se, s1, . . . , sn) = (s′
e, s

′
1, . . . , s

′
n), then either s′

i = si or
s′
i is the result of appending to si the set consisting of the events corresponding

to the actions in ai , perhaps together with some receive events that correspond
to messages that were sent earlier to i by some process j . Intuitively, the
state s′

i is the result of appending to si the additional events that occurred from
process i’s point of view in the most recent round. These consist of the actions
performed by i, together with the messages received by i. We allow s′

i = si
to accommodate the possibility that the environment performs a nogoi action,
as in Example 5.1.2.

Notice that we have placed no restrictions on Pe, �, or the form of the environment’s
local states here, although in practice we often take message-passing contexts to be
recording contexts as well. (In particular, as we shall see in Example 5.2.4, this is
the case for contexts that capture a.m.p. systems.)

In many cases we have a particular collection � of primitive propositions and a
particular interpretation π for � over G in mind when we define a context. Just as
we went from systems to interpreted systems, we can go from contexts to interpreted
contexts; an interpreted context is a pair (γ, π) consisting of a context γ and an
interpretation π . (We do not explicitly include � here, just as we did not in the case
of interpreted systems and Kripke structures.)

We have already observed that when describing a system, we often have some
flexibility in our choice of global states. We also have flexibility in describing the
other components of a context. We typically think of G0 as describing the initial
conditions, while τ and Pe describe the system’s local behavior, and � describes all
other relevant aspects of the environment’s behavior. To describe the behavior of the
system we have to decide what the actions performed by the environment are (this
is part of Pe) and how these actions interact with the actions of the agents (this is
described by τ ).



172 Chapter 5 Protocols and Programs

There is often more than one way in which this can be done. For example,
we chose earlier to model message delivery by an explicit deliver action by the
environment rather than as the direct result of a send action by the agents. Although
we motivated the admissibility condition � by the need to be able to capture global
aspects of the environment’s behavior, we have put no constraints on �. As a result,
it is possible (although not advisable) to place much of the burden of determining the
initial conditions and local behavior of the environment on the choice of �. Thus,
for example, we could do away with G0 altogether, and have � consist only of runs r

whose initial state is in G0.
In a “reasonable” context, we expect the components to be orthogonal. In par-

ticular, we expect Pe to specify local aspects of the environment’s protocol and � to
capture the more global properties of the environment’s behavior over time (such as
“all messages are eventually delivered”). We shortly suggest a condition intended to
capture this notion of reasonableness.

Intuitively, a protocol generates runs when it executes in a particular context.
We say that a run r is consistent with a joint protocol P = (P1, . . . , Pn) in context
γ = (Pe, G0, τ, �) if

1. r(0) ∈ G0 (so r(0) is a legal initial state),

2. for all m ≥ 0, if r(m) = (se, s1, . . . , sn), then there is a joint action
(ae, a1, . . . , an) ∈ Pe(se) × P1(s1) × · · · × Pn(sn) such that r(m + 1) =
τ(ae, a1, . . . , an)(r(m)) (so r(m + 1) is the result of transforming r(m) by a
joint action that could have been performed from r(m) according to P and Pe),
and

3. r ∈ � (so that, intuitively, r is admissible according to �).

Thus, r is consistent with P in context γ if r is a possible behavior of the system
under the actions prescribed by P in γ . We say that r is weakly consistent with P in
context γ if it satisfies the first two of the three conditions required for consistency,
but is not necessarily in �. Intuitively, this means that r is consistent with the step-
by-step behavior of P in context γ . Note that while we are always guaranteed to
have runs that are weakly consistent with P in γ , it is possible that there is no run r

that is consistent with P in γ . This happens precisely if there is no run in � that is
weakly consistent with P in γ . In such a case we say that P is inconsistent with γ ;
otherwise, P is consistent with γ . For example, all joint protocols are inconsistent
with a context γ in which � contains no run whose initial state is in G0.
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Intuitively, a situation where the joint protocol is inconsistent with the context
is an indication of bad modeling. It indicates that the admissibility condition � is
“unreasonable.” The condition � is “reasonable” if it does not rule out prefixes that
are weakly consistent with any protocol P in context γ . Formally, we say that a
context γ = (Pe, G0, τ, �) is nonexcluding if, for every protocol P and all times m,
if run r is weakly consistent with P in the context γ and ρ is the prefix of r through
time m, then there is a run r ′ with prefix ρ that is consistent with P in γ . (In
particular, this means that r ′ ∈ �.) It is almost immediate from the definition that
every protocol is consistent with a nonexcluding context. Thus, using nonexcluding
contexts guarantees that we avoid anomalies like inconsistent protocols.

Nonexcluding contexts arise quite naturally. For one thing, a context γ =
(Pe, G0, τ, �) is guaranteed to be nonexcluding if � is True. More generally, in
many contexts of interest, the admissibility condition constrains only the “limit” be-
havior of the run. This is the case, for example, with the conditions Rel and Fair
in message-passing contexts. In such cases, it is often not hard to show that the
context under consideration is nonexcluding. Just having an admissibility condition
like Fair or Rel is not enough, however, to guarantee that a context is nonexcluding
(see Exercise 5.2). The property of being nonexcluding is a property of the context
γ = (Pe, G0, τ, �) as a whole and not a property of � by itself. Nevertheless, while
it is easy enough to construct contexts that are not nonexcluding, in almost all of our
examples, the contexts are in fact nonexcluding.

We say that a system R (resp., an interpreted system I = (R, π)) is consistent
with a protocol P in context γ (resp., interpreted context (γ, π)) if every run r ∈ R
is consistent with P in γ . Because systems are nonempty sets of runs, this requires
that P be consistent with γ . Typically, there will be many systems consistent with
a protocol in a given context. However, when we think of running a protocol in a
given context, we usually have in mind the system where all possible behaviors of
the protocol are represented. We define Rrep(P, γ ) to be the system consisting of all
runs consistent with P in context γ , and call it the system representing protocol P in
context γ . Similarly, we say that Irep(P, γ, π) = (Rrep(P, γ ), π) is the interpreted
system representing P in interpreted context (γ, π). Notice that R is consistent
with P in γ iff R ⊆ Rrep(P, γ ), so that Rrep(P, γ ) is the maximal system consistent
with P in γ .

While we are mainly interested in the (interpreted) system representing P in a
given (interpreted) context, there is a good reason to look at other systems consistent
with P in that context as well. We may start out considering one context γ , and then
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be interested in what happens if we restrict γ in some way. For example, we may
wish to restrict attention to a particular set of initial states, or may wish to see what
happens if we limit the behavior of the environment. The following definitions make
precise the idea of “restricting” a context γ . We say that the environment protocol
P ′

e is a restriction of Pe, written P ′
e � Pe, if P ′

e(se) ⊆ Pe(se) holds for every
local state se ∈ Le. We say that a context γ ′ = (P ′

e, G′
0, τ, �

′) is a subcontext of
γ = (Pe, G0, τ, �), denoted by γ ′ � γ , if (a) P ′

e � Pe, (b) G′
0 ⊆ G0, and (c) � ′ ⊆ �.

Similarly, we say that an interpreted context (γ ′, π) is a subcontext of (γ, π) if γ ′ is
a subcontext of γ . As the following lemma shows, the systems consistent with P in
context γ are precisely those that represent P in some subcontext of γ .

Lemma 5.2.2 R is consistent with P in context γ if and only if R represents P in
some subcontext γ ′ � γ .

Proof If R represents P in the subcontext γ ′ � γ , then it is easy to see that
every run of R must be consistent with P in context γ . Thus, R is consistent
with P in context γ . Conversely, suppose that R is consistent with P in context
γ = (Pe, G0, τ, �). Let γR = (Pe, G0, τ, R). Since R must be a subset of �, it
follows that γR � γ . It is easy to see that R represents P in γR .

Example 5.2.3 The sender and receiver can also be viewed as following protocols
in the bit-transmission problem. Recall from Example 4.1.1 that the sender S is in
one of four states—0, 1, (0, ack), or (1, ack)—and its possible actions are sendbit
and �. Its protocol P bt

S is quite straightforward to describe:

• P bt
S (0) = P bt

S (1) = sendbit

• P bt
S (0, ack) = P bt

S (1, ack) = �.

This is a formalization of the informal description that we gave in Chapter 4; the
sender sends its bit to the receiver until it receives an acknowledgment, at which
point it stops sending (and does nothing).

Recall that the receiver R is in one of three states—λ, 0, or 1—and its possible
actions are sendack and �. The receiver’s protocol P bt

R is

• P bt
R (λ) = �

• P bt
R (0) = P bt

R (1) = sendack.

We now need to describe a context for the joint protocol P bt = (P bt
S , P bt

R ).
Recall that the environment’s state is a sequence that records the events taking place
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in the system, and the environment’s four actions are of the form (a, b), where a is
either deliverS(current) or �S , while b is either deliverR(current) or �R . We view
the environment as following the nondeterministic protocol P bt

e , according to which,
at every state, it nondeterministically chooses to perform one of these four actions.
The set G0 of initial states is the cross product {〈 〉} × {0, 1} × {λ}; that is, initially
the environment’s and the receiver’s states record nothing, and the sender’s state
records the input bit. The context capturing the situation described in Example 4.1.1
is γ bt = (P bt

e , G0, τ, True), where the definition of τ was left as an exercise to
the reader (Exercise 5.1). Moreover, the system Rbt described in Example 4.1.1 is
precisely Rrep(P bt, γ bt).

When analyzing the protocol of Example 4.1.1, we may want to restrict our
analysis to the situation in which the system’s communication channel is fair in the
sense that every message sent infinitely often is eventually delivered. In our case
this would imply that R eventually does receive S’s bit, and S eventually receives
an ack message sent by R. One motivation for restricting to runs that are fair in this
sense comes from the following observation: if we assume that there is a positive
probability of at least α > 0 of a given message being delivered in any given round (if
there is a message that can be delivered), and that these probabilities are independent
from round to round, then the set of runs that are fair in this sense has probability
one. To capture this, we use the admissibility condition Fair defined earlier. Let γ bt

fair

be the context that results from replacing True in γ bt by Fair. It is easy to check that
γ bt

fair is nonexcluding (Exercise 5.3). The system Rfair that represents P bt in a fair

setting is then Rrep(P bt, γ bt
fair).

Example 5.2.4 We now consider how an a.m.p. system R(V1, . . . , Vn) can be cap-
tured by contexts and protocols. Since a.m.p. systems are message-passing systems,
we would expect an a.m.p. system to result from running a protocol in a message-
passing context that, without loss of generality, is also a recording context (as defined
in Example 5.2.1). What other constraints on contexts are needed to capture a.m.p.

systems?
For i = 1, . . . , n, define i to be the set of first elements of histories in Vi , and

let G0 = {〈 〉} × 1 × · · · × n. Consider the context γ amp = (P
amp
e , G0, τ, True),

where the agents’ actions, the environment’s action, and the transition function τ are
defined as in Example 5.1.2, and the environment’s protocol P

amp
e simply nondeter-

ministically chooses one of the environment’s actions at every point, subject to the
condition that deliveri (µ, j) can be chosen only if the message µ was sent earlier by j



176 Chapter 5 Protocols and Programs

to i, and not yet received. (Note that the environment can determine this by looking at
its state, since its state records the sequence of actions that have been performed thus
far.) It is not hard to show that every system of the form Rrep(P, γ amp) is an a.m.p.

system (Exercise 5.4). MP1 and MP3 follow from the definition of G0 and from
the fact that γ amp is a message-passing context; MP2 follows from fact P

amp
e never

delivers a message unless it was sente earlier. Finally, the nondeterminism of P
amp
e

guarantees the desired asynchrony; for example, it allows arbitrary stuttering.
Does every a.m.p. system have this form? To make this precise, first note that

we can view the sets V1 . . . , Vn as defining protocols P1, . . . , Pn. The idea is that
Pi(h) consists of all allowable actions according to the set Vi . To formalize this idea,
if h ∈ Vi and a ∈ ACT i , denote by h · a the history that results from appending to h

the event a corresponding to the action a. Define Pi(h) = {a ∈ ACT i | h · a ∈ Vi}.
Let P amp(V1, . . . , Vn) be the joint protocol (P1, . . . , Pn), that is, P amp(V1, . . . , Vn)

is the joint protocol that corresponds to the sets V1, . . . , Vn of histories.
While systems of the form Rrep(P amp(V1, . . . , Vn), γ

amp) form an interesting
subclass of a.m.p. systems, not every a.m.p. system has this form. The problem is
that P amp

e allows the environment to choose completely nondeterministically at every
step among all possible actions. Thus, it cannot capture more “targeted” behavior
on the part of the environment, including malicious and adversarial behavior. For
example, there are sets V1, . . . , Vn satisfying MP1–3 such that in no history of V1

does process 1 receive more than one message from process 2, no matter how many
messages process 2 actually sends. We can think of V1 as encoding an environment
that blocks all messages from process 2 to process 1 after the first message. Note
that, in R(V1, . . . , Vn), process 1 knows after it gets a message from process 2 that
it will not receive any further messages from process 2. Similarly, there are sets
V1, . . . , Vn where process 1 receives message µ only after it has received µ′, or
where only process 1’s odd-numbered messages are delivered.

To capture this behavior, we need to allow environment protocols other than just
P

amp
e . Let P sched,i

e be an arbitrary (possibly nondeterministic) protocol for delivering
messages to i and scheduling i to take actions. The only actions the environment can
perform according to P

sched,i
e are deliveri (current, j), deliveri (µ, j), and goi . Of

course, deliveri (µ, j) can be performed only if µ was sent earlier and not delivered
yet. The protocol P sched,i

e can be used to encode the environment’s delivery behavior
with respect to i. For example, if process 1 receives only one message from process 2,
then P

sched,1
e does not perform the actions deliver2(µ, 1) or deliver2(current, 1) in

any environment state where process 1 has already received a message from process 2.
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Let P i
e be a protocol that chooses nondeterministically in environment state se

between nogoi and P
sched,i
e (se), and let Pe be (P 1

e , . . . , P n
e ), that is, Pe(se) =

(P 1
e (se), . . . , P

n
e (se)). Call an environment protocol of this form an asynchronous

environment protocol. An asynchronous context is one of the form (Pe, G0, τ, True),
where Pe is an asynchronous environment protocol and G0 and τ are as in the
definition of γ amp. Since it is always possible that P i

e (se) = nogoi for an asyn-
chronous environment protocol Pe, asynchrony is captured by such a protocol. In-
deed, it can be shown that R(V1, . . . , Vn) is an a.m.p. system iff R(V1, . . . , Vn) =
Rrep(P amp(V1, . . . , Vn), γ ) for some asynchronous context γ (Exercise 5.5).

The protocol P
amp
e is only one out of many possible asynchronous environment

protocols. Nevertheless, it captures much of what people have in mind when they
speak of purely asynchronous systems. This makes it worth trying to understand
the properties of systems of the form Rrep(P, γ amp). It turns out that they in fact
have quite an elegant characterization. Given a tuple (V1, . . . , Vn) of prefix-closed
sets of histories, we say that a tuple (h1, . . . , hn) ∈ V1 × · · · × Vn is compatible
if receive(µ, j, i) ∈ hi implies that send(µ, i, j) ∈ hj . That is, every message
that i receives from j in hi was sent by j in hj . (V1, . . . , Vn) is delivery closed if
for all compatible tuples (h1, . . . , hn) ∈ V1 × · · · × Vn, if send(µ, i, j) ∈ hj and
receive(µ, j, i) /∈ hi , then hi · receive(µ, j, i) ∈ Vi . Intuitively, if (V1, . . . , Vn) is
delivery closed, then every message that has been sent can be delivered at any instant.
It is now not hard to show that (V1, . . . , Vn) is delivery closed iff R(V1, . . . , Vn) =
Rrep(P amp(V1, . . . , Vn), γ

amp) (Exercise 5.6).
If we want to consider a.r.m.p. systems rather than a.m.p. systems, we can

simply replace the admissibility condition True in an asychronous context γ by the
condition Rel discussed earlier. We may also want to require that the environment
follows a fair schedule, in the sense that there is no run in which a process is blocked
from moving from some point on. Formally, we can capture this by the admissibility
condition FS that holds of a run if there are infinitely many goi actions, for each
process i. Thus, if we add a proposition goi that is true at a state exactly if a goi

action was performed by the environment in the preceding round, then FS can be
characterized by the formula ��go1 ∧ . . . ∧ ��gon.

Example 5.2.5 Recall the game-theoretic framework of Section 4.4.2. There, we
described systems that model all possible plays of a game by including a run for
each path in the game tree. We did not, however, attempt to model the strategies
of the players, which are the major focus in game theory. A strategy is a function
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that tells a player which move to choose based on the player’s “current information”
about the game. (In game theory, such strategies are called pure, as opposed to mixed
strategies, which are probability distributions over pure strategies.) In our model, a
player’s current information is completely captured by his local state; thus, a strategy
for player i is simply a deterministic protocol for player i, that is, a function from
his local state to actions.

Consider the game G1 in Section 4.4.2. What are the possible strategies of
player 1 in this game? Because player 1 takes an action only at the first step, he
has only two possible strategies: “choose a1” and “choose a2.” We call these two
strategies σ1 and σ2. Player 2 has four strategies in the first game, since her choice of
action can depend on what player 1 did. These strategies can be described by the pairs
(b1, b1), (b1, b2), (b2, b1), and (b2, b2). The first strategy corresponds to “choose b1

no matter what.” The second strategy corresponds to “choose b1 if player 1 chose a1,
and choose b2 if player 1 chose a2.” We can similarly describe the third and fourth
strategies. Call these four strategies σ11, σ12, σ21, and σ22. Even though there are
eight pairs of strategies (for the two players), there are only four different plays. For
example, the pair (σ1, σ11) and the pair (σ1, σ12) result in the same play: 〈a1, b1〉.

Recall that the system R1 that corresponds to the game G1 contains four runs, one
run for each path in the game tree. The local states of the players essentially consist
of sequences of moves in the game. For example, the local state of both players at
the start is the empty sequence 〈 〉 and their local state after player 1 chooses a1 is
the sequence 〈a1〉. We would like to define protocols for the players that capture the
strategies that they follow; however, there is a difficulty. After player 1 chooses a1,
player 2’s local state is 〈a1〉. Thus, a deterministic protocol would tell player 2 to
choose either b1 or b2. But in R1, player 2 chooses b1 in one run and b2 in another.
Does this mean that player 2 is not following a deterministic protocol? No. Rather, it
means that our description of player 2’s local state is incomplete; it does not include
everything that determines her choice of action.

We now present a system R′
1 that enriches the players’ local states so that they

include not only the history of the game, but also a representation of the strategy of
the player. Thus, the set of local states of player 1 includes states such as (σ1, 〈 〉),
(σ1, 〈a1, b1〉), (σ2, 〈a2〉), etc. Similarly, the set of local states of player 2 includes
states such as (σ11, 〈 〉), (σ12, 〈a2〉), (σ21, 〈a1, b1〉), etc. Again, all the relevant in-
formation in the system is captured by the players’ local states, so we can take the
environment’s state to be the constant λ. There are eight initial states, corresponding
to all pairs of strategies, so G0 consists of these eight states. The actions of the players
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are a1, a2, b1, b2, and �; the last is the null action and the other actions have the
obvious meaning. The environment plays no role here. Its only action is �; that is,
Pe(λ) = �. We leave it to the reader to define the transition function τ in this system
formally (see Exercise 5.7). The context γ = (Pe, G0, τ, True) describes the setting
in which this game is played.

We can now define the protocols for the players; these protocols essentially say
“choose an action according to your strategy.” The protocol P1 for player 1 is as
follows:

• P1(σi, 〈 〉) = ai , for i ∈ {1, 2},
• P1(σi, h) = � if h �= 〈 〉, for i ∈ {1, 2}.

The protocol P2 for player 2 is as follows:

• P2(σij , 〈a1〉) = bi , for i, j ∈ {1, 2},
• P2(σij , 〈a2〉) = bj , for i, j ∈ {1, 2},
• P2(σij , h) = � if h /∈ {〈a1〉, 〈a2〉}, for i, j ∈ {1, 2}.

The system R′
1 consists of all runs that start from an initial state and are consistent

with the joint protocol P = (P1, P2), that is, R′
1 = Rrep(P, γ ).

How does the game G2 of Section 4.4.2 get modeled in this more refined ap-
proach? Again, player 1 has two possible strategies, σ1 and σ2. But now player 2
also has only two strategies, which we call σ ′

1 and σ ′
2. Running σ ′

1, player 2 chooses
action b1, and running σ ′

2, she chooses b2. There is no strategy corresponding to σ12,
since player 2 does not know what action player 1 performed at the first step, and thus
her strategy cannot depend on this action. We can define a system R′

2 that models
this game and captures the players’ strategies (Exercise 5.7).

The approach to modeling game trees just discussed, where the players’ local
states contain information about what strategy the player is using, is somewhat more
complicated than that discussed in Section 4.4.2. It does, however, offer some advan-
tages. Because it captures the strategies used by the players, it enables us to reason
about what players know about each other’s strategies, an issue of critical importance
in game theory. For example, a standard assumption made in the game-theory liter-
ature is that players are rational. To make this precise, we say that a strategy σ for
player i (strictly) dominates a strategy σ ′ if, no matter what strategy the other players
are using, player i gets at least as high a payoff using strategy σ as using strategy σ ′,
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and there is some strategy that the other players could use whereby i gets a strictly
higher payoff by using σ than by using σ ′. According to one notion of rationality, a
rational player never uses a strategy if there is another strategy that dominates it. For
example, in the game G1, strategy σ12 dominates all other strategies for player 2, so
that if player 2 were rational, then she would use σ12.

To reason formally about rationality, we introduce the propositions rationali ,
for i = 1, 2, where rationali holds at a point if player i’s strategy at that point is
not dominated by another strategy. For player 1 to know that player 2 is rational
means that K1(rational2) holds. The players can use their knowledge of rationality
to eliminate certain strategies. For example, in the game G1, if player 1 knows that
player 2 is rational, then he knows that she would use the strategy σ12. With this
knowledge, σ1 dominates σ2 for player 1. Thus, if player 1 is rational, he would then
use σ1. (Notice that if player 1 thinks player 2 is not rational, it may make sense for 1
to use σ2 instead, since it guarantees a better payoff in the worst case.) It follows that
if players 1 and 2 are both rational, and player 1 knows that player 2 is rational, then
their joint strategy must be (σ1, σ12) and the payoff is (3, 4). By way of contrast, even
if we assume that rationality is common knowledge in the game G2 (an assumption
that is frequently made by game theorists), it is easy to see that neither player 1 nor
player 2 has a dominated strategy, and so no strategy for either player is eliminated
because of a rationality assumption.

The previous examples show how we can view a context as a description of a
class of systems of interest. The context describes the setting in which a protocol
can be run, and by running distinct protocols in the same context we can generate
different systems, all of which share the characteristics of the underlying context. We
will see several examples of classes of systems described by contexts in Chapter 6.

5.3 Programs

As discussed earlier, a protocol is a function from local states to sets of actions. We
typically describe protocols by means of programs written in some programming
language. Consider the receiver R in Example 4.1.1, which starts sending an ack
message after it has received a bit from the sender S. This can be described by a
program such as “if recbit do sendack” (recall from Example 4.2.1 that recbit is a
primitive proposition that holds at points where R has received S’s message). The
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essential feature of this statement is that the program selects an action based on the
result of a test that depends solely on the local state.

We now describe a simple programming language, which is still rich enough to
describe protocols, and whose syntax emphasizes the fact that an agent performs
actions based on the result of a test that is applied to her local state. A (standard)
program for agent i is a statement of the form:

case of
if t1 do a1

if t2 do a2

· · ·
end case

where the tj ’s are standard tests for agent i and the aj ’s are actions of agent i

(i.e., aj ∈ ACT i). (We call such programs “standard” to distinguish them from the
knowledge-based programs that we introduce in Chapter 7. We typically omit the
case statement if there is only one clause.) A standard test for agent i is simply a
propositional formula over a set �i of primitive propositions. Intuitively, once we
know how to evaluate the tests in the program at the local states in Li , we can convert
this program to a protocol over Li : at a local state 
, agent i nondeterministically
chooses one of the (possibly infinitely many) clauses in the case statement whose
test is true at 
, and executes the corresponding action.

We want to use an interpretation π to tell us how to evaluate the tests. However,
not just any interpretation will do. We intend the tests in a program for agent i to
be local, that is, to depend only on agent i’s local state. It would be inappropriate
for agent i’s action to depend on the truth value of a test that i could not determine
from her local state. We say that an interpretation π on the global states in G is
compatible with a program Pgi for agent i if every proposition that appears in Pgi

is local to i in the sense described in Section 4.2; that is, if q appears in Pgi , the
states s and s′ are in G, and s ∼i s′, then π(s)(q) = π(s′)(q). If ϕ is a propositional
formula all of whose primitive propositions are local to agent i, and 
 is a local
state of agent i, then we write (π, 
) |= ϕ if ϕ is satisfied by the truth assignment
π(s), where s = (se, s1, . . . , sn) is a global state such that si = 
. Because all the
primitive propositions in ϕ are local to i, it does not matter which global state s we
choose, as long as i’s local state in s is 
. Given a program Pgi for agent i and an
interpretation π compatible with Pgi , we define a protocol that we denote Pgπ

i by
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setting

Pgπ
i (
) =

{ {aj | (π, 
) |= tj } if {j | (π, 
) |= tj } �= ∅
{�} if {j | (π, 
) |= tj } = ∅.

Intuitively, Pgπ
i selects all actions from the clauses that satisfy the test, and selects

the null action � if no test is satisfied. In general, we get a nondeterministic protocol,
since more than one test may be satisfied at a given state.

Many of the definitions that we gave for protocols have natural analogues for
programs. We define a joint program to be a tuple Pg = (Pg1, . . . , Pgn), where Pgi

is a program for agent i. We say that an interpretation π is compatible with Pg if π

is compatible with each of the Pgi’s. From Pg and π we get a joint protocol Pgπ =
(Pgπ

1 , . . . , Pgπ
n ). We say that an interpreted system I = (R, π) represents (resp.,

is consistent with) a joint program Pg in the interpreted context (γ, π) exactly if π

is compatible with Pg and I represents (resp., is consistent with) the corresponding
protocol Pgπ in (γ, π). We denote the interpreted system representing Pg in (γ, π)

by Irep(Pg, γ, π). Of course, this definition only makes sense if π is compatible
with Pg. From now on we always assume that this is the case.

Notice that the syntactic form of our standard programs is in many ways more
restricted than that of programs in common programming languages such as C or
FORTRAN. In such languages, one typically sees constructs such as for, while,
or if. . . then. . . else. . . , which do not have syntactic analogues in our formalism.
The semantics of programs containing such constructs depends on the local state
containing an implicit instruction counter, specifying the command that is about to
be executed at the current local state. Since we model the local state of a process
explicitly, it is possible to simulate these constructs in our framework by having an
explicit variable in the local state accounting for the instruction counter. The local
tests tj used in a program can then reference this variable explicitly, and the actions aj

can include explicit assignments to this variable. Given that such simulation can be
carried out in our framework, there is no loss of generality in our definition of standard
programs.

It is easy to see that every protocol is induced by a standard program if we have a
rich enough set of primitive propositions (Exercise 5.8). As a result, our programming
language is actually more general than many other languages; a program may induce
a non-computable protocol. Typically, however, we are interested in programs that
induce computable protocols. In fact, standard programs usually satisfy a stronger
requirement: they have finite descriptions, and they induce deterministic protocols.
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Example 5.3.1 Let us return to the bit-transmission problem yet again. We saw
the sender S’s protocol in Example 5.2.3. The sender S can be viewed as running
the following program BTS , which uses the proposition recack that we introduced in
Example 4.2.1:

if ¬recack do sendbit.

(Note that if recack holds, then, according to our definitions, the action � is selected.)
Similarly, the receiver R can be viewed as running the following program BTR:

if recbit do sendack.

Let BT = (BTS, BTR). Recall that we gave an interpretation πbt in Example 4.2.1
describing how the propositions in BTS and BTR are to be interpreted. It is easy to

see that πbt is compatible with BT and that BTπbt
is the joint protocol P bt described

in Example 5.2.3 (Exercise 5.9).

5.4 Specifications

When designing or analyzing a multi-agent system, we typically have in mind some
property that we want the system to satisfy. Very often we start with a desired
property and then design a protocol to satisfy this property. For example, in the bit-
transmission problem the desired property is that the sender communicate the bit to
the receiver. We call this desired property the specification of the system or protocol
under consideration. A specification is typically given as a description of the “good”
systems. Thus, a specification can be identified with a class of interpreted systems,
the ones that are “good.” An interpreted system I satisfies a specification σ if it is
in the class, that is, if I ∈ σ .

Many specifications that arise in practice are of a special type that we call run-
based. A run-based specification is a specification that is given as a property of runs.
Quite often run-based specifications can be expressed using temporal formulas. A
system is said to satisfy a run-based specification if all its runs do. For example, a
possible specification for the bit-transmission problem is: “the receiver eventually
receives the bit from the sender, and the sender eventually stops sending the bit”; this
can be expressed as �recbit ∧ ��¬sentbit. The truth of this specification can be
decided for each run with no consideration of the system in which the run appears.

Although run-based specifications arise often in practice, there are reasonable
specifications that are not run based. For example, in the muddy children puzzle, the
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natural specification of the children’s behavior is: “a child says ‘Yes’ if he knows
whether he is muddy, and says ‘No’ otherwise.” This specification is given in terms
of the children’s knowledge, which depends on the whole system and cannot be
determined by considering individual runs in isolation. We view such a specification
as a knowledge-based specification. More generally, we call a specification that is
expressible in terms of epistemic (and possibly other) modal operators a knowledge-
based specification. Unlike run-based specifications, which specify properties of
runs, knowledge-based specifications specify properties of interpreted systems.

What should it mean for a protocol P to satisfy a specification σ in an interpreted
context (γ, π)? We say that P satisfies σ in (γ, π), or is correct with respect to σ in
(γ, π), precisely if the interpreted system representing P in (γ, π) satisfies σ ; that
is, if Irep(P, γ, π) ∈ σ .

We are often interested in the correctness of a protocol not just with respect to
one context, but with respect to some collection � of contexts. This collection of
contexts corresponds to the various settings in which we want to run the protocol.
Typically, the contexts in � are subcontexts of a single context γ , in the sense defined
in Section 5.2. This leads us to consider a stronger notion of correctness: We say P

strongly satisfies σ in (γ, π), or P is strongly correct with respect to σ in (γ, π), if,
for every subcontext γ ′ � γ and every interpreted system I, if I represents P in γ ′,
then I satisfies σ . That is, P is strongly correct with respect to σ in (γ, π) exactly
if P is correct with respect to σ in (γ ′, π) for every subcontext γ ′ of γ .

There is one important case where correctness and strong correctness coincide:
when σ is a run-based specification (Exercise 5.10). This follows from the fact a
system is consistent with a protocol if and only if it is a subset of the unique system
representing the protocol. In general, of course, correctness and strong correctness
do not coincide. When they do not coincide, it can be argued that strong correctness
may be too strong a notion. After all, even if we are interested in proving correctness
with respect to certain subcontexts of γ , we are not interested in all subcontexts of γ .
In practice, however, it is often just as easy to prove strong correctness with respect
to a context γ as it is to prove correctness for a restricted set of subcontexts of γ .

As before, all our definitions for protocols have natural analogues for programs.
In particular, we say that a program Pg (strongly) satisfies σ in an interpreted context
(γ, π) if the protocol Pgπ (strongly) satisfies σ in the interpreted context (γ, π).
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Example 5.4.1 Let σ ′ be the run-based specification for the bit-transmission prob-
lem described earlier: �recbit∧��¬sentbit. In Example 5.3.1, we described a stan-
dard program BT = (BTS, BTR) for this problem. We also described an interpreted
context (γ bt, πbt) for BT. It is easy to see that BT does not satisfy σ ′ in (γ bt, πbt),
for there are runs consistent with BTπ in γ bt in which the messages sent by S are
never received by R. As we observed earlier, however, we are often interested in
assuming that the communication channel is fair. Recall from Example 5.2.3 that
γ bt

fair is the result of replacing the admissibility condition True in γ bt by Fair. Thus,

γ bt
fair differs from γ bt in that it ensures that communication delivery satisfies the fair-

ness condition. It is not hard to verify that BT does indeed satisfy σ ′ in (γ bt
fair, π

bt)

(Exercise 5.11). Since σ ′ is a run-based specification, this means that BT strongly
satisfies σ ′ as well. It thus follows that as long as the communication channel is fair,
BT works fine.

We can also give a knowledge-based specification for the bit-transmission
problem. Let σ ′′ be the knowledge-based specification: “eventually S knows
that R knows the value of the bit, and S stops sending messages when it knows
that R knows the value of the bit.” Using our language, we can express σ ′′ as
�KSKR(bit) ∧ �(KSKR(bit) ⇒ ¬©sentbit). This specification is more abstract
than σ ′, because it does not refer to the manner in which the agents gain their knowl-
edge. It is not hard to see that BT satisfies σ ′′ in (γ bt

fair, π
bt) (Exercise 5.11). BT,

however, does not strongly satisfy σ ′′ in this context. To prove this, let γ bt
ck be the

context where it is common knowledge that S’s initial value is 1, and the communi-
cation channel is fair. That is, γ bt

ck is just like γ bt
fair, except that the only initial state

is (λ, 1, λ). Clearly we have γ bt
ck � γ bt

fair. In this context, the sender knows from the
outset that the receiver knows the value of the bit. Nevertheless, following BT, the
sender would send the bit to the receiver in the first round, and would keep sending
messages until it receives an acknowledgment. This does not conform to the require-
ment made in σ ′′ that if S knows that R knows the value of the bit, then S does not
send a message. It follows that BT does not satisfy σ ′′ in (γ bt

ck , πbt). An advantage
of σ ′′ is that it can be satisfied without the sender having to send any message in
contexts such as (γ bt

ck , πbt) in which the value of the initial bit is common knowledge.
Notice that the specification σ ′′ is not run-based. To tell whether �KSKR(bit)

holds, we need to consider the whole system, not just a run. Knowledge-based
specifications such as σ ′′ are quite important in practice. If a system satisfies σ ′′,



186 Chapter 5 Protocols and Programs

then we know that in a certain sense no unnecessary messages are sent; this is an
assurance we do not have if we know only that the system satisfies σ ′.

Exercises

5.1 Give a formal description of the effect of each joint action as a global state
transformer in the system corresponding to the bit-transmission problem described
in Examples 4.1.1 and 5.1.1.

5.2 Define Pe, G0, and τ such that neither (Pe, G0, τ, Fair) nor (Pe, G0, τ, Rel) is
a nonexcluding context. (Hint: consider a variant of the context γ amp defined in
Example 5.2.4, where the environment’s protocol is such that it never performs the
action deliver1(µ, 2) for some message µ ∈ MSG.)

5.3 Show that γ bt
fair is a nonexcluding context.

5.4 Show that every system of the form Rrep(P, γ amp) is an a.m.p. system.

5.5 Show that R(V1, . . . , Vn) is an a.m.p. system iff R(V1, . . . , Vn) =
Rrep(P amp(V1, . . . , Vn), γ ) for some asynchronous context γ .

5.6 Show that (V1, . . . , Vn) is delivery closed iff R(V1, . . . , Vn) =
Rrep(P amp(V1, . . . , Vn), γ

amp).

5.7 This exercise fills in some details in Example 5.2.5.

(a) Define the transition function of the system R′
1.

(b) Give a complete description of the system R′
2.

(c) Show that neither player 1 nor player 2 has any dominated strategies in the
game G2.

5.8 Show that every protocol Pi for agent i over the local state space Li is induced by
some program Pgi . (Hint: for every local state s ∈ Li , introduce a local proposition
of the form “state is s,” and have πi assign true to this proposition only in the state s.)
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5.9 This exercise discusses aspects of the bit-transmission problem. Show that
the interpretation πbt presented in Example 4.2.1 is compatible with the joint pro-

gram BT = (BTS, BTR), and that BTπbt
is the joint protocol P bt = (P bt

S , P bt
R )

described in Example 5.2.3.

5.10 Let σ be a run-based specification, let P be a joint protocol, and let (γ, π) be
an interpreted context. Prove that P satisfies σ in (γ, π) if and only if P strongly
satisfies σ in (γ, π).

5.11 Using the terminology of Example 5.4.1, prove:

(a) BT strongly satisfies σ ′ in (γ bt
fair, π

bt),

(b) BT satisfies σ ′′ in (γ bt
fair, π

bt).

Notes

A formal model of actions and protocols was introduced by Halpern and Fagin[1989].
This model is related to that of Shapley [1953], although the latter deals with a
stochastic setting in which actions are chosen probabilistically. Our model in this
chapter extends that of Halpern and Fagin by adding the notion of contexts and
programs. Halpern and Tuttle [1993] discuss how probability can be added to the
framework (and the subtleties of doing so); their work is based on Fagin and Halpern’s
formal model of knowledge and probability [1994].

The definition of nonexcluding context used here is stronger than that used in the
first edition of the book and in [Fagin, Halpern, Moses, and Vardi 1997]. That is, every
context that is nonexcluding according to the definition used here is nonexcluding
according to the earlier definition, but the converse is not true. Roughly speaking,
the earlier definition considered a context γ = (Pe, G0, τ, �) to be nonexcluding
even if there were states in G0 that were not in any run in �, as long as, for every
protocol P , every prefix of a run weakly consistent with P in γ that was also a prefix
of some run in � could be extended to a run consistent with P in γ . Here we have
insisted that every prefix of a run weakly consistent with P in γ can be extended to a
run consistent with P in γ , not just those prefixes that are also prefixes of runs in �.
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While all technical results in this book involving the nonexcluding condition remain
true with the earlier definition, the current definition seems more natural to us.

The reader interested in computability can consult the extensive study by Rogers
[1967]. It is not hard to use the standard definitions of computability to define a
notion of computable protocol.

What counts as “rational” has been extensively studied in the game-theory litera-
ture. See [Aumann 1995; Halpern 2001b; Stalnaker 1996] for some recent discussion
of rationality in the context of knowledge and common knowledge.

The idea of using knowledge to specify distributed programs was suggested by
Halpern and Moses [1990]. The first explicit use of knowledge-based specifications
for protocol design seems to be that of Afrati, Papadimitriou, and Papageorgiou
[1988]. Sanders [1991] points out a number of differences between knowledge-
based specifications and run-based specifications. Halpern [2000] discusses the
issues raised by Sanders in some detail, and gives perhaps the first explicit definition
of knowledge-based specification. The idea of a knowledge-based specification is
certainly implicit in earlier work, including that of Mazer [1991]. Katz and Tauben-
feld [1986] develop formal methods for using assertions involving knowledge in
verifying that distributed programs satisfy given specifications.

Abadi and Lamport [1991] introduced another way of characterizing run-based
specifications that is closely related to our notion of contexts and protocols. In our
notation, an Abadi-Lamport specification is a four-tuple (G, G0, N , �), where G is
a set of global states, G0 is a set of initial states, � is an admissibility condition on
runs, and N , the next-state relation, is a subset of G × G such that (g, g) ∈ N for all
g ∈ G. Roughly speaking, we can think of N as encoding all possible transitions of
the system. The condition that (g, g) ∈ N for all g ∈ G ensures that the system can
always “stutter.” Such stuttering can be thought of as the result of “no-op” actions
being performed by each agent in the system and by the environment (in our notation,
this amounts to a joint action of the form (�, . . . , �)). The definition of N abstracts
away from actions and focuses instead on state transitions. An Abadi-Lamport
specification generates the system consisting of all runs r such that r(0) ∈ G0 and
(r(i), r(i + 1)) ∈ N for all i ≥ 0. For a related approach, see [Chandy and Misra
1988].



 

Chapter 6

Common Knowledge and Agreement

Agreement consists in disagreement.

M. A. L. Lucan, The Civil War, c. A.D. 50

We can’t disagree forever.

J. Geanakoplos and H. Polemarchakis, 1982

The discussion in Chapters 1 and 2 shows that common knowledge plays an important
role in the muddy children puzzle. Common knowledge, however, is far more than
just a curiosity that arises in puzzles. As we show in this chapter, it is a fundamental
notion of group knowledge, one which is relevant in many applications. In particular,
we show that common knowledge is a necessary and sometimes even sufficient
condition for reaching agreement and for coordinating actions. We illustrate the role
of common knowledge by examining three well-known problems from the literature,
known as coordinated attack, agreeing to disagree, and simultaneous Byzantine
agreement.

Before we turn to specific examples, let us consider the relationship between
common knowledge and agreement. How can we capture the fact that two players,
say Alice and Bob, agree on some statement, which for simplicity we represent by
a formula ψ? Let agree(ψ) be a formula that is true at states in which the players
have agreed on ψ . While we do not attempt to characterize agreement completely,
we expect that if Alice and Bob agree on ψ , then each of them knows that they
have agreed on ψ . This is a key property of agreement: in order for there to be
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agreement, every participant in the agreement must know that there is agreement.
Thus, we expect agree(ψ) ⇒ E(agree(ψ)) to be valid. The Induction Rule for
common knowledge tells us that if this is the case, then agree(ψ) ⇒ C(agree(ψ))

is also valid. Hence, agreement implies common knowledge.
Now suppose that Alice and Bob are trying to coordinate their actions, that

is, they want to ensure that Alice performs action a precisely when Bob performs
action b. Clearly, this involves the agents’ agreeing on when to perform the actions;
as our analysis shows, this requires common knowledge. Unlike agreement, which
we treat as an intuitive notion, coordination can be defined formally. We establish
a formal connection between coordination and common knowledge in the analysis
later in this chapter of coordinated attack and simultaneous Byzantine agreement.
(We explore the connection between coordination and common knowledge in more
detail in Chapter 11.)

As we shall see, the connection between agreement and common knowledge
provides us with a sharp tool with which to analyze agreement problems. We can
use this connection to prove impossibility results, namely, to prove that there are
no protocols for solving certain agreement problems, such as coordinated attack or
agreeing to disagree. We can also use this connection in a positive manner, as a tool
for the design of efficient protocols for reaching simultaneous Byzantine agreement.

6.1 Coordinated Attack

Communication plays an important role in facilitating coordination between agents.
How, other than by means of communication, can an agent arrange to coordinate
his actions with the actions of other agents in cases when the coordination was
not fixed in advance? It is perhaps not surprising that guaranteed coordination
may require some degree of reliability of the communication medium. Indeed,
unreliable communication renders such coordination impossible. This is particularly
well illustrated by the coordinated attack problem, a well-known problem from the
distributed systems folklore. The problem can be described informally as follows:

Two divisions of an army, each commanded by a general, are camped
on two hilltops overlooking a valley. In the valley awaits the enemy.
It is clear that if both divisions attack the enemy simultaneously they
will win the battle, while if only one division attacks it will be defeated.
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As a result, neither general will attack unless he is absolutely sure that
the other will attack with him. In particular, a general will not attack if
he receives no messages. The commanding general of the first division
wishes to coordinate a simultaneous attack (at some time the next day).
The generals can communicate only by means of messengers. Normally,
it takes a messenger one hour to get from one encampment to the other.
However, it is possible that he will get lost in the dark or, worse yet, be
captured by the enemy. Fortunately, on this particular night, everything
goes smoothly. How long will it take them to coordinate an attack?

Suppose that a messenger sent by General A reaches General B with a message
saying “attack at dawn.” Should General B attack? Although the message was in fact
delivered, General A has no way of knowing that it was delivered. A must therefore
consider it possible that B did not receive the message (in which case B would
definitely not attack). Hence A will not attack given his current state of knowledge.
Knowing this, and not willing to risk attacking alone, B cannot attack based solely
on receiving A’s message. Of course, B can try to improve matters by sending the
messenger back to A with an acknowledgment. Imagine that the messenger is again
successful and delivers the acknowledgment. When A receives this acknowledgment,
can he then attack? A here is in a similar position to the one B was in when he
received the original message. This time B does not know that the acknowledgment
was delivered. Since B knows that without receiving the acknowledgment A will
not attack, B cannot attack as long as he considers it possible that A did not receive
the acknowledgment. Hence, A cannot attack before he ensures that B knows the
acknowledgment has been delivered. At this point, A might try to improve matters by
sending the messenger back to B with an acknowledgment to the acknowledgment.
Unfortunately, similar reasoning shows that this again will not suffice. As the reader
can check, this time the problem is that A does not know that B knows that A knows
that B received A’s initial message. Indeed, it is possible to show (and will follow
from our later results) that no number of successful deliveries of acknowledgments
to acknowledgments can allow the generals to attack. Note that the problem is not
caused by what actually happens, but by the uncertainty regarding what might have
happened. In the scenario we have just considered, communication proceeds as
smoothly as we could hope—all the acknowledgments sent are received—and still
coordination is not attained.
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If we let delivered represent the fact that at least one message was delivered, it
is not too hard to show that when B gets A’s initial message, KB(delivered) holds.
Moreover, when A gets B’s acknowledgment, KAKB(delivered) holds, when B

gets A’s acknowledgment of the acknowledgment, KBKAKB(delivered) holds, and
so on (Exercise 6.1). However, even if all the acknowledgments sent are received,
common knowledge of delivered never holds.

The fact that common knowledge of delivered does not hold even if all acknowl-
edgments sent are received is not an accident. As we are about to show, in any system
with unreliable communication, there can never be any common knowledge about
message delivery. Is this a problem for the generals? After all, they are interested
in coordinating an attack, not in attaining common knowledge. Unfortunately for
the generals, as we suggested earlier (and are about to prove), common knowledge
is a prerequisite for coordination, in particular, the type of coordination required in
the coordinated attack problem. Thus, coordinated attack is not possible in systems
with unreliable communication.

Our first step in proving these results is to define a class of contexts in which
it makes sense to talk about the agents’ knowledge regarding message delivery. To
make our results as general as possible, we want to assume as little as possible about
these contexts. In particular, we do not want to assume anything about the internal
actions agents can perform or the form of their local states. Also, we do not want to
assume anything about the environment’s states and actions, beyond assuming that
message delivery events can take place, and that the environment records the events
taking place in the system.

Formally, we call an interpreted context (γ, π) a message-delivery context if it
satisfies the following assumptions:

• The environment and/or some of the agents have actions that we designate as
message-delivery actions; intuitively, these actions result in messages being
delivered to agents.

• γ is a recording context (as defined in Example 5.2.1), so that the environment’s
state includes the sequence of joint actions that have been performed so far,
and τ updates states appropriately.

• The language includes the proposition delivered. As we said earlier, we intend
delivered to be true if at least one message has been delivered, that is, if at least
one message-delivery action has been performed. Because the environment’s



6.1 Coordinated Attack 193

state includes the sequence of joint actions performed, it is easy to define π to
enforce this.

As discussed in Chapter 5, we can use a context to characterize a class of systems.
A message-delivery system is a system of the form Irep(P, γ, π), where (γ, π) is
a message-delivery context and P is a protocol that can be run in context γ . In a
message-delivery system, we can talk about message delivery and what the agents
know about it.

What can we say about the agents’ knowledge of delivered in a message-delivery
system? The formula delivered is necessarily false at the beginning of a run (since
no messages have been delivered by time 0). It immediately follows that delivered
cannot be common knowledge at time 0. Recall from Theorem 4.5.4 that in an
asynchronous message-passing system common knowledge cannot be gained or lost.
Thus, in an a.m.p. system the agents never attain common knowledge of delivered.
In fact, as we now show, delivered can never become common knowledge even in
synchronous systems, as long as message delivery is sufficiently unreliable.

What should it mean for message delivery to be “sufficiently unreliable”? Intu-
itively, we take this to mean that there may be unbounded message delivery, so that
it can take arbitrarily long for a message to arrive. As a consequence, the only way
an agent (other than the recipient) can find out about successful message delivery is
through the receipt of other messages. In particular, if R has unbounded message
delivery, i receives a message at a point (r, l) in R, and no agent receives a message
from i in run r between times l and m, then all the other agents will consider it
possible at time m that i has not yet received the message (since they have no reason
to believe otherwise).

We formalize the notion of unbounded message delivery as a richness condition
on the set of runs. Let R be a system such that, for an appropriately chosen π , the
interpreted system I = (R, π) is a message-delivery system. Given a run r ∈ R,
we write d(r, m) = k if exactly k messages have been delivered in the first m rounds
of r . Clearly, we always have d(r, 0) = 0. We say that such a system R displays
umd (umd stands for unbounded message delivery) if for all points (r, m) in R with
d(r, m) > 0, there exists an agent i and a run r ′ ∈ R such that (1) for all agents
j �= i and times m′ ≤ m we have r ′

j (m
′) = rj (m

′) and (2) d(r ′, m) < d(r, m).
Intuitively, we can think of i as the last agent to receive a message in r at or before
round m, and r ′ as a run that is like r except that i does not receive this last message
by round m. Clause (1) ensures that no other agent can tell by round m that i has not
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received this message. Because the last message to i in r is not delivered in r ′, we
have d(r ′, m) < d(r, m), as required by clause (2).

A number of systems of interest display umd. For example, it is easy to see that
every a.m.p. system displays umd, as does every a.r.m.p. system (Exercise 6.2). In
fact, we can make a stronger statement. We say that a context γ displays umd if all
systems described by γ display umd, that is, if Rrep(P, γ ) displays umd for every
protocol P that can be run in context γ . It is easy to see that every asynchronous
context (see Example 5.2.4) displays umd, as do the contexts that arise by replacing
the admissibility condition True in an asynchronous context by Rel or Fair. Finally,
the context implicitly characterized by the coordinated attack story also displays
umd.

The umd condition is just what we need to show that common knowledge of
message delivery is not attainable.

Theorem 6.1.1 Let I = (R, π) be a message-delivery system such that R displays
umd, and let G be a set of two or more agents. Then

I |= ¬CG(delivered).

Proof For every point (r, m) in I, we prove that (I, r, m) |= ¬CG(delivered) by
induction on d(r, m). The case d(r, m) = 0 is trivial. Let d(r, m) = k+1 and assume
that the claim is true for all points (r ′, m′) with d(r ′, m′) ≤ k. Let r ′ and i be the run
and agent, respectively, guaranteed to exist by the umd condition. Let j �= i be an
agent in G. The umd condition guarantees that d(r ′, m) < d(r, m). By the induction
hypothesis, we have that (I, r ′, m) |= ¬CG(delivered). But since r ′

j (m) = rj (m),
we have that (r ′, m) is G-reachable from (r, m). Thus, by Exercise 2.7, it follows
that (I, r, m) |= ¬CG(delivered), and we are done.

Note that the form of Theorem 6.1.1 is somewhat weaker than that of Theo-
rem 4.5.4. Unlike a.m.p. systems, it is not necessarily the case in a system satisfying
umd that no common knowledge can be gained. For example, in a synchronous
system satisfying umd, at 2 o’clock it is always common knowledge that the time
is 2 o’clock. Rather, Theorem 6.1.1 essentially implies that communication in such
systems cannot make formulas common knowledge. A formula that is common
knowledge at some point must also be common knowledge at a point where no mes-
sages have been delivered. Of course, Theorem 6.1.1 is not strictly weaker than
Theorem 4.5.4, because Theorem 6.1.1 applies in a much wider class of contexts
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than Theorem 4.5.4 does. As an example of an application of this theorem, we now
use it to prove the impossibility of coordinated attack.

To be able to discuss a coordinated attack by the generals, we define an appropriate
class of contexts. An interpreted context (γ, π) is ca-compatible if it is a message-
delivery context in which two of the agents are the generals A and B, and for each
i ∈ {A, B}, one of General i’s actions is denoted attacki . We assume that General i’s
state records whether or not i has attacked. Moreover, we require that there be
propositions attackedi , for i ∈ {A, B}. We take attackedi to be true at a point if
attacki was performed at some point in the past, that is, if attacki is recorded in
the environment’s state (recall that γ is a recording context) and in i’s local state.
Implicit in this definition of attackedi is the assumption that if General i performs
attacki at the point (r, m), that is, if Pi(ri(m)) = attacki , then an attack by i actually
takes place. That is, the environment cannot perform a nogoi action to block the
attack as it can do, for example, in an a.m.p. system. We take attackingi to be an
abbreviation for ¬attackedi ∧ ©attackedi . Thus, attackingi is true if General i is
about to attack for the first time. Finally, we take attack to be an abbreviation for
attackingA ∧attackingB , so attack is true if both generals are about to attack. Notice
that the definition of ca-compatible contexts makes only minimal assumptions about
the form of the generals’ local states.

We can now formally capture the requirements of coordinated attack in terms
of a specification. Let the specification σ ca consist of all ca-compatible interpreted
systems I such that

1. I |= attackingA ⇔ attackingB ,

2. I |= ¬delivered ⇒ ¬attack, and

3. (I, r, m) |= attack for at least one point (r, m) of I.

The first condition captures the key requirement for coordinated attack: It says that
General A attacks at (r, m) iff General B attacks at (r, m). In particular, both generals
must attack simultaneously. The second requirement captures the statement in the
story that no attack is carried out if no messages are delivered. Finally, the third
condition prevents the trivial solution to the problem where no general ever attacks.
Notice that the first two conditions are run-based; the third, however, is not. We say
that P is a protocol for coordinated attack in a ca-compatible interpreted context
(γ, π) if P satisfies σ ca in (γ, π).
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We can now make precise our earlier claim that common knowledge is a prereq-
uisite for coordinated attack. We start by showing that when the generals are about to
attack for the first time, it must be common knowledge that they are about to attack
for the first time. To simplify notation, we use C rather than C{A,B} to represent
common knowledge among the generals. Similarly, we use E instead of E{A,B}. We
first consider the case in which the protocols the generals follow are deterministic.

Proposition 6.1.2 Let (γ, π) be a ca-compatible interpreted context and let P be
a deterministic protocol. If I = Irep(P, γ, π) satisfies σ ca, then

I |= attack ⇒ C(attack).

Proof We first show that I |= attack ⇒ E(attack). Suppose that
(I, r, m) |= attack, so that (I, r, m) |= attackingA ∧ attackingB . In particular, this
means that PA(rA(m)) = attackA, so that A attacks in round m+1 of r . Let (r ′, m′)
be a point of Rrep(P, γ ) that A considers possible at (r, m), so that rA(m) = r ′

A(m′).
Because PA is deterministic, it follows that PA(r ′

A(m′)) = PA(rA(m)) = attackA.
Note that (I, r, m) |= attackingA implies that (I, r, m) |= ¬attackedA, so that A

has not yet attacked at the point (r, m). The context (γ, π) is ca-compatible, so
General A’s local state records whether A has attacked. Since A has not attacked
yet at (r, m) and rA(m) = r ′

A(m′), it follows that A has not attacked yet at (r ′, m′).
Thus, (I, r ′, m′) |= ¬attackedA. Since A attacks at (r ′, m′) and the environment
does not block attacks, (I, r ′, m′ +1) |= attackedA. Thus, (I, r ′, m′) |= attackingA.
Since I satisfies σ ca, it must be the case that (I, r ′, m′) |= attackingB . Thus,
(I, r ′, m′) |= attack. This means that attack holds at all points that A considers
possible at (r, m), so (I, r, m) |= KA(attack). An analogous argument shows that
(I, r, m) |= KB(attack). Hence, (I, r, m) |= E(attack). Because (r, m) was an
arbitrary point, I |= attack ⇒ E(attack), as desired. By the Induction Rule, it now
follows that I |= attack ⇒ C(attack).

Proposition 6.1.2 draws a formal connection between an action (attacking in this
case) and a state of knowledge (common knowledge of attack). We stress that the
generals need not be doing any reasoning for this result to hold; and even if they do
reason, they need not be aware of the notion of common knowledge. Nevertheless,
when they attack they must have common knowledge of the fact they are attacking,
according to our external definition of knowledge.

Note how the proof of Proposition 6.1.2 uses the assumption that the environment
cannot block attacks by performing a nogoi action. If it could, then Proposition 6.1.2
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would not hold. For example, consider the protocol where General A sends a message
telling B to attack at every odd-numbered round until B actually attacks; A then
attacks at every round after it has sent a message to B. B attacks when it gets a
message. To guarantee coordination, the environment performs a nogoA action if B

does not receive A’s message. Although the resulting system satisfies σ ca, it is not
true that A knows that B is about to attack whenever he (A) is about to attack. A does
know that if his attempt to attack is not blocked by the environment, then B will attack
as well, but A does not find out if his attempt to attack has been blocked until after
the fact. If the environment can block attacks, then attackingA ⇒ KA(attackingA)

may not be valid.
For very similar reasons, Proposition 6.1.2 does not hold ifP is a nondeterministic

protocol, even if the environment does not block attacks. Consider the following
slight variant of the previous protocol. General A simply sends a message in every
round telling B to attack; after that he nondeterministically chooses in each round
whether or not to attack. After receiving the message, GeneralB nondeterministically
chooses in each round whether or not to attack. Suppose that (γ, π) is a ca-compatible
context such that γ = (Pe, G0, τ, �). If the admissibility condition � does not put
any constraints on the set of acceptable runs, then it is clear that Irep(P, γ, π) will
not satisfy σ ca; there will be many runs where one general attacks and the other does
not. It is possible, however, to choose � in such a way that Irep(P, γ, π) satisfies
σ ca and Rrep(P, γ ) displays umd (see Exercise 6.3). Because of nondeterminism,
when General A is about to attack, he does not know that he is about to attack; that is,
attackingA ⇒ KA(attackingA) may not be valid. The reason that Irep(P, γ, π) still
manages to satisfy σ ca is that � here “magically” rejects all runs where the generals
do not coordinate. This cannot happen, however, if γ is a “reasonable” environment,
that is, if it is nonexcluding, as defined in Section 5.2.

Proposition 6.1.3 Let (γ, π) be a ca-compatible nonexcluding interpreted context
and let P be a (deterministic or nondeterministic) protocol. If I = Irep(P, γ, π)

satisfies σ ca, then
I |= attack ⇒ C(attack).

Proof See Exercise 6.4.

Although the analysis we have just carried out will be useful when we turn
to Byzantine agreement in Section 6.3, our ultimate goal is not to show that the
generals have common knowledge that they are about to attack, but to show that
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coordinated attack is impossible if there is no upper bound on message delivery time.
Propositions 6.1.2 and 6.1.3 can be used to show that there is no deterministic protocol
for coordinated attack in contexts displaying umd and that there is no nondeterministic
protocol for coordinated attack in nonexcluding contexts displaying umd. We can
get a somewhat simpler analysis by considering the situation after the generals have
attacked, rather than the situation when they are about to attack for the first time. Let
attacked be an abbreviation for attackedA ∧ attackedB .

Proposition 6.1.4 Let (γ, π) be a ca-compatible interpreted context and let P be a
(deterministic or nondeterministic) protocol. If I = Irep(P, γ, π) satisfies σ ca, then

I |= attacked ⇒ C(attacked).

Proof The proof is very similar in spirit to that of Proposition 6.1.2; the details are
left to the reader (Exercise 6.5). Note that now the assumption that the environment
does not block attacks is unnecessary.

Now we can prove that coordinated attack is impossible. Because the successful
delivery of at least one message is a prerequisite of an attack, we obtain the following:

Corollary 6.1.5 Let (γ, π) be a ca-compatible interpreted context and let P be a
(deterministic or nondeterministic) protocol. If I = Irep(P, γ, π) satisfies σ ca, then

I |= attacked ⇒ C(delivered).

Proof The second requirement of σ ca is equivalent to I |= attack ⇒ delivered,
which clearly implies that I |= attacked ⇒ delivered. From Exercise 2.9, we
have that I |= C(attacked) ⇒ C(delivered). The result now follows from Proposi-
tion 6.1.4.

Corollary 6.1.5 and Theorem 6.1.1 together imply that the generals in the coor-
dinated attack problem are never able to attack. More generally, there is no protocol
for coordinated attack in a system that displays umd.

Corollary 6.1.6 If (γ, π) is a ca-compatible interpreted context such that γ displays
umd, then there is no (deterministic or nondeterministic) protocol P that satisfies σ ca

in (γ, π).
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Because in the coordinated attack example we are talking about a context that
displays unbounded message delivery, Corollary 6.1.6 says that there is no protocol
for the coordinated attack problem in such a context! It might not be too surprising
that coordinated attack is not attainable in some runs of a protocol (in particular,
runs where the messenger gets lost and does not deliver too many messages). Corol-
lary 6.1.6, however, makes a far stronger claim: it says that an attack is never attain-
able in any run of any deterministic protocol for coordinated attack. Thus, even if
every message is delivered, coordinated attack is not possible, as long as there is the
possibility that messages will not be delivered.

The fact that coordinated attack implies common knowledge (Propositions 6.1.2
and 6.1.4) depends on our requirement that the coordinated attack must be simulta-
neous. In practice, simultaneity might be too strong a requirement. A protocol that
guarantees that the generals attack within a short time of each other may be quite
satisfactory. In a system where the generals attack within a short time of each other,
attacking does not necessarily imply common knowledge of the attack. Neverthe-
less, in Chapter 11 we use similar arguments to show that even such weaker forms
of coordination are unattainable if communication is unreliable.

6.2 Agreeing to Disagree

The analysis in the previous section demonstrated a formal connection between
agreement and common knowledge. To coordinate their attack, the generals have
to agree to attack together at a particular time, and our analysis shows that common
knowledge is a necessary and sufficient condition for such an agreement to hold.
This intimate connection between agreement and common knowledge has surprising
consequences in applications in which the players are attempting to agree to take
different actions (unlike the coordinated-attack situation in which they are attempting
to agree to take essentially the same action).

An example of such an application is trading in the stock market, where a trans-
action occurs when one side buys and the other side sells. Why do people trade?
Some trades are certainly due to the fact that people may have different utilities for
having money at a given moment: one person may need to make a big payment and
will therefore want to sell stock, while the other may have just received a large sum
of money and may wish to invest some of it in the stock market. A great deal of trade,
however, takes place for purely speculative reasons. The seller thinks the price of a
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given stock is likely to go down, while the buyer believes it will go up. Perhaps the
buyer has some information leading him to believe that the company that issued the
stock is going to do well in the next year, while the seller has information indicating
that the company might fail.

For a trade to take place, the buyer and seller have to agree to the transaction,
which means that they have to reach common knowledge that the trade takes place.
But then part of the information that the buyer has is the fact that the seller is willing to
sell and, similarly, part of the seller’s information is that the buyer is willing to buy.
How should this information affect their decisions? To take a somewhat extreme
example, say the seller is Ms. X, a top executive in the company whose stock is
being traded. “Clearly,” the intended buyer should reason, “if Ms. X is selling, then
the stock price is likely to drop. Thus, if she is willing to sell the stock for $k,
then I should not buy it for that amount.” Since the participants in the trade have
reached common knowledge when the trade takes place, they should make use of
this knowledge when making their decisions. Somewhat surprisingly, as we show in
this section, if they do use this knowledge, then the trade cannot take place! More
precisely, we show that if both sides in the trade act according to the same rules, then
the common knowledge that would arise should the trade take place prevents the trade
from taking place. Roughly speaking, the result says that players cannot “agree to
disagree”, that is, they cannot have common knowledge that they are taking different
actions, such as buying and selling. (Notice that the word “agree” plays two different
roles in the phrase “agree to disagree”; “agree” refers to common knowledge, while
“disagree” refers to reaching different decisions.)

To prove this result, we need a few definitions. As described in Chapter 5, the
actions taken by the players are prescribed by their protocols, where a protocol for
player i is a function of player i’s local state. In many applications, it is more
appropriate to view the player’s actions as depending not on her local state, but
on the set of points she considers possible. For example, suppose a player wants
to maximize some payoff that depends on the point. Since the player does not
know what the actual point is, her decision actually depends on the set of points
that she considers possible. In two different systems, she may have the same local
state, but consider a different set of points possible, and thus take different actions.
This is a phenomenon we examine more carefully in Chapter 7, when we consider
knowledge-based programs. For now, we generalize our notion of protocol in an
attempt to capture this intuition.
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Given a local state � for player i in a system R, let ISi (�, R) denote the set of
points (r, m) in R such that ri(m) = �. If I = (R, π) is an interpreted system, we
identify ISi (�, I) with ISi (�, R). In the terminology of Section 2.5, ISi (�, R) is the
information set of player i when in local state � in the interpreted system R. As we
said earlier, we want to view player i’s action as a function of her information set
rather than as a function of her local state. Essentially, this amounts to making a
player’s action a function of her knowledge.

To make this precise, given a set G of global states, let S be the set of points over G
(i.e., the set of points (r, m) where r is a run over G). If ACT i is the set of actions for
player i, we define a decision function for player i (over G) to be a function whose
domain consists of some subsets of S and whose range is ACT i . Thus, a decision
function prescribes an action for the subsets of S in its domain.

We have another method for prescribing actions for player i: namely, by means
of a protocol. How are decision functions and protocols related?

In a precise sense, we can view decision functions as more general than protocols.
To know what action a decision function prescribes for player i in a given local state,
we need to know what player i’s information set is. But this depends not just on
player i’s local state, but on the whole system. We may be able to associate a protocol
with a given decision function once we have a system in hand to determine what the
information sets are. Given a decision function D for player i and a system R, we say
that a protocol Pi for player i is compatible with D in R if Pi(�) = D(ISi (�, R)) for
all � ∈ Li . (Note that this requires that the domain of D includes all the information
sets of player i in R.) It is not hard to see that every deterministic protocol is
compatible with some decision function D; that is, if Pi is a deterministic protocol,
then there is a decision function D such that Pi is compatible with D in all systems R
(Exercise 6.6).

As our discussion suggests, we are mainly interested in applying decision func-
tions to information sets. We have, however, allowed decision functions to be defined
on arbitrary sets of points. There are many sets of points that cannot be informa-
tion sets (in particular, any set that includes points (r, m) and (r ′, m′) such that
ri(m) �= r ′

i (m
′)). Why are we allowing decision functions to be defined on such

sets? For one thing, this makes it possible for us to talk about all players using the
same decision function, as we do in the examples we provide later in this section. In
addition, as these examples show, it is often the case that the decision function we
have in mind is most naturally thought of as a function on arbitrary sets of points.
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As we said, we are interested in situations where all players use the same decision
function. Thus, we assume for the remainder of this section that the players’ actions
are all taken from the same set ACT . We say that the joint protocol P = (P1, . . . , Pn)

implements the decision function D in context γ if Pi is compatible with D in
Rrep(P, γ ), for i = 1, . . . , n. Thus, if P implements D, then the actions prescribed
by both P and D agree in the system representing P .

We are now almost ready to state and prove the Agreement Theorem, a celebrated
result in game theory. What we want to show is that if two players use the same
decision function, then they cannot agree to perform different actions. To capture
this formally, we restrict attention to interpreted contexts (γ, πag) for agreement.
Again, we want to put as few restrictions on such contexts as possible: just enough
so that we can talk about the actions performed by the players. We assume that

• the players’ actions are all taken from the same set ACT ,

• γ is a recording context,

• for each action a, there is a primitive proposition perf i (a), and

• πag(s)(perf i (a)) is true in a state s if the action a was performed by player i,
as recorded in the environment’s state. As we did for coordinated attack, we
take acti (a) to be an abbreviation for ¬perf i (a) ∧ ©perf i (a). Thus, acti (a)

is true if player i is about to perform action a.

We need one more technical definition before we can state the Agreement Theo-
rem. A decision function D is said to be union consistent if it satisfies the following
condition: for every action a and for every collection T1, T2, . . . of pairwise dis-
joint subsets of S, if D(Tj ) = a for all j , then

⋃
j Tj is in the domain of D and

D(
⋃

j Tj ) = a. Intuitively, the function D is union consistent if, whenever it pre-
scribes the same action a for disjoint sets of points, it prescribes a for the union of
these sets as well. Union consistency seems fairly reasonable: intuitively, it says that
if a player performs the action a whenever she considers Tj to be the set of possible
worlds, then she should also perform a if she considers all the points in ∪j Tj pos-
sible. Recall that we observed that any deterministic protocol can be obtained from
some decision function. In fact, it can be shown that any deterministic protocol can
be obtained from some union-consistent decision function (Exercise 6.6). We give
some examples of union-consistent decision functions after proving the theorem.
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We can now formally state the Agreement Theorem. As we did in our discussion
of coordinated attack, we use C rather than C{1,2} to represent common knowledge
among the two players.

Theorem 6.2.1 Suppose that I = Irep(P, γ, πag), where P is a joint protocol
and (γ, πag) is an interpreted context for agreement. If P implements some union-
consistent decision function in context γ and a and b are distinct acts in ACT, then
I |= ¬C(act1(a) ∧ act2(b)).

Proof Suppose that P implements the union-consistent decision function D in con-
text γ , and suppose, by way of contradiction, that (I, r, m) |= C(act1(a) ∧ act2(b))

for some point (r, m) in I. We want to show that a = b. Let S′ consist of
all points that are {1, 2}-reachable from (r, m). Suppose that (r ′, m′) ∈ S′ and
r ′

1(m
′) = �. By the definition of reachability, if (r ′′, m′′) ∼1 (r ′, m′), then

(r ′′, m′′) ∈ S′. Thus, IS1(�, I) ⊆ S′. Moreover, by the definition of IS1(�, I),
if � �= �′ for some �′ ∈ L1, then IS1(�, I) ∩ IS1(�

′, I) = ∅. It follows that S′ is a
disjoint union of sets of the form IS1(�, I). Since (I, r, m) |= C(act1(a)), we must
have that (I, r ′, m′) |= act1(a), so that P1(�) = a. The fact that P implements D

implies that D(IS1(�, I)) = a. By the union consistency of D, we can now con-
clude that D(S′) = a. A completely analogous argument with respect to player 2
and action b yields that D(S′) = b. Thus, a = D(S′) = b as desired.

Thus, if two agents use the same union-consistent decision function, that is, they act
according to the same rules, then they cannot have common knowledge that they are
taking different actions. That is, they cannot agree to disagree.

We observed earlier that every protocol for player i is compatible with some
union-consistent decision function. The crux of the Agreement Theorem is the
requirement that both players use the same union-consistent decision function. How
reasonable is this requirement? We now describe three examples of situations where
this arises.

For the first example, suppose two players each perform an action and receive
a payoff as a result of that action. Moreover, suppose that the payoff to player i

depends solely on the action that player i performs and the global state at which the
action is performed. This means that, in particular, the payoff is independent of the
action that the other player performs and both players receive the same payoff if they
perform the same action. For example, if the two players are betting on numbers in
a roulette game, and we assume that the winning number is completely determined
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by the global state, then each player’s payoff depends only on the global state (and
not on the bet made by the other player), and the players receive the same payoff if
they make the same bet.

Of course, the problem is that, in such scenarios, the players do not know what
the actual global state is, so that they do not know what their payoff will be. Suppose
that the players are both risk averse, which means that they choose the action for
which the worst-case payoff is maximal. Formally, if payoff (s, a) is the payoff for
performing action a at the global state s andS′ is a set of points, define payoff (S′, a) =
min(r,m)∈S′(payoff (r(m), a)). (To be precise, we should use the infimum rather than
the minimum in this expression, since a minimum over an infinite set of payoffs
may not exist.) Intuitively, payoff (S′, a) is the worst-case payoff if the action a
is performed in the set S′. For simplicity, we assume that ACT is finite and that
for all subsets S′ of points and for all distinct pairs of actions a and b, we have
payoff (S′, a) �= payoff (S′, b). Under these assumptions, we take Dra to be the
decision function whose domain consists of all subsets of points and is defined so
that Dra(S′) is the unique action a such that payoff (S′, a) > payoff (S′, b) for all
b �= a. (The ra in Dra stands for risk averse.) Thus, according to the decision
function Dra, the action that is chosen in S′ is the one that maximizes the worst-case
payoff in S′. It is easy to check that Dra is a union-consistent decision function
(Exercise 6.7). It follows that if the players are both risk averse in this sense, they
cannot agree to disagree. Thus, if they discuss their actions until they have common
knowledge of the actions they are about to perform, then these actions must be the
same.

In our remaining two examples, the players’ decisions are defined in terms of
probability. A thorough discussion of probability in our framework is beyond the
scope of this book. We provide a brief, somewhat informal, discussion of these
examples here; further references can be found in the notes. (These examples can
be skipped by a reader unfamiliar with probability theory.)

Suppose that we have a probability distribution Pr defined on certain subsets of S,
the set of points. If e is a fixed subset of points (in the terminology of Section 2.5, e

is an event) and ACT , the set of actions, just consists of all numbers in the interval
[0, 1], let the decision function Dpr be defined on the subsets S′ such that Pr(S′) > 0
(so that Pr(e | S′) is defined). On these subsets, we define Dpr(S′) = Pr(e | S′).
Thus, Dpr(S′) is the conditional probability of e given S′. It is easy to show that Dpr

is union consistent (Exercise 6.8). If player i is in local state �, then his estimate of
the probability of e is given by the conditional probability Pr(e | ISi (�, R)). Thus,
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according to the Agreement Theorem, if the players have common knowledge of
their estimates of the probability of e, then these estimates must be the same.

To bring out the perhaps surprising nature of this example, suppose the players
start with the same probability distribution on the set of points and then receive
some information that causes them to revise their estimate of the probability of e,
using conditioning. They can then exchange their estimates of the probability of e.
Doing so can cause them to revise further their estimates of e, since their information
changes. Suppose that after a while they reach steady state, and no further exchanges
of their estimates can cause them to revise these estimates. It is possible to show that
in a large class of contexts, the players are in fact guaranteed to reach steady state and
to attain common knowledge of the fact that they are in steady state (see Exercise 6.9
for an example). Once this happens, their estimates are common knowledge, so
according to the Agreement Theorem, they must be the same. Thus, although the
players might have different information, they cannot agree to disagree on their
estimates of the probability of e.

For our final example, we return to the setting of the first example but, as in
the second example, we assume that we have a probability distribution on the set
of points. Rather than being risk averse, as in our first example, suppose that the
players perform the action that has the highest expected rate of return. That is, we
now define payoff ′(S′, a) to be the expected payoff of the action a over the set S′.
Again, we assume for simplicity that ACT is finite and for all distinct actions a
and b, we have payoff ′(S′, a) �= payoff ′(S′, b). Under these assumptions, we define
Dum on all subsets of points by taking Dum(S′) to be the unique action a such that
payoff (S′, a) > payoff (S′, b) for all b �= a. (The um in Dum stands for utility
maximizer.) It is easy to check that Dum is union consistent (Exercise 6.8). Again,
the Agreement Theorem tells us that if the players’ protocols are consistent with
Dum, then they cannot agree to disagree.

If we take the actions in the first and third examples to be buy and sell, then we
are back to the scenario with which we began this section. Thus, in this setting, the
Agreement Theorem tells us that speculative trading between players who follow the
same rules (e.g, have the same payoff function and are both risk averse in the first
example, or have the same payoff function and probability distribution and are both
utility maximizers in the third example) is impossible. This certainly seems coun-
terintuitive. There has been a lot of work in game theory on trying to understand the
implications of this result and to avoid the apparent paradox. Some of the approaches
involve limited reasoners, a topic we discuss in Chapters 9 and 10.
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6.3 Simultaneous Byzantine Agreement

In Sections 6.1 and 6.2, common knowledge served as a tool for proving impossibility
results, namely, the fact that there are no protocols solving the coordinated-attack
problem or for agreeing to disagree. We now present a case in which common
knowledge is used in a positive manner, as a tool for the design of efficient protocols.

The coordinated attack problem deals with the impact that unreliable communica-
tion has on coordination in multi-agent protocols. Another major source of difficulty
in distributed systems is the fact that processes may fail during the execution of a
protocol. This can cause particular difficulties when it comes to coordinating actions
between different sites in such a system. We do not want two sites in an airline
reservation system to sell the same seat to two different people; a bank must ensure
that every transaction made at one of its automated tellers is appropriately recorded
in its central database. Because the components of such a system do fail occasionally
for various reasons, it is important to program them in such a way that the overall
behavior of the system will not be jeopardized by the failure of a small number of
its components.

The paradigmatic problem concerning reaching agreement at different sites in a
system in the presence of failures is the Byzantine agreement problem. The Byzantine
agreement problem can be informally described as follows: We have n generals, up
to t of which might be traitors. Each general initially prefers to either attack or retreat
(although they are willing to do something other than what they initially prefer). At
the end of the protocol, they must reach agreement, so that the loyal generals either
all attack or all retreat. (The traitors can do whatever they like; we have no control
over them.) Although the generals can talk to each other (over reliable channels),
there is no broadcast facility. It is not possible for a general to take a loudspeaker
and announce his vote to all the others. There is a trivial protocol satisfying these
conditions: one where the generals retreat, no matter what their initial preference. In
practice, however, this is not a satisfactory solution. A natural additional property
to demand is that if all generals initially prefer to do the same thing (either attack or
retreat), this is what they will agree to do. This condition eliminates trivial solutions
such as retreating no matter what.

If we are guaranteed that there are no traitors in the system, then reaching agree-
ment is a trivial matter. The generals all talk to each other, find out what each of
them initially prefers to do, and use some uniform rule for reaching a decision (for
example, the rule might be to attack if any general initially prefers to attack). In the
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presence of traitors, however, assuming we have no way of knowing beforehand who
the traitors are, the situation becomes considerably more complicated. What do we
do if a traitor tells one loyal general that he wants to attack and tells another that he
wants to retreat?

This problem turns out to be remarkably subtle and has been studied at length
in the literature. We focus here on one particular variant of the problem, where we
require that not only do the generals decide, but that they decide simultaneously. We
refer to this variant as the simultaneous Byzantine agreement (SBA) problem. Just
as in the case of coordinated attack, we can show that in a large class of interpreted
contexts, the requirement of simultaneity here leads to common knowledge.

We now define this class of interpreted contexts, which we call ba-compatible.
These ba-compatible contexts share many of the features of ca-compatible contexts.
Again, we want to make minimal assumptions about the processes’ (i.e., generals’)
local states and have the environment’s state record the actions performed. The main
difference is that we now want to allow the environment to specify which processes
are faulty and how they are faulty. This means that there are more possible actions
that the environment can perform. For now, we do not go into the details of what
these actions are; we defer that discussion to Section 6.5. Formally, we say that an
interpreted context (γ, π) is ba-compatible if it satisfies the following assumptions:

• For each process i = 1, . . . , n, one of i’s actions is denoted decidei (y), for
y ∈ 0, 1. Intuitively, this means that process i has decided on the value y. (We
can think of decidei (0) as representing a decision to retreat, while decidei (1)

represents a decision to attack.)

• The environment’s actions include ones of the form (ae1, . . . , aen). The com-
ponents aei themselves are tuples, which describe which messages sent by
process j are delivered to process i in that round, whether or not i fails in that
round, which we capture by a faili action, and its faulty behavior if it does fail.
We discuss later how this faulty behavior is described, since this depends on
the type of faulty behavior we allow. We say that process i fails in round k of
run r if the environment’s action at this round has a faili component. We say
that process i is faulty in round k of run r (or at the point (r, k)) if process i

failed in some round k′ ≤ k of run r . Otherwise, we say that i is nonfaulty or
correct.
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• γ is a recording context. Note that this means that we can tell from the
environment’s state which processes are faulty, by seeing which faili actions
have been performed.

• Process i’s initial state is a tuple of the form (xi, . . .), where xi is either 0
or 1. Intuitively, xi represents process i’s initial preference to either retreat
(0) or attack (1). We also assume that process i’s local state records whether
process i has tried to perform an action of the form decidei (y) (including times
that the action does not succeed, because the process has failed). We make no
further assumptions about the form of the processes’ local states.

• The environment’s state includes the tuple (x1, . . . , xn) of the processes’ initial
preferences.

• The language includes the propositions decidedi (y) and ∃y, for i = 1, . . . , n

and y = 0, 1. We define π so that (1) decidedi (y) is true at a global state
if i tried to perform the action decidei (y) at some previous round (note that
since this fact is recorded in process i’s local state, decidedi (y) is a proposition
local to process i) and (2) ∃y is true if xi = y for some process i, so that some
process initially preferred to decide on the value y. Let decidingi (y) be an
abbreviation for ¬decidedi (y)∧ ©decidedi (y). Finally, define decidingN (y)

so that it holds at (r, m) if decidingi (y) holds at (r, m) for all i ∈ N (r, m). (In
particular, decidingN (y) is vacuously true at (r, m) if N (r, m) = ∅.)

A ba-compatible interpreted system is one of the form Irep(P, γ, π), where P

is a protocol and (γ, π) is a ba-compatible interpreted context. In a ba-compatible
interpreted system, we can talk about the processes’ initial preferences and their
decisions, so it makes sense to talk about SBA.

As mentioned earlier, we intend to focus here on simultaneous Byzantine agree-
ment (SBA). The specification σ sba of SBA is run-based. It is satisfied by all ba-
compatible interpreted systems I such that each run r in I satisfies the following
four properties:

• Decision: every process i that is nonfaulty in r performs exactly one decidei

action in r .

• Agreement: the nonfaulty processes all decide on the same value. More pre-
cisely, if i is nonfaulty at (r, m) and is about to decide y at (r, m) and if j is
nonfaulty at (r, m′) and is about to decide y′, then y = y′.
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• Validity: if all the processes have the same initial preference x, then all non-
faulty processes decide on the value x.

• Simultaneity: the nonfaulty processes all decide simultaneously, that is, in the
same round. More precisely, if i and j are nonfaulty at (r, m) and i is about
to decide at (r, m), then so is j .

The first clause ensures that the nonfaulty processes decide exactly once, the
second ensures that their decisions are in agreement, the third ensures the decision is
related to the initial preferences in a nontrivial way, and the fourth guarantees that the
decision is simultaneous. Notice that the third clause prevents trivial solutions such
as one in which everyone simply always decides on the value 0 in the first round and
halts. Indeed, the third clause ensures that for any given y ∈ {0, 1} the processes may
decide on the value y only if at least one process had y as its initial preference. We
say that P is a protocol for SBA, or that P attains SBA, in a ba-compatible interpreted
context (γ, π) if P satisfies σ sba in (γ, π). If r is a run in Irep(P, γ, π), we say that
P attains SBA in k rounds in r if (I, r, k) |= decidingN . (Note that this means that
a nonfaulty process i actually performs the action decidei in round k + 1.) P attains
SBA in k rounds if P attains SBA in k rounds in all runs of Irep(P, γ, π).

It should be clear from the specifications and the descriptions of the problems
that SBA and coordinated attack are closely related. Indeed, we can reformulate
coordinated attack slightly to resemble SBA even more as follows. We can assume
that each general i has an initial preference xi regarding whether or not he would
like to attack. We could then restate the coordinated attack problem by requiring
that if both generals initially prefer to attack, then they should attack, while if both
initially prefer to retreat, they should retreat. While this version of the coordinated
attack problem is slightly different from the one we considered, we can easily prove
results analogous to Theorems 6.1.1 and Corollary 6.1.6 for it. In fact, it is easy
to show that if P is a protocol for this modified version of coordinated attack in an
interpreted context (γ, π) allowing all four configurations of initial preferences, then
Irep(P, γ, π) satisfies σ ca (Exercise 6.10).

Despite these similarities, there are some significant differences between SBA
and coordinated attack, at least in the contexts of most interest to us. In coordinated
attack, both generals are assumed to be reliable; the problem is with the communica-
tion links. In SBA, we are mainly interested in contexts where correct generals have
no problem communicating. Thus, we focus on contexts where communication is
reliable and immediate, so that a message is guaranteed to arrive in the same round
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in which it is sent, provided that neither the sender nor the intended recipient of the
message is faulty. The problem in these contexts is not with communication, but
with the faulty processes.

The Byzantine agreement problem is sensitive to the type of faulty behavior a
faulty process can display. The literature has concentrated on three basic failure
modes:

1. Crash failures: a faulty process behaves according to the protocol, except that
it might crash at some point, after which it sends no messages. In the round
in which a process fails, the process may perform an arbitrary subset of the
actions it is supposed to perform, according to the protocol it is following. In
particular, it may send only a subset of the messages that it is supposed to send
according to its protocol.

2. Omission failures: a faulty process behaves according to the protocol, except
that it may omit to send or receive an arbitrary set of messages in any given
round. We sometimes refer to this case as the general-omission failure mode.
Another variant of this mode in which faulty processes omit only to send
messages is called the sending-omission failure mode.

3. Byzantine failures: faulty processes may deviate from the protocol in an ar-
bitrary fashion; they may “lie,” send deceiving messages, and collude to fool
the nonfaulty processes in the most malicious ways.

In practice, crash failures occur quite regularly, as a result of mechanical and
electric failures. Omission failures are often the result of communications problems.
Finally, Byzantine failures represent the worst possible failures, where we can make
no assumption on the behavior of faulty processes. Crash failures can be viewed as
a restricted type of omission failures (a process omits to send all messages from a
certain point on), and omission failures in turn can be viewed as a restricted type
of Byzantine failures. We model these failure modes in terms of the environment’s
actions. We defer the technical details to Section 6.5.

As we said earlier, the problem of SBA has been well studied in the literature.
It is known that there are protocols that attain SBA in t + 1 rounds in all these
failure modes, provided that communication is reliable and immediate. (In the case
of Byzantine failures, we also have some constraints on the relationship between n,
the total number of processes in the system, and t , the upper bound on the number
of faulty processes. There is a protocol for SBA in this case if and only if n > 3t .)
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Moreover, there is no protocol that attains SBA in fewer than t + 1 rounds. In fact,
it is known that any protocol for SBA in one of these failure modes requires at least
t + 1 rounds to attain SBA in runs where there are no failures at all.

It might seem surprising that, even if we consider such relatively benign failures
as crash failures, we still have to take t + 1 rounds to reach agreement in runs where
there are no faulty processes. As the following example shows, the problem here,
as in the case of coordinated attack, is not what does happen, but what might have
happened.

Example 6.3.1 Suppose that n = 3 and t = 1, and we restrict to crash failures.
Consider a run where all the processes have initial preference 0 and there are no
failures. By the validity requirement, this means that all the processes must decide
on the value 0. Suppose that in round 1 every process sends its initial preference
to every other process. Thus, at time 1, all the processes know that every process
initially preferred 0. Since we are considering only crash failures, all the processes
are telling the truth here. This means that all the processes know at time 1 that they
must all ultimately decide on the value 0. Why are they not able to decide on the
value 0 right away?

We can represent the situation at time 1 in a run using a 3 × 3 table, where each
column represents the information that one process has at time 1 about the initial
preferences x1, x2, and x3 (see Figure 6.1). A failed process is assumed to have no
information, and we mark this by the letter X. Otherwise, an entry in the table can
be either 0, 1, or ∗, where we use a ∗ in row i of column j to represent the fact
that j did not receive information about i’s initial preference xi (because process i

crashed before sending j a message). In the run we just described, the situation is
represented by a table all of whose entries are 0; this is table T1 in Figure 6.1.

Recall that the nonfaulty processes must all decide simultaneously. As we sug-
gested earlier, the problem is not with what actually happens, but with the uncertainty
about what might have happened. In particular, although in the situation depicted
by T1 process 1 received a 0 from all processes, it is possible, as far as process 1 is
concerned, that process 3 did not receive a message at all from process 2; this could
happen if 2 crashed after sending a message to 1, but before sending a message to 3;
this situation is depicted by table T2. (Note that in T1 process 1 does not consider it
possible that process 2 told 3 that its initial preference is 1. We are not allowing lying
here; this would require Byzantine failures.) Clearly, process 1 cannot distinguish T1

from T2; it has the same local state in both situations (essentially described by the first
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1 2 3

x1 0 0 0
x2 0 0 0
x3 0 0 0

T1

1 2 3

x1 0 X 0
x2 0 X ∗
x3 0 X 0

T2

1 2 3

x1 0 X 0
x2 1 X ∗
x3 0 X 0

T3

1 2 3

x1 0 0 0
x2 1 1 1
x3 0 0 0

T4

· · ·

1 2 3

x1 1 1 1
x2 1 1 1
x3 1 1 1

T10

Figure 6.1 An example for n = 3 and t = 1

column of the table). Now in the situation described by T2, process 3, which did not
get a message from process 2, considers it possible that 2’s initial preference x2 is 1,
and that 2 passed x2 on to process 1. Thus, in the situation described by T2, process 3
considers the situation described by table T3 possible. Finally, in T3 process 1 does
not know of any failure, and considers T4 a possibility. Notice that, intuitively, our
tour from T1 to T4 involved “silencing” process 2, changing its initial preference x2,
and “reviving” the process. By applying this type of reasoning it is possible to do
the same to process 3 and then to process 1. As a result, we can construct a sequence
of tables T1, . . . , T10 such that T1 is the table all of whose entries are 0 and T10 is a
table all of whose entries are 1, and for each consecutive pair of tables Tl, Tl+1, with
l < 10, there is some process that cannot distinguish the situations described by Tl

and Tl+1 and is correct in both of these situations (Exercise 6.11).
Now suppose that some correct process decides at time 1 on the value 0 in the

situation described by table T1. By the agreement and simultaneity requirements of
SBA, all the processes must decide at time 1 on the value 0 in this situation. Since
process 1 cannot distinguish T1 from T2, process 1 must decide at time 1 on the
value 0 in the situation described by T2. Again, by the agreement and simultaneity
requirements, the two processes that are correct in this case (1 and 3) must decide at
time 1 on the value 0. Similarly, we get that processes 1 and 3 decide at time 1 on
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the value 0 in the situation described by T3. Continuing this argument, we get that
all processes decide at time 1 on the value 0 in the situation described by T10. But in
the situation described by T10, all the processes are correct and have 1 as their initial
preference. The fact that they decide on the value 0 in T10 contradicts the validity
requirement!

As should be clear from our discussion, simultaneity plays a crucial role here.
Our proof would not hold (nor would the claim) had we not required simultaneity.
To see why, suppose again that process 1 decides on the value 0 in the situation
at time 1 described by table T1. Since process 1 cannot distinguish the situation
described by T1 from that described by T2, we know that process 1 also decides on
the value 0 in the latter situation. Without the requirement of simultaneity, we cannot,
however, conclude that process 3 decides on the value 0 in the situation described
by T2, although we can conclude that process 3 will eventually decide on the value 0
in this situation. (This may, however, require further messages from process 1.)
More significantly, we cannot conclude that any process decides 0 in the situation
described by T3.

We have stated (and shall prove formally later in this chapter) that t + 1 rounds
are required to attain SBA even if there are no failures. It might seem that if we need
t + 1 rounds if there are no failures, things could only be worse if there are failures.
As we show, this is not the case. In fact, by doing a knowledge-based analysis of
SBA, we can completely characterize the number of rounds that are required to reach
agreement.

6.4 Nonrigid Sets and Common Knowledge

The validity requirement of SBA implies that if all initial preferences are 1, then
the nonfaulty processes should decide on the value 1. In particular, for a process to
decide on the value 0, the process must know that not all initial preferences are 1.
Since the only possible initial preferences are 0 and 1, this says that for a process
to decide on the value 0, the process must know that some initial preference is 0.
Of course, knowledge that some initial preference is v is not sufficient for a process
to decide on the value v. Otherwise, a process could simply always decide on its
initial preference, creating a violation of the agreement property in cases where two
processes had different initial preferences. In fact, Example 6.3.1 shows that even if



214 Chapter 6 Common Knowledge and Agreement

a process knows that all of the initial preferences are 0, this is not sufficient to decide
on the value 0. What other knowledge do the processes need?

Just as SBA requires simultaneity (namely, simultaneous agreement), so too the
coordinated attack problem requires simultaneity (namely, simultaneous attacking).
Proposition 6.1.2 tells us that if the generals attack in the coordinated attack problem,
then the fact that they are both attacking must be common knowledge. It is natural
to expect SBA to similarly require attaining common knowledge. The question is,
which group of processes actually attains common knowledge? It is not the set of
all processes, since we do not place any requirements on the actions of the faulty
processes. The SBA problem specification σ sba requires only that the nonfaulty
processes decide on an appropriate value. SBA therefore involves coordinating the
actions of the nonfaulty processes. Thus, we expect that the nonfaulty processes
will need to attain common knowledge. Notice, however, that the set of nonfaulty
processes is not fixed, but varies from one point of the system to another. A set whose
identity is not fixed and can depend on the point is called a nonrigid set. Formally,
given a system R, a nonrigid set S of processes in the system is a function associating
with every point of the system a subset of the processes. In other words, S(r, m) is a
(possibly different) set of processes for every point (r, m) of R. We use the formula
i ∈ S to denote that i is in the nonrigid set S. We take i ∈ S to be true at a point (r, m)

if i ∈ S(r, m).
Nonrigid sets arise naturally in the analysis of a variety of problems. For exam-

ple, when we consider a system in which processes can join and leave the system
dynamically, the set of the processes in the system is a nonrigid set. Similarly, the
set of processes that have direct communication links to a given process in such a
system is a nonrigid set. The nonrigid set of most interest to us here is the set of
nonfaulty processes, which we denote by N . Thus, N (r, m) consists of the set of
processes that are not faulty at the point (r, m).

Before we can relate SBA to common knowledge, we need to extend the definition
of common knowledge to nonrigid sets. How should we do this? Given a nonrigid
set S, a natural candidate would be to define ESϕ as

∧
i∈S Kiϕ. According to this

definition, ESϕ would hold at a point (r, m) if all the processes in S(r, m) know ϕ

at (r, m). CS would then be defined in terms of ES as usual. Note that in a formula
such as ESESϕ, or even KiESϕ, the value that the nonrigid set S takes on may vary.
For example, in evaluating the truth of KiESϕ, the value of S may be different at
different points that i considers possible.
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How can we judge whether the proposed definitions of ESϕ and CSϕ are appro-
priate? One criterion that is important for our applications is whether we can prove,
as we did in the case of coordinated attack, that if the members of S have coordi-
nated their actions, then this fact is guaranteed to be common knowledge among the
members of S. Does the definition of CS we have just given have this property? For
example, in SBA, is it necessarily the case that when a nonfaulty process decides, then
it is common knowledge among the nonfaulty processes that the nonfaulty processes
are deciding? We would expect this to be the case, by analogy with the situation for
coordinated attack (Proposition 6.1.2). As we shall show later, if a nonfaulty process
is guaranteed to know that it is nonfaulty, then there is indeed such common knowl-
edge among the nonfaulty processes. In general, however, a process does not know
whether it is faulty (at least, not in the round that it fails). The consequences of this
lack of knowledge can perhaps most easily be seen in the case of general-omission
failures. In this case, it is quite easy to construct a run in which a nonfaulty process
decides on the value 0 and yet considers it possible that the nonfaulty processes are
deciding on the value 1, exactly because it does not know whether it or the other
processes are faulty (Exercise 6.19). We now define a notion of common knowledge
that is appropriate even when the nonfaulty processes do not necessarily know that
they are nonfaulty.

Notice that while the nonfaulty process in the example in the previous paragraph
does not know that the nonfaulty processes are all deciding on the value 0, it might
know that if it is nonfaulty, then they are all deciding on the value 0. This motivates
the following definition: Given a nonrigid set S and a process i, define BS

i ϕ to be an
abbreviation for Ki(i ∈ S ⇒ ϕ). Thus,

(I, r, m) |= BS
i ϕ iff (I, r ′, m′) |= ϕ for all (r ′, m′) such that

ri(m) = r ′
i (m

′) and i ∈ S(r ′, m′).

Thus, BS
i ϕ holds if and only if i knows that if it is in S, then ϕ holds. It is easy to check

that BS
i satisfies the S5 properties as discussed in Chapter 2, except for the Knowledge

Axiom (BS
i ϕ ⇒ ϕ). Nevertheless, the Knowledge Axiom is satisfied at points

where i is in the nonrigid set S. That is, if i ∈ S(r, m), then (I, r, m) |= BS
i ϕ ⇒ ϕ

(see Exercise 6.12). In general, it may be better to view BS
i as a notion of belief

rather than knowledge.
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Corresponding to the nonrigid set S, we add two modal operators to the language,
ES and CS . We define ESϕ as

∧
i∈S BS

i ϕ. Thus,

(I, r, m) |= ESϕ iff (I, r, m) |= BS
i ϕ for all i ∈ S(r, m).

In other words, everyone in S knows ϕ at the point (r, m) exactly if every process
in S(r, m) knows that if it is in S, then ϕ holds. Notice that if S(r, m) is empty, then
by definition ESϕ holds. The notion of CSϕ is now defined as an infinite conjunction
in terms of ESϕ. Defining Ek+1

S ϕ inductively as an abbreviation for ESEk
Sϕ, we

have
(I, r, m) |= CSϕ iff (I, r, m) |= Ek

Sϕ for k = 1, 2, . . .

It is easy to see that if S is a fixed nonrigid set G, so that S(r, m) = G for all points
(r, m), then CSϕ ≡ CGϕ (Exercise 6.13). Thus, this definition extends our original
definition of CGϕ to nonrigid sets. Let us now reconsider the case we mentioned
earlier where a nonfaulty process is guaranteed to know that it is nonfaulty. In this
case, when S is the nonrigid set of nonfaulty processes, it is clear that if process i is
nonfaulty, then BS

i ϕ is equivalent to Kiϕ, for every formula ϕ. Therefore, results we
obtain later about common knowledge among nonfaulty processes being attained in
SBA (Theorem 6.4.2 and Corollary 6.4.4) would hold also in this case had we used
the first definition of common knowledge for nonrigid sets.

Just as with CG, we can relate CS to a notion of reachability. Define a point
(r ′, m′) to be S-reachable from a point (r, m) in k steps (k ≥ 1) if there exist points
(r0, m0), (r1, m1), . . . , (rk, mk) such that (r, m) = (r0, m0), (r ′, m′) = (rk, mk) and
for all l with 0 ≤ l ≤ k − 1, there exists i ∈ S(rl, ml) ∩ S(rl+1, ml+1) such that
(rl, ml) ∼i (rl+1, ml+1). We say (r ′, m′) is S-reachable from (r, m) if (r ′, m′) is S-
reachable from (r, m) in k steps for some k ≥ 1. Now we get the following analogue
to Lemma 2.2.1:

Lemma 6.4.1 (I, r, m) |= CSϕ iff (I, r ′, m′) |= ϕ for all points (r ′, m′) that are
S-reachable from (r, m).

Proof See Exercise 6.14.

Using Lemma 6.4.1, we can also show that CS satisfies many of the properties
that we showed in Chapter 2 were satisfied by the common knowledge operator CG

(Exercise 6.14). In particular, it satisfies all the properties of S5, except possibly the
Knowledge Axiom (with Ki replaced by CS), and it also satisfies the Fixed-Point
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Axiom and Induction Rule. Moreover, if S(r, m) �= ∅ for all points (r, m) in an
interpreted system I, then CS satisfies the Knowledge Axiom in I as well. Finally,
CS satisfies the following property, of which we make frequent use:

|= i ∈ S ⇒ (BS
i CSϕ ⇔ CSϕ).

It turns out to be useful to define a nonrigid version of distributed knowledge as
well as a nonrigid version of common knowledge. If S is a nonrigid set, we define
DS as follows:

(I, r, m) |= DSϕ iff (I, r, m) |= DG(G ⊆ S ⇒ ϕ) for G = S(r, m).

Thus, for example, DN ϕ holds at the point (r, m) if the nonfaulty processes at (r, m)

have distributed knowledge of the fact that if they are nonfaulty, then ϕ holds. The
condition G ⊆ S here is analogous to i ∈ S in the definition of BS

i ϕ. Although DSϕ

is defined in terms of DGϕ, the fact that S is a nonrigid set causes DS and DG to
have quite different properties. For example, negative introspection does not hold in
general for DS , although it does for DG (Exercises 2.10 and 6.15). The differences
between DS and DG are investigated in Exercise 6.15.

Using CN , we can get analogues of Propositions 6.1.2 and 6.1.3 for SBA. Just
as with coordinated attack, to get the result for nondeterministic protocols, we must
assume that the context is nonexcluding.

Theorem 6.4.2 Let (γ, π) be a ba-compatible interpreted context (resp., ba-
compatible nonexcluding interpreted context) and let P be a deterministic protocol
(resp., deterministic or nondeterministic protocol). If I = Irep(P, γ, π) satisfies
σ sba, then I |= decidingN (y) ⇒ CN (decidingN (y)).

Proof The proof of this theorem is, not surprisingly, similar to that of Proposi-
tions 6.1.2 and 6.1.3. We leave details to the reader (Exercise 6.16).

To simplify the discussion, for the rest of this chapter we focus on deterministic
protocols for Byzantine agreement, so that we do not have to carry around the as-
sumption that the context is nonexcluding. However, we can extend all the results
here to the case of nondeterministic protocols if we restrict to nonexcluding contexts
(which, as we have said before, seems to be a very natural assumption in practice).

Corollary 6.4.3 Let (γ, π) be a ba-compatible interpreted context and let P be a
deterministic protocol. If I = Irep(P, γ, π) satisfies σ sba, then I |= decidingi (y) ⇒
BN

i CN (decidingN (y)).
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Proof Note that, by Simultaneity, we have

I |= decidingi (y) ⇒ BN
i (decidingN (y)).

The result now follows easily from Theorem 6.4.2 (Exercise 6.17).

Theorem 6.4.2 states that it is valid in a system I satisfying σ sba that whenever
the nonfaulty processes decide on the value y, then the fact that they are deciding
is common knowledge among the nonfaulty processes, that is, CN (decidingN (y))

holds. The theorem tells us that, just as in the case of coordinated attack, common
knowledge plays a fundamental role in SBA. Unlike coordinated attack though, in
the contexts of interest to us for SBA, common knowledge will be attainable. Our
interest lies in how long it will take to attain it.

In the coordinated attack problem we required that the generals attack only if
at least one message is delivered; as a consequence, we could prove a corollary to
Proposition 6.1.2 showing that an attack requires common knowledge of the fact that
at least one message has been delivered. In the case of SBA, the processes are not
allowed to decide on the value 1 when all initial preferences are 0. This implies that
when they decide on the value 1 it must be the case that some process has an initial
preference of 1. We thus obtain the following corollary of Theorem 6.4.2.

Corollary 6.4.4 Let (γ, π) be ba-compatible and let P be a deterministic protocol.
If I = Irep(P, γ, π) satisfies σ sba, then I |= decidingN (y) ⇒ CN (∃y).

Note that we can also prove that CN (delivered) must hold when the processes de-
cide. But in the contexts of most interest to us here, communication is reliable and
immediate. In these contexts there is no difficulty attaining CN (delivered). In fact,
if I = Irep(P, γ, π), where P is a protocol that requires that every process send a
message in the first round and (γ, π) is a context where communication is reliable
and immediate, then CN (delivered) holds at time 1 in every run of I.

We remark that neither Theorem 6.4.2 nor Corollary 6.4.4 would have held
in the case of general-omission failures had we used the first definition of common
knowledge for nonrigid sets (see Exercise 6.19). On the other hand, there are variants
of SBA for which the first definition is appropriate (see Exercise 6.20).

6.5 Attaining SBA

Corollary 6.4.4 shows that attaining common knowledge that some process had initial
preference y is necessary in order to decide on the value y. One of our goals here is
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to show that it is a sufficient condition as well, by describing a program that attains
SBA by deciding which of CN (∃0) or CN (∃1) holds.

Let decidedi be an abbreviation of decidedi (0)∨ decidedi (1), so that decidedi is
true if process i has made a decision. Process i’s program would have the following
form:

case of
if ¬decidedi ∧ BN

i CN (∃0) do decidei (0)

if ¬decidedi ∧ ¬BN
i CN (∃0) ∧ BN

i CN (∃1) do decidei (1)

· · ·
The parts of the program that are not shown (the “. . .”) describe the actions that
should be taken in case neither BN

i CN (∃0) nor BN
i CN (∃1) holds. We assume that

none of these actions include decidei (0) or decidei (1); thus, process i decides on a
value only in the first two lines of the program. The first two lines of the program
are not symmetric in the role of 0 and 1. Indeed, it is possible that BN

i CN (∃0) and
BN

i CN (∃1) could both hold; the asymmetry assures that in this case all the agents
decide on the value 0, rather than some deciding on the value 0 and some deciding
on the value 1. As it stands, this program is not a (standard) program of the form
introduced in Chapter 5; in standard programs, we do not allow tests for knowledge.
This is what we call a knowledge-based program. We discuss such programs in
detail in Chapter 7 and, in particular, present a knowledge-based program for SBA
along the lines of this program. Here we discuss this program at an intuitive level,
as motivation for what we do in the rest of this chapter.

Informally, we can argue that for a program of this form, provided that the
decision property holds (so that all nonfaulty processes do eventually decide), the
agreement, validity, and simultaneity properties must hold as well. By the properties
of BN

i and CN discussed in Section 6.4, if i is nonfaulty at a point (r, m), then
(I, r, m) |= BN

i CN (∃1) ⇒ ∃1, and ∃1 clearly does not hold if no process has initial
preference 1. Hence, if all processes have initial preference 0, then the processes
cannot decide on the value 1. A similar comment applies when we reverse the roles
of 0 and 1. Therefore, if the processes do decide, then the validity property must hold.
For the simultaneity and agreement properties, suppose i and j are nonfaulty, m is
the first round of r where some nonfaulty process makes a decision, and i decides
on the value 0 at round m. According to the program, this means that BN

i CN (∃0)

must hold. Using the properties of CN discussed in Exercise 6.14, it follows that
(I, r, m) |= BN

i CN (∃0) ⇒ CN (∃0) and (I, r, m) |= CN (∃0) ⇒ BN
j CN (∃0). Thus,
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j also decides on the value 0 in round m. Similar arguments can be used to show
that if i decides on the value 1 at round m, then so does j . These informal arguments
can be completely formalized once we give precise semantics to knowledge-based
programs; we defer further discussion of this issue to Section 7.4 (see, in particular,
Theorem 7.4.1). We now turn our attention to the problem of attaining common
knowledge.

We are interested not only in finding protocols that attain SBA, but in finding
ones that attain SBA as soon as possible, in a sense to be made precise shortly.
Our discussion suggests that this reduces to finding protocols that attain common
knowledge of some initial preference as soon as possible. In this section, we focus
on the problem of how soon such common knowledge can be attained in three contexts
of interest. These are contexts where communication is reliable and immediate, and
where, in addition, processes suffer either (a) crash failures, (b) sending-omission
failures, or (c) general-omission failures. In the literature these three failure types
have been called benign, since for these failure types the processes are not “actively”
trying to disrupt the system.

We begin by defining the three contexts of interest, γ cr , γ som, and γ gom, that
capture crash failures, sending-omission failures, and general-omission failures, re-
spectively. Actually, each of these is not a single context, but a family of contexts, one
for each pair (n, t) with t < n. The appropriate n and t should always be clear from
context. We denote the set {γ cr, γ som, γ gom} by �sba. For fm ∈ {cr, som, gom}, the

context γ fm has the form (P
fm
e , G0, τ, True). Thus, these contexts differ only in the

environment’s protocol. All these contexts are recording message-passing contexts
(as defined in Example 5.2.1). In particular, this means that the processes’ local states
are histories, so that the processes have perfect recall. We assume that process i’s
initial state has the form xi , where xi represents i’s initial preference. We take the
environment’s state to be of the form ((x1, . . . , xn), h), where h is the sequence of
joint actions performed thus far. The set G0 of initial global states consists of the 2n

tuples of the form (((x1, . . . , xn), 〈 〉), x1, . . . , xn).
As in all message-passing contexts, the processes’ actions consist of sending

messages and internal actions; the only internal action we allow here, however, is
decidei . (We could, of course, allow other internal actions, but decidei is the only
internal action necessary for designing a protocol that attains SBA.) We assume that
the environment’s actions have the form (ae1, . . . , aen), where aei is either blocki (Q)

or (faili , blocki (Q)), for some subset Q of processes. Intuitively, blocki (Q) results
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in the processes in Q not receiving i’s messages; (faili , blocki (Q)) results in a situ-
ation where process i fails and the only processes to receive its last message before
failing are the processes not in Q. We assume that τ is such that all messages sent by
nonfaulty processes to nonfaulty processes are delivered in the same round they are
sent. (Note that message delivery here is the result of send actions by the processes;
we do not assume that the environment performs deliver actions.) It is the environ-
ment’s protocol that captures the type of faulty behavior allowed and describes what
happens to messages sent by or to faulty processes.

All that remains is to describe the environment’s protocol in each of these three
contexts. We start with the crash-failure case. We assume that any message sent by
a nonfaulty process to a nonfaulty process is received in the same round it is sent.
That is, aei is block(∅) if i is nonfaulty. Thus, the only interesting thing that the en-
vironment can do is to decide which processes fail, when they fail, and the subset of
processes that receive a message from a failed process in the round that it fails. Since
we are considering crash failures, if a process fails in round m, it sends no messages in
later rounds. P cr

e can now be easily described: in local state se, this protocol nonde-
terministically performs an action (ae1, . . . , aen), where aei has the form blocki (Q)

or (faili , blocki (Q)), with the restrictions that (1) if i has not failed yet according
to se, then the component aei of Pe(se) is either blocki (∅) or (faili , blocki (Q)), for
some arbitrary subset Q of processes, and (2) if process i has already failed according
to se, then the component aei of Pe(se) must be blocki ({1, . . . , n}), and (3) the total
number of failures cannot exceed t . The effect of clause (2) is to guarantee that no
process receives messages from a process after the round in which it crashes. Thus,
we are modeling crashed processes as if they continue to function, although their
attempts at communication do not succeed. We could have chosen other ways of
modeling the situation (for example, by assuming that once a process crashes, its
local state becomes a distinguish crashed state); our choice results in a smoother
transition to omission failures.

In the sending-omissions failure case, the environment’s protocol P som
e is the

same as P cr
e , except that we modify clause (2) to allow aei to have the form blocki (Q)

after process i has failed, for any subset Q of processes. That is, some (perhaps even
all) messages sent by a process after it has suffered a sending-omission failure may
still be received.

In the general-omissions failure case, the environment’s protocol P
gom
e is the

same as P som
e , except that now we allow aei to have the form blocki (Q) for Q �= ∅

even if i has not failed, with the restriction that if i has not failed, then all the processes
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in Q must be ones that have already failed. This is how we allow the environment to
stop faulty processes from receiving messages. Thus, messages can be blocked by a
fault in either the sender or the receiver.

This completes the description of the three contexts of interest. Since all these
contexts share a common global state space, we can define a single interpretation
π sba such that (γ, π sba) is ba-compatible for γ ∈ �sba.

Now that we have defined these contexts, we can formalize our discussion from
Section 6.3 stating that SBA can be attained in t + 1 rounds but not any faster.

Theorem 6.5.1 There are deterministic protocols that attain SBA in t + 1 rounds
in each of the contexts in �sba.

Theorem 6.5.2 If P is a deterministic protocol that satisfies σ sba in a context
γ ∈ �sba, r is a failure-free run in Rrep(P, γ ), and P attains SBA in t ′ rounds in
run r , then t ′ ≥ t + 1.

As we said earlier, our main interest lies in finding protocols that attain SBA as
soon as possible in the contexts in �sba. We wish this to be true in every run, not
just the failure-free runs. Moreover, we want to characterize how soon processes
can decide in these contexts. A knowledge-based analysis will help us do this. As
a by-product of our analysis, we provide proofs of Theorems 6.5.1 and 6.5.2 in the
case of crash failures.

We first need some means of comparing the performance of two protocols. Given
two protocols P and P ′ and a context γ ∈ �sba, we say that a run r ∈ Rrep(P, γ )

and a run r ′ ∈ Rrep(P ′, γ ) are corresponding runs if they have the same initial
state (i.e., r(0) = r ′(0)) and for all rounds m, the environment performs the same
action at round m in r and r ′. Since the environment performs the same actions
in two corresponding runs, this means that the same processes fail at the same
times in each of them. If P is a deterministic protocol and γ ∈ �sba, then a
run of Rrep(P, γ ) is completely determined by its initial state and the actions per-
formed by the environment. Thus, if P and P ′ are both deterministic protocols and
r ∈ Rrep(P, γ ), then we can talk about the corresponding run r ′ ∈ Rrep(P ′, γ ).

Using the notion of corresponding runs, we can compare the performance of
different protocols. Assume that γ ∈ �sba and that P and P ′ are deterministic
protocols that satisfy σ sba in (γ, π sba). We say that P dominates P ′ if for every
run r ∈ Rrep(P, γ ), if the nonfaulty processes decide in round m of r , then they
decide no earlier than round m of any corresponding run r ′ ∈ Rrep(P ′, γ ). P strictly
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dominates P ′ if P dominates P ′ and P ′ does not dominate P . A protocol is called
optimal for SBA in context γ if it is not strictly dominated by any other protocol for
SBA in this context. Finally, a protocol P is called an optimum protocol for SBA
in γ if P dominates all other protocols for SBA in this context.

We want to show that optimum protocols for SBA exist, and to find them. As
a first step, we define a protocol that is optimum as far as attaining knowledge and
common knowledge of certain facts of interest.

As we noted, in the knowledge-based program informally presented at the be-
ginning of this section, we did not describe what happens if neither BN

i CN (∃0) nor
BN

i CN (∃1) holds. Intuitively, if this is the case, then process i should send the other
processes messages. But what should these messages say? As we now show, to
attain common knowledge as quickly as possible, the best thing to do is for the pro-
cesses to tell each other everything they know. We make this precise by considering
a particular protocol called the full-information protocol. The protocol for process i,
denoted FIPi , is simple: in local state �, process i performs the action sendalli(local
state). This action has the effect of sending each process other than i the message �

if process i’s local state is �.
We use FIP to denote the joint protocol (FIP1, . . . , FIPn). Notice that FIP is

a communication protocol; the only actions are the sending of messages. Running
FIP, the processes tell each other everything they know at every step. This suggests
that processes attain knowledge about the system at least as fast running FIP as they
would with any other protocol. As we now show, this is indeed the case.

We say that formula ϕ is determined by the initial state in a ba-compatible
interpreted system I if for every point (r, m) in I, the truth of ϕ at (r, m) is uniquely
determined by the initial global state r(0). Note that in ba-compatible interpreted
systems, the formulas ∃0 and ∃1 are determined by the initial state. We say that ϕ is a
basic formula if it is of the form Kiψ , DN ψ , CN ψ , or BN

i ψ , where ψ is determined
by the initial state.

We can now make precise our intuition that FIP is an optimum protocol for
attaining knowledge.

Theorem 6.5.3 Assume that γ ∈ �sba and that ϕ is a basic formula. Also assume
that P is a deterministic protocol, I = Irep(P, γ, π sba), and I ′ = Irep(FIP, γ, π sba).
Let r ∈ Rrep(P, γ ) and r ′ ∈ Rrep(FIP, γ ) be corresponding runs. Then for all
m ≥ 0, if (I, r, m) |= ϕ then (I ′, r ′, m) |= ϕ.

Proof See Exercise 6.24.
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Corollary 6.5.4 If γ ∈ �sba and I = Irep(FIP, γ, π sba), then for all runs r in I,
there is a time m ≤ t + 1 such that (I, r, m) |= CN (∃0) ∨ CN (∃1).

Proof Fix γ ∈ �sba and let r be a run in Irep(FIP, γ, π sba). By Theorem 6.5.1,
there is a protocol P that attains SBA by round t + 1 in context γ . Let r ′ be
the run corresponding to r in I ′ = Irep(P, γ, π sba). Suppose that the processes
decide on the value y in round m ≤ t + 1 of r ′. By Corollary 6.4.4, it follows that
(I ′, r ′, m) |= CN (∃y). By Theorem 6.5.3, it follows that (I, r, m) |= CN (∃y).

Corollary 6.4.4 implies that attaining common knowledge of the existence of a
particular initial preference y is a necessary condition for deciding in SBA. Corol-
lary 6.5.4 shows that in the contexts in �sba, the processes attain this common knowl-
edge when running the full-information protocol. By Theorem 6.5.3, they in fact
attain it as soon as possible when running the full-information protocol. This sug-
gests that to design an optimum protocol for SBA, we should run a full-information
protocol, testing for common knowledge as we go, and decide as sketched in the
knowledge-based program at the beginning of this section. As we show in Sec-
tion 7.4, this approach indeed works. To apply this approach, however, we need
some means of testing, and preferably testing efficiently, when and whether the com-
mon knowledge holds.

It is not hard to see that the processes can compute when CN (∃y) holds. Since
the number of initial global states with given values of n and t is finite and there are
only finitely many patterns of faulty behavior that can occur in the first m rounds
for each fixed m, it follows that there are only finitely many distinct prefixes of runs

through time m. In fact, there are less than 22mn2+n such runs, even in the case
of general-omission failures (see Exercise 6.25). For similar reasons, for any fixed
local state, the set of points in which a process has this local state is also finite. As a
result, we can explicitly perform model checking as described in Section 3.2 to test
whether CN (∃y) holds. In general, this operation requires an exponential amount of
computation (as a function of n). Can we do better? That is the subject of the next
section.

6.6 Attaining Common Knowledge

In this section, we focus on two major issues. First, we study when CN (∃y) becomes
true in runs of the full-information protocol. Second, we consider how hard it is to
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decide whether CN (∃y) holds. The techniques we develop to deal with the first issue
allow us to deal with the second one as well. Our analysis focuses on the crash-failure
mode. Thus, we mainly study the interpreted system Icr = Irep(FIP, γ cr, π sba).
We start by considering two aspects of runs in the crash-failure mode that play an
important role in determining when common knowledge arises. Detailed proofs of
the technical results of Sections 6.6.1 and 6.6.2 will be given in Section 6.7.

6.6.1 Clean Rounds

A clean round is a round in which no new process failure becomes distributed knowl-
edge among the nonfaulty processes. More formally, let faulty(i) be a proposition
that holds at a point (r, m) exactly if i is faulty at that point. (We remark that in the
course of this section, we shall define a number of new propositions such as faulty(i),
and extend π sba to give them meaning.) We formally define round m to be clean in
run r in an interpreted system I if, for every process i, if (I, r, m) |= DN (faulty(i))
then (I, r, m − 1) |= DN (faulty(i)). (Notice that although we are checking for the
truth of the same formula—DN (faulty(i))—at both points, the set N may refer to
different sets of processes at each of these points.) Clean rounds resemble, but do
not coincide with, rounds in which no processes actually fail. A round in which a
process fails may be clean, provided no process nonfaulty at the end of the round
has noticed the failure. Conversely, a round in which no failure occurs might not
be clean if a failure that occurred in the previous round is discovered for the first
time in that round. Because we are dealing with crash failures, every failure will be
discovered at most one round after it has occurred (since no messages are received
from a faulty process in the rounds subsequent to its failure).

The importance of clean rounds in the crash-failure mode stems from the fact
that whatever is distributed knowledge among the nonfaulty processes at the start of a
clean round is known by all the nonfaulty processes following the clean round. (This
will be formalized in Theorem 6.7.2.) Using this observation, we can show that once
it is common knowledge that a clean round has occurred, then any formula determined
by the initial state that is distributed knowledge is also common knowledge. Thus,
after the existence of a clean round is common knowledge, common knowledge of
many new formulas can easily be attained. This statement is formalized in the next
theorem, whose proof we defer to the next section. Let clean be a formula that is true
at (r, m) if some round m′ ≤ m is clean in run r . Note that clean can be determined
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from the global state r(m), since we can reconstruct what has happened in the run
up to time m by looking at the environment’s state.

Theorem 6.6.1 If ϕ is a formula determined by the initial state, then

Icr |= (CN (clean) ∧ DN ϕ) ⇒ CN ϕ.

Proof See Section 6.7.

Since there are at most t failures, it is easy to see that one of the first t +1 rounds
of every run must be clean. Hence it is common knowledge at time t + 1 that a clean
round has occurred. Since one of ∃0 and ∃1 must be distributed knowledge among the
nonfaulty processes, we immediately get the following corollary to Theorem 6.6.1:

Corollary 6.6.2 Let r be a run of Icr . Then (Icr, r, t + 1) |= CN (∃0) ∨ CN (∃1).

As we showed earlier, SBA can be attained as soon as either CN (∃0) or CN (∃1)

holds. Therefore, in the case of crash failures, it follows from Corollary 6.6.2 that
SBA can always be attained by time t + 1. This proves Theorem 6.5.1 in the case of
crash failures.

Theorem 6.6.1 suggests that in some cases CN (∃y) may be attainable even before
time t + 1. We next consider how soon such common knowledge can occur.

6.6.2 Waste

Obviously, runs in which no failures occur are reasonably well-behaved. It may seem
natural to expect that in such runs CN (∃y) should be easy to attain, while having
many failures in a run could only make things worse. This turns out not to be the
case. For example, consider a run rbad in which process 1 detects t failures in the
first round. Since no further failures can occur or become distributed knowledge, the
second round of the run rbad must be clean. In addition, at the end of the second round
all other nonfaulty processes will know that process 1 detected t failures in round 1,
since process 1 will send a message about this fact to the other processes. It is not
hard to see that it is common knowledge at (rbad, 2) that process 1 detected t failures
in the first round (Exercise 6.29). It then follows that it is common knowledge at
(rbad, 2) that round 2 of rbad was clean. By Theorem 6.6.1, any formula determined
by the initial state that is distributed knowledge among the nonfaulty processes is
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common knowledge at (rbad, 2). In particular, this is the case for at least one of ∃0
and ∃1.

Suppose that we view SBA as a game, where an adversary is trying to force the
nonfaulty processes to take as many rounds as possible before reaching agreement by
choosing the behavior of the faulty processes appropriately. It turns out that, roughly
speaking, the adversary’s best strategy is to minimize the number of failures, since this
increases the processes’ uncertainty. As the previous example shows, the adversary’s
worst strategy is to have all the faulty processes fail right at the beginning of a run.
A closer analysis shows that, in fact, if more than m failures have become distributed
knowledge by the end of round m, then from the point of view of the ability to delay
the first clean round, failures have been “wasted.” In particular, if m + k failures are
discovered by the end of round m, then there must be a clean round by time t +1−k;
in fact, there must be a clean round between round m + 1 and round t + 1 − k.
Moreover, after the clean round, all correct processes will know that at some point
the waste was at least k.

These comments motivate the following definitions: We add t + 1 propositions
#Failed ≥ k to the language, for k = 0, . . . , t . We interpret #Failed to be the
number of processes that have failed, so that (Icr, r, m) |= #Failed ≥ k if at least k

processes have failed by the end of round m in run r . (Recall that this information is
encoded in the environment’s state.) We denote by #KnownFailed(r, m) the number
of processes whose failure is distributed knowledge among the nonfaulty processes
at the point (r, m). More formally:

#KnownFailed(r, m) =def max{k | (Icr, r, m) |= DN (#Failed ≥ k)}.

(We remark that we use #Failed ≥ k here rather than #Failed = k, since processes
do not in general know the exact number of processes that have failed, just a lower
bound on this number.) It is easy to see that the fact that process i has failed is
distributed knowledge among the nonfaulty processes at (r, m) exactly if at least one
of the nonfaulty processes knows that i has failed. Moreover, if i fails in round m

of run r , then by round m + 1 of run r all the nonfaulty processes know that i

has failed, since they do not receive messages from i in round m + 1. Note that
#KnownFailed(r, 0) = 0, since by definition no processes have failed at time 0. We
define the difference at (r, m), denoted diff (r, m), by

diff (r, m) =def #KnownFailed(r, m) − m.
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Finally, we define the waste (or the wastefulness) of a run r of Icr , denoted W(r),
by

W(r) =def max
m≥0

diff (r, m).

Since diff (r, 0) = 0, it follows that W(r) ≥ 0.
The greater the wastefulness of a run, the sooner it becomes common knowledge

that there has been a clean round. For example, if rbad is the run described at the
beginning of this subsection, where t failures are detected in round 1 by process 1,
then we have W(rbad) = t − 1, and at (rbad, 2) it is common knowledge among the
nonfaulty processes that round 2 must be clean. In general, it can be shown that in
every run r , by time t + 1 − W(r) it is common knowledge among the nonfaulty
processes that a clean round has occurred.

Theorem 6.6.3 If r is a run in Icr , then (Icr, r, t + 1 − W(r)) |= CN (clean).

Proof This follows from Theorem 6.7.4 below and the fact that a clean round is
guaranteed to occur in r by time t + 1 − W(r).

Theorem 6.6.3 tells us that at time t + 1 −W(r) it is common knowledge among
the nonfaulty processes that a clean round has occurred. In addition, Theorem 6.6.1
tells us that if ϕ is a formula determined by the initial state, and if it is common
knowledge among the nonfaulty processes that a clean round has occurred, then
DN ϕ ⇒ CN ϕ holds, that is, distributed knowledge of ϕ (among the nonfaulty
processes) implies common knowledge of ϕ. We conclude that DN ϕ ⇒ CN ϕ

holds at time t + 1 − W(r). We record this fact in the following corollary.

Corollary 6.6.4 Let r be a run of Icr . If ϕ is a formula determined by the initial
state, then (Icr, r, t + 1 − W(r)) |= DN ϕ ⇒ CN ϕ.

Since, as before, one of ∃0 and ∃1 must be distributed knowledge among the non-
faulty processes, we obtain from Corollary 6.6.4 a strengthening of Corollary 6.6.2:

Corollary 6.6.5 Let r be an arbitrary run of Icr . Then

(Icr, r, t + 1 − W(r)) |= CN (∃0) ∨ CN (∃1).

We can slightly strengthen Corollary 6.6.4 in the case that t = n−1. In this case,
a slightly more subtle analysis shows that formulas determined by the initial state
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that are distributed knowledge become common knowledge at time n − 1 − W(r)

(Exercise 6.30), that is, at time t − W(r), rather than at time t + 1 − W(r). This
gives us:

Corollary 6.6.6 Let r be a run of Icr and set T = min(t, n− 2). If ϕ is determined
by the initial state, then (Icr, r, T + 1 − W(r)) |= DN ϕ ⇒ CN ϕ.

In fact, the bound implied by Corollary 6.6.6 is tight, in that formulas that are
determined by the initial state do not become common knowledge any sooner unless
they were common knowledge to start with.

Theorem 6.6.7 Let T = min{t, n − 2}. If ϕ is a formula determined by the initial
state and m < T + 1 − W(r), then (Icr, r, m) |= CN ϕ iff (Icr, r, 0) |= CN ϕ.

Proof The claim is an immediate corollary of Lemma 6.7.7.

Corollary 6.6.6 and Theorem 6.6.7 show that the wastefulness of a run of FIP
uniquely determines when the existence of a particular initial preference becomes
common knowledge. In particular, in runs with waste t − 1, it happens after two
rounds; in runs with waste 0, it happens after t + 1 rounds. In general, it happens
after k rounds if the waste is t + 1 − k. Since attaining common knowledge of an
initial preference is a necessary and sufficient condition for attaining SBA, this gives
us a complete characterization of the number of rounds necessary to attain SBA.

These results show that the greater the wastefulness of a run, the earlier the
processes attain common knowledge. Roughly speaking, the more processes are
known to have failed, the less a nonfaulty process’s uncertainty about what can go
wrong, and hence the easier it is to attain common knowledge. This can be viewed as
illustrating a weakness of a model that presumes (common knowledge of) an upper
bound on the number of possible failures. Consider again the run rbad in which
process 1 detects t failures in round 1. We have already observed that W(rbad) =
t − 1. If some nonfaulty process in rbad has initial preference 0, then it follows
from Corollary 6.6.6 that (Icr, rbad, 2) |= CN (∃0). As we shall see, this means that
the nonfaulty processes can decide on the value 0 in round 3. Anthropomorphizing
somewhat, this means that the nonfaulty processes should be thrilled if t processes fail
in the first round. Intuitively, they are taking this as proof that no further failures will
take place. In practice, of course, if t processes fail in the first round, the processes
should expect more processes to fail.
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On the other hand, the assumption of (common knowledge of) an upper bound
on the number of possible failures is not so unreasonable in practice. A program
specification often requires that the program work correctly so long as the number of
failures is bounded and/or the type of failures is restricted. If the bounds/restrictions
are chosen appropriately, the runs of the resulting system should represent all but
some exceedingly unlikely behaviors of the physical system.

6.6.3 Computing Common Knowledge

As we promised earlier, we now consider how hard it is for a nonfaulty process
to test whether CN (∃y) holds in a run of Icr . At the end of Section 6.5, we dis-
cussed a model-checking algorithm that in general requires an exponential amount
of computation. We now discuss a much more efficient approach.

Our first observation is that computing whether CN (∃y) holds in a run of FIP
is bound to take at least exponential time (as a function of n), for what seem to
be the wrong reasons. Consider a run in which there are no failures. In this case,
each process receives a message consisting of the local state of every other process in
every round. An easy argument by induction shows that the messages sent in round k

must have length at least (n − 1)k−1. We have already observed that if there are no
failures, then CN (∃y) does not hold until time t + 1. By this time, the processes’
local states have size at least (n − 1)t+1. If n is O(t), then just reading a local state
will take exponential time!

We can solve this problem quite easily. Rather than send its local state at each
round, each process sends a short description of its local state. This message con-
veys the same information as sending the full local state, without being exponentially
long. The basic idea is that all a process needs to know is which processes communi-
cated with each other in previous rounds. This information can be represented quite
succinctly.

We represent the first m rounds of the run r of FIP in a context γ ∈ �sba in
terms of a graph G(r, m). For each process i and time k with 0 ≤ k ≤ m there
is a node 〈i, k〉 in the graph. Moreover, (1) each node of the form 〈i, 0〉 is labeled
by process i’s initial state ri(0), (2) there is an edge between nodes 〈i, k − 1〉 and
〈j, k〉 labeled “+” if j receives a message from i in round k of r , and (3) there is an
edge between nodes 〈i, k − 1〉 and 〈j, k〉 labeled “−” if j does not receive a message
from i in round k of r . If � = ri(m), let G(�) be the subgraph of G(r, m) that
describes what i has learned about the situation thus far. That is, G(�) is identical
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to G(r, m) except that some edges are missing (because i may not know that certain
messages have or have not been received) and some nodes of the form 〈j, 0〉 may
not be labeled (because i may not know some of the initial states of other processes).
Notice that G(�) has n(m + 1) nodes and size O(mn2) (that is, at most O(mn2)

nodes and edges). Thus, for the first n rounds (which turn out to be the only rounds
of interest to us), G(�) has size at most O(n3). (See Exercise 6.26 for more details
on the graph G(r, m).) Let FIP′

i be the protocol according to which process i sends
the message G(�) in local state �, rather than the message �, as in FIPi . Let FIP′
denote the joint protocol (FIP′

1, . . . , FIP′
n). In the first n rounds of runs of FIP′,

the processes’ local states are of size O(n5) (since at each step, process i sends and
receives at most n messages that have size O(n3) each, and these are recorded in
its history), which at least allows the possibility of polynomial-time algorithms for
checking when common knowledge occurs.

It should be clear from the construction of FIP′ that the processes do not lose
any information by running FIP′ rather than FIP. In particular, it is easy to show the
following theorem.

Theorem 6.6.8 Assume that γ ∈ �sba, and let ϕ be a basic formula. Let r and r ′
be corresponding runs of I = Irep(FIP, γ, π sba) and I ′ = Irep(FIP′, γ, π sba),
respectively. Then (I, r, m) |= ϕ if and only if (I ′, r ′, m) |= ϕ.

Proof See Exercise 6.28.

As we already observed (see Exercise 6.14), if i is nonfaulty, then CN (∃y) holds
iff BN

i CN (∃y) holds. Thus, the problem reduces to checking when BN
i CN (∃y)

holds. This can be easily done. First, process i computes what it knows about the
waste. That is, at the point (r, m), process i computes how many processes it knows
were faulty at the point (r, m′) for each m′ ≤ m, by checking G(ri(m)). (Note that
at (r, m), process i may know more about the processes that were faulty at (r, m′)
for m′ < m than it did at (r, m′).) It then computes its best estimate for the waste
of run r , by subtracting m′ from the number of processes it knows were faulty at
(r, m′), for all m′ ≤ m. If at the point (r, m), process i knows that the waste is at
least T + 1 − m, where T = min(t + 1, n − 2), then m ≥ T + 1 − W(r), and it
follows from Corollary 6.6.6 that for every value y for which process i knows ∃y, it
also knows that CN (∃y) holds.

For fm ∈ {cr, som, gom}, let I fm′ = Irep(FIP′, γ fm, π sba). We thus have the
following theorem.
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Theorem 6.6.9 There is an algorithm that, given input ri(m), with m < n, decides
in time polynomial in n whether (Icr′

, r, m) |= BN
i CN (∃y).

What happens in the case of sending-omission failures or the case of general-
omission failures? Although the details are beyond the scope of this book, it turns out
that we can perform a combinatorial analysis of the runs of Isom′

and Igom′
similar

to the analysis we have just carried out for Icr′
. In the case of Isom′

, we can again
show that there is a polynomial-time algorithm for testing common knowledge. In
the case of Igom′

, however, the problem of testing common knowledge is NP -hard.
(Recall that complexity-theoretic notions such as NP -hardness were discussed in
Section 3.5.) The situation is summarized by the following theorem.

Theorem 6.6.10 There is an algorithm that, given input ri(m), with m < n, decides
in time polynomial in n whether (Isom′

, r, m) |= BN
i CN (∃y). The corresponding

problem for the system Igom′
is NP -hard.

Theorem 6.6.10 shows that in the case of general-omission failures, resource-
bounded processes that are restricted to doing polynomial-time computations are
unlikely to be able compute when they have common knowledge of an initial pref-
erence. (If they could, then it would follow that P = NP , which, as we mentioned
in Section 3.5, is considered highly unlikely.) A process that did not suffer from
such resource limitations could, of course, compute when this common knowledge
arises. As we mentioned earlier, this can be done in exponential time, using the
model-checking algorithm of Section 3.2. In fact, this computation can be done in
space polynomial in n (see Exercise 6.27).

6.7 Detailed Proofs

In this section, we provide the details of some of the proofs we omitted in Section 6.6.
The results of this section are not needed elsewhere in the book.

Before beginning to prove the statements made in Section 6.6, we need a few
definitions. First, the notion of a failure pattern will play an important role in this
section. A failure pattern is a description of which processes are faulty and how
the faulty processes behave. In the case of crash failures, a failure pattern can be
represented as a set of triples of the form 〈i, m, Q〉, where i is a process, m is a round
number, and Q is a set of processes. A run r ∈ Rrep(P, γ cr) displays the failure
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pattern f if f consists of precisely those triples 〈i, m, Q〉 such that the environment
performed the action (faili , blocki (Q)) at round m of run r .

We use X = (x1, . . . , xn) to denote the list of the initial preferences of the
processes. Notice that a deterministic protocol P , a failure pattern f , and a vector X

uniquely determine a run in the context γ cr . This is the run of Rrep(P, γ cr) with
failure pattern f and initial preferences as determined by X. We denote the run
determined by P , f and X by P(X, f ).

We start with a preliminary result about distributed knowledge, which is inter-
esting in its own right. Roughly speaking, it shows that distributed knowledge of
formulas determined by the initial state cannot be gained in the case of crash failures.
(We remark that distributed knowledge can be lost. For example, suppose that in run r

of a system I, process 1 is the only process with initial preference 0, and process 1
fails in round 1 and no process receives messages from process 1. By definition, no
process is faulty at time 0, so (I, r, 0) |= DN (∃0), but (I, r, 1) �|= DN (∃0).)

Theorem 6.7.1 Suppose that I = Irep(P, γ cr, π sba) and ϕ is a formula determined
by the initial state. Then I |= ¬DN ϕ ⇒ �¬DN ϕ.

Proof Assume that (I, r, l) |= ¬DN ϕ. We want to show (I, r, m) |= ¬DN ϕ for
all m > l. It clearly suffices to show (I, r, l + 1) |= ¬DN ϕ, since once we show
this, the desired result follows by a straightforward induction. From the semantic
definition of DN ϕ, it follows that (I, r ′, l) |= ¬ϕ for some run r ′ of I such that
N (r, l) ⊆ N (r ′, l) and ri(l) = r ′

i (l) for all processes i ∈ N (r, l). Let r = P(X, f )

and r ′ = P(X′, f ′). Let f ′′ be a failure pattern such that

• f ′′ is identical to f ′ up to round l (so that 〈i, k, Q〉 ∈ f ′ iff 〈i, k, Q〉 ∈ f ′′ for
k ≤ l),

• according to f ′′, all of the processes in N (r ′, l) not in N (r, l) (if any) crash
in round l + 1 and none of their round l + 1 messages are delivered (so that
〈i, l + 1, {1, . . . , n}) ∈ f ′′ for i ∈ N (r ′, l) − N (r, l)),

• f ′′ is identical to f from round l +1 on for processes not in N (r ′, l)−N (r, l)

(so that 〈i, k, Q〉 ∈ f iff 〈i, k, Q〉 ∈ f ′′ for k ≥ l + 1, i /∈ N (r ′, l) − N (r, l)).

It is easy to see that the same processes fail in f and f ′′; hence, no more than t pro-
cesses fail in f ′′. Let r ′′ = P(X′, f ′′). Given that no more than t processes fail in f ′′,
we immediately have that r ′′ is a run of I. We claim that (a) (I, r ′′, l + 1) |= ¬ϕ,
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(b) N (r, l + 1) = N (r ′′, l + 1), and (c) ri(l + 1) = r ′′
i (l + 1) for all i ∈ N (r, l + 1).

We have (a) because r ′′(0) = r ′(0), ϕ is determined by the initial state, and
(I, r ′, l) |= ¬ϕ. Property (b) follows from the construction of f ′′. Finally, for
property (c), notice that every process i ∈ N (r, l) has the same local states at (r, l)

and at (r ′′, l), since ri(l) = r ′
i (l), and r ′

i (l) = r ′′
i (l). Therefore, all processes

in N (r, l) send the same messages (according to P ) in round l + 1 of both runs.
Furthermore, f ′′ is constructed in such a way that each nonfaulty process receives
messages from the same set of processes in round l + 1 of both runs. It thus follows
that (I, r, l + 1) |= ¬DN ϕ, and we are done.

We now examine the relationship between clean rounds, distributed knowledge,
and common knowledge. As we mentioned earlier, our interest in clean rounds
is motivated by the observation that many formulas that are distributed knowledge
before a clean round are known by all the nonfaulty processes after a clean round.
This observation is captured by the following theorem. (Recall that a formula ϕ is
stable in an interpreted system I if once true, it remains true; that is, if I |= ϕ ⇒ �ϕ;
see Section 4.4.4 and Exercises 4.18 and 4.19.)

Theorem 6.7.2 Suppose that ϕ is stable in Icr , and that (Icr, r, m − 1) |= DN ϕ.
If round m of run r is clean, then (Icr, r, m) |= EN ϕ.

Proof See Exercise 6.31.

In the interpreted system Icr , processes have perfect recall. As a consequence,
if ϕ is stable, so are EN ϕ and CN ϕ (Exercise 6.32). Since formulas determined by
the initial state are stable, Theorem 6.7.2 implies that after a clean round all processes
know all formulas determined by the initial state that were distributed knowledge at
the beginning of the round. Furthermore, Theorem 6.7.1 implies that no additional
formulas determined by the initial state will later become known. Thus, following
a clean round, all processes will forever have identical knowledge about the initial
state. As a result, once it is common knowledge that a clean round has occurred, it
is also common knowledge that the processes have an identical view of the initial
state. These observations suffice to prove Theorem 6.6.1 from the previous section.
We repeat the statement here for convenience.

Theorem 6.6.1 If ϕ is a formula determined by the initial state, then

Icr |= (CN (clean) ∧ DN ϕ) ⇒ CN ϕ.



6.7 Detailed Proofs 235

Proof Let ϕ be a formula determined by the initial state. Let (r, m) be a
point such that (Icr, r, m) |= clean ∧ DN ϕ. It follows from Theorem 6.7.1 that
(Icr, r, l) |= DN ϕ for all l ≤ m. Since (Icr, r, m) |= clean, some round l ≤ m of r

must be clean. Notice that l > 0, since round 1 takes place between times 0 and time 1.
Since (Icr, r, l − 1) |= DN ϕ, by Theorem 6.7.2 we have that (Icr, r, l) |= EN ϕ.
Since ϕ is stable, so is EN ϕ (Exercise 6.32), and therefore (Icr, r, m) |= EN ϕ. Since
Icr |= EN ϕ ⇒ EN DN ϕ (Exercise 6.33), we have that (Icr, r, m) |= EN DN ϕ. It
follows that Icr |= (clean∧DN ϕ) ⇒ EN DN ϕ. Since CN (clean) ⇒ EN CN (clean)

is valid by the Fixed-Point Axiom (which holds by Exercise 6.14), we have that
Icr |= CN (clean)∧DN ϕ ⇒ EN (CN (clean)∧DN ϕ), so from the Induction Rule we
get Icr |= (CN (clean) ∧ DN ϕ) ⇒ CN (CN (clean) ∧ DN ϕ). It is easy to check that
|= CN (CN (clean) ∧ DN ϕ) ⇒ CN ϕ. Thus, we get Icr |= (CN (clean) ∧ DN ϕ) ⇒
CN ϕ, as desired.

We next want to prove Theorem 6.6.3; thus, we want to show that by round
t + 1 − W(r) of a run r , it is common knowledge that a clean round has occurred.
We need to prove some preliminary results first.

We add t+1 propositions of the form Wcurr ≥ k, for k = 0, . . . , t to the language.
If k < t , we take Wcurr = k to be an abbreviation for (Wcurr ≥ k)∧¬(Wcurr ≥ k+1);
we identify Wcurr = t with Wcurr ≥ t . We use Wcurr to refer to the waste in
the “current” run. Thus, for example, (Icr, r, l) |= (Wcurr = k) holds exactly if
W(r) = k. Notice that since the processes generally do not know what run they
happen to be in, their knowledge about the waste is only in terms of Wcurr . We
remark that for all runs r , we have diff (r, 0) = 0 and that diff (r, l) ≤ t − 1 for
all l. Thus, 0 ≤ W(r) ≤ t − 1. Moreover, since diff (r, t + 1) < 0, it follows that
at some time l̂ between time 0 and time t the difference reaches its maximum—the
wastefulness of the run—for the last time. Round l̂+1 must be clean, since otherwise
diff (r, l̂+1) ≥ diff (r, l̂), contradicting the choice of l̂. This leads us to the following:

Lemma 6.7.3 If W(r) ≥ w then (Icr, r, t + 1 − w) |= CN (Wcurr ≥ w).

Proof Let r be an arbitrary run of Icr and suppose W(r) = w′ ≥ w. We start by
showing that (Icr, r, t + 1 − w) |= EN (Wcurr ≥ w). Let l̂ be the largest l satisfying
diff (r, l) = w′. By definition of l̂, we have #KnownFailed(r, l̂) − l̂ = w′. Since
#KnownFailed(r, l̂) ≤ t , it follows that l̂ ≤ t −w′, and hence also l̂ +1 ≤ t +1−w.
Now observe that round l̂+1 of r must indeed be clean, since diff (r, l̂+1) < diff (r, l̂).
Since #KnownFailed(r, l̂) = l̂+w′, we have that (Icr, r, l̂) |= DN (#Failed ≥ l̂+w′).
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As a result, we obtain by definition of W that (Icr, r, l̂) |= DN (Wcurr ≥ w′).
Notice that the truth of Wcurr ≥ w′ is determined by the run, so that Wcurr ≥ w′
is a stable formula. Since round l̂ + 1 of r is clean, we have by Theorem 6.7.2
that (Icr, r, l̂ + 1) |= EN (Wcurr ≥ w′). Since l̂ + 1 ≤ t + 1 − w, and since
EN (Wcurr ≥ w′) is stable (by Exercise 6.32, since Wcurr ≥ w′ is stable), it follows
that (Icr, r, t + 1 − w) |= EN (Wcurr ≥ w′). Moreover, since w′ ≥ w, we obtain
that (Icr, r, t + 1 − w) |= EN (Wcurr ≥ w), as desired.

Let r be a run with W(r) ≥ w and let r ′ be a run such that (r ′, t + 1 − w)

is N -reachable from (r, t + 1 − w). (Recall that Icr is synchronous, so that all
points N -reachable from (r, t + 1 − w) are points at time t + 1 − w.) We prove by
induction on k that if (r ′, t + 1 − w) is N -reachable from (r, t + 1 − w) in k steps,
then (Icr, r ′, t + 1 − w) |= Wcurr ≥ w. The case k = 0 is immediate, since then
r ′ = r and the claim holds by assumption. Assume that the claim is true for k, and let
(r ′, t +1−w) be N -reachable from (r, t +1−w) in k+1 steps. Let r ′′ be a run such
that (r ′′, t +1−w) is N -reachable from (r, t +1−w) in k steps and (r ′, t +1−w) is
N -reachable from (r ′′, t + 1 −w) in one step. By the induction hypothesis, we have
that (Icr, r ′′, t + 1 − w) |= Wcurr ≥ w. This means that W(r ′′) ≥ r . Therefore,
by our previous claim, we have that (Icr, r ′′, t + 1 − w) |= EN (Wcurr ≥ w). It
follows that (Icr, r ′, t + 1 − w) |= Wcurr ≥ w. It now follows from Lemma 6.4.1
that (Icr, r, t + 1 − w) |= CN (Wcurr ≥ w).

We can now use Lemma 6.7.3 to prove that the precise waste of a run becomes
common knowledge at time t + 1 − Wcurr .

Theorem 6.7.4 If W(r) = w then (Icr, r, t + 1 − w) |= CN (Wcurr = w).

Proof Given Lemma 6.7.3, it suffices to show that (Icr, r, t + 1 − w) |=
CN ¬(Wcurr ≥ w + 1). Assume by way of contradiction that (Icr, r, t + 1 − w) �|=
CN ¬(Wcurr ≥ w + 1). Then there is a point (r ′, t + 1 − w) that is N -reachable
from (r, t + 1 − w) for which W(r ′) ≥ w + 1. By Lemma 6.7.3 we have
(Icr, r ′, t +1−w′) |= CN (Wcurr ≥ w+1). Since (r, t +1−w) is N -reachable from
(r ′, t + 1 − w), it follows that W(r) ≥ w + 1. But this contradicts our assumption
that W(r) = w.

We can now prove Theorem 6.6.3, which we restate.

Theorem 6.6.3 If r is a run in Icr , then (Icr, r, t + 1 − W(r)) |= CN (clean).
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Proof Assume that W(r) = w. Then there must be a clean round in r by time
t + 1 − w (Exercise 6.35). Thus, (Icr, r, t + 1 − w) |= (Wcurr = w) ⇒ clean.
Hence, by Exercise 6.14, (Icr, r, t + 1 − w) |= CN (Wcurr = w) ⇒ CN (clean).
By Theorem 6.7.4, we know that (Icr, r, t + 1 − w) |= CN (Wcurr = w). Hence,
(Icr, r, t + 1 − w) |= CN (clean), as desired.

Finally, we prove Theorem 6.6.7, which states that formulas determined by the
initial state do not become common knowledge in a run r in Icr in fewer than
t + 1 − W(r) rounds unless they were common knowledge to start with. This result
follows from three basic lemmas. The first is somewhat technical. It states that
before time t + 1 − W(r), a point differing from the current point only in that the
last process known to have failed never fails, is N -reachable from the current point.
To make this precise, we give the following definition: Given a failure pattern f ,
the failure pattern f −i is defined to be f − {〈i, k, Q〉} if there is a triple of the form
〈i, k, Q〉 in f , and to be f if i is not designated to fail according to f . Given a run
r = FIP(X, f ), we define r−i to be FIP(X, f −i ). Finally, we say that the failure of j

is discovered at time m in a given run if time m is the first time at which j ’s failure is
distributed knowledge among the nonfaulty processes. Recall that this means that m

is the first time that some nonfaulty process knows that j is faulty. We can now show
the following lemma.

Lemma 6.7.5 Let r be a run of Icr and let T = min{t, n − 2}. If W(r) ≤ T − m

and no process failure is discovered in r at a later time than process i’s failure, then
(r, m) is N -reachable from (r−i , m).

Proof For ease of exposition, we prove the claim assuming t ≤ n − 2. The case of
t = n − 1 is left as Exercise 6.36. Thus, T = t , and we use t for T in the proof. If i

does not fail in r then r = r−i , and the claim trivially holds. So assume that i fails
in r , and let l be the round in which i’s failure is discovered in r . By assumption, no
process failure is discovered in r at a later time. If l > m then for every nonfaulty
process j ∈ N (r, m) we have rj (m) = r−i

j (m) and thus clearly (r, m) is N -reachable

from (r−i , m). It remains to prove the result for l ≤ m. We do this by induction on
k = m − l.

Case k = 0 (i.e., l = m): First suppose that some process j ∈ N (r, m) received a
message from i in round m. Then clearly j cannot distinguish (r, m) from (r−i , m),
and we are done. So suppose that no process in N (r, m) received a message from i in
round m. Let j �= j ′ be distinct processes such that j, j ′ ∈ N (r, m). Such processes
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exist by the assumption that t ≤ n − 2. Clearly, rj (m) is independent of whether
or not j ′ receives a message from i in round m. Thus, (r, m) is N -reachable from
(r ′, m), where r ′ differs from r only in that i fails in round l of r ′ (i may have failed
in round l − 1 of r and still sent messages to all the nonfaulty processes), but j ′ does
receive a message from i in round m of r ′. By our earlier arguments, since j ′ receives
a message from i in r ′, we have that ((r ′)−i , m) is N -reachable from (r ′, m). By the
transitivity of N -reachability, it follows that ((r ′)−i , m) is N -reachable from (r, m).
Finally, observe that r−i = (r ′)−i . Thus, it follows that (r−i , m) is N -reachable
from (r, m).

Case k > 0 (i.e., l < m): Assume inductively that the claim holds for k − 1. Let
Q = {j1, . . . , jh} consist of the processes in N (r, l) to which process i’s round l

messages are blocked in run r (i.e., Q = N (r, l) ∩ Q′ where 〈i, l, Q′〉 ∈ f (r)). We
prove our claim by induction on h. First observe that the case h = 0 is vacuously true,
since if h = 0, then i’s failure is discovered only at time l + 1, which contradicts our
assumption about l. Now assume that h > 0 and that the claim holds for h−1. Let r ′
be a run that is identical to r except that i fails in round l of r ′ and {j1, . . . , jh−1}
is the set of processes to which i’s round l messages are blocked in run r ′. Clearly
(r ′)−i = r−i and, by the induction hypothesis, (r−i , m) is N -reachable from (r ′, m).
Thus, all we have to do is to show that (r ′, m) is N -reachable from (r, m). We do
this by constructing two intermediate runs rh and r ′

h, and showing that (r ′, m) is
N -reachable from (r ′

h, m), which is N -reachable from (rh, m), which in turn is N -
reachable from (r, m). The construction of rh, which involves having process jh fail,
depends on the waste being small enough to give us enough freedom to play with
failures between rounds l + 1 and m. We proceed as follows.

Let rh be the run that is identical to r up to time l; furthermore, in rh, process jh

fails in round l + 1 of rh, all of the round l + 1 messages it sends are blocked, and no
other processes fail in rh after round l. We claim that no more than t processes fail
in rh. Since the number of processes that fail in rh is one more than the number of
processes that fail in r , it suffices to show that at most t − 1 processes fail in r . First
notice that the number of processes that fail in r is #KnownFailed(r, l), since if a
process failed at or before round l in r and its failure was not discovered by time l, then
its failure would have been discovered by time m, contradicting our assumption that
no process failure is discovered in r at a later time than i’s failure. Now, diff (r, l) ≤
W(r) ≤ t −m. Thus, #KnownFailed(r, l) = diff (r, l)+ l ≤ t −m+ l = t − (m− l).
Since we are assuming that l < m, we have #KnownFailed(r, l) < t . It now follows
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that there are no more than t failures in rh. Since rh has the same initial state as r

and no more than t failures, it follows that rh is a run of the system.
Clearly W(rh) ≤ t −m, since diff (rh, l′) = diff (r, l′) ≤ t −m for all l′ ≤ l, and

diff (rh, l + 1)

= #KnownFailed(rh, l + 1) − (l + 1)

= #KnownFailed(rh, l) + 1 − (l + 1)

= diff (rh, l)

≤ W(r)

≤ t − m.

Notice also that no process fails in rh after round l + 1. Thus, since r = r
−jh

h and jh

is the last process whose failure is discovered in rh, by the induction hypothesis on
k − 1 (applied with respect to jh), we have that (rh, m) is N -reachable from (r, m).

Let r ′
h be identical to rh except that i fails in round l and does send a message to

jh (although i still does not send messages to j1, . . . , jh−1 in round l of r ′
h). Choose

j ∈ N (rh, m) such that j �= jh. (Again, this is possible since we are assuming
that t ≤ n − 2.) Clearly j cannot distinguish (rh, m) from (r ′

h, m), so (r ′
h, m)

is N -reachable from (rh, m). Since r ′ = r
′−jh

h , we can now apply the induction
hypothesis for k − 1 to conclude that (r ′, m) is N -reachable from (r ′

h, m).
Thus, we have shown that (r ′, m) is N -reachable from (r ′

h, m), which is N -
reachable from (rh, m), which in turn is N -reachable from (r, m). Therefore, (r ′, m)

is N -reachable from (r, m). As we showed, this is sufficient to complete the proof.

We can use Lemma 6.7.5 and the fact that all 2n possible initial states appear in
runs of the system, to show that before time t + 1, all failure-free runs are reachable
from each other:

Lemma 6.7.6 Let T = min{t, n − 2}. If m ≤ T and both r and r ′ are failure-free
runs in Icr , then (r, m) is N -reachable from (r ′, m).

Proof Let r and r ′ be failure-free runs in Icr . We want to show that (r, m) is N -
reachable from (r ′, m). Let Q = {j1, . . . , jh} be the set of processes whose initial
states in r and r ′ differ. We prove by induction on h that (r, m) is N -reachable from
(r ′, m). If h = 0, then r = r ′ and we are done. Let h > 0 and assume inductively
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that for all failure-free runs r ′′ that differ from r ′ in the initial state of no more than
h − 1 processes, (r ′, m) is N -reachable from (r ′′, m). Let rh be a run with the same
initial state as r , in which jh fails in the first round with all of its round 1 messages
being blocked, and no other process fails. Clearly W(rh) = 0 ≤ T − m. Since we

also have r
−jh

h = r , it follows from Lemma 6.7.5 that (rh, m) is N -reachable from
(r, m). Clearly (rh, m) is N -reachable from (r ′

h, m), where r ′
h differs from rh only in

that the initial state of jh in r ′
h is as in r ′. (Notice that r ′

h is a run of the system because
all possible initial states appear in the system.) Again by Lemma 6.7.5 we have that
(r ′

h, m) is N -reachable from (̂r, m), where the initial state of r̂ is as in r ′
h, and r̂ is

failure-free. Since r̂ differs from r ′ only in the initial states of h − 1 processes, by
the induction hypothesis we have that (r ′, m) is N -reachable from (̂r, m) and, by
the symmetry and transitivity of N -reachability, we have that (r, m) is N -reachable
from (r ′, m), as desired.

Notice that in the case of crash failures, Theorem 6.5.2 is a corollary of this
lemma. For we know by Corollary 6.4.4 that in order for the nonfaulty processes
to decide on the value y, it must be the case that CN (∃y) holds. But Lemma 6.7.6
implies that CN (∃y) cannot hold in a failure-free run before time t + 1, since all
failure free runs are N -reachable from each other before this time.

The next result extends Lemma 6.7.6 to the case where there are failures. Theo-
rem 6.6.7 is a straightforward consequence of this lemma.

Lemma 6.7.7 Let T = min{t, n−2} and let r and r ′ be runs of Icr . If W(r) ≤ T −m

and W(r ′) ≤ T − m, then (r, m) is N -reachable from (r ′, m).

Proof Suppose that r and r ′ are as in the statement of the lemma. Let r1 be the
failure-free run with the same initial state as r and let r2 be the failure-free run with
the same initial state as r ′. Observe that for any run r , we have W(r−i ) ≤ W(r).
Thus, by repeated applications of Lemma 6.7.5, we have that (r1, m) is N -reachable
from (r, m) and that (r2, m) is N -reachable from (r ′, m). By Lemma 6.7.6, we have
that (r1, m) is N -reachable from (r2, m). The result now follows from the symmetry
and transitivity of N -reachability.
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Exercises

6.1 Construct a set of runs corresponding to the coordinated attack story described
in the text. Show that in the run where all the messages are delivered, after each
acknowledgment the depth of knowledge increases by one. That is, show that when B

gets A’s initial message, KB(delivered) holds; when A gets B’s acknowledgment,
KAKB(delivered) holds; when B gets A’s acknowledgment of the acknowledgment,
KBKAKB(delivered) holds; and so on. Show that at no point in this run does
C(delivered) hold.

6.2 Show that a.m.p. systems display umd, as do a.r.m.p. systems.

6.3 Show that for the nondeterministic protocol P described at the end of Sec-
tion 6.1, it is possible to construct a ca-compatible interpreted context (γ, π) such
that Irep(P, γ, π) satisfies σ ca and R(P, γ ) displays umd.

6.4 Prove Proposition 6.1.3.

6.5 Prove Proposition 6.1.4.

6.6 Let G be a set of global states. Show that if Pi is a deterministic protocol, then
there is a decision function D such that Pi is compatible with D in all systems R
over G. Show, moreover, that we can take D to be union consistent.

6.7 Prove that the decision function Dra is union consistent.

6.8 Prove that both Dpr and Dum are union consistent.

* 6.9 This exercise describes a class of scenarios in which the players reach steady
state (in the sense mentioned in Section 6.2) and attain common knowledge of the
fact that they are in steady state.

Given a set S′ of points, define Init(S′) = {r(0) | (r, m) ∈ S′ for some m ≥ 0}.
Thus, Init(S′) is a set of initial global states, and an initial global state s is in this
set exactly if there is a point (r, m) ∈ S′ such that r(0) = s. We say that a decision
function D on set S depends on initial states if Init(T ) = Init(U) implies that
D(T ) = D(U) for all T , U ⊆ S.
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Let (γ, πag)be an interpreted context for agreement, such thatγ =(Pe, G0,τ,True)
is a message-passing context in which the only actions are send actions and in
which Pe reliably delivers messages in the round they are sent. Let D be a decision
function that is defined on all subsets of points and depends on initial states in γ .

(a) Prove that there is a unique joint protocol P = (P1, P2) that implements D in
context γ . Let ID = Irep(P, γ, πag).

(b) Show that if G0 is finite, then for every run r of ID there exist actions a and b
such that the players eventually attain common knowledge of the fact that they
are in steady state and performing these actions. That is, show that

ID |= �C�(act1(a) ∧ act2(b)).

Conclude that for each run r , there is a time m such that

(ID, r, m) |= C(act1(a) ∧ act2(b)).

Thus, at some point in each run it is common knowledge what actions the
players stabilize on.

(c) Given a run r of ID , let steady(r) be the smallest m for which (ID, r, m) |=
C�(act1(a)∧act2(b)). Give an optimal bound on the size of steady(r) in ID ,
and prove that it is optimal. (Hint: consider the number of information sets
each player has initially.)

(d) Show that without the assumption that G0 is finite, the result of part (b) might
be false.

(e) Show that if we allow internal actions as well as send actions, the result of
part (b) might be false.

6.10 Suppose that we modify the coordinated attack problem so that it becomes
more like SBA by (a) assuming that each general initially either prefers to attack or
prefers not to attack, and (b) requiring that the generals do what they initially prefer
in every run where they have the same initial preference. Let (γ, π) be a context
compatible with this scenario in which the set G0 of initial global states contains all
four configurations of initial preferences. Show that if P is a protocol that attains this
modified version of coordinated attack in (γ, π), then Irep(P, γ, π) satisfies σ ca.
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6.11 Construct the tables T5, . . . , T9 missing from Figure 6.1 in Example 6.3.1.

6.12 Let S be a nonrigid set of processes in an interpreted system I. Prove that
BS

i satisfies all the S5 properties as defined in Chapter 2 (with Ki replaced by BS
i ),

except for the Knowledge Axiom. Give an example where the Knowledge Axiom
fails, and prove that BS

i satisfies the following weakening of the Knowledge Axiom:

i ∈ S ⇒ (BS
i ϕ ⇒ ϕ).

6.13 Show that if S(r, m) = G for all points (r, m) in an interpreted system I, then

(a) I |= BS
i ϕ ⇔ Kiϕ for i ∈ G,

(b) I |= ESϕ ⇔ EGϕ,

(c) I |= CSϕ ⇔ CGϕ.

6.14 This exercise considers some properties of the operator CS .

(a) Prove Lemma 6.4.1.

(b) Prove that CS satisfies all the S5 properties as defined in Chapter 2 (with Ki

replaced by CS), except for the Knowledge Axiom.

(c) Show that CS also satisfies the analogue of the Knowledge Axiom in a sys-
tem I such that S(r, m) �= ∅ for all points in I. In particular, show that our
assumption that t < n implies that CN satisfies the analogue of the Knowledge
Axiom.

(d) Prove that CS satisfies the Fixed-Point Axiom and Induction Rule of Chapter 2,
with CG replaced by CS and EG replaced by ES .

(e) Prove that |= i ∈ S ⇒ (BS
i CSϕ ⇔ CSϕ).

6.15 This exercise considers some properties of distributed knowledge for nonrigid
sets. Let S be a nonrigid set of processes. Prove that DS satisfies all the S5 properties
as defined in Chapter 2, except the Negative Introspection Axiom (i.e., it satisfies the
axioms of the system S4n, as defined in Chapter 3). Provide a counterexample to
negative introspection.
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6.16 Prove Theorem 6.4.2.

6.17 Fill in the details of the proof of Corollary 6.4.3.

6.18 Show that Theorem 6.4.2 does not hold in general for nondeterministic proto-
cols, by considering a context much like that used in Exercise 6.3.

6.19 Suppose that P is a deterministic protocol for SBA in the general-omission
failure mode such that I = Irep(P, γ gom, π sba) satisfies σ sba.

(a) Show that there are two runs r1 and r2 in I such that

(i) in both runs, process i decides on the value 0 and has the same local state
when it decides,

(ii) in r1 process i is nonfaulty, while in r2 it is faulty, and in r2 the nonfaulty
processes decide on the value 1.

(b) Use part (a) to prove that I �|= (i ∈ N ∧ decidingN (0)) ⇒ KidecidingN (0).
By way of contrast, show I |= (i ∈ N ∧ decidingN (0)) ⇒ BN

i decidingN (0).

Part (b) suggests that our definition of CN is the appropriate one for SBA. (Hint for
part (a): choose n = 2t , and construct runs that differ only in the identity of the
faulty processes and the blame for undelivered messages.)

** 6.20 Define uniform SBA just like SBA, but replace the agreement and simultaneity
requirements by

• Uniformity: All the processes that decide on a value (whether faulty or correct),
decide on the same value; moreover, their decision is performed in the same
round.

We denote the resulting specification for uniform SBA by σ usba. Uniformity may be
a reasonable requirement in the case of sending or general-omission failures; in these
cases, we may want all the processes that actually decide (even ones that may have
omitted to send or receive a message) to decide on the same value. Given a nonrigid
set S, define (I, r, m) |= E′

Sϕ if (I, r, m) |= Kiϕ for all i ∈ S(r, m). In addition,
define (I, r, m) |= C′

Sϕ precisely if (I, r, m) |= (E′
S)kϕ holds for all k > 0. (Note

that this is precisely the definition we showed in Exercise 6.19 was inappropriate for
SBA in the general-omission failure mode, when the specification does not enforce
uniformity.)
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(a) Let (γ, π) be a ba-compatible interpreted context and let P be a determin-
istic protocol. Suppose that I = Irep(P, γ, π) satisfies σ usba. Prove that
I |= decidingN (y) ⇒ C′

N (∃y).

(b) Let γ ∈ {γ cr, γ som}, let FIP be a full-information protocol, and let I =
Irep(FIP, γ, π sba). Assume that t ≤ n − 2. Prove that for all formulas ϕ, we
have I |= CN ϕ ⇔ C′

N ϕ.

(c) Let I = Irep(FIP, γ gom, π sba) and suppose that n > 2t . Prove that for all
formulas ϕ, we have I |= CN ϕ ⇔ C′

N ϕ.

6.21 What can you conclude from Exercises 6.19 and 6.20 about the attainability
of uniform SBA in the various failure modes?

6.22 We defined SBA in terms of the processes needing to decide on one of two
values: 0 or 1. There are cases in which it is natural to consider agreements on a
decision among more than two values. In the following, let many-valued SBA refer
to a variant of SBA differing from SBA only in that the processes must decide on
one of k > 2 values.

(a) Show that Corollary 6.4.4 fails for many-valued SBA.

(b) Let all(y) be a proposition that is true at a point (r, m) if all processes
have initial preference y in r . Let I be an interpreted system satisfying
the specification of many-valued SBA and suppose x �= y. Prove that
I |= decidingN (y) ⇒ CN (¬all(x)).

6.23 Define a receiving-omission failure to be one where a faulty process fails to
receive a message. Describe the context γ rom that captures receiving omissions,
and let Irom = Irep(FIP′, γ rom, π sba). Show that for every run r in Irom, we have
(Irom, r, 1) |= CN (∃0) ∨ CN (∃1). We remark that this shows that agreement is
attainable in one round if we restrict to receiving-omission faults. (Hint: find an
appropriate formula to which the Induction Rule can be applied to show that common
knowledge among the nonfaulty processes holds.)

6.24 Suppose that P is a deterministic protocol, γ ∈ �sba, R = Rrep(FIP, γ ), and
R̂ = Rrep(P, γ ). Let r and r ′ be runs in R and let r̂ and r̂ ′ be the corresponding
runs of R̂.
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(a) Prove that if ri(k) = r ′
i (k) then r̂i (k) = r̂ ′

i (k).

(b) Use part (a) to prove Theorem 6.5.3.

* 6.25 Show that there are at most 22mn2+n distinct prefixes of runs through time m

in the system Irep(FIP, γ gom, π sba). Show that there are at least 2n2−n runs through
time 1 in the system Irep(FIP, γ cr, π sba).

6.26 The communication graphs G(r, m) were used in Section 6.6.3 to present effi-
cient implementations of the full-information protocol FIP. This exercise considers
how to define succinct representations of local states using these graphs.

(a) Formally define the graph G(r, m) described in Section 6.6.3.

(b) Define the graph G(ri(m)) corresponding to what process i has learned by the
point (r, m).

(c) Describe how the graph G(ri(m + 1)) is obtained from G(ri(m)) and the
messages that i receives in round m + 1.

(d) What is the size of G(ri(m)) and what is the complexity of constructing
G(ri(m + 1))?

* 6.27 The purpose of this exercise is to show that it is possible to test whether
CN (∃y) holds at a point (r, m) of I fm′

, for fm ∈ {cr, som, gom}, using polynomial
space computations. (Recall that polynomial space and related complexity-theoretic
notions were defined in Section 3.5.)

(a) Describe an effective construction that, given a graph of the form G(ri(m)),
yields a graph of the form G(r ′, m) for some run r ′ such that ri(m) = r ′

i (m).

(b) Describe a nondeterministic polynomial space algorithm that, given as in-
put two graphs G(r ′, m) and G(r ′′, m), accepts if and only if (r ′′, m) is N -
reachable from (r ′, m) in I fm′

.

(c) Show how parts (a) and (b) can be used to test, given a graph of the
form G(ri(m)) capturing i’s local state at (r, m), whether (I fm′

, r, m) |=
BN

i CN (∃y), for y = 0, 1.
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(d) Finally, prove that testing for BN
i CN (∃y) can be performed by a polynomial

space computation in I fm′
. (Hint: use the fact that polynomial space is the

same as nondeterministic polynomial space.)

6.28 Prove Theorem 6.6.8.

6.29 Consider the run rbad described at the beginning of Section 6.6.2. Show that
in the case of either crash or sending-omission failures, at the point (rbad, 2) it is
common knowledge among the nonfaulty processes that process i detected t failures,
and that the second round is clean. (Hint: find an appropriate formula to which the
Induction Rule can be applied to show that common knowledge among the nonfaulty
processes holds.)

* 6.30 The analysis of clean rounds is slightly different for the case t = n − 1. Here,
n − 1 assumes the role that t + 1 has in the case of t ≤ n − 2. Let t = n − 1 and let
ϕ be a formula determined by the initial state.

(a) Prove that (Icr, r, n − 1) |= DN ϕ ⇒ CN ϕ. (Hint: define clean′ to be true
if either there is only one nonfaulty process or a clean round has occurred,
and show that an analogue to Theorem 6.6.1 holds for clean′. Then show that
CN (clean′) holds at time n − 1 when t = n − 1.)

(b) Prove the analogue of Theorem 6.6.3 for clean′, namely, show that for every
run r in Icr , we have (Icr, r, n − 1 − W(r)) |= CN (clean′). (Hint: show how
to modify the proofs of Lemma 6.7.3 and Theorem 6.7.4 appropriately.)

(c) Using part (b), show that (I, r, n − 1 − W(r)) |= DN ϕ ⇒ CN ϕ.

6.31 Prove Theorem 6.7.2.

6.32 In this exercise, we extend some results on stable formulas stated in Exer-
cise 4.18 to nonrigid sets. Prove that in a system where processes have perfect recall,
if ϕ is stable, then so are EN ϕ and CN ϕ. Show, however, that DN ϕ might not be
stable.

6.33 Prove that Icr |= EN ϕ ⇒ EN DN ϕ.
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6.34 Prove that W(r) depends only on the failure pattern of r for every run r

in Icr . (Hint: consider two runs r and r ′ of the full-information protocol that have
the same failure pattern, and prove by induction on m that #KnownFailed(r, m) =
#KnownFailed(r ′, m).)

6.35 Show that if W(r) = w, then there must be a clean round in r by time t+1−w.

* 6.36 Show how to modify the proof of Lemma 6.7.5 given for t ≤ n − 2 for the
case of t = n − 1.

** 6.37 While our focus here has been on the crash- and omission-failure modes, we
can prove corresponding results for the Byzantine failure mode as well.

(a) Define a context γ byz analogous to the contexts in �sba but where Byzantine
failures are allowed.

(b) Define a notion of corresponding run for the context γ byz.

(c) Prove an analogue of Theorem 6.5.3 for the interpreted context (γ byz, π sba).

6.38 The problem of weak SBA, denoted WSBA, differs from SBA in that the
validity requirement is changed so that the nonfaulty processes are required to decide
on a value v only if all initial preferences are v and no process fails.

(a) Formalize WSBA along the lines of our formalization of SBA.

(b) Prove that, just as in the case of SBA, there is no deterministic protocol P that
attains WSBA in fewer than min(n − 1 − W(r), t + 1 − W(r)) rounds in any
run r ∈ Rrep(P, γ cr).

This exercise and the next one show the essential commonality among a number of
different variants of SBA that have been considered in the literature. On the other
hand, Exercise 6.40 shows that not all variants are identical.

6.39 In the Byzantine Generals problem (BG), only one process (the source) initially
has a value, and the nonfaulty processes need to decide on this value if the source
does not fail, and on the same value otherwise. We denote by SBG the simultaneous
version of BG, where the processes are required to decide simultaneously.
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(a) Formalize SBG along the lines of our formalization of SBA.

(b) Prove that, just as in the case of SBA, there is no deterministic protocol P that
attains SBG in fewer than min(n − 1 − W(r), t + 1 − W(r)) rounds in any
run r ∈ Rrep(P, γ cr).

* 6.40 Simultaneous bivalent agreement is defined just like SBA except that the va-
lidity requirement is replaced by

• Validity′: There is at least one run in which the nonfaulty processes decide on
the value 0, and at least one in which the nonfaulty processes decide on the
value 1.

Construct a protocol for simultaneous bivalent agreement that always halts in two
rounds.

* 6.41 Eventual Byzantine agreement (EBA) is defined by dropping the simultaneity
requirement from SBA: the processes’ decisions need not be simultaneous. Suppose
that P is a protocol for EBA in the case of crash failures. Prove that

(a) there is a run r of P such that W(r) = 0 and not all processes decide before
round t + 1 in r ,

(b) for all j , there is a run r of P such that W(r) = j and not all processes decide
before round t + 1 − j in r .

* 6.42 This exercise considers optimality of protocols with respect to the EBA prob-
lem of Exercise 6.41.

(a) Define a notion of optimal and optimum protocols for EBA.

(b) Prove that no optimum protocol for EBA exists even in γ cr . (Hint: for ev-
ery y ∈ {0, 1}, design an EBA protocol that decides very quickly if at least
one nonfaulty process has initial preference y. Use the lower bounds given
in Sections 6.6 and 6.7 to prove that no protocol can dominate both of the
protocols you designed.)
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Notes

The coordinated attack problem was introduced by Gray [1978]. It has become part
of the folklore of distributed systems; a formal proof of its impossibility (by induction
on the number of messages) is given by Yemini and Cohen [1979]. Its relationship
to common knowledge was established by Halpern and Moses [1990].

A probabilistic version of the Agreement Theorem (essentially corresponding
to the second example of a union-consistent function in Section 6.2) was proved
by Aumann [1976]. Aumann’s result was the basis for a number of so-called no-
speculation theorems regarding speculative trading in the stock market, such as that of
Milgrom and Stokey [1982], showing that speculative trading was impossible under
certain conditions (along the lines of our third example). Aumann’s result was later
generalized to the case of decision functions by Cave [1983] and Bacharach [1985].
The first and third examples of union-consistent functions presented here are due to
Cave and Bacharach. The intuition we gave for union-consistency is close to that
given by Savage [1954] for the Sure Thing Principle. Moses and Nachum [1990]
discuss the relationship between union consistency and the Sure Thing Principle;
in addition, they discuss the fact that the proof of the Agreement Theorem relies
heavily on the value of the decision function on sets that are not information sets
of the players and consider the implications of this fact for the applicability of the
Agreement Theorem.

Parikh and Krasucki [1990] study conditions under which an analogue of the
Agreement Theorem holds in circumstances where there are more than two players,
and they interact in pairs (without public announcements). They show that union
consistency is not a sufficient condition in that case, but other conditions are. For
more on this and other generalizations of the Agreement Theorem, see the survey
paper by Geanakoplos [1992], as well as the work of Rubinstein and Wolinsky [1990].
Geanakoplos and Polemarchakis [1982] prove that if the set of runs is finite, then a
protocol by which players repeatedly announce their estimates of the probability of
an event e is guaranteed to lead to common knowledge of their respective estimates
of the probability of e in finite time. Exercise 6.9 is based on a more general version
of this theorem, given in Geanakoplos’s survey paper.

The Byzantine agreement problem dates back to the seminal paper of Pease,
Shostak, and Lamport [1980], and has attracted a great deal of interest in the literature.
The Byzantine agreement problem is also often referred to as the consensus problem.
A good overview of early work on Byzantine agreement, as well as further pointers to
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the literature, can be found in Fischer’s survey paper [1983]. See also [Lynch 1997]
and [Moses and Rajsbaum 2002]. The fact that requiring simultaneous agreement
makes a difference was first observed by Dolev, Reischuk, and Strong [1990].

The fact that t + 1 rounds are required to attain SBA was proved by Fischer
and Lynch [1982] for the case of Byzantine failures, by DeMillo, Lynch, and Mer-
ritt [1982] for the case of Byzantine failures with a special mechanism that allows
processes to sign the their messages in an “unforgeable” manner, and by Dolev and
Strong [1982] in the case of crash failures. The proof given in Section 6.7 (essentially
that of Dwork and Moses [1990]) simplifies and generalizes the result of Dolev and
Strong.

The relationship between SBA and common knowledge in the crash-failure mode
was established by Dwork and Moses [1990]. Their work is the source of the anal-
ysis in Sections 6.6 and 6.7. (The communication graph introduced in Section 6.6.3
is due to Merritt [1984].) This work was extended to variants of the omission fail-
ure mode by Moses and Tuttle [1988], who proved Theorem 6.6.10. Moses and
Tuttle also defined a wide class of problems, called simultaneous choice problems,
involving simultaneous actions. This class generalizes SBA and includes many re-
lated problems. They showed that appropriate common knowledge is a necessary
and sufficient condition for the solution of all such problems, and derived optimum
knowledge-based and standard programs for all of the problems in this class in the
crash- and omission-failure modes.

While nonrigid constants, whose meaning changes from world to world, have
been studied at length in the context of modal logic (see, for example, the discussion
in [Hughes and Cresswell 1968] and [Garson 1984] as well as the discussion in
Section 3.7), Dwork and Moses [1990] seem to have been the first to define common
knowledge with respect to a nonrigid set of agents. The definitions used in Section 6.4
are taken from [Moses and Tuttle 1988] (except that they used the term “indexical”
instead of “nonrigid”). A deeper exploration of the logical issues involved in using
modal operators parameterized by nonrigid sets can be found in the work of Grove
and Halpern [1991]; Moses and Roth (see [Roth 1989]) consider further applications
of nonrigid names to the analysis of distributed systems.

While our focus here has been on the crash- and omission-failure modes, as we
mentioned in Exercise 6.37 it is possible to define a notion of corresponding runs for
the Byzantine case as well. Michel [1989a, 1989b] considers optimum protocols for
SBA and analogues of the protocols FIP and FIP′ in the case of Byzantine failures.
Michel argues that for Byzantine failures, in contrast to the other failure types, any
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optimum protocol for SBA must use exponential communication. Michel also looks
at protocols from a category-theoretic perspective and proves that the full-information
is a universal element in an appropriately defined category of protocols. This can be
viewed as a generalization of Theorem 6.5.3.

Exercises 6.19 and 6.20 are taken from [Moses and Tuttle 1988] and [Neiger and
Tuttle 1993], respectively. Uniform SBA was introduced and studied by Neiger and
Toueg [1990].

The weak SBA problem of Exercise 6.38 was defined by Lamport [Lamport
1983]; Lamport and Fischer [1982] proved that t + 1 rounds are required to attain
weak SBA. The EBA problem of Exercise 6.41 was introduced by Pease, Shostak,
and Lamport [1980] and further studied by Dolev, Reischuk, and Strong [1990].
Exercises 6.38–6.41 are from [Dwork and Moses 1990], while Exercises 6.23, 6.27,
and 6.42 are from [Moses and Tuttle 1988]. A knowledge-based analysis of optimal
protocols for EBA was carried out by Halpern, Moses, and Waarts [2001].



 

Chapter 7

Knowledge-Based Programming

. . . you act, and you know why you act, but you don’t know why you
know that you know what you do.

Umberto Eco, The Name of the Rose

7.1 Knowledge-Based Programs

Our notion of standard programs, in which agents perform actions based on the results
of tests that are applied to their local state, is very simple. We argued, however, in
Chapter 5 that this notion is rich enough to describe protocols. Nevertheless, standard
programs cannot be used to describe the relationships between knowledge and action
that we would often like to capture. We already observed this to some extent in our
discussion of simultaneous Byzantine agreement in Section 6.5 (we return to SBA
in Section 7.4). The issue is perhaps best understood by considering the muddy
children puzzle again.

Recall that in the muddy children puzzle, the children are asked by the father if
they know whether they have mud on their foreheads. If so, they are supposed to
answer “Yes”; otherwise they should answer “No.” If, as in Section 2.3, we take the
proposition pi to represent “child i has mud on his forehead,” then it seems quite
reasonable to think of child i as following the program MCi :

case of
if childheardi ∧ (Kipi ∨ Ki¬pi) do say “Yes”
if childheardi ∧ ¬Kipi ∧ ¬Ki¬pi do say “No”

end case.
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Here childheardi is a primitive proposition that is true at a given state if child i

heard the father’s question, “Does any of you know whether you have mud on your
own forehead?” in the previous round. Unfortunately, MCi is not a program as
we have defined it. Besides propositional tests, it has tests for knowledge such
as Kipi ∨ Ki¬pi . Moreover, we cannot use our earlier techniques to associate a
protocol with a program, since the truth value of such a knowledge test cannot be
determined by looking at a local state in isolation.

We call a program of this form a knowledge-based program, to distinguish it from
the standard programs defined in Chapter 5. Formally, a knowledge-based program
for agent i has the form

case of
if t1 ∧ k1 do a1

if t2 ∧ k2 do a2

· · ·
end case

where the tj ’s are standard tests, the kj ’s are knowledge tests for agent i, and the aj ’s
are actions of agent i. A knowledge test for agent i is a Boolean combination of
formulas of the form Kiϕ, where ϕ can be an arbitrary formula that may include other
modal operators, including common knowledge and temporal operators. Intuitively,
the agent selects an action based on the result of applying the standard test to her local
state and applying the knowledge test to her “knowledge state.” In the program MCi

the test childheardi is a standard test, while Kipi ∨ Ki¬pi and ¬Kipi ∧ ¬Ki¬pi

are knowledge tests. In any given clause, we can omit either the standard test or
the knowledge test; thus, a standard program is a special case of a knowledge-
based program. We define a joint knowledge-based program to be a tuple Pg =
(Pg1, . . . , Pgn), with one knowledge-based program for each agent.

The muddy children example shows that knowledge-based programs are better
than standard programs in capturing our intuitions about the relationship between
knowledge and action. Even when we can capture our intuitions using a standard
program, it may be useful to think at the knowledge level. As the following example
shows, knowledge-based programs allow us to look at things in a more high-level
way, abstracting away irrelevant details.

Example 7.1.1 Consider the bit-transmission problem from the knowledge-based
perspective. The sender S’s protocol is to keep sending the bit until an acknowl-
edgment is received from the receiver R. The purpose of the acknowledgment is to
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inform S that the bit was received by R. Thus, another way to describe the sender’s
behavior is to say that S keeps sending the bit until it knows that the bit was received
by R. This can be described by the knowledge-based program BT′

S :

if ¬KS(recbit) do sendbit.

The advantage of this program over the standard program BTS in Example 5.3.1 is
that it abstracts away the mechanism by which S learns that the bit was received
by R. For example, if messages from S to R are guaranteed to be delivered in the
same round in which they are sent, then S knows that R received the bit even if S

does not receive an acknowledgment.
Now consider the receiver R, which keeps sending acknowledgments after it

receives the bit. Surely, if R knew that S received the acknowledgment, then R

would stop sending it. Thus, it makes sense to replace the standard program BTR

described in Example 5.3.1 by the knowledge-based program BT′
R:

if recbit ∧ ¬KR(recack) do sendack.

An advantage of this program is that if messages from R to S are guaranteed to be
delivered in the same round in which they are sent, then R needs to send only one
acknowledgment.

The knowledge-based framework enables us to abstract even further. The reason
that S keeps sending the bit to R is that S wants R to know the value of the bit.
The reason that R keeps sending the acknowledgment to S is that R wants S to
know that R knows the value of the bit. Thus, intuitively, S should keep sending
the bit until it knows that R knows its value. Let KR(bit) be an abbreviation for
KR(bit = 0) ∨ KR(bit = 1). Thus, KR(bit) is true precisely if R knows the value
of the bit. The sender’s behavior can be described by the knowledge-based program
BT′′

S :

if ¬KSKR(bit) do sendbit,

and the receiver’s behavior by the knowledge-based program BT′′
R:

if KR(bit) ∧ ¬KRKSKR(bit) do sendack.

This program abstracts away the manner in which S learns that R knows the value
of the bit and the manner in which R learns that S knows that R knows the value of
the bit. If messages are guaranteed to be delivered in the same round that they are
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sent, then S has to send the bit only once, and R need not send any acknowledgment.
Furthermore, if the value of the bit is common knowledge, then BT′′

S does not require S

to send any messages. In contrast, BT and BT′ require S to send messages even in
such contexts. Thus, programming at the knowledge level enables us to design more
efficient programs.

We have described the syntax of knowledge-based programs, and have provided
(by example) some intuition for how knowledge-based programs can be used to give
high-level descriptions of the agents’ behavior. It remains to give formal semantics
to knowledge-based programs. Just as we think of a standard program as inducing a
protocol that determines an agent’s actions in a given context, we also want to think of
a knowledge-based program as inducing a protocol. It is not obvious, however, how
to associate a protocol with a knowledge-based program. A protocol is a function
from local states to actions. To go from a standard program to a protocol, all we
needed to do was to evaluate the standard tests at a given local state, which we did
using interpretations. In a knowledge-based program, we also need to evaluate the
knowledge tests. But in our framework, a knowledge test depends on the whole
interpreted system, not just the local state. It may well be the case that agent i is in
the same local state � in two different interpreted systems I1 and I2, and the test Kip

may turn out to be true at the local state � in I1, and false at the local state � in I2.
To deal with this problem, we proceed as follows. Given an interpreted sys-

tem I = (R, π), we associate with a joint knowledge-based program Pg =
(Pg1, . . . , Pgn) a joint protocol that we denote PgI = (PgI

1 , . . . , PgI
n). Intuitively,

we evaluate the standard tests in Pg according to π and evaluate the knowledge tests
in Pg according to I. As in the case of standard programs, we require that π be
compatible with Pg, that is, that every proposition appearing in a standard test in Pgi

should be local to i. Note that we place the locality requirement only on the proposi-
tions appearing in the standard tests, not the propositions appearing in the knowledge
tests. We wish to define PgI

i (�) for all local states � of agent i. To define this, we
first define when a test ϕ holds in a local state � with respect to an interpreted system
I, denoted (I, �) |= ϕ.

If ϕ is a standard test and I = (R, π), then in analogy to Section 5.3, we define

(I, �) |= ϕ iff (π, �) |= ϕ.
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Since ϕ is a standard test in Pgi , it must be local to agent i, so this definition
makes sense. If ϕ is a knowledge test of the form Kiψ , we define

(I, �) |= Kiψ iff (I, r, m) |= ψ for all points (r, m) of I such that ri(m) = �.

Finally, for conjunctions and negations, we follow the standard treatment (see Sec-
tion 2.1).

Note that (I, �) |= ϕ is defined even if the local state � does not occur in I. In
this case it is almost immediate from the definitions that (I, �) |= Ki(false), so the
Knowledge Axiom fails. On the other hand, if � does occur in I, then Ki behaves in
the standard way. This follows, since if � = ri(m) for some point (r, m) in I, then
it is not hard to show that (I, �) |= Kiψ iff (I, r, m) |= Kiψ (Exercise 7.1).

We can now define

PgI
i (�) =

{ {aj | (I, �) |= tj ∧ kj } if {j | (I, �) |= tj ∧ kj } �= ∅
{�} if {j | (I, �) |= tj ∧ kj } = ∅.

Intuitively, the actions prescribed by i’s protocol PgI
i are exactly those prescribed

by Pgi in the interpreted system I.
Let Pg be a standard program. Then Pg is also a knowledge-based program, with

no knowledge tests. Consider an interpreted system I = (R, π). We can associate
a protocol with Pg in two ways. We can think of Pg as a standard program, and
associate with it the protocol Pgπ , or we can think of Pg as a knowledge-based
program and associate with it the protocol PgI . Our definitions guarantee that these
protocols are identical (Exercise 7.2).

The mapping from knowledge-based programs to protocols allows us to de-
fine what it means for an interpreted system to be consistent with or to represent
a knowledge-based program in a given interpreted context by reduction to the cor-
responding definitions for protocols. Thus, we say that an interpreted system I is
consistent with the knowledge-based program Pg in an interpreted context (γ, π)

if π is compatible with Pg and if I is consistent with the protocol PgI in (γ, π);
similarly, I represents Pg in (γ, π) if π is compatible with Pg and if I represents
PgI in (γ, π). This means that to check if I represents (resp., is consistent with) Pg,
we check if I represents (resp., is consistent with) the protocol obtained by evaluat-
ing the knowledge tests in Pg with respect to I itself. Because of the circularity of
the definition, it is not necessarily the case that there is a unique interpreted system
representing Pg in a given interpreted context. There may be more than one or there
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may be none, as we shall see in Section 7.2. In contrast, there can be at most one
interpreted system that represents a standard program.

Just as in the case of standard programs, we say that a knowledge-based pro-
gram Pg satisfies the specification σ , or is correct with respect to σ , in the interpreted
context (γ, π), precisely if every interpreted system representing Pg in (γ, π) satis-
fies σ . Of course, there may be more than one such system, or none. (We can also
define a notion of strong correctness for knowledge-based programs analogous to the
definition we gave for standard programs. This notion is discussed in Section 7.5.)

We have already seen some examples that demonstrate that knowledge-based
programs can be viewed as programs in a very high-level programming language.
While this means that knowledge-based programming can be a powerful tool, it
has one significant disadvantage: knowledge-based programs are not directly “exe-
cutable.” To “execute” a program, a process has to be able to evaluate the tests with
respect to its local state, but knowledge tests cannot be evaluated with respect to the
local state. Thus, we need a way to implement knowledge-based programs by both
protocols and standard programs.

We say that protocol P is an implementation of , or implements, the knowledge-
based program Pg in interpreted context (γ, π) if the system IP = Irep(P, γ, π)

represents Pg in (γ, π), that is, if IP = Irep(PgIP , γ, π). Intuitively, P imple-
ments Pg if P and Pg prescribe the same actions in the interpreted system IP that
represents P in (γ, π). A direct consequence of this definition is that if Pg satisfies
some specification σ in (γ, π), then so does P . We remark that this is very close to,
but not quite the same as, requiring that P = PgIP . Our definition depends only on
behaviors that do in fact arise in runs of P , while the latter definition would require
that the protocols prescribe the same actions in all states, including ones that do not
arise in IP .

Note that a knowledge-based program Pg is implemented by some protocol P

in the interpreted context (γ, π) precisely if there is some interpreted system that
represents Pg in (γ, π). To see this, note that if P implements Pg in (γ, π), then,
by definition, Irep(P, γ, π) represents Pg. Thus, I = Irep(PgI, γ, π). On the other
hand, if I represents Pg in (γ, π), then, by definition, I = Irep(PgI, γ, π). Thus,
PgI implements Pg in (γ, π).

We can now define implementation by standard programs. We say that a standard
program Pgs is an implementation of , or implements, the knowledge-based program
Pgkb in the interpreted context (γ, π) if the protocol Pgπ

s , obtained from Pgs by using
the interpretation π , implements Pgkb in (γ, π). Note that, in general, just as there
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may not be a unique interpreted system representing a knowledge-based program,
there may be more than one standard program implementing a knowledge-based
program, or there may be none.

Example 7.1.2 Let us return to the bit-transmission problem once more. Recall
from Example 5.4.1 that we considered two specifications: σ ′ is the run-based
specification �recbit ∧ ��¬sentbit, and σ ′′ is the knowledge-based specification
�KSKR(bit) ∧ �(KSKR(bit) ⇒ ¬©sentbit). We saw a standard program BT for
the bit-transmission problem in Example 5.3.1, and two knowledge-based programs,
BT′ and BT′′, in Example 7.1.1. We observed in Example 5.4.1 that BT satisfies both
σ ′ and σ ′′ in the interpreted context (γ bt

fair, π
bt), where all messages sent infinitely

often are eventually delivered.
What can we say about the knowledge-based programs? We are interested in two

questions: whether the standard program BT implements BT′ and BT′′, and whether
BT′ and BT′′ satisfy the specifications σ ′ and σ ′′. The answer, of course, depends
on the context. We sketch some aspects of the situation here, leaving details to the
reader (Exercise 7.3).

Consider the interpreted context (γ bt
fair, π

bt). The standard program BT imple-

ments both of the knowledge-based programs BT′ and BT′′ in (γ bt
fair, π

bt). We shall
give a result (Theorem 7.2.4) from which it follows that there is a unique inter-
preted system representing each of BT′ and BT′′ in this interpreted context; thus,
this interpreted system must in fact be Irep(BT, γ bt

fair, π
bt). Since, as we showed in

Example 5.4.1, BT satisfies both σ ′ and σ ′′ in (γ bt
fair, π

bt), it follows that BT′ and BT′′
satisfy both specifications in this interpreted context as well.

7.2 Getting Unique Representations

As we mentioned in the previous section, in general there is no unique interpreted
system that represents a knowledge-based program in a given context. The following
example illustrates how this can occur.

Example 7.2.1 Suppose that we have a system consisting of only one agent, agent 1,
who has a bit that is initially set to 0. Suppose that agent 1 runs the following simple
knowledge-based program NU (for “not unique”):

if K1(�(bit = 1)) do bit := 1.
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Intuitively, bit := 1 has the effect of assigning the value 1 to the bit. According to NU,
agent 1 sets the bit to 1 if she knows that eventually the bit is 1, and otherwise does
nothing. It should be clear that there are two ways that agent 1 could be consistent
with the program: either by never setting the bit to 1 or by setting the bit to 1 in the first
round. We can formalize this by considering the context γ nu = (Pe, G0, τ, True),
defined as follows: We take agent 1’s local state to be either 0 or 1; we think of this
local state as representing the value of the bit. We take the environment’s state to
always be λ (the environment plays no role in this example). Since the bit is initially 0,
we take G0 = {(λ, 0)}. We assume that the environment’s action is always �, so
Pe(λ) = �. The agent’s action is either � or bit := 1. The effect of τ is to reset the
bit as appropriate; thus, τ(�, �)(λ, k) = (λ, k) and τ(�, bit := 1)(λ, k) = (λ, 1).
This completes the description of γ nu. Finally, we define πnu in the obvious way:
πnu((λ, k))(bit = 1) is true exactly if k = 1.

Let r0 be the run where agent 1 does nothing, starting in the initial state (λ, 0);
thus, r0(m) = (λ, 0) for all m ≥ 0. Let rj , for j ≥ 1, be the run where agent 1 sets
the bit to 1 in round j , after starting in the initial state (λ, 0); thus, rj (m) = (λ, 0)

for m < j and rj (m) = (λ, 1) for m ≥ j . It is easy to see that the only runs that
we can have in context γ nu are of the form rj . It is also not hard to see that no run
of the form rj for j > 1 can be in an interpreted system consistent with NU. For if
rj is in an interpreted system I consistent with NU, then since agent 1 sets the bit
to 1 in round j of rj , it must be the case that (I, rj , j − 1) |= K1(�(bit = 1)).
But clearly (rj , 0) ∼1 (rj , j − 1). Thus, (I, rj , 0) |= K1(�(bit = 1)). Since I is
consistent with NUI , this means that agent 1 should have set the bit to 1 in round 1
of rj , a contradiction. Thus, the set of runs in any interpreted system consistent with
NU must be a nonempty subset of {r0, r1}. Let Rj be the system consisting of the
single run rj , for j = 0, 1, and let Ij = (Rj , πnu). We claim that both I0 and I1

represent NU in the context (γ nu, πnu). Clearly, in I1, agent 1 knows �(bit = 1),
since it is true at every point in I1, so the only possible action that she can take is
to set the bit to 1 in round 1, which is precisely what she does in r1. On the other
hand, in I0, agent 1 never knows �(bit = 1), since it is false at all points in r0. This

means that according to the protocol NUI0
, agent 1 never sets the bit to 1, so the

only run consistent with NUI0
is r0. It follows that both I0 and I1 represent NU in

(γ nu, πnu). In fact, it is easy to see that if R2 = {r0, r1}, then the interpreted system
I2 = (R2, πnu) is not consistent with NU (Exercise 7.4), so that I0 and I1 are the
only interpreted systems consistent with NU.
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Now consider the program that intuitively says “set the bit to 1 exactly if you
know you will never set the bit to 1.” No interpreted system can be consistent with this
program, since it amounts to saying “set the bit to 1 exactly if you know you should
not.” We can capture this intuition by means of the following knowledge-based
program NU′:

if K1(¬�(bit = 1)) do bit := 1.

There can be no interpreted system consistent with NU′ in the context (γ nu, πnu):
Arguments similar to those used before show that the only runs that can be in an
interpreted system consistent with NU′ are r0 and r1. Thus, I0, I1, and I2 are the
only possible candidates for interpreted systems consistent with NU′. It is straight-
forward to show that none of these interpreted systems in fact are consistent with
NU′ (Exercise 7.4). Hence, there is no interpreted system that is consistent with or
represents NU′. We take this to mean that the program NU′ is inconsistent with the
interpreted context (γ nu, πnu).

In Example 7.2.1, we saw programs that determine an agent’s current actions
as a function of his knowledge about the actions that he will perform in the future.
This direct reference to knowledge about the future seemed to make it possible to
define both nonsensical programs such as NU′, which cannot be implemented by any
standard program, and ambiguous programs such as NU, which can be implemented
in a number of different ways. We remark that the explicit use of future temporal
operators such as � is not crucial to this example. Essentially the same effect can be
achieved without such operators (Exercise 7.5). The programs in Example 7.2.1 are
somewhat contrived, and were designed specifically for the purpose of this example.
We do not come across such programs in common applications. We now consider an
example from the realm of robot motion planning in which a program with multiple
implementations arises in a fairly natural setting.

Example 7.2.2 Consider a mobile robot that travels on a track. For simplicity, we
assume that the track has discrete locations numbered 0,1,2,. . . The robot starts out
at location 0 and can move only in the positive direction. Our robot has an imperfect
location sensor. For every location q ≥ 0, it is guaranteed that whenever the robot
is at location q, the sensor-reading α will be one of {q − 1, q, q + 1}. This sensor
provides the robot with information about its current location. We assume that the
robot’s motion is determined by the environment, and that the only actions the robot
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can take are halt and the null action �. Once the robot performs the halt action, it no
longer moves. We are interested in studying programs that the robot can use to ensure
that it halts in a given region. We assume that the robot’s local state consists only of α,
the current reading of the sensor. Moreover, we assume that the environment can, at
any given point, choose either to move the robot one step in the positive direction or
to let it stay at the same location. In addition, the environment determines the robot’s
sensor reading, subject to the constraint that the reading is within ±1 of the robot’s
actual position. Finally, we assume that the environment is fair, in the sense that in
runs in which the robot never performs the halt action, the robot moves an infinite
number of times.

To reason about this system, we use a language with five primitive propositions:
halted, p, p′, α = 3, and α ∈ {3, 4, 5}, where, intuitively, halted is true if the robot
has halted, p is true if the robot’s location is one of {2, 3, 4}, p′ is true if the robot’s
location is one of {2, 4, 6}, α = 3 is true if the robot’s sensor reading is 3, and
α ∈ {3, 4, 5} is true if the robot’s sensor reading is one of 3, 4, or 5. Let (γ, π) be a
recording context corresponding to this description. The formal definition of (γ, π)

is left to the reader (Exercise 7.6).
Suppose that the robot follows the trivial program P�,

if true do �,

and hence never performs the halt action. Let I� be the interpreted system repre-
senting this program in the interpreted context (γ, π). It is straightforward to verify
that I� |= (Krp ⇔ α = 3), so that the only points of I� at which the robot
knows p are those at which the sensor reading is 3. In addition, it can be shown that
I� |= ¬Krp

′: the robot never knows p′ in I� (Exercise 7.6).
Suppose that the robot has a goal of stopping in the region {2, 3, 4} (intuitively,

at a location where p is true). Formally, we can capture this goal by the specification
σmp (where the superscript mp stands for motion planning), which is defined by the
formula �(halted ⇒ p) ∧�(halted). The first conjunct of σmp, which is called the
safety property, says that the robot halts only in the goal region, while the second
conjunct, which is called the liveness property, says that the robot eventually halts.
Note that σmp is a run-based specification.

How can we design a program to satisfy this specification? Intuitively, as long as
the robot does not know that p holds, it should not halt. On the other hand, once the
robot does know that p holds, it should be able to safely perform the halt action and
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stop in the desired region. Thus, Krp seems to be both a necessary and a sufficient
condition for stopping in the goal region.

Consider the knowledge-based program MP

if Krp do halt.

Clearly MP satisfies the safety property, in that in any interpreted system that repre-
sents it, the robot halts only in the goal region. Does it satisfy the liveness property?
Not necessarily.

Recall that Krp is guaranteed to hold when α = 3. This follows directly from
the precision of the sensor. This suggests that the following standard program,
denoted MPs ,

if α = 3 do halt,

should be an implementation of MP in (γ, π). Indeed, it is not hard to check that
this is the case (Exercise 7.6). Unfortunately, the program MPs does not satisfy the
liveness condition of σmp in (γ, π). There are many runs of MPs in this context in
which α �= 3 holds throughout the run, despite the fact that the robot crosses the goal
region and exits it. It follows that, in spite of its “obviousness,” the knowledge-based
program MP does not satisfy the liveness condition of σmp in (γ, π) either.

Now consider the program MP′
s :

if α ∈ {3, 4, 5} do halt.

This program guarantees that the robot will not stop before reaching position q = 2,
because α ∈ {3, 4, 5} is not satisfied when q < 2. Moreover, when following this
program, the robot is guaranteed to stop if it ever reaches the position q = 4, since at
that point the sensor reading must satisfy α ∈ {3, 4, 5}. By the fairness assumption
about the environment, the robot must be moved at least four times if it never performs
the halt action, in which case it would eventually reach the position q = 4. It follows
that MP′

s satisfies σmp in (γ, π).
It can be shown (Exercise 7.6) that MP′

s is also an implementation of MP in
(γ, π). Thus, despite depending only on what the robot knows about its current
position and making no reference to the robot’s future actions, the knowledge-based
program MP does not have a unique representation in (γ, π). Interestingly, MPs and
MP′

s are, in a precise sense, the only implementations of MP in (γ, π) (Exercise 7.6).
Notice that by assuming that the robot’s local state consists only of the sensor

reading, we have implicitly assumed that the robot is not aware of whether it has
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halted. Having the robot be aware of whether it has halted turns out not to make any
difference in this case. It is not hard to show that we would still have the same two
distinct implementations of MP even if we add to the robot’s local state a halted bit,
which starts out with value 0 and is set to 1 once the robot has performed the halt
action, so that the robot does know whether or not it has halted (Exercise 7.6).

A change that does affect the outcome would be to modify the robot’s local state so
that it contains the global time m, in addition to the sensor reading α. (Thus, the local
states would have the form (m, α).) Let (γ ′, π ′) be the interpreted context obtained
from (γ, π) by making this change. With this change, we are guaranteed that every
system representing MP in the new context is synchronous. The added information
that the robot obtains from the fact that the system is synchronous together with the
fact that the robot cannot be moved more than one step per round is enough to ensure
that MPs does not implement MP in (γ ′, π ′). Thus, for example, when m = 3 and
α = 4 the robot knows that its position is 3, since at time m = 3 it is guaranteed
that q ≤ 3, whereas when α = 4 it is guaranteed that q ≥ 3. It is possible to show
that MP has a unique representation in (γ ′, π ′). Indeed, MP′

s implements MP in
this context, and as a result MP does satisfy σmp in (γ ′, π ′) (Exercise 7.6). In the
sequel we will see that although synchrony by itself is not enough to guarantee that a
knowledge-based program is represented by a unique system, and although the lack
of future temporal operators is also not sufficient, taken together they do guarantee
(for reasonable contexts) that a knowledge-based program is represented by a unique
system.

Examples 7.2.1 and 7.2.2 show that a knowledge-based program may have zero,
one, or more than one interpreted systems representing it. Is this a problem? Not
necessarily. A knowledge-based program should be viewed as a high-level speci-
fication; the systems that represent it can be viewed as those systems that satisfy
the specification. For example, consider the knowledge-based program NU from
Example 7.2.1:

if K1(�(bit = 1)) do bit := 1.

This program can be viewed as saying: “if you know that you are going to take
an action, then take it as soon as possible.” Appropriately, as we have shown, this
program is represented by two interpreted systems, one in which the action is taken
and one in which the action is never taken. On the other hand, the program NU′
can be viewed as saying “if you know that you are not going to take an action, then
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take it as soon as possible.” Not surprisingly, there are no systems representing this
program; it is an unsatisfiable specification.

A standard program (in a given interpreted context) is a complete description of
the behavior of the agents; this is not the case in general with a knowledge-based pro-
gram. In many situations, however, there is a strong intuition that a knowledge-based
program does completely describe the behavior of the agents, and consequently, the
program ought to be represented by a unique interpreted system. For example, in the
case of the muddy children puzzle, we expect the behavior of the children follow-
ing the knowledge-based program MC (described at the beginning of the chapter) to
be uniquely determined. This also seems to be the case for the programs BT′ and
BT′′ for the bit-transmission problem. In the remainder of this section, we describe
circumstances under which there will be a unique interpreted system representing
a knowledge-based program. We start with an informal discussion and then make
things more formal.

Why may one feel that there should be a unique interpreted system representing
MC? Intuitively, it is because, once we fix the initial set of states, we can start running
the program step by step, generating the run as we go. If r is a run over G, the prefix
of r through time m, denoted Pref m(r), is the sequence of the first m + 1 global
states in r , that is, it is a function ρ from {0, . . . , m} to G such that ρ(k) = r(k) for
k = 0, . . . , m. If R is a set of runs, then Pref m(R) is the set of prefixes through
time m of the runs in R, that is, Pref m(R) = {Pref m(r) | r ∈ R}. If I = (R, π),
we define Pref m(I) = (Pref m(R), π). Suppose that we can generate all prefixes of
runs through time m. Once we have all prefixes through time m, at any given point
(r, m), the children in that situation can determine whether they do indeed know
whether their own forehead is muddy, and thus can take the appropriate action at the
next step. This allows us to generate all prefixes through time m + 1.

The key reason that this idea works is that the prefixes that we have already
constructed are sufficient to determine the truth of the knowledge tests in the chil-
dren’s program. In general, this might not be the case. To understand why, suppose
we have a knowledge-based program Pg = (Pg1, . . . , Pgn), and Pgi includes a test
such as Kiϕ. Suppose that we have indeed constructed all the prefixes of runs of Pg
through time m. For agent i to know what actions to perform next at a point (r, m),
the knowledge test Kiϕ has to be evaluated. As long as this can be done solely by
considering points of the form (r ′, m′) with m′ ≤ m—intuitively, these are the points
we have already constructed—then there is no problem. If, on the other hand, ϕ is
a temporal formula such as the formula �(bit = 1) that appears in the program NU
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in Example 7.2.1, then we may not be able to evaluate the truth of ϕ in the prefixes
we have constructed thus far. Even if ϕ is a nontemporal formula, there may be a
problem. For example, suppose the time m is encoded in the environment’s state,
and ϕ is the formula m ≤ 1, which is true at all time m points with m less than
or equal to 1. Then K1(m ≤ 1) may be false at a point (r, 1) if agent 1 does not
know the time, that is, if (r, 1) ∼1 (r ′, k) for some point (r ′, k) where k > 1. Note,
however, that there is no point that occurs in a prefix through time 1 and “witnesses”
the fact that K1(m ≤ 1) fails at (r, 1), since the formula m ≤ 1 is true at all points
of the form (r ′, 0) or (r ′, 1). This discussion suggests that to make the inductive
construction work, if a test Kiϕ in the program is false, there must be a “witness” to
its falsity in some prefix we have already constructed.

Subtle problems can arise in the interaction between the assumption that wit-
nesses are provided in the sense that we have just described (informally) and the
admissibility condition � on runs in a context. Suppose that we are interested in
running the knowledge-based program Pg in the interpreted context (γ, π), where
γ = (Pe, G0, τ, �). What should the system representing Pg be? Intuitively, it
should consist of all runs in � whose prefixes arise in the inductive construction.
But even if, at every step of the inductive construction, the prefixes constructed pro-
vide witnesses, it is possible that � does not include a run with a prefix ρ that arises
in the construction. This means that we cannot include a run with prefix ρ in the
system. This, in turn, might mean that a witness that we counted on in the course
of the inductive construction may not occur in the system, thus undermining our
evaluation of the tests.

We now show that there is a unique system representing Pg if “witnesses are pro-
vided” and if the admissibility condition � is “reasonable,” in that it is nonexcluding
(as defined in Section 5.2).

We say that an interpreted system I provides witnesses for Kiϕ if, for every point
(r, m) of I, if (I, r, m) |= ¬Kiϕ, then there is a point (r ′, m′) in I with m′ ≤ m,
such that (r, m) ∼i (r ′, m′) and (I, r ′, m′) |= ¬ϕ. Notice that if I = (R, π)

provides witnesses for Kiϕ and ϕ contains no temporal operators, then the truth of
Kiϕ at a point (r, m) of I is uniquely determined by Pref m(R)—the set of prefixes
up to time m of the runs of I. We say that I provides witnesses for a knowledge-
based program Pg if I provides witnesses for every formula Kiϕ that appears as a
subformula of a knowledge test in Pg.
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Our sufficient condition for the existence of a unique representation depends on
the assumption that the system representing Pg provides witnesses for Pg. Unfor-
tunately, we do not know in advance what system this is. Thus, we require that a
large collection of systems all provide witnesses for Pg. If a system representing Pg
exists, it is guaranteed to be in this collection.

We say that an interpreted context (γ, π) provides witnesses for a knowledge-
based program Pg if every system I ′ of the form I ′ = Irep(PgI, γ, π), where I =
(R, π), provides witnesses for Pg. The system R here can be arbitrary, except that
we require that it consist of runs over the global states that arise in the context γ

(i.e., all the global states in runs of R are ones that appear in a system of the form
Rrep(P, γ )); the interpretation π is the same as in the interpreted context (γ, π).
In other words, the context (γ, π) provides witnesses for Pg if all of the systems
representing standard programs of the form PgI in this context provide witnesses
for Pg. Note that if (γ, π) provides witnesses for Pg, then we do indeed have the
property we desired that any system representing Pg in (γ, π) provides witnesses
for Pg, since if I represents Pg, then, by definition, I = Irep(PgI, γ, π).

In general, it may be difficult to tell if a given interpreted context (γ, π) provides
witnesses for a program Pg. As we shall see, however, if the tests in the program are
sufficiently simple, it need not be very difficult. The following lemma gives a useful
sufficient condition that guarantees that a context provides witnesses for a program.

Lemma 7.2.3 Let (γ, π) be an interpreted context. If every system of the form
Irep(PgI, γ, π) is synchronous, then (γ, π) provides witnesses for Pg.

Proof We need to show that every system I ′ of the form Irep(PgI, γ, π) provides
witnesses for Pg. Thus, we must show that if Kiϕ is a subformula of a knowledge test
in Pg, then I ′ provides witnesses for Kiϕ. Since I ′ is synchronous by assumption,
it certainly suffices to show that every synchronous system provides witnesses for
every formula of the form Kiϕ. As we now show, this is almost immediate from the
definition of a synchronous system. Recall that in synchronous systems, if (r, m) ∼i

(r ′, m′) then m = m′. Suppose that (I ′, r, m) |= ¬Kiϕ. Then, by assumption, there
is a point (r ′, m) in I ′ with (r ′, m) ∼i (r, m) such that (I ′, r ′, m) |= ¬ϕ. It follows
that I ′ provides witnesses for Kiϕ, and we are done.

The second condition in Lemma 7.2.3 requires that every interpreted system of the
form Irep(PgI, γ, π) be synchronous. This holds, for example, if the program Pg (in
the interpreted context (γ, π)) prescribes that each agent performs exactly one action
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in every round and if (according to γ ) the agents keep track of the actions they have
performed in their local states (as is the case in message-passing systems). Under
these assumptions, systems of the form Irep(PgI, γ, π) are necessarily synchronous,
since an agent can determine the time by looking at his local state.

Lemma 7.2.3 is only a sufficient condition; for example, the context (γ bt
fair, π

bt)

provides witnesses for the programs BT′ and BT′′, even though the systems that
represent these programs are not synchronous (Exercise 7.7).

We are now ready to state a theorem that gives a useful sufficient condition
on a knowledge-based program Pg in an interpreted context (γ, π) that guarantees
that there is a unique interpreted system representing Pg in (γ, π). We denote this
interpreted system by Irep(Pg, γ, π).

Theorem 7.2.4 Let Pg be a knowledge-based program in which the tests do not
involve temporal operators, let γ be a nonexcluding context, and assume that the
context (γ, π) provides witnesses for Pg. Then there is a unique interpreted system
Irep(Pg, γ, π) representing Pg in (γ, π).

Proof The proof formalizes the construction we sketched informally at the begin-
ning of the section. We inductively construct interpreted systems Im = (Rm, π)

for m = 0, 1, 2, . . ., where π is the interpretation that appears in the statement
of the theorem. The prefixes Pref m(Rm) correspond to the prefixes in our infor-
mal construction. Suppose that γ = (Pe, G0, τ, �). The set R0 consists of all
runs r in � such that r(0) ∈ G0. (Note that R0 is nonempty, since γ is nonex-
cluding.) Let I0 = (R0, π). Suppose that we have constructed Im; we then define
Im+1 = Irep(PgIm

, γ, π). We define the system Rω to consist of all runs r such
that Pref m(r) is in Pref m(Rm) for all m ≥ 0, and let Iω = (Rω, π). We would
like to say at this point that Iω is the unique interpreted system representing Pg
in the interpreted context (γ, π). This would be the case if Iω were of the form
Irep(PgI′

, γ, π) for some I ′. Since, in general, it is not, we need to take one extra
step: Let Iω+1 = Irep(PgIω

, γ, π). It turns out that Iω+1 is the unique interpreted
system representing Pg in the interpreted context (γ, π). The actual details of the
proof are described in Exercise 7.9.

Notice that our construction is somewhat more complicated than the intuition we
gave at the beginning of the section. Our discussion there was in terms of prefixes
of runs. The idea was that by inductively assuming that we have defined all prefixes
through time m, we could then construct all prefixes through time m + 1. The runs
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of our system would be those all of whose prefixes were constructed. Unfortunately,
in our actual proof, we must work directly with systems consisting not of prefixes of
runs, but of (full) runs; this is because we have no definition of PgPref m(I). Hence,
in our proof, we used the full system Rm rather than Pref m(Rm). On the other hand,
our assumption that (γ, π) provides witnesses for Pg guarantees that all that matters
about Rm is Pref m(Rm); the proof shows that we could have replaced Rm in the
construction by any other system R′ such that Pref m(R′) = Pref m(Rm) (see part (b)
of Exercise 7.9).

Using Theorem 7.2.4, we can show that many knowledge-based programs of
interest have unique representations. For example, since, as we have already men-
tioned, (γ bt

fair, π) provides witnesses for BT′ and BT′′, and γ bt
fair is a nonexcluding

context, it follows that BT′ and BT′′ have unique representations in this context.
Another obvious application is the muddy children puzzle.

Example 7.2.5 We now want to take a more careful look at the knowledge-
based program MC run by the muddy children. We start by formally describing
the context (γ mc, πmc) corresponding to our intuitive description of the muddy
children puzzle. The agents here are the children and the father. We can view
γ mc = (P mc

e , G0, τ, True) as a recording message-passing context, in which what-
ever an agent (the father or one of the children) says in a given round is repre-
sented as a message that is delivered in the same round to all other agents. The
initial states of the children and the father describe what they see; later states de-
scribe everything they have heard. Thus, G0 consists of all 2n tuples of the form
(〈 〉, X−1, . . . , X−n, X), where X = (x1, . . . , xn) is a tuple of 0’s and 1’s, with
xi = 0 meaning that child i is clean, and xi = 1 meaning that he has a muddy fore-
head, and X−i = (x1, . . . , xi−1, ∗, xi+1, . . . , xn), that is, it differs from X only in
that it contains a ∗ in the ith component. Intuitively, X−i describes what child i sees
given that X describes the true situation, where ∗ means “no information.” Only the
father sees all the children, so his initial local state is X. The initial local state of the
environment is the empty history 〈 〉. The only actions performed by the children and
the father are the sending of messages, and these actions have the obvious results of
changing their local states and the local state of the environment. The environment’s
protocol P mc

e is simply to deliver all messages in the same round in which they are
sent.

The children run the knowledge-based programs MCi described in the beginning
of the chapter. The father runs the following (standard) program:
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case of
if initial ∧ ∨n

i=1 pi do
say “At least one of you has mud on your forehead; does any
of you know whether you have mud on your own forehead?”

if initial ∧ ¬ ∨n
i=1 pi do

say “Does any of you know whether you have mud
on your own forehead?”

if childrenanswered do
say “Does any of you know whether you have mud
on your own forehead?”

end case.

Here initial is a primitive proposition that is true in the initial state, that is, before
any communication has taken place, and childrenanswered is a primitive proposition
that is true if the father heard the children’s answers in the previous round. Thus, in
round 1, if there is at least one muddy child, a message to this effect is sent to all
children. In the odd-numbered rounds 1, 3, 5, . . . , the father sends to all children
the message “Does any of you know whether you have mud on your own fore-
head?” The children respond “Yes” or “No” in the even-numbered rounds. Finally,
the interpretation πmc interprets the propositions pi , childheardi , initial, and chil-
drenanswered in the obvious way. It is straightforward to see that in the interpreted
context (γ mc, πmc), the knowledge-based program MC satisfies the knowledge-based
specification σmc: “a child says ‘Yes’ if he knows whether he is muddy, and says
‘No’ otherwise” (Exercise 7.11).

We now want to apply Theorem 7.2.4 to show that there is a unique interpreted
system representing MC. Since the condition in γ mc is True, it easily follows that γ mc

is nonexcluding. Clearly there are no temporal operators in the tests in MC. Moreover,
notice that the father and the children each either send a message or receive one in
every round, and they keep track of the messages they send and receive in their local
states. As we observed in the discussion following Lemma 7.2.3, it follows that
every interpreted system of the form Irep(MCI, γ mc, πmc) is synchronous. Thus, we
can apply Lemma 7.2.3 to conclude that (γ mc, πmc) provides witnesses for MC.

The same arguments show that the hypotheses of Theorem 7.2.4 also hold for
any subcontext γ ′ � γ mc obtained by restricting the set of initial states, that is, by
replacing G0 by some subset of G0. Restricting the set of initial states corresponds
to changing the puzzle by making certain information common knowledge. For
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example, eliminating the initial states where child 3’s forehead is clean corresponds
to making it common knowledge that child 3’s forehead is muddy. It can be shown that
MC satisfies σmc in any interpreted context (γ ′, πmc) where γ ′ is a subcontext of γ mc.
(See Exercise 7.11 for more discussion on the effect of passing to subcontexts.)

Let MCs be the standard program for the muddy children implicitly described
in Chapters 1 and 2. Namely, if the father initially says that at least one child has
a muddy forehead, then a child that sees k muddy children responds “No” to the
father’s first k questions and “Yes” to the (k + 1)st question (and to all the questions
after that). Finally, let Imc = Irep(MCs, γ

mc, πmc). It is straightforward to show
that Imc represents MC in (γ mc, πmc) (Exercise 7.11), and hence, by our previous
argument, is the unique such interpreted system. In fact, MCs implements MC in
(γ mc, πmc). There are, however, contexts in which MCs does not implement MC.
For example, consider the context where it is common knowledge that the children
all have muddy foreheads. This is the subcontext γ ′ � γ mc in which we replace G0

by the singleton set {(〈 〉, X−1, . . . , X−n, X)}, where X = (1, . . . , 1). We leave it
to the reader to check that in the unique interpreted system I ′ representing MC in
(γ ′, πmc), all the children respond “Yes” to the father’s first question. Clearly MCs

does not implement MC in this context.

In the remainder of this chapter, we show the power of programming at the
knowledge level, by considering a number of other examples of knowledge-based
programs. As we shall see, these programs all have unique representations in the
contexts of interest. This will make it easier to implement them by standard programs.

7.3 Knowledge Bases Revisited

We now return to modeling a knowledge base KB, as first discussed in Section 4.4.1.
As we observed, there are difficulties in modeling a situation where the Teller gives
the KB information that is not purely propositional, and includes information about
its knowledge. We now have the tools to model this situation.

We start by describing a context that captures the situation. Let γ kb =
(P kb

e , G0, τ, True) where, as before, we take the KB’s local state to consist of the
sequence of formulas it has been told and the environment’s state to consist of a
truth assignment describing the external world. We start by considering the basic
situation described in Section 4.4.1, where the Teller is assumed to have complete
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information about the world, so that the Teller’s state consists of the truth assignment
that describes the external world and the sequence of formulas the Teller has told
the KB. Thus, as in Section 4.4.1, we denote a global state by a tuple of the form
(α, 〈ϕ1, . . . , ϕk〉, ·), where the ϕi’s can be arbitrary formulas about the world and
the KB’s knowledge. The initial states have the form (α, 〈 〉, ·). The Teller’s actions
are to send messages, which are formulas. We assume that the environment delivers
all messages in the same round that they are sent; using our earlier terminology, the
only action of the environment is deliverKB(current), and it performs this action at
every round. We leave it to the reader to describe τ and fill in the remaining details
of γ kb (Exercise 7.12). As before, we want the interpretation πkb to be such that
πkb(α, . . .) = α.

The Teller runs a simple knowledge-based program TELLT . It consists of an
infinite number of clauses. For each KB-formula ϕ (i.e., a formula ϕ in which the
only modal operator is KKB), there is a clause

if KT ϕ do send(ϕ).

In addition the program has a clause

if true do �.

That is, at each step, either the Teller does nothing, or it nondeterministically chooses
some information involving the KB’s knowledge and the external world (but not the
Teller’s knowledge) and sends it to the KB. If, instead of having a clause for each
KB-formula, we have a clause for each propositional formula, then we get a program
TELLPROPT . This is essentially the special case that we focused on in Section 4.4.1.

Let TELL (resp., TELLPROP) be the joint knowledge-based program where the
Teller runs TELLT (resp., TELLPROPT ) and the KB does nothing (that is, its pro-
gram is to perform the action � at every step). It should be clear that these programs
precisely capture our intuition regarding what the Teller can do. It can be shown,
using Theorem 7.2.4, that there are unique interpreted systems I tell and I tellprop rep-
resenting TELL and TELLPROP in (γ kb, πkb), respectively (Exercise 7.14). It turns
out that the interpreted system Ikb (defined in Section 4.4.1), which captures the
interaction of the knowledge base with the Teller, is precisely the system I tellprop

(Exercise 7.15). This observation provides support for our intuition that I tell appro-
priately captures the situation where the Teller tells the KB formulas that may involve
the KB’s knowledge, even in the non-propositional case. An important advantage of
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using a knowledge-based program here is that it allows us to characterize the system
I tell without describing it explicitly.

In Section 4.4.1, we considered a number of variants of the basic situation. These
variants are easily modeled in the more general setting we are considering here, where
we allow the Teller to give information about the KB’s knowledge. For example,
suppose we have a default assumption such as “if p is true then the first thing the
KB will be told is p.” Clearly, this corresponds to an obvious modification of the
Teller’s program (Exercise 7.16).

As we already observed in Section 4.4.1, once we allow the Teller to tell the
KB formulas that refer to the KB’s knowledge, we can no longer represent the KB’s
knowledge by the conjunction of the formulas it has been told. Interestingly, we can
still show that there is a single propositional formula that characterizes what the KB
knows.

Theorem 7.3.1 Suppose that rKB(m) = 〈ϕ1, . . . , ϕk〉. We can effectively find
a propositional formula ϕ such that for all propositional formulas ψ we have
(I tell, r, m) |= KKBψ if and only if Mrst

n |= ϕ ⇒ ψ .

Proof See Exercise 7.17.

Theorem 7.3.1 tells us that there is a single propositional formula that determines
how the KB answers propositional queries. As we observed in Section 4.4.1, once
we know how the KB answers propositional queries, we can determine how the KB
answers arbitrary KB-queries.

In more complicated applications, one cannot divide the world neatly into a KB
and a Teller. Rather, one often has many agents, each of which plays both the role of
the KB and the Teller. More specifically, suppose we have n agents each of whom
makes an initial observation of the external world, and then communicates with the
others. We assume that the agents are truthful, but they do not necessarily know or
tell the “whole truth.” We refer to such agents as observing agents.

For example, assume that there are three observing agents, namely Alice, Bob,
and Charlie, and assume that the external world can be described by exactly two
primitive propositions, p and q. Let the external world be characterized by the truth
assignment where p and q are both true. Alice’s initial information is that p and q

are either both true or both false. Bob, on the other hand, has no nontrivial initial
information about nature. Thus, as far as Bob is concerned, any of the four truth
assignments are possible. Finally, Charlie’s initial information is that p is true, but
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he has no initial information about q. Alice, Bob, and Charlie now begin sending
each other messages. Alice sends Charlie a message saying that she knows p ⇒ q.
Assume that Charlie receives this message; he then combines his initial information
with the information he gained from Alice’s message, and thereby knows that p

and q are both true. Charlie then sends a message to Alice saying that he (Charlie)
knows that Bob does not know that q is false. Even though Charlie has not received
any messages from Bob, this is a truthful message: Charlie knows that q is true, and
so Charlie knows that Bob could not possibly know that q is false.

We can see already in this example that the agents do not necessarily tell every-
thing they know. For example, when Alice says that she knows that p implies q,
she is making a true statement, but is not telling everything she knows. This is quite
reasonable in practice, of course. Even truthful people hide some private information
from others. (On the other hand, as we saw in Section 6.5, telling all you know often
does lead to protocols where agents acquire information as quickly as possible.)

We formalize the observing agents setting as a synchronous, recording, message-
passing system, where all the agents are following a simple knowledge-based pro-
gram,

At every round, agent i nondeterministically selects, for each agent j , a for-
mula ϕj that i knows to be true, and sends the message “ϕj ” to j . Formally, agent i’s
program consists of all clauses of the form

if Kiϕ1 ∧ . . . ∧ Kiϕk do send(ϕ1, j1);. . .; send(ϕk, jk),

where, just as with a.m.p. systems, we take send(ϕl, jl) to be the action sending the
message ϕl to agent jl . We assume that k ≥ 1, so agent i has to send at least one
message to some agent j at each round. We allow the messages ϕ to be arbitrary
formulas in Ln(�), that is, formulas with modal operators for knowledge, but no
temporal operators. � here is the set of primitive propositions that describe the
external world. Note that the tests in the program guarantee that the agents send only
messages that they know to be true. We denote the joint program followed by the
observing agents by OA.

We now briefly describe the interpreted context (γ oa, πoa), in which we are
interested. The initial local states of agent i are of the form (T1, 〈 〉), where Ti is
a set of truth assignments over �. Intuitively, Ti describes the states of nature that
agent i considers possible as a result of her initial observation. Agent i’s local state
is a pair (Ti , hi), where Ti is her initial state and hi describes the rest of her history:
what actions she took in each round (and in particular, what messages she sent in



7.3 Knowledge Bases Revisited 275

each round, and to which agents) and what messages she received in each round (and
from which agents she received them). This explains why the empty sequence 〈 〉 is
part of agent i’s initial state.

The environment’s state is a pair (α, h), where α is the truth assignment that
describes the external world (which we assume does not change over time) and h

is the sequence of joint actions performed thus far. We take the set G0 of initial
states to be all the global states of the form ((α, 〈 〉), (T1, 〈 〉), . . . , (Tn, 〈 〉)), where
α ∈ Ti for i = 1, . . . , n. The fact that Ti includes α says that while the agent’s initial
observation may not completely specify the exact state of nature, it does give her
correct information about the true situation; the observing agents do not have false
beliefs.

The environment nondeterministically chooses what messages will be delivered
at each round. We allow messages to be delayed for an arbitrary length of time,
messages to be lost, and messages to be delivered several times. We omit a formal
description of the environment’s protocol here, but it is much like what we described
in the case of a.m.p. systems in Section 5.1 (except that there are no goi or nogoi

actions, since the agents are enabled in every round). We also omit description of the
transition function τ , although again it is much like the transition function in γ amp.
A joint action has the obvious effect on a global state, namely, that of extending the
histories as appropriate. The actions do not change the truth assignment α in the
environment’s component, since we assume that the external world does not change
during the interaction among the agents. We take the admissibility condition to be
True; that is, we place no restrictions on the allowable runs. Finally, πoa is much
like πkb: If s = ((α, h), (T1, h1), . . . , (Tn, hn)), then we define πoa(s) = α.

The assumption that each agent sends at least one message in every round was one
we did not make in the case of a single KB. Of course, the message may be simply true,
so that the agent receiving the message may not learn anything from it. Nevertheless,
this assumption is not innocuous. It forces every interpreted system of the form
Irep(OAI, γ oa, πoa) to be synchronous. Since there are no temporal operators in the
tests in OA, it follows from Lemma 7.2.3 that (γ oa, πoa) provides witnesses for OA.
Since γ oa is clearly nonexcluding, we can thus apply Theorem 7.2.4 to conclude
that there is a unique system representing OA in context (γ oa, πoa). We call this
system (with n observing agents) Ioa

n (�). (As we shall see Chapter 8, � plays an
important role in Ioa

n (�).) In the case of a single KB, we observed that every system
of the form Irep(TELLI, γ kb, πkb) provides witnesses for TELL, even without the
assumption that a message is sent in every round. In contrast, it can be shown that if
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we modify OA so as to allow a null action, then (γ oa, πoa) does not provide witnesses
for the resulting knowledge-based program (Exercise 7.18). Similarly, if we allow
messages about the future, such as “you will eventually know about p,” then again
the context (γ oa, πoa) does not provide witnesses for the resulting knowledge-based
program.

The system Ioa
n (�) is certainly an idealization of a rather simple scenario of

observing agents exchanging messages, but it turns out to involve some interesting
subtleties. Although knowledge in Ioa

n (�) satisfies the S5 properties, it has additional
properties of interest. This point is discussed in detail in Chapter 8, where we study
the evolution of the knowledge in Ioa

n (�).

7.4 A Knowledge-Based Program for SBA

We already saw in Section 6.5 that designing programs for SBA is best done by
reasoning in terms of the processes’ knowledge. In fact, we even sketched there an
outline of a knowledge-based program for SBA. We can now formally define such
a program and prove that it really does attain SBA in contexts of interest. We can
also use the analysis of Section 6.6 to show how the knowledge-based program can
be implemented efficiently. We consider a knowledge-based program SBA that is
based on the full-information protocol FIP of Section 6.5. We describe process i’s
program SBAi in Figure 7.1. As in Section 6.5, we use decidedi as an abbreviation
for decidedi (0) ∨ decidedi (1).

case of
if ¬decidedi ∧ BN

i CN (∃0)

do decidei (0)

if ¬decidedi ∧ ¬BN
i CN (∃0) ∧ BN

i CN (∃1)

do decidei (1)

if ¬decidedi ∧ ¬BN
i CN (∃0) ∧ ¬BN

i CN (∃1)

do sendalli(local state)
end case

Figure 7.1 The knowledge-based program SBAi



7.4 A Knowledge-Based Program for SBA 277

Recall that the action sendalli(local state) has the effect of sending each process
other than i the message � if process i’s local state is �. Thus, messages in SBAi are
sent according to FIP. Note that since BN

i ϕ is an abbreviation for Ki(i ∈ N ⇒ ϕ),
tests such as BN

i CN (∃0) and BN
i CN (∃1) are indeed knowledge tests.

We argued informally in Section 6.5 that, provided that all nonfaulty processes
do eventually decide, then a program of this form satisfies the specification σ sba.
The next theorem makes this informal argument precise.

Theorem 7.4.1 If (γ, π) is a ba-compatible interpreted context, I is consistent with
the program SBA in (γ, π), and CN (∃0) ∨ CN (∃1) is attained in every run of I,
then I satisfies σ sba. Moreover, the processes decide in a run r of I at the round
following the first time that CN (∃0) ∨ CN (∃1) is attained.

Proof Suppose that I satisfies the hypotheses of the theorem. Fix a run r of I.
We want to show that all the properties required by σ sba hold of r . Recall (see
Exercise 6.14) that

I |= i ∈ N ⇒ (CN ϕ ⇔ BN
i CN ϕ). (∗)

Suppose that processes i1 and i2 are nonfaulty throughout run r . Let m ≥ 0 be the
smallest integer such that (I, r, m) |= CN (∃0) ∨ CN (∃1). The existence of m is
guaranteed by the hypotheses of the theorem. From (∗), it follows that if k < m,
then (I, r, k) |= ¬BN

j CN (∃0) ∧ ¬BN
j CN (∃1) for j = i1, i2, so neither process

decides before round m + 1. Notice that we must have either (I, r, m) |= CN (∃0)

or (I, r, m) |= ¬CN (∃0) ∧ CN (∃1). In the first case, from (∗) it follows that
(I, r, m) |= BN

j CN (∃0) for j = i1, i2, so both processes decide 0 at round m + 1.
In the second case, from (∗) it follows that (I, r, m) |= ¬BN

j CN (∃0) ∧ BN
j CN (∃1)

for j = i1, i2, so both processes decide 1 at round m + 1. Clearly if k > m, then
(I, r, k) |= decidedj for j = i1, i2, so the program guarantees that neither process
decides after round m + 1. This gives us the decision, agreement, and simultaneity
properties. For validity, suppose that all initial values were 0 (a similar argument
holds if all initial values were 1). Since t < n we are guaranteed that N �= ∅ (see
Exercise 6.14), so that I |= CN (∃1) ⇒ ∃1. It follows that if all processes start with
initial value 0, then ∃1 is false, and 0 is the value the nonfaulty processes decide on.
Since the run r was chosen arbitrarily, we thus obtain that all runs of I satisfy the
decision, agreement, validity and simultaneity properties, so that I satisfies σ sba.

Notice that the fact that SBA is a knowledge-based program makes the proof
of Theorem 7.4.1 direct and simple. We now want to use Theorem 7.4.1 to prove
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that SBA indeed satisfies the specification σ sba in certain contexts. As expected, the
contexts we consider are those in �sba = {γ cr, γ som, γ gom}, that is, the contexts
corresponding to crash failures, sending-omission failures, and general-omission
failures. Before proceeding with the proof, we need some preliminary observations.
The first observation is that, in these contexts, there is a unique interpreted system that
represents the program; the program SBA does completely describe the processes’
behavior.

Proposition 7.4.2 For γ ∈ �sba, there is a unique interpreted system representing
SBA in (γ, π sba).

Proof Let γ ∈ �sba. Clearly γ is nonexcluding, since the admissibility condition
in γ is True. It is also easy to show that (γ, π sba) provides witnesses for SBA
(Exercise 7.19). The result now follows from Theorem 7.2.4.

Let I fm
sba be the interpreted system representing SBA in (γ fm, π sba), for fm ∈

{cr, gom, som}. In analyzing SBA we need to know when basic formulas hold in

I fm
sba. (Recall that in Section 6.5 we defined a basic formula to be one of the form

Kiϕ, DN ϕ, CN ϕ, or BN
i ϕ, where ϕ is a formula determined by the initial state.)

We note that the interpreted system I fm
sba is closely related to the interpreted system

I fm = Irep(FIP, γ fm, π sba), which we analyzed in Section 6.6: I fm
sba represents SBA,

whereas I fm represents FIP. The difference between these interpreted systems is that

in I fm, the only actions are sending the description of local states, whereas in I fm
sba

we also have decidei actions. Therefore, up to the time that the processes decide,

we would expect that the same basic formulas are true in I fm and in I fm
sba. The next

lemma says that this is indeed the case.

Lemma 7.4.3 Let ϕ be a basic formula. For fm ∈ {cr, gom, som}, let r be a run

in I fm, and let r ′ be the corresponding run in I fm
sba. Let mr be the least m such that

(I fm, r, m) |= CN (∃0) ∨ CN (∃1). Then for all m ≤ mr , we have (I fm, r, m) |= ϕ iff

(I fm
sba, r

′, m) |= ϕ. In particular, we have that (I fm
sba, r

′, mr) |= CN (∃0) ∨ CN (∃1).

Proof See Exercise 7.20.

We can now prove that SBA really does satisfy σ sba in the contexts of interest.

Moreover, it leads to an optimum protocol. This protocol is SBAIfm
sba , the protocol
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obtained from SBA in the interpreted system I fm
sba. For ease of notation, we denote

this protocol by SBAfm.

Theorem 7.4.4 For each fm ∈ {cr, gom, som}, the interpreted system I fm
sba satisfies

the specification σ sba in the context (γ fm, π sba). Moreover, the protocol SBAfm is
an optimum protocol for SBA in the context γ fm.

Proof Fix fm ∈ {cr, gom, som}. By Corollary 6.5.4 we know that CN (∃0)∨CN (∃1)

is attained in every run of I fm. By Lemma 7.4.3 it follows that CN (∃0) ∨ CN (∃1) is

attained in every run of I fm
sba. By Theorem 7.4.1, it follows that I fm

sba satisfies σ sba.
Now let P be a deterministic protocol that satisfies σ sba in (γ fm, π sba). Let r be a

run of I fm, let r ′ be the corresponding run of I fm
sba, and let r ′′ be the corresponding run

of I ′ = Irep(P, γ fm, π sba). Suppose that m is the first time such that (I fm, r, m) |=
CN (∃0)∨CN (∃1). By Lemma 7.4.3, m is also the first time such that (I fm

sba, r
′, m) |=

CN (∃0)∨CN (∃1). By Theorem 7.4.1, the nonfaulty processes decide at round m+1
of run r ′.

Suppose that the nonfaulty processes decide y in round m′ + 1 of run r ′′. From
Corollary 6.4.4, it follows that (I ′, r ′′, m′) |= CN (∃y). By Theorem 6.5.3, it follows
that (I fm, r, m′) |= CN (∃y). Thus, we must have m ≤ m′. It follows that SBAfm

dominates P , as desired.

These results show how doing a knowledge-based analysis of a problem can
clarify what is going on and help in designing protocols. The key role of common
knowledge in SBA was already brought out by our analysis in Chapter 6. Here we
exploited these results to design a knowledge-based program that was easily proved
correct and led to an optimum protocol for contexts in �sba.

This analysis has shown us how to obtain optimum protocols for SBA, but these
protocols are not particularly efficient. We already observed in Section 6.6 that if
we use FIP (or a program based on FIP, as SBA is), then the messages, and hence
processes’ local states, grow exponentially large. In Section 6.6, we also considered
the protocol FIP′, which still transmits all the information that FIP does, but does
so using much shorter messages, by sending a compact representation of the local
state. Let SBA′ be the knowledge-based program that is based on FIP′ in the same
way that SBA is based on FIP. To be precise, SBA′ is the same as SBA, except that
the action sendall(local state) is replaced by sendall(G(local state)), which has the
effect of sending each process other than i the message G(�) if i’s local state is �.
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(Recall from Section 6.6 that G(�) is a compact representation of the local state �.)
It is easy to see that we get the following analogue to Proposition 7.4.2.

Proposition 7.4.5 For γ ∈ �sba, there is a unique interpreted system representing
SBA′ in (γ, π sba).

Proof See Exercise 7.21.

Let I fm
sba′ be the unique interpreted system representing SBA′ in (γ fm, π sba),

for fm ∈ {cr, gom, som}. Using Theorem 6.6.8, we immediately get the following

analogue to Theorem 7.4.4. Here we use (SBA′)fm to denote the protocol (SBA′)Ifm
sba′ ,

the protocol obtained from SBA′ in the interpreted system I fm
sba′ .

Theorem 7.4.6 For each fm ∈ {cr, gom, som}, the interpreted system I fm
sba′ satisfies

the specification σ sba in the context (γ fm, π sba). Moreover, the protocol (SBA′)fm is
an optimum protocol for SBA in the context γ fm.

Proof See Exercise 7.22.

In Section 6.6 we showed that there are polynomial-time algorithms to compute
whether BN

i CN (∃y) holds at a given point in the systems Icr and Isom (see The-
orems 6.6.9 and 6.6.10). This means that we can replace the tests for knowledge
in SBA′ by polynomial-time standard tests. Thus we get:

Theorem 7.4.7 There are polynomial-time optimum protocols for SBA in the con-
texts (γ cr, π sba) and (γ som, π sba).

What about general-omission failures? According to Theorem 6.6.10, in the
interpreted system Igom, the problem of computing when CN (∃y) holds is NP-hard.
This does not immediately imply that there cannot be an optimum polynomial-time
protocol for SBA in the context (γ gom, π sba). It is possible that an optimum protocol
for SBA does not compute when CN (∃y) holds. Nevertheless, it can be shown
that from an optimum polynomial-time protocol for SBA in γ gom we can obtain a
polynomial-time algorithm that tests for CN (∃y) in Igom. As a result, we get

Theorem 7.4.8 If P �= NP , then no polynomial-time protocol can be optimum for
SBA in (γ gom, π sba).
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7.5 Strong Correctness

As we observed in Section 5.4, we are often interested in the correctness of pro-
tocols and programs with respect to all subcontexts of some context γ . Thus, we
defined the notion of strong correctness (for standard programs) as follows: a stan-
dard program Pg strongly satisfies a specification σ or is strongly correct with respect
to σ in (γ, π) if every interpreted system consistent with Pg in (γ, π) satisfies σ .
By Lemma 5.2.2, this means that every interpreted system that represents Pg in a
subcontext γ ′ � γ satisfies σ .

In the case of a standard program Pg, there is a well-defined relationship between
the (unique) system that represents Pg in a given interpreted context (γ, π) and the
systems consistent with Pg in (γ, π): a system consistent with Pg must be a subset
of the system that represents Pg, because the system that represents Pg consists of all
runs that are consistent with Pg in (γ, π). As we shall see in Example 7.5.2, no such
relationship exists in the case of knowledge-based programs, even in situations where
there is a unique interpreted system representing the program. In fact, there is no
simple relationship between the systems that are consistent with Pg and the systems
that represent Pg in (γ, π), except for the fact that a system that represents Pg in
(γ, π) is of course also consistent with Pg in (γ, π). Nevertheless, the connection
described in Lemma 5.2.2 between the systems that are consistent with Pg in (γ, π)

and the systems that represent Pg in subcontexts of (γ, π) still holds:

Lemma 7.5.1 I is consistent with the knowledge-based program Pg in the inter-
preted context (γ, π) if and only if I represents Pg in some subcontext γ ′ � γ .

Proof See Exercise 7.23.

In analogy to our definitions with standard programs, we say that Pg strongly
satisfies σ or is strongly correct with respect to σ in the interpreted context (γ, π)

if every interpreted system consistent with Pg in (γ, π) satisfies σ . Our motivation
for considering strong correctness here is the same as it was in the case of standard
programs: By Lemma 7.5.1, it follows that by proving strong correctness with respect
to an interpreted context we prove correctness with respect to all subcontexts, as we
did, for example, in Example 7.2.5 for the knowledge-based program MC.

In the case of standard programs, we observed that correctness and strong cor-
rectness coincide for run-based specifications. This depends crucially on the fact
that a system consistent with a protocol is a subset of the unique system representing
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the protocol. As we have already mentioned, the analogous property does not hold
for knowledge-based programs. As Example 7.5.2 will show, even if we consider
only run-based specifications, correctness and strong correctness do not coincide for
knowledge-based programs.

Example 7.5.2 Let us return to the bit-transmission problem for the last time. Recall
from Example 7.1.2 that we are considering the standard program BT, the knowledge-
based programs BT′ and BT′′, and the specifications σ ′ and σ ′′. We already observed
that BT, BT′ and BT′′ satisfy both σ ′ and σ ′′ in the interpreted context (γ bt

fair, π
bt).

Since σ ′ is a run-based specification and BT is a standard program, BT strongly
satisfies σ ′ in (γ bt

fair, π
bt). Indeed, satisfaction and strong satisfaction coincide in the

case of run-based specifications and standard programs (see Exercise 5.10). This
is not so for knowledge-based programs. It can be shown that BT′ also strongly
satisfies σ ′ in (γ bt

fair, π
bt) (Exercise 7.24), but BT′′ does not. This is a significant

difference between standard and knowledge-based programs. To see that BT′′ does
not strongly satisfy σ ′ in (γ bt

fair, π
bt), consider again the context γ bt

ck � γ bt
fair defined

in Section 5.4, where it is common knowledge that S’s initial value is 1. Let rck be
the run starting with initial state (〈 〉, 1, λ) (the only one possible in γ bt

ck ) in which
neither S nor R send any messages. Let Rck = {rck} and let Ick = (Rck, πbt). It is
easy to see that Ick is the unique system representing BT′′ in the interpreted context
(γ bt

ck , πbt). Now Ick does not satisfy σ ′, because no messages are sent in rck . It
follows that BT′′ does not strongly satisfy σ ′ in (γ bt

fair, π
bt). Notice that rck is not

in Irep(BT′′, γ bt
fair, π

bt) = Irep(BT, γ bt
fair, π

bt). This shows that by passing from γ bt
fair

to its subcontext γ bt
ck , we get a system that is not a subset of Rfair. By contrast,

with a standard program, we always obtain a subset of the runs when we pass to a
subcontext.

What about the knowledge-based specification σ ′′? We already observed in
Example 5.4.1 that BT does not strongly satisfy σ ′′ in (γ bt

fair, π
bt), because it does

not satisfy σ ′′ in the subcontext (γ bt
ck , πbt). Similarly, BT′ does not strongly satisfy

σ ′′ in (γ bt
fair, π

bt) either. To see this, consider the context γ bt
ck again. In this context,

according to BT′, S still starts by sending R messages, since it must send messages
until it knows that R received the bit. But S knows that R knows (in γ bt

ck ) that the
value of the initial bit is 1 even before R receives a message from S, since this fact
is common knowledge. Thus, S should not send any messages according to σ ′′.
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The program BT′′, however, does satisfy σ ′′ in (γ bt
ck , πbt). In fact, BT′′ strongly

satisfies σ ′′ in (γ bt
fair, π

bt) (Exercise 7.24).

7.6 The Sequence-Transmission Problem

We now focus on an extension of the bit-transmission problem called the sequence-
transmission problem, and we show how a knowledge-based analysis can help to
clarify many issues here as well.

The sequence-transmission problem is a standard problem of data communica-
tion. Just as in the bit-transmission problem, we have a sender S and a receiver R.
The sender S has an input tape with an infinite sequence X = 〈x0, x1, . . .〉 of data
elements. S reads these data elements and tries to transmit them to R. R must write
these data elements onto an output tape. We would like a solution that satisfies (a) at
any time the sequence of data elements written by R is a prefix of X and (b) every
data element xi in the sequence X is eventually written by R (or more precisely, every
finite prefix of X is eventually a prefix of the data elements written by R). In analogy
to our terminology in Example 7.2.2, property (a) is called the safety property, while
(b) is called the liveness property. Note that both safety and liveness are run-based
specifications.

The sequence-transmission problem clearly has a trivial solution if we assume
that messages sent by S cannot be lost, corrupted, duplicated, or reordered. S sim-
ply sends x0, x1, . . . in order, and R writes them out as it receives them. Once
we consider a faulty communication medium, however, the problem becomes far
more complicated. The sequence-transmission problem over a faulty communica-
tion medium has been extensively studied in the literature, and solutions for several
communication models have been proposed. (We mention some of these solutions in
the notes at the end of the chapter.) These solutions were all designed individually,
on an ad hoc basis. Instead of giving individual solutions for a number of different
communication models, we describe here one high-level knowledge-based solution.
Solutions for various communication models can be derived from our solution. Thus,
the knowledge-based approach enables us to design programs at a higher level of
abstraction.

Generalizing our ideas about the bit-transmission problem, there is a very simple
knowledge-based solution to the sequence-transmission problem. S reads the ith
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data element, and repeatedly sends it to R until S knows that R has received it and
that R knows that it is the ith element. At that point, S reads the (i + 1)st element,
and so on. R writes the data elements as it learns about them, and it then requests S

to send the next data element. A knowledge-based program ST that captures this
intuition is described in Figure 7.2. For simplicity, we assume here that the input
sequence consists only of 0’s and 1’s, although we could easily deal with any finite
data domain.

STS :

case of
if ¬KSKR(x@i ) do send(〈i, y〉)
if KSKR(x@i ) do i := i + 1; read

end case

STR:

case of
if ¬KR(xj ) do send(j)

if KR(xj = 0) do write(0); j := j + 1
if KR(xj = 1) do write(1); j := j + 1

end case

Figure 7.2 The knowledge-based program ST

A few words are now in order on the notation we use in the program. The
variable y refers to the most recent data element read and is initialized with the
first data element; i is a counter, initialized to 1, that keeps track of how many data
elements have been read by S; and j is a counter, initialized to 0, that keeps track of the
number of data elements written by R. The effect of the “read” action in S’s program
is to read the value of the current data element (where “current” is determined by
the counter i). The effect of the “write(0)” and “write(1)” actions in R’s program is
to write an output value. As in message-passing systems, neither S nor R takes a
receive action; we leave message delivery to the environment’s protocol.

Generalizing what we did in the knowledge-based program for the bit trans-
mission problem (Example 7.1.1), we take KR(xi) to be an abbreviation for
KR(xi = 0) ∨ KR(xi = 1). Thus, if KR(xi) holds, then R knows the value of xi .
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Recall that S sends the ith data element until it knows that R knows the value of
this data element. Intuitively, this suggests that S should test if KSKR(xi) holds;
if it does not, then S should continue to send the ith data element; otherwise S can
increment i and read the next data element. There is, however, a subtle problem with
this intuition, caused by the fact that i is a variable local to S, and, consequently, its
value may not be known to R. Roughly speaking, the problem arises because we
cannot substitute equals for equals inside the scope of a K operator. For example,
suppose we are at a point where i = 3. What S really wants to do is to continue
sending the value of x3 until KSKR(x3) holds. This is not the same as sending it
the value of x3 until KSKR(xi) holds. Put another way, (i = 3) ∧ KSKR(xi) is
not equivalent to (i = 3) ∧ KSKR(x3). The problem is that R may know the value
of x3 without knowing the value of xi (or, for that matter, without even knowing
the value of i), since the variable i may take on different values in the global states
that R considers possible. In the terminology of Section 3.7.4, the number 3 is a rigid
designator, while i is not. In a state where i = 3, we want S to continue sending xi

until KSKR(x3) holds, not until KSKR(xi) holds. To achieve this effect, we take
the clause “if KSKR(x@i ) do . . . ” to be an abbreviation for the infinite collection
of clauses “if i = k ∧ KSKR(xk) do . . . ,” for k = 0, 1, · · ·. Similarly, we view
“if ¬KSKR(x@i ) do . . . ” as an abbreviation for the infinite collection of clauses
“if i = k ∧ ¬KSKR(xk) do . . . .” As we saw in Section 3.7.4, the semantics of
first-order modal logic forces free variables to act as rigid designators. Thus, if we
had allowed first-order tests in knowledge-based programs, we could have replaced
the test KSKR(x@i ) by the first-order test ∀k(k = i ⇒ KSKR(xk)), and achieved
the same effect (see Exercise 7.25). (We could similarly have used KR(x@j ) instead
of KR(xj ) in R’s program STR , but there is no need. Since j is part of R’s local
state, it is easy to see that KR(x@j ) and KR(xj ) are equivalent.)

It should now be clear—at least at an intuitive level—that the knowledge-based
program ST does what we want: S sends 〈i, y〉, where y is the ith bit, as long
as S does not know that R knows the ith bit. R’s send(j) can be interpreted both
as an acknowledgment for receiving the (j − 1)st bit and as a request for the j th

bit. Given this intuition, we would expect that ST solves the sequence-transmission
problem in a wide variety of contexts. This is what we now want to prove. In
particular, we want to show that ST is correct if messages can be deleted, duplicated,
reordered, or detectably corrupted. We also want to prove that it is correct if there
is some common knowledge about the sequence of data elements. To do this, we
prove that ST is strongly correct in a very general context. All the other contexts of
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interest will be subcontexts of this general context. The interpreted context that we
study is (γ st, π st), where γ st = (P st

e , G0, τ, Fairst). We now describe each of the
components in more detail.

We first consider the local states for S and R. It should come as no surprise at
this point that there is no unique way to represent these local states. Not all choices
are equally appropriate; indeed, the correctness of ST depends crucially on some of
the choices we make. Many of our choices express assumptions that are implicit in
the text of the program. For example, we assumed that S keeps track of the values
it has read and R keeps track of the values it has written. To see where we use this,
suppose R sends S the message k + 1 at the point (r, m) and S receives this message
at some later point (r, m′). As we show in the next section (Lemma 7.7.2), R knows
the value of xk when it sends this message; that is, KR(xk) holds at (r, m). To prove
that the program is correct, we need to show that KSKR(xk) holds when S receives
the message. If, however, R “forgets” the value of xk earlier, then KR(xk) would no
longer hold at (r, m′), and hence neither would KSKR(xk). By having R keep track
of all the values it has written, we assure that such forgetting does not occur.

Motivated by this discussion, we choose to model the sender and the receiver as
processes with perfect recall. As with message-passing contexts (see Section 5.2),
we assume that the local states of the processes consist of their histories. Recall that
the history of a process is a sequence whose first element is an initial state and whose
later elements are sets of messages (sent and delivered) and internal actions. Here
we take the history to include also the sequence of input/output values. Thus, the
sender’s history includes also the sequence of values read, and the receiver’s history
includes also the sequence of values written. It is convenient to view a local state
of each process as a pair (h1, h2), where h1 is the history of messages and internal
actions and h2 is the input/output history. Thus, y refers to the last element of h2

in S’s state, i refers to the length of h2 is S’s state, and j refers to the length of h2

in R’s state.
What about the environment’s states? As in Example 5.2.1, we assume that the

context is recording. We take the environment’s state to consist of the input sequence
and the sequence of joint actions that has been performed thus far. Thus, Le, the set
of possible states for the environment, consists of states of the form (X, he), where
he is a sequence of joint actions. We describe the form of these joint actions later on.

As we mentioned earlier, we assume that the initial state of S includes the first
input value. Thus, we take G0, the set of initial global states of ST, to consist of all
global states of the form (se, sS, sR), where se is of the form (X, 〈 〉), sS is of the
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form (〈 〉, 〈x0〉), and sR is of the form (〈 〉, 〈 〉), where X is an infinite sequence of 0’s
and 1’s. Thus, in an initial state, the sender S starts out reading the first element of
the sequence X, the receiver R has not written any elements, and neither S nor R has
sent or received any messages.

To complete the description of the environment’s state (and to describe the envi-
ronment’s protocol), we need to describe the possible joint actions. The set of actions
for S and R is immediate from the knowledge-based program ST. S can perform two
actions: send(〈i, y〉) and i := i + 1; read. Similarly, R can perform three actions:
write(0); j := j + 1, write(1); j := j + 1, and send(j). The actions we allow the
environment to perform are similar in spirit to those that the environment performs
in a.m.p. systems (see Example 5.1.2). Essentially, the environment decides when
to enable each of S and R and when messages sent by S and R will be delivered.
In particular, some messages may never be delivered, and messages may not arrive
in the order sent. Also, the environment can duplicate messages, so that the same
message may be delivered several times, and the environment can corrupt messages
in a detectable way. We capture these conditions by taking the environment’s action
to have the form (aeS, aeR), where

• aeS has the form nogoS , goS , or deliverS(µS) for µS ∈ {∗, λ, current} ∪
{0, 1, 2, . . .}, and

• aeR has the form nogoR , goR , or deliverR(µR) for µR ∈ {∗, λ, current} ∪
{〈i, y〉 | i ∈ {0, 1, 2, . . .} y ∈ {0, 1}}.

Thus, each process can be disabled by the environment’s nogo action. If aeS =
nogoS , then S’s action is disabled. If, on the other hand, aeS = goS , then S’s
action is enabled. Finally, if aeS = deliverS(µS), then S’s action is enabled and
it also receives the message µS if µs �= current. (Thus, unlike in a.m.p. systems,
a process can perform an action and receive a message in the same round.) If
aeS = deliverS(current), then S receives the message that R is currently sending,
provided that R is currently sending a message and that R’s action is enabled (i.e.,
aeR �= nogoR). We view λ as the special “empty” message. It models a detectable
message “nondelivery.” This enables us to model situations in which a process tries
but fails to receive a message. This is different from nondelivery in which a process
simply does not receive a message. For example, if aeS = goS , then S does not
receive a message. The message ∗, on the other hand, is the special “detectably
corrupted” message; this is how we model message corruption. The effect of aeR is
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similar to aeS ; we omit details here. Notice that our model allows the environment to
deliver only one message at a time. At the price of slightly complicating the model,
we could easily allow the delivery of sets of messages (see Exercise 7.26).

We now have to define the transition function τ . As in Example 5.1.2, the
definition is completely straightforward, although tedious to write down. For ex-
ample, consider the joint action (ae, aS, aR), where ae = (deliverS(∗), nogoR),
aS = send(〈i, y〉), and aR = send(j). The effect of this joint action is that the tuple
(ae, aS, aR) is appended to the environment’s history, and receive(∗) is appended
to the sender’s history. Note that send(j) is not appended to the receiver’s history,
because of the nogoR action by the environment. We leave further details to the
reader (see Exercise 7.27).

The environment’s protocol P st
e is straightforward: the environment nondeter-

ministically chooses some action ae at every state, with the only constraint being that
it does not deliver a message that was not sent earlier by an enabled process. Note
that we allow the same message to be delivered several times.

Finally, we take Fairst to be the set of runs where both S and R are scheduled
infinitely often, and message delivery is fair, in that a message sent infinitely often
is eventually delivered.

Next, we need to define an interpretation π st for the propositions xj = 0, xj = 1,
i = 0, i = 1, i = 2, . . .. (Recall that propositions of the form i = k arise when
we replace KR(x@i ) by the infinite set of clauses that it abbreviates.) We give these
propositions the obvious interpretation, where xj refers to the j th element of X and i

refers to the number of data elements read by S. This completes the description of
the interpreted context (γ st, π st).

We leave it to the reader to check that by appropriately restricting the environ-
ment’s protocol γ st , we can construct contexts where message delivery is guaranteed,
messages are not corrupted, messages are received in the order in which they are
sent, and so on. Similarly, by appropriately restricting the set of initial states, we
can capture the fact that, for example, the value of the first data element is common
knowledge. These are all subcontexts of γ st .

Recall that a run for the sequence-transmission problem satisfies the safety prop-
erty if the sequence of elements written is always a prefix of the input sequence, and
it satisfies the liveness property if every element in the input sequence is eventually
written. Consider the run-based specification σ st consisting of those interpreted sys-
tems all of whose runs satisfy both the safety and the liveness properties. We want
to show that ST satisfies σ st in the context (γ st, π st). But, as we said before, we
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actually would like to show more. We want to show that ST still satisfies σ st if we
pass to subcontexts. All of this is a consequence of the following result:

Theorem 7.6.1 The program ST strongly satisfies σ st in the interpreted con-
text (γ st, π st).

We defer the proof of Theorem 7.6.1 to Section 7.7, and continue here with our
discussion of ST. It is not hard to show that (γ st, π st) provides witnesses for the
knowledge tests in ST, and that γ st is nonexcluding (Exercise 7.28). Indeed, this
is also true if we restrict the environment’s protocol as previously described, or if
we restrict attention to a subset of initial states. By Theorem 7.2.4, this implies that
there exists a unique system representing ST in all these contexts.

We next consider a standard program ST′ that implements ST in (γ st, π st). ST′
is described in Figure 7.3. As the reader can see, the programs ST and ST′ are very
similar syntactically. In fact, the only difference is that knowledge tests in ST are
replaced by standard tests in ST′. The standard tests in ST′ use the variables z and z′.
The variable z refers to the last message received by S, and the variable z′ refers
to the last message received by R. The function proji returns the ith component of
its argument. As we prove in the next section, in the case of the program ST, the
following are equivalent: (a) S knows that R knows the value of xi , and (b) z = i+1.
Thus, we replace the test ¬KSKR(x@i ) in ST by z �= i + 1 in ST′. Similarly,
KR(xj ) holds if and only if R receives a message of the form 〈j, y〉, that is, when
proj1(z

′) = j . In this case, R writes proj2(z
′) on the output tape.

We extend π st to interpret the propositions “z = i + 1,” “proj1(z
′) = j ,”

“proj2(z
′) = 0,” and “proj2(z

′) = 1” in the obvious way. It is not hard to show
that ST′ implements ST in (γ st, π st) (Exercise 7.29). Notice that since σ st is a run-
based specification and ST′ satisfies σ st in (γ st, π st), it follows that ST′ strongly
satisfies σ st in (γ st, π st). Thus, for every subcontext γ � γ st we have that ST′
satisfies σ st in (γ ′, π st).

ST′ implements ST not only in (γ st, π st), but also in a number of other contexts
of interest. For example, if we restrict the environment’s protocol so that S and R

are always scheduled, or so that there is no message corruption, or that messages are
always delivered in the order in which they are sent, then ST′ still can be shown to
implement ST (Exercise 7.29).

On the other hand, there are contexts where ST′ does not implement ST. Roughly
speaking, ST′ cannot take advantage of some information regarding message deliv-
ery or common knowledge about the data sequence. For example, suppose it is
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S’s program (ST′
S):

case of
if z �= i + 1 do send(〈i, y〉)
if z = i + 1 do i := i + 1; read

end case

R’s program (ST′
R):

case of
if proj1(z

′) �= j do send(j)

if proj1(z
′) = j ∧ proj2(z

′) = 0 do write(0); j := j + 1
if proj1(z

′) = j ∧ proj2(z
′) = 1 do write(1); j := j + 1

end case

Figure 7.3 The standard program ST′

common knowledge that the initial value in the sequence is 1. Running STS , the
sender will not bother sending x0 since KSKR(x0) will hold. On the other hand, the
sender does not take advantage of such knowledge when running ST′; the sender S

sends R every value that it reads, even if R already knows that value. Formally,
if γ 1 is the context that results by replacing G0 in γ st by that subset consisting of
the initial states where the first element in the data sequence is 1, it is easy to see
that Irep(ST′, γ 1, π st) �= Irep(ST, γ 1, π st). Similarly, it can be shown that ST′ does
not implement ST in a context where all messages are guaranteed to be delivered in
precisely five rounds (Exercise 7.29).

7.7 Proving Strong Correctness of ST

In this section, we provide a formal proof of Theorem 7.6.1. This section can be
skipped on a first reading of the book; none of the results will be used in later sections.

We want to show that ST strongly satisfies the specification σ st in the inter-
preted context (γ st, π st). (Recall that σ st is the run-based specification consisting of
those interpreted systems all of whose runs satisfy both the safety and the liveness
properties.) By definition, this means we must show that every interpreted system
consistent with ST satisfies σ st in this interpreted context. Fix a system I = (R, π st)
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that is consistent with ST in the interpreted context (γ st, π st). With the help of a few
lemmas, we prove that I satisfies σ st . Before we prove these lemmas, we need to
introduce some notation. Assume that r ∈ R. For every k ≥ 0 and every variable v

of the programs ST and ST′, we let vr(k) denote the value of v at the global state r(k).
For example, ir(k) denotes the value of i at r(k). Also, we take b

r(k)
S to consist of

the messages sent by S up to the (r, k), we take b
r(k)
R to consist of the messages sent

by R up to this point, we take Y r(k) to be the sequence of values written by R up to
this point, and we take Xr to be the input sequence in the run r . Finally, if Z and Z′
are two sequences, we write Z � Z′ if Z is a prefix (not necessarily strict) of Z′.

Intuitively, safety for ST is obvious, since R writes a data element only if R

knows its value. This intuition is formalized in the following lemma.

Lemma 7.7.1 For all runs r ∈ R and all times m ≥ 0, |Y r(m)| = j r(m) and
Y r(m) � Xr .

Proof Let r ∈ R. We proceed by induction on m. For m = 0, the claim follows
from our characterization of G0, the set of initial global states. To see that for
every m > 0 we have |Y r(m)| = jr(m), note that from the semantics of ST, it
is immediate that |Y | increases by one if and only if j does. For the inductive
step of the second part, assume that the claim is established for every l < m. If
j r(m) = j r(m−1), then Y r(m) = Y r(m−1), so that the claim trivially follows from
the induction hypothesis. If j r(m) �= jr(m−1), then (I, r, m − 1) |= KR(xl), where
l = j r(m−1) and j r(m) = jr(m−1) + 1. If xl = 0, then (I, r, m − 1) |= KR(xl = 0),
so that Y r(m) = Y r(m−1) ·0. (As before, Y r(m−1) ·0 denotes the result of appending 0
to the sequence Y r(m−1).) Similarly, if xl = 1, then (I, r, m − 1) |= Kr(xl = 1), so
that Y r(m) = Y r(m−1) · 1. In either case, it is immediate that the claim holds.

To prove liveness, we need two preliminary lemmas.

Lemma 7.7.2 For every l ≥ 0 and every d ∈ {0, 1}, the following all hold:

(a) If 〈l, d〉 is in b
r(m)
S then (I, r, m) |= (xl = d).

(b) If l is in b
r(m)
R and l ≥ 1, then (I, r, m) |= ∧l−1

k=0 KR(xk).

(c) If (z′)r(m) = 〈l, d〉, then (I, r, m) |= KR(xl = d).

(d) If zr(m) = l and l ≥ 1, then (I, r, m) |= ∧l−1
k=0 KSKR(xk).
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Proof

(a) Suppose that 〈l, d〉 is in b
r(m)
S and let k ≤ m be the least integer such that

〈l, d〉 is in b
r(k)
S . From the semantics of ST it follows that the message was

sent by S at the point (r, k − 1); moreover, ir(k−1) = l and d = xl . Hence,
(I, r, k − 1) |= (xl = d). The definition of π st guarantees that (I, r, m) |=
(xl = d).

(b) Suppose that l is in b
r(m)
R , l ≥ 1, and (r, m) ∼R (r ′, m′). We want to show

that the values of x0, . . . , xl−1 are the same in both r(m) and r ′(m′). Note
that from the semantics of ST it follows that there exists m′′ ≤ m such that l

was sent by R at the point (r, m′′) and j r(m′′) = l. By Lemma 7.7.1, we have
that |Y r(m′′)| = l and Y r(m′′) � Xr . We clearly have Y r(m′′) � Y r(m), so
|Y r(m)| ≥ l. Since R records the sequence of values it has written in its local
state, we must have Y r ′(m′) = Y r(m). By Lemma 7.7.1 again, Y r ′(m′) � Xr ′

and Y r(m) � Xr . It follows that the values of x0, . . . , xl−1 are the same in
both r(m) and r ′(m′). Thus, (I, r, m) |= ∧l−1

k=0 KR(xk).

(c) Suppose that (z′)r(m) = 〈l, d〉 and that (r ′, m′) ∼R (r, m). Then (z′)r ′(m′) =
〈l, d〉. Thus, we must have that 〈l, d〉 is in b

r ′(m′)
S , since 〈l, d〉 must have

been sent at some time m′′ ≤ m′ in run r ′. From part (a), it follows that
(I, r ′, m′) |= (xl = d). Thus (I, r, m) |= KR(xl = d).

(d) This proof follows the same lines as that for part (c), using part (b) instead of
part (a); we leave details to the reader (Exercise 7.30).

Lemma 7.7.3 For all runs r of I and all k ≥ 0, there exists mk ≥ 0 such that
j r(mk) = k.

Proof We prove the lemma by induction on k. For the base case we can take
m0 = 0; the result follows, since j r(0) = 0 by our assumptions about the initial
states. For the inductive case, assume that for some mk ≥ 0, we have j r(mk) = k.
We want to show that there exists m > mk such that jr(m) = k + 1. Assume, by
way of contradiction, that for all m ≥ mk , we have jr(m) = k. The semantics of ST
implies that, for all m ≥ mk , we must have (I, r, m) |= ¬KR(xk). Since all runs
of I are fair, R sends infinitely many k messages to S in r , and these are received
at infinitely many points by S. From Lemma 7.7.2 we get that if zr(m) = k and
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k ≥ 1, then (I, r, m) |= ∧k−1
l=0 KSKR(xl). It is clear from the semantics of ST that

ir(0) = 0, and i increases by at most 1 at each round, and never decreases. We claim
that at some time n′ we must have ir(n

′) = k. To see this, note that at every step, S

evaluates the test ¬KSKR(x@i ). By our earlier remarks, this formula will be false
at every point (r, n) such that zr(n) = k and ir(n) < k. Moreover, each time it is
false, the variable i is increased by 1. Since zr(n) = k infinitely often, there must
indeed be some point (r, n′) such that ir(n

′) = k. Since (I, r, m) |= ¬KR(xk) for all
m ≥ mk , it follows from the Knowledge Axiom that (I, r, m) |= ¬KSKR(xk) for
all m ≥ mk . Thus, S performs the action send(〈k, y〉) at all times n′′ ≥ n′. Since r

is a fair run, there must be some m′ ≥ 0 such that zr(m′) = 〈k, y〉. By Lemma 7.7.2,
this implies that (I, r, m′) |= KR(xk), which is a contradiction.

The fact that I satisfies σ st now follows easily. Safety follows from Lemma 7.7.1.
For liveness, suppose r is a run in I. We want to show that every data element xk

in Xr is eventually written. By Lemma 7.7.3, there is some mk such that jr(mk) = k.
By Lemma 7.7.1, we have that |Y r(mk)| = k and that Y r(mk) � Xr , so that xk is
written by time mk .

Exercises

7.1 Show that if ϕ is either a standard test or a knowledge test that appears in the
knowledge-based program Pgi for agent i, and � = ri(m) for some point (r, m) in I,
then (I, �) |= ϕ iff (I, r, m) |= ϕ. (Hint: use the fact that the propositions in ϕ are
local to i.)

7.2 Let Pg be a standard program, and assume that I = (R, π). Show that PgI =
Pgπ .

7.3 This exercise completes the details of Example 7.1.2.

(a) Show that BT implements BT′ and BT′′ in the interpreted context (γ bt
fair, π

bt).

(b) Show further that Irep(BT, γ bt
fair, π

bt) represents each of BT′ and BT′′ in the

interpreted context (γ bt
fair, π

bt).
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7.4 This exercise completes the details of Example 7.2.1.

(a) Show that the interpreted system I2 is inconsistent with NU in the interpreted
context (γ nu, πnu).

(b) Show that no interpreted system is consistent with NU′ in the context
(γ nu, πnu), by showing that none of I0, I1, nor I2 are consistent with it.

7.5 Show that even without temporal operators in the knowledge tests, we can still
find a knowledge-based program that is represented by more than one interpreted
system, and a knowledge-based program that is not represented by any interpreted
system in an appropriate context. (Hint: modify the context γ nu described in Ex-
ample 7.2.1 so that the environment’s state includes the time. Modify the transition
function τ so that the time m is updated at every step. Then consider the programs

if K1(m �= 0 ⇒ x = 1) do x := 1

and
if K1(m �= 0 ⇒ x �= 1) do x := 1 .)

7.6 This exercise completes the details of Example 7.2.2.

(a) Define the recording context (γ, π) corresponding to the description in the
example.

(b) Prove that I� |= (Krp ⇔ α = 3) and that I� |= ¬Krp
′.

(c) Prove that the program MPs implements MP in the context (γ, π).

(d) Prove that the program MP′
s implements MP in the context (γ, π).

(e) Prove that every system representing MP in the context (γ, π) coincides with
one of the two systems Irep(MPs, γ, π) and Irep(MP′

s, γ, π) representing MPs

and MP′
s , respectively. (Intuitively, this means that MPs and MP′

s are the only
implementations of MP in this context.)

(f) Let (γ ′′, π ′′) be the interpreted context resulting from adding a halted bit to
the robot’s local state, as described in the example. Prove that analogues to
parts (c), (d), and (e) still hold when we substitute the context (γ ′′, π ′′) for
(γ, π).
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(g) Describe the context (γ ′, π ′) of the example, and prove that there is only one
interpreted system representing MP in this context.

7.7 Show that (γ bt
fair, π

bt) provides witnesses for BT′ and BT′′.

7.8 Show that if P is a protocol and r is a run such that Prefm(r)∈Prefm(Rrep(P,γ ))

for all m, then r is weakly consistent with P .

** 7.9 This exercise fills in some of the details of the proof of Theorem 7.2.4.

(a) Show that if P is a protocol and γ = (Pe, G0, τ, �) is nonexcluding, then
Pref 0(R

rep(P, γ )) = G0 ∩ Pref 0(�).

Next is the key step, which shows that our inductive construction has the right prop-
erties. Intuitively, this step shows that, for each interpreted system I ′ of the form
Irep(PgI, γ, π), the actions of the protocol PgI′

at time m depend only on the prefixes
of I ′ through time m. This is the only place in the proof where we use the assumption
that (γ, π) provides witnesses for Pg; this and part (a) are the only places where we
use the assumption that γ is nonexcluding.

(b) Assume that I1 and I2 provide witnesses for Pg and that Pref m(I1) =
Pref m(I2) = Pref m(Irep(PgI1, γ, π)) = Pref m(Irep(PgI2, γ, π)). Show
that Pref m+1(I

rep(PgI1, γ, π)) = Pref m+1(I
rep(PgI2, γ, π)). (Hint: sup-

pose ρ ∈ Pref m+1(R
rep(PgI1, γ )), so that there is a run r ∈ Rrep(PgI1, γ )

such that ρ = Pref m+1(r). Suppose that r(m) = (�e, �1, . . . , �n). It follows

that there must be a tuple (ae, a1, . . . , an) ∈ Pe(�e)×PgI1
1 (�1)×· · ·×PgI1

n (�n)

such that r(m + 1) = τ((ae, a1, . . . , an))(r(m)). Show that ai ∈ PgI2
i (�i)

for each agent i. Use this to show that there is a run with prefix ρ that is
weakly consistent with PgI2 in context γ . Use the fact that γ is nonexcluding
to conclude that there is a run with prefix ρ that is consistent with PgI2 in
context γ .)

(c) Show that if 0 ≤ m ≤ m′ < ω, then Pref m(Im′
) = Pref m(Im).

(d) Assume that I1 is of the form Irep(PgI′
1, γ, π) and I2 is of the form

Irep(PgI′
2, γ, π). Show that if Pref m(I1) = Pref m(I2) for all m, then I1 = I2.

Recall that Iω+1 = Irep(PgIω
, γ, π). Define Iω+2 = Irep(PgIω+1

, γ, π). Our goal
now is to prove that Iω+1 = Iω+2.
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(e) Show that Iω provides witnesses for Pg. (Hint: assume that I is either Iω

or Im for some m, and similarly for I ′. Let ϕ be a formula with no temporal
operators, such that ϕ is a subformula or the negation of a subformula of a test
in Pg. Prove by induction on the structure of ϕ that (i) for every run r of I
and run r ′ of I ′ such that Pref m(r) = Pref m(r ′), we have (I, r, m) |= ϕ iff
(I ′, r, m) |= ϕ, and (ii) if ϕ is of the form Kiψ , then I provides witnesses
for ϕ.)

(f) Show that Pref m(Iω+1) = Pref m(Iω+2) for all m. (Hint: show that
Pref m(Iω+1) = Pref m(Im) for each m, by using parts (a), (b), (c), and (e).
Similarly, show that Pref m(Iω+2) = Pref m(Im) for each m.)

(g) Prove that Iω+1 = Iω+2.

(h) Show that Iω+1 represents Pg in (γ, π).

We have shown that some system represents Pg in (γ, π). We now show uniqueness.

(i) Show that if I1 and I2 are systems that represent Pg in (γ, π), then
Pref m(I1) = Pref m(I2) for all m.

(j) Show that there is at most one system that represents Pg in (γ, π).

* 7.10 This exercise provides a weakening of the notion of providing witnesses that is
still sufficient to guarantee that there is at most one interpreted system that represents
a knowledge-based program Pg in the interpreted context (γ, π) (though it does not
guarantee the existence of such a system). We say that the context (γ, π) provides
witnesses in the weak sense for Pg if every system I that represents Pg in (γ, π) pro-
vides witnesses for Pg. Show that there is at most one interpreted system representing
Pg in (γ, π) if (γ, π) provides witnesses in the weak sense for Pg and γ is a nonex-
cluding context. (Hint: show by induction on m that if I = (R, π) and I ′ = (R′, π)

are two systems representing Pg in (γ, π), then Pref m(R) = Pref m(R′) for all m.)

* 7.11 This exercise completes the details of Example 7.2.5.

(a) Show that MC satisfies σmc in any interpreted context (γ ′, πmc) where γ ′ is a
subcontext of γ mc.
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(b) Show that we can find sets � ′ and � ′′ of runs such that Pref 0(�
′) =

Pref 0(�
′′) = G0, and if γ ′ (resp., γ ′′) is the context that results from replacing

the admissibility condition True in γ mc by � ′ (resp., � ′′), then there are two
interpreted systems representing MC in (γ ′, πmc) and no interpreted systems
representing MC in (γ ′′, πmc). Of course, it follows from Theorem 7.2.4 that
neither γ ′ nor γ ′′ can be nonexcluding. (Hint: define � ′ to be the set of runs
that actually arise in the muddy children puzzle, along with the unique run
in the system where it is common knowledge that all of the children have a
muddy forehead. Define � ′′ to be the set of all runs in which the children
answer “Yes” to all the father’s questions.)

(c) Describe the standard program MCs formally. (Hint: you need to introduce
new primitive propositions.)

(d) Show that Imc represents MC in (γ mc, πmc) and that MCs implements MC in
(γ mc, πmc).

7.12 Fill in the remaining details of the context γ kb for knowledge bases in Sec-
tion 7.3.

7.13 Suppose that I is a system of the form Irep(TELLI′
, γ kb, πkb), and at some

point (r, m) in I, we have rKB(m) = 〈ϕ1, . . . , ϕk〉. Show that there is a run r ′ in I
such that r ′

KB(k) = rKB(m). Thus, although the KB may not get a message in every
round, it considers it possible that it did get a message in every round.

7.14 Show that there is a unique interpreted system representing TELL in (γ kb, πkb).
(Hint: using Theorem 7.2.4, it clearly suffices to show that this context provides
witnesses for TELL. To do this, suppose that I = (R, πkb) is a system of the form
Irep(TELLÎ, γ kb, πkb) and that (I, r, m) |= ¬KKBϕ. Use Exercise 7.13 to show that
there exists a point (r ′, m′) such that (r, m) ∼KB (r ′, m′), (I, r ′, m′) |= ¬ϕ, and
m′ ≤ m.)

7.15 Show that Ikb = Irep(TELLPROP, γ kb, πkb).

7.16 In the formalization of knowledge bases in Section 4.4.1 in terms of knowledge-
based programs, show how we can capture the default assumption that if p is true,
then the first thing the KB will be told is p. (Hint: introduce a new proposition told,
which is initially false and becomes true after the Teller tells the KB at least one
formula.)
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* 7.17 Prove Theorem 7.3.1. (Hint: define the propositional formulaϕ=〈ϕ1,. . ., ϕk〉∗
by induction on k. We can clearly take 〈 〉∗ = true, while 〈ϕ1, . . . , ϕk, ϕk+1〉∗ has
the form 〈ϕ1, . . . , ϕk〉∗ ∧ ϕ′

k+1. Thus, the problem reduces to defining ϕ′
k+1. By

Exercise 3.23, it suffices to assume that ϕk+1 is of depth 1. Now proceed by induction
on the structure of ϕk+1.)

* 7.18 This exercise deals with variants of the knowledge-based program OA.

(a) Let OA′ be the knowledge-based program that is obtained by modifying OA so
as to allow the agents to perform null actions in every round, just as in TELL.
Show that (γ oa, πoa) does not provide witnesses for OA′.

(b) Let OA′′ be the knowledge-based program that is obtained by modifying OA
so as to allow the agents to send formulas with temporal operators. Show that
(γ oa, πoa) does not provide witnesses for OA′′.

7.19 Show that (γ, π sba)provides witnesses for the knowledge-based program SBA,
for every γ ∈ �sba.

7.20 Prove Lemma 7.4.3.

7.21 Prove Proposition 7.4.5.

7.22 Prove Theorem 7.4.6.

7.23 Prove Lemma 7.5.1.

7.24 This exercise completes the details of Example 7.5.2.

(a) Show that BT′ strongly satisfies σ ′ in (γ bt
fair, π

bt).

(b) Show that BT′′ strongly satisfies σ ′′ in (γ bt
fair, π

bt).

7.25 Show that the test KSKR(x@i ) in ST could be replaced by ∀k(k = i ⇒
KSKR(xk)) if we had allowed first-order tests in knowledge-based programs.

7.26 Discuss how the context of ST would have to be modified if the environment
could deliver more than one message at a time to a given process.
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7.27 Given the context γ st for ST described in Section 7.6, describe the effect
of τ(ae, aR, aS), where (1) ae is (deliverS(∗), deliverR(current)), (2) aS is i :=
i + 1; read, and (3) aR is write(1); j := j + 1.

7.28 Prove that (γ st, π st) provides witnesses for the program ST, and that γ st is
nonexcluding. (Hint: the proof that (γ st, π st) provides witnesses for ST is similar
in spirit to the proof in Exercise 7.14 that (γ kb, πkb) provides witnesses for TELL in
that it uses an analogue of Exercise 7.13.)

7.29 In this exercise, we consider in what contexts ST′ implements ST:

(a) Show that ST′ implements ST in (γ st, π st).

(b) Show that there are a number of subcontexts γ � γ st such that ST′ implements
ST in (γ, π st). In particular, describe γ and show that this is the case if

(i) γ corresponds to restricting the environment’s protocol so that S and R

are always scheduled,

(ii) γ corresponds to restricting the environment’s protocol so that there is
no message corruption,

(iii) γ corresponds to restricting the environment’s protocol so that messages
are always delivered in the order in which they are sent.

(c) Show that ST′ does not implement ST in a context where all messages are
guaranteed to be delivered in precisely five rounds.

7.30 Complete the proof of Lemma 7.7.2.

Notes

The notion of a knowledge-based protocol, where an agent’s actions depended not
just on his local state, but also on his knowledge, was introduced by Halpern and
Fagin [1989], and studied further by Neiger and Toueg [1993]. Although the idea of
a knowledge-based program, in the sense of a syntactic object of the type we have
here, with explicit tests for knowledge, was implicit in the discussion of [Halpern
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and Fagin 1985] (an earlier version of [Halpern and Fagin 1989]) and knowledge-
based programs were used informally by Dwork and Moses [1990], Halpern and
Fagin [1989], Halpern and Zuck [1992], and Moses and Tuttle [1988], the first
formal definition of a knowledge-based program seems to have been given by Kurki-
Suonio [1986] and by Shoham [1993]. Kurki-Suonio and Shoham, however, did not
work with interpreted systems. Rather, they assumed that an agent’s knowledge was
explicitly encoded in his local state (and thus, in our terminology, was independent of
the interpreted system). This means that their knowledge-based programs are really
more like our standard programs, although some of the tests in their programs are
intuitively thought of as tests for knowledge. Our definition of (I, �) |= ϕ is related
to a similar notion used by Neiger [1988].

Sanders [1991] extended the syntax of the programming language UNITY
[Chandy and Misra 1988], to allow for explicit tests for knowledge. The obser-
vation that even a run-based specification that is satisfied by a knowledge-based
program Pg in an interpreted context is not necessarily satisfied by Pg in a subcon-
text is essentially due to her. Our discussion of the unique system representing a
knowledge-based program (including Theorem 7.2.4 and various generalizations) is
based on [Fagin, Halpern, Moses, and Vardi 1997]. It is in the spirit of the discussion
of canonical models for knowledge-based protocols in [Halpern and Fagin 1989].

Finding weaker conditions that guarantee the existence of at least one, or exactly
one, interpreted system representing a given knowledge-based program is an impor-
tant open problem. In particular, while we conjecture that there is in fact a unique
interpreted system representing the variants of OA discussed in Exercise 7.18, we
have not been able to prove this. The discussion of a knowledge-based program with
multiple implementations in the simple motion-planning context of Example 7.2.2
is based on the work of Brafman, Latombe, Moses, and Shoham [1997].

The model of observing agents was introduced by Fagin and Vardi [1986], who
called them communicating scientists. Fagin and Halpern [1988b] examined the role
of truthfulness in multi-agent systems in more detail.

The notion of implementation we define here is much stronger than other no-
tions that have been proposed in the literature. Halpern and Fagin [1989], Lamport
[1986], and Mazer [1991] discuss other notions of implementation. The definition of
implementation of a knowledge-based protocol by a standard protocol used here is
slightly weaker than that used in the first edition of the book and in [Fagin, Halpern,
Moses, and Vardi 1997]. That is, if P implements the knowledge-based protocol Pg
according to the earlier definition, then P implements Pg according to the current
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definition as well, but the converse is not true. According to the earlier definition,
P implements Pg in the context (γ, π) if P = PgIP where IP = Irep(P, γ, π).
This requires P and PgIP to agree even on states that do not arise in runs of P

in the given context. The current definition requires the weaker condition that
IP = Irep(PgIP , γ, π), which depends only on behaviors of P that actually arise.

One instance where this distinction makes a difference is in Exercise 7.6. An
alternative notion of knowledge-based specifications and protocols is offered by
Engelhardt, van der Meyden and Moses [1998a, 1998b], based on a notion of local
propositions whose truth depends on the local state. Their setting allows a wide class
of implementations for their notion of knowledge-based protocols. For a study of
finite-state implementations of knowledge-based programs, see [Meyden 1996] For
verification problems related to knowledge-based specifications, see, for example,
[Meyden 1998], [Meyden and Shilov 1996], and [Hoek and Wooldridge 2002].

Knowledge-based analyses of protocols were carried out by (among others)
Bazzi and Neiger [1992], Brafman, Latombe, Moses and Shoham [1997], Chandy
and Misra [1986], Dwork and Moses [1990], Hadzilacos [1987], Halpern, Moses,
and Waarts [2001], Halpern and Zuck [1992], Fischer and Immerman [1986],
Janssen [1995], Kurki-Suonio [1986], Mazer [1990], Mazer and Lochovsky [1990],
Merritt and Taubenfeld [1991], Michel [1989b], Moses and Kislev [1993], Moses
and Roth [1989], Moses and Tuttle [1988], Neiger [1988], Neiger and Bazzi [1999],
Neiger and Toueg [1993], and Neiger and Tuttle [1993]. The first use of a knowledge-
based program as a tool for designing a standard program was by Dwork and Moses
[1990]. Their discussion, and that of Moses and Tuttle [1988], forms the basis of Sec-
tion 7.4. A generalization of knowledge-based programs, called knowledge-oriented
programs, is suggested by Moses and Kislev [1993]. They consider programs that
involve, in addition to tests for knowledge, high-level actions that are defined in terms
of their effect on the state of knowledge of the agents. Janssen [1996] goes one step
further and defines abstract transitions among states of knowledge, and considers
how they can be realized in different contexts.

A knowledge-based analysis of the sequence-transmission problem in an asyn-
chronous setting was carried out in detail by Halpern and Zuck [1992]; it serves as
the basis for our treatment in Sections 7.6 and 7.7. Well-known solutions to the
sequence-transmission problem include the alternating-bit protocol [Bartlett, Scant-
lebury, and Wilkinson 1969], Stenning’s protocol [1976], and the protocols of Aho,
Ullman, Wyner, and Yannakakis [1979, 1982]. Stenning’s protocol is designed to
work in asynchronous systems where messages can be deleted, duplicated, reordered,
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or detectably corrupted; it is essentially our ST′. As is shown by Halpern and Zuck,
the other protocols mentioned here can be derived from ST as well. This leads to
relatively straightforward proofs of their correctness. For other proofs of correct-
ness of programs for the sequence-transmission problem, the reader should consult
Bochmann and Gecsei [1977], Gouda [1985], Hailpern [1982, 1985], and Hailpern
and Owicki [1983]. A knowledge-oriented program for the sequence transmission
problem is presented by Moses and Kislev [1993]. That program generalizes ST
and satisfies σ st in a wider range of contexts. A knowledge-based program for the
Internet protocol is described by Stulp and Verbrugge [2002].



 

Chapter 8

Evolving Knowledge

We may with advantage at times forget what we know.

Publilius Syrus, c. 100 B.C.

In Chapters 2 and 3 we studied the properties of knowledge in depth. The possible-
worlds setting in which we conducted our study was static. There was no notion
of an agent gaining or losing knowledge over time. On the other hand, our formal
model of multi-agent systems described in Chapter 4 explicitly includes time, and
we extended the language with temporal operators in Section 4.3. We already saw
that incorporating time in our framework is quite useful. For example, we saw in
Section 4.5 that we can gain useful insights into a.m.p. systems by understanding
how knowledge is gained or lost over time. In the analysis of SBA in Chapter 6 we
also saw a specific example of how knowledge evolves when the full-information
protocol is executed in specific contexts of interest. In this chapter, we study in more
generality how knowledge evolves in multi-agent systems.

8.1 Properties of Knowledge and Time

In Chapters 2 and 3 we characterized the properties of knowledge using an axiom
system. We can similarly characterize the properties of time. We focus here on
axioms for © and U , since as we noted, � and � are expressible in terms of U .
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T1. ©ϕ ∧ ©(ϕ ⇒ ψ) ⇒ ©ψ

T2. ©¬ϕ ⇔ ¬©ϕ

T3. ϕUψ ⇔ ψ ∨ (ϕ ∧ ©(ϕUψ))

RT1. From ϕ infer ©ϕ

RT2. From ϕ′ ⇒ ¬ψ ∧ ©ϕ′ infer ϕ′ ⇒ ¬(ϕUψ).

Axiom T1 and rule RT1 show that the modal operator © has some of the same
flavor as Ki ; axiom T1 is analogous to the Distribution Axiom for knowledge (A2),
while RT1 is analogous to the Rule of Knowledge Generalization (R1). The differ-
ence between Ki and © is summarized by T2, which says that time is deterministic.
There is only one way the world can be at the next step, so that if at the next step
ϕ is false, then it is not the case that ϕ can be true at the next step. (We could also
consider branching time operators, where time is taken to be nondeterministic. See
the notes at the end of the chapter for further discussion of this point.) Axiom T3
captures the relationship between © and U . Intuitively, it says that ϕ holds until ψ

does exactly if either ψ is true now, or ϕ is true now and at the next step it is still
the case that ϕ holds until ψ does. Finally, rule RT2 gives us a way to conclude
that ¬(ϕUψ) holds. As we show below, it is an analogue to the Induction Rule for
common knowledge.

As we shall see, these axioms are both sound and complete for the language of
temporal logic, so they can be viewed as a complete characterization of the properties
of time. Furthermore, when combined with the S5 axioms for knowledge, they form
a complete axiomatization for knowledge and time in multi-agent systems. Thus, the
combined set of axioms can be viewed as a complete characterization of the properties
of evolving knowledge in multi-agent systems. To state this result carefully, we need
some notation analogous to that defined in Chapter 3. Let LU

n (�) be the result of
augmenting Ln(�), the language of knowledge defined in Chapter 3, with the modal
operators U and ©. We similarly define the language LCU

n (�) as the analogous
extension of LC

n (�), the language of knowledge and common knowledge. Again,
we typically omit mention of � when it is clear from context. In this section, we
focus attention on knowledge and common knowledge, and how they interact with
time. Adding distributed knowledge to the language does not seem to cause any
difficulties; see the notes at the end of the chapter for further discussion. As we shall
see in later sections, however, in other circumstances distributed knowledge does
play a key role in capturing properties of the system.
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We first prove soundness. Let Cn be the class of all interpreted systems with n

agents.

Theorem 8.1.1 For all formulas ϕ, ψ ∈ LCU
n and interpreted systems I ∈ Cn:

(a) I |= ©ϕ ∧ ©(ϕ ⇒ ψ) ⇒ ©ψ ,

(b) I |= ©¬ϕ ⇔ ¬©ϕ,

(c) I |= ϕUψ ⇔ ψ ∨ (ϕ ∧ ©(ϕUψ)),

(d) if I |= ϕ then I |= ©ϕ,

(e) if I |= ϕ′ ⇒ (¬ψ ∧ ©ϕ′) then I |= ϕ′ ⇒ ¬(ϕUψ).

Proof We sketch a proof of part (e) here, leaving the proofs of the other parts to
the reader (Exercise 8.1). The proof of part (e) has some of the flavor of the proof
of validity of the Induction Rule for common knowledge. Fix an interpreted system
I ∈ Cn and suppose that I |= ϕ′ ⇒ ¬ψ ∧ ©ϕ′. By induction on k we can show that
I |= ϕ′ ⇒ ©kϕ′ (where ©kϕ is an abbreviation for © . . . ©ϕ, with k occurrences
of ©). It follows that I |= ϕ′ ⇒ �ϕ′. And since I |= ϕ′ ⇒ ¬ψ , we also get that
I |= ϕ′ ⇒ �¬ψ . Thus, ψ is never true after a point where ϕ′ is true. But this means
that for any choice of ϕ, the formula ϕUψ cannot be true either after any point where
ϕ′ is true (since if ϕUψ were true, then at some point in the future ψ would have to
be true). Thus, I |= ϕ′ ⇒ ¬(ϕUψ).

We next prove completeness. More precisely, let S5U
n (resp., S5CU

n ) be the
axiom system that results from adding T1, T2, T3, RT1, and RT2 to S5n (resp.,
S5C

n ). Thus, S5U
n is the result of combining the axioms and rules for knowledge and

time into one system; S5CU
n is the result of adding axioms and rules for common

knowledge. There are no additional axioms for knowledge and no axioms describing
the interaction between knowledge and time.

Theorem 8.1.2 S5U
n (resp., S5CU

n ) is a sound and complete axiomatization for the
language LU

n (resp., LCU
n ) with respect to Cn.

Proof Soundness follows immediately from Theorem 8.1.1 and the fact that the
axioms of S5n are valid in multi-agent systems. To prove completeness, we use
ideas similar to those we have already encountered in the completeness proofs in
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Chapter 3. We just sketch the main ideas in the case of LU
n here, leaving details (and

the LCU
n case) to the reader (Exercise 8.2).

Suppose that ϕ ∈ LU
n is consistent with S5U

n . We want to show that there is some
interpreted system I and some point (r, m) in I such that (I, r, m) |= ϕ. As in the
proof of Theorem 3.1.3, each state corresponds to a set of formulas. The difference
is that here we have to define both the possibility relations and a temporal relation
between the states. As before, we take Sub+(ϕ) to consist of all the subformulas
of ϕ and their negations. Let S = {sV | V is a maximal S5U

n -consistent subset of
Sub+(ϕ)}. We define equivalence relations Ki on S as suggested by the proof of
Theorem 3.2.4: we take (sV , sW ) ∈ Ki iff V/Ki = W/Ki where, as before, for an
arbitrary set X of formulas, we define X/Ki = {ϕ | Kiϕ ∈ X}. We also define a
binary relation T on S by taking (sV , sW ) ∈ T iff V/© ⊆ W , where

V/© = {ψ | ©ψ ∈ V } ∪ {¬ψ | ¬©ψ ∈ V }.

(Note that although ¬©ψ ⇒ ©¬ψ is valid, we would not get the same set if we
had just defined V/ © as {ψ |©ψ ∈ V }. The problem is that ¬©ψ ∈ Sub+(ϕ)

does not imply ©¬ψ ∈ Sub+(ϕ).) We can now use techniques like those used in
our earlier proofs to show that for all maximal consistent subsets V of Sub+(ϕ) and
all formulas ψ ∈ Sub+(ϕ), we have

1. if ψ is of the form Kiψ
′, then ψ ∈ V iff ψ ′ ∈ W for all W such that

(sV , sW ) ∈ Ki ,

2. if ψ is of the form ©ψ ′, then ψ ∈ V iff ψ ′ ∈ W for all W such that
(sV , sW ) ∈ T ,

3. if ψ is of the form ψ1 Uψ2, then ψ ∈ V iff there exists a sequence
(sV0, . . . , sVk

) of states such that V0 = V , (sVl
, sVl+1) ∈ T for l < k, ψ2 ∈ Vk ,

and ψ1 ∈ Vl for l < k (see Exercise 8.2).

We say an infinite sequence (sV0, sV1, . . .) of states is acceptable if

1. (sVk
, sVk+1) ∈ T for all k ≥ 0, and

2. for all k, if the formula ψ1 Uψ2 ∈ Vk , then there exists l ≥ k such that ψ2 ∈ Vl

and ψ1 ∈ Vl′ for all l′ with k ≤ l′ < l.
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It is not hard to show from the properties described above that for every state s ∈ S

there is an acceptable sequence that starts with s. Finally, we now define an inter-
preted system I = (R, π). Let A = (sV0, sV1, . . .) be an arbitrary acceptable se-
quence of states in S. Define the run rA by taking rA

i (m) = Vm/Ki , for i = 1, . . . , n,
and setting rA

e (m) = ∅. We now define R to be the set of all such runs rA. De-
fine π by setting π(rA(m))(p) = true iff p ∈ Vm. Let I = (R, π). It is now
straightforward to show (using the properties of Ki and T listed above) that if A is
the acceptable sequence (sV0, sV1, . . .), then (I, rA, m) |= ψ iff ψ ∈ Vm, for all
formulas ψ ∈ Sub+(ϕ). Since ϕ is in some maximal consistent subset of Sub+(ϕ),
it must be the case that ϕ is satisfied in the interpreted system I.

This result shows that in the most general setting, where we consider the class
of all interpreted systems, there is no interaction between knowledge and time.
That is, we can completely characterize the properties of knowledge and time by
simply combining the separate characterizations of knowledge and of time. What
are the properties of knowledge and time in less general settings? In Chapter 3, we
considered classes of structures determined by properties of the Ki relations, and
saw that the properties of knowledge could vary, depending on the class of structures
under consideration. Given this experience, the reader may not find it surprising
that the properties of knowledge and time in multi-agent systems, and in particular
the interaction between knowledge and time, depend strongly on the setting, that is,
on the class of interpreted systems under consideration. What is surprising is how
subtle this dependence can be. We illustrate this situation by considering a number
of the classes we have discussed in previous chapters, namely, synchronous systems,
systems with perfect recall, asynchronous message passing systems, and systems of
observing agents.

8.2 Synchrony and Perfect Recall

We start by considering systems that are synchronous and systems where agents
have perfect recall. We use the superscript pr on Cn to indicate a restriction to those
systems in Cn in which agents have perfect recall and the superscript sync to indicate
a restriction to synchronous systems. For example, Cpr,sync

n represents the class of
synchronous systems where agents have perfect recall.
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If we add just the requirement of synchrony, it turns out that we get no additional
properties at all. This shows that our language is not strong enough to capture
synchrony.

Theorem 8.2.1 S5U
n (resp., S5CU

n ) is a sound and complete axiomatization for the
language LU

n (resp., LCU
n ) with respect to Csync

n .

Proof The proof is a straightforward modification of the proof of Theorem 8.1.2.
The only difference is that we take rA

i (m) = (m, Vm/Ki). By making the time part
of agent i’s state, we guarantee that the system is synchronous. The only difficulty
now is in showing that it is still the case that if Kiψ ∈ Sub+(ϕ), then we have
(I, rA, m) |= Kiψ iff Kiψ ∈ Vm. This is done by showing that if a state appears
in an acceptable sequence, then for all k, we can find an acceptable sequence in
which it is the kth member. This in turn requires two additional observations: (1) for
all V , there existsW such that (sW , sV ) ∈ T and (2) any finite sequence (sV0, . . . , sVk

)

of states such that (sVl
, sVl+1) ∈ T for 0 ≤ l < k can be extended to an acceptable

sequence. Again, we leave details to the reader (Exercise 8.3).

If we restrict attention to systems where agents have perfect recall, then knowl-
edge and time do interact. As we observed in Section 4.4.4, although Kiϕ ⇒ �Kiϕ

is not valid in general, it is valid if we restrict to stable formulas (formulas that, once
true, remain true). It is not hard to show that a formula ψ is stable in an interpreted
system I precisely if it is equivalent in the system to a formula of the form �ϕ for
some formula ϕ (Exercise 8.4). This observation suggests the following axiom:

KT1. Ki�ϕ ⇒ �Kiϕ, i = 1, . . . , n.

Axiom KT1 says, roughly, that formulas that are known to always be true are
always known to be true. It is easily seen to be valid with respect to Cpr

n (Exercise 8.5).
Of course, it is still valid with respect to Cpr,sync

n , but once we assume synchrony, we
get an additional property. Intuitively, if an agent that has perfect recall can also keep
track of time, then if he knows that a formula ϕ will hold at the next time instant,
then at the next instant he will be able to notice that the time has elapsed, and so will
know ϕ then. This intuition is captured by the following axiom:

KT2. Ki©ϕ ⇒ ©Kiϕ, i = 1, . . . , n.

It is easy to see that axiom KT2 is valid with respect to Cpr,sync
n (Exercise 8.5).

Axiom KT2 is actually a strengthening of axiom KT1; KT1 can be deduced from
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KT2 and the other axioms and rules of S5U
n , using the fact that �ϕ is an abbreviation

for ¬(trueU¬ϕ) (Exercise 8.6).
Are there any further properties of knowledge and time in synchronous systems

with perfect recall? The following result shows that there are not.

Theorem 8.2.2 S5U
n + {KT2} is a sound and complete axiomatization for the lan-

guage LU
n with respect to Cpr,sync

n .

What happens when we drop the assumption of synchrony? It can be shown that
S5U

n +{KT1} is not complete for LU
n with respect to Cpr

n . By adding a rather compli-
cated axiom, a sound and complete axiomatization can be obtained; see Exercise 8.7
and the bibliographic notes for further discussion.

We next consider what happens when we add common knowledge to the lan-
guage, still restricting attention to systems where agents have perfect recall. It is easy
to show that S5CU

n + {KT1} is a sound axiomatization for LCU
n with respect to Cpr

n ,
while S5CU

n +{KT2} is sound with respect to Cpr,sync
n . Our earlier results might lead

us to expect completeness, at least in the latter case. However, we can prove that we
do not get completeness in either case. In fact, there can be no sound and complete
axiomatization for the language LCU

n with respect to either Cpr
n or Cpr,sync

n consisting
of only finitely many axiom schemes and rules! Adding common knowledge to the
language considerably complicates things. To make this statement precise, we need
to consider the complexity of the validity problem.

We start by considering validity with respect to Cn. How hard is it to decide
if a formula in LU

n (resp., LCU
n ) is valid with respect to Cn? Equivalently (thanks

to Theorem 8.1.2) how hard is it to decide if a formula is provable in S5U
n (resp.,

S5CU
n )? We saw in Chapter 3 that deciding validity for formulas involving knowledge

alone (that is, for the language Ln) is co-NP -complete in the case of one agent
(i.e., if n = 1) and PSPACE -complete if there are two or more agents. Adding
distributed knowledge does not affect the complexity, but with common knowledge
in the language (and at least two agents in the system) the complexity of the validity
problem goes up to EXPTIME -complete. If we consider pure temporal formulas
(i.e., formulas where the only modal operators that appear are © and U), then the
validity problem for that language is also known to be PSPACE -complete. Clearly
the complexity of the validity problem for the language involving both knowledge and
time must be at least as high as the complexity for knowledge or for time separately,
since formulas involving only knowledge or only time are a subset of those involving
both. The interaction between knowledge and time, however, might, in general,
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make things much worse. In the case of Cn, we have seen that there is no interaction
between knowledge and time reflected in the axioms. This also extends to complexity
(of validity); the complexity of reasoning about knowledge and time together is no
worse than the complexity of reasoning about each of knowledge and time separately.
As can be seen from the top row of Table 8.1, the validity problem with respect to Cn is
PSPACE -complete for the language LU

n , and EXPTIME -complete for the language
LCU

n . Since precisely the same formulas are valid with respect to Csync
n and Cn, the

results are identical in the case of Csync
n .

Once we assume that agents have perfect recall, the validity problem becomes
dramatically harder. To make precise exactly how hard it becomes, we need to
introduce some additional notation. Define exm(k) inductively on m, by setting
ex0(k) = k and exm+1(k) = 2exm(k). (Intuitively, exm(k) is a stack of m 2’s, with
the top 2 having exponent k.) It turns out that the validity problem for LU

n with respect
to Cpr

n (resp., Cpr,sync
n ) is nonelementary. That is, the complexity of deciding validity

is not bounded by exm for any m. For every algorithm A that correctly decides the
validity problem and every m, there is a formula ϕ such that A will take time at least
exm(|ϕ|) when running on ϕ.

In fact, we can get an even more precise characterization of the complexity of the
validity problem. Let the alternation depth of a formula ϕ ∈ LU

n , written ad(ϕ), be
the number of alternations of distinct Ki’s in ϕ; temporal operators do not count. We
take the alternation depth of a formula that mentions only one of the Ki operators to
be one. Thus, the alternation depth of K1�K1(p∧K1q) is one, the alternation depth
of K1K2p is two, the alternation depth of both K1�¬K2(pUK1q) and K1¬K2K1q

is three, and the alternation depth of K1K2K3K2q is four. There exists an algorithm
that decides whether a formula ϕ ∈ LU

n is valid with respect to Cpr
n (resp., Cpr,sync

n )
that runs in time exad(ϕ)+1(c|ϕ|), for some constant c > 0. Thus, the time required
looks like a stack of 2’s of height one greater than the alternation depth of ϕ, with
the top 2 having exponent c|ϕ|, for some constant c > 0, and this running time is
essentially optimal.

We can define the complexity class nonelementary time to consist of those sets
A such that for some constant c > 0, the question of whether x ∈ A can be decided
in time ex|x|(c|x|). The techniques used in the analysis above actually show that
the validity problem for the language LU

n with respect to Cpr
n (resp., Cpr,sync

n ) is
nonelementary time complete: it is decidable in nonelementary time, and any problem
decidable in nonelementary time can be reduced to this validity problem. Since
the alternation depth of any formula that mentions only the knowledge of agent 1
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LU
n , LCU

n , n = 1 LU
n , n ≥ 2 LCU

n , n ≥ 2

Cn, Csync
n PSPACE -complete PSPACE -

complete
EXPTIME -
complete

Cpr
n , Cpr,sync

n doubly-exponential
time complete

nonelementary
time complete

�1
1-complete

Table 8.1 The complexity of the validity problem for logics of knowledge and time

(i.e., where the only knowledge operator that appears is K1) is at most one, the same
techniques can also be used to show that the validity problem for the language LU

1 is
doubly-exponential time complete.

Once we add common knowledge to the language, things get significantly worse.
The validity problem is not decidable at all. That is, there is no program which,
given an arbitrary formula in LCU

n , can decide if it is valid with respect to Cpr
n or

Cpr,sync
n . In fact, we can characterize exactly how undecidable the validity problem

is; technically, it is what is known as �1
1-complete. The exact definition of �1

1 is
not all that relevant here, but the following observation is: if a logic has a sound and
complete axiomatization with a finite collection of axioms (actually, axiom schemes)
and inference rules, then the set of valid formulas must be recursively enumerable,
that is, there must be a program that can generate all the valid formulas of the
language in some systematic way. This is easy to see. Suppose that we have a sound
and complete axiom system AX. It is straightforward to construct a program that
generates all the possible proofs in AX. In this way, it will actually generate all the
provable (and, since AX is complete, all the valid) formulas. Since AX is sound, it
will generate only valid formulas. However, a set of formulas that is �1

1-complete
is not recursively enumerable. Thus, the fact that the validity problem for LCU

n with
respect to Cpr

n (resp., Cpr,sync
n ) is �1

1-complete implies that there cannot be a finite
complete axiomatization in this case. In fact, the same argument shows that there
cannot even be a recursively enumerable set of axioms that is complete.

These results are summarized in Table 8.1.

8.3 Knowledge and Time in A.M.P. Systems

We now turn our attention to asynchronous message passing systems. Let Camp
n be

the class of interpreted a.m.p. systems with n agents. Since Camp
n ⊂ Cpr , it follows
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from our earlier observations that S5U
n + {KT1} is a sound axiomatization for LU

n

with respect to Camp
n . It is not, however, complete. There are a number of additional

properties that are a consequence of Theorem 4.5.3 and are thus sound for LU
n with

respect to Camp
n . For example, it is not hard to show that ©KiKjϕ ⇒ Kjϕ is valid

in Camp
n if i �= j . For suppose that KiKjϕ holds at the point (r, m + 1) in some

interpreted system I ∈ Camp
n . If ¬Kjϕ holds at (r, m) then, by Theorem 4.5.3, 〈j, i〉

must be a process chain in (r, m..m + 1). But this means that there must be an event
e1 in j ’s history that occurs at or after round m+ 1 and an event e2 in i’s history that
occurs at or before round m + 1 such that e1

r−→ e2. It is easy to see that this cannot
happen.

A different property arises from the fact that an agent can “stutter”, that is, stay in
the same state for a long time. For example, because of stuttering, Ki©Kiϕ ⇒ Kiϕ

is valid with respect to Camp
n . For suppose that I ∈ Camp

n and (I, r, m) |= Ki©Kiϕ.
Because of stuttering, there is a point (r ′, m) such that r(m) = r ′(m) and agent
i’s state does not change between (r ′, m) and (r ′, m + 1). It follows both that
(I, r ′, m + 1) |= Kiϕ and that (r ′, m + 1) ∼i (r ′, m) ∼i (r, m). Hence,
(I, r, m) |= Kiϕ.

A case can be made that it is inappropriate to include © in a language for
reasoning about asynchronous systems. The whole point of asynchrony is that the
notion of “next time” does not make sense! But even without ©, we have a new
property. Because of stuttering, we can show that Ki�Kiϕ ⇒ Kiϕ is also valid with
respect to Camp

n . (See Exercise 8.8 for further discussion of properties of knowledge
in Camp

n .)
Once we add common knowledge to the language, there are further properties.

As we saw in Theorem 4.5.4, common knowledge can be neither gained nor lost in
a.m.p. systems. This fact can be captured axiomatically:

CG. ¬CGϕ ⇒ �¬CGϕ if |G| ≥ 2.

This axiom says only that common knowledge cannot be gained. It might seem
that we need another axiom of the form CGϕ ⇒ �CGϕ to ensure that common
knowledge cannot be lost. In fact, this axiom already follows from axiom CG together
with other properties of knowledge and common knowledge, particularly negative
introspection (see Exercise 8.9).
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8.4 Knowledge and Time in Ioa
n (�)

Finally, we consider properties of knowledge and time in the system Ioa
n (�) of

observing agents, as described in Section 7.3. This will be a case study illustrating
how subtle the interaction between knowledge and time in a specific setting may be,
and how sensitive it is to small changes in modeling the system. We continue to write
the set � of primitive propositions in Ioa

n (�), since the set � will figure prominently
in an axiom we discuss later. Our construction of Ioa

n (�) clearly assumes that the
agents have perfect recall and that the system is synchronous, so KT2 is valid with
respect to Ioa

n (�). An additional property follows because we assumed that the truth
assignment does not change over time. This fact is characterized by the following
axiom CP (which stands for “constant propositions”):

CP. �p ∨ �¬p, for all p ∈ �.

In Section 4.5 we showed that common knowledge is neither gained nor lost
in a.m.p. systems. In the system of observing agents, common knowledge can be
gained, since the system is synchronous (although common knowledge of stable
facts cannot be lost, by the results of Exercise 4.18, since the agents have perfect
recall). However, as we now show, distributed knowledge of propositional formulas
(ones which do not mention any modal operators) cannot be gained or lost among
the group of all agents. More formally, let Dϕ be an abbreviation of DGϕ, when G

is the group consisting of all the agents in the system. Now consider the following
two axioms:

DG1. Dϕ ⇒ �Dϕ if ϕ is a propositional formula

DG2. ¬Dϕ ⇒ �¬Dϕ if ϕ is a propositional formula.

Theorem 8.4.1 DG1 and DG2 are both valid with respect to Ioa
n (�).

Proof Since the truth value of a primitive proposition does not change through-
out a run, it immediately follows that a propositional formula ϕ must be stable; if
(Ioa

n (�), r, m) |= ϕ, then (Ioa
n (�), r, m) |= �ϕ. Since Ioa

n (�) is a synchronous sys-
tem where agents have perfect recall, it follows that Dϕ is stable too (Exercise 4.18).
Thus Ioa

n (�) |= Dϕ ⇒ �Dϕ.
Now let r be a run in Ioa

n (�), and suppose that (Ioa
n (�), r, m) |= ¬Dϕ. We must

show that (Ioa
n (�), r, m′) |= ¬Dϕ for all m′ > m. The validity of DG1 implies that
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(Ioa
n (�), r, 0) |= ¬Dϕ. Suppose that (Ti , 〈 〉) is the initial state of agent i in run r ,

for i = 1, . . . , n. Since Dϕ is not true at the point (r, 0), there is a truth assignment
α′ that makes ϕ false such that α′ ∈ ∩n

i=1Ti . Define r ′ to be a run exactly like r

(in that the same messages are sent and received at every step) except that α′ is the
truth assignment in the environment component of r ′. We want to show that r ′ is
a run in Ioa

n (�). Recall that we obtained Ioa
n (�) by applying Theorem 7.2.4. To

show that r ′ is a run in Ioa
n (�), we must show that each prefix of r ′ appears in the

inductive construction of Ioa
n (�) in the proof of Theorem 7.2.4, which in turn means

that we must show that the only messages sent in r ′ are ones known to be true. But
since by construction (r, m′) ∼i (r ′, m′) for all times m′ and all agents i, it is easy
to show that this is the case by induction on m′ (Exercise 8.11). Since α′ is the truth
assignment at every point of r ′, it follows that (Ioa

n (�), r ′, m′) |= ¬ϕ for all m′ ≥ 0.
By construction, (r, m′) ∼i (r ′, m′) for all agents i and times m′ ≥ 0. Thus, we have
(Ioa

n (�), r, m′) |= ¬Dϕ for all m′ ≥ 0, giving us the desired result.

The reader should compare this to Theorem 6.7.1, which says that when run-
ning the full-information protocol for SBA in the case of crash failures, distributed
knowledge cannot be gained. Note, however, that because of the possibility of faulty
processes in that context, distributed knowledge can be lost there.

It is easy to show that distributed knowledge of a stable formula cannot be lost
among any subgroup of agents (Exercise 4.18). That is, DG1 holds if we replace
Dϕ by DGϕ, where G is any nonempty subgroup of agents and ϕ is an arbitrary
stable formula. We cannot, however, strengthen DG2 in this way, as the following
examples show.

Example 8.4.2 In this example, we show that the assumption that the formula ϕ is
propositional is necessary for the validity of DG2. Let p be a primitive proposition.
Neither Alice nor Bob initially knows whether p is true or false, but Charlie knows
that p is true. Charlie sends Alice the message p, which is received by Alice in the
first round. Let ϕ be the formula KAlicep; this is a stable formula. This formula is
initially false, but becomes true after Alice receives the message. Thus, initially Dϕ

does not hold (since ϕ is false), but when Alice receives the message from Charlie,
both ϕ and Dϕ become true; thus distributed knowledge is gained.

Example 8.4.3 In this example, we show that considering distributed knowledge
only of the set of all agents is necessary for the validity of DG2. The situation is
just as in the previous example. Thus, p is a primitive proposition; neither Alice
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nor Bob initially knows whether p is true or false, but Charlie knows that p is true;
and Charlie sends Alice the message p, which is received by Alice in the first round.
Now let G consist of Alice and Bob. Initially ¬DGp holds, but after Alice receives
Charlie’s message, DGp holds. Again, distributed knowledge is gained.

Theorem 8.4.1 shows that there is some interaction between knowledge and
time in the system Ioa

n (�). We now demonstrate that the properties of evolving
knowledge also affect the properties of static knowledge. More precisely, we show
that in Ioa

n (�) there are extra properties of knowledge alone, not involving time, over
and above the S5 axioms. We start by considering an example.

Example 8.4.4 Assume that there are precisely two agents, namely Alice and Bob,
and assume that there is exactly one primitive proposition p in the language. We can
think of p as a fact that characterizes nature at a given time (for example, if all we
care about is whether or not it rained in San Francisco on January 1, we could take
p to be “It rained in San Francisco on January 1”). Consider a situation where p is
in fact true, but Alice doesn’t know whether p is true or false, and Alice knows that
either p is true and Bob knows that p is true, or p is false and Bob doesn’t know that
p is false. Alice’s state of knowledge can be captured by the formula

ϕAB =def ¬KAlicep ∧ ¬KAlice¬p ∧ KAlice((p ∧KBobp)∨ (¬p ∧¬KBob¬p)).

It is easy to show that ϕAB is consistent with S52, where the two agents are Alice
and Bob (Exercise 8.12). We now give an informal argument that although this is
a consistent situation, Alice can never attain this state of knowledge! (We give a
formal proof later.) Assume that at some point ϕAB holds. Then we can reason as
follows:

Suppose that p is false. Then ϕAB implies that neither Alice nor Bob
knows that p is false. But Alice could then receive a message from Bob
saying “I (Bob) don’t know p”. Then, since Alice knows that either (a)
p is true and Bob knows that p is true, or (b) p is false and Bob does
not know that p is false, it follows that Alice would know that p must
be false. But, by axiom DG2, it is impossible for Alice and Bob to learn
a nontrivial fact about nature (in this case, that p is false) simply by
communicating, if this fact was not distributed knowledge beforehand.
So p must be true.
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This argument shows that if ϕAB holds, then so does p. Now observe that if ϕAB

holds at some point (r, m), then since ϕAB is a statement about Alice’s knowledge,
ϕAB holds at all points that Alice cannot distinguish from (r, m). Thus, p must hold
at all points that Alice cannot distinguish from (r, m). But this means that KAlicep

holds at (r, m), contradicting the assumption that ϕAB (which implies ¬KAlicep)
holds at (r, m).

This informal argument shows that the formula ¬ϕAB , which is not a consequence
of S52, is valid with respect to Ioa

2 ({p}). In fact, it is a consequence of a more general
axiom.

Suppose that � is a finite set of primitive propositions, say � = {p1, . . . , pk}. To
state our new axiom, it is convenient to identify a truth assignment α to the primitive
propositions in � with the formula p′

1 ∧ . . . ∧ p′
k , where p′

i is pi if pi is true under
the truth assignment α, and p′

i is ¬pi if pi is false under the truth assignment α. (The
assumption that � is finite is crucial here; if � were infinite, then α could not be
viewed as a formula in the language. This is the only place in the book that we find
it necessary to assume that the set of primitive propositions is finite. We reconsider
this assumption later in the section.) Consider the following axiom:

OAn,�. D¬α ⇒ (K1¬α∨...∨Kn¬α), where α is a truth assignment to the primitive
propositions in �.

Axiom OAn,� says that if it is distributed knowledge among all the agents that α

does not describe the state of nature, then in fact one of the agents must already know
that α does not describe the state of nature. Axiom OAn,� is not a consequence of
S5D

n (Exercise 8.13). It describes a property of knowledge that does not hold in
arbitrary systems; however, as we now show, it does hold in the system of observing
agents.

Proposition 8.4.5 OAn,� is valid with respect to Ioa
n (�).

Proof Suppose that (Ioa
n (�), r, m) |= ¬K1¬α ∧ ... ∧ ¬Kn¬α, where α is

a truth assignment to the primitive propositions in �. We must show that
(Ioa

n (�), r, m) |= ¬D¬α. Since the formulas Kiα are stable for i = 1, . . . , n

(Exercise 4.18), we must have that (Ioa
n (�), r, 0) |= ¬K1¬α ∧ ... ∧ ¬Kn¬α. Sup-

pose that (Ti , 〈 〉) is the initial state of agent i in run r , for i = 1, ..., n. Then we
must have α ∈ Ti for each agent i. By definition, G0 includes the initial global state
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s = ((α, 〈 〉), (T1, 〈 〉), . . . , (Tn, 〈 〉)). By the inductive construction of Ioa
n (�), there

must be some run r ′ with r ′(0) = s. Since all agents consider (r ′, 0) possible at the
point (r, 0), we must have (Ioa

n (�), r, 0) |= ¬D¬α. The validity of DG2 implies
that (Ioa

n (�), r, m) |= ¬D¬α, as desired.

Again, both of the assumptions that are implicit in axiom OAn,�, namely that
α is a truth assignment and that we are considering the distributed knowledge of
the group of all agents, are necessary. OAn,� is not valid if we replace the truth
assignment α by an arbitrary propositional formula (Exercise 8.14(a)). Nor is it the
case that DG¬α ⇒ ∨

i∈G Ki¬α is valid with respect to Ioa
n (�) for an arbitrary

subgroup G (Exercise 8.14(b)). Of course DG¬α ⇒ (K1¬α ∨ ...∨Kn¬α) is valid,
since DG¬α ⇒ D¬α is valid for any subgroup G (Exercise 2.10(f)).

It is easy to check that ¬ϕAB is provable in S5D
2 + {OA2,{p}} (Exercise 8.15).

This is the formal version of the argument given in Example 8.4.4.
Is S5D

n + {OAn,�} complete with respect to Ioa
n (�) for the language LD

n (�)?
That depends. If n = 2, so that there are exactly two agents, then it can be shown to
be complete. However, if n ≥ 3, it is not. For, assume that there are three agents,
say, Alice, Bob, and Charlie, and p is a primitive proposition. Given the observing
agents’ protocol, it is impossible to arrive at a situation where Alice knows that
Bob knows p and that Charlie does not know p: this is because Alice never knows
whether Bob has just told Charlie that p is true. Thus, the formula

ϕABC =def KAliceKBobp ∧ KAlice¬KCharliep

is false at every point. However, ¬ϕABC is not a consequence of S5D
n + {OAn,�},

where p ∈ � (Exercise 8.21). It is an open problem to characterize the formulas
in Ln that are valid in the case n ≥ 3. If we modify the assumptions of the system of
communicating agents by requiring that each message be delivered in the same round
it is sent (and in particular not allowing messages to be lost), then there are some
further properties of knowledge (Exercise 8.16). This demonstrates once again how
small changes in the underlying assumptions about communication can affect the
properties of knowledge, even if we keep the general scenario fixed. Furthermore,
under appropriate assumptions about the agents’ behavior and the messages they can
send, S5D

n + {OAn,�} is indeed complete, even when n ≥ 3. (See the notes at the
end of the chapter for further details.)

We briefly consider one other seemingly subtle change—this time a syntactic
change—that can affect the properties of knowledge. Up to now we have assumed
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that the language has a fixed, finite set � of primitive propositions. Suppose that we
allow � to be infinite. We can now construct the system Ioa

n (�) as before, although
it has the somewhat unpleasant property that there are uncountably many possible
initial states (since there are uncountably many truth assignments). Alternatively,
we can consider the class Coa

n (�) consisting of all interpreted systems Ioa
n (�′) such

that �′ is a finite subset of �. The first possibility corresponds to assuming that
the agents really are communicating about an infinite set of propositions, while the
second amounts to saying that the agents are communicating about a fixed finite set of
propositions (some subset of �), but we do not know which it is. Are there any extra
properties of knowledge in either case? Note that the extra axiom OAn,� is no longer
even a formula, since it is “infinitely long”. It is still conceivable a priori that there
could be other extra properties of knowledge. It turns out, however, that this does not
happen in either case. More precisely, S5D

n is a sound and complete axiomatization
with respect to both the interpreted system Ioa

n (�) and the class Coa
n (�), of interpreted

systems, if � is an infinite set of primitive propositions (Exercise 8.23). Thus, in this
case, no additional axioms are needed; the need for an extra axiom depends crucially
on the assumption that � is finite.

8.5 A Closer Look at Axiom OAn,�

It may seem somewhat surprising that knowledge in systems of observing agents has
such a nonobvious property as that described by axiom OAn,� (and by ¬ϕAB , which
is a consequence in S5D

2 + {OA2,{p}}, by Exercise 8.15). The reader may wonder at
this point if axiom OAn,� applies in other situations as well. If not, what is it about
Ioa
n (�) that makes this axiom valid? It turns out that the validity of OAn,� depends

on a number of subtle assumptions hidden in our construction of Ioa
n (�). Before we

examine the situation formally, we consider the following examples, all variants of
Example 8.4.4 in the previous section, showing situations where the “impossible”
formula ϕAB is attainable.

Example 8.5.1 Let p be the statement “The communication line between Alice and
Bob is up”. Suppose that p is true and Alice sends Bob the message “Hello”, which
Bob receives (since, after all, the communication line is up). At this point, Bob
knows p (since he received the message) and Alice doesn’t know whether p is true
or false (since she doesn’t know whether Bob received her message). But Alice does
know that either p is true and Bob knows that p is true, or else p is false and Bob
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doesn’t know that p is false (since if p is false, Bob will have no way of knowing
whether he didn’t receive a message because the line was down or because Alice
didn’t send one in the first place). Thus, we have a situation where ϕAB is attained.

Why does ϕAB hold in this situation? Where does our soundness proof fail? In
our construction of Ioa

n (�), we implicitly assumed that the primitive propositions
about which the agents are communicating cannot affect the communication process.
By contrast, in this example, if p is false, then Alice and Bob cannot communicate.
It is interesting to note that we also used this assumption implicitly to prove the
validity of axiom DG2. DG2 fails here as well. Before communicating, there was
no distributed knowledge among Alice and Bob about p, but after communicating,
Bob knows that p is true.

Example 8.5.2 Another key assumption made in Ioa
n (�) is that agents have perfect

recall. To see the importance of this assumption, suppose that we no longer require
it. Now let p be the statement “Bob has perfect recall”. Alice knows that if Bob
knows p, then p is true, so Bob has perfect recall, and so Bob never forgets that he
knows p. In addition, Alice knows that if Bob knows ¬p, then p is false, and so Bob
does not have perfect recall, and so Bob might forget that he knows ¬p. Suppose
that, in fact, p is true and Bob knows this, and Bob sends Alice two messages. The
first one says “either I know p or I know ¬p” (i.e., KBobp ∨ KBob¬p), and the
second says “I don’t know ¬p” (i.e., ¬KBob¬p). At this point, Alice knows that
either p is true and Bob knows that p is true, or that p is false and Bob doesn’t
know that p is false (Bob knew that p was false and then forgot). Again, we have a
situation where the “unattainable” state of knowledge is attained!

Example 8.5.3 We have already mentioned that axiom OAn,� does not hold if we
replace the truth assignment α by an arbitrary propositional formula, nor does it
hold if we consider an arbitrary subgroup G rather than all the agents in the system
(Exercise 8.14). It is not hard to modify Example 8.4.4 by adding more agents to
the system or by using extra propositions to characterize nature in order to get a
situation where ϕAB holds. For example, suppose that rather than assuming that
nature is completely characterized by one primitive proposition p, we assume that
nature is characterized both by whether it is rainy or dry and whether the temperature
is cold or warm. Thus, there are two primitive propositions p and q, where p is “It
rained in San Francisco on January 1”, and q is “It was cold in San Francisco on
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January 1”. Assume that Alice knows that either (a) it was rainy and cold (that is,
p and q are both true), or else (b) it was dry and warm (that is, p and q are both
false). Assume that Bob knows that it was rainy and cold (that is, he knows that p

and q are both true). Assume that Bob tells Alice that either (a′) he knows that it was
rainy and cold (which is the actual situation), or else (b′) he knows that it was warm
but doesn’t know whether it was rainy (that is, he knows that q is false but doesn’t
know whether or not p is true). After Alice receives this information from Bob, she
still doesn’t know whether it was rainy or dry. She knows that if it was rainy, then
case (a) occurred, so it was cold, hence case (b′) is impossible, so case (a′) occurred,
and Bob knows that it was rainy. Thus, Alice knows that if p is true (it was rainy),
then Bob knows that p is true. Furthermore, she knows that if it was dry, then case
(b) occurred, so it was warm, hence case (a′) is impossible, so case (b′) occurred,
and Bob doesn’t know whether it was rainy. Thus, Alice knows that if p is false (it
was dry), then Bob doesn’t know that p is false. So, yet again, we have attained the
“unattainable” state of knowledge. We leave it to the reader to construct a variant of
the system with a third agent in the picture where, again, ϕAB holds (Exercise 8.18).

These examples illustrate the subtleties in modeling a real-world situation. Small
changes in the model can result in significant changes to the conclusions one can
draw from the model. Under seemingly small perturbations of the assumptions
underlying the system, we can go from a situation where OAn,� is valid to one
where it is not. Our goal in the remainder of this section is to isolate the key features
of the system of observing agents that cause axiom OAn,� to be valid. The idea will
be to consider a number of abstract properties of systems, motivated by properties
that hold in Ioa

n (�), and show that OAn,� is valid in all systems satisfying these
abstract properties.

As we showed in Example 8.5.2, one key property of Ioa
n (�) that we need is that

it is a system where agents have perfect recall. What else is necessary?
It was clearly important in the discussion of the observing agents that the prim-

itive propositions talked about the initial state of nature (so that their truth values
did not change over time), and in fact completely characterized the initial state of
nature. More formally, we say that the primitive propositions characterize the initial
environment in an interpreted system if the truth values of the primitive proposi-
tions remain the same throughout each run, and the primitive propositions have the
same truth values in two runs r and r ′ precisely when the initial environment state
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is identical in r and r ′. It is easy to see that Ioa
n (�) is a system where the primitive

propositions characterize the initial environment.
The next key feature of the system of observing agents that we want to capture

is that the agents start by making independent observations of nature. This “in-
dependence” intuitively means that what one agent observes does not affect what
any of the other agents observe (although, of course, the observations do have to
be consistent, so that we cannot have one agent observing p and another observing
¬p). Since “nature” is encoded in the environment’s state, this amounts to requir-
ing that an agent’s initial state depend only on the initial state of the environment.
More precisely, suppose that se is an initial environment state and it is possible for
agent i to have initial state si when the initial state of the environment is se, for
i = 1, . . . , n. That is, assume that, for each agent i, there is a run ri such that in
the initial global state ri(0), the environment state is se and agent i’s local state is si .
Intuitively, this means there is some observation that agent i can make that puts it into
state si when the environment state is se. We then require that each of the agents can
simultaneously make the observation that puts them into them into this local state
when the environment state is se. That is, we require that there be a run r∗ such that
r∗(0) = (se, s1, . . . , sn). If this requirement holds for every possible initial state se
of the environment, then we say that the environment determines the initial states. It
is easy to see that Ioa

n (�) is a system where the environment determines the initial
states.

As we can see from Example 8.5.1, to guarantee that ¬ϕAB is valid, it is not
enough that the agents have perfect recall, the primitive propositions characterize the
initial environment, and the environment determines the initial states. Somehow we
need to assume that we do not have primitive propositions corresponding to events
such as “the communication line is up”, whose truth may affect the transitions of
the system. Formally, we say that agent state transitions are independent of the
initial environment in a system if whenever there are two runs r and r ′ such that
each agent has the same initial state in r as in r ′, then there is a run r ′′ with the
same initial global state as in r ′, and where for each time m, each agent has the same
state at time m in r ′′ as in r . Intuitively, r ′′ has the same initial state as r ′ (both for
the agents and for the environment), and every agent makes the same transitions at
corresponding steps of r and r ′′. As shown in Exercise 8.11, Ioa

n (�) is a system
where agent state transitions are independent of the initial environment. However, in
Example 8.5.1, where the environment could describe whether the communication
line between Alice and Bob is up, it is not the case that agent state transitions are
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independent of the initial environment. We can have two runs r and r ′ such that
Alice and Bob have the same initial state in both (intuitively, they are ignorant as to
whether the communication line is up), the communication line is up in r , and down
in r ′. Moreover, suppose that Bob sends Alice a message in r , which Alice receives
(since the line is up). The receipt of the message is encoded in Alice’s state in (r, 1).
Suppose that the state of the line is part of the environment state. There can be no
run r ′′ with the same initial global state as in r ′ (so that the communication line is
down), but where Alice receives a message at time 1 (as she does in r).

The following theorem shows that the four conditions we have abstracted out
from the system of observing agents are what cause axiom OAn,� to hold. Let Coa

n

be the subclass of Cn consisting of all interpreted systems for n agents that satisfy
these four conditions: (a) agents have perfect recall, (b) the primitive propositions
characterize the initial environment, (c) the environment determines the initial states,
and (d) agent state transitions are independent of the initial environment.

Theorem 8.5.4 S5D
n + {OAn,�} is a sound and complete axiomatization for the

language LD
n with respect to Coa

n .

Proof See Exercises 8.19 and 8.20.

Interestingly, all four conditions that characterize Coa
n are crucial. If any one

of them is dropped, then OAn,� is not sound, and S5D
n alone remains a sound and

complete axiomatization (Exercise 8.22).

Exercises

8.1 Prove parts (a)–(d) of Theorem 8.1.1, and fill in the details of the sketch of the
proof provided for part (e).

* 8.2 Fill in the missing details of the proof of Theorem 8.1.2. In particular, show the
following:

(a) The Ki and T relations have the three properties claimed of them. (Hint: for
property (3), define ϕV , as in the proof of Theorem 3.3.1, to be the conjunction
of the formulas in V . Define ϕ′ to be the disjunction of all of the formulas ϕV
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such that the formula ψ1 Uψ2 is in V but there is no sequence as promised in
part (3). Now apply rule RT2, where the roles of ϕ and ψ in RT2 are played
by ψ1 and ψ2, respectively.)

(b) There is an acceptable sequence going through every state in S.

(c) If ψ ∈ Sub+(ϕ) and A is the acceptable sequence (sV0, sV1, . . .), then
(I, rA, m) |= ψ iff ψ ∈ Vm.

Point out what changes would have to be made to deal with the language LCU
n .

* 8.3 Fill in the missing details of the proof of Theorem 8.2.1. In particular, prove
the two observations stated in the text and do the induction argument showing that
if A is the acceptable sequence (sV0, sV1, . . .), then (I, rA, m) |= ψ iff ψ ∈ Vm, for
all formulas ψ ∈ Sub+(ϕ).

8.4 Show that a formula ψ is stable in an interpreted system I precisely if it is
equivalent in I to a formula of the form �ϕ for some formula ϕ.

8.5 In this exercise, we consider the validity of axioms KT1 and KT2.

(a) Show that axiom KT1 is valid with respect to Cpr
n .

(b) Show that axiom KT2 is valid with respect to Cpr,sync
n .

(c) Show that KT2 is not valid with respect to Cpr
n . Note that this means that KT2

is not valid with respect to Cn either.

(d) Show that KT1 is not valid with respect to Cn.

8.6 Show that axiom KT1 can be deduced from S5U
n + {KT2}.

* 8.7 Consider the following axiom:

KT3. (Kiϕ1 ∧ Ki¬((Kiϕ1 ∨ Kiϕ3)U¬ϕ2)) ⇒ ©(Kiϕ3 ⇒ Kiϕ2).

(a) Show that KT3 is valid in Cpr
n .

(b) Show that KT1 is provable from S5U
n + {KT 3}.
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(c) Show that KT3 is not provable from S5U
n +{KT 1}. (Hint: consider “nonstan-

dard” runs where time ranges over the integers rather than the natural numbers.
Construct a system consisting of two nonstandard runs where all the axioms
of S5U

n + {KT 1} are valid, but KT3 is not.)

This shows that S5U
n + {KT 1} is not a complete axiomatization for Cpr

n . A com-
plete axiomatization can be obtained, but it requires an adding an axiom even more
complicated that KT3. (See the notes for further discussion.)

* 8.8 In this exercise, we consider properties of Camp
n . Show that the following for-

mulas are all valid with respect to Camp
n :

(a) Ki©Kiϕ ⇒ Kiϕ,

(b) Ki�Kiϕ ⇒ Kiϕ,

(c) Ki�Kjϕ ⇒ KiKjϕ,

(d) ©m−1Ki1 . . . Kimϕ ⇒ Kimϕ, where ij �= ij+1 for j = 1, . . . , m − 1,

(e) ¬KiKjϕ1 ∧ KiKkϕ2 ⇒ ©(¬KiKjϕ1 ∨ KiKkϕ2) if i �= j and i �= k. (Hint:
use Exercise 4.31.)

Show that none of these formulas are provable in S5U
n + {KT 1}.

8.9 Show that the fact that common knowledge cannot be lost is provable from the
fact that common knowledge cannot be gained. More precisely, show

S5CU
n + {CG} � CGψ ⇒ �CGψ, if |G| ≥ 2.

(Hint: use the results of Exercise 3.11(d).)

* 8.10 Show that axiom CG characterizes systems where the initial point in a run is
reachable from all later points. More precisely, let Creach

n consist of all interpreted
systems I of n agents where for all subgroups G with |G| ≥ 2 and all points (r, m)

in I, we have that (r, 0) is G-reachable from (r, m). Show that S5CU
n + {CG} is

a sound and complete axiomatization for the language LCU
n with respect to Creach

n .
(Hint: extend the techniques used to prove Theorem 8.1.2.)



Exercises 325

8.11 Fill in the details of the inductive proof showing that the run r ′ in the proof of
Theorem 8.4.1 is indeed a run in Ioa

n (�). That is, prove that if r is a run in Ioa
n (�)

such that r(0) = ((α, 〈 〉), (T1, 〈 〉), . . . , (Tn, 〈 〉)) and α′ ∈ ⋂
i=1,...,n Ti , then the

run r ′ which is identical to r except that the truth assignment at every point of r ′ is
α′ rather than α, is also a run in Ioa

n (�). In the language of Section 8.5, this says
that agent state transitions are independent of the initial environment in Ioa

n (�).

8.12 Show that the formula ϕAB from Example 8.4.4 is consistent with S52, by
constructing a Kripke structure M ∈ Mrst

2 such that (M, s) |= ϕAB for some state s

in M .

8.13 Show that axiom OAn,� is not a consequence of S5D
n by constructing a Kripke

structure M ∈ Mrst
n and a state s of M such that OAn,� is false at (M, s).

8.14 In this exercise, we show that the assumptions in axiom OAn,� are necessary.

(a) Show that the formula that results by allowing α in OAn,� to be a primitive
proposition p, rather than a truth assignment, is false at some point if there are
at least two primitive propositions.

(b) Show that DGα ⇒ ∨
i∈G Ki¬α is not valid with respect to Ioa

n (�) if G is a
proper subset of the agents, even if α is a truth assignment.

8.15 Show that S5D
2 + {OA2,{p}} � ¬ϕAB .

* 8.16 Suppose that we modify the system of observing agents by assuming that
immediate message delivery is guaranteed (that is, every message is delivered in the
same round it was sent). Assume that there are only two agents. Let us say that two
points (r, m) and (r ′, m′) are equivalent if they satisfy precisely the same formulas
in LCD

n (�).

(a) If S is a set of truth assignments, then let τS be the formula

(
∧

α/∈S

K1¬α) ∧ (
∧

α∈S

¬K1¬α).

Intuitively, τS says that according to agent 1’s knowledge, precisely the truth
assignments in S are possible. Let (r, m) be a point. Show that there is a
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run r ′ in which agent 1 sends a message in round 1 to agent 2 of the form
τS1 ∨ . . . ∨ τSs , and in which agent 2 sends a similar message to agent 1 in
round 1, such that (r, m) and (r ′, 1) are equivalent. Thus, to decide whether
a formula is satisfiable, we can restrict attention to runs where each agent
sends one message in round 1 and no other messages afterwards. (Hint: the
only information that agent 2 can learn about agent 1 is what agent 1’s initial
information was; this can be done by considering which possible formulas τS

about agent 1’s initial information are consistent with the messages that agent 1
sent.)

(b) Show that there are only a finite number of distinct equivalence classes of
points. That is, show that there is a finite set P of points such that every point
is equivalent to a point in P .

(c) Show that only finitely many of the following formulas are satisfiable:

K1α ∧ ¬K1K2α

K1K2α ∧ ¬K1K2K1α

K1K2K1α ∧ ¬K1K2K1K2α

. . .

(Hint: show that no two of these formulas are mutually satisfiable, that is, there
is no point where two of these formulas can both be true. Then use part (b).)

(d) Show that there are new axioms when there are only two agents and immediate
message delivery is guaranteed. (Hint: use part (c), along with the fact that
each of the formulas in part (c) is satisfiable when immediate message delivery
is not guaranteed.)

(e) Show that if α is a truth assignment, then the formula

(K1K2α ∧ K2K1α) ⇒ K1K2K1α

is valid. (Hint: By part (a), we need only show that this formula is true at
every point (r ′, 1), where in run r ′, agent 1 sends agent 2 a message of the
form τS1 ∨ . . . ∨ τSs in round 1, agent 2 sends agent 1 a message of the form
τT1 ∨ . . .∨τTt in round 1, and no other messages are sent. Assume that τS1 and
τT1 hold before any messages are sent. Thus, agent 1’s initial knowledge before
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any communication takes place is that precisely the truth assignments in S1

are possible; similarly, agent 2’s initial knowledge before any communication
takes place is that precisely the truth assignments in T1 are possible. Show that
K1K2α holds after round 1 iff for each Ti that intersects S1, and for each Sj

that intersects Ti , we have Sj ∩ Ti = {α}. Show that the analogous statement
characterizes when K2K1α holds after round 1. Show that K1K2K1α holds
after round 1 iff for each Ti that intersects S1, and for each Sj that intersects
Ti , and for each Tk that intersects Sj , we have Tk ∩ Sj = {α}.)

(f) Show, however, that if α is a truth assignment, then the formula

K1K2α ⇒ K2K1α

is not valid.

(g) Refine the result of part (c) by showing that of the infinite set of formulas in the
list in part (c), only K1α∧¬K1K2α and K1K2α∧¬K1K2K1α are satisfiable.

(h) Show that if α is a truth assignment, then the formula

(K1K2α ∧ K2K1α) ⇒ C{1,2}α

is valid.

8.17 This exercise presents an alternative to OAn,� for the language Ln without
distributed knowledge.

(a) As in Exercise 3.33, define a pure knowledge formula to be a Boolean com-
bination of formulas of the form Kiϕ, where ϕ is arbitrary. Consider the
following axiom, where α is a truth assignment and β is a pure knowledge
formula:

OA′
n,�. β ∧ Ki(β ⇒ ¬α) ⇒ (K1¬α ∨ . . . ∨ Kn¬α).

Since β is a pure knowledge formula, it is a fact about the state of knowledge
of the agents. So axiom OA′

n,� says that if a fact about the state of knowledge
of the agents holds, and if some agent knows that this state is incompatible
with the truth assignment α, then some agent knows that the truth assignment
α is impossible. Show that OA′

n,� is a consequence of S5D
n +{OAn,�}. (Hint:

use the fact, proved in Exercise 3.33, that if β is a pure knowledge formula,
then β ⇒ Dβ is provable in S5D

n .)
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(b) Assume that p is the only primitive proposition. Show that ¬ϕAB is a conse-
quence of S52 + {OA′

2,�}, where agents 1 and 2 are Alice and Bob. (Hint: let
ψ be the formula obtained from axiom OA′

2,� by letting i be Alice, letting α

be p, and letting β be ¬KBobp ∧ ¬KBob¬p. Then show that ¬ϕAB can be
proved from S52 + {ψ}.)

It can be shown that if the class of messages is sufficiently rich, then S5n +{OA′
n,�}

is a sound and complete axiomatization for the language Ln with respect to Ioa
n (�).

8.18 This exercise presents yet another “counterexample” to the argument in Ex-
ample 8.4.4. Show that if there is another agent besides Alice and Bob, then ϕAB

is attainable in the system of observing agents. Where does the argument of Exam-
ple 8.4.4 break down in this case?

* 8.19 In this exercise, and the next, we provide details of the proof of Theorem 8.5.4.
This exercise proves soundness; the next proves completeness. Thus, in this exercise,
we show that the four conditions that we have abstracted out from the system of
observing agents are sufficient to cause every instance of axiom OAn,� to hold.
We begin by considering a certain condition on Kripke structures that essentially
characterizes OAn,�. Let us say that a Kripke structure M = (S, π, K1, . . . , Kn)

satisfies the pasting condition if whenever

1. s1, ..., sn, t
′ ∈ S,

2. π(si) = α, for i = 1, ..., n, and

3. (t ′, si) ∈ Ki , for i = 1, ..., n,

then there exists t ∈ S such that π(t) = α and (t, t ′) ∈ Ki for i = 1, ..., n.
This condition is called the “pasting condition”, since it says that if certain states

are in S, then another state, that is the result of “pasting together” information from
these states, is also in S. Not surprisingly, the pasting condition implies certain
properties of knowledge (as we see in part (b)).

(a) Let I be an interpreted system in Coa
n . Prove that the Kripke structure MI

corresponding to I satisfies the pasting condition. (Hint: assume that the
three antecedents of the pasting condition hold for MI = (S, π,∼1, . . . , ∼n).
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Assume that si = ri(mi), for i = 1, ..., n, and t ′ = r ′(m′). Show that the
environment components at the points (ri, 0), for i = 1, ..., n, are all the same;
call this common environment component se. Show that there is a run r ′′ where
r ′′(0) has environment component se and r ′′(0) ∼ r ′(0). Show that there is a
run r with r(0) = r ′′(0) such that r(m′) ∼ r ′(m′) = t ′. Show that t = r(m′)
satisfies the consequent of the pasting condition.)

(b) Prove that the pasting condition holds for a Kripke structure M ∈ Mrst
n (�) iff

every instance of OAn,� (in the language LD
n (�)) is valid in M . Thus, in a

precise sense, the pasting condition corresponds to axiom OAn,�.

(c) Show that S5D
n + {OAn,�} is sound with respect to Coa

n .

* 8.20 Show that S5D
n +{OAn,�} is complete with respect to Coa

n . (Hint: assume that ϕ
is consistent with S5D

n + {OAn,�}. Show that ϕ is satisfiable in a Kripke structure
M ∈ Mrst

n (�) where every instance of OAn,� is valid in M . (Use an argument
similar to that in the proof of Theorem 3.4.1 and, in particular, in Exercise 3.30, but
where every maximal consistent set that is used is consistent with respect to not just
S5D

n but also S5D
n + {OAn,�}.) Use Exercise 8.19(b) to show that M satisfies the

pasting condition of Exercise 8.19. Write M = (S, π, K1, . . . , Kn). Define a subset
S′ ⊆ S to be a connected component if no state t /∈ S′ is reachable from a state
s ∈ S′ and every state in S′ is reachable from every other state in S′. We say that a
Kripke structure is connected if its state space is a connected component. Since ϕ is
satisfiable in a Kripke structure satisfying the pasting condition, it is satisfiable in a
connected Kripke structure satisfying the pasting condition. Now show that for each
connected Kripke structure M ′ ∈ Mrst

n satisfying the pasting condition, there is an
interpreted system I ∈ Coa

n such that some connected component of MI is identical
to M ′. Therefore, ϕ is satisfiable in a member of Coa

n .)

8.21 Show that ¬ϕABC is not a consequence of S5D
n + {OAn,�}, where n ≥ 3,

p ∈ �, andϕABC is the formulaKAliceKBobp∧KAlice¬KCharliep. (Hint: construct
a Kripke structure M ∈ Mrst

n and a state s of M such that M satisfies the pasting
condition of Exercise 8.19, and (M, s) |= ϕABC .)

* 8.22 Show that if any of the four conditions in the definition of Coa
n are dropped,

then S5D
n is a sound and complete axiomatization for the language LD

n with respect
to the resulting class of systems. (Hint: let M be a connected Kripke structure, as
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defined in Exercise 8.20. For each proper subset A of the four conditions, construct
an interpreted system I that satisfies the conditions in A such that some connected
component of MI is identical to M . So if ϕ is consistent with S5D

n , then ϕ is satisfiable
in an interpreted system that satisfies the conditions in A.)

* 8.23 This exercise deals with the situation where the set � of primitive propositions
is infinite, as discussed at the end of Section 8.4.

(a) Show that S5D
n is a sound and complete axiomatization with respect to the

interpreted system Ioa
n (�). (Hint: given a formula ϕ that is consistent with

S5D
n , show that there must be a Kripke structure M ∈ Mrst

n (�′) satisfying ϕ,
where �′ consists of all the finitely many primitive propositions that appear
in ϕ. Show that there is a Kripke structure M ′ ∈ Mrst

n (�) satisfying the
pasting condition of Exercise 8.19, that is identical to M when restricted to
�′. It is then easy to show that ϕ is satisfiable in M ′. The result now follows
as in the conclusion of the hint in Exercise 8.20.)

(b) Show that S5D
n is a sound and complete axiomatization with respect to the class

Coa
n (�) of interpreted systems. (Hint: the proof is similar to that of part (a).)

Notes

The axiom system for time alone is a variation of that given by Gabbay, Pnueli,
Shelah, and Stavi [1980] (where the completeness result was first proved), along the
lines of the axiom system for branching time given by Emerson and Halpern [1985].
Axiom KT1 is due to Ladner and Reif [1986], while KT2 is due to Lehmann [1984].
The completeness of S5U

n with respect to Cn and Csync
n , as well as completeness of

S5U
n + {KT2}, is due to Halpern and Vardi [1986]. Ron van der Meyden pointed

out to us that axiom KT3 from Exercise 8.7 is not provable in S5U
n + {KT 1}; he has

provided a sound and complete axiomatization for Cpr
n [Meyden 1994]. As observed

in Section 8.2, it is not possible to obtain complete axiomatizations for a logic whose
set of valid formulas is not recursively enumerable. Halpern, van der Meyden, and
Vardi [1997] give sound and complete axiomatizations for all the logics discussed in
Section 8.2 whose set of valid formulas is recursively enumerable.
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In Section 8.2, we saw that in the class of all systems and in the class of syn-
chronous systems there is no interaction between knowledge, common knowledge,
and time. We can similarly show that in these classes there is no interaction between
knowledge, distributed knowledge, and time. More precisely, if we let S5DU

n be the
axiom system that results from adding T1, T2, T3, RT1, and RT2 to S5D

n , and we de-
fine the language LDU

n similarly to before, then we get analogues to Theorems 8.1.2
and 8.2.1 for distributed knowledge, namely, that S5DU

n is a sound and complete
axiomatization for the language LDU

n with respect to both Cn and Csync
n .

The properties of knowledge and time for Camp
n discussed in Exercise 8.8 were

also pointed out to us by Ron van der Meyden. At this point, we do not even have a
candidate for a sound and complete axiomatization of Camp

n .
The PSPACE -completeness of the logic with temporal operators only was proved

by Halpern and Reif [1983] and by Sistla and Clarke [1985]. All of the complexity
results in Table 8.1 are due to Halpern and Vardi [1989]. Further details are given in
their papers [1988a, 1988b]; see also [Spaan 1990]. The exponential-time complexity
of the validity problem for common knowledge and time with respect to Cn is also
proved by Fischer and Immerman [1987]. Halpern and Vardi [1989] extend Table 8.1
to cover a number of other conditions, including the case where branching time
operators are used. For a resolution-based approach to logics of knowledge and
time, see [Dixon, Fisher, and Wooldridge 1998].

Example 8.4.4 and the results of Section 8.4 are by Fagin and Vardi [1986].
They introduce the axioms OAn,� and OA′

n,� (of Exercise 8.17). They also consider
a situation where the agents can send messages that are promises about the future
(such as “I will not send a message in round 17”). They then modify the system of
observing agents by requiring that agents fulfill all such promises. Under these cir-
cumstances, they show that S5D

n +{OAn,�} (respectively, S5n +{OA′
n,�}) is a sound

and complete axiomatization for LD
n (�) (respectively, Ln(�)), with respect to the

resulting interpreted systems. The material in Section 8.5 (along with Exercise 8.23)
is taken from [Fagin, Halpern, and Vardi 1992a]; this paper also considers other con-
ditions on interpreted systems, and provides sound and complete axiomatizations for
interpreted systems that satisfy various combinations of these conditions.



 

Chapter 9

Logical Omniscience

The animal knows, of course. But it certainly does not know that it
knows.

Teilhard de Chardin

A person who knows anything, by that very fact knows that he knows
and knows that he knows that he knows, and so on ad infinitum.

Baruch Spinoza, Ethics, II, Prop. 21, 1677

Throughout this book we have found the possible-worlds model to be a very useful
tool. As we already saw in Chapter 2, however, the possible-worlds model gives rise
to a notion of knowledge that seems to require that agents be very powerful reasoners,
since they know all consequences of their knowledge and, in particular, they know all
tautologies. Thus, the agents could be described as logically omniscient. This does
not especially trouble us in the context of multi-agent systems, since in that context
we view our notion of knowledge as external. That is, knowledge is ascribed by
the system designer to the agents. There is no notion of the agents computing their
knowledge, and no requirement that the agents be able to answer questions based on
their knowledge.

Nevertheless, there are situations where the assumption of logical omniscience
seems completely inappropriate. Perhaps the most obvious example occurs when
we consider human reasoning. People are simply not logically omniscient; a person
can know a set of facts without knowing all of the logical consequences of this set of
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facts. For example, a person can know the rules of chess without knowing whether
or not White has a winning strategy.

Lack of logical omniscience may stem from many sources. One obvious source
is lack of computational power; for example, an agent simply may not have the
computational resources to compute whether White has a winning strategy in chess.
But there are other causes of lack of logical omniscience that are quite independent
of computational power. For example, people may do faulty reasoning or refuse to
acknowledge some of the logical consequences of what they know, even in cases
where they do not lack the computational resources to compute those logical conse-
quences. Our goal in this chapter is to develop formal models of knowledge that do
not suffer from the logical-omniscience problem to the same extent that the standard
possible-worlds approach does. We consider a number of approaches that are appro-
priate to capture different sources of the lack of logical omniscience. In Chapter 10,
we describe a computational model of knowledge, which addresses issues such as
capturing what a resource-bounded agent knows. As we shall see, that model also
addresses the logical-omniscience problem in a way that is closely related to some
of the approaches described in this chapter.

9.1 Logical Omniscience

A careful examination of the logical-omniscience problem must begin with the notion
of logical omniscience itself. Exactly what do we mean by logical omniscience?

Underlying the notion of logical omniscience is the notion of logical implication
(or logical consequence). Roughly speaking, a formula ψ logically implies the
formula ϕ if ϕ holds whenever ψ holds; a set � of formulas logically implies the
formula ϕ if ϕ holds whenever all members of � hold. Clearly, a formula is valid
precisely if it is a logical consequence of the empty set of formulas. Like validity,
logical implication is not an absolute notion, but is relative to a class of structures
(and to a notion of truth, or satisfaction). Thus, more formally, we say that �

logically implies ϕ with respect to a class M of structures if, for all M ∈ M and
all states s in M , whenever (M, s) |= ψ for every ψ ∈ �, then (M, s) |= ϕ. If �

is finite, it follows from Theorem 3.1.3 of Chapter 3 that � logically implies ϕ with
respect to Mn if and only if the formula (

∧
�) ⇒ ϕ is provable in Kn, where

∧
�

is the conjunction of all formulas in �. Thus, in the standard modal logic studied so
far, logical and material implication coincide (where ϕ materially implies ψ if the
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formula ϕ ⇒ ψ is valid). As we shall see, logical and material implication do not
coincide in some of the logics considered in this chapter.

We can define logical equivalence in terms of logical implication. Two formulas
are logically equivalent if each logically implies the other. Thus, if two formulas are
logically equivalent, then one is true precisely when the other is. Note that logical
equivalence is also a relative notion, just as logical implication is.

Logical omniscience can be viewed as a certain closure property of an agent’s
knowledge; it says that if an agent knows certain facts and if certain conditions
hold, then the agent must also know some other facts. The term logical omniscience
actually refers to a family of related closure conditions. As we shall see, some of our
models will eliminate certain strong forms of logical omniscience, but not necessarily
all of its forms. The strongest form is what we call full logical omniscience.

• An agent is fully logically omniscient with respect to a class M of structures
if, whenever he knows all of the formulas in a set �, and � logically implies
the formula ϕ with respect to M, then the agent also knows ϕ.

It is easy to see that we have full logical omniscience with respect to Mn (see
Exercise 9.1). Full logical omniscience encompasses several weaker forms of om-
niscience. All of these notions also depend on the class of structures under consid-
eration; we do not state that dependence here, to avoid clutter.

• Knowledge of valid formulas: if ϕ is valid, then agent i knows ϕ.

• Closure under logical implication: if agent i knows ϕ and if ϕ logically im-
plies ψ , then agent i knows ψ .

• Closure under logical equivalence: if agent i knows ϕ and if ϕ and ψ are
logically equivalent, then agent i knows ψ .

Because all of the above are special cases of full logical omniscience, they auto-
matically hold for Mn. As we shall see, however, it is possible to define classes of
structures (and notions of truth) for which we do not have full logical omniscience,
but do have some of these weaker notions.

There are also forms of omniscience that do not necessarily follow from full
logical omniscience:

• Closure under material implication: if agent i knows ϕ and if agent i knows
ϕ ⇒ ψ , then agent i also knows ψ .
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• Closure under valid implication: if agent i knows ϕ and if ϕ ⇒ ψ is valid,
then agent i knows ψ .

• Closure under conjunction: if agent i knows both ϕ and ψ , then agent i knows
ϕ ∧ ψ .

All these forms of logical omniscience in fact do hold for Mn. Indeed, if {ϕ, ϕ ⇒ ψ}
logically implies ψ , as is it does with respect to Mn, and we give ⇒ its standard
interpretation, then closure under material implication is a special case of full log-
ical omniscience. One of the approaches described in this chapter is based on a
nonstandard propositional semantics. In this approach, ⇒ does not get its stan-
dard interpretation. So logical and material implication do not coincide; we get full
logical omniscience but not closure under material implication. Similarly, closure
under valid implication is a special case of full logical omniscience (and in fact is
equivalent to closure under logical implication) if ϕ ⇒ ψ is valid precisely when ϕ

logically implies ψ . Again, while this is true under standard propositional semantics,
it is not true in our nonstandard approach. Finally, closure under conjunction is a
special case of full logical omniscience if the set {ϕ, ψ} logically implies ϕ ∧ ψ .
This indeed will be the case in all the logics we consider, including the nonstandard
one. It is clear that there are other relationships among the types of omniscience
previously discussed. For example, closure under logical equivalence follows from
closure under logical implication. See Exercise 9.2 for further examples.

Full logical omniscience seems to be unavoidable, given that knowledge is de-
fined as truth in all possible worlds, as it is in Kripke structures. If an agent knows
all of the formulas in �, then every formula in � is true in every world he consid-
ers possible. Therefore, if � logically implies ϕ, then ϕ is true in every world he
considers possible. Hence, the agent must also know ϕ. Thus, any line of attack on
the logical-omniscience problem has to start by addressing this basic definition of
knowledge as truth in all possible worlds. The most radical approach is to abandon
the definition altogether. We describe two approaches that do this, one syntactic and
one semantic, in Section 9.2.

It is possible, however, to attack the logical-omniscience problem without com-
pletely abandoning the idea that knowledge means truth in all possible worlds. One
approach to dealing with logical omniscience is to change the notion of truth. This
is the direction pursued in Section 9.3, where we consider a nonstandard notion of
truth. Another approach is to change the notion of possible world. This is what we
do in Section 9.4, where we consider “impossible” worlds. Yet another approach
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is to have truth in all possible worlds be a necessary but not sufficient condition
for knowledge. For example, in Section 9.5, we consider a notion of knowledge in
which an agent is said to know a formula ϕ if ϕ is true in all worlds he considers
possible and if, in addition, he is “aware” of the formula ϕ. Finally, we consider an
approach in which knowledge is defined as truth in a subset of the possible worlds.
In Section 9.6, we describe a notion of knowledge in which an agent is said to know
a formula ϕ if ϕ is true in all worlds he considers possible in some particular “frame
of mind.”

As we saw earlier, the possible-worlds approach gives rise to many different
notions of knowledge whose appropriateness depends on the situation under con-
sideration. For example, at the beginning of Chapter 3 we described a situation
where the Ki relation need not be reflexive. Similarly, our goal in this chapter is
to demonstrate that the logical-omniscience problem can be attacked in a variety of
ways. Rather than prescribe the “correct” way to deal with logical omniscience, we
describe several ways in which the problem can be dealt with. Because the issue
of dealing with logical omniscience is orthogonal to the issues of dealing with dis-
tributed knowledge and common knowledge, we do not deal with distributed and
common knowledge in this chapter.

In the chapters dealing with knowledge in multi-agent systems we used the term
knowledge with a specific sense in mind: knowledge was defined by the possible-
worlds semantics. The properties of this notion of knowledge were described in
Chapters 2 and 3. But it is precisely this notion of knowledge that creates the logical-
omniscience problem. Thus, in this chapter we start with a notion of knowledge that
involves no prior assumptions on its properties. What exactly we mean by knowledge
in this chapter will depend on the approach discussed and will differ from approach
to approach.

9.2 Explicit Representation of Knowledge

As we already said, the simplest and most radical approach to the logical-omniscience
problem is to abandon the definition of knowledge as truth in all possible worlds.
This does not mean that we also have to abandon the notion of possible worlds.
After all, the notion that the world can be in any one of a number of different states
is independent of the concept of knowledge, and it arises naturally in a number of
contexts, in particular, as we have seen, in our model of multi-agent systems. In this
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section, we intend to keep the possible-worlds framework, but change the way we
define knowledge. Instead of defining knowledge in terms of possible worlds, we
let knowledge be defined directly. Intuitively, we think of each agent’s knowledge
as being explicitly stored in a database of formulas. We now describe two ways to
capture this intuition: a syntactic approach and its semantic analogue.

9.2.1 The Syntactic Approach

As we saw in Chapter 3, a Kripke structure M = (S, π, K1, . . . , Kn) consists of
frame F = (S, K1, . . . , Kn) and an assignment π of truth values to the primitive
propositions in each state. Our definition of the satisfaction relation |= then gives
truth values to all formulas in all states. Here we replace the truth assignment π

by a syntactic assignment. A syntactic assignment simply assigns truth values to
all formulas in all states. For example, a syntactic assignment σ can assign both p

and ¬p to be true in a state s.
Since in this section we are interested in changing the definition of knowledge

but not the underlying propositional semantics, we restrict our syntactic assignments
here to be standard. A standard syntactic assignment σ is a syntactic assignment
that obeys the following constraints for all formulas ϕ and ψ :

σ(s)(ϕ ∧ ψ) = true if and only if σ(s)(ϕ) = true and σ(s)(ψ) = true.

σ(s)(ϕ) = true if and only if σ(s)(¬ϕ) = false, and

Thus, in syntactic structures we replace truth assignments by standard syntactic
assignments. In addition, we discard the possibility relations, because these relations
were needed just to define satisfaction for formulas of the form Kiϕ. Formally, a
syntactic structure M is a pair (S, σ ), consisting of a set S of states and a standard
syntactic assignment σ . We can now define the truth of a formula ϕ in a syntactic
structure in a straightforward way: (M, s) |= ϕ precisely when σ(s)(ϕ) = true.
Notice that we can identify every Kripke structure M = (S, π, K1, . . . , Kn) with the
syntactic structure (S, σ ), where σ(s)(ϕ) = true if (M, s) |= ϕ. Thus, syntactic
structures can be viewed as a generalization of Kripke structures. In fact, syntactic
structures provide the most general model of knowledge. (More precisely, they
provide a most general model for knowledge among models that are based on standard
propositional semantics.)

It is easy to see that no form of logical omniscience holds for syntactic structures.
For example, knowledge of valid formulas fails, because there is no requirement that a
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standard syntactic assignment assign the truth value true to formulas of the form Kiϕ

where ϕ is a valid formula. Similarly, closure under logical equivalence fails, since ϕ

and ψ could be logically equivalent, but a standard syntactic assignment may assign
the truth value true to Kiϕ and the truth value false to Kiψ . In fact, knowledge in
syntactic structures does not have any interesting properties; the only formulas that are
valid in all syntactic structures are substitution instances of propositional tautologies.
If we want to use syntactic structures to model a notion of knowledge that does
obey certain properties, then we have to impose some constraints on the allowable
standard syntactic assignments. For example, if we want to capture the fact that
we are modeling knowledge rather than belief, then we can enforce the Knowledge
Axiom (Kiϕ ⇒ ϕ) by requiring that σ(s)(ϕ) = true whenever σ(s)(Kiϕ) = true.

One particular property of knowledge that syntactic structures fail to capture is a
property that played a central role in our study of multi-agent systems in Chapter 4.
In that framework we assumed that every agent in the system is in some local state at
any point in time. An important feature of knowledge in the framework of Chapter 4
is its locality. That is, if s and s′ are states of the system such that agent i has the
same local state in both of them, that is, s ∼i s′, and agent i knows ϕ in state s,
then i also knows ϕ in state s′. In Chapter 4, this property was a consequence of
the definition of knowledge as truth in all possible worlds, but it is a property that
we may want to keep even if we abandon that definition. For example, a natural
interpretation of σ(s)(Kiϕ) = true, which we pursue in Chapter 10, is that agent i

can decide, say by using some algorithm A, whether ϕ follows from the information
in i’s local state. Unfortunately, syntactic structures have no notion of local state;
we cannot get locality of knowledge just by imposing further restrictions on the
syntactic assignments. If we want to capture locality of knowledge, then we need to
reintroduce possibility relations, because we can use them to express locality. If the
possibility relation Ki is an equivalence relation ∼i , for i = 1, . . . , n, then we can
say that an agent i is in the same local state in states s and t precisely when s ∼i t .
For knowledge to depend only on the agent’s local state, we should require that if
s ∼i t , then σ(s)(Kiϕ) = σ(t)(Kiϕ).

Syntactic structures can be used to model fairly realistic situations. Consider
the situation where each agent has a base set of formulas from which the agent’s
knowledge is derived using a sound but possibly incomplete set of inference rules.
Formally, we could interpret this to mean that for each agent i, there is a formal
system Ri of inference rules, and for each state s ∈ S, there is a set Bi(s) (the base
set of formulas) such that σ(s)(Kiϕ) = true iff ϕ is derivable from Bi(s) using Ri .
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Intuitively, agent i knows ϕ if she can deduce ϕ from her base formulas using her
inference rules. For example, a student might know that x + a = b but not conclude
that x = b − a, because he might not know the rule allowing subtraction of equal
quantities from both sides. In this case, we would have σ(s)(Ki(x+a = b)) = true,
but σ(s)(Ki(x = b−a)) = false. As another example, a deduction system might be
capable of certain limited reasoning about equality. For example, from A = B and
B = C, it might be able to deduce that A = C; however, given the information that
f (1) = 1 and that f (x) = x ·f (x−1), it might not be able to deduce that f (4) = 24.
In both of these cases, agents have a base set of formulas and an incomplete set of
inference rules. Notice that, in these examples, if we view the base set Bi(s) of
formulas as agent i’s local state, then agent i’s knowledge indeed depends only on
his local state, so knowledge has the locality property.

9.2.2 The Semantic Approach

In a syntactic structure M = (S, σ ), for each state s the function σ(s) tells which
formulas are true at state s. In particular, agent i knows ϕ at state s precisely if
σ(s)(Kiϕ) = true. Essentially, an agent’s knowledge is explicitly described at a
state by giving a list of the formulas that he knows. While this approach indeed
avoids the logical-omniscience problem, its main weakness is its syntactic flavor.
After all, the separation between syntax and semantics is one of the major strengths
of modern logic. Is it possible to “semanticize” this approach? That is, is it possible
to model knowledge explicitly on a semantic level?

To do that, we first need to find the semantic counterpart of formulas. We can
identify the semantic “content” of a formula ϕ with its intension (see Section 2.5),
that is, the set of states in which ϕ holds. The motivation for this identification is as
follows. Let ϕ and ψ be two formulas with the same intension in a structure M . Then
for all s ∈ S we have that (M, s) |= ϕ if and only if (M, s) |= ψ . That is, if ϕ and ψ

have the same intension in M , then they are semantically indistinguishable in M .
Consequently, we can take sets of states as the semantic counterpart of formulas.
Put another way, we can think of a set W of states as a “proposition” pW that is true
precisely at the states of W . Thus, we can represent an agent’s semantic knowledge by
simply listing the propositions that he knows, instead of representing his knowledge
syntactically by listing the formulas that he knows. Since a proposition is a set of
states, we can describe agent i’s semantic knowledge explicitly by a set of sets of
states.
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The previous discussion motivates the following definition. A Montague-Scott
structure M is a tuple (S, π, C1, . . . , Cn) where S is a set of states, π(s) is a truth
assignment to the primitive propositions for each state s ∈ S, and Ci (s) is a set of
subsets of S, for i = 1, . . . , n. For the sake of brevity, we refer to Montague-Scott
structures as MS structures. In an MS structure, we describe agent i’s knowledge (in
state s) by a set of sets of states; this is given to us by Ci (s). The members of Ci (s)

are the propositions that agent i knows.
We can now define |= for all formulas. The clauses for primitive propositions,

conjunctions, and negations are identical to the corresponding clauses for Kripke
structures. The clause for formulas Kiϕ is different:

(M, s) |= Kiϕ iff {t | (M, t) |= ϕ} ∈ Ci (s).

As in Section 2.5, we denote the intension of a formula ϕ in the structure M by ϕM .
That is, ϕM = {s | (M, s) |= ϕ} is the set of states in M where ϕ is true. The
clause above says that agent i knows ϕ at state s if the intension of ϕ is one of the
propositions that he knows, that is, if ϕM ∈ Ci (s).

Example 9.2.1 These definitions are perhaps best illustrated by a simple example.
Suppose that � = {p} andn = 2, so that our language has one primitive propositionp

and there are two agents. Further suppose that M ′ = (S, π, C1, C2), where S =
{s, t, u}, and that the primitive proposition p is true at states s and u, but false at t

(so that π(s)(p) = π(u)(p) = true and π(t)(p) = false). Suppose that

• C1(s) = C1(t) = {{s, t}, {s, t, u}},
• C1(u) = {{u}, {s, u}, {t, u}, {s, t, u}},
• C2(s) = C2(u) = {{s, u}, {s, t, u}}, and

• C2(t) = {{t}, {s, t}, {t, u}, {s, t, u}}.
Consider agent 1. In states s and t agent 1 knows the propositions {s, t} and {s, t, u},
and in state u he knows the propositions {u}, {s, u}, {t, u}, and {s, t, u}. In some
sense, one could say that agent 1 cannot distinguish between the states s and t , since
C1(s) = C1(t), and s and t play symmetric roles in C1(s), C1(t), and C1(u). On the
other hand, agent 1 can distinguish between the state u and each of s and t , since
C1(s) = C1(t) �= C1(u). The situation for agent 2 is analogous.
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Consider the formulas K1p and K1¬p. The intension of p is {s, u} and the
intension of ¬p is {t}. Since {s, u} �∈ C1(s) and {t} �∈ C1(s), in state s agent 1 does
not know whether or not p holds. That is,

(M ′, s) �|= K1p ∨ K1¬p.

Consider the formulas K2p and K2¬p. Because the intension of p is {s, u}, and
since {s, u} ∈ C2(s), {s, u} ∈ C2(u), and {s, u} �∈ C2(t), the intension of K2p is
{s, u}. Similarly, the intension of K2¬p is {t}. Thus, the intension of K2p ∨ K2¬p

is {s, t, u}. Because {s, t, u} ∈ C1(s), it follows that in state s agent 1 knows that
agent 2 knows whether or not p is true. That is,

(M ′, s) |= K1(K2p ∨ K2¬p).

It is instructive to compare this example with the example described by Figure 2.1.
In that example, we considered a Kripke structure M = (S, π, K1, K2) with the
same state space as M ′. There are a number of other more significant similarities
between M and M ′. Just as with M ′, agent 1 cannot distinguish s and t in M , although
he can distinguish u from both of them. Similarly, agent 2 cannot distinguish s and u

in M , although she can distinguish s and t . Notice, however, that the way we
captured indistinguishability in M (using the relations K1 and K2) is very different
from the way we capture it in M ′ (in terms of the sets of propositions the agents
know). Nevertheless, it can be shown that precisely the same formulas are true at
corresponding states in the two structures. As we shall see, this similarity between
the MS structure M ′ and the Kripke structure M is not a coincidence.

We observed in Section 9.2.1 that syntactic structures generalize Kripke struc-
tures. Similarly, MS structures can also be viewed as a generalization of Kripke
structures. Thus, let M = (S, π, K1, . . . , Kn) be a Kripke structure. Let Ki (s) be
the set of all “i-neighbors” of a state s, that is,

Ki (s) = {t | (s, t) ∈ Ki}.
Let M ′ be the MS structure (S, π, C1, . . . , Cn), where Ci (s) is the set of all supersets
of Ki (s). Intuitively, in a state s of M , an agent i knows that the actual state is one of
the states in Ki (s). Thus, i knows all the propositions that contain Ki (s). It can now
be shown that for each formula ϕ we have (M, s) |= ϕ iff (M ′, s) |= ϕ (Exercise 9.4).
This explains the tight correspondence between the MS structure M ′ and the Kripke
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structure M observed in Example 9.2.1. The reader can verify that in that example
we indeed had that Ci (s) is the set of all supersets of Ki (s).

Earlier we observed that syntactic structures strip away all properties of knowl-
edge. This is not quite the case for MS structures. Suppose that ϕ and ψ are
equivalent formulas. Then, by definition, they must have the same intension in every
MS structure. It follows that Kiϕ is true in a state precisely when Kiψ is true in
that state. Thus, knowledge in MS structures is closed under logical equivalence. It
is easy to verify, however, that all other forms of logical omniscience fail here (see
Exercise 9.5). In fact, closure under logical equivalence is in some formal sense the
only necessary property of knowledge in MS structures.

Theorem 9.2.2 The following is a sound and complete axiomatization for validity
with respect to MS structures:

A1. All instances of tautologies of propositional logic

R1. From ϕ and ϕ ⇒ ψ infer ψ (modus ponens)

LE. From ϕ ⇔ ψ infer Kiϕ ⇔ Kiψ .

Proof See Exercise 9.6.

Thus, propositional reasoning and closure under logical equivalence completely
characterize knowledge in MS structures. This suggests that reasoning about knowl-
edge in Montague-Scott semantics may not be any harder than propositional reason-
ing. This indeed is the case, as the following result shows.

Theorem 9.2.3 The satisfiability problem with respect to MS structures is NP -
complete.

Proof The lower bound is immediate, since the satisfiability problem for proposi-
tional logic is already NP -hard. For the upper bound, we proceed along similar lines
to the proof of Proposition 3.6.2: we show that if a formula ϕ is satisfiable, then
it is satisfiable in an MS structure with at most |ϕ|2 states. We leave details to the
reader (Exercise 9.7); however, the following example might provide some intuition.
Consider the formula ϕ = Kiϕ1∧. . .∧Kiϕr ∧¬Kiψ . Clearly, for ϕ to be satisfiable,
ψ cannot be logically equivalent to any of the ϕj , for j = 1, . . . , r . In other words,
not knowing ψ has to be consistent with knowing ϕj , for j = 1, . . . , r . It turns out
that the consistency of not knowing ψ with knowing ϕj , for j = 1, . . . , r , is also
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a sufficient condition for the satisfiability of ϕ. This means that we can test if ϕ is
satisfiable by testing if Kiϕj ∧ ¬Kiψ is satisfiable, for j = 1, . . . , r . Moreover,
it is easy to see that Kiϕj ∧ ¬Kiψ is satisfiable exactly if at least one of ¬ϕj ∧ ψ

or ϕj ∧ ¬ψ is satisfiable. Thus, we can decompose the problem of testing if ϕ is
satisfiable into testing a number of smaller satisfiability problems. In fact, it can be
shown that there are only quadratically many such problems to test (at most two for
every pair of subformulas of ϕ), so the problem is in NP.

Do MS structures avoid logical omniscience? The answer is “almost.” As we
observed, all forms of logical omniscience fail except for closure under logical equiv-
alence. In other words, while agents need not know all logical consequences of their
knowledge, they are unable to distinguish between logically equivalent formulas.
This is as much as we can expect to accomplish in a purely semantic model, since
logically equivalent formulas are by definition semantically indistinguishable. Thus,
just as syntactic structures provide the most general model of knowledge, MS struc-
tures provide the most general semantic model of knowledge. (Of course, just as
in the case of syntactic structures, MS structures provide the most general semantic
model of knowledge only among models that are based on standard propositional
semantics, since Montague-Scott semantics is based on standard propositional se-
mantics.)

We saw in Chapter 3 how certain properties of knowledge in Kripke structures
correspond to certain conditions on the possibility relations Ki . Similarly, certain
properties of knowledge in MS structures correspond to certain conditions on the Ci’s.
Especially interesting are properties of knowledge that correspond to various forms
of logical omniscience. For example, knowledge of valid formulas corresponds to
the condition that S ∈ Ci (s), where S is the set of all states, since the intension of
true is the set S. For another example, consider closure under conjunction. This
property corresponds to Ci (s) being closed under intersection; that is, if U and V

are in Ci (s), then U ∩ V is also in Ci (s). The reason for this is that the intension
of ϕ ∧ ψ is the intersection of the intensions of ϕ and ψ . Exercise 9.8 provides a
precise statement of the equivalence between various properties of knowledge and
corresponding restrictions on the Ci’s.

We already saw in Chapter 3 that imposing certain restrictions on Kripke struc-
tures, or, equivalently, assuming that knowledge satisfies some additional properties
may sometimes (but not always) have an effect on the computational complexityof
reasoning about knowledge. A similar phenomenon occurs in the context of MS
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structures. It turns out that we can capture several properties of knowledge without
increasing the complexity of reasoning beyond that of propositional reasoning (i.e.,
NP -complete). Once, however, we capture closure under conjunction by insisting
that each Ci (s) be closed under intersection, then the complexity of the satisfiability
problem rises to PSPACE-complete. To understand the intuitive reason for this dif-
ference, consider again the formula ϕ = Kiϕ1∧. . .∧Kiϕr ∧¬Kiψ . As we observed
in the proof of Theorem 9.2.3, if we do not assume closure under conjunction, then a
necessary and sufficient condition for ϕ to be satisfiable is that ψ cannot be logically
equivalent to any of the ϕj , for j = 1, . . . , r . The situation is quite different when we
do assume closure under conjunction. Now it is not sufficient that ψ not be logically
equivalent to any of the ϕj ’s; it also cannot be equivalent to any conjunction of ϕj ’s.
In other words, in the presence of closure under conjunction we have to show that
not knowing ψ is simultaneously consistent with knowing any conjunction of ϕj ’s.
Thus, to test whether ϕ is satisfiable, we have to consider sets of subformulas of ϕ

rather than only pairs of subformulas of ϕ. Since there are exponentially many such
sets, the problem is PSPACE -hard.

9.2.3 Discussion

The two approaches described in this section overcome the logical omniscience prob-
lem by explicitly modeling an agent’s knowledge, either as a set of formulas (the
formulas the agent knows) or as a set of sets of possible worlds (the intensions of
the formulas the agent knows). These approaches are very powerful. They solve the
logical-omniscience problem by giving us direct fine-grained control over an agent’s
knowledge. This power, however, comes at a price. One gains very little intuition
about knowledge from studying syntactic structures or MS structures; in these ap-
proaches knowledge is a primitive construct (much like the primitive propositions
in a Kripke structure). Arguably, these approaches give us ways of representing
knowledge rather than modeling knowledge. In contrast, the semantics given to
knowledge in Kripke structures explains knowledge as truth in all possible worlds.
Unfortunately, this “explanation” does not fit certain applications, because it forces
logical omniscience.

In the following sections, we try to steer a middle course, by keeping the flavor
of the possible-worlds approach, while trying to mitigate its side effects.
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9.3 Nonstandard Logic

If knowledge is truth in all possible worlds, then one way to deal with logical om-
niscience is to change the notion of truth. The underlying idea is to weaken the
“logical” aspect of the logical-omniscience problem, thus reducing the acuteness of
the problem. Indeed, as we saw in Section 9.1, certain forms of logical omniscience
follow from full logical omniscience only under standard propositional semantics.
The nonstandard semantics for knowledge we are about to describe is based on a
nonstandard propositional semantics. Knowledge is still defined to be truth in all
possible worlds, so we still have logical omniscience, but this time with respect to
the nonstandard logic. The hope is that the logical-omniscience problem can be
alleviated somewhat by appropriately choosing the nonstandard logic.

There are many ways in which one can define a nonstandard propositional se-
mantics. We describe here one approach that changes the treatment of negation. We
do not mean to argue that this is the “right” propositional semantics to deal with
knowledge, but rather we mean to demonstrate how knowledge can be modeled on
the basis of a nonstandard propositional semantics.

9.3.1 Nonstandard Structures

Standard propositional logic has several undesirable and counterintuitive properties.
Often people first introduced to propositional logic are somewhat uncomfortable
when they learn that “ϕ ⇒ ψ” is taken to be simply an abbreviation for ¬ϕ ∨ ψ .
Why should the fact that either ¬ϕ is true or ψ is true correspond to “if ϕ is true,
then ψ is true”?

Another problem with standard propositional logic is that it is fragile: a false
statement implies everything. In particular, the formula (p∧¬p) ⇒ q is valid, even
when p and q are unrelated primitive propositions; for example, p could say that
Alice graduated from college in 1987 and q could say that Bob’s salary is $500,000.
This could be a serious problem if we have a large database of formulas, obtained
from multiple sources. Such a database will often contain an inconsistency; for
example, someone may have input the datum that Alice graduated in 1987, and
someone else may have input the datum that Alice graduated in 1986. If the database
contains a constraint that each person’s graduation year is unique, then, using standard
propositional reasoning, any arbitrary fact about Bob’s salary can be derived from
the database. Many alternatives to the standard semantics have been proposed over
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the years, designed to deal with various aspects of these problems. We focus on one
particular alternative here, and consider its consequences.

The idea is to allow formulas ϕ and ¬ϕ to have “independent” truth values. Thus,
rather than requiring that ¬ϕ be true if and only if ϕ is false, we wish instead to allow
the possibility that ¬ϕ can be either true or false, regardless of whether ϕ is true or
false. Intuitively, the truth of formulas can be thought of as being determined by
some database of formulas. We can think of ϕ being true as meaning that the fact ϕ

is in a database of true formulas, and we can think of ¬ϕ being true as meaning that
the fact ϕ is in a database of false formulas. Since it is possible for ϕ to be in both
databases, it is possible for both ϕ and ¬ϕ to be true. Similarly, if ϕ is in neither
database, then neither ϕ nor ¬ϕ would be true.

There are several ways to capture this intuition formally. We now discuss one
approach; some closely related approaches are discussed in Exercises 9.9 and 9.10.
For each state s, there is an adjunct state s∗, which is used for giving semantics to
negated formulas. Rather than defining ¬ϕ to hold at s iff ϕ does not hold at s, we
instead define ¬ϕ to hold at s iff ϕ does not hold at s∗. Note that if s = s∗, then
this gives our usual notion of negation. Very roughly, we can think of a state s as
consisting of a pair 〈BT , BF 〉 of databases; BT is the database of true facts, while BF

is the database of false facts. The state s∗ should be thought of as the adjunct pair
〈BF ,BT 〉 (where, if X is a set of formulas, then X is the set consisting of all formulas
not in X). Continuing this intuition, to see if ϕ holds at s, we check if ϕ ∈ BT ; to see
if ¬ϕ holds at s, we check if ϕ ∈ BF . Notice that ϕ ∈ BF iff ϕ /∈ BF . Since BF is
the database of true facts at s∗, we have an alternative way of checking if ¬ϕ holds
at s: we can check if ϕ does not hold at s∗. Note that if BT = BF , then s = s∗ and
we get the standard semantics of negation.

Under this interpretation, not only is s∗ the adjunct state of s, but s is the adjunct
state of s∗; that is, s∗∗ = s (where s∗∗ = (s∗)∗). To support this intuitive view of s

as a pair of databases and s∗ as its adjunct, we make s∗∗ = s a general requirement
in our framework.

A nonstandard (Kripke) structure M is a tuple (S, π, K1, . . . , Kn,
∗ ), where the

tuple (S, π, K1, . . . , Kn) is a Kripke structure, and ∗ is a unary function from the
set S of worlds to itself (where we write s∗ for the result of applying the function ∗ to
the state s) such that s∗∗ = s for each s ∈ S. We call these structures nonstandard,
since we think of a world where ϕ and ¬ϕ are both true or both false as nonstandard.
We denote the class of nonstandard structures for n agents over � by NMn(�) (or
by NMn when � is clear from the context).
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The definition of |= is the same as for standard Kripke structures, except for the
clause for negation. In this case, we have

(M, s) |= ¬ϕ iff (M, s∗) �|= ϕ.

Note that it is possible for neither ϕ nor ¬ϕ to be true at state s (if (M, s) �|= ϕ

and (M, s∗) |= ϕ) and for both ϕ and ¬ϕ to be true at state s (if (M, s) |= ϕ and
(M, s∗) �|= ϕ). We call a state s where neither ϕ nor ¬ϕ is true incomplete (with
respect to ϕ); otherwise, we call s complete (with respect to ϕ). The intuition behind
an incomplete state is that there is not enough information to determine whether ϕ is
true or whether ¬ϕ is true. We call a state s where both ϕ and ¬ϕ are true incoherent
(with respect to ϕ); otherwise, s is coherent (with respect to ϕ). The intuition behind
an incoherent state is that it is overdetermined; it might correspond to a situation
where several people have provided mutually inconsistent information.

A state s is standard if s = s∗. Note that for a standard state, the semantics of
negation is equivalent to the standard semantics. In particular, a standard state s is
both complete and coherent with respect to all formulas: for each formula ϕ exactly
one of ϕ or ¬ϕ is true at s. (See also Exercise 9.11.)

In standard propositional logic, disjunction (∨) and material implication (⇒) can
be defined in terms of conjunction and negation, that is, ϕ1 ∨ ϕ2 can be defined as
¬(¬ϕ1 ∧¬ϕ2), and ϕ1 ⇒ ϕ2 can be defined as ¬ϕ1 ∨ϕ2. We retain these definitions
in the nonstandard framework. Since, however, the semantics of negation is now
nonstandard, it is not a priori clear how the propositional connectives behave in
our nonstandard semantics. For example, while p ∧ q holds by definition precisely
when p and q both hold, it is not clear that p ∨ q holds precisely when at least
one of p or q holds. It is even less clear how negation interacts with conjunction
and disjunction in our nonstandard semantics. The next proposition shows that even
though we have decoupled the semantics for ϕ and ¬ϕ, the propositional connectives
¬, ∧, and ∨ still behave in a fairly standard way.

Proposition 9.3.1 Let M be a nonstandard structure. Then

(a) (M, s) |= ¬¬ϕ iff (M, s) |= ϕ.

(b) (M, s) |= ϕ ∨ ψ iff (M, s) |= ϕ or (M, s) |= ψ .

(c) (M, s) |= ¬(ϕ ∧ ψ) iff (M, s) |= ¬ϕ ∨ ¬ψ .

(d) (M, s) |= ¬(ϕ ∨ ψ) iff (M, s) |= ¬ϕ ∧ ¬ψ .
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(e) (M, s) |= ϕ ∧ (ψ1 ∨ ψ2) iff (M, s) |= (ϕ ∧ ψ1) ∨ (ϕ ∧ ψ2).

(f) (M, s) |= ϕ ∨ (ψ1 ∧ ψ2) iff (M, s) |= (ϕ ∨ ψ1) ∧ (ϕ ∨ ψ2).

Proof See Exercise 9.12.

In contrast to ∧ and ∨, the connective ⇒ behaves in a nonstandard fashion. In
particular, both p and p ⇒ q can be true at a state without q being true, so ⇒ does
not capture our usual notion of logical implication (see Exercise 9.14).

What are the properties of knowledge in nonstandard structures? So far, our
approach to understanding the properties of knowledge in some semantic model
has been to consider all the valid formulas under that semantics. What are the valid
formulas with respect to NMn? It is easy to verify that certain tautologies of standard
propositional logic are not valid. For example, the formula (p ∧ ¬p) ⇒ q, which
wreaked havoc in deriving consequences from a database, is not valid. How about
even simpler tautologies of standard propositional logic, such as p ⇒ p? This
formula, too, is not valid. One might think that these formulas are not valid because
of the nonstandard behavior of ⇒, but observe that p ⇒ p is just an abbreviation
for ¬p ∨ p (which is not valid). In fact, no formula is valid with respect to NMn!
Furthermore, there is a single structure that simultaneously shows that no formula is
valid!

Theorem 9.3.2 No formula of Ln is valid with respect to NMn. In fact, there is a
nonstandard structure M and a state s of M such that every formula of Ln is false
at s, and a state t of M such that every formula of Ln is true at t .

Proof Let M = (S, π, K1, . . . , Kn,
∗ ) be a special nonstandard structure, defined as

follows. Let S contain only two states s and t , where t = s∗ (and so s = t∗). Define π

by taking π(s) be the truth assignment where π(s)(p) = false for every primitive
proposition p, and taking π(t) be the truth assignment where π(t)(p) = true for
every primitive proposition p. Define Ki to be {(s, s), (t, t)}, for i = 1, . . . , n. By
a straightforward induction on the structure of formulas (Exercise 9.13), it follows
that for every formula ϕ of Ln, we have (M, s) �|= ϕ and (M, t) |= ϕ. In particular,
every formula of Ln is false at s and every formula of Ln is true at t . Since every
formula of Ln is false at s, no formula of Ln is valid with respect to NMn.

It follows from Theorem 9.3.2 that the validity problem with respect to NMn

is very easy: the answer is always, “No, the formula is not valid!” Thus, the notion
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of validity is trivially uninteresting in our logic. In particular, we cannot use valid
formulas to characterize the properties of knowledge in nonstandard structures, since
there are no valid formulas.

In contrast to validity, there are many nontrivial logical implications with respect
to NMn. For example, as we see from Proposition 9.3.1, ¬¬ϕ logically implies ϕ

and ¬(ϕ1 ∧ ϕ2) logically implies ¬ϕ1 ∨ ¬ϕ2. The reader may be puzzled why
Proposition 9.3.1 does not provide us with some tautologies. For example, Proposi-
tion 9.3.1 tells us that ¬¬ϕ logically implies ϕ. Doesn’t this mean that ¬¬ϕ ⇒ ϕ

is a tautology? This does not follow. With standard Kripke structures, ϕ logically
implies ψ iff the formula ϕ ⇒ ψ is valid. This is not the case for nonstandard
structures; here, logical and material implication do not coincide. For example, ϕ

logically implies ϕ, yet we have already observed that ϕ ⇒ ϕ (i.e., ¬ϕ ∨ ϕ) is not
valid with respect to NMn. In Section 9.3.2, we define a new connective that allows
us to express logical implication in the language, just as ⇒ does for standard Kripke
structures.

What about logical omniscience? Full logical omniscience holds, just as with
ordinary Kripke structures. For example, it follows from Proposition 9.3.1(b) that ϕ

logically implies ϕ ∨ ψ ; hence, by full logical omniscience, Kiϕ logically implies
Ki(ϕ∨ψ). Moreover, closure under conjunction holds, since {ϕ, ψ} logically implies
ϕ∧ψ . Nevertheless, since it is not the case here that {ϕ, ϕ ⇒ ψ} logically implies ψ

(Exercise 9.14), we might expect that closure under material implication would fail.
Closure under material implication does in fact fail: it is possible for Kiϕ and
Ki(ϕ ⇒ ψ) to hold, withoutKiψ holding (Exercise 9.16). Finally, note that although
knowledge of valid formulas holds, it is completely innocuous here; there are no valid
formulas!

9.3.2 Strong Implication

In the previous subsection we introduced nonstandard semantics, motivated by our
discomfort with the tautology (p ∧ ¬p) ⇒ q, and, indeed, under this semantics
(p∧¬p) ⇒ q is no longer valid. Unfortunately, the bad news is that other formulas,
such as ϕ ⇒ ϕ, that seem as if they should be valid, are not valid either. In fact,
as we saw, no formula is valid in the nonstandard approach. It seems that we have
thrown out the baby with the bath water.

To get better insight into this problem, let us look more closely at why the formula
ϕ ⇒ ϕ is not valid. Our intuition about implication tells us that ϕ1 ⇒ ϕ2 should say
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“if ϕ1 is true, then ϕ2 is true,” but ϕ1 ⇒ ϕ2 is defined to be ¬ϕ1 ∨ ϕ2, which says
“either ¬ϕ1 is true or ϕ2 is true.” In standard propositional logic, this is the same as
“if ϕ1 is true, then ϕ2 is true,” since ¬ϕ1 is false in standard logic iff ϕ1 is true. In
nonstandard structures, however, these are not equivalent. In particular, ϕ ⇒ ϕ is
simply an abbreviation for ¬ϕ ∨ϕ. Since our semantics decouples the meaning of ϕ

and ¬ϕ, the formula ¬ϕ ∨ ϕ should not be valid.
While the above explains why ¬ϕ∨ϕ is not valid, it still seems that the statement

“if ϕ is true then ϕ is true” ought to be valid. Unfortunately, our definition of ⇒ does
not capture the intuition of “if . . . then . . ..” This motivates the definition of a new
propositional connective ↪→, which we call strong implication, where ϕ1 ↪→ ϕ2 is
defined to be true if whenever ϕ1 is true, then ϕ2 is true. Formally,

(M, s) |= ϕ1 ↪→ ϕ2 iff (M, s) |= ϕ2 holds whenever (M, s) |= ϕ1 does.

That is, (M, s) |= ϕ1 ↪→ ϕ2 iff either (M, s) �|= ϕ1 or (M, s) |= ϕ2.
We denote by L↪→

n (�), or L↪→
n when � is obvious from the context, the set of

formulas obtained by closing off Ln(�) under the connective ↪→ (i.e., if ϕ and ψ are
formulas of L↪→

n (�), then so is ϕ ↪→ ψ). We call the formulas of L↪→
n nonstandard

formulas, to distinguish them from the standard formulas of Ln. We call the proposi-
tional fragment of L↪→

n and its interpretation by nonstandard structures nonstandard
propositional logic, to distinguish it from standard propositional logic. We redefine
true to be an abbreviation for some fixed nonstandard tautology such as p ↪→ p;
again, we abbreviate ¬true by false.

Strong implication is indeed a new connective, that is, it cannot be defined using
(nonstandard) ¬ and ∧. For example, there are no valid formulas using only ¬
and ∧, whereas by using ↪→, there are valid formulas: ϕ ↪→ ϕ is valid, as is
ϕ1 ↪→ (ϕ1 ∨ ϕ2). Strong implication is indeed stronger than implication, in the
sense that if ϕ1 and ϕ2 are standard formulas (formulas of Ln), and if ϕ1 ↪→ ϕ2

is valid with respect to nonstandard Kripke structures, then ϕ1 ⇒ ϕ2 is valid with
respect to standard Kripke structures (Exercise 9.17). The converse, however, is
false. For example, the formula (p ∧ ¬p) ⇒ q is valid with respect to standard
propositional logic, whereas the formula (p ∧ ¬p) ↪→ q is not valid with respect to
nonstandard propositional logic (Exercise 9.17).

As we promised in the previous section, we can now express nonstandard logical
implication using ↪→, just as we can express standard logical implication using ⇒.

Proposition 9.3.3 Let ϕ1 and ϕ2 be formulas in L↪→
n . Then ϕ1 logically implies ϕ2

with respect to NMn iff ϕ1 ↪→ ϕ2 is valid with respect to NMn.
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Proof See Exercise 9.18.

It turns out that it was the lack of ability to express logical implication within the
language that prevented us from getting interesting formulas valid in NMn. Now
that we have introduced ↪→, there are many valid formulas. Thus, we can try again
to characterize the properties of knowledge by getting a sound and complete axiom-
atization for L↪→

n . Such an axiomatization can be obtained by modifying the axiom
system Kn by (a) replacing propositional reasoning by nonstandard propositional
reasoning, and (b) replacing standard implication (⇒) in the other axioms and rules
by strong implication (↪→). Thus, we obtain the axiom system K↪→

n , which consists
of all instances (for the language L↪→

n ) of the following axiom scheme and inference
rules:

A2↪→. (Kiϕ ∧ Ki(ϕ ↪→ ψ)) ↪→ Kiψ (Distribution Axiom)

NPR. All sound inference rules of nonstandard propositional logic.

R2. From ϕ infer Kiϕ (Knowledge Generalization)

Note that the way we include nonstandard propositional reasoning in our axioma-
tization is quite different from the way we include standard propositional reasoning in
the axiomatizations of Chapter 3. In the axiomatizations of Chapter 3, we took from
the underlying propositional logic only the tautologies and modus ponens, while here
we include all sound inference rules of nonstandard propositional logic. An example
of a sound inference rule of nonstandard propositional logic is (nonstandard) modus
ponens: From ϕ and ϕ ↪→ ψ infer ψ (this is a “nonstandard” rule, since it uses ↪→
instead of ⇒). Other examples of sound inference rules of nonstandard propositional
logic are given in Exercise 9.20. It can be shown that the axiomatization would not
be complete had we included only the valid formulas of our nonstandard proposi-
tional logic as axioms, along with nonstandard modus ponens as the sole nonstandard
propositional inference rule, rather than including all the sound inference rules of
nonstandard propositional logic.

Theorem 9.3.4 K↪→
n is a sound and complete axiomatization with respect to NMn

for formulas in the language L↪→
n .

Proof See Exercise 9.19.

Theorem 9.3.4 shows that we can in some sense separate the properties of knowl-
edge from the properties of the underlying propositional semantics. Even though
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logical omniscience is an essential feature of the possible-worlds approach (it is easy
to see that in our enlarged language L↪→

n , all of our types of logical omniscience hold,
where we use ↪→ instead of ⇒; see Exercise 9.21), it can be controlled to a certain
degree by varying the propositional component of the semantics. Thus, one can say
that in the nonstandard approach agents are “nonstandardly” logically omniscient.

In Chapter 3, we saw that under the standard semantics we can capture addi-
tional properties of knowledge by imposing suitable restrictions on the possibility
relations Ki . For example, restricting Ki to be reflexive captures the property that
agents know only true facts (Kiϕ ⇒ ϕ), and restricting Ki to be transitive captures
the property of positive introspection (Kiϕ ⇒ KiKiϕ). The same phenomenon
occurs under the nonstandard semantics. For example, restricting Ki to be reflexive
captures the property that agents know only true facts, and analogously for positive
introspection. Note, however, that to express these properties by valid formulas in
the nonstandard approach, we need to use strong implication instead of standard
implication. That is, the property that agents know only true facts is expressed by
the axiom Kiϕ ↪→ ϕ, and the property of positive introspection is expressed by the
axiom Kiϕ ↪→ KiKiϕ. In the standard approach we captured negative introspec-
tion (¬Kiϕ ⇒ Ki¬Kiϕ) by requiring Ki to be Euclidean. It turns out that this
is not sufficient to capture negative introspection in the nonstandard approach (as
expressed by the axiom ¬Kiϕ ↪→ Ki¬Kiϕ), because of the nonstandard behavior
of negation. To capture negative introspection we have to impose further restrictions
on Ki . For example, a sufficient additional restriction is that (s, t) ∈ Ki implies that
(s∗, t∗) ∈ Ki (see Exercise 9.22).

Now that we have characterized the properties of knowledge in the nonstan-
dard approach (in Theorem 9.3.4), we can consider the computational complexity
of reasoning about knowledge, that is, the complexity of determining validity in the
nonstandard approach. Clearly, without ↪→, determining validity is very easy, since
no formula is valid. As we saw in Proposition 9.3.3, however, ↪→ enables us to
express logical implication. It turns out that once we introduce ↪→, reasoning about
knowledge in the nonstandard approach is just as hard as reasoning about knowl-
edge in the standard approach. The reason for this is the ability to “emulate” the
standard semantics within the nonstandard semantics. Let ϕ be a formula of L↪→

n .
Then (M, s) |= ϕ ↪→ false iff (M, s) �|= ϕ for all nonstandard structures M and
states s (see Exercise 9.23). Thus, standard negation can be expressed using strong
implication.
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Theorem 9.3.5 The validity problem for L↪→
n -formulas with respect to NMn is

PSPACE -complete.

Proof The polynomial-space upper bound holds for much the same reasons that it
does in the case of the logic Kn (see Section 3.5); a proof is beyond the scope of this
book. For the lower bound, see Exercise 9.24.

As we observed, logical omniscience still holds in the nonstandard approach. We
also observed that the computational complexity of reasoning about knowledge does
not improve. Nevertheless, our goal, which was to weaken the “logical” aspect in the
logical-omniscience problem, is accomplished. For example, under the nonstandard
semantics, agents do not know all standard tautologies. In the next section we provide
an additional payoff of this approach: we show that in a certain important application
we can obtain polynomial-time algorithms for reasoning about knowledge.

9.3.3 A Payoff: Querying Knowledge Bases

In Section 4.4.1, we introduced and discussed knowledge bases. An interesting
application of our approach here concerns query evaluation in knowledge bases.
Recall that the knowledge base (KB for short) is told facts about an external world,
and is asked queries about the world. As we saw in Section 4.4.1, after the KB is told
a sequence of standard propositional facts whose conjunction is κ , it then answers
the propositional query ψ positively precisely when κ ⇒ ψ is valid with respect to
standard propositional logic, which is precisely when KKBκ ⇒ KKBψ is valid with
respect to Mrst

n . Thus, the formula κ completely characterizes the KB’s knowledge
in this case.

Our focus in this section is on the computational complexity of query evaluation in
knowledge bases. We know that in the standard propositional approach, determining
whether κ logically implies ψ or, equivalently, whether Kiκ logically implies Kiψ ,
is co-NP -complete. We show now that the nonstandard approach can yield a more
efficient algorithm.

Consider the query-evaluation problem from the nonstandard perspective. Is the
problem of determining the consequences of a knowledge base in the nonstandard
approach any easier than in the standard approach? It turns out that, just as in
the standard case, in the nonstandard approach, determining whether κ logically
implies ψ is equivalent to determining whether Kiκ logically implies Kiψ and both
problems are still co-NP -complete (see Exercises 9.25 and 9.26). There is, however,
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an important special case where using the nonstandard semantics does make the
problem easier.

Define a literal to be a primitive proposition p or its negation ¬p, and a clause
to be a disjunction of literals. For example, a typical clause is p ∨ ¬q ∨ r . A
formula that is a conjunction of clauses is said to be in conjunctive normal form
(CNF). We assume here that κ (the formula that characterizes the KB’s knowledge)
is in CNF. This is not so unreasonable in practice, since once we have a knowledge
base in CNF, it is easy to maintain it in CNF; before telling a new fact to the KB,
we simply convert it to CNF. If ϕCNF is the result of converting ϕ to CNF, then the
result of adding ϕ to κ is κ ∧ ϕCNF . Note that κ ∧ ϕCNF is in CNF if κ is. Every
standard propositional formula is equivalent to a formula in CNF (this is true even
in our nonstandard semantics; see Exercise 9.27), so the transformation from ϕ to
ϕCNF can always be carried out. Now, in general, this transformation can result in
an exponential blowup; that is, the length of ϕCNF can be exponential in the length
of ϕ. We typically expect each fact ϕ that the KB is told to be small relative to the
size of the KB, so even this exponential blowup is not unreasonable in practice. (On
the other hand, it would not be reasonable to convert to CNF a whole knowledge base
that had not been maintained in CNF.) For similar reasons, we can safely assume that
the query ψ has been transformed to CNF.

Let us now reconsider the query evaluation problem, where both the KB and
the query are in CNF. Under the standard semantics, the problem is no easier than
the general problem of logical implication in propositional logic, that is, co-NP -
complete (Exercise 9.28). By contrast, the problem is feasible under the nonstandard
semantics.

Theorem 9.3.6 There is a polynomial-time algorithm for deciding whether κ logi-
cally implies ψ with respect to NMn for CNF formulas κ and ψ .

Proof We say that clause α1 includes clause α2 if every literal that is a disjunct
of α2 is also a disjunct of α1. For example, the clause p ∨ ¬q ∨ ¬r includes the
clause p ∨ ¬q. We can now characterize when κ logically implies ψ with respect to
nonstandard propositional logic, for CNF formulas κ and ψ .

Letκ andψ be propositional formulas in CNF. We claim thatκ logically impliesψ

with respect to nonstandard propositional logic iff every clause of ψ includes a clause
of κ . (This claim is false in standard propositional logic. For example, let κ be q∨¬q,
and let ψ be p ∨ ¬p. Then κ ⇒ ψ is valid, but the single clause p ∨ ¬p of ψ does
not include the single clause of κ .)
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The “if” direction, which is fairly straightforward, is left to the reader (Exer-
cise 9.29). We now prove the other direction. Assume that some clause α of ψ

includes no clause of κ . We need only show that there is a nonstandard structure
M = (S, π, K1, . . . , Kn,

∗ ) and state s ∈ S such that (M, s) |= κ but (M, s) �|= ψ .
Let S contain precisely two states s and t , and let s∗ = t . Define π(s)(p) = false
iff p is a disjunct of α, and π(t)(p) = true iff ¬p is a disjunct of α, for each primi-
tive proposition p. The Ki’s are arbitrary. We now show that (M, s) �|= α′, for each
disjunct α′ of α. Notice that α′ is a literal. If α′ is a primitive proposition p, then
π(s)(p) = false, so (M, s) �|= α′; if α′ is ¬p, where p is a primitive proposition,
then π(t)(p) = true, so (M, t) |= p, so again (M, s) �|= α′. Hence, (M, s) �|= α.
Since α is one of the conjuncts of ψ , it follows that (M, s) �|= ψ . We next show that
(M, s) |= β if α does not include β. For if α does not include β, then there is some
literal β ′ that is a disjunct of β but not of α. It is easy to see that (M, s) |= β ′, and
hence that (M, s) |= β. It follows that (M, s) |= κ , since by assumption, α does not
include any of the conjuncts of κ .

It is clear that this characterization of nonstandard implication gives us a
polynomial-time decision procedure for deciding whether one CNF formula implies
another in the nonstandard approach.

Theorem 9.3.6 gives us a real payoff of the nonstandard approach. It shows that
even though the nonstandard approach does not improve the complexity of reasoning
about knowledge in general, there are practical applications for which reasoning
about knowledge can be feasible. As the following proposition shows, this also has
implications for reasoning in standard logic.

Proposition 9.3.7 Let κ and ψ be propositional formulas in CNF. If κ logically
implies ψ with respect to NMn, then κ logically implies ψ with respect to standard
propositional logic.

Proof See Exercise 9.30.

Theorem 9.3.6 and Proposition 9.3.7 yield an efficient algorithm for the evalua-
tion of a CNF query ψ with respect to a CNF knowledge base κ: answer “Yes” if κ

logically implies ψ with respect to NMn. By Theorem 9.3.6, logical implication of
CNF formulas with respect to NMn can be checked in polynomial time. Proposi-
tion 9.3.7 implies that any positive answer we obtain from testing logical implication
between CNF formulas in nonstandard semantics will provide us with a correct posi-
tive answer for standard semantics as well. This means that even if we are ultimately
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interested only in conclusions that are derivable from standard reasoning, we can
safely use the positive conclusions we obtain using nonstandard reasoning. Thus,
the nonstandard approach yields a feasible query-answering algorithm for knowledge
bases. Notice that the algorithm need not be correct with respect to negative answers.
It is possible that κ does not logically imply ψ with respect to NMn, even though κ

logically implies ψ with respect to standard propositional logic (see Exercise 9.30).

9.3.4 Discussion

The goal of our approach in this section was to gain some control over logical omni-
science rather than to eliminate it. To this end, we tried to decouple the knowledge
part of the semantics from its propositional part by keeping the definition of knowl-
edge as truth in all possible worlds but changing the underlying notion of truth (the
propositional semantics). With this approach, we still have closure under logical
implication. Since knowledge is still defined as truth in all possible worlds, it is still
the case that if ϕ logically implies ψ , then an agent that knows ϕ will also know ψ .
Nevertheless, as a result of the change in the definition of truth, the notion of logical
implication has changed. It may not be so unreasonable for an agent’s knowledge
to be closed under logical implication if we have a weaker notion of logical impli-
cation. As a particular example of this approach, we considered a nonstandard logic
in which the truth values of ϕ and ¬ϕ are independent, and logical implication is
captured using ↪→ rather than ⇒. While this particular nonstandard approach does
not improve the complexity of reasoning about knowledge in general, we gave one
application where it does yield a significant improvement.

We should stress that we considered only one particular nonstandard logic in this
section. Many nonstandard propositional logics have been studied. (See the notes at
the end of the chapter for references.) It would be interesting to explore how these
other nonstandard propositional logics could be combined with epistemic operators,
and what the consequences of doing so would be.

9.4 Impossible Worlds

Logical omniscience arises from considering knowledge as truth in all possible
worlds. In the previous section, we modified logical omniscience by changing the
notion of truth. In this section, we modify logical omniscience by changing the
notion of possible world. The idea is to augment the possible worlds by impossible



358 Chapter 9 Logical Omniscience

worlds, where the customary rules of logic do not hold. For example, we may have
both ϕ and ψ holding in an impossible world without having ϕ∧ψ hold in that world.
Even though these worlds are logically impossible, the agents nevertheless may con-
sider them possible. Unlike our approach in the previous section, where nonstandard
worlds had the same status as standard worlds, under the current approach the im-
possible worlds are only a figment of the agents’ imagination; they serve only as
epistemic alternatives. Thus, logical implication and validity are determined solely
with respect to the standard worlds.

Formally, an impossible-worlds structure M is a tuple (S, W, σ, K1, . . . , Kn),
where (S, K1, . . . , Kn) is a Kripke frame, W ⊆ S is the set of possible states or
worlds, and σ is a syntactic assignment (recall that syntactic assignments assign
truth values to all formulas in all states). We require that σ behaves standardly on
possible states, that is, if s ∈ W , then

σ(s)(ϕ ∧ ψ) = true iff σ(s)(ϕ) = true and σ(s)(ψ) = true,

σ(s)(¬ϕ) = true iff σ(s)(ϕ) = false, and

σ(s)(Kiϕ) = true iff σ(t)(ϕ) = true for all t such that (s, t) ∈ Ki .

Note that σ can behave in an arbitrary way on the impossible states, i.e, the states in
S − W . We use σ to define satisfaction in the obvious way: (M, s) |= ϕ precisely
when σ(s)(ϕ) = true.

As mentioned earlier, logical implication and validity are determined only with
respect to possible states, that is, the states in W . Formally, a set 
 of formulas log-
ically implies the formula ϕ with respect to impossible-worlds structures if for each
impossible-worlds structure M = (S, W, σ, K1, . . . , Kn) and possible state s ∈ W

we have that whenever (M, s) |= ψ for all ψ ∈ 
, then (M, s) |= ϕ. Similarly, ϕ is
valid with respect to impossible-worlds structures if for each impossible-worlds struc-
ture M = (S, W, σ, K1, . . . , Kn) and possible state s ∈ W we have that (M, s) |= ϕ.

Since agents consider the impossible states when determining their knowledge,
but impossible states are not considered when determining logical implication, log-
ical omniscience need not hold. Consider, for example, full logical omniscience.
Suppose that an agent knows all formulas in 
, and 
 logically implies ϕ. Since
the agent knows all formulas in 
, all formulas in 
 must hold in all the states that
the agent considers epistemically possible. But in an impossible state, ϕ may fail
even though 
 holds. The reason for this is that logical implication is determined
by us, rational logicians, for whom impossible states are simply impossible and are
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therefore not taken into account. Thus, the agent need not know ϕ, since ϕ may fail
to hold in some impossible state that the agent considers possible.

The impossible-worlds approach is very general; it can capture different prop-
erties of knowledge by imposing certain conditions on the behavior of syntactic
assignment σ in the impossible states. For example, to capture closure under con-
junction we have to demand that in an impossible state if both ϕ and ψ are true, then
ϕ ∧ ψ is also true. (See also Exercise 9.31.)

We now consider one instance of the impossible-worlds approach, which will
enable us to contrast the impossible-worlds approach with the nonstandard-logic
approach of Section 9.3. Essentially, the idea is to view nonstandard structures as
impossible-worlds structures, where the nonstandard states are the impossible worlds.
Recall that nonstandard structures are Kripke structures with a ∗ function. This func-
tion associates with a state s an adjunct state s∗. If s = s∗, then s is a standard state
and therefore a possible world. If s �= s∗, then s and s∗ are nonstandard states and
therefore considered to be impossible worlds. More formally, given a nonstandard
structure M = (S, π, K1, . . . , Kn,

∗ ), we can identify it with the impossible-worlds
structure M ′ = (S, W, σ, K1, . . . , Kn), where W is the set of standard states, that is,
the states s such that s∗ = s, and, for all states s ∈ S, we have that σ(s)(ϕ) = true
iff (M, s) |= ϕ. We can therefore view a nonstandard structure M as implicitly
defining the impossible-worlds structure M ′ obtained by this translation. We shall
abuse language slightly and say that we view M as an impossible-worlds structure.
When M is viewed as a nonstandard structure, the distinction between standard and
nonstandard states does not play any role. In contrast, when M is viewed as an
impossible-worlds structure, the standard states have a special status. Intuitively,
although an agent (who is not a perfect reasoner) might consider nonstandard states
possible (where, for example, p ∧ ¬p or Kip ∧ ¬Kip holds), we do not consider
such states possible; surely in the real world a formula is either true or false, but not
both.

Nonstandard structures can be viewed both from the perspective of the nonstan-
dard-logic approach and from the perspective of the impossible-worlds approach.
When we view a nonstandard structure as an impossible-worlds structure, we consider
nonstandard states to be impossible states, and thus consider a formula ϕ to be valid
if it is true in all of the possible states, that is, in all of the standard states. Formally,
define a formula of Ln to be standard-state valid if it is true at every standard state
of every nonstandard structure. The definition for standard-state logical implication
is analogous.
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We demonstrate the difference between logical implication and standard-state
logical implication by reconsidering the knowledge base example discussed in Sec-
tion 9.3.3, where the knowledge base is characterized by the formula κ and the query
is the formula ϕ. We saw in Section 9.3.3 that in the nonstandard approach, ϕ is a
consequence of κ precisely when knowledge of ϕ is a consequence of knowledge
of κ . This is not the case in the impossible-worlds approach; it is possible to find
ϕ1 and ϕ2 in Ln such that ϕ1 standard-state logically implies ϕ2, but Kiϕ1 does not
standard-state logically imply Kiϕ2 (Exercise 9.32). The reason for this difference is
that ϕ1’s standard-state logically implying ϕ2 deals with logical implication in stan-
dard states, whereas Kiϕ1’s standard-state logically implying Kiϕ2 deals with logical
implication in states agents consider possible, which can include nonstandard states.
Interestingly, logical implication of knowledge formulas coincides in the nonstandard
approach and the impossible-worlds approach; that is, Kiϕ1 standard-state logically
implies Kiϕ2 iff Kiϕ1 logically implies Kiϕ2 with respect to NMn (Exercise 9.33).

The reader may recall that under the nonstandard semantics, ⇒ behaves in a
nonstandard way. In particular, ⇒ does not capture the notion of logical implication.
In fact, that was part of the motivation for the introduction of strong implication. In
standard states, however, ⇒ and ↪→ coincide; that is, ϕ1 ⇒ ϕ2 holds at a standard
state precisely if ϕ1 ↪→ ϕ2 holds. It follows that even though ⇒ does not capture
logical implication, it does capture standard-state logical implication. The following
analogue to Proposition 9.3.3 is immediate.

Proposition 9.4.1 Let ϕ1 and ϕ2 be formulas in Ln. Then ϕ1 standard-state logically
implies ϕ2 iff ϕ1 ⇒ ϕ2 is standard-state valid.

The main feature of the impossible-worlds approach is the fact that knowledge is
evaluated with respect to all states, while logical implication is evaluated only with
respect to standard states. As a result, we avoid logical omniscience. For example,
an agent does not necessarily know valid formulas of standard propositional logic.
Although the classical tautology ϕ ∨¬ϕ is standard-state valid, Ki(ϕ ∨¬ϕ) may not
hold at a standard state s, since agent i might consider an incomplete state possible.
(Recall that in an incomplete state of a nonstandard structure both ϕ and ¬ϕ may fail
to hold.) On the other hand, as we now show, incompleteness is all that prevents an
agent from knowing valid formulas. In particular, we show that if an agent knows
that the state is complete, then he does know all tautologies.

What does it mean for an agent to know that a state is complete? Let ϕ be a
propositional formula that contains precisely the primitive propositions p1, . . . , pk .
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Define complete(ϕ) to be the formula

(p1 ∨ ¬p1) ∧ . . . ∧ (pk ∨ ¬pk).

Thus, complete(ϕ) is true at a state s precisely if s is complete as far as all the
primitive propositions in ϕ are concerned. In particular, if complete(ϕ) is true at s,
then s is complete with respect to ϕ (see Exercise 9.34). Thus, if an agent knows
complete(ϕ), then he knows that he is in a state that is complete with respect to ϕ.

The following result makes precise our earlier claim that incompleteness is all
that prevents an agent from knowing tautologies.

Theorem 9.4.2 Let ϕ be a tautology of standard propositional logic. Then
Ki(complete(ϕ)) ⇒ Kiϕ is standard-state valid.

Proof By Exercise 9.35 (see also Exercise 9.36), complete(ϕ) logically implies ϕ

with respect to NMn. From Exercise 9.25 it follows that Ki(complete(ϕ)) logically
implies Kiϕ with respect to NMn. In particular, Ki(complete(ϕ)) standard-state
logically implies Kiϕ. It follows by Proposition 9.4.1 that Ki(complete(ϕ)) ⇒ Kiϕ

is standard-state valid.

In addition to the failure of knowledge of valid formulas, another form of logical
omniscience that fails under the impossible-worlds approach is closure under logical
implication: the formula Kiϕ ∧ Ki(ϕ ⇒ ψ) ⇒ Kiψ is not standard-state valid
(Exercise 9.37). This lack of closure results from considering incoherent states
possible: indeed, Kiϕ ∧ Ki(ϕ ⇒ ψ) ⇒ Ki(ψ ∨ (ϕ ∧ ¬ϕ)) is standard-state valid
(Exercise 9.37). That is, if an agent knows that ϕ holds and also knows that ϕ ⇒ ψ

holds, then she knows that either ψ holds or the state is incoherent. This observation
generalizes. As we now show, as long as the agent knows that the state is coherent,
then her knowledge is closed under logical implication.

Recall that true is an abbreviation for some fixed nonstandard tautology such as
p ↪→ p, and false is an abbreviation for ¬true. We use the fact that the formula
ϕ ↪→ false asserts the falsehood of ϕ (see Exercise 9.23). Let ϕ be a formula that
contains precisely the primitive propositions p1, . . . , pk . Define coherent(ϕ) to be
the formula

(
(p1 ∧ ¬p1) ↪→ false

) ∧ . . . ∧ (
(pk ∧ ¬pk) ↪→ false

)
.

Thus, coherent(ϕ) is true at a state s precisely if s is coherent as far as the primitive
propositions in ϕ are concerned. In particular, if coherent(ϕ) holds at s, then s is
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coherent with respect to ϕ. (Note that coherent(ϕ) is not definable in Ln but only in
L↪→

n ; see Exercise 9.38.) Knowledge of coherence implies that knowledge is closed
under material implication.

Theorem 9.4.3 Let ϕ and ψ be standard propositional formulas. Then
(Ki(coherent(ϕ)) ∧ Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ is standard-state valid.

Proof Denote Ki(coherent(ϕ)) ∧ Kiϕ ∧ Ki(ϕ ⇒ ψ) by τ . By Proposition 9.4.1,
it is sufficient to show that τ standard-state logically implies Kiψ . We shall show
the stronger fact that τ logically implies Kiψ . Let M = (S, π, K1, . . . , Kn,

∗ ) be
a nonstandard structure, and s a state of M . Assume that τ is true at s, and that
(s, t) ∈ Ki . So coherent(ϕ) is true at t . By a straightforward induction on the
structure of formulas, we can show that for every propositional formula γ all of
whose primitive propositions are contained in ϕ, it is not the case that both γ and ¬γ

are true at t . Now ϕ and ϕ ⇒ ψ are both true at t , since Kiϕ and Ki(ϕ ⇒ ψ) are
true at s. Since ϕ is true at t , it follows from what we just showed that ¬ϕ is not
true at t . Since ϕ ⇒ ψ is an abbreviation for ¬ϕ ∨ ψ , it follows that ψ is true at t .
Hence, Kiψ is true at s.

Theorems 9.4.2 and 9.4.3 explain why agents are not logically omniscient:
when we view nonstandard structures as impossible-worlds structures, “logically”
is defined with respect to standard states, but the agents may consider nonstandard
states possible. If an agent considers only standard states possible, so that both
Ki(complete(ϕ)) and Ki(coherent(ϕ)) hold, then by Theorems 9.4.2 and 9.4.3, this
agent is logically omniscient (more accurately, he knows every tautology of standard
propositional logic and his knowledge is closed under material implication).

9.5 Awareness

In Section 9.2, we described syntactic and semantic approaches to dealing with
omniscience. In Section 9.4, we described what can be viewed as a mixed approach,
that is, an approach that has both semantic and syntactic components: in impossible-
worlds structures, truth is defined semantically in the possible states and syntactically
in the impossible states. We now describe another approach that has both semantic
and syntactic components.

The underlying idea is that it is necessary to be aware of a concept before one can
have beliefs about it. One cannot know something of which one is unaware. Indeed,
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how can someone say that he knows or doesn’t know about p if p is a concept of
which he is completely unaware? One can imagine the puzzled response of someone
not up on the latest computer jargon when asked if he knows that the price of SIMMs
is going down! (For the benefit of the reader who is not fluent in the computer-speak
of the early 1990’s, a SIMM is a Single In-line Memory Module, a basic component
in current-day computer memories.) In fact, even a sentence such as “He doesn’t
even know that he doesn’t know p!” is often best understood as saying “He’s not
even aware that he doesn’t know p.”

In this section we augment the possible-worlds approach with a syntactic notion
of awareness. This will be reflected in the language by a new modal operator Ai for
each agent i. The intended interpretation of Aiϕ is “i is aware of ϕ.” We do not wish
to attach any fixed cognitive meaning to the notion of awareness; Aiϕ may mean “i
is familiar with all the propositions mentioned in ϕ,” “i is able to figure out the truth
of ϕ,” or perhaps “i is able to compute the truth of ϕ within time T .” (We return to
a computational notion of knowledge later in this chapter and also in Chapter 10.)
The power of the approach comes from the flexibility of the notion of awareness.

To represent the knowledge of agent i, we allow two modal operators Ki and Xi ,
standing for implicit knowledge and explicit knowledge of agent i, respectively. Im-
plicit knowledge is the notion we have been considering up to now: truth in all worlds
that the agent considers possible. On the other hand, an agent explicitly knows a
formula ϕ if he is aware of ϕ and implicitly knows ϕ. Intuitively, an agent’s implicit
knowledge includes all the logical consequences of his explicit knowledge. We de-
note by LA

n (�), or LA
n for short, the set of formulas obtained by enlarging Ln(�) to

include the new modal operators Ai and Xi .
An awareness structure is a tuple M = (S, π, K1, . . . , Kn, A1, . . . , An), where

the tuple (S, π, K1, . . . , Kn) is a Kripke structure and Ai is a function associating
a set of formulas with each state, for i = 1, . . . , n. Intuitively, Ai (s) is the set of
formulas that agent i is aware of at state s. The awareness functions Ai form the
syntactic component of the semantics. The formulas in Ai (s) are those that the agent
is “aware of,” not necessarily those he knows. The set of formulas that the agent is
aware of can be arbitrary. It is possible for both ϕ and ¬ϕ to be in Ai (s), for only
one of ϕ and ¬ϕ to be in Ai (s), or for neither ϕ nor ¬ϕ to be in Ai (s). It is also
possible, for example, that ϕ ∨ ψ is in Ai (s) but ψ ∨ ϕ is not in Ai (s).

The semantics for primitive propositions, conjunctions, negations, and for for-
mulas Kiϕ is just as for standard Kripke structures. We only need to add new clauses
for formulas of the form Aiϕ and Xiϕ:
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(M, s) |= Aiϕ iff ϕ ∈ Ai (s)

(M, s) |= Xiϕ iff (M, s) |= Aiϕ and (M, s) |= Kiϕ

The first clause states that agent i is aware of ϕ at state s exactly if ϕ is in Ai (s). The
second clause states that agent i explicitly knows ϕ iff (1) agent i is aware of ϕ, and
(2) agent i implicitly knows ϕ (i.e., ϕ is true in all the worlds he considers possible).
We see immediately that Xiϕ ⇔ Aiϕ ∧ Kiϕ is valid. You cannot have explicit
knowledge about formulas of which you are not aware! If we assume that agents are
aware of all formulas, then explicit knowledge reduces to implicit knowledge.

By definition, the implicit-knowledge operator Ki behaves just as it does in a
Kripke structure. Thus, as in Chapter 3, implicit knowledge is closed under material
implication (that is, (Kiϕ∧Ki(ϕ ⇒ ψ)) ⇒ Kiψ is valid) and Kiϕ is valid for every
valid formula ϕ. The explicit-knowledge operator Xi , however, may behave differ-
ently. Agents do not explicitly know all valid formulas; for example, ¬Xi(p ∨ ¬p)

is satisfiable, because the agent might not be aware of the formula p ∨ ¬p. Also,
an agent’s explicit knowledge is not necessarily closed under material implication;
Xip ∧ Xi(p ⇒ q) ∧ ¬Xiq is satisfiable, because i might not be aware of q. Since
awareness is essentially a syntactic operator, this approach shares some of the fea-
tures of the syntactic approach. For example, order of presentation matters; there is
no reason to suppose that the formula Xi(ϕ ∨ ψ) is equivalent to Xi(ψ ∨ ϕ), since
Ai(ϕ ∨ ψ) might hold without Ai(ψ ∨ ϕ) holding. A computer program that can
determine in time T whether ϕ ∨ ψ follows from some initial premises might not
be able to determine in time T whether ψ ∨ ϕ follows from those premises. (The
program might work on, say, the left disjunct first, and be able to determine quickly
that ϕ is true, but get stuck working on ψ .) And people do not necessarily identify
formulas such as ϕ ∨ ψ and ψ ∨ ϕ. The reader can validate the idea that the order
matters by computing the product 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 0.

Up to now we have placed no restrictions on the set of formulas that an agent
may be aware of. Once we have a concrete interpretation in mind, we may well
want to add some restrictions to the awareness function to capture certain types of
“awareness.” The clean separation in our framework between knowledge (captured
by the binary relations Ki) and awareness (captured by the syntactic functions Ai)
makes this easy to do. Some typical restrictions we may want to add to Ai include
the following:

• Awareness could be closed under subformulas; that is, if ϕ ∈ Ai (s) and ψ

is a subformula of ϕ, then ψ ∈ Ai (s). Note that this makes sense if we are
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reasoning about a computer program that will never compute the truth of a
formula unless it has computed the truth of all its subformulas. But it is also
easy to imagine a program that knows that ϕ ∨ ¬ϕ is true without needing
to compute the truth of ϕ. Perhaps a more reasonable restriction is simply to
require that if ϕ ∧ ψ ∈ Ai (s) then both ϕ, ψ ∈ Ai (s) (see Exercise 9.39).

• Agent i might be aware of only a certain subset of the primitive propositions,
say 
. In this case we could take Ai (s) to consist of exactly those formulas
that mention only primitive propositions that appear in 
.

• A self-reflective agent will be aware of what he is aware of. Semantically, this
means that if ϕ ∈ Ai (s), then Aiϕ ∈ Ai (s). This corresponds to the axiom
Aiϕ ⇒ AiAiϕ.

• Similarly, an agent might know of which formulas he is or is not aware. Seman-
tically, this means that if (s, t) ∈ Ki , then Ai (s) = Ai (t). This corresponds
to the axioms Aiϕ ⇒ KiAiϕ and ¬Aiϕ ⇒ Ki¬Aiϕ. This restriction holds
when the set of formulas that an agent is aware of is a function of his local state.
It also holds when awareness is generated by a subset of primitive propositions,
as discussed previously.

We now turn to examining the properties of knowledge in this logic. It is easy to
see that the axiom system Kn is sound, since the semantics of Ki has not changed.
Indeed, we can obtain a sound and complete axiomatization simply by adding the
axiom Xiϕ ⇔ (Aiϕ ∧ Kiϕ) to Kn (Exercise 9.40). These axioms, however, do not
give us much insight into the properties of explicit knowledge.

In fact, despite the syntactic nature of the awareness operator, explicit knowledge
retains many of the same properties as implicit knowledge, once we relativize to
awareness. For example, corresponding to the Distribution Axiom

Kiϕ ∧ Ki(ϕ ⇒ ψ) ⇒ Kiψ

we have (
Xiϕ ∧ Xi(ϕ ⇒ ψ) ∧ Aiψ

) ⇒ Xiψ

(see Exercise 9.41). Thus, if you explicitly know ϕ and ϕ ⇒ ψ , then you will
explicitly know ψ provided you are aware of ψ . Similarly, corresponding to the
Knowledge Generalization Rule, we have

from ϕ infer Aiϕ ⇒ Xiϕ
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(see Exercise 9.41). That is, you explicitly know a valid formula if you are aware of
it. Note the similarity between this rule and Theorem 9.4.2, which says that, in the
impossible-worlds approach, knowledge of a tautology ϕ follows from knowledge
of complete(ϕ). In that setting, we can think of Ki(p ∨ ¬p) as saying that agent i

is aware of p. If we take the view of awareness as being generated by a subset of
primitive propositions, then Ki(complete(ϕ)) can be thought of saying that agent i

is aware of ϕ. Thus, Theorem 9.4.2 can be viewed as saying that an agent knows a
tautology if he is aware of it. In both cases, an agent must be aware of the relevant
formula in order to know it explicitly.

As we saw earlier, we can capture certain properties of knowledge by imposing
the appropriate conditions on the Ki relations. For example, if we assume that Ki

is reflexive, then, as before, we obtain the axiom Xiϕ ⇒ ϕ, since Xiϕ ⇒ Kiϕ is
valid, and reflexivity of Ki entails that Kiϕ ⇒ ϕ is valid. It may be tempting to
think that if Ki is an equivalence relation, then we obtain the introspection axioms
Xiϕ ⇒ XiXiϕ and ¬Xiϕ ⇒ Xi¬Xiϕ. It is easy to verify, however, that this is not
the case. In fact, even the obvious modification of the introspection axioms, where
an agent must be aware of a formula before she explicitly knows it, fails to hold:

(Xiϕ ∧ AiXiϕ) ⇒ XiXiϕ
(¬Xiϕ ∧ Ai(¬Xiϕ)

) ⇒ Xi¬Xiϕ

(see Exercise 9.42). The reason for this failure is the independence of the the aware-
ness operator and the possibility relation; an agent may be aware of different formulas
in states that she considers to be equivalent. It may be reasonable to assume that if an
agent cannot distinguish between two states, then she is aware of the same formulas
in both states, that is, (s, t) ∈ Ki implies Ai (s) = Ai (t). Intuitively, this means that
the agent knows of which formulas she is aware. If this assumption holds and if Ki is
an equivalence relation, then the modified introspection properties mentioned earlier
hold (see Exercise 9.42). The phenomenon described by these axioms is similar to
the phenomenon of the previous section, where knowledge of completeness or co-
herence was required. The first of the two axioms suggests how, as in the quotation
from de Chardin at the beginning of the chapter, an animal may know, but not know
that it knows: it might not be aware of its knowledge. The second axiom suggests
how someone can fail to be conscious of his ignorance. By contrast, the Spinoza
quotation suggests that people are aware of their knowledge. Of course, we can con-
struct axioms analogous to these even if we do not assume that an agent knows what
formulas she is aware of, although they are not quite as elegant (see Exercise 9.42).
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As we observed earlier, if we are reasoning about a computer program that will
never compute the truth of a formula unless it has computed the truth of all its
subformulas, then awareness is closed under subformulas: if ϕ ∈ Ai (s) and ψ is a
subformula of ϕ, then ψ ∈ Ai (s). Taking awareness to be closed under subformulas
has some interesting consequences. First note that this property can be captured
axiomatically by the following axioms:

Ai(¬ϕ) ⇒ Aiϕ

Ai(ϕ ∧ ψ) ⇒ (Aiϕ ∧ Aiψ)

Ai(Xjϕ) ⇒ Aiϕ

Ai(Kjϕ) ⇒ Aiϕ

Ai(Ajϕ) ⇒ Aiϕ.

(By changing ⇒ to ⇔ in these axioms, we can capture a notion of awareness gen-
erated by a set of primitive propositions; see Exercise 9.43.)

Although agents still do not explicitly know all valid formulas if awareness is
closed under subformulas, an agent’s knowledge is then closed under material impli-
cation; that is, Xiϕ ∧ Xi(ϕ ⇒ ψ) ⇒ Xiψ is then valid (see Exercise 9.44). Thus,
the seemingly innocuous assumption that awareness is closed under subformulas
has a rather powerful impact on the properties of explicit knowledge. Certainly
this assumption is inappropriate for resource-bounded notions of awareness, where
awareness of ϕ corresponds to being able to compute the truth of ϕ. As we remarked,
it may be easy to see that ϕ ∨ ¬ϕ is a tautology without having to compute whether
either ϕ or ¬ϕ follows from some information. Nevertheless, this observation shows
that there are some natural interpretations of awareness and explicit knowledge (for
example, an interpretation of awareness that is closed under subformulas and an in-
terpretation of explicit knowledge that is not closed under material implication) that
cannot be simultaneously captured in this framework.

What about the computational complexity of the validity problem? Clearly the
addition of Ai and Xi cannot decrease the complexity. It turns out that this addition
does not increase the complexity; the validity problem is still PSPACE -complete.

In summary, the awareness approach is very flexible and general. In a natural and
appealing way, it can be used to demonstrate why various types of logical omniscience
fail, and to give assumptions on what the agent must be aware of for these various
types of logical omniscience to hold. It gains this flexibility through the use of a
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syntactic awareness operator. While at first this may seem to put us right back into
the syntactic approach of Section 9.2, by isolating the syntactic component, we have
more structure to study, while maintaining our intuition about knowledge being truth
in all possible worlds.

This observation suggests that we focus on natural notions of awareness. We
considered some notions already in this section. In Chapter 10, we describe a com-
putational model of knowledge, which can be viewed as using a computational notion
of awareness.

It is interesting to relate the awareness approach to the impossible-worlds ap-
proach. Both mix syntax and semantics, but in a very different way. In the impossible-
worlds approach, knowledge depends on impossible worlds, where truth is defined
syntactically. In the awareness approach, knowledge depends on awareness, which
is defined syntactically. It turns out that in some sense the two approaches are equiva-
lent; every impossible-worlds structure can be represented by an awareness structure
and vice versa (see Exercise 9.45); thus, both approaches can be used to model the
same situations.

9.6 Local Reasoning

An important difference between an idealized model of knowledge (such as a Kripke
structure) and the knowledge of people in the real world is that in the real world
people have inconsistent knowledge. That is, they may believe both ϕ and ¬ϕ for
some formula ϕ; this may happen when an agent believes both ϕ and ¬ψ without
realizing that ϕ and ψ are logically equivalent. We already have tools to model
inconsistent knowledge: it is possible for an agent to believe both ϕ and ¬ϕ in
a standard Kripke structure. Standard Kripke structures, however, provide a poor
model for inconsistent knowledge. It is easy to see that the only way that an agent i

in a standard Kripke structure (S, π, K1, . . . , Kn) can have inconsistent knowledge
in a state s is for Ki (s) = {t | (s, t) ∈ Ki} to be empty, which implies that in
state s, agent i knows every formula. Some of the approaches described earlier in
this chapter can also be used to model inconsistent knowledge. For example, in
an awareness structure (S, π, K1, . . . , Kn, A1, . . . , An), it is possible for agent i to
have contradictory explicit knowledge in state s without having explicit knowledge
of every formula: this can be modeled by again letting Ki (s) be empty and taking
Ai (s) to consist precisely of those formulas of which agent i has explicit knowledge.
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In this section we describe another approach, in which inconsistent knowledge
arises in a very natural way. Since this approach seems to be especially interesting
when the agents are people, we describe the results in this section in these terms.

One reason that people have inconsistent knowledge is that knowledge tends to
depend on an agent’s frame of mind. We can view an agent as a society of minds,
each with its own knowledge. The members of the society may have contradic-
tory knowledge (or, perhaps better, beliefs). For example, in one frame of mind, a
politician might believe in the importance of a balanced budget. In another frame of
mind, however, he might believe it is necessary to greatly increase spending. This
phenomenon seems to occur even in science. For example, the two great theories
physicists reason with are the theory of quantum phenomena and the general theory
of relativity. Some physicists work with both theories, even though they believe that
the two theories might well be incompatible!

In Kripke structures, agents can be said to have a single frame of mind. We
viewed Ki (s) as the set of states that agent i thinks possible in state s. In our next
approach, there is not necessarily one set of states that an agent thinks possible,
but rather a number of sets, each one corresponding to the knowledge of a different
member of the society of minds. We can view each of these sets as representing the
worlds the agent thinks possible in a given frame of mind, when he is focusing on a
certain set of issues. This models agents with many frames of mind.

More formally, a local-reasoning structure is a tuple M = (S, π, C1, . . . , Cn)

where S is a set of states, π(s) is a truth assignment to the primitive propositions
for each state s ∈ S, and Ci (s) is a nonempty set of subsets of S. Intuitively, if
Ci (s) = {T1, . . . , Tk}, then in state s agent i sometimes (depending perhaps on his
frame of mind or the issues on which he is focusing) considers the set of possible
states to be precisely T1, sometimes he considers the set of possible states to be
precisely T2, etc. Or, taking a more schizophrenic point of view, we could view each
of these sets as representing precisely the worlds that some member of the society in
agent i’s mind thinks possible.

We now interpret Kiϕ as “agent i knows ϕ in some frame of mind”; that is, some
member of the society of minds making up agent i at s knows ϕ. Note that although
we are using the same symbol Ki , this notion is quite different from the notions of
knowledge discussed earlier in this chapter. This form of knowledge could be called
local knowledge, since it is local to one of the members of the society. The semantics
for primitive propositions, conjunctions, and negations is just as for standard Kripke
structures. The semantics for knowledge, however, has changed:
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(M, s) |= Kiϕ iff there is some T ∈ Ci (s) such that (M, t) |= ϕ for all t ∈ T .

There is a stronger notion of knowledge where we would say that i knows ϕ if ϕ

is known in all of i’s frames of mind. Under the society of minds viewpoint, our
notion of Ki corresponds to “some member (of agent i’s society) knows,” whereas
this stronger notion corresponds to “all members know.” We can get an even stronger
notion by having i know ϕ only if ϕ is common knowledge among i’s frames of mind.
Going in the other direction, towards weaker notions of knowledge, there is a notion
of distributed knowledge (among the frames of mind of agent i) analogous to that
considered in Chapter 2. We do not pursue these directions here; Exercise 9.46 deals
with the notion of distributed knowledge among the frames of mind.

Note that an agent may hold inconsistent knowledge in a local-reasoning struc-
ture: Kip ∧ Ki¬p is satisfiable, since in one frame of mind agent i might know p,
while in another he might know ¬p. In fact, Ki(false) is even possible: this will
be true at state s if one of the sets in Ci (s) is the empty set. There is quite a differ-
ence between having inconsistent knowledge (that is, Kiϕ ∧ Ki¬ϕ) and knowing a
contradiction (that is, Ki(ϕ ∧ ¬ϕ)). In the approach of this section, these are not
equivalent. One can imagine a situation where contradictory statements ϕ and ¬ϕ

can both be known: this might correspond to having received contradictory informa-
tion. It is harder to imagine knowing a contradictory statement ϕ ∧ ¬ϕ. Knowing
contradictory statements can be forbidden (while still allowing the possibility of
having inconsistent knowledge) by simply requiring that each set in each Ci (s) be
nonempty.

If M = (S, π, C1, . . . , Cn) is a local-reasoning structure, and if Ci (s) is a singleton
set for each state s, say Ci (s) = {T s

i }, then M is equivalent to a Kripke structure
(S, π, K1, . . . , Kn), where (s, t) ∈ Ki exactly if t ∈ T s

i (see Exercise 9.47).
Clearly, there is a formal similarity between local-reasoning structures and MS

structures,though the philosophy and the semantics are quite different. It is instructive
to compare the two approaches. The Montague-Scott approach is more general than
the local reasoning approach. In fact, if we were to take a local-reasoning structure
M = (S, π, C1, . . . , Cn), and let C′

i be the set of all supersets of members of Ci ,
then the MS structure M ′ = (S, π, C′

1, . . . , C′
n) is equivalent to the local-reasoning

structure M , in the sense that (M, s) |= ϕ iff (M ′, s) |= ϕ (Exercise 9.48). Despite
this formal embedding of local-reasoning structures in MS structures, we do not
view the former as a special case of the latter. As we said earlier, the philosophy
behind them is quite different. In Montague-Scott semantics, Ci (s) represents a set
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of propositions believed by i, while in local reasoning semantics Ci (s) represents
the knowledge of each of the members of the society of minds. Thus the former is
a model that explicitly represents knowledge, while the latter is a model for local
reasoning.

What about logical omniscience? We already noted that closure under conjunc-
tion fails in the local reasoning semantics, since knowing ϕ and knowing ¬ϕ is not
equivalent to knowing ϕ ∧ ¬ϕ. It is easy to see that knowledge is not closed under
material implication, but for different reasons than for the logics of the previous sec-
tions. The formula Kip ∧ Ki(p ⇒ q) ∧ ¬Kiq is satisfiable simply because in one
frame of mind agent i might know p, in another he might know p ⇒ q, but he might
never be in a frame of mind where he puts these facts together to conclude q. (See
Exercise 9.49 to see how to guarantee closure under material implication.) We do
have other types of omniscience: for example, in this approach, there is knowledge
of valid formulas and closure under logical implication (Exercise 9.50). In fact, these
two types of omniscience form the basis for a sound and complete axiomatization:

Theorem 9.6.1 The following is a sound and complete axiomatization for validity
with respect to local-reasoning structures:

A1. All instances of tautologies of propositional logic

R1. From ϕ and ϕ ⇒ ψ infer ψ (modus ponens)

R2. From ϕ infer Kiϕ (Knowledge of valid formulas)

R3. From ϕ ⇒ ψ infer Kiϕ ⇒ Kiψ (Closure under valid implication)

Proof See Exercise 9.51.

The computational complexity of the satisfiability problem is only NP -complete,
even if there are many agents. This contrasts with the complexity of the satisfiability
problem for Kn, which is PSPACE-complete. This is essentially the phenomenon
that we saw in Section 9.2.2, where in the absence of closure under conjunction the
complexity of the satisfiability problem in MS structures is only NP -complete.

Theorem 9.6.2 The satisfiability problem with respect to local-reasoning structures
is NP -complete.



372 Chapter 9 Logical Omniscience

Proof See Exercise 9.52.

Just as we can impose conditions on the Ki’s to capture various properties of
knowledge, we can similarly impose conditions on the Ci’s. We already noted that
knowing contradictory statements can be forbidden (while still allowing the possi-
bility of having inconsistent knowledge) by simply requiring that each set in each
Ci (s) be nonempty (this is the analogue of the seriality condition of Section 3.1). We
also gave a condition in Exercise 9.49 that guarantees closure under material impli-
cation. We now mention some other properties of knowledge that can be guaranteed
by appropriate assumptions on the Ci’s. By assuming that s is a member of every
T ∈ Ci (s), we make Kiϕ ⇒ ϕ valid (this is the analogue to the reflexivity condition
of Section 3.1). In Kripke structures, we capture positive and negative introspection
by requiring the Ki’s to be transitive and Euclidean, respectively. Here we can cap-
ture positive introspection by requiring that if T ∈ Ci (s) and t ∈ T , then T ∈ Ci (t).
Intuitively, this says that in each frame of mind an agent considers it possible that
he is in that frame of mind. We can capture negative introspection by requiring that
if T ∈ Ci (s) and t ∈ T , then Ci (t) ⊆ Ci (s). Intuitively, this says that in each frame
of mind, the agent considers possible only the actual frames of mind. We note that
these conditions are sufficient but not necessary. Exercises 9.53 and 9.54 deal with
the conditions that we need to impose on the Ci’s to capture various properties of
knowledge.

A particularly interesting special case we can capture is one where in each frame
of mind, an agent refuses to admit that he may occasionally be in another frame of
mind. (This phenomenon can certainly be observed with people!) Semantically, we
can capture this by requiring that if T ∈ Ci (s) and s′ ∈ T , then Ci (s

′) is the singleton
set {T }. This says that if an agent has a frame of mind T , then in every state in this
frame of mind, he thinks that his only possible frame of mind is T . We call such
agents narrow-minded agents.

A narrow-minded agent will believe he is consistent (even if he is not), since
in a given frame of mind he refuses to recognize that he may have other frames of
mind. Thus, Ki(¬(Kiϕ ∧ Ki¬ϕ)) is valid in this case, even though Kiϕ ∧ Ki¬ϕ

is consistent (Exercise 9.55). Moreover, because an agent can do perfect reasoning
within a given frame of mind, a narrow-minded agent will also believe that he is a
perfect reasoner. Thus (Ki(Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ) is a valid formula in all
local-reasoning structures with narrow-minded agents (Exercise 9.55).
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9.7 Concluding Remarks

The motivation behind this chapter is the observation that the semantics of knowledge
in Kripke structures presented in Chapters 2 and 3, while adequate (and very useful!)
for many applications, simply does not work for all applications. In particular, logical
omniscience of agents, which is inherent in the standard possible-worlds approach,
is in many cases inappropriate.

Just as we do not feel that there is one right, true definition of knowledge that
captures all the nuances of the use of the word in English, we also do not feel that
there is a single semantic approach to deal with the logical-omniscience problem.
Thus, in this chapter we suggested a number of different approaches to avoiding
or alleviating the logical-omniscience problem. With the exception of the explicit-
representation approach (using either syntactic structures or MS structures), all of
our approaches try to maintain the flavor of the possible-worlds approach, with
knowledge defined as truth in all possible worlds. Nevertheless, they embody quite
different intuitions. The nonstandard approach concedes that agents do not know all
the logical consequences of their knowledge, at least if we consider all the logical
consequences in standard logic. The hope is that by moving to a nonstandard logic,
the fact that an agent’s knowledge is closed under logical consequence will become
more palatable. The impossible-worlds approach, while formally quite similar to the
nonstandard approach, takes the point of view that, although we, the modelers, may
know that the world satisfies the laws of standard logic, the agent may be confused,
and consider “impossible” worlds possible. The awareness approach adds awareness
as another component of knowledge, contending that one cannot explicitly know a
fact unless one is aware of it. Finally, the local-reasoning approach tries to capture
the intuition of a mind as a society of agents, each with its own (possibly inconsistent)
beliefs.

One issue that we did not explore in this chapter is that of hybrid approaches,
which combine features from several of the approaches discussed. We also did not
address the interaction between knowledge and time. Combining several approaches
and adding time to the models can greatly increase the complexity of the situations
that can be captured. To see how the extra expressive power gained by adding time
can be used, consider how people deal with inconsistencies. It has frequently been
observed that people do not like inconsistencies. Yet occasionally they become aware
that their beliefs are inconsistent. When this happens, people tend to modify their
beliefs in order to make them consistent again. In a system with awareness, local
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reasoning, and time, this can be captured with the following axiom:
(
Xiϕ ∧ Xi¬ϕ ∧ Ai(Xiϕ ∧ Xi¬ϕ)

) ⇒ ©(¬(Xiϕ ∧ Xi¬ϕ)
)
.

This axiom says that if agent i has an inconsistent belief of which he is aware, then
at the next step he will modify his belief so that it is no longer inconsistent. See
Exercise 9.56 for a further discussion of adding time.

Ultimately, the choice of the approach used depends on the application. Cer-
tainly one criterion for an adequate approach is that it be expressive. As is shown
in Exercises 9.45 and 9.48, there is a sense in which the syntactic approach, the
impossible-worlds approach (in its full generality), and the awareness approach are
all equally expressive, and more expressive than the other approaches we have con-
sidered. Nevertheless, while whatever approach we use must be expressive enough to
describe the relevant details of the application being modeled, the “most expressive”
approach is not always the one that does so in the most useful or most natural way.
We expect that many applications can be usefully represented using the techniques
we have presented, but this is an empirical question that deserves further study.

Exercises

9.1 Show that if M is any subclass of Mn, then we have full logical omniscience
with respect to M.

9.2 This exercise considers some relations among various cases of omniscience.

(a) Assume that whenever ϕ logically implies ψ , then the formula ϕ ⇒ ψ is
valid. Show that closure under material implication and knowledge of valid
formulas implies closure under logical implication.

(b) Assume that ϕ ∧ ψ logically implies both ϕ and ψ , and that ϕ logically
implies ψ iff ϕ is logically equivalent to ϕ ∧ ψ . Show that closure under
logical implication is equivalent to the combination of closure under logical
equivalence and the opposite direction of closure under conjunction (if agent i

knows ϕ ∧ ψ , then agent i knows both ϕ and ψ).
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9.3 Discuss various conditions that can be imposed on standard syntactic assign-
ments in order to make the positive and negative introspection axioms valid in syn-
tactic structures that satisfy these conditions.

9.4 Let M = (S, π, K1, . . . , Kn) be a Kripke structure. Let M ′ be the MS struc-
ture (S, π, C1, . . . , Cn), where Ci (s) is the set of all supersets of Ki (s). Show that
(M, s) |= ϕ iff (M ′, s) |= ϕ, for each formula ϕ.

9.5 Show that the only form of logical omniscience that holds in MS structures is
closure under logical equivalence.

** 9.6 Prove Theorem 9.2.2. (Hint: use the maximal consistent set construction as in
Chapter 3.)

** 9.7 Fill in the details of the proof of Theorem 9.2.3.

* 9.8 Consider the following possible axioms:

E1. ¬Ki(false)

E2. Ki(true)

E3. Ki(ϕ ∧ ψ) ⇒ Kiϕ

E4. Kiϕ ∧ Kiψ ⇒ Ki(ϕ ∧ ψ)

E5. Kiϕ ⇒ KiKiϕ

E6. ¬Kiϕ ⇒ Ki¬Kiϕ

E7. Kiϕ ⇒ ϕ.

Now consider the following conditions on Ci :

C1. ∅ �∈ Ci (s)

C2. S ∈ Ci (s)

C3. If T ∈ Ci (s) and T ⊆ U, then U ∈ Ci (s)

C4. If T ∈ Ci (s) and U ∈ Ci (s), then T ∩ U ∈ Ci (s)
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C5. If T ∈ Ci (s) then {t | T ∈ Ci (t)} ∈ Ci (s)

C6. If T �∈ Ci (s) then {t | T �∈ Ci (t)} ∈ Ci (s)

C7. If T ∈ Ci (s), then s ∈ T .

Define an MS frame to be a tuple (S, C1, . . . , Cn) where S is a set (whose members
are called states), and Ci (s) is a set of subsets of S. We say that the MS structure
(S, π, C1, . . . , Cn) is based on the MS frame (S, C1, . . . , Cn). Note that the conditions
C1–C7 are really conditions on frames.

Prove that for 1 ≤ k ≤ 7, an MS frame N satisfies Ck if and only if every MS
structure based on N satisfies Ek at every state. (Hint: the “if” direction may require
the use of two primitive propositions.)

9.9 In this exercise, we consider an alternate approach to the nonstandard approach
based on a nonstandard notion of truth. In this approach, there is no ∗ function.
The structure, however, contains nonstandard truth assignments (which we describe
below) rather than usual truth assignments, and a pair of possibility relations, K+

i

and K−
i , for each agent i. Intuitively, K+

i is used to evaluate the truth of formulas of
the form Kiϕ and K−

i is used to evaluate the truth of formulas of the form ¬Kiϕ.
As before, a literal is a primitive proposition p or its negation ¬p. Define a

nonstandard truth assignment to be a function that assigns to each literal a truth
value. Thus, although an ordinary truth assignment assigns a truth value to each
primitive proposition p, a nonstandard truth assignment assigns a truth value to
both p and ¬p. Under a given nonstandard truth assignment, it is possible that
both p and ¬p are assigned the value true, or that both are assigned false, or that
one is assigned true and the other false. Intuitively, this allows the truth value of p

and of its negation to be independent.
An alternate nonstandard structure M is a tuple

(
S, π, K+

1 , . . . , K+
n , K−

1 , . . . , K−
n

)
,

where S is a set of states, π(s) is a nonstandard truth assignment for each state s ∈ S,
and each K+

i and K−
i is a binary relation on S. Rather than define ¬ϕ to be true iff ϕ

is not true, as we do with Kripke structures, we define separately what it means for ϕ

to be true and what it means for ¬ϕ to be true, for each type of formula ϕ (that is,
for primitive propositions, and formulas of the form ϕ1 ∧ ϕ2, ¬ϕ, and Kiϕ). This
way we can make the truth of ϕ and ¬ϕ independent. The definition is as follows:
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(M, s) |= p (for a primitive proposition p) iff π(s)(p) = true

(M, s) |= ϕ1 ∧ ϕ2 iff (M, s) |= ϕ1 and (M, s) |= ϕ2

(M, s) |= Kiϕ iff (M, t) |= ϕ for all t such that (s, t) ∈ K+
i

(M, s) |= ¬p (for a primitive proposition p) iff π(s)(¬p) = true

(M, s) |= ¬(ϕ1 ∧ ϕ2) iff (M, s) |= ¬ϕ1 or (M, s) |= ¬ϕ2

(M, s) |= ¬¬ϕ iff (M, s) |= ϕ

(M, s) |= ¬Kiϕ iff (M, t) �|= ϕ for some t such that (s, t) ∈ K−
i .

Show that nonstandard semantics and alternate nonstandard semantics are equiv-
alent:

(a) Show that for each nonstandard structure M and state s of M , there is an alter-
nate nonstandard structure M ′ and state s′ of M ′, such that for each formula ϕ

of Ln, we have (M, s) |= ϕ iff (M ′, s′) |= ϕ.

(b) Show that for each alternate nonstandard structure M and state s of M , there
is a nonstandard structure M ′ and state s′ of M ′, such that for each formula ϕ

of Ln, we have (M, s) |= ϕ iff (M ′, s′) |= ϕ.

9.10 In this exercise, we consider yet another alternate nonstandard semantics. We
again use the alternate nonstandard structures of Exercise 9.9, but instead of explicitly
defining the negation case separately (as we did in Exercise 9.9), we now have two
“support relations” |=T and |=F . Intuitively, (M, s) |=T ϕ (where T stands for
“true”) means that the truth of ϕ is supported at (M, s), while (M, s) |=F ϕ (where F

stands for “false”) means that the truth of ¬ϕ is supported at (M, s). We say that
(M, s) |= ϕ if (M, s) |=T ϕ.

(M, s) |=T p (for a primitive proposition p) iff π(s)(p) = true

(M, s) |=F p (for a primitive proposition p) iff π(s)(¬p) = true

(M, s) |=T ¬ϕ iff (M, s) |=F ϕ

(M, s) |=F ¬ϕ iff (M, s) |=T ϕ
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(M, s) |=T ϕ1 ∧ ϕ2 iff (M, s) |=T ϕ1 and (M, s) |=T ϕ2

(M, s) |=F ϕ1 ∧ ϕ2 iff (M, s) |=F ϕ1 or (M, s) |=F ϕ2

(M, s) |=T Kiϕ iff (M, t) |=T ϕ for all t such that (s, t) ∈ K+
i

(M, s) |=F Kiϕ iff (M, t) �|=T ϕ for some t such that (s, t) ∈ K−
i

Show that for all formulas ϕ, we have (M, s) |=T ϕ iff (M, s) |= ϕ according to the
alternative semantics of Exercise 9.9, and (M, s) |=F ϕ iff (M, s) |= ¬ϕ according
to the alternative semantics.

9.11 Define a nonstandard frame F to be a tuple (S, K1, . . . , Kn,
∗ ) where

(S, K1, . . . , Kn) is a Kripke frame and where ∗ is a unary function from S to it-
self such that s∗∗ = s for each s ∈ S. Thus, a nonstandard frame is a nonstandard
structure without the π . We say that the nonstandard structure (S, π, K1, . . . , Kn,

∗ )

is based on the nonstandard frame (S, K1, . . . , Kn,
∗ ). Prove that a state s in a

frame F is standard iff the formula p ∧ ¬p is false at s in all nonstandard structures
based on F .

9.12 Prove Proposition 9.3.1.

9.13 Prove the induction claim in Proposition 9.3.2.

9.14 Demonstrate the nonstandard behavior of ⇒ by showing that

(a) the following are equivalent for nonstandard structures:

(i) (M, s) |= ϕ1 ⇒ ϕ2

(ii) If (M, s∗) |= ϕ1, then (M, s) |= ϕ2.

Note that if s = s∗, then part (ii) gives the usual semantics for implication.

(b) {p, p ⇒ q} does not logically imply q in nonstandard structures.

9.15 Let (S, π, K+
1 , . . . , K+

n , K−
1 , . . . , K−

n ) be an alternate nonstandard structure
as in Exercise 9.9. Show that positive introspection (Kiϕ ⇒ KiKiϕ) holds for this
structure if K+

i is transitive. Show that negative introspection (¬Kiϕ ⇒ Ki¬Kiϕ)
holds if (s, t) ∈ K+

i and (s, u) ∈ K−
i imply that (t, u) ∈ K−

i .
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9.16 Construct a nonstandard structure M and state s of M where (M, s) |= Kip

and (M, s) |= Ki(p ⇒ q), but (M, s) �|= Kiq.

9.17 Let ϕ1 and ϕ2 be standard formulas. Show that if ϕ1 ↪→ ϕ2 is valid with
respect to nonstandard Kripke structures, then ϕ1 ⇒ ϕ2 is valid with respect to
standard Kripke structures. Show that the converse implication does not hold.

9.18 Prove Proposition 9.3.3.

** 9.19 Prove Theorem 9.3.4. (Hint: use the maximal consistent set construction as in
Chapter 3. Show that a set V of K↪→

n formulas is a maximal consistent set iff for each
formula ϕ of L↪→

n , either ϕ or (ϕ ↪→ false) is in V . If V is a set of K↪→
n formulas,

define V ∗ = {ϕ ∈ L↪→
n | ¬ϕ �∈ V }. Show that V ∗ is a maximal K↪→

n consistent set,
and that V ∗∗ = V . In constructing the canonical model, if sV is the set corresponding
to the maximal K↪→

n consistent set V , then define (sV )∗ = sV ∗ .)

9.20 In this exercise, we consider the relationship between the two forms of negation
definable in nonstandard structures.

(a) Show that the rule “from ¬ϕ infer ϕ ↪→ false” is a sound inference rule with
respect to NMn.

(b) Show that the rule “from ϕ ↪→ false infer ¬ϕ” is a sound inference rule with
respect to NMn.

(c) Show, however, that neither ¬ϕ ↪→ (ϕ ↪→ false) nor (ϕ ↪→ false) ↪→ ¬ϕ are
sound axioms with respect to NMn.

9.21 Show that in the nonstandard worlds approach, each of the types of logical
omniscience mentioned in the introduction to this chapter hold, when we replace ⇒
by ↪→.

9.22 In this exercise, we focus on the axiom ¬Kiϕ ↪→ Ki¬Kiϕ.

(a) Show that the axiom ¬Kiϕ ↪→ Ki¬Kiϕ may fail in nonstandard structures,
even if we restrict to structures where the Ki’s are equivalence relations.

(b) Show that ¬Kiϕ ↪→ Ki¬Kiϕ is valid in nonstandard structures where the
Ki’s are equivalence relations and where (s∗, t∗) ∈ Ki whenever (s, t) ∈ Ki .
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(c) Show that ¬Kiϕ ↪→ Ki¬Kiϕ is valid in a nonstandard frame F =
(S, K1, . . . , Kn, ∗) (i.e., valid in every nonstandard structure based on F , ac-
cording to the definition given in Exercise 9.11) iff for all s, t, u ∈ S, we have
that (s∗, t∗) ∈ Ki and (s, u) ∈ Ki together imply that (u∗, t∗) ∈ Ki .

9.23 In this exercise, we consider the problem of expressing standard negation in
nonstandard structures.

(a) Prove that in Ln we cannot say that a formula ϕ is false. That is, there is no
formula ψ such that for all nonstandard structures M and states s we have that
(M, s) |= ψ iff (M, s) �|= ϕ. (Hint: use the second part of Theorem 9.3.2.)

(b) Recall that in the nonstandard semantics, we redefined true to be an abbrevia-
tion for some fixed nonstandard tautology such as p ↪→ p; we still abbreviate
¬true by false. Let ϕ be a formula of L↪→

n . Prove that for all nonstandard
structures M and states s we have that (M, s) |= ϕ ↪→ false iff (M, s) �|= ϕ.

* 9.24 Prove that the validity problem for L↪→
n -formulas with respect to NMn is

PSPACE-hard in general and co-NP -hard for propositional L↪→
n -formulas. (Hint:

show that standard validity can be reduced to nonstandard validity in the following
manner. If ϕ is a standard formula, then let ϕns be the nonstandard formula obtained
by recursively replacing in ϕ each subformula of the form ¬ϕ by ϕ ↪→ false and
each occurrence of ⇒ by ↪→. Show that ϕ is valid with respect to standard structures
iff ϕns is valid with respect to nonstandard structures.)

9.25 Let ϕ1 and ϕ2 be L↪→
n -formulas. Show that ϕ1 logically implies ϕ2 with respect

to NMn iff Kiϕ1 logically implies Kiϕ2 with respect to NMn. (Hint: one direction
is easy. For the other direction, assume that ϕ1 does not logically imply ϕ2 with
respect to NMn. Let M = (S, π, K1, . . . , Kn,

∗ ) be a nonstandard structure and u

a state of M such that (M, u) |= ϕ1 and (M, u) �|= ϕ2. Define a new nonstandard
structure M ′ = (S′, π ′, K′

1, . . . , K′
n,

† ) with one additional state t �∈ S by taking
(a) S′ = S ∪ {t}, (b) π ′(s) = π(s) for s ∈ S and π ′(t) is arbitrary, (c) K′

j = Kj for

j �= i, and K′
i = Ki ∪{(t, u)}, and (d) s† = s∗ for s ∈ S, and t† = t . Show that since

(M, u) |= ϕ1 and (M, u) �|= ϕ2, we also have (M ′, u) |= ϕ1 and (M ′, u) �|= ϕ2. But
then (M ′, t) |= Kiϕ1 and (M ′, t) �|= Kiϕ2, and hence Kiϕ1 does not logically imply
Kiϕ2 with respect to NMn.)
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9.26 Show that the problem of determining whether κ logically implies ϕ in non-
standard propositional logic is co-NP -hard. (Hint: use Exercise 9.24 and Proposi-
tion 9.3.3).

9.27 Show that even in our nonstandard propositional semantics, every standard
propositional formula is equivalent to a formula in CNF. (Hint: make use of Propo-
sition 9.3.1, and mimic the usual textbook proof that every propositional formula is
equivalent to a formula in CNF.)

9.28 Show that in standard propositional logic, the problem of deciding whether a
CNF formula κ logically implies a clause ϕ is no easier than the general problem of
logical implication in propositional logic, that is, co-NP -complete. (Hint: let p be a
primitive proposition that does not appear in the propositional formula ϕ. Show that
ϕ ⇒ p is valid with respect to standard propositional logic iff ϕ is unsatisfiable in
standard propositional logic.)

9.29 Prove the “if” direction in the proof of Theorem 9.3.6.

9.30 Prove Proposition 9.3.7. Show that the converse claim fails.

* 9.31 Show how the various forms of logical omniscience can be captured by impos-
ing appropriate conditions on the syntactic assignment in impossible-worlds struc-
tures.

9.32 Show that there are formulas ϕ1 and ϕ2 in Ln such that ϕ1 standard-state
logically implies ϕ2, but Kiϕ1 does not standard-state logically imply Kiϕ2.

9.33 Let ϕ1 and ϕ2 be L↪→
n -formulas. Show that Kiϕ1 standard-state logically

implies Kiϕ2 iff Kiϕ1 logically implies Kiϕ2 with respect to NMn. (Hint: the
proof is very similar to that of Exercise 9.25.)

9.34 Let ϕ be a standard propositional formula. Show that if complete(ϕ) is true at
a state s of a nonstandard structure, then s is complete with respect to ϕ.

9.35 Let ϕ be a standard propositional formula. Show that ϕ is a tautology of
standard propositional logic if and only if complete(ϕ) logically implies ϕ with
respect to NMn. (Hint: one direction is easy. For the other direction: assume that ϕ



382 Chapter 9 Logical Omniscience

is a tautology of standard propositional logic, and (M, s) |= complete(ϕ). Let 
 be
the set of primitive propositions that appear in ϕ. Thus, (M, s) |= p ∨ ¬p for each
p ∈ 
. Hence, either (M, s) |= p or (M, s) |= ¬p, for each p ∈ 
. Define the truth
assignment v by letting v(p) = true if (M, s) |= p, and v(p) = false otherwise. By
an induction on the structure of formulas, show that for each propositional formula ψ

all of whose primitive propositions are in 
, (a) if ψ is true under v, then (M, s) |= ψ ,
and (b) if ψ is false under v, then (M, s) |= ¬ψ . Since ϕ is a tautology of standard
propositional logic, ϕ is true under v. It follows that (M, s) |= ϕ.)

* 9.36 Let ϕ be a formula in Ln of depth d (see Exercise 3.23). Let τ be the formula

complete(ϕ) ∧ E(complete(ϕ)) ∧ . . . ∧ Ed(complete(ϕ)).

Show that ϕ is a valid formula of Kn iff τ logically implies ϕ with respect to NMn.
(Hint: the proof is similar to the proof of Exercise 9.35. Let ϕ be a valid formula
of Kn. Let M = (S, π, K1, . . . , Kn,

∗ ) be a nonstandard structure and s a state
of M such that (M, s) |= τ . Define π ′ so that π ′(t)(p) = true if (M, t) |= p, and
π ′(t)(p) = false otherwise, for each state t of M and each primitive proposition p.
Let M ′ = (S, π ′, K1, . . . , Kn). Thus, M ′ is a standard Kripke structure. Show that
if ψ is of depth d ′ ≤ d, if every primitive proposition that appears in ψ also appears
in ϕ, and if t is of distance at most d − d ′ from s, then (M, t) |= ψ iff (M ′, t) |= ψ .
In particular, since (M ′, s) |= ϕ, we also have (M, s) |= ϕ.)

9.37 Show that the following formulas are satisfiable at a standard state of a non-
standard structure:

(a) Kip ∧ Ki(p ⇒ q) ∧ ¬Kiq,

(b) Kip ∧ ¬Ki

(
p ∧ (q ∨ ¬q)

)
.

Show that the following formulas are standard-state valid:

(c) ϕ ⇔ (
ϕ ∧ (ψ ∨ ¬ψ)

)
,

(d)
(
Kiϕ ∧ Ki(ϕ ⇒ ψ)

) ⇒ Ki

(
ψ ∨ (ϕ ∧ ¬ϕ)

)
.

9.38 Let p be a primitive proposition. Show that there is no formula ϕ in Ln such
that if ϕ holds in a state s of a nonstandard structure M , then at most one of p or ¬p

is true in s. (Hint: use Theorem 9.3.2.)
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9.39 Show that without the restriction that if ϕ∧ψ ∈ Ai (s), then both ϕ, ψ ∈ Ai (s),
the formula Xi(p ∧ ¬Xip) (“agent i explicitly knows both that p is true and that he
doesn’t explicitly know it”) is satisfiable in an awareness structure, even if Ki is an
equivalence relation. As shown in Exercise 3.10, this is not true if we replace the Xi

by Ki .

* 9.40 In this exercise, we examine some properties of the logic of awareness.

(a) Show that a sound and complete axiomatization of the logic of awareness is
given by Kn + {Xiϕ ⇔ (Aiϕ ∧ Kiϕ)}.

(b) Show that a sound and complete axiomatization of the logic of awareness when
we restrict attention to awareness structures where the Ki’s are equivalence
relations is given by S5n + {Xiϕ ⇔ (Aiϕ ∧ Kiϕ)}.

9.41 Show that the following are valid with respect to awareness structures:

(a) Xiϕ ∧ Xi(ϕ ⇒ ψ) ∧ Aiψ ⇒ Xiψ ,

(b) From ϕ infer Aiϕ ⇒ Xiϕ.

9.42 This exercise deals with awareness structures where the Ki’s are equivalence
relations.

(a) Show that there is an awareness structure (S, π, K1, . . . , Kn, A1, . . . , An)

where each Ki is an equivalence relation, but the introspection axioms
Xiϕ ⇒ XiXiϕ and ¬Xiϕ ⇒ Xi¬Xiϕ fail.

(b) Show that there is an awareness structure (S, π, K1, . . . , Kn, A1, . . . , An)

where each Ki is an equivalence relation, but the following modified intro-
spection axioms fail:

(i) (Xiϕ ∧ AiXiϕ) ⇒ XiXiϕ.

(ii)
(¬Xiϕ ∧ Ai(¬Xiϕ)

) ⇒ Xi¬Xiϕ.

(c) Show that if Ki is an equivalence relation, and if (s, t) ∈ Ki implies Ai (s) =
Ai (t), then the modified introspection axioms in part (b) are valid with respect
to awareness structures.
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(d) Modify the axioms in (b) so that they stay valid even if we no longer assume
that (s, t) ∈ Ki implies Ai (s) = Ai (t).

9.43 Let Ai (s) consist precisely of the formulas where the only primitive proposi-
tions that appear are those in some fixed subset of the primitive propositions. Show
that a sound and complete axiomatization of the logic of awareness is then given by
the axiomatization Kn + {Xiϕ ⇔ (Aiϕ ∧ Kiϕ)} of Exercise 9.40(a), along with the
following axioms:

Ai(¬ϕ) ⇔ Aiϕ

Ai(ϕ ∧ ψ) ⇔ (Aiϕ ∧ Aiψ)

Ai(Xjϕ) ⇔ Aiϕ

Ai(Kjϕ) ⇔ Aiϕ

Ai(Ajϕ) ⇔ Aiϕ.

Show a similar result for the case of Exercise 9.40(b).

9.44 Show that if awareness is closed under subformulas, then

Xiϕ ∧ Xi(ϕ ⇒ ψ) ⇒ Xiψ

is valid with respect to awareness structures.

9.45 This exercise relates impossible-worlds structures, awareness structures, and
syntactic structures.

(a) Let M = (S, W, σ, K1, . . . , Kn) be an impossible-worlds structure. Construct
an awareness structure M ′ = (W, π, K′

1, . . . , K′
n, A1, . . . , An) such that for

any Ln-formula ϕ and state s ∈ W we have that (M, s) |= ϕ iff (M ′, s) |= ϕ′,
where ϕ′ is obtained from ϕ by replacing each Ki by Xi .

(b) Let M = (S, π, K1, . . . , Kn, A1, . . . , An) be an awareness structure. Con-
struct a syntactic structure M ′ = (S, σ ) such that for any Ln-formula ϕ and
state s ∈ S we have that (M, s) |= ϕ′ iff (M ′, s) |= ϕ, where ϕ′ is obtained
from ϕ by replacing each Ki by Xi .

(c) Let M = (S, σ ) be a syntactic structure. Construct an impossible-worlds
structure M ′ = (S′, S, σ ′, K1, . . . , Kn) such that for any Ln-formula ϕ and
state s ∈ S we have that (M, s) |= ϕ iff (M ′, s) |= ϕ.



Exercises 385

This exercise shows that, in a certain sense, impossible-worlds structures, awareness
structures, and syntactic structures are equi-expressive. Any situation that can be
described in one framework can also be described in the other two.

9.46 In the local-reasoning approach, let Diϕ mean that agent i would know ϕ as a
result of pooling together the information in his various frames of mind.

(a) Give a formal definition of the semantics of Diϕ.

(b) Show that Diϕ holds if ϕ is true in every world in all of agent i’s frames of
mind.

(c) Show that if an agent holds inconsistent knowledge in different frames of mind,
then Di(false) holds.

9.47 Let M = (S, π, C1, . . . , Cn) be a local-reasoning structure. Show that if Ci (s) is
just a singleton set, say Ci (s) = {T s

i }, for each state s and agent i, then this structure
is equivalent to a Kripke structure M ′ = (S, π, K1, . . . , Kn), where (s, t) ∈ Ki

exactly if t ∈ T s
i . That is, show that for every formula ϕ and a state s we have that

(M, s) |= ϕ if and only if (M ′, s) |= ϕ.

9.48 In this exercise, we show that local-reasoning structures are less expressive
than MS structures, in that any situation that can be described by a local-reasoning
structure can also be described by an MS structure, while the converse does not
hold. We also show that MS structures are less expressive than syntactic structures.
Since, by Exercise 9.45, syntactic structures, awareness structures, and impossible-
worlds structures are all equally expressive, we have a complete characterization of
the expressive power of these frameworks.

(a) Let M = (S, π, C1, . . . , Cn) be a local-reasoning structure, and let C′
i be

the set of all supersets of members of Ci . Let M ′ be the MS structure
(S, π, C′

1, . . . , C′
n). Show that (M, s) |= ϕ iff (M ′, s) |= ϕ, for each for-

mula ϕ.

(b) Show that there are situations describable by MS structures that are not de-
scribable by local-reasoning structures in the sense of part (a). (Hint: recall
that Ki(true) is valid in local-reasoning structures but not in MS structures.)
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(c) Given an MS structure M = (S, π, C1, . . . , Cn), construct a syntactic structure
M ′ = (S, σ ) such that (M, s) |= ϕ iff (M ′, s) |= ϕ, for each formula ϕ.

(d) Show that there are situations describable by syntactic structures that are not
describable by MS structures in this sense. (Hint: Kip ≡ Ki(p ∨ p) is valid
with respect to MS structures, but not with respect to syntactic structures.)

9.49 Show that we can guarantee closure under material implication in a local-
reasoning structure by requiring that there always be a frame of mind where an agent
puts together information that he knows in other frames.

9.50 Show that in the local-reasoning approach we have knowledge of valid formu-
las and closure under logical implication.

** 9.51 Prove Theorem 9.6.1.

** 9.52 Prove Theorem 9.6.2. (Hint: the lower bound is immediate by considering
propositional formulas. For the upper bound prove that if a formula is satisfiable,
then it has a “small” model. Use techniques analogous to those used in Section 3.6.)

9.53 Let M = (S, π, C1, . . . , Cn) be a local-reasoning structure and let ϕ be an
arbitrary formula of Ln.

(a) Assume that s is a member of T whenever T ∈ Ci (s). Show that Kiϕ ⇒ ϕ is
valid in M .

(b) Assume that whenever T ∈ Ci (s) and s′ ∈ T , then T ∈ Ci (s
′). Show that

Kiϕ ⇒ KiKiϕ is valid in M .

(c) Assume that for some T ∈ Ci (s) and all t ∈ T , we have Ci (t) ⊆ Ci (s). Show
that ¬Kiϕ ⇒ Ki¬Kiϕ is valid in M .

* 9.54 The conditions in clauses (b) and (c) of Exercise 9.53 are sufficient but not nec-
essary. By considering local-reasoning structures as MS structures (Exercise 9.48),
find closure conditions on the Ci’s that precisely capture, in the sense of Exercise 9.8,
positive and negative introspection.

9.55 Show that the following formulas are valid with respect to local-reasoning
structures with narrow-minded agents:
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(a) Ki(¬(Kiϕ ∧ Ki¬ϕ)),

(b) Ki

(
(Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ

)
.

9.56 We can add awareness to our model of knowledge in multi-agent systems by
having awareness of agent i be a function Ai (r, m) of the point (r, m).

(a) Describe conditions on Ai that express the assumptions that agent i’s awareness
increases over time and that agent i eventually becomes aware of all formulas.

(b) Consider a system with perfect recall, with agents whose awareness increases
over time and who eventually become aware of every formula. Such a system
satisfies a notion of eventual logical omniscience. Describe an axiom and an
inference rule that express this form of logical omniscience.

Notes

The problem of logical omniscience was first observed (and named) by Hintikka
[1962]. The problem has been studied extensively, and numerous ways of dealing
with it have been proposed (see [Moreno 1998] for an overview), although none of
the solutions seems to deal adequately with all facets of the problem. The syntactic
approach to modeling explicit knowledge was studied by Eberle [1974] and Moore
and Hendrix [1979]. Its formalization within the possible-worlds approach is due
to Halpern and Moses [1990]. Related ideas were studied by Georgeff [1985].
Konolige [1986] considers the case where each agent has a base set of formulas he
knows, and uses a sound but possibly incomplete set of inference rules to derive his
other knowledge. Montague-Scott structures were introduced by Montague [1968,
1970] and Scott [1970]. Their applicability to the logical-omniscience problem
was noted by Vardi [1986]. Theorem 9.2.2 was proven in the single-agent case by
Segerberg [1971]. (Segerberg called the logic satisfying the axioms described in
Theorem 9.2.2 classical logic, and denoted it E.) Theorem 9.2.3 is due to Vardi
[1989]. Exercise 9.8 is due to Chellas [1980] and Vardi [1989].

The nonstandard logic, as well as the approach and results in Section 9.3, where
nonstandard worlds are treated the same as standard worlds, were introduced by Fa-
gin, Halpern, and Vardi [1995]; they also introduced the notion of strong implication.
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Nonstandard logics have been studied extensively; numerous such logics are known
in the literature. Perhaps the two best known are intuitionistic logic [Heyting 1956]
and (various notions of) relevance logic [Anderson and Belnap 1975]. Strong im-
plication is closely related to various notions of “relevant implications” in relevance
logic. First-order logics based on a nonstandard propositional semantics closely re-
lated that given here are described by Kifer and Lozinski [1992] and Patel-Schneider
[1985]. Our strong implication is essentially the ontological implication of Kifer
and Lozinski. The idea of using ∗ to define negation is due to Routley and Rout-
ley [1972] (see also [Bialynicki-Birula and Rasiowa 1957]), as is a propositional
version of Theorem 9.3.2. The axiomatization K↪→

n was studied by Fagin, Halpern,
and Vardi [1995]. They observe that Theorem 9.3.4 would fail if K↪→

n included only
the tautologies and nonstandard modus ponens of nonstandard propositional logic
instead of including NPR. Fagin, Halpern, and Vardi [1992b] also study the inference
rules of nonstandard propositional logic.

The nonstandard-worlds approach of Exercise 9.10 is due to Levesque [1984b]
and Lakemeyer [1987]. Levesque considers the case where there is no nesting of
Ki’s, and makes use of standard-state validity. He considers situations (as Barwise
and Perry [1983] do), where ϕ can be true, false, neither, or both. Lakemeyer
extends Levesque’s approach to allow nesting of Ki’s, by using what we call K+

i and
K−

i , as in Exercise 9.9. Levesque shows that if κ and ϕ are propositional formulas
in CNF, then Kiκ ⇒ Kiϕ is standard-state valid iff every clause of ϕ includes a
clause of κ . He thereby obtains a polynomial-time procedure for deciding whether
knowledge of a CNF formula implies knowledge of another, as in Theorem 9.3.6.
Both Levesque and Lakemeyer allow only one agent, but the extension to multiple
agents is straightforward. Exercise 9.15 is due to Lakemeyer. The use of nonstandard
truth assignments, as in Exercise 9.9, is due to Levesque [1988]; it is derived from a
four-valued semantics developed by Dunn in the late 1960’s and published in 1976
[Dunn 1976], and discussed further by Belnap [1977] and Dunn [1986]. Dunn [1986]
also discusses the equivalence between the four-valued semantics and the Routleys’
semantics using the ∗ operator. Patel-Schneider [1989] gives another application of
this semantics. The application of the nonstandard-logic approach to query evaluation
in knowledge bases was suggested by Levesque [1981].

The idea of using nonstandard worlds, where not all valid formulas need be
true, or where inconsistent formulas may be true, in order to deal with logical om-
niscience, is due to Cresswell [1970, 1972, 1973], who called them non-classical
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worlds. (Kripke’s notion of non-normal worlds [1965] can be viewed as a precur-
sor.) Such worlds were called impossible by Hintikka [1975] and Rantala [1982],
and nonstandard by Rescher and Brandom [1979]. Wansing [1990] showed how
different properties of knowledge can be captured by imposing certain conditions
on the impossible worlds (Exercise 9.31). He also showed that this approach is
at least as powerful as the awareness approach, thereby providing the inspiration
for Exercise 9.45. Lipman [1994, 1997, 1999] has recently used the impossible-
worlds approach as a tool for dealing with lack of logical omniscience in the context
of game theory. Rubinstein [1998] discusses the problem of bounded rationality in
game theory; lack of logical omniscience can be viewed as a consequence of bounded
rationality.

The awareness approach (Section 9.5) and the local-reasoning approach (Sec-
tion 9.6) were introduced by Fagin and Halpern [1988a]. All of the exercises about
these approaches, Theorem 9.6.1, and a version of Theorem 9.4.2 also appear in
their paper. The notion of awareness was further studied and developed by Huang
and Kwast [1991] and Thijsse [1992, 1993]. Further discussion regarding the issues
raised in Exercises 9.45, 9.48, and 9.54 can also be found in Thijsse’s paper and thesis.
There has also been work on awareness in the economics literature; see, in particular,
[Dekel, Lipman, and Rusticchini 1998; Modica and Rustichini 1994; Modica and
Rustichini 1999]. Halpern [2001a] has shown that Modica and Rusticchini’s [1999]
approach to awareness can be viewed as a special case of the awareness approach
discussed here.

The term explicit knowledge in this context is due to Levesque [1984b]. Logics
similar to the logic of local reasoning are given by Levesque [1985], Stalnaker [1985],
and Zadrozny [1985].



 

Chapter 10

Knowledge and Computation

Is knowledge knowable? If not, how do we know this?

Woody Allen

10.1 Knowledge and Action Revisited

As we discussed in Chapter 4, the interpretation of knowledge in the possible-world
approach is an external one, ascribed by, say, the system designer to the agents.
Agents are not assumed to compute their knowledge in any way, nor is it assumed
that they can necessarily answer questions based on their knowledge. In Chapter 9
we referred to such knowledge as implicit, since, while it could be inferred from the
information available to the agents, it was not necessarily explicitly available to them.
Despite the fact that no notion of computation is involved, we gave many examples
to show that this notion of implicit knowledge is useful in a number of applications,
such as the analysis of distributed systems.

We are often, however, interested in applications in which agents need to act on
their knowledge. In such applications, implicit knowledge may be insufficient; in
many cases an agent can base his actions only on what he explicitly knows. (Note that
the term “explicit” here is used in the same spirit but not necessarily the same technical
sense as in Chapter 9.) In these situations, an agent that acts on his knowledge must be
able to compute this knowledge; we need to take into account the algorithms available
to the agent, as well as the “effort” required to compute knowledge. Computing
knowledge demands that the agents have access to appropriate algorithms and to
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the computational resources required by these algorithms. Indeed, the fact that
economic agents need to compute their knowledge is well-recognized nowadays on
Wall Street, where the trend towards using more sophisticated algorithms and more
extensive computational resources in economic decision-making is quite evident.

Knowledge bases provide an example of an application in which agents have
to act on their knowledge. In Sections 4.4.1 and 7.3 we provided a model for a
knowledge-based system in which the KB is told facts about an external world,
and has to answer queries about that world. The focus in Section 7.3 was on the
knowledge-based program followed by the Teller. If we want to analyze the query-
answering aspect of this application, then we can think of the KB as following a
knowledge-based program of the following form:

case of
if asked “does ϕ hold?” ∧ KKBϕ do say “Yes”
if asked “does ϕ hold?” ∧ KKB¬ϕ do say “No”
if asked “does ϕ hold?” ∧ ¬KKBϕ ∧ ¬KKB¬ϕ

do say “I don’t know”
end case

Clearly, to actually run the preceding program, the knowledge base must be able to
determine explicitly whether it knows ϕ. A notion of implicit knowledge would not
suffice here.

In Section 7.1, we defined what it means for a standard program to implement
a knowledge-based program (in a given context). Recall that the idea is that instead
of running a knowledge-based program, an agent runs a standard program that im-
plements the knowledge-based program. In our discussion of implementation, we
did not take into account the complexity of explicitly computing the knowledge in
knowledge tests. Intuitively, however, implementing a knowledge-based program
requires the agent to evaluate the knowledge tests. In the case of the sequence-
transmission problem in Section 7.6, it is fairly simple to evaluate the knowledge
tests of the knowledge-based program ST in the relevant contexts, which is why
we could replace them by the standard tests of the standard program ST′. In con-
trast, evaluating the knowledge tests in the program SBA for simultaneous Byzantine
agreement in Section 7.4 is far from trivial. In fact, as we saw in Theorem 6.6.10,
computing whether a given fact is common knowledge may not be possible for a
process that can perform only polynomial-time computations (assuming P �=NP ).
As a consequence, processes that can perform only polynomial-time computations
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may not be able to perform the computations necessary to run an optimum program
for SBA if we allow generalized-omission failures.

The previous discussion demonstrates that our information-based notion of
knowledge in multi-agent systems is not sensitive enough to capture the distinc-
tion between the program ST for sequence transmission and the program SBA for
simultaneous Byzantine agreement, since it does not distinguish between knowledge
that is easy to compute and knowledge that is hard to compute. A knowledge-based
analysis of such situations requires a finer notion of knowledge, one that is sensitive
to the difficulty of computing knowledge. Our goal in this chapter is to provide such
a computational notion of knowledge.

The problem of being able to compute knowledge is related to the logical om-
niscience problem. As we observed in Chapter 9, one reason that we do not expect
agents to be logically omniscient is that they lack the computational resources to
compute the logical consequences of their knowledge (although there are other rea-
sons as well). Thus, we would expect that any model that captures the difficulty
of computing knowledge is one in which the agents are not logically omniscient.
Indeed, this is the case for the solution we propose in this section. Not surprisingly,
our solution is related to some of the solutions to the logical omniscience problem
proposed in Chapter 9.

It is worth noting that even a resource-bounded agent may at times be able to
exhibit some of the properties we associate with logical omniscience. Consider an
agent Alice who knows that, given her current epistemic state (i.e., the information
she has obtained thus far), the world could be in one of three possible states. In
the possible-worlds approach, this situation is modeled by a Kripke structure with
a state s where Alice considers three states possible. Even if Alice is resource-
bounded, she might well be able to figure out whether a formula ϕ is true in all
three states she considers possible. In this case, Alice would be logically omniscient
in state s. In particular, she would explicitly know all logical tautologies, since all
logical tautologies are true at all three worlds Alice considers possible. But this does
not mean that Alice can solve co-NP -complete problems! Even though Alice knows
all logical tautologies (among other facts she knows given her epistemic state), she
does not know which of the facts she knows are tautologies, and she probably does
not care!

Alice is much more likely to be interested, not in whether the formula ϕ is
valid, but whether she knows ϕ in state s. This question is closely related to the
model-checking problem (cf. Section 3.2), since an agent i knows a formula ϕ in
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a state s of a Kripke structure M precisely when (M, s) |= Kiϕ. We saw earlier
(Proposition 3.2.1) that the model-checking problem has an efficient algorithmic
solution: it can be solved in time linear in the product of the size of M and the
length of ϕ. In general, if Alice has at her disposal the model-checking algorithm
and she can afford the computational resources required by that algorithm, then
she indeed can compute her knowledge (modulo some of the subtleties regarding the
application of Proposition 3.2.1 that were discussed in Section 3.2). Of course, Alice
may not have the necessary computational resources required by the algorithm if the
model has too many states, or if the formula she is trying to check is too large. For
example, in systems for simultaneous Byzantine agreement, the number of global
states is exponential in the number of processes, which explains the lower bounds of
Theorem 6.6.10.

But even in situations where an agent has the required computational resources,
the agent may not be able to explicitly compute what she knows if she does not
have the model-checking algorithm at her disposal. This last point is crucial. It is
not enough that an algorithm exists that would enable the agent to compute what
she knows; the agent must have access to that algorithm. As we are about to see,
explicitly representing the algorithms that the agents have at their disposal is the key
ingredient of our approach.

10.2 Algorithmic Knowledge

10.2.1 Algorithmic Knowledge Systems

Intuitively, we would like to say that an agent (algorithmically) knows a fact ϕ if
she can compute that she knows ϕ. As we hinted earlier, we intend to model this
by saying that the agent has an algorithm for deciding if she knows ϕ. To make
this precise, we need to describe what it means for an algorithm to decide if agent i

knows ϕ, and also what it means for the agent to “have” such an algorithm.
An agent’s knowledge clearly depends on her local state. Thus, we might expect

that an algorithm to decide if agent i knows ϕ is one that, given as input a local
state  and a formula ϕ, returns either “Yes” or “No”, depending on whether agent i

knows ϕ when she is in local state . Note that a “No” is not taken to mean that
agent i knows that ϕ is false, but that she does not know that it is true. In general, it
is too much to expect an agent to have an algorithm that can compute whether she
knows ϕ in local state  for every formula ϕ and every local state . We may be happy
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with an algorithm that works in the prescribed manner only for certain formulas ϕ

or only on a subset of the points of the system. To deal with this, we allow an output
of “?”, in addition to “Yes” and “No”; a “?” output means that the agent is unable
to compute whether she knows ϕ. Thus, we focus on algorithms that take as input a
local state and a formula, and return as an answer either “Yes”, “No”, or “?”. (We
are considering only algorithms that always terminate.)

What does it mean to say that agent i “has” an algorithm for deciding ϕ? It is
certainly not enough to say that there is some algorithm for i that gives the right
answer on input ϕ. At a given point (r, m), either Kiϕ holds or it does not. Consider
two trivial algorithms: the first is the algorithm that always says “Yes,” and the second
is the algorithm that always says “No.” Clearly, one of them gives the right answer
as to whether Kiϕ holds at (r, m). Although agent i can certainly execute both of
these algorithms, we would not want to say that she “has” an algorithm to compute
whether she knows ϕ in this case unless she also knows which of the two algorithms
to use when asked ϕ. Part of “having” an algorithm is knowing when to use it.

We deal with this problem by assuming that the algorithm that agent i uses to
compute her knowledge at a point (r, m) is part of her local state at (r, m). Thus,
agent i “has” the algorithm in her local state. We do not mean to imply that the
agent necessarily has the same algorithm at every point in the system. An agent may
have different algorithms at her disposal at different points. (Recall that we saw an
example of this phenomenon in one of the methods for modeling games discussed
in Example 5.2.5, where a player may use different strategies at different points of
the system.)

In general, the algorithm the agent uses may depend on the information she
receives. Indeed, the information she receives may allow her to come up with a new
algorithm.

Formally, we now model agent i’s local state as a pair 〈A, 〉, where A is an
algorithm, and  is the rest of her local state. We call A the agent’s local algorithm
and  the agent’s local data.

We call local states of this form algorithmic knowledge states. An interpreted
system in which the local states of the agents are algorithmic knowledge states is
called an algorithmic knowledge system. For ri(m) = 〈A, 〉, we use algi (r, m) to
denote the algorithm A, and datai (r, m) to denote i’s local data . Intuitively, when
presented with a formula ϕ in local state 〈A, 〉, agent i runs A on input (ϕ, ), to
determine if Kiϕ holds. (By Kiϕ here we refer to the notion of implicit, information-
based, knowledge that we have been using all along.) Thus, the output of A on (ϕ, )
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is “Yes”, which means that Kiϕ holds, “No”, which means that Kiϕ does not hold,
or “?”, which means that the algorithm has not been able to decide if Kiϕ holds

The separation between an agent’s local algorithm and her local data in algorith-
mic knowledge systems allows us to distinguish the agent’s operational knowledge
(“knowing how”) from her factual knowledge about the world (“knowing that”). The
operational knowledge is captured by the agent’s local algorithm, while the factual
knowledge is captured by her local data. Note that it is not always obvious how
to partition a local state into local algorithm and local data (just as it is not always
obvious how to divide a system into agents and environment; see Section 4.1). For
example, as we discuss later, a cryptographic key, which is a secret piece of data
used by a decryption procedure, can be viewed either as local data or as part of
the decryption procedure, and therefore as part of the local algorithm. In general,
there is more than one way to “cut the cake”; the appropriate choice is application
dependent.

Algorithmic knowledge systems can model both our earlier notion of implicit,
externally ascribed knowledge, and a notion of explicit knowledge that we call al-
gorithmic knowledge. As before, we denote implicit knowledge by the modal oper-
ator Ki , while algorithmic knowledge is denoted by the modal operator Xi . Implicit
knowledge is defined as before:

(I, r, m) |= Kiϕ iff (I, r ′, m′) |= ϕ for all (r ′, m′) such that (r, m) ∼i (r ′, m′).

For explicit knowledge, we have

(I, r, m) |= Xiϕ iff A(ϕ, ) = “Yes”, for A = algi (r, m) and  = datai (r, m).

Thus, agent i has algorithmic knowledge of ϕ at a given point if the agent’s algorithm
at that point answers “Yes” when presented with ϕ and with the agent’s local data.
(Note that both the answer “No” and the answer “?” result in lack of algorithmic
knowledge.) We say that a local algorithm claims (that agent i knows) a formula ϕ

at a given point if it outputs “Yes” when presented with ϕ and i’s local data at that
point.

Notice that our definition makes clear that computing whether an agent knows ϕ

has essentially nothing to do with computing whether ϕ is valid. An agent may
certainly know a formula ϕ that is not valid. Thus, the fact that checking validity
in S5n is PSPACE -complete (see Section 3.5) does not indicate that computing
knowledge in any particular situation will necessarily be hard. In contrast, as we shall
see, there is a connection between computing knowledge and the model-checking
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problem, that is, the problem of checking whether a formula is true at a particular
point in the system.

While the definition of algorithmic knowledge draws a direct connection between
an agent’s explicit knowledge and the need to compute this knowledge, Xiϕ as defined
is a notion of belief, since Xiϕ may hold even if ϕ does not hold. An algorithm could
very well claim that agent i knows ϕ (i.e., output “Yes”) whenever it chooses to,
including at points where ϕ does not hold. This is not so unreasonable in practice;
agents do make mistakes!

Although algorithms that make mistakes are common, we are often interested in
local algorithms that are correct, or “sound.” Formally, a local algorithm A is called
sound for agent i in the algorithmic knowledge system I if for all points (r, m) of I
and formulas ϕ, if algi (r, m) = A and datai (r, m) = , then (a) A(ϕ, ) = “Yes”
implies (I, r, m) |= Kiϕ, and (b) A(ϕ, ) = “No” implies (I, r, m) |= ¬Kiϕ. It
follows from condition (a) that at a point where agent i uses a sound local algorithm,
Xiϕ ⇒ Kiϕ holds. Thus, if all the local algorithms used by agent i in a given
system I are sound, then Xi satisfies the Knowledge Axiom: I |= Xiϕ ⇒ ϕ.
Soundness of local algorithms is clearly a desirable property, since acting based on
knowledge is, in general, better than acting based on beliefs that may turn out to be
wrong.

In a precise sense, when Xiϕ holds at a point where agent i uses a sound lo-
cal algorithm, it is appropriate to say that i is able to compute that she knows ϕ.
Soundness is a safety property; it is a guarantee that wrong answers are not given.
Notice that an algorithm does not have to be very sophisticated in order to be sound.
In fact, an algorithm that never outputs “Yes” and never outputs “No” (i.e., always
outputs “?”) is clearly sound. We are often interested, in addition to soundness, in a
guarantee that the algorithm always yields a definite (“Yes” or “No”) answer. This
motivates the following definition. A local algorithm A is called complete for agent i

in the algorithmic knowledge system I if for all points (r, m) of I and formulas ϕ,
if algi (r, m) = A and datai (r, m) = , then A(ϕ, ) ∈ {“Yes”, “No”}. It follows
that at a point where agent i uses a sound and complete local algorithm, Xiϕ ⇔ Kiϕ

holds.
For many applications of interest, completeness is too strong a requirement.

For example consider the knowledge-based program SBAi for the simultaneous
Byzantine agreement problem described in Section 7.4. This program has two tests:
¬decidedi ∧BN

i CN (∃0) and ¬decidedi ∧¬BN
i CN (∃0)∧BN

i CN (∃1). Recall that a
formula of the form BN

i ϕ is an abbreviation for Ki(i ∈ N ⇒ ϕ). Thus, to implement
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this knowledge-based program, it suffices to find an algorithm that can compute the
truth of knowledge tests of the form BN

i CN (∃y). Moreover, the algorithm does not
have to be able to compute the truth of these tests at all points; only at ones where
¬decidedi holds. This leads us to the following weakening of the completeness re-
quirement: Given a set � of formulas and a set L of local data for i in an algorithmic
knowledge system I, a local algorithm A is complete with respect to � and L if for
all points (r, m) in I such that algi (r, m) = A and datai (r, m) ∈ L, and for all
formulas ψ ∈ �, it is the case that A(ψ,datai (r, m)) ∈ {“Yes”, “No”}. Thus,
on the formulas and local data of interest (as specified by � and L), a complete
algorithm always gives a definite answer. (A restricted version of soundness can
be defined in an analogous manner.) To implement the knowledge-based program
SBAi , we need an algorithm that is sound and complete only with respect to � and L,
where � consists of the two formulas i ∈ N ⇒ CN (∃0) and i ∈ N ⇒ CN (∃1), and
L consists of the local data in which i has not performed the decidei action (recall
that we assume that i records in its local state whether it has decided).

The soundness of an agent’s local algorithm is related to the agent’s rationality.
One interpretation of an agent’s being rational is that he would not act based on
incorrect information. Similarly, the completeness of agent’s local algorithm is
related to the agent’s expertise. Intuitively, the less often an agent’s local algorithm
gives the answer “?,” the more expert the agent is. Notice that if an agent has a
sound algorithm for computing whether he knows ϕ at a particular local state, then
he essentially has an algorithm for checking if Kiϕ holds at a point where he is in
that local state; thus, he can do a limited form of model checking.

10.2.2 Properties of Algorithmic Knowledge

As we already observed, algorithmic knowledge and implicit knowledge essentially
coincide as long as the agents are using sound and complete algorithms. In particular,
Xiϕ ⇒ ϕ holds at all points where agent i’s local algorithm is sound, as does
Xiϕ ⇒ Kiϕ, while Kiϕ ⇔ Xiϕ holds at all points where i’s local algorithm is
sound and complete.

It is easy to see that, in general, algorithmic knowledge does not suffer from any
of the forms of logical omniscience discussed in Chapter 9 (see Exercise 10.1). For
example, there is no need for an agent to algorithmically know any tautologies, nor
to know the logical consequences of his algorithmic knowledge. Indeed, if we put no
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constraints on the algorithms, then there are no interesting properties of algorithmic
knowledge.

Since the behavior of the algorithm in algorithmic knowledge systems may
clearly depend on the syntax of ϕ, algorithmic knowledge shares many of the prop-
erties of knowledge in syntactic structures, as discussed in Section 9.2.1 (see Ex-
ercise 10.1). In fact, there is a close connection between algorithmic knowledge
systems and syntactic structures; see Exercise 10.2.

The syntactic nature of algorithmic knowledge also yields a close connection
between algorithmic knowledge and the notion of awareness from Section 9.5. Recall
that in the logic of awareness, we have a modal operator Ai , and the intended meaning
of the formula Aiϕ is “agent i is aware of ϕ.” The agent may be aware of some
formulas at a given state, and not be aware of other formulas. In the context of
algorithmic knowledge systems, we can define agent i to be aware of ϕ at a point
(r, m) of system I, denoted (I, r, m) |= Aiϕ, if A(ϕ, ) �= “?” where ri(m) = 〈A, 〉.
Thus, we think of i as being aware of ϕ if his local algorithm answers either “Yes” or
“No” when presented with ϕ. If algi (r, m) is a sound algorithm, then we have that
(I, r, m) |= Xiϕ ⇔ Kiϕ ∧ Aiϕ. In fact, for every algorithmic knowledge system I
in which the local algorithms used by the agents are sound, there is an awareness
structure M , whose states are the points in I, such that the same formulas are true at
corresponding points in M and I (see Exercise 10.3).

Explicit knowledge in algorithmic knowledge systems has a property that it does
not have in general in awareness structures. Since a local algorithm takes only
the local, and not the global, state as an argument, algorithmic knowledge depends
only on the local state. Thus, an agent (implicitly) knows whether or not he has
algorithmic knowledge. That is, Xiϕ ⇒ KiXiϕ and ¬Xiϕ ⇒ Ki¬Xiϕ are both
valid in algorithmic knowledge systems (Exercise 10.4). This means that algorithmic
knowledge systems have the locality property discussed in Section 9.2: knowledge
depends only on agents’ local states.

10.3 Examples

A framework is useful only if it can capture a wide variety of problems in a natural
way. As we now show by example, algorithmic knowledge can indeed capture many
situations of interest in which agents need to act on their knowledge.
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Players’ skill level Consider the card game of blackjack. In this game, players of
different skills vary in both their local data and local algorithms. The local data of a
naive player is often just the information about the cards in his hand and the exposed
cards on the table. Such a player would typically also use a rather simple local
algorithm to decide whether or not to draw more cards. The local data of a more
sophisticated player may also include information about cards that were exposed
in previous rounds of the game (a practice called card counting). Such a player
would typically also have a more sophisticated local algorithm at his disposal. It is
well known that while the odds are against a naive player of blackjack, they favor a
sufficiently sophisticated card counter. Thus, a sophisticated player gets an advantage
both from having more detailed local data and from using a more sophisticated local
algorithm.

In the ten-count system, the player keeps track of the number of tens (where a
“ten” is a ten, jack, queen, or king) and the number of non-tens that are left in the
deck; the player’s decision as to what to do next depends on the ratio of the number of
remaining non-tens to the number of remaining tens. There are other card-counting
systems, that keep track of other information. We can view card-counters who use
different card-counting systems as following the same knowledge-based program:
“Take an action (such as drawing another card) that you know gives you the largest
expected profit.” Nevertheless, even though they follow the same knowledge-based
program, card counters who use different card-counting schemes would take different
actions, since they differ in their local data and their local algorithms.

Moving beyond games, these ideas can also be applied to trading activity in
financial markets. Traders vary both in the raw information available to them (the
local data) as well as in the way they interpret this information (the local algorithm).
Traders gain advantage by getting more information (perhaps even “inside informa-
tion”) and by using more sophisticated algorithms for estimating, for example, what
the future value of a stock or commodity is likely to be. Indeed, it is well-known that
professional investors have the advantage in the futures and options markets; the vast
majority of non-professional investors in those markets typically lose a significant
portion of their investment.

Cryptography Another application that can be captured in the framework of algo-
rithmic knowledge systems is modern-day cryptography. A recent trend in cryptog-
raphy is to use computational difficulty to guarantee the security of encryption. In
public-key cryptography, messages are encrypted by applying a publicized function



10.3 Examples 401

to the original text of the message. These functions are chosen in such a way that
decrypting an encrypted message is easy for an agent who possesses a secret key
(such as the factorization of a particular large number), while an agent with no ac-
cess to such a key would have to use a great deal of computation power to decrypt
the message. Thus, while all of the information about the original content of the
message is encoded in the encrypted message (given the publicized encryption func-
tion), the content is inaccessible without the secret key. Suppose that i possesses the
secret key, while j does not. Agent i then has at his disposal an efficient decryp-
tion algorithm, and hence will explicitly know the content of encrypted messages
he receives. Agent j , not possessing the secret, will not explicitly know the content
of such encrypted messages. On the other hand, j would have implicit knowledge
of the content of each message she receives, although, because it is implicit, this
knowledge would probably be of no practical use to her.

Notice that the main source of i’s uncertainty regarding j here is not what j

knows: i knows that j knows the encrypted message and does not know the secret.
(Actually, the latter is probably belief rather than knowledge, but that is not the
issue here.) Rather, it is uncertainty regarding j ’s algorithm. Such uncertainty is
precisely the type of uncertainty we need to model in cryptographic settings, where
the question of whether an opponent has an algorithm allowing him to break a code
is crucial.

We discussed earlier the choice involved in partitioning a local state into the
local algorithm and the local data. To demonstrate the subtlety of such a choice,
consider what happens in the cryptography example when agent j , who did not have
the secret key originally, somehow obtains this key. Clearly, this can have a drastic
effect on j ’s algorithmic knowledge. We have a choice regarding how to view the
event of j ’s obtaining the secret key: we can view it either as changing j ’s local
algorithm or as modifying j ’s local data. The most appropriate way of modeling
this situation depends in part on what we expect. If j is expecting to learn the key
at some point, then her local algorithm most likely has a provision for what to do
once the key is learnt. In this case, obtaining the key would result in a change in the
local data. On the other hand, if j never expected to obtain the key, and then learns
it serendipitously, this would most likely result in a change in j ’s local algorithm.

Knowledge bases Knowledge bases provide another example of algorithmic knowl-
edge systems. As we saw in Section 4.4.1, after the KB is told the propositional
facts ϕ1, . . . , ϕk whose conjunction is κ , its local data consists essentially of κ . The



402 Chapter 10 Knowledge and Computation

KB can then claim a propositional fact ϕ precisely when KKBκ ⇒ KKBϕ is valid
in Mn. Thus, in general, query answering requires the KB to decide validity of
propositional implications, which is co-NP -complete (see Section 3.5). In practice,
the KB answers queries by evaluating algorithmic knowledge rather than implicit
knowledge. That is, the KB applies some local algorithm alg to its local data κ

and the query ϕ, answers “Yes” if alg(ϕ, κ) = “Yes” and “I don’t know” other-
wise. Since we expect the KB to be truthful, the local algorithm of the KB should
be sound. Furthermore, we expect the algorithm to be efficient; in fact, the answer
“I don’t know” may indicate that the algorithm failed to reach an answer within a
prescribed time limit.

The results of Section 9.3.3 can be viewed as the description of an efficient sound
local algorithm. We saw in Section 9.3.3 that, in the nonstandard setting, queries can
be answered efficiently under certain assumptions. More precisely, Theorem 9.3.6
asserts that if κ and ϕ are propositional formulas in conjunctive normal form (CNF),
then determining whether Kiκ logically implies Kiϕ in the nonstandard semantics
of Section 9.3 can be carried out in polynomial time (in the size of κ and ϕ). We
now consider what this means in terms of algorithmic knowledge.

Proposition 9.3.7 implies that any positive answer we obtain from testing logi-
cal implication between CNF formulas in nonstandard semantics provides us with
a positive answer for standard semantics as well. Thus, a local algorithm of the
knowledge base could very well limit itself to testing logical implication between κ

and a query ϕ with respect to nonstandard semantics. If the logical implication holds,
it should output “Yes”; otherwise, it should output “I don’t know.” If the KB is told
only formulas in CNF, then such a local algorithm is clearly sound with respect to
all formulas in CNF, although it is not in general complete. By Theorem 9.3.6, this
local algorithm is polynomial in terms of the size of the KB’s local data and the size
of the query.

10.4 Algorithmic Knowledge Programs

We argued in Chapter 7 that knowledge-based programs can be used to describe the
relationship between knowledge and action. Intuitively, knowledge-based programs
prescribe what actions the agents should take as a function of their local state and their
knowledge. We explained, however, that knowledge-based programs are not directly
“runnable,” since knowledge is implicit rather than explicit. Motivated by this, we
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introduced and studied the notion of implementing knowledge-based programs by
standard programs. The concept of algorithmic knowledge suggests another solution
to the “non-runnability” of knowledge-based programs; we can consider programs
that prescribe what actions the agents should take as a function of their local state and
their explicit knowledge. We call such programs algorithmic knowledge programs.

10.4.1 Algorithmic Knowledge Programming

Formally, an algorithmic knowledge program for agent i has the following form:
case of

if t1 ∧ x1 do a1

if t2 ∧ x2 do a2

· · ·
end case

where the tj ’s are standard tests, the xj ’s are algorithmic knowledge tests for agent i,
and the aj ’s are actions of agent i. An algorithmic knowledge test for agent i is a
Boolean combination of formulas of the form Xiϕ. Intuitively, the agent selects an
action based on the result of applying the standard test to her local state and applying
the knowledge test to her “explicit knowledge state.” In any given clause, we can
omit either the standard test or the knowledge test; thus, a standard program is a
special case of an algorithmic knowledge program.

We now describe the formal semantics of algorithmic knowledge programs. The
semantics is very close to the semantics we described in Section 5.3 for standard
programs. We assume that all local states are algorithmic knowledge states. We also
assume that we are given an interpretation π over the set G of global states that is
compatible with the agents’ programs, that is, every proposition that appears in a
standard test of the program Pgi is local to i.

Let 〈A, �〉 be an algorithmic knowledge state, tj a standard test in Pgi , and xj an
algorithmic knowledge test in Pgi . Since π is compatible with Pgi , satisfaction of tj
in 〈A, �〉 with respect to π , denoted (π,A, �) |= tj , is well defined. Satisfaction of xj

in 〈A, �〉, denoted 〈A, �〉 |= xj , is also well defined: 〈A, �〉 |= Xiϕ if A(�, ϕ)=“Yes”;
this is extended to Boolean combinations in the standard way. We use the notation
(π,A, �) |= tj ∧ xj to denote the fact that (π,A, �) |= tj and 〈A, �〉 |= xj . We can
now define the protocol Pgπ

i by setting

Pgπ
i (A, �) =

{ {aj | (π,A, �) |= tj ∧ xj } if {j | (π,A, �) |= tj ∧ xj } �= ∅
{�} if {j | (π,A, �) |= tj ∧ xj } = ∅.
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As with standard programs, and in contrast to knowledge-based programs, the actions
selected here depend only on the agent’s local state, and not on the interpreted system.

So far we have focused on programs for individual agents. The notions of joint
algorithmic knowledge programs and the interpreted system that represents a joint
algorithmic knowledge program in a given context can now be defined as we did for
standard programs in Section 5.3. We leave the details to the reader.

In many applications, algorithmic knowledge programs capture our intuition of
“action based on knowledge” better than knowledge-based programs do. Recall that
we motivated applying the knowledge terminology to distributed systems in Chap-
ter 1 by pointing out that designers of distributed programs often say things like:
“once A knows B has received the message µ, then A will stop sending µ to B.” A
program based on such an intuition will typically involve having B send A an ac-
knowledgment when B receives µ, and having A stop sending µ once it receives such
an acknowledgment. It may happen that before receiving this acknowledgment A

already has enough information to infer that B has received µ. For example, this is
the case if A received a message from a third agent C that could not have been sent
unless B had already received µ. In practice, A would usually not try to detect such
knowledge (unless stopping to send µ as early as possible is absolutely essential);
rather, it would continue to send µ until the particular test for the acknowledgment
succeeds. We may conclude that the reference to knowledge in the designers’ in-
tuition above does not quite refer to implicit knowledge. Rather, it can be thought
of as assuming that there are particular tests (in our example, checking whether an
acknowledgment has arrived) on which the knowledge is based. Clearly, these tests
give rise to local algorithms for the processes to use in testing for knowledge about
the relevant facts of interest. Thus, what the designers often have in mind is an algo-
rithmic notion of knowledge rather than an information-based one. This is exactly
what the notion of algorithmic knowledge programs is intended to capture.

This discussion suggests that reasoning about implicit knowledge may not suf-
fice in the analysis of many complex algorithms; reasoning in terms of algorithmic
knowledge may be necessary as well. One such complex situation that can be found
in the literature is in the design and description of programs for Byzantine agree-
ment in the Byzantine-failure mode, where faulty processes can behave arbitrarily
and lie outright. In this case, computing whether a process i implicitly knows that
another process j is faulty may be a very difficult task in general. Done naively, it
involves performing exponential computations, and even in the most efficient way it
often requires solving co-NP -hard problems (see Theorem 6.6.10). The information
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that j is faulty, however, may be very useful for i. Moreover, there are various sim-
ple computational tests that i can employ which, when successful, imply that j is
faulty. This can be viewed as giving a sound local algorithm for testing whether j is
faulty. In developing a program for Byzantine agreement in this case, it is possible
to use such a sound local algorithm and then reason about statements such as “if i

knows that j is faulty then it should . . . .” Again, the knowledge referred to in such
a statement is actually the algorithmic knowledge i has about whether j is faulty.

10.4.2 Algorithmic Knowledge and Complexity

The computational resources that an agent can actually use when running a local
algorithm are typically quite limited. One reason may be the cost and availability
of the computational resources. Another is the need of the agent to act within a
given time frame. The result of a computation that takes a year to complete may
well be useless by the time it is obtained. It is therefore essential to consider not
only the final output of a computation but also the complexity of this computation.
One of our motivations for introducing algorithmic knowledge was the fact that the
notion of implicit knowledge is not sensitive enough to take into account the limited
computational power of the agents.

The algorithmic knowledge framework can model the limited abilities of
resource-bounded agents. Indeed, we can model the fact that an agent i knows that j

is restricted to, say, polynomial-time computations by having j ’s local algorithms
at all points that agent i considers possible be polynomial-time algorithms. Under
such circumstances, i would (implicitly) know that j is limited to polynomial-time
computations. As we saw above, much finer distinctions regarding j ’s computa-
tional abilities can be made, such as assuming that j cannot perform certain specific
computations (decrypting a particular message, for example). This is much stronger
than assuming j ’s algorithm is from a particular complexity class. Of course, it may
be rather difficult to actually obtain such strong knowledge about the algorithms used
by another agent.

There are subtleties in using the algorithmic knowledge framework to model the
limited abilities of resource-bounded agents. To start with, it is far from obvious
how the complexity of computing knowledge ought to be measured. As we observed
in Section 3.5, we typically measure the complexity of an algorithm as a function
of the size of its input. For example, in Section 3.5 we measured the complexity of
determining the validity of a formula ϕ in various modal logics as a function of |ϕ|,
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the number of symbols in the syntactic representation of ϕ. In algorithmic knowledge
systems, the algorithm takes as input a pair (ϕ, �) consisting of a formula ϕ and local
data �. Thus, the complexity of claiming ϕ should be a function of |ϕ| and |�|, which
is essentially how we did it in Section 9.3.3.

There are times, however, when it may be appropriate to suppress the dependence
of the complexity on the formula ϕ or on the local data �. For example, if we ask
many queries of a knowledge base in a fixed state, then it may be appropriate to
measure the complexity simply as a function of the size of the query ϕ, and treat
the local data (the state of the knowledge base) as a constant in our calculations.
By way of contrast, an agent running a fixed knowledge-based program needs to
compute only whether she knows one of a small number of formulas, possibly at
many different points. Thus, in this case, it is appropriate to ignore the size of the
formula (i.e., treat it as a constant), and compute the complexity as a function of the
size of the local data.

The issue is in fact more subtle than these examples suggest. Consider the
knowledge-based program SBA for simultaneous Byzantine agreement given in Sec-
tion 7.4. In that program, there are only two formulas we care about, namely CN (∃0)

and CN (∃1). But we measured the complexity, not as a function of the size of the
local data, but as a function of n and t , the total number of processes and the bound
on the number of failures. These were the appropriate parameters, since we were in-
terested in understanding how the difficulty of implementing the algorithm depended
on the number of participating processes and the potential number of failures. The
upshot of this discussion is that there is not a single “right” way of defining the
complexity of computing knowledge of a formula; the “right” definition will depend
on the application.

Another subtlety in using the algorithmic knowledge framework to model the
limited abilities of resource-bounded agents has to do with the notion of time. We
often classify computational complexity by analyzing the time requirement of the
computation. For example, we mentioned earlier that the resource-boundedness of an
agent could be modeled by allowing her access only to polynomial-time algorithms.
Recall that a run is a function from time to global states. But what is the relationship
between the notion of time when we speak of polynomial-time algorithms and the
notion of time modeled explicitly in multi-agent systems? Our semantics for algo-
rithmic knowledge programs suggests that algorithmic knowledge tests are always
evaluated in one round. But evaluating an algorithmic knowledge test Xiϕ in a state
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〈A, �〉 requires the application of A to (ϕ, �), which means that the algorithm has to
conclude its possibly polynomially long computation within one round.

The reason for this apparent inconsistency is that we really have two notions
of time in mind. Time in runs serves as a convenient way to partition the system
behavior into rounds, where a round is a basic unit of activity. In the coordinated-
attack problem of Section 6.1, a round was (implicitly) taken to be a length of time
sufficient for a messenger to carry a message from one general to the other. Similarly,
in the SBA problem of Section 6.3, a round was taken to be sufficiently long for a
process to send a message to all other processes. In both cases, our choice of the
granularity of time is motivated by convenience of modeling, and time should not be
thought of as “real time.”

When we speak of time in the context of (polynomial-time) computations, we are
not speaking of “real time” either. Rather, the notion of time in complexity is meant
to measure the number of machine instructions performed by a computational device.
We argued above that there is no unique way to measure the complexity of computing
knowledge. Similarly, the precise relationship between the two notions of time is also
application dependent. For example, when considering SBA, a machine instruction
could be “transmit one bit” and a round could include up to some polynomial number
of such instructions. Thus, when we model an algorithmic knowledge system, the
local algorithms have to be such that they can be run in one round. If one wishes
to model an algorithm with a longer running time, then it must be split up among
successive states.

To understand this issue better, let us return to our example of the KB again.
Suppose that we have a KB that has been told the propositional facts ϕ1, . . . , ϕk

whose conjunction is κ , and the KB wants to respond to a query ϕ. Moreover,
suppose it does so by checking if κ ⇒ ϕ is valid using a theorem prover. Rather than
assuming that the theorem prover returns its answer in one step (or gives up, again
in one step), we now take a time step to be just long enough for the theorem prover
to make one inference. In this setting, it might be appropriate to take the KB’s local
state to be the set of consequences of κ which it has managed to deduce thus far, and
say that the KB explicitly knows ϕ only if ϕ is one of the formulas it has deduced.
The KB’s local algorithm is now quite trivial: The KB explicitly knows ϕ only if ϕ

is one of the formulas that has been deduced thus far.
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10.4.3 Implementing Knowledge-Based Programs

As we emphasized in Chapter 7, one of the fundamental questions when dealing with
knowledge-based programs is how to implement them by standard programs. While
a knowledge-based program is stated in terms of implicit knowledge, an implementa-
tion that replaces knowledge tests by standard tests can make use only of knowledge
that is explicitly computable. Thus, it is natural to consider the implementation of
knowledge-based programs by algorithmic knowledge programs.

Recall from Section 7.1 that a standard program Pgs is an implementation of
a knowledge-based program Pgkb in an interpreted context (γ, π) if the protocol
Pgπ

s coincides with the protocol PgI
kb, where I = Irep(Pgs, γ, π) is the interpreted

system that represents Pgs in (γ, π). Similarly, we say that an algorithmic knowledge
program Pga implements Pgkb in (γ, π) if Pgπ

a coincides with the protocol PgI
kb,

where I = Irep(Pga, γ, π). Intuitively, Pga implements Pgkb if the two programs
prescribe the same actions in the interpreted system that represents Pga .

We mentioned earlier that we do not have a general methodology for deriving im-
plementations of knowledge-based programs. In the algorithmic knowledge setting,
a reasonable approach is to replace all knowledge tests by algorithmic knowledge
tests. Given a knowledge-based program Pg, we denote by PgX the program obtained
by replacing each knowledge test Kiϕ in Pg by the algorithmic knowledge test Xiϕ.
(Note that we are replacing Ki by Xi only at the outermost level; for example, the
test KiKjϕ is replaced by XiKjϕ.) Thus, rather than testing for implicit knowledge
as in Pg, in PgX we test for algorithmic knowledge. Does PgX implement Pg? We
now describe some conditions under which it does.

We say that a knowledge-based program Pg = (Pg1, . . . , Pgn) is in normal form
if every program Pgi in Pg is a finite program of the form

case of
if Kiϕ1 do a1

· · ·
if Kiϕm do am

end case

where the actions aj are pairwise distinct (i.e., aj �= ak for j �= k). Intuitively,
in this representation, all the tests that enable the choice of a given action have
been combined into one test. Normal-form programs have the property that there
is a one-to-one correspondence between actions and knowledge tests. We may
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restrict attention to programs in normal form because, in a precise sense, every
finite knowledge-based program is equivalent to one in normal form (Exercise 10.5).

Let A = 〈A1, . . . ,An〉 be a sequence of local algorithms, which we view as
giving the local algorithms for the agents. For a global state s = (se, s1, . . . , sn),
let sA be the global state (se, 〈A1, s1〉, . . . , 〈An, sn〉). Thus, sA is obtained from s by
taking the algorithms in A to be the local algorithms of the agents, and making what
originally were the local states of the agents be their local data. We can now use A to
“annotate” sets of global states, runs, systems, and interpreted systems. For a set G
of global states, let GA = {sA | s ∈ G}. For a run r over G, we define a run rA so
that if r(m) = s then rA(m) = sA. For a system R, let RA = {rA | r ∈ R}. The
algorithmic knowledge system RA is said to be uniform, since an agent has the same
local algorithm at all points of the system. For an interpreted system I = (R, π), let
IA = (RA, π).

Just as we can associate with a “standard” global state s a global state sA annotated
with the knowledge algorithms used by the agents, we can associate with a context
γ = (Pe, G0, τ, �) an annotated context γ A = (Pe, GA

0 , τA, �A), where GA
0 =

{sA | s ∈ G0}, �A = {rA | r ∈ �}, and τA is the natural extension of the transition
function τ to GA: the actions simply have no effect on the local algorithms, and
have the same effect on the local data as in γ . Similarly, we can associate with an
interpretation π for a context γ a corresponding interpretation πA for γ A.

We can now describe conditions under which the strategy of going from Pg to
PgX works. Recall from Section 5.2 that a computable protocol is a protocol where
there is an algorithm that takes a local state as input and returns the set of actions
prescribed by the protocol in that state.

Theorem 10.4.1 Let Pg be a knowledge-based program in normal form and let
(γ, π) be an interpreted context such that π is compatible with Pg. Then there is a
computable protocol P that implements Pg in the context (γ, π) if and only if there
is a sequence A of local algorithms such that PgX implements Pg in the context
(γ A, πA).

Proof Suppose that PgX implements Pg in (γ A, πA), and let IA=Irep(PgX, γ A, πA).
Since IA is uniform, the actions selected by PgX in IA depend only on the local data
and the local algorithms in A. Thus, we can derive from PgX and IA a computable
protocol that implements Pg in (γ, π) (Exercise 10.6).

Conversely, suppose that there is a computable protocol Ps = (Pe, P1, . . . , Pn)

that implements Pg in (γ A, πA). Let the knowledge tests appearing in Pgi be
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Kiϕ1, . . . , Kiϕm. (Here we use the one-to-one correspondence between actions and
knowledge tests in normal form programs.) We define Ai as follows: Ai (ϕj , �) =
“Yes” if aj ∈ Pi(�) and “No” otherwise. For ψ /∈ {ϕ1, . . . , ϕm}, we assume arbi-
trarily that Ai (ψ, �) = “No” for all �. It is easy to see that PgX implements Pg in
(γ A, πA) (Exercise 10.6).

Intuitively, Theorem 10.4.1 captures the fact that implementing a knowledge-
based program by a computable protocol amounts to replacing the tests for “external”
implicit knowledge by tests for explicit algorithmic knowledge. Notice that the
assumptions of Theorem 10.4.1 impose a strong requirement on the local algorithms.
Suppose that PgX implements Pg in (γ A, πA), and let IA = Irep(PgX, γ A, πA).
This means that at every point of IA, Ai (ϕj , �) =“Yes” if and only if (I, �) |= Kiϕj .
The algorithms must therefore be sound and complete with respect to the knowledge
tests for the formulas 
 = {ϕ1, . . . , ϕm} appearing in the program Pg and with
respect to all the instances of local data at which the program is evaluated, which
often means at all points of the system.

Exercises

10.1 Give an example of an algorithmic knowledge system with sound local algo-
rithms in which algorithmic knowledge fails to satisfy the following types of logical
omniscience from Chapter 9:

(a) knowledge of valid formulas,

(b) closure under logical implication,

(c) closure under logical equivalence.

10.2 In this exercise, we relate algorithmic knowledge systems and syntactic struc-
tures. If ϕ is an Ln-formula ϕ (i.e., one not involving the explicit knowledge operators
Xi), define ϕ′ to be the result of replacing each Ki in ϕ by Xi . Let I be an algorithmic
knowledge system. Construct a syntactic structure M = (S, σ ), where S consists of
the points in I, such that for each Ln-formula ϕ and each state s ∈ S, we have that
(I, s) |= ϕ′ iff (M, s) |= ϕ.
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10.3 In this exercise, we relate algorithmic knowledge systems and awareness struc-
tures. Show that for every algorithmic knowledge system I in which the local algo-
rithms used by all the agents are sound, there is an awareness structure M , whose
states are the points in I, such that the same formulas are true at corresponding points
in M and I.

10.4 Prove that both Xiϕ ⇒ KiXiϕ and ¬Xiϕ ⇒ Ki¬Xiϕ are valid in algorithmic
knowledge systems.

10.5 We say that two knowledge-based programs Pg1 and Pg2 are equivalent if the
following two conditions hold:

(a) an interpretation π is compatible with Pg1 iff it is compatible with Pg2, and

(b) if an interpretation π is compatible with Pg1 and Pg2, then for each interpreted
system I = (R, π) we have that PgI

1 = PgI
2 .

That is, the two programs are equivalent if they behave identically with respect
to every interpreted system.

Prove that for every finite knowledge-based program there exists an equivalent
knowledge-based program in normal form.

10.6 Complete the proof of Theorem 10.4.1:

(a) Suppose that PgX implements Pg in (γ, π). Derive from PgX and IA a
computable protocol that implements Pg in (γ, π).

(b) Suppose that there is a computable protocol Ps = (Pe, P1, . . . , Pn) that im-
plements Pg in (γ, π). Define A as in the proof of the theorem. Show that
PgX implements Pg in (γ A, πA).

Notes

One of the first works relating knowledge and resource-bounded computation is
[Konolige 1986]. There have also been many attempts in the game-theoretical liter-
ature to model resource-bounded agents [Anderlini 1999; Binmore 1987; Binmore
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and Shin 1993; Canning 1992; Megiddo 1986; Megiddo 1989; Megiddo and Wigder-
son 1986; Neyman 1985; Rubinstein 1986; Shin and Williamson 1994], although the
approaches taken there have been quite different from that used here. See [Binmore
1990, Chapters 5–6] for a foundational discussion. Binmore and Shin [1993] define
a player’s algorithmic knowledge as whatever the player can deduce using a sound
recursive algorithm. They study the properties of this definition, and relate these
properties to the modal logic G for provability presented by Boolos [1979].

The notion of algorithmic knowledge defined here is due to Halpern, Moses, and
Vardi [1994]. This framework was inspired by the work of Moses [1988], who was
the first to define an algorithmic notion of knowledge. Our notions of soundness
and completeness are based on his definitions and on those of Halpern, Moses, and
Tuttle [1988]. Parikh [1987] presents a definition of a notion he calls l-knowledge (for
linguistic knowledge) that is similar in spirit to the notion of algorithmic knowledge
defined here. He considers an agent to have l-knowledge of ϕ if the agent says “Yes”
when asked about ϕ and if, in addition, the agent’s answers are sound in our sense.
We remark that what we call algorithmic knowledge states, algorithmic knowledge
systems, and algorithmic knowledge programs here were called algorithmic states,
algorithmic systems, and algorithmic programs, respectively, in the first edition of
this book and in [Halpern, Moses, and Vardi 1994]. The current choice of names
seems more reasonable to us.

Elgot-Drapkin and Perlis developed what they call step-logics to model the rea-
soning of agents over time [Elgot-Drapkin 1991; Elgot-Drapkin and Perlis 1990].
In their approach, the agent can carry out one step of reasoning at each time step.
This is much in the spirit of the example given at the end of Section 10.4.2 of the
KB that uses a theorem prover to check if κ ⇒ ϕ is valid. Thus, we can embed their
approach in our framework.

One important application area for resource-bounded reasoning about knowl-
edge is reasoning about cryptography and security. Extensions of the framework of
Moses [1988] for applications to cryptography were made by Halpern, Moses and
Tuttle [1988]. They show that the interactive and zero-knowledge proof systems of
Goldwasser, Micali and Rackoff [1989] can be cast in a formalism in the spirit of
the one described here, extended to allow for probabilistic computations and proba-
bilistic notions of soundness and completeness. A related notion was described by
Fischer and Zuck [1987]. A more recent application of algorithmic knowledge to
reasoning about security can be found in [Halpern and Pucella 2002].
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Ramanujam [1999] investigates a particular form of algorithmic knowledge,
where the local algorithm is essentially a model-checking procedure for a standard
logic of knowledge. More specifically, Ramanujam considers, at every state, the part
of the model that a particular agent sees, and takes as local algorithm the model-
checking procedure for epistemic logic, applied to the submodel generated by the
visible states.

The ten-count system for blackjack was developed by Thorp, who wrote the
classic works on winning strategies for blackjack [1961, 1966]. The idea of public-
key cryptography was introduced by Diffie and Hellman [1976]; a well-known exam-
ple of a public-key cryptosystem is the RSA system of Rivest, Shamir, and Adleman
[1978].

The analysis of Byzantine agreement in the Byzantine-failure mode in terms of
algorithmic knowledge, referred to in Section 10.4.1, is due to Berman, Garay, and
Perry [1989].



 

Chapter 11

Common Knowledge Revisited

Mankind, why do ye set your hearts on things
That, of necessity, may not be shared?

Dante Alighieri, “Purgatorio,” 14, The Divine Comedy, c. 1300

The strong link between common knowledge and goals such as agreement and
coordinated action was discussed in Chapter 6, where we showed that coordinated
attack requires common knowledge, as does reaching simultaneous Byzantine agree-
ment. Moreover, examples such as the muddy children puzzle demonstrate how
public announcements can cause facts to become common knowledge. On the other
hand, we have seen that attaining common knowledge can be difficult at times. In this
chapter we take a look at the tension between the desirability of common knowledge
and the difficulty in attaining it.

A critical observation that we shall make here is that common knowledge is
intimately related to simultaneity: the onset of common knowledge must involve a
simultaneous change at all sites. This observation will provide us with new insight
into the nature of common knowledge. In particular, it strongly affects the attain-
ability of common knowledge, since true simultaneity cannot be attained in realistic
scenarios. This presents us with a dilemma. We argue for the importance of common
knowledge for coordinated actions, while at the same time we show that common
knowledge is not attainable in practical situations. This dilemma is the focus of this
chapter.
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11.1 Common Knowledge as a Conjunction

Theorems 4.5.4 and 6.1.1 show that there are a number of situations in which non-
trivial common knowledge is not attainable. Much of our discussion in this chapter
will be motivated by the quest to understand what makes common knowledge at-
tainable in some situations and unattainable in others. Recall that our definition of
common knowledge is in terms of an infinite conjunction of facts of the form Ekϕ.
This definition suggests that common knowledge has an “inherently infinite” nature.
Indeed, for a fact that is not common knowledge to become common knowledge,
each participating agent must come to know an infinite collection of new facts. How
can common knowledge ever be attained if it requires the agents to learn an infinite
collection of different facts? Could this be one of the reasons that common knowl-
edge is hard to attain in some cases of interest? Indeed, in the coordinated attack
scenario, the agents are able to satisfy any finite collection of facts of the form Ekϕ,
while, as we saw, they cannot attain common knowledge.

Consider an unrealistic version of the coordinated-attack problem, in which the
generals can exchange an infinite number of messages in a finite amount of time. For
the purpose of the argument, we can imagine that the messenger is able to double his
speed every time around; while his first journey may take an hour, his second journey
takes a half hour, the third a quarter hour, and so on. Thus, he will visit both camps
an infinite number of times within two hours, unless he is caught by the enemy. If
the messenger is not caught by the enemy, then the generals are able to attack after
the messenger has completed his task. This is because, intuitively, the generals attain
common knowledge after two hours. This example suggests that attaining common
knowledge may require an infinite number of (communication) steps in some cases.

That this is not always the case should be clear from our discussion of the muddy
children puzzle and of simultaneous Byzantine agreement (SBA). Here nontrivial
common knowledge is attained after a finite amount of time and communication.
The fact that each of the infinitely many facts Ekϕ holds in these cases follows from
a straightforward proof by induction on k. Thus, attaining common knowledge need
not require an infinite amount of communication.

If common knowledge is equivalent to Ek for some sufficiently large k, then,
intuitively, k rounds of communications should suffice to attain common knowledge.
The coordinated-attack scenario shows that this equivalence does not hold in general.
We now discuss an important class of multi-agent systems where common knowledge
is equivalent to Ek for some sufficiently large k.
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In many systems, each agent’s set of possible local states is finite. For example, in
the bit-transmission problem of Example 4.1.1, the sender S has only four possible
local states and the receiver R has only three. In fact, in practice there is always
a finite bound on the number of possible local states of an agent in a real-world
system. For example, a computer has only finite (albeit typically large) memory
capacity, and thus has a finite state space. We call a system where each agent’s
set of possible local states is finite a finite-state system. We now show that in a
finite-state system, common knowledge is always equivalent to Ek for a sufficiently
large k.

Theorem 11.1.1 Let I be an interpreted finite-state system, and let G be a fixed
nonempty set of agents. Then there is a constant k such that for every formula ϕ we
have I |= CGϕ ⇔ Ek

Gϕ.

Proof It is enough to show that I |= Ek
Gϕ ⇒ CGϕ for some fixed k. For all agents i,

let Li be the set of agent i’s local states in I. Define l = min {|Li | : i ∈ G}. Thus,
l is the number of local states of the member of G with the fewest local states. Now
set k = 2l − 1. Assume that (I, r, m) �|= CGϕ. This means that there must be a
point (r ′, m′) that is G-reachable from (r, m) and satisfies (I, r ′, m′) �|= ϕ. This, in
turn, implies that there is a sequence c0, c1, . . . , ct of points such that c0 = (r, m),
ct = (r ′, m′), and for all 0 ≤ j < t there is an agent ij ∈ G with the same local
state at cj and cj+1. Without loss of generality, assume that this path is of minimal
length among all such paths connecting (r, m) and (r ′, m′). No agent can have the
same local state at any two nonconsecutive points in the sequence, since otherwise
there would be a connecting path of smaller length. It follows that t ≤ 2l − 1 = k.
As a result, (I, r, m) �|= Ek

Gϕ. We thus obtain that I |= Ek
Gϕ ⇒ CGϕ.

Notice that the proof still goes through if, instead of a finite-state system, we have a
system in which even one member of G has a finite number of local states. Therefore,
intuitively, if any member of G is bounded, then common knowledge among the
agents in G is equivalent to Ek

G for some k.
One additional property of the proof of Theorem 11.1.1 is worth mentioning.

Fix a finite-state system I, and let l be as in the proof of the theorem. Moreover,
let i ∈ G be an agent with exactly l local states. Clearly, having only l different
local states, agent i is not able to count up to l + 1. But the proof does not show
that I |= El+1

G ϕ ⇔ CGϕ. Rather, the proof shows that I |= Ek
Gϕ ⇔ CGϕ for

k = 2l − 1. One might wonder whether this equivalence holds for a smaller k. The
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answer, in general, is no. There are examples in which E2l−2
G ϕ holds without CGϕ

holding (Exercise 11.1).
It would seem that Theorem 11.1.1 spells good news for common knowledge, at

least for the class of finite-state systems. One might, for example, expect to attain
common knowledge rapidly in a finite-state protocol in which the receiver has only
four different local states. On the other hand, Theorem 6.1.1 already shows that
common knowledge of facts such as “the message has been delivered” cannot be
attained if communication is not reliable. Moreover, the proof of this result did
not rely on any assumptions that disallow finite-state systems; the inability to attain
nontrivial common knowledge applies equally well to finite-state protocols.

There is no paradox here. In finite-state systems where communication is unreli-
able, it is true both that common knowledge is unattainable and that Ekϕ is equivalent
to Cϕ for an appropriate choice of k. We can thus conclude that in every finite-state
system with unreliable communication, Ekϕ is unattainable for some sufficiently
large k. One way to understand this result is to observe that the choice of l and k in
the proof is such that at least one agent i ∈ G cannot count up to l + 1, let alone to k.
For this agent, k is essentially tantamount to infinity. (We are not assuming here that
in order to attain Ekϕ each agent in G needs to be able to count to k. This is false, as
is shown in Exercise 11.1(a). Nevertheless, the naive method for attaining common
knowledge by k rounds of information exchange essentially requires the agents to
be able to count to k.) We can, of course, add a few bits to the local states of the
members of G in I, thereby enabling every agent, in principle, to count up to k. But
by doing so we will have created a new finite-state system I ′ in which the number
of local states these agents have has increased. As a result, we obtain a new value
l′ > l, and a corresponding value k′ > k. In the resulting (extended) system I ′,
it will no longer be the case that I ′ |= CGϕ ⇔ Ek

Gϕ. In this system at least one
process will not be able to count to k′, and we are back to the original problem.

The previous discussion shows that the fact that in finite-state systems common
knowledge is equivalent to Ek for some finite k does not make common knowledge
any easier to attain. On the other hand, we saw in Chapter 6 that common knowledge
can be attained within a finite amount of time even in some situations where common
knowledge is not equivalent to Ek for any finite k. It seems that viewing common
knowledge in terms of an infinite conjunction does not provide insight into the way
common knowledge arises. The question of what are the basic principles underlying
the attainability or unattainability of common knowledge motivates the rest of this
chapter.
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11.2 Common Knowledge and Simultaneity

11.2.1 Common Knowledge and Uncertainty

Theorem 6.1.1 shows that, in a strong sense, nontrivial common knowledge is not
attainable in a system in which communication is not guaranteed or, for that matter,
in a system in which communication is guaranteed, but where there is no bound on
the time it takes for messages to be delivered. It would seem that when all messages
are guaranteed to be delivered within a fixed amount of time, say one nanosecond,
attaining common knowledge should be a simple matter. But things are not always as
simple as they seem; even in this case, uncertainty causes major difficulties. Consider
the following example.

Assume that two agents, Alice and Bob, communicate over a channel in which (it
is common knowledge that) message delivery is guaranteed. Moreover, suppose that
there is only slight uncertainty concerning message delivery times. It is commonly
known that any message sent from Alice to Bob reaches Bob either immediately
or after exactly ε time units. Now suppose that at some point Alice sends Bob a
message µ that does not specify the sending time in any way. Let mS and mD

be variables denoting the time µ is sent and the time it is delivered, respectively.
Thus, having sent µ, Alice knows the value of mS , while once µ is delivered, Bob
knows the value of mD . Let R denote the system of runs that correspond to this
example. There are many runs in R, since we assume that the sending time mS may
be arbitrary. Given our assumption about message delivery, it is common knowledge
in the system that (mD = mS +ε) ∨ (mD = mS). Because the events mD = mS +ε

and mD = mS are mutually exclusive, they partition the runs of R into two classes,
depicted by scenario (a) and scenario (b) of Figure 11.1. Let sent(µ) be the fact “the
message µ has been sent.” Bob does not know sent(µ) initially. How does the state
of knowledge of sent(µ) in the group consisting of Alice and Bob change with time?

At time mD , Bob receives µ and hence knows sent(µ). Since it may take ε time
units for µ to be delivered, as in scenario (a), Alice cannot be sure that Bob knows
sent(µ) before mS +ε. In particular, there is always a run indistinguishable by Alice
from the current run in which Bob receives the message only at time mS + ε. Thus,
KAKBsent(µ) holds at time mS +ε and does not hold beforehand. Bob, on the other
hand, knows that Alice will not know that Bob knows sent(µ) until mS + ε. Since,
for all Bob knows, µ may have been delivered immediately (scenario (b)), Bob does
not know that mS + ε has taken place until time mD + ε. Thus, KBKAKBsent(µ)

does not hold until time mD + ε. When does KAKBKAKBsent(µ) hold? Alice
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mS mS + ε mS + 2ε mS + 3ε

Figure 11.1 The two basic scenarios

knows that KBKAKBsent(µ) holds at mD + ε. Since, for all Alice knows, it takes
time ε for the message to be delivered (scenario (a) again), mD could be mS + ε.
Thus, KAKBKAKBsent(µ) does not hold until mS + 2ε.

This line of reasoning can be continued indefinitely, and an easy proof by induc-
tion shows that before time mS + kε, the formula (KAKB)ksent(µ) does not hold,
while at mS +kε it does. Thus, every ε time units Alice and Bob acquire an additional
level of “Alice knows that Bob knows,” and each such level actually requires these ε

units of time. Since C{A,B}sent(µ) implies (KAKB)ksent(µ) for every k, it follows
that if ε > 0, then C{A,B}sent(µ) is never attained (Exercise 11.2). This may not
seem too striking when we think of ε that is relatively large, say a day, or an hour.
The argument, however, is independent of the magnitude of ε, and remains true even
for small values of ε. Even if Alice and Bob are guaranteed that the message µ

arrives within one nanosecond, they still never attain common knowledge that µ was
sent!
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Now let us consider what happens if, instead of sending µ, Alice sends at time m

a message µ′ that specifies the sending time, such as the following:

“This message is being sent at time m; µ.”

Recall that it is common knowledge that every message sent by Alice is received
by Bob within ε time units. Assume that in this case both Alice and Bob use the
same (global) clock. When Bob receives µ′, he knows that µ′ was sent at time m.
Moreover, Bob’s receipt of µ′ is guaranteed to happen no later than time m + ε.
Since Alice and Bob use the same clock, it is common knowledge at time m + ε that
it is m+ ε. It is also common knowledge that any message sent at time m is received
by time m + ε. Thus, at time m + ε, we obtain that the fact that Alice sent µ′ to Bob
is common knowledge.

Note that in the first example common knowledge will never hold regardless of
whether ε is a day, an hour, or a nanosecond. The slight uncertainty about the sending
time and the message transmission time prevents common knowledge of µ from ever
being attained in this scenario. What makes the second example so dramatically
different? Recall that |= CGϕ ⇒ EGCGϕ, which implies that when a fact ϕ is
common knowledge, everybody must know that it is. It is impossible for agent i

to know that ϕ is common knowledge without agent j knowing it as well. This
means that the transition from ϕ not being common knowledge to its being common
knowledge must involve a simultaneous change in all relevant agents’ knowledge. In
the first example, the uncertainty makes such a simultaneous transition impossible,
while in the second example this transition occurs at time m+ε. These two examples
help illustrate the connection between simultaneity and common knowledge and the
effect this can have on the attainability of common knowledge. We now formalize
and further explore this connection.

11.2.2 Simultaneous Events

The Alice and Bob examples presented previously illustrate how the transition from
a situation in which a fact is not common knowledge to one where it is common
knowledge requires simultaneous events to take place at all sites of the system. The
relationship between simultaneity and common knowledge is, in fact, even more
fundamental than that. In Chapter 6, we saw that actions that must be performed
simultaneously by all parties, such as attacking in the coordinated attack problem,
become common knowledge as soon as they are performed. We used this to show
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that common knowledge is a prerequisite for simultaneous actions. We now prove
that a fact’s becoming common knowledge requires the occurrence of simultaneous
events at different sites of the system. Moreover, we show that, in a certain technical
sense, the occurrence of simultaneous events is necessarily common knowledge.
This demonstrates the strong link between common knowledge and simultaneity.

To prove this claim, we need to formalize the notion of simultaneous events. We
start with a few definitions, all relative to a fixed interpreted system I = (R, π).
Let S denote the set of points of the system R. In this chapter and in previous
chapters we spoke informally about “events” in systems. In the spirit of Section 2.5,
we now take an event in R to be a subset of S; intuitively, these are the points
where the event e holds. As before, an event e is said to hold at a point (r, m) if
(r, m) ∈ e. Of special interest are events whose occurrence is reflected in an agent’s
local state. More formally, an event e is local to i (in interpreted system I) if there
is a set Le

i of i’s local states such that for all points (r, m) we have (r, m) ∈ e iff
ri(m) ∈ Le

i . The events send(µ, j, i), receive(µ, j, i), and int(a, i) of Section 4.4.5,
which correspond respectively to agent i sending a message, receiving a message,
and performing an internal action, are clearly local events for agent i. We remark
that the definition of a local event does not imply that an event that is local to i cannot
also be local to j . In order to be local to both agents, it only needs to be reflected in
the local states of the agents.

Certain events depend only on the global state. An event e is a state event if
there is a set Ge of global states such that for all points (r, m) we have (r, m) ∈ e iff
r(m) ∈ Ge. It is easy to see that local events are state events. More generally, a state
event is one that depends only on what is recorded in the local states of the agents
and the state of the environment. We associate with every state event e a primitive
proposition ψe such that π(r(m))(ψe) = true iff (r, m) ∈ e. This is well-defined,
because it follows easily from the definition of state events that if (r, m) and (r ′, m′)
are points such that r(m) = r ′(m′), then (r, m) ∈ e if and only if (r ′, m′) ∈ e.

We can similarly associate with every formula ϕ an event

evI(ϕ) = {(r, m) | (I, r, m) |= ϕ}.
(Note that evI(ϕ) is defined like evM(ϕ) in Section 2.5, where M is a Kripke
structure.) The event evI(ϕ) thus holds exactly when ϕ holds. We call evI(ϕ) the
event of ϕ holding (in I). It is easy to check that a local event e holds if and only if
the corresponding agent knows that e is holding; moreover, the event of Kiϕ holding
is always a local event for i. More formally, we have the following result.
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Lemma 11.2.1 An event e is local to a process i in a system I if and only if
I |= ψe ⇒ Kiψe. Similarly, I |= ψ ⇒ Kiψ if and only if the event evI(ψ) is
local to i in I.

Proof See Exercise 11.3.

We are now ready to address the issue of simultaneous events. Intuitively, two
events are simultaneous if they occur at the same points. Our interest in simultaneity,
however, is primarily in the context of coordination. Namely, we are interested in
events that are local to different agents and are coordinated in time. Thus, we
concentrate on events whose occurrence is simultaneously reflected in the local state
of the agents. More formally, we define an event ensemble for G (or just ensemble
for short) to be a mapping e assigning to every agent i ∈ G an event e(i) local to i.
In this chapter, we investigate certain types of ensembles of particular interest. An
ensemble e for G is said to be perfectly coordinated if the local events in e hold
simultaneously; formally, if (r, m) ∈ e(i) for some i ∈ G, then (r, m) ∈ e(j) for all
j ∈ G. Thus, the ensemble e for G is perfectly coordinated precisely if e(i) = e(j)

for all i, j ∈ G. Since an event e that is local to agent i is defined in terms of a
set Le

i of states local to agent i, the ensemble e for G is perfectly coordinated if all
the agents in G enter their respective sets Le

i simultaneously. Thus, the events in a
perfectly coordinated ensemble are simultaneous.

An example of a perfectly coordinated ensemble is the set of local events that
correspond to the ticking of a global clock, if the ticking is guaranteed to be reflected
simultaneously at all sites of a system. Another example is the event of shaking hands:
being a mutual action, the handshakes of the parties are perfectly coordinated.

Given an ensemble e for G, the proposition ψe(i) corresponds to the state event
e(i) holding. We also define ψe = ∨

i∈G ψe(i). Thus, ψe is true whenever one of
the state events e(i) holds. We can now show the following:

Proposition 11.2.2 Let I be an interpreted system and G a set of agents.

(a) For every formula ϕ, the ensemble e for G defined by e(i) = evI(KiCGϕ) is
perfectly coordinated.

(b) If e is a perfectly coordinated ensemble for G, then for every i ∈ G we have
I |= ψe(i) ⇒ KiCGψe(i).

(c) If e is a perfectly coordinated ensemble for G, then I |= ψe ⇒ CGψe.
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Proof For part (a), choose i, j ∈ G. The fact that

|= CGϕ ⇔ KiCGϕ and |= CGϕ ⇔ KjCGϕ

implies that
evI(CGϕ) = evI(KiCGϕ) = evI(KjCGϕ),

which are local events for i and j , respectively. It follows that if e is the ensemble
for G defined by e(i) = evI(KiCGϕ), then e is perfectly coordinated.

For part (b), recall that e(i) is a local event for every i ∈ G. We thus have by
Lemma 11.2.1 that I |= ψe(i) ⇒ Kiψe(i) holds for every i ∈ G. Since e is perfectly
coordinated, we have that I |= ψe(i) ⇔ ψe(j) holds for every i, j ∈ G. It follows
that I |= ψe(i) ⇒ EGψe(i), and by the Induction Rule we obtain that I |= ψe(i) ⇒
CGψe(i). From the Fixed-Point Axiom it follows that I |= ψe(i) ⇒ KiCGψe(i).

Finally, part (c) follows from (b): Assume that (I, r, m) |= ψe. By definition
of ψe, we have that (I, r, m) |= ψe(i) for some i ∈ G. By part (b) we obtain that
(I, r, m) |= KiCGψe(i). Since I |= KiCGψe(i) ⇒ CGψe(i) and I |= ψe(i) ⇒ ψe,
it thus follows that (I, r, m) |= CGψe and we are done.

Proposition 11.2.2 precisely captures the close correspondence between common
knowledge and simultaneous events. It asserts that the local events that correspond
to common knowledge are perfectly coordinated, and the local events in a perfectly
coordinated ensemble are common knowledge when they hold. Notice that part (a)
implies in particular that the transitions from ¬KiCGϕ to KiCGϕ, for i ∈ G, must
be simultaneous. Among other things, this helps clarify the difference between the
two examples considered in Section 11.2.1: In the first example, Alice and Bob
cannot attain common knowledge of sent(µ) because they are unable to make such
a simultaneous transition, while in the second example they can (and do).

In systems where the global state records the actions performed in the latest
round (such as in recording contexts, where the environment’s state records the joint
actions), the description of a run determines what actions are performed by the
various agents and when the actions are performed. In such systems, we can talk
about simultaneous actions; these are actions that are performed simultaneously by
all members of a group whenever they are performed. Simultaneous coordinated
attack, simultaneous Byzantine agreement, and the act of shaking hands are all ex-
amples of simultaneous actions. Given a system in which actions are recorded in
this fashion, we can identify, for every agent i and action a, the event of i being
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about to perform a with the set of points (r, m) of the system where i performs a
in round m + 1. Since we view actions as being performed based on a program
or protocol the agent is following, the fact that i is about to perform an action is
typically reflected in i’s local state. When this is the case, the event of i being about
to perform a is local to i. This happens, for example, when the agent is following
a deterministic protocol. Proposition 11.2.2(b) immediately implies that whenever
actions are guaranteed to be performed simultaneously and the event of being about
to perform them is guaranteed to be local to the agents involved, these agents have
common knowledge that the actions are about to be performed. This generalizes
Proposition 6.1.2 and Theorem 6.4.2, where this is proved formally for coordinated
attack and SBA. Moreover, it captures the sense in which common knowledge is a
prerequisite for simultaneous action.

The close relationship between common knowledge and simultaneous actions
is what makes common knowledge such a useful tool for analyzing tasks involving
coordination and agreement. It also gives us some insight into how common knowl-
edge arises. For example, the fact that a public announcement has been made is
common knowledge, since the announcement is heard simultaneously by everyone.
(Strictly speaking, of course, this is not quite true; we return to this issue in Sec-
tion 11.4.) More generally, simultaneity is inherent in the notion of copresence. As
a consequence, when people sit around a table, the existence of the table, as well as
the nature of the objects on the table, are common knowledge.

Proposition 11.2.2 formally captures the role of simultaneous actions in making
agreements and conventions common knowledge. Recall that we argued in Chapter 6
that common knowledge is inherent in agreements and conventions. Hand shaking,
face-to-face or telephone conversation, and a simultaneous signing of a contract are
standard ways of reaching agreements. They all involve simultaneous actions and
have the effect of making the agreement common knowledge.

11.3 Temporal Imprecision

As we illustrated previously and formalized in Proposition 11.2.2, simultaneity is
inherent in the notion of common knowledge (and vice versa). It follows that simul-
taneity is a prerequisite for attaining common knowledge. Alice and Bob’s failure to
reach common knowledge in the first example above can therefore be blamed on their
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inability to perform a simultaneous state transition. As might be expected, the fact
that simultaneity is a prerequisite for attaining common knowledge has additional
consequences. For example, in many distributed systems each process possesses
a clock. In practice, in any distributed system there is always some uncertainty
regarding the relative synchrony of the clocks and regarding the precise message
transmission times. This results in what is called the temporal imprecision of the
system. The amount of temporal imprecision in different systems varies, but it can
be argued that every practical system will have some (possibly very small) degree of
imprecision. Formally, a system R has temporal imprecision if for all points (r, m)

in R and all processes i and j with i �= j , there exists a point (r ′, m′) in R such that
r ′
i (m

′) = ri(m) while r ′
j (m

′) = rj (m + 1). Intuitively, in a system with temporal
imprecision, i is uncertain about j ’s rate of progress; i considers it possible at the
point (r, m) that j ’s local state is either rj (m) or rj (m + 1) (or perhaps something
else altogether). Techniques from the distributed-systems literature can be used to
show that any system in which, roughly speaking, there is some initial uncertainty
regarding relative clock readings and uncertainty regarding exact message transmis-
sion times must have temporal imprecision (provided we model time in sufficiently
small units).

Systems with temporal imprecision turn out to have the property that no protocol
can guarantee to synchronize the processes’ clocks perfectly. As we now show,
events cannot be perfectly coordinated in systems with temporal imprecision either.
These two facts are closely related.

We define an ensemble e for G in I to be nontrivial if there exist a run r in I and
times m, m′ such that (r, m) ∈ ∪i∈Ge(i) while (r, m′) /∈ ∪i∈Ge(i). Thus, if e is a
perfectly coordinated ensemble for G, it is trivial if for each run r of the system and
for each agent i ∈ G, the events in e(i) hold either at all points of r or at no point
of r . The definition of systems with temporal imprecision implies the following:

Proposition 11.3.1 In a system with temporal imprecision there are no nontrivial
perfectly coordinated ensembles for G, if |G| ≥ 2.

Proof Suppose, by way of contradiction, that e is a nontrivial perfectly coordi-
nated ensemble for G in a system I with temporal imprecision, and |G| ≥ 2. Be-
cause e is nontrivial for G, there must exist a run r in I and times m, m′ such that
(r, m) ∈ ∪i∈Ge(i) while (r, m′) /∈ ∪i∈Ge(i). Suppose that m′ > m. (The case where
m > m′ is similar.) Then there must be a time k such that (r, k) ∈ ∪i∈Ge(i) while
(r, k + 1) /∈ ∪i∈Ge(i). From the definition of temporal imprecision, it follows



11.3 Temporal Imprecision 427

that there are agents j, j ′ ∈ G and a point (r ′, k′) such that rj (k) = r ′
j (k

′) and

rj ′(k + 1) = r ′
j ′(k′). Since e is an ensemble for G, for each i ∈ G there is a set

Li of states local to agent i such that e(i) holds precisely when i is in some state
of Li . Because e is perfectly coordinated, the sets e(i) are the same for all i ∈ G.
Since (r, k) ∈ ∪i∈Ge(i) and each set e(i) is the same, we must have (r, k) ∈ e(j).
It follows that rj (k) = r ′

j (k
′) ∈ Lj . Thus, (r ′, k′) ∈ e(j) = e(j ′). But this means

that r ′
j ′(k′) = rj ′(k + 1) ∈ Lj ′ , and so (r, k + 1) ∈ e(j ′). But this contradicts the

assumption that (r, k + 1) /∈ ∪i∈Ge(i).

We thus have the following corollary.

Corollary 11.3.2 Let I be a system with temporal imprecision, let ϕ be a formula,
and let |G| ≥ 2. Then for all runs r and times m we have (I, r, m) |= CGϕ iff
(I, r, 0) |= CGϕ.

Proof Proposition 11.2.2 says that the ensemble e for G defined by e(i) =
evI(KiCGϕ) is perfectly coordinated. By Proposition 11.3.1, this perfectly co-
ordinated ensemble is trivial, and so (r, m) ∈ ∪i∈Ge(i) iff (r, 0) ∈ ∪i∈Ge(i). The
corollary follows.

In simple terms, Corollary 11.3.2 states that no fact can become common knowl-
edge during a run of a system with temporal imprecision. This sharpens Theo-
rem 4.5.4 of Chapter 4, where we showed that common knowledge cannot be gained
in a.m.p. systems. If the units by which time is measured in our model are sufficiently
small, then all practical distributed systems have temporal imprecision. As a result,
Corollary 11.3.2 implies that no fact can ever become common knowledge in practi-
cal distributed systems. Carrying this argument even further, we can view essentially
all real-world scenarios as ones in which true simultaneity cannot be guaranteed. For
example, the children in the muddy children puzzle neither hear nor comprehend the
father simultaneously. There is bound to be some uncertainty about how long it takes
each of them to process the information. Thus, according to our earlier discussion,
the children in fact do not attain common knowledge of the father’s statement.

We now seem to have a paradox. On the one hand, we have argued that common
knowledge is unattainable in practical contexts. On the other hand, given our claim
that common knowledge is a prerequisite for agreements and conventions and the
observation that we do reach agreements and that conventions are maintained, it
seems that common knowledge is attained in practice.
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What is the catch? How can we explain this discrepancy between our practical
experience and our technical results? In the remainder of this chapter, we present
two resolutions to this paradox. The first rests on the observation that if we model
time at a sufficiently coarse level, we can and do attain common knowledge. The
question then becomes when and whether it is appropriate to model time in this way.
The second says that, although we indeed cannot attain common knowledge, we can
attain closely related approximations of it, and this suffices for our purposes. In the
next section, we explore the first approach.

11.4 The Granularity of Time

Given the complexity of the real world, any mathematical model of a situation must
abstract away many details. A useful model is typically one that abstracts away as
much of the irrelevant detail as possible, leaving all and only the relevant aspects of
a situation. When modeling a particular situation, it can often be quite difficult to
decide the level of granularity at which to model time. As we already observed in
Section 10.4.2, the notion of time in a run rarely corresponds to real time. Rather, our
choice of the granularity of time is motivated by convenience of modeling. Thus,
in a distributed application, it may be perfectly appropriate to take a round to be
sufficiently long for a process to send a message to all other processes, and perhaps
do some local computation as well.

The argument that every practical system has some degree of temporal impre-
cision holds only relative to a sufficiently fine-grained model of time. For Proposi-
tion 11.3.1 and Corollary 11.3.2 to apply, time must be represented in sufficiently
fine detail for temporal imprecision to be reflected in the model.

If a model has a coarse notion of time, then simultaneity, and hence common
knowledge, are often attainable. In synchronous systems, for example, there is no
temporal imprecision. As a result, in our simplified model of the muddy children
puzzle, the children do attain common knowledge of the father’s statement. As we
argued above, however, if we “enhance” the model to take into consideration the
minute details of the neural activity in the children’s brains, and considered time on,
say, a millisecond scale, the children would not be modeled as hearing the father
simultaneously. Moreover, the children would not attain common knowledge of
the father’s statement. We conclude that whether a given fact becomes common
knowledge at a certain point, or in fact whether it ever becomes common knowledge,
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depends in a crucial way on the model being used. While common knowledge may be
attainable in a certain model of a given real world situation, it becomes unattainable
once we consider a more detailed model of the same situation.

We are thus led to the question of when we are justified in reasoning and acting
as if common knowledge is attainable. This reduces to the question of when we can
argue that one model—in our case a coarser or less detailed model—is “as good”
as another, finer, model. The answer, of course, is “it depends on the intended
application.” We now present one way of making this precise.

Let (γc, πc) and (γf , πf ) be interpreted contexts. We think of the former as the
coarse context and the latter as the fine context. Intuitively, (γf , πf ) is a more accurate
model of reality than (γc, πc). For example, in the muddy children puzzle, (γc, πc)

could be the interpreted context in which the children hear the father simultaneously,
while (γf , πf ) could be the interpreted context where the children hear the father at
very close but somewhat different times.

Suppose that we are interested in designing a program that meets a certain spec-
ification σ . Initially, we may feel that the coarse context is a reasonable model of
“reality,” so we start, as advocated in Chapter 7, by designing a knowledge-based
program Pgkb and proving that it indeed satisfies σ in (γc, πc). Our ultimate goal
is to design a standard program, one that can be directly executed. Suppose that
we can indeed find a standard program Pgs that implements Pgkb in (γc, πc). Re-
call that this means that the protocol Pgπ

s coincides with the protocol PgI
kb, for

I = Irep(Pgs, γ, π). Of course, it follows that Pgs also satisfies the specification σ

in the coarse context (γc, πc).
Now suppose that (γf , πf ) is a more accurate model of reality than (γc, πc).

Notice that Pgkb may no longer satisfy σ in (γf , πf ). For example, the knowledge-
based program for SBA given in Section 7.4 essentially says that process i should
decide as soon as it knows either that it is common knowledge that 0 was an initial
value or that it is common knowledge that 1 was an initial value. Clearly, if common
knowledge is not attainable in the fine context, then the process i will never make a
decision in that context, and thus the knowledge-based program will not attain SBA.
(This is less surprising than it might seem; in a model in which simultaneity cannot
be guaranteed, SBA cannot be attained.) Nevertheless, we might still often want
to argue that thinking in terms of a coarse context (γc, πc) is good enough. This
would be the case if the standard program Pgs (which implements Pgkb in the coarse
context) also satisfies the specification σ in the fine context. More formally, assume
that we have a coarse context (γc, πc) and a standard program Pgs satisfying the
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specification σ in this context. We say that the coarse context is an adequate model
for the fine context (γf , πf ) with respect to Pgs and σ , if Pgs satisfies σ in the fine
context as well. Intuitively, if the coarse context is an adequate model for the fine
context, then it is safe to think of the agent following the standard program in the
fine context as behaving as if the world is described by the coarse context (at least
as far as satisfying σ is concerned).

This definition, involving as it does programs and specifications, may seem far
removed from our concerns regarding how humans feel that they do attain common
knowledge, and somehow manage to reach agreements and carry out conventions.
The gap is not that large. Suppose that an agent uses a coarse context to model a
situation and develops a plan based on his knowledge for carrying out a course of
action. We can think of such a plan as a knowledge-based program. Implementing
the plan amounts to constructing a standard program that implements the knowledge-
based program. Now if the fine context really is a better model of reality than the
coarse context, then we end up with a situation where the standard program is, roughly
speaking, executed in the fine context. If our plan is to have its intended effect (as
captured by the specification), then it had better be the case that the coarse context
is an adequate model for the fine context with respect to the given specification and
the standard program implementing the plan.

Example 11.4.1 Recall that in Example 7.2.5 we described an interpreted context
(γ mc, πmc) for the muddy children puzzle. In this context, the children all heard the
father’s initial statement and his later questions simultaneously. We can think of this
as a coarse context where, indeed, the children attain common knowledge. Suppose
instead we assume that every time the father speaks, it takes somewhere between 8
and 10 milliseconds for each child to hear and process what the father says, but the
exact time may be different for each child, and may even be different for a given child
every time the father speaks. Similarly, after a given child speaks, it takes between
8 and 10 milliseconds for the other children and the father to hear and process what
he says. (While there is nothing particularly significant in our choice of 8 and 10
milliseconds, it is important that a child does not hear any other child’s response to
the father’s question before he utters his own response.) The father does not ask his
kth question until he has received the responses from all children to his (k − 1)st

question.
We now sketch a fine interpreted context (γ mc

f , πmc
f ) that captures the scenario

described previously. Just as with the context γ mc, we take γ mc
f to be a recording
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message-passing context. Again, the set G0 of initial states consists of the 2n tuples
of the form (X,X−1, . . . , X−n), where X = (x1, . . . , xn) is a tuple of 0’s and 1’s.
The father follows the same program as described in Example 7.2.5. The main
difference between γ mc and γ mc

f is in the environment’s protocol. Just like γ mc, the
environment γ mc

f records all messages sent by the children and the father. It then
nondeterministically decides when the message will be delivered, with the constraint
that it must be delivered within 8 to 10 rounds. (We are implicitly assuming that a
round corresponds to a millisecond here. Of course, it is unreasonable to assume
that the father’s action of sending a long message is performed in one round; more
realistically, it should be performed over an interval of rounds. We ignore this
issue here.) This completes the description of γ mc

f . The interpretation function
πmc
f acts just like πmc: the proposition childheardi , which appears in MCi is true

precisely at those states where child i has heard a question from the father and has
not answered it yet, and pi is true if child i’s forehead is muddy (which is encoded
in the environment’s state).

In (γ mc, πmc), the program MC satisfies the specification σmc: A child says
“Yes” if he knows whether he is muddy and says “No” otherwise. Moreover, it is
implemented by the standard program MCs , where a child that sees k muddy children
responds “No” to the father’s first k questions and “Yes” to all the questions after
that. Now consider what happens when we run MCs in (γ mc

f , πmc
f ). Let r ′ be a run

in I ′ = Irep(MCs, γ
mc
f , πmc

f ) and let r be the run with the same initial state as r ′ in
I = Irep(MCs, γ

mc, πmc). For each child i, we can divide run r ′ into phases from i’s
point of view. Phase 1 starts when the father sends his initial message and ends when
child i hears it. Phase 2 starts on the following round when child i responds to the
father’s initial question and ends when child i has heard all the children’s responses
to the father’s initial question. In general, phase 2k + 1 starts the round after phase
2k ends, and ends when child i has heard the father’s (k+1)st question; phase 2k+2
starts on the following round when child i responds to the father’s kth question, and
ends when child i has heard all the children’s responses to the father’s (k + 1)st

question. Note that phase k for child i and phase k for child j need not coincide;
nevertheless, the phases stay fairly “close” to each other (see Exercise 11.4). It is
easy to show that child i receives the same messages in phase k of run r ′ as he does
in round k of run r (see Exercise 11.4). Roughly speaking, the situation at the end
of phase k in run r ′ looks the same to child i as the end of round k does in run r .
More precisely, suppose phase k for child i ends at round ki . It is not hard to show
that if ϕ is either pi or ¬pi , then (I, r, k) |= Kiϕ if and only if (I ′, r ′, ki) |= Kiϕ
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(Exercise 11.4). (In fact, this is true for any formula ϕ determined by the initial state,
as defined in Section 6.5.) As a consequence, MCs satisfies σmc in the interpreted
context (γ mc

f , πmc
f ).

We have just shown that (γ mc, πmc) is an adequate model for (γ mc
f , πmc

f ) with
respect to MCs and σmc. Interestingly, the system Rrep(MCs, γ

mc
f ) is one with

temporal imprecision (see Exercise 11.5), so the results of Proposition 11.3.1 and
Corollary 11.3.2 apply: the children cannot attain common knowledge in the fine
context.

Example 11.4.2 Suppose that we modify the interpreted context (γ cr, π sba) that we
considered in Section 6.5 for SBA in the crash failure mode along the same lines as in
the previous example. That is, rather than assuming that all messages from nonfaulty
processes are received simultaneously, we assume that they take somewhere between
8 and 10 milliseconds to arrive. Let (γ cr

f , π sba
f ) be the corresponding fine context.

In Section 7.4, we described a knowledge-based program SBA that satisfied σ sba

in (γ cr, π sba), and sketched how to find a standard program that implemented SBA
in this context. Will this standard program still satisfy σ sba in the fine context
(γ cr

f , π sba
f )? The answer is no. One of the requirements in σ sba is that the processes

must decide simultaneously. Just as in the previous example, there is temporal
imprecision in the fine context, so it follows from Proposition 11.3.1 that we cannot
have such perfect coordination. On the other hand, all the requirements of σ sba other
than simultaneity are satisfied in the fine context. Moreover, if we divide a run into
phases just as we did in the previous example, then we can show that all processes
do decide in the same phase, even though they may not decide at the same time.
Indeed, if the uncertainty in message delivery time is small, we can show that the
processes decide within a very small window. In practice, “within a small window”
is often tantamount to “simultaneous.” Indeed, the window may be so small that
the processes cannot distinguish decisions taken within such a small window from
decisions taken simultaneously.

These examples show that the question of when a coarse context is an adequate
model is a delicate one, which is highly dependent on the specification. For ex-
ample, a synchronous coarse context will typically not be an adequate model if the
specification requires simultaneous actions and the fine context does not allow for
simultaneity. On the other hand, the discussion at the end of Example 11.4.2 shows
that at times simultaneity may be too strong a requirement, and something very close
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to it, which is attainable in the fine context, may be more appropriate. We return to
this point in Section 11.6.1, in the process of considering our second solution to the
paradox.

11.5 Common Knowledge as a Fixed Point

11.5.1 Fixed Points

In Section 11.6, we consider another approach to the paradox of common knowledge.
We intend to argue that even when common knowledge is not attainable, certain
approximations of common knowledge are attainable and can be substituted for
common knowledge in practical situations. To prepare for this development, we
study here an alternative (but equivalent) characterization of common knowledge,
which is more directly related to the way common knowledge comes about and the
way it is used. This characterization is based on the notion of fixed point.

Recall that we argued in the muddy children puzzle that once the father makes
his statement, this statement becomes common knowledge. The reason why the
statement is common knowledge can be intuitively described as follows: After the
father speaks, the children are in a situation that can be characterized by the fact
that they have all heard the father’s statement, and all know that they are in the
situation. Denoting the situation by s, and the statement by ϕ, we might say that
s ⇔ EG(ϕ ∧ s) is valid in the corresponding interpreted system. Indeed, in all cases
that we have seen thus far, common knowledge arises precisely because a situation
can be characterized in this way. This suggests that CGϕ can be viewed as a solution
of an “equation” of the form x = EG(ϕ ∧ x).

To make sense out of this equation, we need a way of viewing EG(ϕ ∧ x) as a
function which takes an argument x. We do this by adding a propositional variable x

to the language and providing a technique for associating with each formula in the
extended language a function from sets of points in an interpreted system to sets of
points. The idea is that the function corresponding to EG(ϕ ∧ x) is given as “input”
the set of points where x is true, and it returns as “output” the set of points where
EG(ϕ ∧ x) is true.

For the remainder of this discussion, fix an interpreted system I. All the functions
defined below take as arguments subsets of points in I. As a first step towards our
goal, we associate a function with each logical (Boolean and modal) operator. Let A

and B be sets of points. Given a function f and a subset A, we take f 0(A) = A and
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f l+1(A) = f (f l(A)). Define

f¬(A) = A (the complement of A)

f∧(A, B) = A ∩ B

fKi
(A) = {(r, m) | (r ′, m′) ∈ A whenever r ′

i (m
′) = ri(m)}

fEG
(A) =

⋂

i∈G

fKi
(A)

fCG
(A) =

⋂

l>0

f l
EG

(A).

These definitions are intended to capture the meaning of these operators. Intuitively,
for example, fKi

(A) consists of all points where agent i “knows” A; that is, all
points (r, m) such that all points (r ′, m′) that i cannot distinguish from (r, m) are
in A. To make this intuition precise, recall that we can associate with a formula ϕ

its intension ϕI (in the language of Section 2.5);

ϕI = {(r, m) | (I, r, m) |= ϕ}.

(Note that ϕI also coincides in the system I with the event evI(ϕ) of ϕ holding.)
Notice that f¬(ϕI) = (¬ϕ)I ; thus, the function f¬ maps the intension of ϕ to the
intension of its negation. Similarly, fKi

(ϕI) = (Kiϕ)I . More generally, we have
the following result.

Lemma 11.5.1 For all formulas ϕ, ψ ∈ LC
n , we have that (¬ϕ)I = f¬(ϕI),

(ϕ ∧ ψ)I = f∧(ϕI, ψI), (Kiϕ)I = fKi
(ϕI), (EGϕ)I = fEG

(ϕI), and
(CGϕ)I = fCG

(ϕI).

Proof See Exercise 11.6.

We extend LC
n by adding a propositional variable x. Syntactically, this variable

is treated just like a primitive proposition, so that, for example, Ki(p ∧ x) is a well-
formed formula. Once we add this propositional variable to the language, we can
consider formulas in the extended language as functions as follows. We associate
with the variable x the identity function. Thus, for all sets A of points in I

fx(A) = A.
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We now use the functions we defined above for the logical operators to associate a
function with every formula of the extended language. We define fϕ(A) for every
set A by induction on the structure of ϕ as follows:

fp(A) = pI for a primitive proposition p

f¬ϕ(A) = f¬(fϕ(A))

fϕ∧ψ(A) = f∧(fϕ(A), fψ(A))

fKiϕ(A) = fKi
(fϕ(A))

fEGϕ(A) = fEG
(fϕ(A))

fCGϕ(A) = fCG
(fϕ(A)).

Notice that, for a formula ϕ that does not contain the variable x, the func-
tion fϕ(A) does not depend on the set A in any way. It follows that, for formulas
ϕ ∈ LC

n , the functions fϕ are constant functions. As the next lemma shows, the
function fϕ is a constant function, always returning the intension of ϕ.

Lemma 11.5.2 For every formula ϕ ∈ LC
n and set A of points of I, we have that

fϕ(A) = ϕI .

Proof See Exercise 11.7.

Among other things, we can view the associated functions fϕ as a reformulation
of the semantics of formulas in LC

n . In particular, we could have defined the satis-
faction relation ‘|=’ by having (I, r, m) |= ϕ iff (r, m) ∈ fϕ(∅). It follows from
Lemma 11.5.2 that this definition is equivalent to our earlier one.

Of course, the function fx is not a constant function. Indeed, the function cor-
responding to a formula that mentions x will typically be nonconstant. To under-
stand the motivation for defining fx to be the identity function, consider the for-
mula ϕ ∧ x. Notice that fϕ∧x(ψI) = (ϕ ∧ ψ)I . Similarly, it can be shown that
fEG(ϕ∧x)(ψ

I) = (EG(ϕ ∧ ψ))I . More generally, let ϕ[x/ψ] be the result of re-
placing all occurrences of x in ϕ by ψ , so that, for example, EG(ϕ ∧ x)[x/ψ] is
EG(ϕ ∧ ψ).

Lemma 11.5.3 fϕ(ψI) = (ϕ[x/ψ])I .

Proof We proceed by induction on the structure of ϕ. If ϕ is the propositional
variable x, then ϕ[x/ψ] is just the formula ψ . Since fx(ψI) = ψI , the result follows



436 Chapter 11 Common Knowledge Revisited

immediately in this case. If ϕ is the primitive proposition p, then p[x/ψ] = p and
fp(ψI) = pI , and the result again follows. We consider one more case here. Assume
that ϕ is of the form Kiϕ

′. Using the inductive hypothesis and Lemma 11.5.1,
we have fKiϕ

′(ψI) = fKi
(fϕ′(ψI)) = fKi

((ϕ′[x/ψ])I) = (Ki(ϕ
′[x/ψ]))I =

((Kiϕ
′)[x/ψ])I . The remaining cases, which are similar in spirit, are left to the

reader.

With this extension, we can formalize our earlier statement that CGϕ is a solution
to an equation of the form x = EG(ϕ ∧ x). What we really want to say is that if
we apply the function fEG(ϕ∧x) to (CGϕ)I , then the result is (CGϕ)I . To see this,
recall that the Fixed-Point Axiom tells us that

I |= CGϕ ⇔ EG(ϕ ∧ CGϕ)

or, equivalently, that
(CGϕ)I = (EG(ϕ ∧ CGϕ))I .

From Lemma 11.5.3, it now follows that

fEG(ϕ∧x)((CGϕ)I) = (CGϕ)I .

This last observation can be captured succinctly by saying that (CGϕ)I is a fixed
point of the function fEG(ϕ∧x). The notion of fixed point turns out to be crucial to
understanding common knowledge. Fortunately, there is a well developed theory of
fixed points; we now briefly review the basic definitions of that theory.

Fix a set S (for us, the set S will be the points in the interpreted system I).
Consider a function f that maps subsets of S to subsets of S. A set A ⊆ S is said to
be a fixed point of f if f (A) = A. A greatest fixed point of f is a set B such that
(1) B is a fixed point of f (i.e., f (B) = B), and (2) if A is a fixed point of f , then
A ⊆ B. Similarly, a least fixed point of f is a fixed point C of f such that if A is
a fixed point of f , then C ⊆ A. We denote the greatest fixed point of f by gfp(f )

and its least fixed point by lfp(f ). It follows that if f has a greatest fixed point, then

gfp(f ) =
⋃

{A | f (A) = A}.
We now have all of the machinery necessary to state and formally prove that CGϕ

is the greatest fixed point of EG(ϕ ∧ x). (More accurately, we prove that (CGϕ)I

is the greatest fixed point of fEG(ϕ∧x), but we continue to abuse notation here and
below and identify a formula with both its associated function and its intension; the
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intended meaning should be clear from context.) Before we do so, however, we
would like to add an explicit greatest fixed-point operator νx to the language. Thus,
if ψ is a formula satisfying a certain restriction that we describe below, then so is
νx[ψ],, which is read “the greatest fixed point of ψ .” We ascribe semantics to such
formulas using our association of formulas with functions. As a first step, we extend
our association of formulas with functions by defining

fνx[ψ](A) = gfp(fψ).

Notice that fνx[ψ] is again a constant function, independent of A.
There is one problem with our definition of fνx[ψ]: it is not always well defined.

Some functions do not have greatest fixed points. Indeed, it is easy to see that f¬x

does not have a fixed point at all, let alone a greatest fixed point (Exercise 11.8).
We therefore need to restrict the ψ’s that can occur in the scope of νx so that fψ is
guaranteed to have a fixed point. Conveniently, there is a simple syntactic condition
on ψ that ensures this. Before stating it, let us review a fundamental result from
the theory of fixed points. The function f is said to be monotone if f (A) ⊆ f (B)

whenever A ⊆ B.

Lemma 11.5.4 Every monotone function has a greatest (and a least) fixed point.

We call a formula ϕ monotone if its associated function fϕ is monotone. As we
shall see, many formulas of interest are monotone. Of course, the function f¬x is
not monotone, and has no fixed point. Indeed, negation is the only logical operator
that causes problems; all the other operators in LC

n can be shown to preserve mono-
tonicity. Nevertheless, negation does not always cause problems. For example, the
formula ¬¬x is monotone. Note that in the formula ¬¬x, the variable x is in the
scope of an even number of negations. As we now show, this is a special case of a
more general phenomenon.

Lemma 11.5.5 If every occurrence of x in ψ appears in the scope of an even number
of negation symbols, then the function fψ is monotone.

Proof See Exercise 11.9.

We thus restrict νx[ψ] so that it is a well-formed formula only if every occurrence
of x in ψ appears in the scope of an even number of negation symbols. Let LCν

n

be the language that results from extending LC
n by adding the propositional variable
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x and the greatest fixed-point operator νx, subject to the restriction above. For a
formula ϕ in LCν

n , we now define

(I, r, m) |= ϕ iff (r, m) ∈ fϕ(∅).

As we noted earlier, by Lemma 11.5.2, this definition of ‘|=’ agrees with our earlier
definition in Chapter 2 for formulas in LC

n .
What have we gained by extending the language? We would like to prove

that CGϕ is the greatest fixed point of EG(ϕ ∧ x). Recall that we have already
shown that CGϕ is a fixed point of EG(ϕ ∧ x). The formula EG(ϕ ∧ x) also has
many other fixed points. For example, false is a fixed point (clearly the least fixed
point since falseI = ∅) of EG(ϕ ∧ x). Moreover, for every formula ϕ′, the formula
CG(ϕ ∧ ϕ′) is also a fixed point of EG(ϕ ∧ x) (Exercise 11.10). We now show that
common knowledge is the greatest fixed point of EG(ϕ∧x). We say that a formula ϕ

in LCν
n is closed if every occurrence of the propositional variable x in ϕ is in the

scope of a greatest fixed-point operator νx. Just as with first-order logic, a formula
is closed if there are no “free” occurrences of x.

Theorem 11.5.6 For every closed formula ϕ ∈ LCν
n and nonempty set G of pro-

cesses,
|= CGϕ ⇔ νx[EG(ϕ ∧ x)].

Proof Let I be an arbitrary interpreted system, and let ψ = EG(ϕ ∧ x). We have
already shown that (CGϕ)I is a fixed point of fψ , so it only remains to show that
(CGϕ)I is the greatest fixed point of fψ . Let B be an arbitrary fixed point of the
function fψ . We must have

B = fψ(B) = fEG(ϕ∧x)(B) = fEG
(fϕ∧x(B)) = fEG

(ϕI ∩ B).

We now prove that B ⊆ (fEG
)k(ϕI) for all k > 0. As a result, we then obtain that

B ⊆
⋂

k>0

(fEG
)k(ϕI) = fCG

(ϕI) = (CGϕ)I .

Because this is true for any fixed point B of fψ , we conclude that CGϕ is the greatest
fixed point. We proceed by induction on k. First note that the definition of fKi

implies that
fKi

(A ∩ A′) = fKi
(A) ∩ fKi

(A′)
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for all sets A and A′. The same is therefore also true of fEG
. For the case k = 1, we

have

B = fEG
(ϕI ∩ B) = fEG

(ϕI) ∩ fEG
(B) ⊆ fEG

(ϕI) = (fEG
)1(ϕI).

Assume that the claim holds for k, so that B ⊆ (fEG
)k(ϕI). This implies, by the

monotonicity of fEG
, that

fEG
(B) ⊆ fEG

((fEG
)k(ϕI)) = (fEG

)k+1(ϕI).

As in the base case, we have

B = fEG
(ϕI ∩ B) = fEG

(ϕI) ∩ fEG
(B) ⊆ fEG

(B).

Combining B ⊆ fEG
(B) with fEG

(B) ⊆ (fEG
)k+1(ϕI), we obtain that B ⊆

(fEG
)k+1(ϕI), and we are done.

Theorem 11.5.6 provides us with an alternative definition of common knowledge,
as the greatest fixed point of EG(ϕ ∧ x). While formally equivalent to the definition
of common knowledge as an infinite conjunction, this fixed-point definition has an
entirely different flavor to it. As discussed at the beginning of this section, the view
of common knowledge as a fixed point closely corresponds to the way it seems to
arise in practice. Arguably, the fixed-point definition is the more natural definition
of common knowledge. Another advantage of the fixed-point definition of common
knowledge, which we study in some detail in the next section, is the fact that slight
modifications of this definition give rise to states of knowledge corresponding to
useful forms of (non-simultaneous) coordination.

As we now show, viewing common knowledge as a fixed point helps explain two
of the most important properties of common knowledge—the Fixed-Point Axiom
and the Induction Rule. Indeed, these properties turn out to be instances of two more
general properties of greatest fixed points that are stated in the following lemma. The
first says essentially that νx[ψ] is a fixed point of the formula ψ , while the second
gives a generalized version of the induction rule for formulas of the form νx[ψ].

Lemma 11.5.7 Let I be an interpreted system and let ψ be a monotone formula.
Then

(a) |= ψ[x/νx[ψ]] ⇔ νx[ψ]; and

(b) if I |= ϕ ⇒ ψ[x/ϕ] then I |= ϕ ⇒ νx[ψ].
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Proof See Exercise 11.14.

If we replace ψ by EG(ϕ ∧ x) in Lemma 11.5.7(a), then by the fact that CGϕ =
νx[EG(ϕ∧x)], which we have from Theorem 11.5.6, we get the Fixed-Point Axiom:

|= EG(ϕ ∧ CGϕ) ⇔ CGϕ.

Similarly, if we replace ψ by EG(ψ ∧ x) in Lemma 11.5.7(b), we get the Induction
Rule for common knowledge as a special case:

From ψ ⇒ EG(ψ ∧ ϕ) infer ϕ ⇒ CGψ.

We have shown how to extend the language LC
n by adding a greatest fixed-

point operator. Similar extensions can be performed for a large class of languages.
Given a language L with a modal operator L, we can typically define a monotone
function fL corresponding to L so that an analogue to Lemma 11.5.1 holds, that is,
so that fL(ϕI) = (Lϕ)I . We can then add a greatest (and least) fixed-point operator
to L as outlined above. Once we do this, analogous proofs show that Lemmas 11.5.2,
11.5.3, 11.5.5, and 11.5.7 hold with respect to L. Thus, in Section 11.6, we use fixed
points to define various approximations to common knowledge. The fact that proofs
essentially identical to those given above can be used to show that analogues to
the Fixed-Point Axiom and the Induction Rule hold for all the approximations of
common knowledge that we define in Section 11.6 suggests that viewing common
knowledge in terms of the fixed-point definition can be quite useful.

11.5.2 Downward Continuity and Infinite Conjunctions

Theorem 11.5.6 proves that defining common knowledge as a fixed point is formally
equivalent to our original definition of common knowledge as an infinite conjunction.
It turns out that this equivalence is a special case of a more general phenomenon in
the theory of fixed points. We study the relationship between fixed-point definitions
and infinite conjunctions in the rest of this section.

A function f is downward continuous if

f

( ∞⋂

l=0

Al

)
=

∞⋂

l=0

f (Al)

for all sequences A0, A1, A2, . . . with A0 ⊇ A1 ⊇ A2 ⊇ · · ·. It is easy to see that a
downward continuous function must be monotone. For suppose that f is downward
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continuous and A ⊆ B. Then we have B ⊇ A ⊇ A ⊇ A ⊇ · · ·. From the definition
of downward continuity, we get that f (A)∩f (B) = f (A∩B) = f (A), from which
it immediately follows that f (A) ⊆ f (B), proving that f is monotone.

Since a downward continuous function is monotone, we know it has a greatest
fixed point. Downward continuous functions are interesting because for them we
can provide an explicit description of the greatest fixed point.

Lemma 11.5.8 If f is a downward continuous function mapping subsets of S to
subsets of S, then

gfp(f ) =
∞⋂

l=0

f l(S).

Proof We first show that

f 0(S) ⊇ f 1(S) ⊇ f 2(S) ⊇ · · · .

Clearly f 0(S) ⊇ f 1(S), since f 0(S) = S. We now proceed by induction. Suppose
that f l(S) ⊇ f l+1(S). Since f is monotone, it follows that

f l+1(S) = f (f l(S)) ⊇ f (f l+1S)) = f l+2(S),

completing the inductive step of the argument.
Let f ∞(S) = ⋂∞

l=0 f l(S). We next show that f ∞(S) is a fixed point of f .
Because f is downward continuous, we know that

f (f ∞(S)) =
∞⋂

l=0

f (f l(S)) =
∞⋂

l=0

f l+1(S) = f ∞(S).

Thus, f ∞(S) is indeed a fixed point.
Finally, we must show that f ∞(S) is a greatest fixed point of f . Let T be

any other fixed point of f . We show by induction on l that T ⊆ f l(S) for all l.
Clearly T ⊆ f 0(S), since f 0(S) = S. Suppose that T ⊆ f l(S). Because f is
monotone, f (T ) ⊆ f (f l(S)). But f (T ) = T , since T is a fixed point of f . Thus,
T ⊆ f l+1(S), completing the inductive step. It follows that

T ⊆
∞⋂

l=0

f l(S) = f ∞(S).
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It is easy to check that fEG(ϕ∧x) is downward continuous (Exercise 11.11). Since
trueI consists of the set of all points in the interpreted system I, it follows from
Lemma 11.5.8 that we have

gfp(fEG(ϕ∧x)) =
∞⋂

l=0

f l
EG(ϕ∧x)(trueI).

Define a sequence of formulas ϕ0, ϕ1, . . . inductively by taking ϕ0 to be true and
ϕl+1 to be EG(ϕ ∧ ϕl), that is, ϕl+1 is EG(ϕ ∧ x)[x/ϕl]. Thus, ϕ1 is EG(ϕ ∧ true),
ϕ2 is EG(ϕ ∧EG(ϕ ∧ true)), and so on. It follows immediately from Lemma 11.5.3
that f l

EG(ϕ∧x)(trueI) = ϕI
l . Therefore

(νx[EG(ϕ ∧ x)])I = gfp(fEG(ϕ∧x)) =
∞⋂

l=0

ϕI
l .

Converting to the level of formulas, we have

I |= νx[EG(ϕ ∧ x)] ⇔
∞∧

l=0

ϕl.

(Technically, the infinite conjunction is not a well-formed formula in LCν
n . Thus,

more formally, we have shown (I, r, m) |= νx[EG(ϕ ∧ x)] iff (I, r, m) |= ϕl for
all l ≥ 0.) Since EG distributes over conjunctions (i.e., EG(ψ1 ∧ ψ2) is equivalent
to EGψ1 ∧ EGψ2), and EG(true) is equivalent to true, it is easy to see that ϕ2 is
equivalent to EGϕ∧E2

Gϕ, ϕ3 is equivalent to EGϕ∧E2
Gϕ∧E3

Gϕ, etc. Thus
∧∞

l=0 ϕl

is equivalent to
∧∞

l=1 El
G(ϕ). This gives an alternate proof of Theorem 11.5.6.

The arguments of the preceding paragraph generalize to arbitrary downward
continuous functions. We formalize them in the following proposition.

Proposition 11.5.9 Suppose that fψ is downward continuous. Define ψ0, ψ1, . . .

inductively by taking ψ0 to be true and ψl+1 to be ψ[x/ψl]. Then

(I, r, m) |= νx[ψ] iff (I, r, m) |= ψl for all l ≥ 0.

Proof See Exercise 11.12.
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11.6 Approximations of Common Knowledge

Section 11.2 shows that common knowledge captures the state of knowledge resulting
from simultaneous events. It also shows, however, that in the absence of events that
are guaranteed to hold simultaneously, common knowledge is not attained. As we
have argued, true simultaneity is irrelevant in most practical cases. In Section 11.4,
we tried to answer the question of when we can reason and act as if certain events
were simultaneous. But there is another point of view we can take. There are sit-
uations where events holding at different sites need not happen simultaneously; the
level of coordination required is weaker than absolute simultaneity. For example, we
may want the events to hold at most a certain amount of time apart. Alternatively,
we may want them to hold at the same local times, in a situation where each process
has an individual clock, and the clocks are closely (but not necessarily perfectly)
synchronized. It turns out that just as common knowledge is the state of knowledge
corresponding to perfect coordination, there are states of shared knowledge corre-
sponding to other forms of coordination. We can view these states of knowledge as
approximations of true common knowledge. Moreover, many of these approxima-
tions of common knowledge can be defined as fixed points in a manner similar to the
fixed-point definition for common knowledge. Fortunately, while perfect coordina-
tion is hard to attain in practice, weaker forms of coordination are often attainable.
This is one explanation as to why the unattainability of common knowledge might
not spell as great a disaster as we might have originally expected. This section con-
siders a few of these weaker forms of coordination, and their corresponding states of
knowledge.

11.6.1 ε- and Eventual Common Knowledge

Let us return to the first Alice and Bob example from Section 11.2. Notice that
if ε = 0, then Alice and Bob attain common knowledge of sent(µ) immediately
after the message is sent. In this case, it is guaranteed that once the message is sent,
both agents immediately know the contents of the message, as well as the fact that
it has been sent. Intuitively, it seems that the closer ε is to 0, the closer Alice and
Bob’s state of knowledge should be to common knowledge. Let us try to compare
the situation when ε > 0 with ε = 0. As we saw in Section 11.2, if ε > 0 then
Alice does not know that Bob received her message immediately after she sends the
message. She does, however, know that within ε time units Bob will receive the
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message and know both the contents of the message and that the message has been
sent. The sending of the message results in a situation where, within ε time units,
everyone knows that the situation holds. This is analogous to the fact that common
knowledge corresponds to a situation where everyone knows that the situation holds.
This suggests that the state of knowledge resulting in the Alice and Bob scenario
should again involve a fixed point of some sort. We now formalize a notion of
coordination related to the Alice and Bob example, and define an approximation of
common knowledge corresponding to this type of coordination.

An ensemble e for G is said to be ε-coordinated (in a given system I) if the local
events in e never hold more than ε time units apart; formally, if (r, m) ∈ e(i) for
some i ∈ G, then there exists an interval I = [m′, m′ +ε] such that m ∈ I and for all
j ∈ G there exists mj ∈ I for which (r, mj ) ∈ e(j). While it is essentially infeasible
in practice to coordinate events so that they hold simultaneously at different sites of
a distributed system, ε-coordination is often attainable in practice, even in systems
where there is uncertainty in message delivery time. Moreover, when ε is sufficiently
small, there are many applications for which ε-coordination is practically as good
as perfect coordination. This may be the case for many instances of agreements
and conventions. There is no more than an initial period of ε time units during
which there may be an incompatibility between the partners to the agreement. (Of
course, it will not necessarily be common knowledge when this period is over; there
is no way to get around the fact that ε-coordination, on its own, is incapable of
bringing about common knowledge.) Note that an ε-coordination with ε = 0 is
perfect coordination. One example of ε-coordination results from a message being
broadcast to all members of a group G, with the guarantee that it will reach all of the
members within ε time units of one another. In this case it is easy to see that when an
agent receives the message, she knows the message has been broadcast, and knows
that within ε time units each of the members of G will have received the message
and will know that within ε time units . . .

Let ε be arbitrary. We say that within an ε interval everyone in G knows ϕ,
denoted Eε

Gϕ, if there is an interval of ε time units containing the current time such
that each process comes to know ϕ at some point in this interval. Formally, we have
(I, r, m) |= Eε

Gϕ if there exists an interval I = [m′, m′ + ε] such that m ∈ I and
for all i ∈ G there exists mi ∈ I for which (I, r, mi) |= Kiϕ. Thus, in the case of
Alice and Bob we have I |= sent(µ) ⇒ Eε

{A,B}sent(µ). We now define ε-common
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knowledge, denoted by Cε
G, as follows, for a closed formula ϕ:

Cε
Gϕ =def νx[Eε

G(ϕ ∧ x)].

Notice how similar this definition is to the fixed-point definition of common knowl-
edge. The only change is in replacing EG by Eε

G. Since fEε
G

is monotone (Exer-
cise 11.15) and, if ϕ is a closed formula, every occurrence of x in Eε

G(ϕ ∧x) is in the
scope of an even number of negation signs, the formula Cε

Gϕ is well-defined for all
closed ϕ. Furthermore, the arguments at the end of the previous section show that
Cε

G satisfies the obvious analogues of the Fixed-Point Axiom and Induction Rule,
with Eε

G replacing EG. Although CG satisfies all the S5 properties, this is not the
case for Cε

G; the only S5 property that it satisfies is the Positive Introspection Axiom
(Exercise 11.16).

Just as common knowledge is closely related to perfect coordination, ε-common
knowledge is closely related to ε-coordination. We now make this claim precise.
A proof similar to that of Proposition 11.2.2 can be used to prove the following
proposition.

Proposition 11.6.1 Let I be an interpreted system and G a set of agents.

(a) For every formula ϕ, the ensemble e for G defined by e(i) = evI(KiC
ε
Gϕ) is

ε-coordinated.

(b) If e is an ε-coordinated ensemble for G, then for every i ∈ G we have
I |= ψe(i) ⇒ KiC

ε
Gψe(i).

(c) If e is an ε-coordinated ensemble for G, then I |= ψe ⇒ Cε
Gψe.

Proof See Exercise 11.18.

Although ε-common knowledge is useful for the analysis of systems where the
uncertainty in message communication time is small, it is not quite as useful in
the analysis of a.m.p. systems, since, as we observed in Section 6.1, such systems
display unbounded message delivery (umd). In a.m.p. systems, rather than perfect or
ε-coordination, what can often be achieved is eventual coordination. An ensemble e
for G is eventually coordinated (in a given system I) if, for every run of the system,
if some event in e holds during the run, then all events in e do. More formally, if
(r, m) ∈ e(i) for some i ∈ G, then for all j ∈ G there exists some mj for which
(r, mj ) ∈ e(j). An example of an eventual coordination of G consists of the delivery
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of (copies of) a message broadcast to every member of G in an a.m.p. system. An
agent receiving this message knows the contents of the message, as well as the fact
that each other member of G must receive the message at some point in time, either
past, present, or future.

Eventual coordination gives rise to eventual common knowledge, denoted by
C�

G, and defined by

C�
Gϕ =def νx[E�

G(ϕ ∧ x)].

Here we define E�
Gϕ to hold at (I, r, m) if for each i ∈ G there is some time mi such

that (I, r, mi) |= Kiϕ. Thus, E�
G can be viewed as the limit of Eε

G as ε approaches
infinity. It is straightforward to show that C�

G is related to eventual coordination just
as CG is related to simultaneous events, and Cε

G to ε-coordination (Exercise 11.19).
We make use of this connection in Section 11.6.2 below.

We conclude with some further comments about the properties of the modal
operators Cε

G and C�
G. It can be shown that Eε

G is downward continuous (although it
turns out this depends heavily on the fact that we are treating time as discrete rather
than continuous; see Exercise 11.15). It follows from our discussion in Section 11.5
that Cε

G is equivalent to an infinite conjunction; in fact, it immediately follows from
that discussion that Cε

Gϕ is equivalent to

Eε
Gϕ ∧ Eε

G(ϕ ∧ Eε
Gϕ) ∧ Eε

G(ϕ ∧ Eε
Gϕ ∧ Eε

G(ϕ ∧ Eε
Gϕ)) ∧ . . . (∗)

It is not, however, equivalent to the infinite conjunction

Eε
Gϕ ∧ Eε

GEε
Gϕ ∧ Eε

GEε
GEε

Gϕ ∧ . . . (∗∗)

The reason that Cε
Gϕ is not equivalent to the conjunction in (∗∗) is that Eε

G, un-
like EG, does not distribute over conjunction: Eε

Gϕ ∧ Eε
Gψ does not necessarily

imply Eε
G(ϕ ∧ ψ). There is, however, one important special case where (∗∗) is

equivalent to Cε
Gϕ, namely, in systems with perfect recall, where ϕ is a stable for-

mula. These issues are dealt with in more detail in Exercise 11.17.
By way of contrast, E�

G is not downward continuous; thus, C�
G is not equivalent

to
∧∞

k=1(E
�)kϕ, even in systems with perfect recall where ϕ is a stable formula (see

Exercise 11.19).
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11.6.2 Applications to Coordinated Attack

Proposition 11.6.1 and the analogous Exercise 11.19(a) provide us with a way of
characterizing the state of knowledge corresponding to ε- and eventual coordination.
We can use this proposition (and the exercise) to decide whether ε-common knowl-
edge and eventual common knowledge, and the corresponding types of coordination,
can be attained in particular circumstances. We now apply this kind of reasoning to
the analysis of weak forms of coordinated attack.

In Section 6.1 we showed that a simultaneous attack can never be coordinated in
the absence of sufficiently strong guarantees on the reliability of communication. In
particular, we showed that such an attack cannot be coordinated if communication
displays unbounded message delivery (i.e., the system satisfies the condition umd).
In fact, our discussion in Section 11.2 implies that a simultaneous attack cannot be
coordinated if there is any uncertainty about message delivery. Suppose that we
weaken the simultaneity requirement. When is it possible to coordinate an attack if
we require only that the two divisions attack within a certain ε-time bound of each
other? How about if we require even less, namely, that if one of them ever attacks,
then the other will eventually also attack? We call the first situation an ε-coordinated
attack and the second one an eventually coordinated attack. Can the generals achieve
one of these weaker notions of coordinated attack?

A positive answer to that question is fairly clear. If messages are guaranteed to
be delivered within ε units of time, then ε-coordinated attack can be accomplished.
General A simply sends General B a message saying “attack” and attacks imme-
diately; General B attacks upon receipt of the message. Similarly, if messages are
guaranteed to be delivered eventually, then even if there is no bound on message
delivery time, an eventually coordinated attack can be carried out.

Intuitively, these guarantees on message delivery are necessary conditions for
the attainment of ε-coordinated or eventually coordinated attack. To make this pre-
cise, we first need to define the specifications more carefully. The three components
of the the original specification σ ca for coordinated attack in Chapter 6 required
that the attacks of the generals be sufficiently coordinated, that an attack by both
of the generals be possible only if some communication has been successful, and
finally that an attack does take place in at least one instance. These will be the com-
ponents of the specifications of ε-coordinated attack and of eventually coordinated
attack. Nevertheless, the fact that we no longer require the generals to attack in the
same round makes the specifications of these problems differ slightly from σ ca. In
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particular, attack—which denotes that the generals are both about to attack—may
never hold in a system that satisfies ε-coordinated attack, since the generals may not
attack simultaneously in any run. Thus, we want to modify the specification σ ca so
that it is not defined in terms of attack.

As in Exercise 6.6 we define attacked to be an abbreviation for attackedA ∧
attackedB . Thus, attacked is true once both generals have attacked. We define σεca ,
the specification of ε-coordinated attack, to consist of all ca-compatible interpreted
systems I such that

1ε. I |= (attackedA ⇒ ©εattackedB) ∧ (attackedB ⇒ ©εattackedA),

2′. I |= ¬delivered ⇒ ¬© attacked, and

3′. (I, r, m) |= attacked for at least one point (r, m) of I.

The first condition says that the generals attack at most ε time units apart, the second
says that least one message must be delivered before both generals can attack, and
the third says that there is at least one run in which they do attack. Note that in a
system where both generals attack simultaneously, the conditions 2′ and 3′ of σεca

are equivalent to conditions 2 and 3 of the specification σ ca given in Chapter 6. Thus,
we could have equally well defined σ ca using 2′ and 3′.

The specification σ �ca of eventually coordinated attack is defined analogously,
except that we replace the first condition by:

1�. I |= (attackedA ⇒ �attackedB) ∧ (attackedB ⇒ �attackedA).

Notice that condition 1ε implies 1�, so that any system satisfying σεca automatically
satisfies σ �ca . As a result, if σ �ca cannot be satisfied in a certain context, then neither
can σεca . We will see an example of this later on.

Just as in the case of (perfectly) coordinated attack, an attack by both parties in
these weaker problems still requires that at least one message be delivered. Since now,
however, we no longer assume that the generals necessarily attack simultaneously,
it is possible for one general to attack without a message having been delivered.

We now want to prove an analogue to Corollary 6.1.5, connecting ε-coordinated
attack with ε-common knowledge and connecting eventually coordinated attack with
eventual common knowledge. Let I = Irep(P, γ, π) be a ca-compatible interpreted
system, where P is a deterministic protocol. Consider the event ensemble eattack ,
where for each i ∈ {A, B}, the event eattack(i) consists of all those points in I where
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General i is attacking. (Notice that the fact that P is deterministic makes eattack(i)

be a local event, and hence eattack is an event ensemble.) It is almost immediate from
the definitions that eattack is a perfectly coordinated ensemble if I satisfies σ ca, an ε-
coordinated ensemble if I satisfies σεca , and an eventually coordinated ensemble if I
satisfies σ�ca . Let attack′ be the formula attackingA∨attackingB . Notice that attack′
is the proposition ψeattack corresponding to the event ensemble eattack with respect
to the group {A, B}. It immediately follows from part (c) of Propositions 11.2.2
and 11.6.1 and from Exercise 11.19 that I |= attack′ ⇒ C(attack′) if I satisfies σ ca,
I |= attack′ ⇒ Cε(attack′) if I satisfies σεca , and I |= attack′ ⇒ C�(attack′) if I
satisfies σ�ca . (As in Section 6.1, we omit the subscript {A, B} on C, Cε, and C�.)
If I satisfies σ ca, then attack is equivalent to attack′, since, according to σ ca, if
the generals attack, they must attack simultaneously. Thus, if I satisfies σ ca, then
I |= attack ⇒ C(attack), which is the content of Proposition 6.1.2. Once we move
to ε-common knowledge and eventual common knowledge, we can no longer replace
attack by attack′. There is no reason to expect that attack will ever hold in a system
satisfying σεca , for example, since even in a run in which the generals attack there
may be no point where both generals attack simultaneously.

Notice that to go from Proposition 6.1.2, which says that attack ⇒ C(attack) is
valid, to Corollary 6.1.5, which says that attack ⇒ C(delivered) is valid, we used
the fact that attack ⇒ delivered is valid in systems satisfying σ ca. It is not the
case that attack′ ⇒ delivered is valid in systems satisfying σεca or σ �ca , so we can
no longer apply this argument. It is true, however, that attack′ ⇒ ©εdelivered
is valid in systems satisfying σεca; once one general attacks, the other will do so
within time ε, and once they have both attacked, delivered must hold. Similarly,
attack′ ⇒ �delivered is valid in systems satisfying σ�ca . In fact, an argument
essentially identical to the proof of Corollary 6.1.5 gives the following theorem.

Theorem 11.6.2 Let I = Irep(P, γ, π), where (γ, π) is a ca-compatible interpreted
context and P is a deterministic protocol. If I satisfies σεca then

I |= attack′ ⇒ Cε(©εdelivered).

Similarly, if I satisfies σ �ca then

I |= attack′ ⇒ C�(�delivered).
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We now want to show that the guarantees on message delivery time discussed
above are really necessary. To prove this formally, we use a condition that is some-
what stronger than umd. As in the case of umd, let R be a system such that, for an
appropriately chosen π , the interpreted system I = (R, π) is a message-delivery
system. Again we write d(r, m) = k if exactly k messages have been delivered in
the first m rounds of r . We say that such a system R displays aml (aml stands for
arbitrary message loss) if for all points (r, m) in R, there exists an agent i and a run
r ′ ∈ R such that (1) for all j �= i and times m′ ≤ m we have r ′

j (m
′) = rj (m

′), (2) if
d(r, m) > 0, then d(r ′, m) < d(r, m); otherwise, d(r ′, m) = d(r, m) = 0, and (3)
d(r ′, m′′) = d(r ′, m) for m′′ ≥ m. Notice that the first two clauses of aml are the
same as in umd, except that we also allow the possibility that d(r, m) = 0. Thus, it
is trivially the case that a system that displays aml displays umd. But aml also has
the third clause, which is not part of the definition of umd. Because of this clause,
the run r ′ is one where not only is one fewer message delivered at (r ′, m) than at
(r, m) (if some messages were delivered by (r, m)), but no further messages are de-
livered after time m. Since the setting in which the coordinated-attack problem was
originally presented is one in which messengers may fail to deliver messages from
any arbitrary point on, it satisfies aml. As in the case of umd, we say that a context γ

displays aml if all systems described by it display aml, that is, if Rrep(P, γ ) displays
aml for every protocol P that can be run in the context γ .

We can now prove a result analogous to Theorem 6.1.1, showing that even even-
tual common knowledge cannot be attained in systems that display aml.

Theorem 11.6.3 Let I = (R, π) be a message-delivery system such that R displays
aml, and let G be a set of two or more agents. Then

I |= ¬C�
G(�delivered).

Proof See Exercise 11.20.

As in Section 6.1, an immediate corollary of Theorem 11.6.3 is

Corollary 11.6.4 If (γ, π) is a ca-compatible interpreted context such that γ dis-
plays aml, then there is no deterministic protocol P that satisfies σ�ca (and hence
also none satisfying σεca) in (γ, π).

Thus, sufficiently unreliable communication prevents even weak forms of coor-
dination.
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11.6.3 Timestamped Common Knowledge

The notion of perfect coordination (as well as the other notions of coordination that
we have considered so far) is defined with respect to a notion of global time. Global
time is an external notion; it is not part of the processes’ local states. One could argue
that the reason that perfect coordination and common knowledge are not attainable
in real systems is precisely because the agents do not have access to global time.
Indeed, perfect coordination and common knowledge are attainable in synchronous
systems, where agents essentially have access to global time.

Another possible answer to the common knowledge paradox is that in real-life
situations we are interested not in coordination with respect to global time, but rather
in coordination with respect to an “internal” notion of time, that is, a notion of time
that is accessible to the agents. For example, there are many protocols that operate
in phases. Each process may start and end phase k at a different time. Events are
coordinated not with respect to real time, but with respect to the phases in which
they hold. Simultaneity in this case can often be substituted by “occurrence in
the same phase.” More generally, in many systems processes each have their own
clocks, which are typically kept reasonably close together by some sort of clock-
synchronization algorithm. We are then not so much interested in simultaneity as in
ensuring a strong form of consistency: namely, that certain actions are performed
at the same local times. For example, in the coordinated-attack problem General A

could send General B the message “attack at 6 A.M.” in an attempt to coordinate their
attack to 6 A.M. on their respective watches. A different type of common knowledge
is appropriate for analyzing this form of coordination.

To formalize these intuitions, we must assume that each agent has a local clock,
whose reading is part of its local state. For simplicity, we assume the reading is a
natural number. Moreover, we assume that with every change in the agent’s local
state, the time on its clock increases. Formally, we say that R is a system with local
clocks if for each agent i there is a function clock from local states to natural numbers
such that if ri(m + 1) �= ri(m), then clock(ri(m + 1)) > clock(ri(m)). Notice that
since we make clock time a function of the local state, we are implicitly assuming
that agents know the time on their clocks. If I = (R, π) and R is a system with
local clocks, then we say that I is an interpreted system with local clocks.

In systems with local clocks, we can define the notion of timestamped coor-
dination as follows. Let T be a fixed time. We say that an ensemble e for G is
T -coordinated (in a given system I), if whenever the event e(i) holds at local time T
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for some i ∈ G, then e(j) holds at T for for all j ∈ G, that is, for all i, j ∈ G,
if (r, m) ∈ e(i) and clock(ri(m)) = T , then (r, m′) ∈ e(j) for all m′ such that
clock(rj (m

′)) = T .
We are now ready to define timestamped common knowledge. We denote “at

time T on its clock, i knows ϕ” by KT
i ϕ. T is said to be the timestamp associated

with this knowledge. Formally,

(I, r, m) |= KT
i ϕ iff (I, r, m′) |= Kiϕ holds for all m′ such that clock(ri(m

′)) = T .

Notice that (I, r, m) |= KT
i ϕ holds vacuously if i’s clock never reads time T in

run r . We define ET
Gϕ =def

∧
i∈G KT

i ϕ. ET
Gϕ thus corresponds to every process

in G knowing ϕ at time T on its own clock. We now define (time T ) timestamped
common knowledge, denoted CT

G, by

CT
Gϕ =def νx

[
ET

G(ϕ ∧ x)
]
.

As one might suspect, timestamped common knowledge corresponds precisely to
timestamped coordination (Exercise 11.22).

The relationship between timestamped common knowledge and the other ap-
proximate notions of common knowledge depends on guarantees on the state of
synchronization of the different clocks. Let I be an interpreted system with local
clocks. We say that the clocks in I are perfectly synchronized if the processes’
clocks always show identical times, that is, for every point (r, m) of I and pro-
cesses i, j ∈ G, we have that clock(ri(m)) = clock(rj (m)). We say that the clocks
in I are ε-synchronized if the processes’ clocks are always within ε time units from
each other, so that, for every point (r, m) of I and process i ∈ G, there exists an
interval I = [m′, m′ + ε] such that m ∈ I and for all j ∈ G there exists some
mj ∈ I such that such that clock(ri(m)) = clock(rj (mj )). Finally, we say that the
clocks in I are eventually synchronized if the processes’ clocks go through the same
readings though perhaps at different times, so that there exists some mj such that
clock(ri(m)) = clock(rj (mj )). Note that in all three cases (perfect synchronization,
ε-synchronization, and eventual synchronization), the local clocks go through the
same sequence of readings (up to repetition). This is important since we are con-
cerned here with coordinating actions to specific local times. If General B’s watch
never reads exactly 6 A.M., the general is not able to perform the action “attack at 6
A.M.”

It is not hard to check that the following holds:
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Theorem 11.6.5 For any interpreted system I with local clocks, group G, formula ϕ,
and time T ,

(a) if the clocks in I are perfectly synchronized and clock(ri(m)) = T for some
process i, then (I, r, m) |= CT

Gϕ ⇔ CGϕ.

(b) if the clocks in I are ε-synchronized and clock(ri(m)) = T for some process i,
then (I, r, m) |= CT

Gϕ ⇒ Cε
Gϕ.

(c) if the clocks in I are eventually synchronized and clock(ri(m)) = T for some
process i, then I |= CT

Gϕ ⇒ C�
Gϕ.

Proof See Exercise 11.23.

Note that only in part (a) of Theorem 11.6.5 do we get equivalence of timestamped
common knowledge and standard common knowledge; in parts (b) and (c) we have
implication in only one direction. A weak converse to parts (b) and (c) does hold.
Suppose that the agents are able to set their clocks to a commonly agreed upon time T

when they come to know Cε
Gϕ (resp., C�

Gϕ). Then it is easy to see that whenever
Cε

Gϕ (resp., C�
Gϕ) is attainable, so is CT

Gϕ.
In summary, timestamped common knowledge can be viewed as an “internal”

notion, since it can be defined purely in terms of processes’ local states. By way
of contrast, notions such as common knowledge and ε-common knowledgemake
essential use of the notion of global state, which in turns makes use of global time
(since a global state corresponds to a set of local events that hold at the same time),
and hence can be viewed as “external” notions. As Theorem 11.6.5 shows, the precise
relationship between the internal and the external notions depends on the relationship
between global time and local time.

11.6.4 Other Approximations of Common Knowledge

The approximations of common knowledge that we considered thus far correspond
to forms of coordination that are weaker than perfect coordination in a temporal
sense. It is possible to weaken simultaneous coordination in a different way. In the
coordinated attack problem, for example, the generals might be quite happy with a
protocol that would guarantee a simultaneous attack with probability 0.999999999.
This suggests that a probabilistic approximation of common knowledge may in some
cases provide a suitable substitute for true common knowledge. To define such a
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notion, we would need to enrich our language and semantic models with appropriate
mechanisms to account for and reason about probability. We could then define a
notion of “probability 1 − ε common knowledge,” which essentially says that with
probability 1 − ε, each agent knows that, with probability 1 − ε, each agent knows
. . . that with probability 1 − εε, the formula ϕ holds. Other approximations of
common knowledge can also be defined, and have been found useful in analyzing
protocols. See the bibliographic notes for further discussion.

11.7 Discussion

One of the central themes of this chapter is an attempt to resolve the paradox of
common knowledge: Although it can be shown to be a prerequisite for day-to-day
activities of coordination and agreement, it can also be shown to be unattainable in
practice. The resolution of this paradox leads to a deeper understanding of the nature
of common knowledge and simultaneity, and shows once again the importance of
the modeling process. In particular, it brings out the importance of the granularity
at which we model time, and stresses yet again the need to consider the applications
for which these notions are being used.

The themes of modeling and the relation to applications are perhaps appropriate
ones with which to close this book. We have considered a number of formal models
of knowledge and a number of formal definitions of notions such as knowledge,
common knowledge, and algorithmic knowledge in these models. Our original
models and definitions were simple, perhaps overly so, but we were still able to
show that they could help us understand and analyze systems, even ones that were
quite complicated. Our understanding was aided by having a formal model of a
system, in which the notion of knowledge is defined quite naturally.

Not surprisingly, our simple definitions do not capture all the subtleties of knowl-
edge and common knowledge in the many settings that these notions are used. As
we have seen, when particular problems arise in the application of one of our defi-
nitions, a deeper study of the situation typically gives us a semantic understanding
of the relevant issues that suggests how these subtleties can be captured. There is
usually more than one way to do this, and each of the ways adds some complication
to our original definition. We tend to be somewhat reluctant to label any particular
definition as providing the “right” way of capturing a notion in general. Our claim
is that the right definition depends on the application and how it is being modeled.
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This is perhaps as it should be. The real world is complicated, and it is difficult to
suggest a general prescription for the best way of modeling a situation and the right
abstractions to use. The best advice one can offer is to make things as simple as
possible, but no simpler.

Exercises

* 11.1 This exercise deals with common knowledge in finite-state systems.

(a) Let l ≥ 1 be arbitrary. Design a two-agent scenario in which one of the agents
has exactly l states, and for some fact ϕ we have E2l−2ϕ ∧ ¬Cϕ. (For the
case of l = 1, recall from Section 2.2 that E0ϕ is simply ϕ.)

(b) Prove that in an a.m.p. system, if some agent a ∈ G has only l different local
states, then El+1

G ϕ ⇔ CGϕ for all facts ϕ.

11.2 Describe the interpreted system corresponding to the first Alice and Bob ex-
ample in Section 11.2 (that is, give an explicit description of the runs in the sys-
tem), and prove that at time mS + kε, the formula (KAKB)ksent(µ) holds, while
(KAKB)k+1sent(µ) does not hold.

11.3 Prove Lemma 11.2.1.

11.4 Using the notation defined in the second paragraph of Example 11.4.1, prove
the following:

(a) for each k ≥ 1 there exists some mk ≥ 1 such that mk ≤ ki ≤ mk +2 for each
child i. Thus, the kth phases for all children end within an interval of three
rounds.

(b) child i receives the same messages in phase k of run r ′ as in round k of the
run r , (Hint: the standard program MCs determines what messages are sent in
each phase.)

(c) if ϕ is a formula of the form pi or ¬pi , then (I, r, k) |= Kiϕ if and only
if (I ′, r ′, ki) |= Kiϕ. (Hint: prove, for all pairs of runs r̂ , r̂ ′ of I and I ′,
respectively, that have the same initial states, that child i considers the same
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set of initial states possible in the corresponding points (r̂, k) and (r̂ ′, k̂i) of
the two systems, where k̂i is the round of r̂ at which the kth phase ends for
child i.)

11.5 Prove that the system Rrep(MCs, γ
mc
f ) of Example 11.4.1 is a system with

temporal imprecision.

11.6 Prove Lemma 11.5.1.

11.7 Prove Lemma 11.5.2.

11.8 Show that f¬x does not have a fixed point.

* 11.9 Prove Lemma 11.5.5.

11.10 Prove that for every formula ϕ′, the formula CG(ϕ ∧ ϕ′) is a fixed point
of EG(ϕ ∧ x).

11.11 Prove that fEG(ϕ∧x) is downward continuous.

11.12 Prove Proposition 11.5.9.

11.13 Let f (X) be a monotone function and let B be an arbitrary set. Prove that if
B ⊆ f (B) then B ⊆ gfp(f ).

11.14 Prove Lemma 11.5.7. (Hint: for part (a), first show that fψ(gfp(fψ)) =
gfp(fψ), and hence that fψ(fνx[ψ](∅)) = fνx[ψ](∅); now use Lemma 11.5.3 to
derive the claim. For (b), notice that I |= ϕ ⇒ τ iff ϕI ⊆ τI . Set τ = ψ[x/ϕ], and
use Exercise 11.13 to prove the claim.)

* 11.15 In this exercise, we consider some properties of Eε
G.

(a) Give a formal definition of fEε
G

which satisfies an analogue of Lemma 11.5.1.

(b) Prove that fEε
G

is a monotone function.
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(c) Prove that fEε
G

is downward continuous. (Hint: fix an interpreted system I.
Suppose that A0 ⊇ A1 ⊇ A2 ⊇ · · · are subsets of points in I. We must
prove that fEε

G
(
⋂∞

k=0(Ak)) = ⋂∞
k=0 fEε

G
(Ak). ⊆ is easy to show since fEε

G

is monotone. To show ⊇, suppose that (r, m) ∈ ⋂∞
k=0 fEε

G
(Ak). Thus, for

each k, there exists an interval Ik of length ε such that m ∈ Ik and for each
agent j ∈ G, there exists mj ∈ Ik such that (r, mj ) ∈ fKj

(Ak). Since we
are dealing with discrete-time domains, there are only finitely many possible
intervals of the form Ik . Thus, there must exist one interval I which satisfies
the above properties for infinitely many (and hence all) k. Since I has finite
length and we are dealing with finitely many points, for each agent j , there
exists mj ∈ I such that (r, mj ) ∈ fEε

G
Kj (Ak) for infinitely many (and hence

for all) k.)

(d) The previous proof depended heavily on the fact that time ranges over the
natural numbers, and hence is discrete. Give a natural definition for fEε

G
in

interpreted systems where time ranges over the (nonnegative) reals, and show
that fEε

G
is not downward continuous in this case.

11.16 Which of the axioms and inference rules that CG satisfies (S5 + Fixed-Point
Axiom + Induction Rule) does Cε

G satisfy? Prove your claims.

* 11.17 In this exercise, we consider the interaction between Eε
G and infinite con-

junctions.

(a) Let ε = 1. Show that if (I, r, m + 2) |= CGϕ, then (I, r, m + 1) |= Cε
Gϕ.

(b) Again, let ε = 1. Construct an interpreted system I and run r such that
(I, r, 2) |= CGp and (I, r, 0) |= (Eε

G)kp if k ≥ 2, but (I, r, 0) |= ¬Eε
Gp.

(c) Show that Cε
Gϕ is not equivalent to

∧∞
k=1(E

ε
Gϕ). (Hint: let ψ be the infi-

nite conjunction. It suffices to show that ψ ⇒ Eε
Gψ is not valid. Use the

construction of part (b) to help show this.)

(d) Let I be a system with perfect recall and let ϕ be a stable formula. Define
©εϕ to mean “ε time units from now.” Prove

(i) I |= Eε
Gϕ ⇔ ©εEGϕ.

(ii) I |= Cε
Gϕ ⇔ ∧∞

k=1(©εEG)kϕ.
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Conclude that in systems with perfect recall where ϕ is a stable fact, Cε
Gϕ is

equivalent to
∧∞

k=1(E
ε
Gϕ).

11.18 Prove Proposition 11.6.1.

* 11.19 In this exercise, we consider some properties of eventual common knowledge.

(a) State and prove an analogue of Proposition 11.6.1 for C� and eventual coor-
dination.

(b) Prove that fC� is not downward continuous.

(c) Prove that C�ϕ is not equivalent to
∧∞

k=1(E
�)kϕ, even in systems with perfect

recall where ϕ is a stable formula.

* 11.20 Prove Theorem 11.6.3.

11.21 Prove Corollary 11.6.4.

11.22 Prove an analogue of Proposition 11.2.2 for timestamped common knowledge
and timestamped coordination.

11.23 Prove Theorem 11.6.5.

Notes

Most of the material in this chapter is based on [Halpern and Moses 1990]. The-
orem 11.1.1 and Exercise 11.1 were stated and proved by Fischer and Immerman
[1986]. Interestingly, while the definition of common knowledge as an infinite con-
junction, which we started with in Chapter 2, is the one most frequently used in
the literature, the original definition of common knowledge by Lewis [1969] was in
terms of a fixed point, or a self-referential pair of statements. Clark and Marshall
[1981] consider the role of common knowledge in natural language communication.
They prove that common knowledge is essential for correct parsing of sentences in-
volving direct reference, and emphasize the role of copresence as a cause of common
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knowledge. Barwise [1988] discusses three definitions of common knowledge, as an
infinite conjunction, a fixed point, and an instance of copresence. His work suggests
an interpretation of knowledge for which the three definitions are not equivalent. The
relationship between common knowledge and simultaneous events is pointed out and
formalized in [Dwork and Moses 1990], [Halpern and Moses 1990], and [Moses and
Tuttle 1988]. The fact that common knowledge corresponds to an event that is local
to all relevant processes was independently observed by Geanakoplos [1992].

A precise statement and proof of the result that in systems where there is uncer-
tainty regarding message transmission times there is always some temporal impre-
cision were given by Dolev, Halpern, and Strong [1986] and by Halpern, Megiddo,
and Munshi [1985]. Further discussion regarding simultaneity and granularity of
time is given by Fischer and Immerman [1986] and by Neiger [1988]. The approach
advocated in Section 11.4, according to which we think of common knowledge as
being attained at a coarse level of abstraction and will be safe so long as this level of
abstraction can be implemented at lower levels of abstraction, seems to have first been
proposed by Kurki-Suonio [1986]. Neiger and Toueg [1993] present an example of
a coarse context, in which clocks are perfectly synchronized, with a powerful pub-
lication action, which is guaranteed to make a message common knowledge. This
context is relatively easy to design programs for. They then describe a finer context
with publications, in which clocks are not perfectly synchronized. In that context
publications guarantee timestamped common knowledge. They show that the coarse
context is an adequate model for the fine context with respect to all programs and a
large class of specifications.

Recall that Example 11.4.1 considers a fine context for modeling the muddy
children puzzle, and shows that the coarse synchronous context that we have been
considering throughout the book is an adequate model for it. Moses, Dolev, and
Halpern [1986] consider the cheating husbands puzzle, a variant of the muddy chil-
dren puzzle, but focus on contexts that are not synchronous: messages are not nec-
essarily delivered in the same round that they are sent. They show that in these
contexts, the outcome (i.e., whether the children eventually come to know the state
of their own foreheads, and which of them do) can differ substantially from that in
the synchronous context. Not surprisingly, the standard programs that implement
the (analogue of the) knowledge-based program MC in these contexts may also differ
substantially from MCs . Among other things, this shows that, in contrast to the con-
text (γ mc

f , πmc
f ) of Example 11.4.1, such asynchronous contexts are not adequately

modeled by (γ mc, πmc).
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The fixed-point semantics introduced here is a simplified version of the frame-
work of [Halpern and Moses 1990], and the earlier and more general framework of
[Kozen 1983]. The general logical theory of fixed points dates back to [Tarski 1955].
In particular, the fact that a monotone modal operator is guaranteed to have a greatest
(and least) fixed point is an immediate corollary of the Knaster-Tarski Theorem. (See
[Tarski 1955] for a historical discussion of this theorem.)

We remark that a characterization similar to that of Lemma 11.5.8 can be given for
greatest fixed points of arbitrary (not necessarily downward continuous) functions,
but this involves the additional mathematical sophistication of an inductive construc-
tion that proceeds through all the ordinal numbers. A characterization similar to
that of Lemma 11.5.8 holds for least fixed points of upward continuous functions
(i.e., functions f such that f (

⋃∞
l=0 Al) = ⋃∞

l=0 f (Al) for increasing sequences
A0 ⊆ A1 ⊆ · · ·).

All approximations of common knowledge introduced in this chapter are due
to Halpern and Moses [1990]. The relationship between approximations of com-
mon knowledge and approximations of coordination is discussed in [Fagin, Halpern,
Moses, and Vardi 1999]. As discussed in Section 11.6.4, other approximations
of common knowledge, have also been found to be useful. In particular, notions of
probabilistic common knowledge have been considered by Brandenburger and Dekel
[1987], Fagin and Halpern [1994], Halpern and Tuttle [1993], Krasucki, Parikh and
Ndjatou [1990], and Monderer and Samet [1989]. Such notions have been used to
analyze probabilistic Byzantine agreement by Halpern and Tuttle [1993] and proba-
bilistic coordination by Monderer and Samet [1989] and by Rubinstein [1989].

Koo and Toueg [1988] prove a generalization of Corollary 11.6.4. Roughly
speaking, they define a run-based specification to be nontrivial if it is not satisfied
by runs in which no message is delivered. They prove that, in a message-passing
context in which message delivery is asynchronous and unreliable but fair (so that
any message sent repeatedly is eventually delivered), no program solving a nontrivial
specification can guarantee that all participants will be able to reach a terminating
state. This result has far-reaching implications in the design of communication
protocols in current-day computer networks. For a formulation of this result in the
terminology of Theorem 11.6.3, see the overview by Moses [1992].

Panangaden and Taylor [1992] define the notion of concurrent common knowl-
edge, which is an approximation of common knowledge that is achievable in reliable
asynchronous systems. They discuss the extent to which it can be used in such sys-
tems as a substitute for common knowledge. A variant of common knowledge called
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continual common knowledge is defined by Halpern, Moses, and Waarts [2001] and
used to analyze and find round-optimal algorithms for the eventual Byzantine agree-
ment problem, which is defined just like simultaneous Byzantine agreement except
that processes are not required to decide simultaneously (see Exercise 6.41). Unlike
the approximations of common knowledge that we have discussed up to now, which
are weaker than common knowledge (and thus are implied by common knowledge),
continual common knowledge is strictly stronger than common knowledge.
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Frege, G. (1892). Über sinn und bedeutung. Zeitschrift für Philosophie und
Philosophische Kritik 100, 25–50. English translation in P. Geach and M.



470 Bibliography

Black (1952), On sense and reference, Translations From the Writings of
Gottlob Frege, Oxford, U.K.: Basil Blackwell.

Friedman, N. and J. Y. Halpern (1997). Modeling belief in dynamic systems. Part
I: foundations. Artificial Intelligence 95(2), 257–316.

Fudenberg, D. and J. Tirole (1991). Game Theory. Cambridge, Mass.: MIT Press.

Gabbay, D., A. Pnueli, S. Shelah, and J. Stavi (1980). On the temporal analysis of
fairness. In Proc. 7th ACM Symp. on Principles of Programming Languages,
pp. 163–173.

Gamow, G. and M. Stern (1958). Puzzle Math. New York: Viking Press.

Gardner, M. (1977). The “jump proof” and its similarity to the toppling of a row
of dominoes. Scientific American 236, 128–135.

Gardner, M. (1984). Puzzles From Other Worlds. New York: Viking Press.

Garson, J. W. (1984). Quantification in modal logic. In D. Gabbay and F. Guen-
thner (Eds.), Handbook of Philosophical Logic, Volume II, pp. 249–307. Dor-
drecht, Netherlands: Reidel.

Geanakoplos, J. (1989). Game theory without partitions, and applications to spec-
ulation and consensus. Cowles Foundation Discussion Paper #914, Yale Uni-
versity.

Geanakoplos, J. (1992). Common knowledge. In Theoretical Aspects of Reasoning
about Knowledge: Proc. Fourth Conference, pp. 255–315.

Geanakoplos, J. and H. Polemarchakis (1982). We can’t disagree forever. Journal
of Economic Theory 28(1), 192–200.

Georgeff, M. P. (1985). Attributing attitudes to machines. Manuscript.

Gettier, E. (1963). Is justified true belief knowledge? Analysis 23, 121–123.

Goldblatt, R. (1992). Logics of Time and Computation (2nd ed.). CSLI Lecture
Notes Number 7. Center for Studies in Language and Information, Stanford
University.

Goldwasser, S., S. Micali, and C. Rackoff (1989). The knowledge complexity of
interactive proof systems. SIAM Journal on Computing 18(1), 186–208.

Gouda, M. (1985). On “A simple protocol whose proof isn’t”. IEEE Transactions
on Communications COM-33(4), 382–384.



Bibliography 471

Gray, J. (1978). Notes on database operating systems. In R. Bayer, R. M. Graham,
and G. Seegmuller (Eds.), Operating Systems: An Advanced Course, Lecture
Notes in Computer Science, Volume 66. Berlin/New York: Springer-Verlag.
Also appears as IBM Research Report RJ 2188, 1978.

Grove, A. J. and J. Y. Halpern (1991). Naming and identity in a multi-agent
epistemic logic. In Principles of Knowledge Representation and Reasoning:
Proc. Second International Conference (KR ’91), pp. 301–312.

Grove, A. J. and J. Y. Halpern (1993). Naming and identity in epistemic logics, Part
I: the propositional case. Journal of Logic and Computation 3(4), 345–378.

Hadzilacos, V. (1987). A knowledge-theoretic analysis of atomic commitment
protocols. In Proc. 6th ACM Symp. on Principles of Database Systems, pp.
129–134.

Hailpern, B. T. (1982). Verifying Concurrent Processes using Temporal Logic.
Lecture Notes in Computer Science, Volume 129. Berlin/New York: Springer-
Verlag.

Hailpern, B. T. (1985). A simple protocol whose proof isn’t. IEEE Transactions
on Communications COM-33(4), 330–337.

Hailpern, B. T. and S. S. Owicki (1983). Modular verification of communication
protocols. IEEE Transactions on Communications COM-31(1), 56–68.

Halpern, J. Y. (1986). Reasoning about knowledge: an overview. In Theoretical
Aspects of Reasoning about Knowledge: Proc. 1986 Conference, pp. 1–17.
Reprinted in Proc. National Computer Conference, 1986, pp. 219–228.

Halpern, J. Y. (1987). Using reasoning about knowledge to analyze distributed
systems. In J. F. Traub, B. J. Grosz, B. W. Lampson, and N. J. Nilsson (Eds.),
Annual Review of Computer Science, Volume 2, pp. 37–68. Palo Alto, Calif.:
Annual Reviews Inc.

Halpern, J. Y. (1995). Reasoning about knowledge: a survey. In D. M. Gabbay,
C. J. Hogger, and J. A. Robinson (Eds.), Temporal and Epistemic Reason-
ing, Volume 4 of Handbook of of Logic in Artificial Intelligence and Logic
Programming, pp. 1–34. Oxford, U.K.: Oxford University Press.

Halpern, J. Y. (1997a). On ambiguities in the interpretation of game trees. Games
and Economic Behavior 20, 66–96.



472 Bibliography

Halpern, J. Y. (1997b). A theory of knowledge and ignorance for many agents.
Journal of Logic and Computation 7(1), 79–108.

Halpern, J. Y. (2000). A note on knowledge-based protocols and specifications.
Distributed Computing 13(3), 145–153.

Halpern, J. Y. (2001a). Alternative semantics for unawareness. Games and Eco-
nomic Behavior 37, 321–339.

Halpern, J. Y. (2001b). Substantive rationality and backward induction. Games
and Economic Behavior 37, 425–435.

Halpern, J. Y. and R. Fagin (1985). A formal model of knowledge, action, and
communication in distributed systems: preliminary report. In Proc. 4th ACM
Symp. on Principles of Distributed Computing, pp. 224–236.

Halpern, J. Y. and R. Fagin (1989). Modelling knowledge and action in distributed
systems. Distributed Computing 3(4), 159–179. A preliminary version ap-
peared in Proc. 4th ACM Symposium on Principles of Distributed Computing,
1985, with the title “A formal model of knowledge, action, and communication
in distributed systems: preliminary report”.

Halpern, J. Y. and G. Lakemeyer (2001). Multi-agent only knowing. Journal of
Logic and Computation 11(1), 41–70.

Halpern, J. Y., N. Megiddo, and A. Munshi (1985). Optimal precision in the
presence of uncertainty. Journal of Complexity 1, 170–196.

Halpern, J. Y. and Y. Moses (1984). Towards a theory of knowledge and ignorance.
In Proc. AAAI Workshop on Non-Monotonic Logic, pp. 125–143. Reprinted in
K. R. Apt (Ed.), Logics and Models of Concurrent Systems, Springer-Verlag,
Berlin/New York, pp. 459–476, 1985.

Halpern, J. Y. and Y. Moses (1986). Taken by surprise: the paradox of the surprise
test revisited. Journal of Philosophical Logic 15, 281–304.

Halpern, J. Y. and Y. Moses (1990). Knowledge and common knowledge in a
distributed environment. Journal of the ACM 37(3), 549–587. A preliminary
version appeared in Proc. 3rd ACM Symposium on Principles of Distributed
Computing, 1984.

Halpern, J. Y. and Y. Moses (1992). A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence 54, 319–379.



Bibliography 473

Halpern, J. Y., Y. Moses, and M. R. Tuttle (1988). A knowledge-based analysis
of zero knowledge. In Proc. 20th ACM Symp. on Theory of Computing, pp.
132–147.

Halpern, J. Y., Y. Moses, and M. Y. Vardi (1994). Algorithmic knowledge. In
Theoretical Aspects of Reasoning about Knowledge: Proc. Fifth Conference,
pp. 255–266.

Halpern, J. Y., Y. Moses, and O. Waarts (2001). A characterization of eventual
Byzantine agreement. SIAM Journal on Computing 31(3), 838–865.

Halpern, J. Y. and R. Pucella (2002). Modeling adversaries in a logic for security
protocol analysis. In Proc. Formal Aspects of Security.

Halpern, J. Y. and J. H. Reif (1983). The propositional dynamic logic of determin-
istic, well-structured programs. Theoretical Computer Science 27, 127–165.

Halpern, J. Y. and M. R. Tuttle (1993). Knowledge, probability, and adversaries.
Journal of the ACM 40(4), 917–962.

Halpern, J. Y., R. van der Meyden, and M. Y. Vardi (1997). Complete axiomati-
zations for reasoning about knowledge and time. To appear, SIAM Journal on
Computing.

Halpern, J. Y. and M. Y. Vardi (1986). The complexity of reasoning about knowl-
edge and time. In Proc. 18th ACM Symp. on Theory of Computing, pp. 304–
315.

Halpern, J. Y. and M. Y. Vardi (1988a). The complexity of reasoning about knowl-
edge and time in asynchronous systems. In Proc. 20th ACM Symp. on Theory
of Computing, pp. 53–65.

Halpern, J. Y. and M. Y. Vardi (1988b). The complexity of reasoning about knowl-
edge and time: synchronous systems. Research Report RJ 6097, IBM.

Halpern, J. Y. and M. Y. Vardi (1989). The complexity of reasoning about
knowledge and time, I: lower bounds. Journal of Computer and System Sci-
ences 38(1), 195–237.

Halpern, J. Y. and M. Y. Vardi (1991). Model checking vs. theorem proving: a
manifesto. In V. Lifschitz (Ed.), Artificial Intelligence and Mathematical The-
ory of Computation (Papers in Honor of John McCarthy), pp. 151–176. San
Diego, Calif.: Academic Press.



474 Bibliography

Halpern, J. Y. and L. D. Zuck (1992). A little knowledge goes a long way:
knowledge-based derivations and correctness proofs for a family of proto-
cols. Journal of the ACM 39(3), 449–478.

Hayek, F. (1945). The use of knowledge in society. American Economic Review 35,
519–530.

Heifetz, A. and D. Samet (1999). Hierarchies of knowledge: an unbounded stair-
way. Mathematical Social Sciences 38, 157–170.

Heyting, A. (1956). Intuitionism: An Introduction. Amsterdam: North-Holland.

Hilpinen, R. (1977). Remarks on personal and impersonal knowledge. Canadian
Journal of Philosophy 7, 1–9.

Hintikka, J. (1957). Quantifiers in deontic logic. Societas Scientiarumi Fennica,
Commentationes Humanarum Literarum 23(4), 1–23.

Hintikka, J. (1961). Modalities and quantification. Theoria 27(61), 119–128.

Hintikka, J. (1962). Knowledge and Belief. Ithaca, N.Y.: Cornell University Press.

Hintikka, J. (1975). Impossible possible worlds vindicated. Journal of Philosoph-
ical Logic 4, 475–484.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Englewood Cliffs,
N.J.: Prentice-Hall.

Hoek, W. van der and M. Wooldridge (2002). Model checking knowledge and
time. In Proc. 9th International SPIN Workshop, Lecture Notes in Computer
Science, Volume 2318, pp. 95–111. Berlin/New York: Springer-Verlag.

Hoek, W. van der and J.-J. C. Meyer (1992). Making some issues of implicit knowl-
edge explicit. International Journal of Foundations of Computer Science 3(2),
193–223.

Hopcroft, J. E. and J. D. Ullman (1979). Introduction to Automata Theory, Lan-
guages and Computation. New York: Addison-Wesley.

Huang, Z. and K. Kwast (1991). Awareness, negation and logical omniscience.
In J. van Eijck (Ed.), Logics in AI, Proceedings JELIA’90, Lecture Notes in
Computer Science, Volume 478, pp. 282–300. Berlin/New York: Springer-
Verlag.

Hughes, G. and M. Cresswell (1996). A New Introduction to Modal Logic. London:
Routledge.



Bibliography 475

Hughes, G. E. and M. J. Cresswell (1968). An Introduction to Modal Logic. Lon-
don: Methuen.

Hughes, G. E. and M. J. Cresswell (1984). A Companion to Modal Logic. London:
Methuen.

Janssen, W. (1995). Layers as knowledge transitions in the design of distributed
systems. In Proc. First International Workshop on Tools and Algorithms for
Construction and Analysis of Systems, Lecture Notes in Computer Science,
Vol. 1019, pp. 238–263. Berlin/New York: Springer-Verlag.

Janssen, W. (1996). Refining knowledge oriented actions to layered implementa-
tions. In Proc. 15th ACM Symp. on Principles of Distributed Computing, pp.
91–100.

Kanger, S. (1957a). The morning star paradox. Theoria 23, 1–11.

Kanger, S. (1957b). Provability in Logic. Stockholm Studies in Philosophy I.

Kaplan, D. (1966). Review of “A semantical analysis of modal logic I: normal
modal propositional calculi”. Journal of Symbolic Logic 31, 120–122.

Kaplan, D. (1969). Quantifying in. Synthese 19, 178–214.

Katz, S. and G. Taubenfeld (1986). What processes know: definitions and proof
methods. In Proc. 5th ACM Symp. on Principles of Distributed Computing,
pp. 249–262.

Kifer, M. and E. L. Lozinski (1992). A logic for reasoning with inconsistency. J.
Automated Deduction 9, 179–215.

Konolige, K. (1986). A Deduction Model of Belief. San Francisco: Morgan Kauf-
mann.

Koo, R. and S. Toueg (1988). Effects of message loss on the termination of dis-
tributed programs. Information Processing Letters 27, 181–188.

Kozen, D. (1983). Results on the propositional µ-calculus. Theoretical Computer
Science 27(1), 333–354.

Kozen, D. and R. Parikh (1981). An elementary proof of the completeness of
PDL. Theoretical Computer Science 14(1), 113–118.



476 Bibliography

Krasucki, P., R. Parikh, and G. Ndjatou (1990). Probabilistic knowledge and
probabilistic common knowledge (preliminary report). In Z. W. Ras, M. Ze-
mankova, and M. L. Emrich (Eds.), Methodologies for Intelligent Systems,
Volume 5, pp. 1–8. New York: North-Holland.

Kraus, S. and D. Lehmann (1988). Knowledge, belief, and time. Theoretical
Computer Science 58, 155–174.

Kripke, S. (1959). A completeness theorem in modal logic. Journal of Symbolic
Logic 24, 1–14.

Kripke, S. (1963a). A semantical analysis of modal logic I: normal modal proposi-
tional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Math-
ematik 9, 67–96. Announced in (1959) Journal of Symbolic Logic 24, 323.

Kripke, S. (1963b). Semantical considerations on modal logic. Acta Philosophica
Fennica 24, 83–94.

Kripke, S. (1965). A semantical analysis of modal logic II: non-normal proposi-
tional calculi. In L. Henkin and A. Tarski (Eds.), The Theory of Models, pp.
206–220. Amsterdam: North-Holland.

Kurki-Suonio, R. (1986). Towards programming with knowledge expressions. In
Proc. 13th ACM Symp. on Principles of Programming Languages, pp. 140–
149.

Ladner, R. E. (1977). The computational complexity of provability in systems of
modal propositional logic. SIAM Journal on Computing 6(3), 467–480.

Ladner, R. E. and J. H. Reif (1986). The logic of distributed protocols (preliminary
report). In Theoretical Aspects of Reasoning about Knowledge: Proc. 1986
Conference, pp. 207–222.

Lakemeyer, G. (1987). Tractable meta-reasoning in propositional logics of belief.
In Proc. Tenth International Joint Conference on Artificial Intelligence (IJCAI
’87), pp. 402–408.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21(7), 558–565.

Lamport, L. (1980). “Sometimes” is sometimes “not never”: on the temporal
logic of programs. In Proc. 7th ACM Symp. on Principles of Programming
Languages, pp. 164–185.



Bibliography 477

Lamport, L. (1983). The weak Byzantine generals problem. Journal of the
ACM 30(3), 668–676.

Lamport, L. (1985). Paradigms for distributed computing. In M. Paul and H. J.
Siegert (Eds.), Methods and Tools for Specification: An Advanced Course,
Lecture Notes in Computer Science, Volume 190, pp. 19–30, 454–468.
Berlin/New York: Springer-Verlag.

Lamport, L. (1986). On interprocess communication, Part I: basic formalism.
Distributed Computing 1(2), 77–85.

Lamport, L. and M. J. Fischer (1982). Byzantine generals and transactions commit
protocols. Technical Report Opus 62, SRI International, Menlo Park, Calif.

Lehmann, D. (1984). Knowledge, common knowledge, and related puzzles. In
Proc. 3rd ACM Symp. on Principles of Distributed Computing, pp. 62–67.

Lemmon, E. J. (1977). The “Lemmon Notes”: An Introduction to Modal Logic.
Oxford, U.K.: Basil Blackwell. Written in collaboration with D. Scott; K.
Segerberg (Ed.). American Philosophical Quarterly Monograph Series, No.
11.

Lenzen, W. (1978). Recent work in epistemic logic. Acta Philosophica Fennica 30,
1–219.

Levesque, H. J. (1981). The interaction with incomplete knowledge bases: a
formal treatment. In Proc. Seventh International Joint Conference on Artificial
Intelligence (IJCAI ’81), pp. 240–245.

Levesque, H. J. (1984a). Foundations of a functional approach to knowledge
representation. Artificial Intelligence 23, 155–212.

Levesque, H. J. (1984b). A logic of implicit and explicit belief. In Proc. National
Conference on Artificial Intelligence (AAAI ’84), pp. 198–202.

Levesque, H. J. (1985). Global and local consistency and completeness of beliefs.
Manuscript.

Levesque, H. J. (1988). Logic and the complexity of reasoning. Journal of Philo-
sophical Logic 17(4), 355–389.

Levesque, H. J. (1990). All I know: a study in autoepistemic logic. Artificial
Intelligence 42(3), 263–309.



478 Bibliography

Lewis, C. I. and C. H. Langford (1959). Symbolic Logic (2nd ed.). New York:
Dover.

Lewis, D. (1969). Convention, A Philosophical Study. Cambridge, Mass.: Harvard
University Press.

Lichtenstein, O., A. Pnueli, and L. Zuck (1985). The glory of the past. In R. Parikh
(Ed.), Proc. Workshop on Logics of Programs, Lecture Notes in Computer
Science, Volume 193, pp. 196–218. Berlin/New York: Springer-Verlag.

Lipman, B. L. (1994). An axiomatic approach to the logical omniscience problem.
In Theoretical Aspects of Reasoning about Knowledge: Proc. Fifth Confer-
ence, pp. 182–196.

Lipman, B. L. (1997). Logics for nonomniscient agents: an axiomatic approach.
In M. Bacharach, L. A. Gérard-Varet, P. Mongin, and H. S. Shin (Eds.), Epis-
temic Logic and the Theory of Games and Decisions, pp. 193–216. Dordrecht,
Netherlands: Kluwer.

Lipman, B. L. (1999). Decision theory without logical omniscience: toward an ax-
iomatic frameework for bounded rationality. Review of Economic Studies 66,
339–361.

Littlewood, J. E. (1953). A Mathematician’s Miscellany. London: Methuen and
Co.

Lynch, N. (1997). Distributed Algorithms. San Francisco: Morgan Kaufmann.

Lynch, N. A. and M. J. Fischer (1981). On describing the behavior and imple-
mentation of distributed systems. Theoretical Computer Science 13, 17–43.

Lynch, N. A. and M. R. Tuttle (1989). An introduction to input/output au-
tomata. CWI Quarterly 2(3), 219–246. Also available as MIT Technical Memo
MIT/LCS/TM-373.

Makinson, D. (1966). On some completeness theorems in modal logic. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik 12, 379–384.

Manna, Z. and A. Pnueli (1992). The Temporal Logic of Reactive and Concurrent
Systems: Specification. Berlin/New York: Springer-Verlag.

Mazer, M. S. (1990). A link between knowledge and communication in faulty
distributed systems. In Theoretical Aspects of Reasoning about Knowledge:
Proc. Third Conference, pp. 289–304.



Bibliography 479

Mazer, M. S. (1991). Implementing distributed knowledge-based protocols. Un-
published manuscript.

Mazer, M. S. and F. H. Lochovsky (1990). Analyzing distributed commitment by
reasoning about knowledge. Technical Report CRL 90/10, DEC-CRL.

McCarthy, J. (1978). Formalization of two puzzles involving knowledge.
Manuscript, Computer Science Dept., Stanford University.

McCarthy, J. (1979). Ascribing mental qualities to machines. Technical Report
STAN-CS-79-725, Stanford University.

McCarthy, J., M. Sato, T. Hayashi, and S. Igarishi (1979). On the model theory
of knowledge. Technical Report STAN-CS-78-657, Stanford University.

Megiddo, N. (1986). Remarks on bounded rationality. Research Report RJ 5270,
IBM.

Megiddo, N. (1989). On computable beliefs of rational machines. Games and
Economic Behavior 1, 144–169.

Megiddo, N. and A. Wigderson (1986). On play by means of computing ma-
chines. In Theoretical Aspects of Reasoning about Knowledge: Proc. 1986
Conference, pp. 259–274.

Meredith, C. A. (1956). Interpretations of different modal logics in the “property
calculus”, mimeographed manuscript, Philosophy Department, Canterbury
University College (recorded and expanded by A. N. Prior).

Merritt, M. J. (1984). Unpublished notes on the Dolev-Strong lower bound for
Byzantine agreement.

Merritt, M. J. and G. Taubenfeld (1991). Knowledge in shared memory systems. In
Proc. 10th ACM Symp. on Principles of Distributed Computing, pp. 189–200.

Mertens, J. F. and S. Zamir (1985). Formulation of Bayesian analysis for games of
incomplete information. International Journal of Game Theory 14(1), 1–29.

Meyden, R. van der (1996). Finite state implementations of knowledge-based
programs. In Proc. 16th Conf. on Foundations of Software Technology and
Theoretical Computer Science, Lecture Notes in Computer Science, Volume
1180, pp. 262–273. Berlin/New York: Springer-Verlag.

Meyden, R. van der and N. Shilov (1996). Model checking knowledge and time
in systems with perfect recall. In Proc. 19th Conf. on Foundations of Software



480 Bibliography

Technology and Theoretical Computer Science, Lecture Notes in Computer
Science, Volume 1738, pp. 432–445. Berlin/New York: Springer-Verlag.

Meyden, R. van der (1994). Axioms for knowledge and time in distributed systems
with perfect recall. In Proc. 9th IEEE Symp. on Logic in Computer Science,
pp. 448–457.

Meyden, R. van der (1998). Common knowledge and update in finite environ-
ments. Information and Computation 140(2), 115–157.

Meyer, J.-J. C. and W. van der Hoek (1995). Epistemic Logic for AI and Computer
Science. Cambridge Tracts in Theoretical Computer Science, 41. Cambridge,
UK: Cambridge University Press.

Meyer, J.-J. C., W. van der Hoek, and G. A. W. Vreeswijk (1991a). Epistemic
logic for computer science: a tutorial (Part I). EATCS Bulletin 44, 242–270.

Meyer, J.-J. C., W. van der Hoek, and G. A. W. Vreeswijk (1991b). Epistemic
logic for computer science: a tutorial (Part II). EATCS Bulletin 45, 256–287.

Michel, R. (1989a). A categorical approach to distributed systems, expressibility
and knowledge. In Proc. 8th ACM Symp. on Principles of Distributed Com-
puting, pp. 129–143.

Michel, R. (1989b). Knowledge in Distributed Byzantine Environments. Ph.D.
thesis, Yale University.

Milgrom, P. (1981). An axiomatic characterization of common knowledge. Econo-
metrica 49(1), 219–222.

Milgrom, P. and N. Stokey (1982). Information, trade, and common knowledge.
Journal of Economic Theory 26, 17–27.

Milner, R. (1980). A Calculus of Communicating Systems. Lecture Notes in Com-
puter Science, Volume 92. Berlin/New York: Springer-Verlag.

Modica, S. and A. Rustichini (1994). Awareness and partitional information struc-
tures. Theory and Decision 37, 107–124.

Modica, S. and A. Rustichini (1999). Unawareness and partitional information
structures. Games and Economic Behavior 27(2), 265–298.

Monderer, D. and D. Samet (1989). Approximating common knowledge with
common beliefs. Games and Economic Behavior 1, 170–190.



Bibliography 481

Montague, R. (1960). Logical necessity, physical necessity, ethics, and quantifiers.
Inquiry 4, 259–269.

Montague, R. (1968). Pragmatics. In R. Kalibansky (Ed.), Contemporary Philos-
ophy, pp. 101–121. Florence, Italy: La Nuova Italia Editrice.

Montague, R. (1970). Universal grammar. Theoria 36, 373–398.

Moore, R. C. (1985). A formal theory of knowledge and action. In J. Hobbs
and R. C. Moore (Eds.), Formal Theories of the Commonsense World, pp.
319–358. Norwood, N.J.: Ablex Publishing Corp.

Moore, R. C. and G. Hendrix (1979). Computational models of beliefs and the
semantics of belief sentences. Technical Note 187, SRI International, Menlo
Park, Calif.

Moreno, A. (1998). Avoiding logical omniscience and perfect reasoning: a survey.
AI Communications 11(2), 101–122.

Moses, Y. (1986). Knowledge in a distributed environment. Ph.D. thesis, Stanford
University.

Moses, Y. (1988). Resource-bounded knowledge. In Proc. Second Conference on
Theoretical Aspects of Reasoning about Knowledge, pp. 261–276.

Moses, Y. (1992). Knowledge and communication (a tutorial). In Theoretical
Aspects of Reasoning about Knowledge: Proc. Fourth Conference, pp. 1–14.

Moses, Y. and B. Bloom (1994). Knowledge, timed precedence and clocks. In
Proc. 13th ACM Symp. on Principles of Distributed Computing, pp. 294–303.

Moses, Y., D. Dolev, and J. Y. Halpern (1986). Cheating husbands and other
stories: a case study of knowledge, action, and communication. Distributed
Computing 1(3), 167–176.

Moses, Y. and O. Kislev (1993). Knowledge-oriented programming. In Proc. 12th
ACM Symp. on Principles of Distributed Computing, pp. 261–270.

Moses, Y. and G. Nachum (1990). Agreeing to disagree after all. In Theoretical
Aspects of Reasoning about Knowledge: Proc. Third Conference, pp. 151–
168.

Moses, Y. and S. Rajsbaum (2002). A layered analysis of consensus. SIAM Journal
on Computing 31(4), 989–1021.



482 Bibliography

Moses, Y. and G. Roth (1989). On reliable message diffusion. In Proc. 8th ACM
Symp. on Principles of Distributed Computing, pp. 119–128.

Moses, Y. and Y. Shoham (1993). Belief as defeasible knowledge. Artificial In-
telligence 64(2), 299–322.

Moses, Y. and M. R. Tuttle (1988). Programming simultaneous actions using
common knowledge. Algorithmica 3, 121–169.

Neiger, G. (1988). Knowledge consistency: a useful suspension of disbelief. In
Proc. Second Conference on Theoretical Aspects of Reasoning about Knowl-
edge, pp. 295–308.

Neiger, G. and R. A. Bazzi (1999). Using knowledge to optimally achieve coordi-
nation in distributed systems. Theoretical Computer Science 220(1), 31–65.

Neiger, G. and S. Toueg (1990). Automatically increasing the fault-tolerance of
distributed algorithms. Journal of Algorithms 11(3), 374–419.

Neiger, G. and S. Toueg (1993). Simulating real-time clocks and common knowl-
edge in distributed systems. Journal of the ACM 40(2), 334–367.

Neiger, G. and M. R. Tuttle (1993). Common knowledge and consistent simulta-
neous coordination. Distributed Computing 6(3), 334–352.

Newell, A. (1982). The knowledge level. Artificial Intelligence 18, 87–127.

Neyman, A. (1985). Bounded complexity justifies cooperation in finitely repated
prisoner’s dilemma. Economic Letters 19, 227–229.

Orlowska, E. (1989). Logic for reasoning about knowledge. Zeitschrift für Math-
ematische Logik und Grundlagen der Mathematik 35, 559–572.

Osborne, M. J. and A. Rubinstein (1994). A Course in Game Theory. Cambridge,
Mass.: MIT Press.

Panangaden, P. and S. Taylor (1992). Concurrent common knowledge: defining
agreement for asynchronous systems. Distributed Computing 6(2), 73–93.

Parikh, R. (1987). Knowledge and the problem of logical omniscience. In Z. W.
Ras and M. Zemankova (Eds.), Methodologies of Intelligent Systems, pp. 432–
439. New York: North-Holland.

Parikh, R. (1990). Recent issues in reasoning about knowledge. In Theoretical
Aspects of Reasoning about Knowledge: Proc. Third Conference, pp. 3–10.



Bibliography 483

Parikh, R. (1991). Monotonic and nonmonotonic logics of knowledge. Funda-
menta Informaticae 15(3,4), 255–274.

Parikh, R. (1992). Finite and infinite dialogues. In Y. N. Moshovakis (Ed.), Logic
from Computer Science, MSRI Publication No. 21, pp. 481–497. Berlin/New
York: Springer-Verlag.

Parikh, R. and P. Krasucki (1990). Communication, consensus, and knowledge.
Journal of Economic Theory 52(1), 178–189.

Parikh, R. and P. Krasucki (1992). Levels of knowledge in distributed computing.
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