Bioinformatics

The slides are based in material from:

Dan Gusfield, Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology, Cambridge
University Press

"
Techniques for analysis and comparison of
biological data sequences

m Approximate Pattern Matching
m Multiple Sequence Alignment
m Applications in Molecular Biology Problems

" A
[TapaTtnpnoeig

m Global Alignment is called Needleman-Wunsch
alignment (1970)

m Local alignment is called Smith-Waterman alignment
(1981)

m Smith-Waterman can find regions with high similarity by
simply performing a trace-back from any cell (i,))
backwards and locate a pair with similarity v(i,)).

" A
Basic definitions (a)

m Edit Distance: for 2 strings we define as edit distance the
minimum number of operations that are needed in order to
transform the first string to the second. The basic
operations are insertion, deletion and replacement of
symbols.

m Example: S;: vintner and S,: writers
m edit-distance(S,->S,)=5

" A
Basic definitions (B)

m Edit Transcript: for the transformation of a string, we define
the sequence of operations that are needed in order to
transform the first string to the second. The basic operations

are.
Insertion: I
Deletion: D
Replacement: R
Matching: M
m Example: S;: vintner and S,: writers
m edit-distance(S,->S,)= RIMDMDMMI

Example of Substitution Matrix

EESURES UES UL IS VS U S AIICS TS AN IS U NI N S N S N I SN I
T e E Y Y (Y [N HNN NN AR N I
X O A 4 AN A A~ A A A4 NOON - o o~ <
R Y (Y K N N N [E I (RN B I R I I I
N1 OO A MO T NN AN 40 4 M NN o < <
| | | [[| I [
MANANANLTNO A HOONT OMMHOANO AN <
[| | [[[I [
> O MMM AN NMOON AN A A NNOM A T OO N <
[T T R R | [[I I
HANANNON—ANNDN A ANAND OO NNNS OO A <
[T T A R [N [| I T TR B
EONITITANANNNDANNNDODNN AALTONANMNST O N <
[Y (Y N R A R I I [T B I I I
HOA1 O A A A 14 AN N A A A N4 40O NNO A O <
| | T Y (N (R R O N N A [[|
N A A 10 A 00O TN NOANATF A M ANNOO O
0 I I [[[I |
iE)
-— A A NN AN A ANNOON AN A AT NN AN
o [A R R T e e R A I O e I I I
D
M ANOOONO NN HOOMOWTLTANNHMAMM A
iB) o)) I N N I T I | [| [
-— o
m NS A1 NN AO0ONMON AN AOONAA—AA A M A — <
Te) [R T B [| ([R T [I
2 .
~ ONM ANO AN A1 N TOO N AN A0 "M NNO A — <
— | | [[N B [T | I [
a H A NO < A NOFTONTNNOONANAATM A
-— I Y R R R | [R I [T
b T HAMOONO A0 N0 LLOFTANN AONDNANAONOOOM A
- (0] 1 Y A (Y N IR A I ([N ([N
Y i)
DN ODIZTNO A A MOONOWMM ANAN—ATNANNMOO A <
c O O | [| Y A R (R R Y | [
= Q,

] X OO NOAM ANNONLTTITNNDMNOANOANNMM A N A <
oA M | | R [N T E R A | [T A K (R E A
c
H e N A OO NTTANOMM ANMAHO AMNN A I <
4 OO | | | [[| I [
o o~
O O XA H OO MOLANNOMANHOMNM AO ANANOM A <
n PO | | | [[| I [

.

T 0O VDOMMMNMOMIT MONMN AAN AN AANNHNDON <
O O [1 e e e (e B Y B
[

O o A AN N A ONOANAAN ST AN N A0 AT NN A<
B [| [A I N N B A | I I [
0

53 4 >NE NOWAMOOOHMMONMANHOSTNMMO — <
— O Q I | [[[[
O 4P 0

N 9490 A0 NMAONOMANNTAON A AONMAHO A
P R | [| [[R Y I R N A [
o — g
NOUOUEH T A NNO A A ON A A A AN A1 O M NON O <
(@) [[[T E R R [[|
=
M =H =3 Lz 00 OO mH NS AN =M > MmN XX

" JJE
Sequence Alignment

m Sequence Alighment: we put the one sequence below the
other so that common characters are put in the same positions.

- VI NT N E R -
U U R
WRTI-T-ERS

" J
Sequence alignment allowing gaps
m We alignh two sequence by introducing 7 gaps in 4

positions, that are translated to changing the DNA
sequence in the respective positions.

ctt taac- - a- ac
c ---Ccacccat-oc

"
Computing the score-function when aligning
sequences

S |a C g t _

a 1 1 -2 0 -1

1 2 3 4 6 7 C 3 _2 _1 0
g a ¢ -t ¢ t g 0 -4 -2
g a C c t C - t 3 -1
0

m Score-function= 0+1-2+0+3+3-1=4

"
The method of Dynamic Programming

= Dynamic programming:

consider 2 sequences S; and S,, we define as D(i,j) the edit
distance between prefixes S;[1..i]] and S,[1..j], that is the
minimum number of operations that are needed in order to
transform the i first characters of S, to the j first characters of

S,.
m Use 3 basic techniques:
recurrence relation,
tabular computation,

traceback.

"
Example of Dynamic Programming Table

D(i,j) w |r i t e r S

I<

le= 1=

(o]
U A W N =| O
w
w
w
w
w
N
Ul
(o)

=t

" A
Recurrence relationship

m Recurrence relationship:
D(i,j)=min[D(i- 1,j)+1,D(i,j-1)+1,D(i- 1,j-1)+t(i.j)]
D(i,j-1)+1: we must insert S,[j]
D(i-1,j)+1: we must delete S,[i],

D(i-1,j-1)+1: in order to map S,[i] to S,[j] we must replace S,[i],
with S,[j],

D(i-1,j-1): matching

" A
Example: recurrence relationship

D(i,j) w |r i t e r S

I<
Y
=
=
N
(V)
AN
Ul

I3

(¢

-

N| & 0| &~ W N
N
N
N
N
*

D(4,4)= D(3,3)=3, apol S;(4)=S,(4)=t.

" A
Traceback relationship

m Traceback:

From (i,j) to (i,j-1) av D(i,j)= D(i,j-1)+1 (character insertion)
From (i,j) to (i-1,j) if D(i,j)= D(i-1,j)+1 (character deletion)

From (i,j) to (i-1,j-1) if D(i,j)= D(i-1,j-1)+t(i,j) (character
replacement or matching)

"
Adding traceback pointers

D(i,3) w r i t e r S
0 |1 2 3 4 5 6 7
0 [0 |21 [?22 |23 |24 |25 [?26 |27
v 1 |71 |21 [?2?22 7?23 |?224|2?25|2?26 |?2?7
i 2 P2 | 7272 22 22 ? 3 ? 4 ?5 ?6
n 3 |?3 |?73 |??23 |??73 |?3 [?74 |?75 |??6
t 4 |24 7274 |?274 |?7274 |73 |??74 |?75 [7°6
e S | |775 [?75 |?75 | |24 [?75 |?°6
r 6 |76 7296 |?76 |?76 |7 |24 |??5 |??6
S 7 |77 1797 |26 |?2?27°7|7 [P 24 |?5O

" A
Interpreting traceback pointers

WRIT-ERS

D(i,j) w r i t e r S
0 |1 2 3 4 5 6 7
0 |0 7?72 |?3 74 [?5 [?6 |?7
v 1 | °1 | ¢ | 7?7 7?23 |?2?24|?2?25|?2?26 (2?7
i 2 P2 |72 7) ? 3 ?4 ?5 ?6
n 3 |?3 (2923 |293 [7P03 |73 |?74 |?75 |276
~
t 4 |74 7224 |?774 |?274 (28 |??4 |?75 [??6
e 5 |?5 |295 |275 [?2925 |?A_ |24 |?275 |?76
r 6 |76 |206 |?276 |?276 | P> ™. |?75 |?°6
S 7 1?7 |227 |26 |22907[76 [?5 T|ya -|f25-
VINTNER -

" A
Complexity of Dynamic Programming Methods

m [nitialization: O(n) + O(m)

m Recurrence relationship: O(n*m)
m [raceback pointers: O(n+m)

m Complexity: O(n?)

m Equivalence with a problem of graph theory where every
node has as label (i,j)

" A
Basic definitions (y)

m Weighted Edit Distance: the minimum number of operations
that must be done to transform the first string to the second.
Every operation has a specific weight-cost. Assume that the
basic operations have the following weights:

Insertion or deletion: d
Replacement : r
Matching : m.

m Example : S;: vintner and S,: writers

m weighted edit-distance(S;->S,)= r+4d+4m.

"
Recurrence relationship with weights

m Recurrence relationship:
D(i,j)J=min[D(i-1,j)+d,D(i,j-1)+d,D(i-1,j-1)+t(i,j)],

m where:
t(ij)= e, if S,()=S,(),
t(i,j)=r, if S,(i)=S,(j) and
D(i,0)=1*d and D(0,j)=j*d.

" J
Dynamic programming & sequence similarity
based on alphabet

m Recurrence relationship for sequence similarity :

Wiy)= max|V(i-1,4-1)+s(S,(i), Sx()), V(i-1.j)* s(S,(1);_);
Wiyg-1)+ s(_,S:0)),

m where:

s(x,y): the alignment value of character x and y

V(0,j)=25(_,S.(k)), 1<k<j and V(i,0)= 2 s(S,(k),_), 1<k<i.

" J
EXTENTIONS
m Weighted Edit Distance.

m In Molecular Biology applications the character subsitution
weights are stored in substitution matrices - Substitution Matrix:
PAM ka1 BLOSUM

m [t is better to face it as alignment and embed the score.

m Every match is positive , everything else is 0 or negative

Extentions

Longest Common Subsequence (match weight 1,
otherwise 0)

End-space free variant that encourages one string to
align in the interior of the other, or the suffix of one to
align with the prefix of the other (initial conditions O,
everything is countable in the last row and the last
column) — shotgun sequence assembly

Approximate occurrence of P in T (the optimal alignment
of P to a substring of T has distance 6 from the optimal
alignment) (initial conditions 0).

-- locate a cell (n,j) with value greater than .
-- traverse backpointers from (n.j) to (0,k).
-- occurrence in T[k,]]

"
Local Suffix Alignment Problem

m Local suffix alignment problem: for two sequence S, and S, locate
a suffix a of S,[1..i] (with the probability of being empty) and a suffix
B of S,[1..j] (probably empty) so that V(a,B) has the maximum value
of all possible pairs of suffices of S,[1..i] and S,[1..j]. We symbolize as
u(i,j) the maxuimum local suffix alignment for the values i and ,j (i<n
and j<m).

m Initial conditions v(i,0)=0 and v(0,j)=0 as we can select an empty
suffix.

B U(iyj)=max[0,u(i-1,j-1)+s(S;(i), S(j)), U(i-1j)+ S(S,(1),_), u(iyj-1)+
s(_,Sz0))

Locally Similar Strings

T:
S:

Remarks

m Global Alignment is called Needleman-Wunsch
alignment

m Local alignment is called Smith-Waterman alignment

m Smith-Waterman can find regions with high similarity by
simply performing a trace-back from any cell (i,))
backwards and locate a pair with similarity v(i,)).

" A
Sequence alignment with gaps

m Gap: contiguous spaces, we want to control the
distribution of gaps.

m Introducing gaps: In order to compute the gap the gap
introduces in aligning 2 sequences, we can with a simple
approach consider that every gap contribute a constant
weight W, independent of its Iengthl.

= Value of alignment for “k” gaps: 2 :S(Sl'(i) S;(i))—kW
) g
i=1

m A better approach is using a function that is a function of
the gap length. Then we can fill a matrix:

V(i,j)=max[E(i,j), F(1,3), G(i,j)]

Alignment with arbitrary gap weights :

G(i,j)= V(i-1,j-1)+cost(i->j) 1

E(i,j)= max,V(i,k) - w(j-k) (0<=k<=j-1) i

F(i,j)= max/V(Lj) - w(i-l] (0<=1<=i-1)

! |

V(1)) =max{E(l,)), F(1,]), G(1,))}
V(i,0)=-w(i)

V(0,))=-w())

E(i,0)=-w())

F(0,))=-w())

G(0,0)=0

Assuming that |S,|=n and |S,|=m the recurrences can be
evaluated in O(nm?2+n2m)

	Διαφάνεια 1: Bioinformatics
	Διαφάνεια 2
	Διαφάνεια 3: Techniques for analysis and comparison of biological data sequences
	Διαφάνεια 4: Παρατηρήσεις
	Διαφάνεια 5: Basic definitions (α)
	Διαφάνεια 6: Basic definitions (β)
	Διαφάνεια 7: Example of Substitution Matrix
	Διαφάνεια 8: Sequence Alignment
	Διαφάνεια 9: Sequence alignment allowing gaps
	Διαφάνεια 10: Computing the score-function when aligning sequences
	Διαφάνεια 11: The method of Dynamic Programming
	Διαφάνεια 12: Example of Dynamic Programming Table
	Διαφάνεια 13: Recurrence relationship
	Διαφάνεια 14: Example: recurrence relationship
	Διαφάνεια 15: Traceback relationship
	Διαφάνεια 16: Adding traceback pointers
	Διαφάνεια 17: Interpreting traceback pointers
	Διαφάνεια 18: Complexity of Dynamic Programming Methods
	Διαφάνεια 19: Basic definitions (γ)
	Διαφάνεια 20: Recurrence relationship with weights
	Διαφάνεια 21: Dynamic programming & sequence similarity based on alphabet
	Διαφάνεια 22
	Διαφάνεια 23: Extentions
	Διαφάνεια 24: Local Suffix Alignment Problem
	Διαφάνεια 25: Locally Similar Strings
	Διαφάνεια 26: Remarks
	Διαφάνεια 27: Sequence alignment with gaps
	Διαφάνεια 28: Alignment with arbitrary gap weights
	Διαφάνεια 29

